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Abstract
Building energy-efficient systems is one of the principal

challenges in wireless sensor networks. Dynamic voltage
scaling (DVS), a technique to reduce energy consumption
by varying the CPU frequency on the fly, has been widely
used in other settings to accomplish this goal. In this paper,
we show that changing the CPU frequency can affect time-
keeping functionality of some sensor platforms. This phe-
nomenon can cause an unacceptable loss of time synchro-
nization in networks that require tight synchrony over ex-
tended periods, thus preventing all existing DVS techniques
from being applied. We present a method for reducing en-
ergy consumption in sensor networks via DVS, while mini-
mizing the impact of CPU frequency switching on time syn-
chronization.

The system is implemented and evaluated on a network
of 11 Imote2 sensors mounted on a truss bridge and run-
ning a high-fidelity continuous structural health monitoring
application. Experimental measurements confirm that the al-
gorithm significantly reduces network energy consumption
over the same network that does not use DVS, while re-
quiring significantly fewer re-synchronization actions than
a classic DVS algorithm.

1 Introduction
Energy efficient design has been the focus of many re-

search studies in sensor networks, as battery lifetime is be-
coming a limiting factor for the realization of many appli-
cations. Enabled by recent advances in power supply and
circuit design, voltage scaling techniques provide a mecha-
nism to trade-off processor speed against power consump-
tion. Dynamic Voltage Scaling (DVS) and Dynamic Volt-
age and Frequency Scaling (DVFS) techniques have been
widely used to reduce energy consumption of real-time and
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event-driven systems when low-power sleep is not an option
due to application and/or environmental constraints. DVS is
especially important for high-performance applications that
need significant in-network processing and have varied per-
formance and energy consumption characteristics, such as
audio- and video-streaming and structural health monitor-
ing (SHM). Extended durations of network wakefulness and
continuous monitoring requirement of these applications fur-
ther underscore the utility of DVS for energy conservation.

Consider structural health monitoring, an important
emerging application in sensor networks [3, 2]. Smart
sensor-enabled SHM is a promising technology for identi-
fying and locating damaged elements within structures and
for monitoring the changes in the health condition of civil
infrastructure over time. SHM algorithms evaluate the con-
dition of structures by continuously measuring strain values
or vibration characteristics at different points. SHM appli-
cations typically involve high-performance data processing
and have diverse processor and network requirements during
different stages of operation. They usually consist of certain
number of phases forming a cycle. Such a cycle is usually
repeated for many times during the execution of the applica-
tion. Taking advantage of DVS in this application necessi-
tates different policies for each phase, as the computational
requirements vary significantly. Finally, SHM algorithms re-
quire tightly synchronized data, in the order of tens of mi-
croseconds, to produce accurate results, with distributed sen-
sor readings correlated in a global time scale [13].

Motivated by the synchronization requirements of SHM
applications, we examined the factors affecting the growth
of synchronization error over time. In the course of this re-
search, we have uncovered a timekeeping anomaly related
to DVS and CPU frequency switching. For embedded ar-
chitectures with variable-frequency CPUs that also use the
processor tick counter as a clock source, the act of changing
the frequency can momentarily disrupt the local clock and
even cause minute changes in the rate at which it ticks. In
this paper, we show that the disruption has a significant im-
pact on the accuracy of local clocks and greatly increases the
frequency of resynchronization in applications that need to
maintain network synchrony within a maximum error bound.
Since the magnitude of the clock errors varies from node to
node and also depends on the CPU frequencies, calibration
alone cannot counter such a problem.

We propose a method for enabling energy-saving DVS
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Figure 1. Measured average current draw for Imote2 compu-
tational tasks running at different CPU frequencies

in time-sensitive applications in the presence of this phe-
nomenon. By taking time synchronization constraints into
account, we transform the DVS algorithm into an optimiza-
tion problem. We can trade off increased frequency of net-
work resynchronization against reduced energy consumption
due to dynamic CPU frequency and voltage changes. Exper-
imental results confirm the efficacy of the solution in sav-
ing energy while maintaining synchrony. These findings are
significant for all sensor network applications that require
precise network-wide time synchronization, and can benefit
from energy savings due to dynamic voltage scaling.

We have selected the Imote2 as the target platform for
evaluating the relationship between time synchronization
and CPU frequency and voltage changes for two reasons: 1)
its wide range of available CPU frequencies, and 2) the capa-
bilities for handling high-throughput communication and in-
tensive data processing found in SHM applications. The em-
pirical measurements and experimental evaluation presented
in this paper are conducted on an SHM network of 9 Imote2
sensors deployed on a pedestrian truss bridge.

