
Worst case analysis of TreeMap data structure

Frédéric Fauberteau, Serge Midonnet

To cite this version:

Frédéric Fauberteau, Serge Midonnet. Worst case analysis of TreeMap data structure. 2nd Ju-
nior Researcher Workshop on Real-Time Computing (JRWRTC’08), Oct 2008, Rennes, France.
pp.33-36, 2008. <hal-00628464>

HAL Id: hal-00628464

https://hal-upec-upem.archives-ouvertes.fr/hal-00628464

Submitted on 19 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Ecole des Ponts ParisTech

https://core.ac.uk/display/48343872?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal-upec-upem.archives-ouvertes.fr/hal-00628464

Worst Case Analysis of TreeMap Data Structure

Frédéric Fauberteau and Serge Midonnet

Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge,

UMR CNRS 8049, France

{fauberte, midonnet}@univ-paris-est.fr

Abstract

Data structures with relaxed balance eases the update

of shared resources on asynchronous parallel architectures.

This improvement is obtained by a better locking scheme

of the data structure. In this paper, we describe the com-

plexity and analyze the worst case cost of access opera-

tions on such a structure. We propose a data structure with

the same properties as Java TreeMap but implemented with

chromatic search tree; a tree with relaxed balance. The aim

of our structure is to provide a more efficient TreeMap we

can use in concurrent and real-time applications.

1. Introduction

A chromatic search tree, initially presented in [6], is a

red-black tree [1] with relaxed balance. A red-black tree is a

self-balancing binary search tree. This kind of structure al-

lows to perform update operations (insertion and removing)

and search operations with a log2(n) time complexity in the

worst case where n is the number of keys in the tree. When

such a tree looses its balance after an update, a balancing

operation is performed to guarantee the height of the tree

and so the log2(n) complexity. A chromatic search tree is a

relaxed balance tree. Rebalancing in a chromatic search tree

has been studied in [9, 3, 10]. In [2] Boyar, Fagerberg and

Larsen prove that only an amortized constant amount of re-

balancing is necessary after an update in a chromatic search

tree depending on the number of successive operations. In

[7] Hanke compares red-black trees performances with their

relaxed versions and gives simulation results which show

that chromatic search trees offer better performances than

red-black tree in concurrent environment.

With the emergence of the multiprocessor architectures

in the real-time issues, data structures which are more effi-

cient in concurrent context could be of value. To decide the

faisability of a real-time application, a worst case execution

time estimation of all tasks which compose the system must

be carried out. This estimation implies, if tasks are using a

data structure concurrently, knowing the worst case cost of

the use of such a structure. As far as we know, nobody else

has, as yet, looked at the estimation cost of the update or

search operations on a chromatic search tree.

The remainder of this paper is organized as following. In

Section 2, we present red-black and chromatic trees and we

describe their properties. In Section 3, we propose a worst

case estimation of operation cost for the two structures. In

Section 4, we explain how we want to use idle time of the

system to rebalance the chromatic search tree. In Section

5, we comment on the results of our simulations. Finally,

in Section 6, we conclude and discuss our future research

work.

2. Red-black and Chromatic Search Trees

Red-black trees and their relaxed equivalent are binary

search trees. These structures are used for store datas in

a sorted way. Datas are stored in the nodes of the tree.

They must be comparable to be stored in such a structure

(otherwise a comparable key can be associated to the data).

Each node v in a red-black tree or in a chromatic search tree

has an associated non-negative weight w. This weight is

used for guarantee the balance of the tree. If w(v) = 0, the

node is red; if w(v) = 1, the node is black. In a chromatic

search tree, a node can be overweighted and its weight can

be w(v) > 1. The weighted level of a node is the weight of

the path from the root to that node.

Definition 1. A red-black tree is a full binary search tree T

with the following balance conditions:

• the leaves of T are black,

• all leaves of T have the same weighted level,

• no path from a root to a leaf contains two consecutive

red nodes,

• T has only red and black nodes.

A chromatic search tree is a leaf-oriented tree. This prop-

erty enables the user to insert a new key locking the leaf

where this key must be inserted and allows to remove a key

locking the parent of leaf which contains this key.

Definition 2. A chromatic tree is a full binary search tree T

with the following conditions:

• the leaves of T are not red,

• all leaves of T have the same weighted level.

3. Worst Case Estimation

In this section, we compare red-black tree and chromatic

search tree. We firstly estimate the worst case execution

time for the two structures and we propose a bound on re-

balancing the chromatic search tree. Secondly, we compare

the blocking factor of tasks using these structures and show

the advantage of the chromatic search tree. We consider

only the insert operations because remove and search oper-

ations have an equivalent worst case execution time for two

structures.

