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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Appendix A

Résumé en français

A.1 Introduction : Contexte de la thèse

Le principe de la stéréovision consiste à utiliser plusieurs images d’une même scène prises

sous différents points de vue. Dans le cas où deux caméras (gauche et droite) sont utilisées,

une paire d’images stéréo est acquise. Ce type d’images, appelées images stéréoscopiques,

est utilisé dans de nombreuses applications telles que la télé-présence en vidéoconférence

[Feldmann et al., 2010] et la reconstruction de modèles 3D en télédétection [Tsutsui et al.,

2007].

De ce fait, un grand intérêt a été porté aux images stéréoscopiques. Cependant, le flot de

données généré est assez élevé. A titre indicatif, le satellite spot5 permet de couvrir une

zone importante de 120 km × 60 km, et une seule image représente environ 12000 × 12000

pixels [Poli et al., 2004]. Pour cela, l’opération de compression s’avère nécessaire que ce

soit pour leur stockage ou leur transmission.

L’objectif fixé dans cette thèse est double.

Dans une première partie, nous nous intéressons au développement et à l’analyse de nou-

velles méthodes de codage sans perte progressif des images stéréoscopiques en s’appuyant

sur les schémas de lifting. En effet, le codage sans perte progressif combine les contraintes

de compression sans perte et la progressivité. La reconstruction progressive est recom-

mandée pour les applications de transmission sur les réseaux, et le codage sans perte est

exigé pour diverses applications telles que la télédétection.

Dans une deuxième partie, nous nous focalisons sur les aspects d’optimisation de tous les

opérateurs impliqués dans une structure de lifting 2D non séparable afin de proposer des
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schémas de codage mieux adaptés au contenu du signal d’entrée.

Notons d’une part que l’étude des images stéréoscopiques à des fins de reconstruction

3D ainsi que la compression des images multi-composantes, notamment les images multi-

spectrales, a fait l’objet de nombreuses études au sein de l’unité de recherche en imagerie

satellitaire et ses apllications (URISA, SUP’COM-Tunis). D’autre part, le codage des im-

ages multivues est un des thèmes de recherche au sein du département de traitement du

signal et des images (TSI, Telecom ParisTech). De ce fait, une convention de thèse en

cotutelle s’est établie entre ces deux écoles, sous la direction de Mme Béatrice Pesquet

Popescu et Mme Amel Benazza-Benyahia, en s’intéressant à la compression des images

stéréoscopiques. De plus, une collaboration ancienne et intense reliant ces deux écoles et

l’université Paris-Est sur le thème de l’analyse d’images à l’aide d’ondelettes m’a offert

l’occasion de mener ces travaux de thèse avec Mr Jean Christophe Pesquet, membre du

Laboratoire d’Informatique de l’Institut Gaspard Monge (LabInfo-IGM), responsable de

l’équipe Signal et Communications.

A.2 Etat de l’art

Dans cette section, nous dressons tout d’abord un rapide état de l’art sur les méthodes

les plus répandues dans la littérature pour la compression d’images stéréoscopiques. Nous

fournissons égalament le principe des schémas de lifting afin de nous aider à mieux situer

nos principales contributions développées dans cette thèse.

A.2.1 Méthodes de codage des images stéréoscopiques

Le codage repose principalement sur la réduction de la redondance. En stéréoscopie, deux

types de redondances co-existent : les similarités intra-image, qui se manifestent au niveau

des régions uniformes, et les similarités inter-images, qui sont dues au fait que les images

stéréoscopiques correspondent à une même scène 3D. Ainsi, un schéma de codage conjoint

permettant d’exploiter ces deux types de redondance, en se basant sur le principe de la

compensation de la disparité, sera plus efficace qu’un codage séparé de chacune des deux

images [Boulgouris, Strintzis, 2002]. L’approche de base du codage conjoint repose sur les

étapes suivantes.
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Tout d’abord, une étape d’estimation de la disparité est effectuée. Celle-ci peut être réal-

isée au niveau pixel ou bien au niveau bloc. Cependant, dans le cas des applications de

compression, cette étape est assez souvent effectuée au niveau bloc, en utilisant l’algorithme

d’appariement de blocs.

Ensuite, l’image droite (considérée comme image cible) est prédite en utilisant l’image

gauche (considérée comme image de référence) compensée en disparité. La différence entre

l’image droite originale et celle prédite constitue la nouvelle image, appelée image résidu-

elle.

Enfin, l’image de référence, le champ de disparité et l’image résiduelle générée sont codés.

Le champ de disparité est comprimé en utilisant un codage prédictif MICD suivi par un

codage entropique. Par contre, le codage de l’image de référence et de l’image résiduelle

est souvent efféctué en utilisant certaines transformations telles que la transformation en

ondelettes (TO) et la transformation en cosinus dicrete (DCT). Après avoir appliqué les

différentes décompositions à la paire d’images stéréo, il est nécessaire de transcrire en bits

les coefficients d’ondelettes en utilisant des codeurs progressifs afin d’assurer la possibilité

de reconstruction progressive au décodeur [Taubman, 2000].