The principal contributions of our work are as follows:

• Documenting and quantifying the effect of CPU fre-
quency changes on time synchronization error

• A method for integrating synchronization error consid-
erations into DVS algorithms

• Evaluation of the proposed optimization algorithm in a
real-world SHM application

The remainder of this paper is organized as follows. Sec-
tion 2 motivates our research into the relationship between
DVS and time synchronization. In Section 3, we discuss our
assessment of the relationship between time synchronization
and CPU frequency and voltage changes. Section 4 intro-
duces our approach to addressing the issue. Evaluation re-
sults from a real-world implementation are presented in Sec-
tion 5, and Section 6 discusses the contributions of this paper
in the context of related work on DVS and time synchroniza-
tion. Section 7 concludes the paper.

2 Motivation
Adjusting the frequency of the processor and peripheral

systems is one of the most effective methods of optimiz-
ing power consumption for an application’s performance re-
quirements. Recent advances in power supply and embedded
processor design have enabled the emergence of this tech-
nique in sensor networks.

2.1 DVS in Sensor Networks
PXA271, the processor on Imote2, supports switching

between four CPU frequencies to balance performance and
power efficiency. Figure 1 shows the measured average cur-
rent draw of the system while performing a computational
task at each of these frequencies.

By reducing energy consumed during active operation,
DVS is an enabling technique for wireless sensor network
applications that require long durations of wakefulness or
continuous monitoring of the environment. For example, ef-
fective SHM systems should have the ability to capture tran-
sient events such as earthquakes or bridge overloads [18].
The time needed to wake up the sensor network from deep
sleep is one of the primary limitations to the realization of
these applications using wireless sensors. In a large net-
work, such as the continuous SHM system deployed on the
Jindo Bridge [11], it can take over a minute to fully wake
up the network and start acquiring data [16]. In the event
of an earthquake, the entire event could be missed while the
network is initiating [18]. Also, some applications require
short-term (days to weeks) of exhaustive data collection for
investigative studies [12]. Continuous monitoring coupled
with proper energy management techniques during the run-
time of the sensor network can enable such scenarios even
when sensors are operating on a limited power budget.

DVS can offer the greatest benefit in high performance
applications with computationally intensive tasks, since they
typically involve different phases of operation with varied
timing and processing demands. Specific requirements such
as high sampling rates, prompt data collection and analysis,
vast amounts of data to be collected, and precise internodal
synchronization, result in a situation where both shorter run
times and low energy consumption are desirable. In these
applications, DVS can significantly reduce the energy con-
sumption of the entire network by setting the optimal CPU
speed to match the requirements of each phase.

However, we have observed that changing processor fre-
quency can have negative effects on time synchronization.
More specifically, a change in frequency can change both the
offset between the clocks of two nodes and the relative drift.
According to Intel PXA27x Developer’s Manual [5], chang-
ing a clock frequency causes the CPU clock to stop, which
impacts a sensor node’s timekeeping and thus the time syn-
chronization of a sensor network employing DVS.

2.2 Frequency Switching and Time Synchro-
nization

The primary clock on Imote2’s processor, PXA271, is
driven by a CPU tick counter, which provides a clock sig-
nal at a fraction of the CPU speed. Thus, the CPU clock
stoppage due to frequency change interrupts with the sys-
tem clock operation. Figure 2(a) shows the clock offset of
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CPU frequency 13MHz.

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70 80 90 100 110

Run 1

Run 2

Run 3

Run 4

Time(s) 

Error(μ s)  

(b) Changing the CPU frequency from 13MHz to
208MHz on one node

Figure 3. Variance in clock offset change due to CPU frequency change

an Imote2 node (referred to as the remote node herein) with
respect to a reference node, and the effect of changing CPU
frequency on the offset. Figure 2(b) shows the effect of pro-
cessor frequency change on clock offset between the two
nodes when the remote node changes its CPU frequency to
the same value.

The amount of offset change for a fixed pair of CPU
frequency change is not constant. In other words, differ-
ent offset changes were measured in different iterations for
the same node pair with the same frequency change. Us-
ing different nodes for different iterations of identical fre-
quency changes also lead to differences in magnitude of the
offset change. Figure 3(a) shows the effect of CPU frequency
change on the relative offset for three different nodes; fre-
quency is changed from 13MHz to 416MHz when the refer-
ence node maintains the 13MHz frequency. The median of
the relative offset change is 92 microseconds with the range
of 83 to 94 microseconds. For comparison, the average error

of clock drift estimation using this data is about 3 microsec-
onds, which shows the significance of the wide range of ob-
served offset changes. Figure 3(b) shows this variance for
different runs on the same node; the median of the relative
offset change is 92 microseconds with the range of 88 to 96
microseconds, and the average error of clock drift estimation
for this data is about 2 microseconds. These variations render
the use of an off-line phase for offset jump/drop prediction
and their consideration during DVS ineffective for applica-
tions that have a high requirement on the precision of clock
synchronization.