3.1. Without Shared Resource

Firstly, we consider the worst case execution time of a

task without shared resource. This task uses a binary search

tree of maximum size N . The worst case for this task is the

insertion of the N th key in the tree. For the red-black tree,

Wood [12] give upper bound for the height of the tree:

hRB ≤ 2 log
2
(N + 2) − 2 (1)

An insertion in a red-black tree can consist in the search

of the position where to insert the new key followed by a

fix operation. The fix operation can consist in color mod-

ifications and two rotations in the worst case. The tree

is browsed from the new leaf to the root. The color of

the nodes on this path is updated function of the color of

their parent nodes. In the same way, if a node on this path

matches some conditions on its parent nodes, a rotation is

performed. All the fix operations are precisely described in

[4]. The two rotations have a constant cost but the modifica-

tions of the color of the nodes along the tree are dependent

of the tree height. We define the following costs:

• Ck the cost of a key comparaison,

• Ca the cost of a node insertion (connection of point-

ers),

• Cc the cost of a color modification,

• Cr the cost of a rotation.

We can give a pessimistic worst case estimation time for an

insertion in a red-black tree of size N with the following

equation:

(Ck + Cc) · 2 log
2
(N + 1) − 2 + Ca + 2Cr (2)

For a chromatic search tree, the worst case is when the

tree has never been rebalanced. So, the insertion of N th

key in tree is equivalent to the insertion of the key at the

end of a list. This insertion is followed by a unique color

modification. We can also give a worst case estimation time

for an insertion in a chromatic search tree of size N with

the following equation:

Ck · (N − 1) + Ca + Cc (3)

3.2. With Shared Resource

In this section, we consider a set of tasks which share a

resource represented by our binary search tree. We also con-

sider that the Priority Inheritance Protocol is used because it

is commonly implemented on the actual systems. With such

a protocol, a task of high priority τH can be blocked by a

task of lesser priority τL while τL is locking the resource.

Because a balance operation in a red-black tree can mod-

ify the internal structure of the tree, it is imperative to fully

lock the structure. We note here that Ci the WCET given

by Equation 2. If τL performs I insertions with a red-black

shared resource, the blocking factor of τH is given by the

following equation:

I · Ci (4)

tτL

τH

t

tτL

τH

t

Priority

a)

b)

Figure 1. a) Red-black tree shared resource.

b) Chromatic search tree shared resource.

We represent in Figure 1 two tasks which share a resource.

The dashed parts represent the critical sections. In Figure 1-

a the task τH which is blocked by τL during τL perform all

its insertions.

Now we consider that the shared resource is a chromatic

search tree. This structure is not balanced at each update op-

eration. So the internal structure is never modified. A task

which uses this resource just needs to lock the leaf where

the new key must be inserted. If τL performs I insertions

with a chromatic search tree shared resource, the blocking

factor of τH will be in the worst case:

Ca + Cc (5)

This worst case occurs when τH tries to insert a key in the

same leaf that τL has blocked. In this case, τH just waits for

τL insert its key, modify the color of the old leaf and unlock

it. We represent this scenario in the Figure 1-b.

The chromatic search tree was studied to reduce locks in

shared-memory and we show that it enables the reduction

in response time of the high priority tasks when priority in-

heritances occur.

4. Rebalancing using Slack Stealer

Rebalancing time depends of the number of update oper-

ations and of the size of the tree. We know these parameters,

so we can estimate the necessary time needed to rebalance

a chromatic search tree. Because the rebalancing operation

has been removed from the task cost, we propose to perform

it during the idle time of the system. Several methods are

possible to perform a treatment during idle time:

• scheduling of an aperiodic task of high priority when

rebalancing operation is needed. The drawback of this

method is that the rebalancing operation can consume

some time which prevents some periodic tasks to meet

their deadline,

• scheduling of a task server. This method implies the

reservation of server cost, but rebalancing may not al-

ways be needed. Thus this method adds a further task

to the feasibility analysis of the system (the task server)

and complexifies this analysis,

• computing the available slack when the rebalancing

operation is needed.

We have chosen the last method because the slack gives us

the maximum duration for which all tasks can be delayed

without missing their deadline. So we can perform the re-

balancing operation during this time and interrupt it when

all the slack has been consumed because each rotation op-

eration of the rebalancing processing is atomic.

The computation of the slack can be perform with a Slack

Stealer algorithm. There are two kind of optimal algorithms

which give the exact slack value for a t instant. First, [11]

propose a static approach to compute the slack. When the

system is offline, it constructs a function representing the

value of the slack for an hyperperiod. When the system is

online, this function is updated to keep the value of the slack

after its consumption by the tasks. The drawback of this al-

gorithm is that the space complexity of the storage of the

function is too large. A second approach, proposed in [5],

compute the slack online without precomputation. The dis-

advantage of this algorithm is that time complexity of the

computation is too large. These optimal algorithms are not

exploitable to implement in a real-time application. Finally,

a particular kind of algorithm computes an approximation

of the slack value in O(1). We can use the algorithm pro-

posed in [8] to compute the slack value when the rebalanc-

ing is needed. This algorithm adds a linear time complexity

operation to the WCET of each task.