Bien que les méthodes conventionnelles de codage conjoint d’images stéréo préconisées

dans la littérature s’articulent autour des étapes mentionnées ci-dessus, elles peuvent

être classées en trois catégories. La première catégorie de méthodes vise à améliorer

l’étape d’estimation (et compensation) de la disparité afin d’exploiter au mieux les re-

dondances inter-images [Woo, Ortega, 1997; Woo, Ortega, 2000]. La deuxième catégorie

propose d’améliorer le codage entropique des coefficients obtenus dans le domaine trans-

formé [Palfner et al., 2002; Ellinas, Sangriotis, 2006]. La troisième catégorie de méth-

odes s’intéresse au choix des transformations appliquées à l’image de référence et l’image

résiduelle [Frajka, Zeger, 2003; Darazi et al., 2009; Maalouf, Larabi, 2010]. Nos travaux

s’inscrivent dans cette dernière catégorie.

A.2.2 Principe des schémas de lifting

Parmi les différentes transformations développées dans la littérature (DCT, TO, etc), un

intérêt soutenu a été porté aux TO et plus particulièrement aux schémas de lifting depuis

leur développement par Sweldens [Sweldens, 1995; Sweldens, 1996]. Ceux-ci sont des outils

bien appropriés à la représentation d’une image sur plusieurs niveaux de résolution tout en
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assurant la propriété de reconstruction parfaite.

Afin de présenter le schéma de lifting dans sa forme la plus basique, nous allons considérer

le cas d’un signal 1D noté sj(n) correspondant à une approximation du signal initial s0(n)

au niveau de résolution j ∈ N∗. Un schéma de lifting peut être décomposé en trois parties

comme on peut le voir dans la figure 3.7(a).

Split

Analysis structure                                                                                 Synthesis structure

 Merge

+ −

+−sj(2n + 1)

sj+1(n)

dj+1(n)

sj(n)

sj(2n)

sj(n)

sj(2n + 1)

sj(2n)

P U U P

Figure A.1: Schéma générique d’une structure de lifting : (a) structure d’analyse, (b) struc-

ture de synthèse.

• Transformation polyphase : Tout d’abord, le signal sj(n) est séparé en deux sous-

ensemble disjoints : le premier est formé des échantillons d’indices impairs sj(2n+1)

et le second des échantillons d’indices pairs sj(2n).

• Etape de prédiction : Ensuite, chaque échantillon de l’un des deux sous-ensembles

(disons le sous-ensemble d’échantillons d’indices impairs) est prédit à partir des échan-

tillons d’indices pairs voisins grâce à un filtre linéaire transverse. L’erreur de prédic-

tion d̃j+1(n) constitue les coefficients des détails résiduels à la résolution (j + 1) :

d̃j+1(n) = sj(2n + 1)− p>j sj(n) (A.1)

où

– pj est le vecteur des poids du filtre de prédiction,

– sj(n) =
(
sj(2n− 2k)

)
k∈Pj

est le vecteur de référence contenant les échantillons

pairs utilisés dans l’étape de prédiction,

– Pj représente le support du prédicteur.

• Etape de mise à jour : Enfin, les échantillons pairs sont lissés en utilisant les

coefficients détails calculés précédemment. Le signal résultant s̃j+1(n), appelé signal
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d’approximation, constitue une version grossière du signal original :

s̃j+1(n) = sj(2n) + u>j d̃j+1(n) (A.2)

où

– uj est le vecteur des poids du filtre de lissage (appelé aussi filtre de mise à jour),

– d̃j+1(n) =
(
d̃j+1(n−k)

)
k∈Uj

est le vecteur de référence contenant les coefficients

de détails utilisés dans l’étape de mise à jour,

– Uj représente le support de l’opérateur de mise à jour.

Cette transformation 1D est généralement étendu au cas 2D de manière séparable. En

effet, le schéma de lifting s’applique aux lignes puis aux colonnes (ou inversement) donnant

lieu ainsi à une sous-bande d’approximation et trois sous-bandes de coefficients de détails

orientés horizontalement, verticalement et diagonalement.

A.3 Contributions

A.3.1 Nouvelles approches basées sur les schémas de lifting vectoriels

Le concept de lifting vectoriel a été développé par Benazzza et al. [Benazza-Benyahia

et al., 2002] dans le cadre de la compression d’images multispectrales. Notre première con-

tribution consiste à étendre ce concept au cas de la compression d’images stéréoscopiques.

L’idée de base est de se servir de l’image de référence pour coder l’image droite en utilisant

le champ de disparité. En ce sens, contrairement aux méthodes classiques, la méthode

proposée ne génère aucune image résiduelle mais deux représentations multirésolutions

compactes de l’image gauche et l’image droite. A ce propos, nous avons considéré deux

versions de Schéma de Lifting Vectoriel (Vector Lifting Schemes, VLS, en anglais), qui

seront détaillées par la suite.

VLS-I

Le premier schéma, noté VLS-I, est décrit par la Fig. A.2.

Ainsi, l’image gauche I
(l)
j , sélectionnée comme image de référence, est codée en mode intra

en utilisant une structure de lifting classique P-U [Calderbank et al., 1998]. Par contre,

l’image droite Ij(r) est codée en appliquant une structure de lifting mettant en œuvre un
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Figure A.2: Principe du VLS-I.

prédicteur hybride qui exploite les redondances inter-images via le champ de disparité vj .