DVS results in numerous CPU voltage and frequency
changes, each introducing a sudden change in the clock off-
set which as described, cannot be accurately predicted. If this
phenomenon is not taken into account, the errors accumulate
over time and lead to the loss of time synchronization across
the network. Therefore, DVS implementation for applica-
tions with tight time synchronization requirement necessi-
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(a) Effect of CPU Frequency
change from 13MHz to 104MHz
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(b) Effect of CPU Frequency
change from 13MHz to 208MHz
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(c) Effect of CPU Frequency
change from 13MHz to 416MHz
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(d) Effect of CPU Frequency
change from 104MHz to 13MHz
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(e) Effect of CPU Frequency
change from 104MHz to 208MHz
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(f) Effect of CPU Frequency
change from 104MHz to 416MHz
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(g) Effect of CPU Frequency
change from 208MHz to 13MHz
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(h) Effect of CPU Frequency
change from 208MHz to 104MHz
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(i) Effect of CPU Frequency
change from 208MHz to 416MHz
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(j) Effect of CPU Frequency
change from 416MHz to 13MHz
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(k) Effect of CPU Frequency
change from 416MHz to 104MHz
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Figure 4. Effect of changing CPU Frequency when reference node has fixed CPU frequency 13MHz



tates frequent network resynchronization, unless this effect
is accounted for in the design of the DVS technique. On the
other hand, time synchronization algorithms with high accu-
racy impose large overhead in terms of energy consumption
due to the high degree of message transfers and the long du-
ration of synchronization event.

In this paper, we leverage DVS to improve the energy ef-
ficiency of sensor network applications by introducing an in-
novative algorithm that takes into account the effect of CPU
frequency and voltage change on time synchronization. Ac-
cordingly, we design algorithms that minimize total energy
consumption of the entire network, while addressing specific
application and environmental requirements. For this pur-
pose we need an accurate model for energy consumption as
well as exact measurements quantifying the described con-
sequences of CPU frequency change. In the next section
we present measurements quantifying the effect of CPU fre-
quency change on time synchronization, and in Section 4 we
present our model and corresponding solutions. In this pa-
per, we do not aim to minimize the time a nodes has to stay
awake for computations and assume that our algorithms run
on the durations of node wakefulness.

3 Assessing the Timekeeping Anomaly
As noted in the previous section, processor frequency

change on Imote2 can cause a sudden jump or drop in the
clock offset between the reference node and the remote
nodes. This sudden change in relative clock offset has detri-
mental effect on time synchronization, mostly because the
change is not constant over time and for different CPU fre-
quencies. In this section we present measurements quan-
tifying relative clock offset change due to CPU frequency
change, and discuss resynchronization frequency required to
fulfill application time synchronization requirement.

In section 2 we noted the time keeping anomaly resulted
from processor frequency change, its significance and the in-
consistent behavior over time. Unlike Figure 2, and Figure 3
which emphasize the significant difference in offset change
in different settings and over time, here we aim to quantify
the offset change and its variance for each frequency pair
through multiple runs and CPU frequency changes. This en-
ables us to quantify the relative cost of each processor fre-
quency change with respect to time synchronization cost.
Figure 4, and Table 1 summarize the results of offset change
due to frequency change for Imote2. Each graph in Figure 4
shows the effect of frequency change for all frequency pairs.
The results show that the most significant jump/drop in the
relative clock offset happens when changing CPU frequency
to or from 13MHz. One possible reason why the change
between 13MHz and 104MHz is bigger than others is be-
cause the multiplier changes 8x, compared to 2x and 4x for
the other possible changes. A trivial solution to prevent sig-
nificant changes to the offset as a result of DVS is to limit
the minimum allowed frequency to 104 MHz. However, as
the energy consumption under frequency 13MHz is signifi-
cantly smaller than the higher CPU frequencies, this solution
can impinge energy efficiency. Thus, lowering the frequency
to 13MHz is inevitable and as a result additional provision
must be included to account for synchronization error result-

ing from sudden offset changes.
Figure 4 also shows that when the CPU frequency of the

remote node is increased, the offset value faces a sudden
drop. Similarly, the offset value jumps when CPU frequency
is decreased on the remote node. This is a trend observed in
all our experiments and can be expanded in the reverse order
to the case where the frequency is changed on the reference
node. Figure 5 shows offset change when CPU frequency is
toggled between 13 and 104.
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Figure 5. Effect of toggling CPU frequency between 13MHz
and 104MHz. Processor frequency is periodically switched be-
tween 13MHz and 104MHz.