5. Results of Simulation

We present in this section our first results. We produce

these results implementing a new map structure based on

the Java TreeMap. We replaced the red-black tree by a chro-

matic search tree to produce a structure we called RTChro-

maticTreeMap.

Rebalancing

Threshold

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 1 2 3 4 5 6 7 8 9 10

TreeMap
RTChromaticTreeMap

Number of successive insertions

T
im

e
(n

s)

Cost of successive insertions in the worst case

Figure 2. Worst successive insertions in

TreeMap and RTChromaticTreeMap.

We represent in Figure 2 measures of successive insertions

in the both structures. We have initialized the two structures

with a little set of keys. This particular set of keys produces

a balanced tree for both structures. From these initialized

trees, we perform insertions of sorted values which must be

inserted in the same leaf. For the RTChromaticTreeMap,

we don’t apply the rebalancing algorithm. We remark that

RTChromaticTreeMap has better performances for a little

number of successive insertions. We obtain this results be-

cause in the worst case situation in which the inserted key

is always in the same leaf, the TreeMap structure operates

rebalancing operation more frequently. In the RTChromat-

icTreeMap, a list is created from the leaf where the new key

is inserted. Even if browsing this list represents an over-

cost, it is counterbalanced by the lack of rebalancing oper-

ation. But after 10 successives insertions, the overcost of

the RTChromaticTreeMap become more important than the

cost of rebalancing operation of the TreeMap. So, we have

used this value as a first rebalancing threshold.

In the worst case execution time evaluation, we must

consider the cost of the worst rebalancing operation for each

insertion. But in an average case, a rotation operation can

not be necessary. In this case the overcost of the RTChro-

maticTreeMap is not counterbalanced.

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 10 20 30 40 50 60 70 80 90 100

T
im

e
(n

s)

Number of insertions

Average cost of insertion operations

TreeMap
RTChromaticTreeMap

Figure 3. Random successive insertions in

TreeMap and RTChromaticTreeMap.

Tor compare the performances of the two structures in a less

pessimistic context, we measured of average insertions. We

can show in Figure 3 that the cost of insertion operations

in RTChromaticTreeMap is slightly greater that the cost of

insertion operations in TreeMap. So, we can improve the

worst case execution time estimation but the average perfor-

mance of the RTChromaticTreeMap structure are not better.

This structure must be used only if there is concurrence be-

tween tasks in the system.

6. Conclusion and future Work

We have shown that chromatic search tree can be used in

a real-time context. But to reduce the worst case execution

time, it is necessary to fix a bound to force the rebalancing

of the structure. We assume that we can perform the rebal-

ancing during idle time using Slack Stealer algorithm. That

supposes that the system is underloaded.

We have implemented a Java TreeMap structure with

chromatic search tree. We must now implemente the lo-

cal locking scheme and the approximate Slack Stealer algo-

rithm to finalize our tests and propose an exploitable solu-

tion.

References

[1] R. Bayer and E. M. Mccreight. Organization and mainte-

nance of large ordered indexes. Acta Informatica, 1:173–

189, 1972.

[2] J. Boyar, R. Fagerberg, and K. S. Larsen. Amortization re-

sults for chromatic search trees, with an application to prior-

ity queues. J. Comput. Syst. Sci., 55(3):504–521, 1997.

[3] J. Boyar and K. S. Larsen. Efficient rebalancing of chromatic

search trees. J. Comput. Syst. Sci., 49(3):667–682, 1994.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. In-

troduction to Algorithms. The MIT Press, 2 edition, Septem-

ber 2001.

[5] R. I. Davis. Scheduling slack time in fixed priority pre-

emptive systems. Technical report, Dec. 08 1993.

[6] L. J. Guibas and R. Sedgewick. A dichromatic framework

for balanced trees. In FOCS, pages 8–21. IEEE, 1978.

[7] S. Hanke. The performance of concurrent red-black tree al-

gorithms. In J. S. Vitter and C. D. Zaroliagis, editors, Algo-

rithm Engineering, volume 1668 of Lecture Notes in Com-

puter Science, pages 287–301. Springer, 1999.

[8] D. Masson and S. Midonnet. Slack time evaluation with rtsj.

In SAC ’08: Proceedings of the 2008 ACM symposium on

Applied computing, pages 322–323, New York, NY, USA,

2008. ACM.

[9] O. Nurmi and E. Soisalon-Soininen. Uncoupling updating

and rebalancing in chromatic binary search trees. In PODS,

pages 192–198. ACM Press, 1991.

[10] O. Nurmi and E. Soisalon-Soininen. Chromatic binary

search trees. a structure for concurrent rebalancing. Acta

Inf., 33(6):547–557, 1996.

[11] S. R. Thuel and J. P. Lehoczky. Algorithms for schedul-

ing hard aperiodic tasks in fixed-priority systems using slack

stealing. In IEEE Real-Time Systems Symposium, pages 22–

33. IEEE Computer Society, 1994.

[12] D. Wood. Data structures, algorithms, and performance.

Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 1993.