A priori, toute méthode d’estimation de la disparité pourrait convenir. Toutefois, pour

éviter une estimation de la disparité à chaque niveau de résolution j, nous proposons de la

faire une seule fois sur l’image pleine résolution et d’appliquer par la suite une décimation

et une division d’un facteur de 2j sur le champ de disparité initial, puisque les dimensions

des sous-bandes au niveau de résolution j correspondent à celles de l’image initiale divisées

par 2j .

Un petit inconvénient du schéma proposé est qu’il produit un effet de“fuite”dans l’étape de

mise à jour, dans le sens où l’information venant de la sous-bande d’approximation I
(l)
j , qui

est utilisée dans l’étape de prédiction pour le calcul du signal de détail d̃
(r)
j+1, est réinjectée

dans l’étape de mise à jour pour calculer les coefficients du signal d’approximation Ĩ
(r)
j+1 de

l’image droite.



A.3. Contributions ix

VLS-II

Pour remédier au problème mentionné ci-dessus, un second schéma, noté VLS-II, est pro-

posé. En effet, l’image de référence est toujours codée en mode intra de façon similaire

à VLS-I. Par contre, l’image droite est codée en adoptant une nouvelle structure P-U-P

comme le montre la Fig. 4.3.

+

+

+

−

+

+

−

+

−

+

I
(l)
j (m, n)

I
(l)
j (m, 2n)

split
P

(l)
j

U
(l)
j

I
(l)
j (m, 2n + 1) d̃

(l)
j+1(m, n)

Ĩ
(l)
j+1(m, n)

DE DC
vj = (vx,j , vy,j)

I
(r)
j (m, 2n)

U
(r)
jsplit

I
(r)
j (m, 2n + 1)

P
(r,l)
j

P
(r)
j

Ĩ
(r)
j+1(m, n)

ď
(r)
j+1(m, n)d̃

(r)
j+1(m, n)

Q
(r)
j

I
(r)
j (m, n)

Figure A.3: Principe du VLS-II.

Pour cela, une première étape de prédiction intra-image est appliquée pour calculer un sig-

nal de détail intermédiaire, ďj+1(m,n), qui va servir au calcul du signal d’approximation

s̃j+1(m,n). Ensuite, une deuxième étape de prédiction inter-images est effectuée pour

générer le signal de détail final d̃j+1(m,n).

L’avantage de cette structure est que dans le cas idéal où l’image gauche est égale à l’image

droite, le signal détail de l’image droite d
(r)
j+1 est nul alors que le signal approximation I

(r)
j+1

est égal à celui de I
(l)
j+1. Pour cette raison, nous avons ajouté l’étape suivante: au dernier

niveau de résolution j = J , au lieu de coder le signal approximation I
(r)
J , on procède au
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codage de la sous bande résiduelle définie par :

e
(r)
J (mx,my) = I

(r)
J (mx,my)− b

∑

k∈P(r,l)
J

p
(r,l)
J,k I

(l)
J (mx + vx,J(mx, my),my + vy,J(mx,my)− k)c.

(A.3)

où P(r,l)
J et p

(r,l)
J,k représentent respectivement le support et les poids du vecteur de prédiction

inter-sous-bandes approximations et b·c désigne l’opérateur partie entière.

Analyse théorique des schémas proposés

Pour montrer l’intérêt des structures proposées, nous avons développé une analyse théorique

en termes de performances statistiques. Cette analyse a été menée dans le cadre général

de processus aléatoires stationnaires. Ensuite, pour illustrer les performances de chaque

structure, nous avons considéré des signaux autorégressifs d’ordre 1 mutuellement indépen-

dants.

Notons que l’étude théorique menée et les résultats expérimentaux obtenus (en termes de

débit final et courbes débit-distorsion) sont présentés en détail dans [Kaaniche et al., 2007]

et [Kaaniche et al., 2009a].

A.3.2 Intégration d’une carte de disparité dense dans les schémas de

codage d’images stéréo

Comme nous l’avons déja mentionné, les méthodes de codage conjoint reposent princi-

palement sur l’étape de l’estimation et la compensation de la disparité afin d’exploiter

les redondances inter-images. Cette étape est souvent effectuée en utilisant une approche

par bloc, et plus précisément la technique du block-matching. Cependant, cette approche

souffre de certaines limitations puisqu’elle n’est pas adapté aux zones peu texturées et au

voisinage des discontinuités. Ceci peut produire une carte de disparité imprécise et, par

conséquent, cela risque d’affecter le processus de compensation de disparité.

Pour cette raison, nous avons proposé dans cette thèse d’utiliser une méthode d’estimation

qui génère une carte de disparité dense et lisse [Miled et al., 2006b; Miled et al., 2009b].