In order to evaluate the overhead of CPU frequency
change, we have measured the time taken to change proces-
sor frequency through extensive experiments. The average
overhead of frequency change on Imote2 is about 800 mi-
croseconds. We have observed that there is a slight differ-
ence in frequency change overhead based on different pairs
of frequency change. The main difference was observed
when one of the considered frequencies was 13MHz. Table 2
summarizes these results.

Accurate time synchronization is intrinsic to applications
such as SHM that require tightly synchronized data. In these
applications, network resynchronization is necessary when-
ever time synchronization error grows beyond a threshold.
The total time synchronization error depends on both the
time synchronization algorithm and the DVS implementa-
tion. Time synchronization error due to DVS is introduced as
a result of clock offset change when processor frequency is
changed. Consider the time TT S at which the network should
resynchronize due to the error introduced by the time syn-
chronization algorithm. This error is mainly due to drift es-
timation error. On the other hand, a CPU frequency change
fm to fn introduces an additional error due to clock offset
change, and thus reduces network resynchronization time by
tm,n. Figure 6 illustrates this effect. As we will see in the next
section, the amount of offset change is not constant for the
same pair of frequency change and same hardware. There-
fore, tm,n is determined based on the standard deviation for
offset change on each pair of frequency change. We define an
energy cost with respect to each frequency change fm to fn,
the corresponding tm,n and the cost of the employed time syn-
chronization algorithm. This cost is considered in the energy



optimization formulation that determines CPU frequency of
each task.

Frequency
Change

Median Offset
Jump/Drop
(µs)

Offset
Jump/Drop
Range (µs)

13 - 104 83 (76, 89)
13 - 208 92 (88, 96)
13 - 416 93 (90, 95)
104 - 13 -95 (-90, -101)
104 - 208 3 (2, 4)
104 - 416 4 (4, 7)
208 - 13 -98 (-93, -102)
208 - 104 -8 (-5, -9)
208 - 416 - -
416 - 13 -102 (-90, -104)
416 - 104 -8 (-7, -15)
416 - 208 - -

Table 1. Offset change due to frequency change on remote
node based on Imote2

From / To 13 MHz ≥104 MHz
13 MHz - 918.5
≥104 MHz 746.77 843.3

Table 2. Overhead of CPU frequency change on Imote2 in
microseconds

4 Approach
In this section we elaborate on our proposed method for

enabling energy-saving DVS for time-sensitive applications
in the presence of the timekeeping anomaly related to CPU
frequency switching. Before DVS can be implemented in
this setting, we have to first build a model of the application’s
energy consumption characteristics at different frequencies,
and integrate the application’s runtime and time synchroniza-
tion error bound constraints with the DVS optimization prob-
lem.

4.1 Modeling Energy Consumption
Sensor networks are often comprised of fixed sequences

of periodic operations. Since these usually have variable
durations and processing requirements, we identify these
phases as logical units for DVS actions. Different phases
have different number of tasks and variable amount of pro-
cessing requirement. Consider Figure 7 which shows the
phases of a data acquisition service designed for SHM ap-
plications. This application has 8 sequential phases, includ-
ing idle phases of waiting: Setup, Communication, Net-
work Initialization, Sensing, Data Processing, and Data Stor-
age. As the computational workload of these phases vary
greatly, it is desirable to run them at different CPU frequen-
cies. This paradigm promotes the design of an optimum
CPU frequency schedule at the granularity of application

Network 
Synchronization 

TResync =TTS 

No CPU Frequency Change 

Network 
Synchronization 

TTS 

CPU Frequency Change from fm to fn 

tm,n 

TResync =TTS – tm,n 

Figure 6. Change in resynchronization period due to CPU
frequency change. The top figure shows the required network
resynchronization period due to expected synchronization er-
ror growth. The bottom figure shows the reduced period due
to synchronization error introduced by CPU frequency change
from fm to fn.

Setup 

Communication Idle 

Sensing 
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Data 
processing 

Network 
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Figure 7. Phases of a data acquisition service used in vibration
monitoring application. Application phases often have varied
processing requirements.

phases. This coarse-grained CPU frequency assignment is
also rooted in the cost of CPU frequency change which can
not be ignored in embedded systems.

Energy optimization requires comprehensive understand-
ing of the energy consumed for running each phase of the ap-
plication. This is due to the difference of computation work-
load of phases. In the example in Figure 7, the Sensing phase
should run for a specific duration determined by the applica-
tion user; also, phases such as the Data Storage that include
I/O operations are mostly independent of CPU frequency. In
order to be efficient, the frequency assignment system should
account for run time independence of such phases from CPU
frequency. For this purpose, we have instrumented the SHM
application under consideration with phase change notifica-
tion. This requires minimal modification to the application.
We have then empirically measured the run time of each
phase in different CPU frequencies. The energy consumed
for running each phase is calculated using the runtime and
the current draw for each CPU frequency. This procedure is
repeated to give an average estimate of energy consumption
of different phases in different CPU frequencies.

Another source of energy consumption in time-sensitive



Notation Description
P The number of phases, P = |pi|
pi The ith phase, 1≤ i≤ P
F The number of variable CPU frequencies F = | f j|
f j The jth CPU frequency 1≤ j ≤ F
Fi CPU frequency for the ith phase
Ri, j Run time for computation in the ith phase in the jth CPU frequency
I j Current draw for the jth CPU frequency
Stdm,n Standard deviation for offset change due to CPU frequency change from fm to fn

δ Maximum allowed time synchronization error
D Application deadline
TT S The required network resynchronization time
tm,n The decrease in network resynchronization due to CPU frequency change from fm to fn

E Total energy consumption for executing phases pi, i ∈ (1..P)
R0 a constant representing the aggregate resistance of the device

Table 3. Model Parameters

sensor network applications is time synchronization. As ex-
plained in the previous section the two main sources of time
synchronization error are drift estimation error, and the error
due to clock offset change when CPU frequency is changed
in DVS. In applications with tight requirement on time syn-
chronization, the accumulated time synchronization error ne-
cessitates frequent network resynchronization, which should
be considered in the energy optimization formulation.

4.2 DVS Optimization Problem
Let P be the number of phases in an application, with

the entire application being executed periodically or continu-
ously in the system. The duration (run time) of each phase is
measured through profiling. A change in the CPU frequency
fm to fn results in a relative offset change with standard de-
viation Stdm,n. The synchronization constraint imposed by
the application restricts the synchronization error to δ, at all
times. This constraint necessitates network resynchroniza-
tion whenever the error exceeds δ. Network resynchroniza-
tion time TT S is determined based on the error introduced by
the employed time synchronization algorithm and the error
introduced by the effect of DVS on offset change. Table 3
summarizes our model parameters.

The energy optimization formulation is defined as fol-
lows. Minimize the total energy consumption E:

P

∑
i=1

F

∑
j=1

(R0.I2
j .Ri, j +Overhead(i−1, i)+T SCost(i−1, i))

(1)
subject to:

P

∑
i=1

(Ri, j)≤ D, (2)

where R0 is a constant representing the aggregate resistance
of the device, I j representing current draw for the jth CPU
frequency and Ri, j showing the run time for computation in
the ith phase in the jth CPU frequency. D is the latest al-
lowed deadline, and is usually dictated by the application.

Overhead(i−1, i) is the overhead of CPU frequency change
from fi−1 to fi. T SCost(i− 1, i) is a function calculated
based on the cost of time synchronization algorithm, and
ti,i−1 which represents the decrease in network resynchro-
nization period due to CPU frequency change from fi−1 to
fi.

T SCost(m,n) identifies the cost of CPU frequency
change with respect to the time synchronization constraint.
tm,n, and T SCost(m,n) are defined as follows:

tm,n = Tdri f t −Tswitch(m,n), (3)

where Tdri f t is required resynchronization period due to
clock drift estimation period, and Tswitch(m,n) is required
resynchronization period due to offset change. Tswitch is de-
termined based on Stdm,n, the standard deviation of offset
change when processor frequency is changed from fm to fn.

T SCost(m,n) = (tm,n)∗
ET S

Tdri f t
, (4)

where ET S is the energy consumption of the time synchro-
nization algorithm.

The energy optimization problem is formally defined as
follows:

Let application A be a sequence of phases pi, i ∈ (1..P).
For each pi, find CPU frequency Fi such that total energy
cost E is minimized and the runtime of A satisfies the dead-
line D.

We have developed an off-line optimization solver for
Equation 1. A three-dimensional dynamic programming pro-
cedure is used for solving this problem. In this method, fre-
quency assignment to each phase is considered as a step. The
complexity of this problem lies in the fact that the order of
phase frequency assignment plays an important role in the
final energy cost. For this reason, the frequency assignment
of each step depends on the frequency of the previous step.
This leads to the following iterative formula:



Figure 8. A truss bridge over the Sangamon River serves as a testbed for SHM applications

Opt(pi, f j,d)=



∞ if pi = 0 or f j = 0

Opt(pi, f j+1,d) if Ri, j > d

min(Opt(pi−1, f1,d), otherwise
Opt(pi−1, f1,d−Ri, j) +

Overhead( fi−1, fi) +

T SCost( fi−1, fi))

where d is the available time until deadline D. Solving
the above equation iteratively will lead us to Opt(pP, f1,D),
which is the solution to the optimization problem. The solver
will also produce the required resynchronization period TT S,
which is comprised of 1) the synchronization error due to the
aggregate runtime of the phases, and 2) the synchronization
error contributed by each frequency switch in the schedule.