L’idée de base de cette approche consiste à formuler le problème d’estimation de la dis-

parité comme un problème de programmation convexe visant à minimiser une fonction

objectif convexe sur l’intersection d’ensembles convexes. Ces ensembles sont associés à des

contraintes convexes modélisant des informations a priori tenant compte des propriétés du
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champ à estimer et des données observées. La contrainte la plus importante consiste à

appliquer une borne supérieure sur la variation totale du champ estimé pour des fins de

régularisation. Celle-ci permet de fournir un champ lisse tout en respectant les discontinu-

ités présentes dans la scène.

Comme une carte dense est généralement très coûteuse en terme de débit, elle est ensuite

segmentée en blocs de taille 16× 16. Puis, pour chaque bloc, on teste son homogénéité en

calculant sa variance. Enfin, lorsque la variance est inférieure à un certain seuil, les valeurs

de disparité de ce bloc seront remplacées par leur valeur moyenne ou médiane. Dans le cas

contraire, on subdivise ce bloc en 4 sous-blocs et on réitère le même traitement sur chaque

bloc. Notons que la carte segmentée, ainsi que l’information correspondante à la taille du

bloc sont codées, par la suite, en utilisant l’encodeur H.264.

L’intérêt de l’utilisation de cette carte dense segmentée dans les schémas de codage d’images

stéréo a été récemment présenté dans [Kaaniche et al., 2009b]. De plus, une évaluation des

performances de la méthode d’estimation dense dans le contexte du codage des séquences

vidéo stéréoscopique est aussi présentée dans [Daribo et al., 2009].

A.3.3 Schéma de lifting non séparable et méthodes d’optimisation des

filtres

Il est important de noter que les structures des schémas de lifting que nous avions dévelop-

pées sont séparables. En effet, un filtrage 1D est appliqué suivant les lignes puis suivant

les colonnes (ou inversement) pour générer les coefficients d’ondelettes. Cependant, un tel

traitement séparable rend la décomposition peu efficace dans le cas des images présentant

des contours qui ne sont ni horizontaux ni verticaux. De plus, cette contrainte de sépara-

bilité limite le nombre de degrés de liberté dans le choix des opérateurs de prédiction et

de mise à jour. Pour cela, nous nous sommes intéressés dans une deuxième partie aux

schémas de lifting 2D non séparables, tout en nous focalisant sur les aspects d’optimisation

des différents filtres mis en jeu.

Structure de lifting 2D non séparable

La structure de lifting 2D considérée est composée de trois étapes de prédiction suiv-

ies par une étape de mise à jour, comme le montre la Fig. 6.1. Le principe général

de cette transformation 2D non séparable consiste à décomposer une image xj(m, n) en
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quatre composantes polyphase x0,j(m,n) = xj(2m, 2n), x1,j(m,n) = xj(2m, 2n + 1),

x2,j(m,n) = xj(2m + 1, 2n), et x3,j(m,n) = xj(2m + 1, 2n + 1) pour générer une sous-

bande d’approximation xj+1(m,n) et les sous-bandes des détails orientés horizontalement

x
(HL)
j+1 (m,n), verticalement x

(LH)
j+1 (m,n) et diagonalement x

(HH)
j+1 (m,n).

polyphase

−

−

−

+

Transformée

x
(LH)
j+1 (m, n)

x
(HH)
j+1 (m, n)x3,j(m, n)

x2,j(m, n)

x1,j(m, n)

x0,j(m, n) xj+1(m, n)

x
(HL)
j+1 (m, n)

P
(HH)
j

P
(LH)
j

P
(HL)
j Uj

xj(m, n)

Figure A.4: Structure de lifting 2D non séparable.

Comme les performances de codage des schémas de lifting dépendent généralement des

opérateurs de prédiction
(
p(o)

j

)
o∈{HL,LH,HH}

et de mise à jour uj mis en jeu, une grande

importance a été accordée à l’adaptation des opérateurs de lifting afin de réaliser des sché-

mas de lifting mieux adaptés au contenu du signal d’entrée [Pesquet-Popescu, 1999].

Optimisation des filtres de prédiction

Certains travaux d’optimisation se sont intéressés à l’optimisation des filtres de prédiction

en minimisant l’entropie des signaux détails [Benazza-Benyahia et al., 2007]. Cependant,

l’entropie du signal de détail étant une fonction implicite des coefficients du filtre de pré-

diction à optimiser, sa minimisation ne peut se faire que par des algorithmes itératifs. En

particulier, l’algorithme de Nelder-Mead a été utilisé dans [Benazza-Benyahia et al., 2007]

pour minimiser l’entropie des signaux détails. Toutefois, ces algorithmes d’optimisation

présentent quelques inconvénients. Tout d’abord, ils sont itératifs et peuvent converger

vers des minima locaux. De plus, ils sont trop lourds en temps de calcul.

Pour remédier à ces problèmes, une autre alternative reposant sur la minimisation de la

variance du signal de détail a été assez souvent retenue [Pesquet-Popescu, 1999; Boulgouris
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et al., 2001; Gouze et al., 2004]. En effet, de point de vue de la théorie de l’information

[Cover, Thomas, 1991], un signal de faible variance peut être codé plus efficacement qu’un

signal de forte variance. Pour cela, nous avons choisi d’optimiser chaque filtre de prédiction

p(o)
j , avec o ∈ {HH,HL, LH}, en minimisant le critère suivant :

∀ o ∈ {HL,LH, HH} and i ∈ {1, 2, 3},

J1(p
(o)
j ) =

∑
m,n

(
x

(o)
j+1(m,n)

)2

=
Mj∑

m=1

Nj∑

n=1

(
xi,j(m,n)− (p(o)

j )>x̃(o)
j (m,n)

)2
(A.4)

où xi,j(m,n) est la (i + 1)ème composante polyphase à prédire, x̃(o)
j (m, n) est un vecteur

de référence contenant les échantillons utilisés dans l’étape de prédiction de xi,j(m, n), p(o)
j

est le vecteur de prédiction à optimiser, et [Mj , Nj ] correspondent aux dimensions de la

sous-bande xj divisées par 2.

Optimisation du filtre de mise à jour : minimisation des effets d’aliasing

L’optimisation du filtre de mise à jour est un problème plus complexe que celui du filtre

de prédiction et il a été relativement peu abordé dans la littérature [Pesquet-Popescu,

1999; Gouze et al., 2004; Piella et al., 2006; Kaaniche et al., 2010; Kaaniche et al., 2011].

En effet, un opérateur de mise à jour efficace retourne un signal basse fréquence offrant

une représentation fidèle du signal original à une résolution inférieure. Généralement,

l’image des coefficients est destinée à subir des dégradations plus ou moins fortes lorsque la

transformation en ondelettes est suivie par un codage générant des pertes d’information.

Pour cela, Gouze et al. [Gouze et al., 2004] ont proposé d’optimiser le filtre de mise à

jour afin d’assurer une reconstruction du signal la plus fiable possible à partir de la seule

sous-bande basse fréquence. Plus précisément, le filtre de mise à jour uj est conçu en

minimisant l’erreur de reconstruction J2 entre l’image originale xj et l’image reconstruite

x̂j tout en supposant que les coefficients des détails sont nuls. Un tel critère est défini par

:

J2(uj) = E[(xj(m, n)− x̂j(m,n))2]

=
1
4

(
E[(x0,j(m,n)− x̂0,j(m,n))2] + E[(x1,j(m,n)− x̂1,j(m,n))2]

+ E[(x2,j(m,n)− x̂2,j(m,n))2] + E[(x3,j(m,n)− x̂3,j(m,n))2]
)
. (A.5)
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Dans ce contexte, nous avons proposé une nouvelle méthode d’optimisation visant à

réduire les phénomènes indésirables de repliement [Kaaniche et al., 2010]. Plus précisément,

le filtre de mise à jour est conçu de façon que sa sortie soit le plus proche possible de celle

d’un filtre passe-bas idéal. Notons qu’un tel critère tient compte des caractéristiques du

signal d’entrée et ne se limite pas à une simple différence entre les filtres. Ainsi, le filtre de

mise à jour est optimisé en minimisant le critère quadratique suivant :

J3(uj) =
∫ π

−π

∣∣∣Fj(eıω1 , eıω2)−H(eıω1 , eıω2)
∣∣∣
2
Sxj (ω1, ω2)dω1dω2 (A.6)

où Sxj est la densité spectrale de puissance de l’image xj(m,n), Fj et H désignent respec-

tivement la fonction de transfert du filtre passe-bas de la structure de lifting et du filtre

passe-bas idéal.

On remarque que ce critère calcule l’erreur quadratique moyenne entre les sorties des fil-

tres Fj et H avant l’étape de décimation. Cependant, afin de réduire la complexité de la

méthode d’optimisation, il serait intéressant de minimiser l’erreur calculée après l’étape de

décimation. Celle-ci est exprimée par :

J4(uj) = E
[(

xj+1(m, n)− yj+1(m,n)
)2]

= E
[(

x0,j(m,n) + u>j xj+1(m,n)− yj+1(m,n)
)2]

(A.7)

où

• uj =
(
u

(o)
j (k, l)

)>
(k,l)∈U(o)

j ,o∈{HL,LH,HH}
est le vecteur des poids du filtre de mise à

jour,

• xj+1(m, n) =
(
x

(o)
j+1(m − k, n − l)

)>
(k,l)∈P(o)

i,j ,o∈{HL,LH,HH}
est le vecteur de référence

contenant les coefficients détails utilisés dans l’étape de mise à jour.

• yj+1(m,n) = ỹj(2m, 2n) = (h ∗ xj)(2m, 2n), où h désigne la réponse impulsionnelle

du filtre passe-bas idéal.

Il est important de noter que nous avons montré dans [Kaaniche et al., 2011] que les

minimisations des critères J3 et J4 aboutissent à la même solution du filtre de mise à jour

vérifiant le système d’équations linéaires suivant :

E[xj+1(m,n)xj+1(m,n)>]uj =E[yj+1(m, n)xj+1(m, n)]− E[x0,j(m,n)xj+1(m,n)] (A.8)



A.3. Contributions xv

Bien que cette stratégie donne des performances, en terme de qualité de reconstruction,

assez similaires à la méthode de l’état de l’art reposant sur la minimisation de l’erreur de

reconstruction, notre technique d’optimisation présente l’avantage de la simplicité de sa

mise en œuvre, tout en réalisant un gain d’un facteur multiplicatif de 3 près en temps de

calcul [Kaaniche et al., 2011].