Run time, current draw, and synchronization error data
collected during the profiling phase is given as the input to
the optimization solver. The profiling is performed off-line
over several iterations of the application at different stati-
cally set CPU frequencies. It can be considered as a prelim-
inary phase, conducted prior to network deployment. This
approach, which does not require code changes after deploy-
ment, is well-suited to sensor networks where it is difficult
or expensive to reprogram the sensors in the field.

The optimization solver determines an optimum CPU
frequency schedule for all phases of the application, which
is stored on the nodes and serves as input to the on-line DVS
controller. This is executed only when the application indi-
cates a phase change, and processor frequency is changed
if the frequency assignment of the current and preceding
phases differs.

5 Evaluation
We have empirically evaluated the energy consump-

tion and time synchronization quality provided by our
synchronization-aware DVS method on a WSN running a
structural health monitoring application on a truss bridge.
The results are compared with alternative approaches to
power management: the same SHM application running at
a constant frequency, and a DVS optimization algorithm that
does not take into account the timekeeping anomaly due to
CPU frequency switches.

The deployment consists of 9 Imote2 nodes equipped
with the ISM400 sensorboard [17] for measuring triaxial ac-
celeration. The sensors are mounted on the Mahomet Bridge,
a two-span pedestrian truss bridge over the Sangamon River
located near Mahomet, Illinois 8. The bridge serves as a
testbed for the Illinois SHM Project, where data acquisition
and damage detection algorithms are prototyped before de-
ployment to larger structures. A single-hop 802.15.4 wire-
less network connects the sensors with an Internet-connected
gateway node for remote access and data collection. The
software controlling the Imote2 sensor nodes is composed
of customizable services from the ISHMP Services Tool-
suite [16], which allows many aspects of the application and
network behavior to be altered remotely by changing config-
uration parameters stored on each sensor. We have modified
the SHM data acquisition service from the Toolsuite to en-
able CPU frequency switching according to a DVS policy
stored in flash memory of the sensors. The policy can be
changed to implement frequency switching based on differ-
ent energy optimization algorithms.

The Mahomet Bridge can be instrumented with up to 20
smart sensors, which are set up to use either a fixed power
supply (alkaline batteries) or a renewable energy source
(rechargeable batteries with solar panels). All of the exper-
iments described in this section are conducted using a fixed



power supply of 3 AAA alkaline batteries per sensor, with
average capacity of 1000mA per battery. This avoids the in-
fluence of time-variant charging current supplied by the solar
panels on the voltage level of the battery and the current sup-
plied to the mote.

5.1 Energy Consumption Optimization
The synchronization-aware DVS method that is the pri-

mary contribution of this paper enables the application of
DVS in settings where traditional approaches are unsuitable
due to interference with time synchronization requirements.

Let us first examine the savings in energy consumption
enabled by this approach. The evaluation is based on current
draw and voltage level measurements taken for each sensor
node using the SigLab signal analyzer and a multi-meter. As
described in Section 4, our two-step approach involves first
profiling the execution time and energy consumption of the
application phases at different processor speeds, and then im-
plementing the on-line frequency switching policy based on
this information.

During profiling, which is performed in a laboratory set-
ting before the deployment of the sensors on the bridge, cur-
rent draw is measured for each phase. The measurements
reflect the total current draw of the Imote2 sensor node (in-
cluding memory, radio, sensorboard, and other peripherals),
not only the energy consumed by the CPU. Recall from Fig-
ure 1 that the current draw I j ranges from 29 mA at the 13
MHz frequency to 149 mA at 416 MHz, from which we can
conclude that the processor is the dominant factor in the en-
ergy consumption of the system.

During the deployment, when DVS is actually per-
formed, direct current measurements are impractical due to
the location of the sensors and physical accessibility of the
sensor nodes. Instead, battery voltage levels are measured
before and after a period of continuous execution of the ap-
plication. The voltage drop is directly proportional to the
current draw of the device, and provides an indirect measure
of the energy consumption as well as lifetime—the operat-
ing range of the Imote2 sensor equipped with the ISM400
sensorboard is between 4.5 and 3.6 V. High current draw de-
vices, such as the PXA271 processor of the Imote2 and the
QuickFilter ADC used on the ISM400 sensorboard, require
a certain minimum voltage level to be supplied by the bat-
tery to function correctly. Thus the rate of voltage decrease
determines the maximum useful lifetime of the sensor nodes.

The voltage drop measurements are taken several min-
utes after the completion of the application run to get con-
sistent results, because the voltage supplied by the battery is
temporarily lowered after a period of high current draw, but
it quickly recovers to a steady state once the current draw
is removed. The measurements are averaged among all the
sensor nodes to account for unit-to-unit variation and mea-
surement errors.