Analyse théorique

Pour montrer l’intérêt de la méthode d’optimisation proposée, nous avons développé une

analyse théorique pour un signal d’entrée autorégressif d’ordre 2 de coefficients de cor-

rélation ρ1,j et ρ2,j dans la direction horizontale et verticale respectivement. L’analyse

théorique menée a mis en évidence l’apport de l’optimisation du filtre de mise à jour en

terme de réduction des effets d’aliasing. De plus, nous avons déterminé les expressions

explicites des coefficients des filtres de prédiction et de mise à jour en fonction des co-

efficients de corrélation du modèle statistique considéré. Ces expressions théoriques sont

intéressantes pour les raisons suivantes. D’une part, elles nous permettent de simplifier

l’implémentation de la méthode d’optimisation proposée. D’autre part, le coût de trans-

mission des coefficients des différents filtres sera considérablement réduit puisqu’il suffit

d’envoyer les facteurs de corrélation ρ1,j et ρ2,j , qui nous permettent de les calculer dans

le cas idéal.

Optimisation par des critères parcimonieux

En poursuivant la piste d’optimisation des différents opérateurs de lifting, nous nous

sommes intéressés dans la dernière partie de la thèse au développement de critères parci-

monieux en remplaçant le critère usuel `2 par des critères `1.

Minimisation d’un critère `1

Tout d’abord, nous avons présenté les raisons qui motivent la minimisation de critères `1.

Pour cela, au lieu de minimiser la variance des signaux de détails qui correspond à un

critère quadratique, nous avons proposé d’optimiser chaque filtre de prédiction p(o)
j , avec

o ∈ {HL, LH,HH}, en minimisant la norme `1 du signal de détails x
(o)
j+1. Un tel critère
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est exprimé par :

∀ o ∈ {HL, LH, HH} and i ∈ {1, 2, 3},

J`1(p
(o)
j ) =

∑
m,n

∣∣∣x(o)
j+1(m, n)

∣∣∣

=
Mj∑

m=1

Nj∑

n=1

∣∣∣xi,j(m,n)− (p(o)
j )>x̃(o)

j (m, n)
∣∣∣ (A.9)

Cependant, le problème majeur dans cette approche d’optimisation réside dans le fait que

le critère (7.6) est non-différentiable. Pour cela, une grande classe d’algorithmes itératifs

proximaux a été proposée pour résoudre ce type de problème de minimisation [Combettes,

Pesquet, 2010]. Dans notre contexte, nous avons eu recours à l’algorithme de Douglas-

Rachford qui a prouvé son efficacité dans la résolution de problèmes inverses de grande

taille [Eckstein, Bertsekas, 1992].

Minimisation de l’erreur de prédiction globale pondérée

Il est important de remarquer de la Fig. 6.1 que le signal de détails diagonaux x
(HH)
j+1 est

utilisé dans la deuxième et la troisième étape de prédiction pour calculer les signaux de

détails horizontaux x
(HL)
j+1 et verticaux x

(LH)
j+1 . Par conséquent, l’optimisation du filtre p(HH)

j

résultant de la minimisation de la norme `1 de x
(HH)
j+1 est sous-optimale. Pour cela, nous

avons proposé par la suite d’optimiser le filtre p(HH)
j en minimisant l’erreur de prédiction

globale. Cette erreur est exprimée sous la forme de somme pondérée des normes `1 des

sous-bandes détails :

Jw`1(p
(HH)
j ) =

∑

o∈{HL,LH,HH}

∑
m,n

√
w

(o)
j

∣∣∣x(o)
j+1(m,n)

∣∣∣ (A.10)

où les w
(o)
j , o ∈ {HL, LH,HH}, sont les poids des sous-bandes détails x

(o)
j+1.

Contrairement au critère précédent, Eq. (7.6), composé d’une norme `1, le nouveau critère

est constitué de trois normes `1. Pour minimiser un tel critère, Eq. (7.17), nous avons utilisé

l’algorithme de Douglas-Rachford formulé dans un espace produit [Combettes, Pesquet,

2010]. Une fois le filtre p(HH)
j optimisé et défini, les deux autres filtres de prédiction p(HL)

j

et p(LH)
j sont ensuite optimisés séparément en minimisant J`1(p

(HL)
j ) et J`1(p

(LH)
j ). Ceci

s’explique par le fait que l’optimisation de chacun de ces deux filtres ne dépend pas de

l’autre.
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Optimisation conjointe

Comme l’optimisation du filtre p(HH)
j est effectuée en minimisant la somme pondérée des

normes `1 des 3 sous-bandes détails, on peut constater que la solution optimale de p(HH)
j

va dépendre des filtres p(HL)
j et p(LH)

j . D’autre part, il est clair que l’optimisation des

filtres p(HL)
j et p(LH)

j dépend de p(HH)
j puisque le signal x

(HH)
j+1 résultant de l’optimisation

de p(HH)
j est utilisé comme signal de référence dans les étapes d’optimisation de p(HL)

j

et p(LH)
j . Ainsi, on conclut que l’optimisation de p(HH)

j dépend de p(HL)
j et p(LH)

j , et

inversement.

Pour cela, nous avons proposé une méthode d’optimisation conjointe qui consiste à opti-

miser de façon itérative les différents filtres. L’algorithme itératif est décrit de la manière

suivante :

À Initialiser le numéro de l’itération it à 0.

• Optimiser séparément les 3 filtres de prédiction p(HH)
j , p(LH)

j et p(HL)
j en min-

imisant J`1(p
(HH)
j ), J`1(p

(LH)
j ) et J`1(p

(HL)
j ), respectivement. Les solutions opti-

males obtenues seront désignées par : p(HH,it)
j , p(LH,it)

j and p(HL,it)
j .

• Optimiser le filtre de mise à jour en minimisant J4(uj).

•Calculer les poids w
(o,it)
j de chaque sous-bande de détails ainsi que l’erreur

de prédiction globale pondérée (c’est à dire la somme pondérée des normes

`1 des sous-bandes de détails).

Á pour it = 1, 2, 3, ...

• Fixer p(LH)
j = p(LH,it−1)

j , p(HL)
j = p(HL,it−1)

j , et optimiser P(HH)
j en minimisant

Jw`1(p
(HH)
j ). Soit p(HH,it)

j le nouveau premier filtre de prédiction optimal.

• Fixer p(HH)
j = p(HH,it)

j , et optimiser P(LH)
j en minimisant J`1(p

(LH)
j ). Soit p(LH,it)

j

le nouveau deuxième filtre de prédiction optimal.

• Fixer p(HH)
j = p(HH,it)

j , et optimiser P(HL)
j en minimisant J`1(p

(HL)
j ). Soit p(HL,it)

j

le nouveau troisième filtre de prédiction optimal.

• Optimiser le filtre de mise à jour en minimisant J4(uj).

•Calculer les poids w
(o,it)
j de chaque sous-bande de détails ainsi que l’erreur

de prédiction globale pondérée.

Â Sélectionner les filtres optimaux à partir de l’itération donnant l’erreur de prédiction

globale pondérée la plus faible.
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Il est important de souligner ici que l’étape 3 de l’algorithme a été introduite puisque

l’erreur de prédiction globale pondérée ne diminue pas nécessairement d’une itération it à

it+1. Ceci s’explique par le fait que les poids w
(o)
j sont recalculés à chaque itération après

l’optimisation de tous les filtres.

A.4 Conclusion et perspectives

L’intérêt croissant des images stéréoscopiques dans beaucoup de champs d’application s’est

traduit par la constitution de banques d’images de tailles énormes. Pour cela, l’objectif ma-

jeur de ce travail de thèse était de proposer et d’analyser de nouveaux schémas de codage

d’images stéréoscopiques. Ces schémas permettent d’assurer la reconstruction progressive

avec la possibilité de restitution exacte de la paire d’images.

Les principales contributions développées dans cette thèse peuvent être résumées comme

suit.

Dans une première partie, nous avons proposé de nouveaux schémas de codage conjoint de

la paire d’images stéréo reposant sur le concept du lifting vectoriel. En ce sens, contraire-

ment aux méthodes classiques, la méthode proposée ne génère aucune image résiduelle mais

deux représentations multirésolutions compactes de l’image gauche et l’image droite. De

plus, notre schéma est adapté au contenu (intra et inter) de la paire stéréo. En effet, les

opérateurs de prédiction sont optimisés à chaque étage du lifting en minimisant la variance

des signaux de détails. Dans ce contexte, nous avons proposé deux schémas de liftng vec-

toriels (VLS-I et VLS-II). Une analyse théorique en termes de performances statistiques a

été menée pour mettre en évidence l’intérêt des structures proposées.

Comme perspective à cette partie, les performances des schémas VLS peuvent être améliorées

en tenant compte des problèmes d’occlusion. Plus précisément, il serait intéressant d’utiliser

un schéma de codage hybride où les pixels occultés (resp. non occultés) seront codés en

utilisant une étape de prédiction intra (resp. inter) images. De plus, l’extension de ces

structures de lifting au cas du codage d’images multivues peut être envisagée .

Comme nous l’avions mentionné, les méthodes de codage conjoint de la paire d’images

stéréo reposent principalement sur l’étape de l’estimation et la compensation de la dis-

parité afin d’exploiter les redondances inter-images. Pour cela, nous avons proposé dans

cette thèse d’intégrer une méthode récente d’estimation de disparité dans des applications
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de codage d’images stéréoscopiques. Cette technique d’estimation, qui se base sur une

formulation ensembliste du problème de mise en correspondance, utilise différentes con-

traintes convexes caractérisant toute propriété a priori sur le champ de disparité à estimer.

Ainsi, les contraintes utilisées permettent de produire un champ lisse tout en respectant

les discontinuités (objets) présentes dans la scène. Comme une carte de disparité dense

est très coûteuse en terme de débit, nous avons proposé d’y appliquer un algorithme de

segmentation, de sorte que les zones homogènes seront représentées par des blocs de grande

taille et les zones de faible texture vont être représentées par des blocs de petite taille.