Figure 9 compares the average voltage drop and battery
lifetime of the sensors with Alkaline AAA and D-cell bat-
teries for data acquisition cycles executed repeatedly back-
to-back. The results correspond to lifetimes of approxi-
mately 1800 minutes and 1600 minutes of continuous op-
eration for the constant frequency and DVS-optimized fre-

tm,n(s)

CPU frequency 13MHz 104MHz 208MHz 416MHz
13MHz 0 40.28 40.28 26.85
104MHz 53.71 0 6.71 13.43
208MHz 40.28 20.14 0 0
416MHz 67.13 6.71 0 0

Table 4. The amount of decrease in resynchronization time due
to frequency switch

Frequency switch cost

CPU frequency 13MHz 104MHz 208MHz 416MHz
13MHz 0 821 821 548
104MHz 1095 0 137 274
208MHz 821 411 0 0
416MHz 1369 137 0 0

Table 5. Cost of CPU frequency switch with respect to the
introduced time synchronization error

quency switching on D-cell batteries, respectively. In long-
term monitoring deployments, the data acquisition runs are
not executed continuously, but at smaller duty cycles (as low
as once per day) interspersed with long periods of low-power
sleep. Under such conditions, the observed 11% improve-
ment in network lifetime with optimized DVS translates to
several weeks of additional network operation on the same
fixed power supply, depending on the particular measure-
ment duty cycle.

These results confirm the efficacy of our DVS-enabled
solution with respect to energy savings and extending life-
time in sensor network applications. The secondary aspect
of DVS, the impact of processor frequency switches on time
synchronization, is investigated in the next section.

5.2 Time Synchronization Error
First, let us examine the characteristics of the time syn-

chronization error present in the wireless sensor network. In
a typical synchronization protocol such as FTSP [9], a num-
ber of messages are exchanged between nodes over time, and
a linear regression model is used to estimate the drift and
offset of clocks between each pair of nodes comprising an
edge in the synchronization spanning tree. The regression
model is continuously updated as new synchronization mes-
sages are exchanged.

Since servicing interrupts from the radio can introduce
jitter in the sample acquisition timing of high frequency sens-
ing applications [13], some synchronization protocols forgo
continuous message exchanges after the initial synchroniza-
tion, and instead rebuild the regression model (i.e., re-
synchronize) periodically when sensing is not taking place.
Since vibration-based SHM falls into this category of ap-
plications, a periodic re-synchronization protocol from the
ISHMP Service Toolsuite is used in this study. The protocol
is derived from FTSP, and uses short periods of network-
wide synchronization message exchanges to periodically up-
date the clock offset and drift estimation model.
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Figure 9. Energy consumption over time for the SHM application with constant CPU frequency of 104MHz and DVS-enabled
frequency control.
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Figure 10. Time synchronization error in a network of 9 Imote2 sensor nodes.

Data processing algorithms operating on synchronized
data are affected by the maximum pairwise synchronization
error, so we consider this to be the relevant error metric for
network synchronization. Specifically, the maximum allow-
able synchronization error threshold δ is defined in terms of
this error. Figure 10 presents the measured drift estimation
error compared to the regression model over time in a net-
work of 9 Imote2 sensors synchronized using the ISHMP
synchronization protocol.

We can see from Figure 11(a) that at constant CPU fre-
quency, error growth due to the imprecision of the linear
regression estimation necessitates re-synchronization with a
period TT S = 20 minutes to maintain maximum error below
the threshold δ = 55 microseconds.

Next, we examine the frequency switch cost based on the
time synchronization cost and the magnitude of offset change
due to frequency switch. The time synchronization cost is
determined based on its run time and current draw during
network synchronization. The time synchronization algo-
rithm performs synchronization message exchanges and drift
estimation for 30 seconds and runs at frequency 13MHz. The

cost of each CPU frequency switch from fm to fn is deter-
mined based on Stdm,n. Table 4 includes the measured values
of tm,n which correspond to Stdm,n, δ and the time synchro-
nization algorithm characteristics and energy cost. Table 5
represents the frequency switch cost with respect to tm,n, and
the energy cost of the time synchronization algorithm.

Consider the effect of implementing dynamic voltage
scaling without concern for the effect of CPU frequency
changes on time synchronization. Figure 11(b) shows the
growth of synchronization error in this situation. Note that
the maximum possible error jumps with each frequency
switch, and exceeds the maximum allowable value well be-
fore the 20 minute resynchronization period. Our DVS al-
gorithm presented in Section 3 addresses this deficiency by
embedding the synchronization cost of frequency switching
in the DVS algorithm. Figure 11(c) confirms that our method
meets the goal of reducing energy consumption without vio-
lating the time synchronization requirements of the applica-
tion. Although the resynchronization period is shorter in this
case, the overall energy consumption is significantly lower
than that at constant CPU frequency, while the synchroniza-
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tion error is always within the acceptable bound.

6 Related Work
As the scale and complexity of sensor networks has in-

creased in recent years, energy consumption has been the
focus of many research studies, as it has become a limit-
ing factor for the functionality of many applications. Dy-
namic Voltage Scaling (DVS) and Dynamic Voltage and Fre-
quency Scaling (DVFS) have been introduced as a mecha-
nism to trade-off processor speed against energy consump-
tion. In this section, we will discuss our proposed changes
to DVS in the context of several relevant DVS and DVFS
techniques and related work. Moreover, since time synchro-
nization plays such an important role in the preceding dis-
cussion, we will briefly summarize time synchronization in
sensor networks.

Dynamic voltage scaling for energy saving. DVS-
related work has been examined in two different contexts,
real-time systems [1] and general purpose systems [25, 10].
Real-time DVS techniques are primarily concerned with
hard or soft task deadlines [15, 6, 14, 7, 8] and often consider
periodic tasks. General purpose applications on the other
hand, aim at minimizing power consumption while maxi-
mizing performance or meeting specific performance con-
straints. In most general-purpose DVS algorithms perfor-
mance metrics are dictated by application specific require-
ments and platform limitations. Another axis for evaluat-
ing DVS algorithms is granularity. In coarse-grained voltage
scaling, CPU frequency assignment is done at the OS or ap-
plication level [24, 6, 15], while in fine-grained voltage scal-
ing the supply voltage is adjusted within an individual task
boundary [20, 25].

The DVS solution employed in our system falls into the
coarse-grained category, as frequency switching decisions
take place only at the start of application-level tasks, which
we call phases. However, it combines aspects of both real-
time and general-purpose DVS algorithms. The operating
system and data acquisition software in the ISHMP Tool-
suite, as many other sensor network systems, are event-
driven—not real-time. On the other hand, the application
places a deadline on the execution of the entire set of phases.
The optimization problem has to endeavor to minimize en-
ergy consumption while meeting this deadline. The addi-
tional time synchronization error bound constraint bears sim-
ilarities to performance constraints in general purpose sys-
tems.

Additionally, future workload prediction is of great im-
portance for efficient voltage scaling in most systems. Real-
time DVS techniques usually rely on registered deadlines
and worst-case computational needs [15, 6, 14, 7, 24] for this
purpose. This information however is not available in non-
real-time operating systems. We opt for off-line profiling
based on minimal software instrumentation (phase change
events) to determine the set of phases comprising each data
acquisition cycle and their run-time.

Time synchronization in sensor networks. For many
applications of wireless sensor networks time synchroniza-
tion is an inevitable component. Different applications have
particular needs in terms of accuracy, energy consumption,

and complexity of the adapted time synchronization scheme;
accordingly, many different time synchronization techniques
have been introduced.

Several algorithms are presented in the literature for time
synchronization in sensor networks, each targeting a spe-
cific type of applications or specification of these networks.
Basic synchronization methods are analyzed in [22]. Ref-
erence broadcast synchronization [4], timing-sync proto-
col [19], tiny-sync [21], and lightweight tree-based synchro-
nization [23] are among synchronization methods considered
in this work. All previous time synchronization algorithms
however, assume a constant CPU frequency and do not eval-
uate the effect of CPU frequency change on time synchro-
nization accuracy. As described above, we take into account
time synchronization error introduced by CPU frequency
changes, and limiting it to a specified threshold value.

7 Conclusion
We have identified and quantitatively assessed the effect

of processor frequency changes on the precision of time syn-
chronization in wireless sensor networks. This phenomenon,
caused by the suspension of the clock signal during fre-
quency switching in some embedded processors, needs to be
considered when attempting to take advantage of dynamic
voltage scaling for energy conservation. Using a case study
of a structural health monitoring application, the experimen-
tal results collected in a field deployment demonstrate that
the magnitude of this effect is significant, causing an unac-
ceptable loss of synchronization in the network. In design-
ing a DVS optimization algorithm that takes synchronization
error and re-synchronization energy cost into account, we
met the challenge of enabling energy-saving DVS in timing-
sensitive sensor network applications. The approach pro-
posed in this paper is not limited to this particular scenario,
and can be applied to many WSN systems with only minimal
changes—notification of phase changes—required to the ap-
plication.

Energy savings provided by the optimized DVS can pro-
long the useful lifetime of long-term monitoring deploy-
ments of smart wireless sensors by several weeks on a fixed
power supply, or increase the allowable duty cycle for sys-
tems with renewable energy sources. While the energy sav-
ings are not as large as those under unrestricted classical
DVS, our solution succeeds in balancing the need to save
energy with the need to keep clocks tightly synchronized.
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