Les structures des schémas de lifting que nous avions utilisées sont séparables (c’est à

dire elles reposent sur l’utilisation de filtres mono-dimensionnels (1D) pour calculer les coef-

ficients d’ondelettes). Cependant, l’inconvénient des schémas conventionnels séparables est

qu’ils ne sont pas très efficaces pour exploiter le caractère bi-bimensionnel (2D) des images.

Pour cela, nous nous sommes intéressés dans une deuxième partie aux schémas de lifting 2D

non séparables tout en nous focalisant sur les aspects d’optimisation des différents filtres

mis en jeu. La structure de lifting 2D considérée est composée de trois étapes de prédiction

suivies par une étape de mise à jour. Dans ce contexte, nous avons proposé une nouvelle

méthode, visant à éliminer les phénomènes indésirables de repliement, pour la conception

du filtre de mise à jour. Cette méthode consiste à optimiser ce filtre de façon à ce qu’il soit

le plus proche possible d’un filtre passe-bas idéal. Nous avons développé également une

analyse théorique pour le cas d’un signal autorégressif d’ordre 2 afin de donner des formes

explicites des coefficients de tous les filtres. Les expressions théoriques obtenues peuvent

être intéressantes en pratique puisqu’elles permettent de simplifier l’implémentation de

la méthode d’optimisation proposée. Concernant les filtres de prédiction, ils sont assez

souvent optimisés en minimisant la variance (critère `2) des signaux de détails. Dans ce

contexte, nous avons développé des critères parcimonieux, en remplaçant le critère usuel

`2 par des critères `1. Tout d’abord, nous avons montré l’intérêt d’utiliser un critère `1

au lieu d’un critère `2. Ensuite, en remarquant que l’optimisation d’un filtre de prédiction

dépend de celle des autres filtres, nous avons proposé d’optimiser les filtres de prédiction

en minimisant la somme pondérée des normes `1 des sous-bandes de détails. Enfin, un

algorithme itératif permettant l’optimisation conjointe des différents filtres a été mis en

place en alternant entre l’optimisation des filtres et le calcul des poids.
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Les résultats obtenus nous incitent à envisager les perspectives suivantes.

D’abord, l’extension de ces nouvelles métodes d’optimisation à d’autres structures de lift-

ing semble être une piste de recherche intéressante. En effet, nous nous sommes intéressés

jusqu’à présent aux structures de lifting à un seul étage (c’est à dire une structure 2D

P-P-P-U comme le montre la Fig. 6.1). Récemment, il a été montré que la transformation

9/7 retenue par la norme JPEG2000 peut se mettre sous la forme 2D non séparable par

une mise en cascade de deux étages de la structure étudiée [Iwahashi, Kiya, 2010]. Pour

cela, il serait intéressant d’étendre nos algorithmes d’optimisation à des structures de lifting

ayant plus qu’un seul étage de lifting telles que la transformation 9/7 et le schéma VLS-II

(P-U-P). De plus, les algorithmes d’optimisation abordés dans cette thèse minimisent des

critères liés au débit du signal quantifié. Cependant, il serait plus intéressant de minimiser

ces critères sous des contraintes de distorsion.
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Abstract

This thesis addresses the problem of stereo image coding for storage and transmission

purposes. In particular, we are interested in lossy-to-lossless coding schemes allowing pro-

gressive reconstruction.

In the first part, we propose novel coding methods based on Vector Lifting Schemes. Unlike

conventional approaches which encode a reference image, a residual one and a disparity

map, the proposed methods do not generate a residual image but two compact multires-

olution representations of the left and the right images simultaneously. We also show the

benefits that can be drawn from integrating a smooth and dense disparity field within such

joint stereo image coding schemes.

In the second part, we propose optimization techniques which can be used in the design of

these lifting schemes. This allows us to build content adaptive methods. More precisely,

we focus on the optimization of all the operators (i.e the update and prediction filters)

involved in a lifting structure. To this end, we propose and analyze a new criterion for the

design of the update filter. Concerning the prediction filters, we investigate techniques for

optimizing sparsity criteria.
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Chapter 1

Introduction

1.1 Thesis context

A main objective of continuous developments in the design of imaging systems has been

the addition of more realistic perceptual sensations. Indeed, white and black still images

were early captured at the beginning of the nineteenth century. Later, the quality of these

images was enhanced by the addition of color. Then, the advent of movies initiated a new

era for visualization systems and their application areas. Current developments in image

processing tend to add depth information to allow a better immersion in virtual worlds

and augmented reality.

In general, humans perceive 3D thanks to the coordination of their eyes and brain. More

precisely, since the eyes are separated by a few centimeters, they perceive the same scene

from two slightly different angles. These images are then merged by the brain to perceive

depth. This is the basic idea behind stereoscopic vision.

The principle of binocular imaging systems consists of generating two views, called left

image and right image, by recording two slightly different view angles of the same scene.

By presenting the appropriate image of a stereo pair to the left/right eye, the viewer per-

ceives the scene in three dimensions (3D). The recent advances in acquisition and display

technologies have allowed the widespread use of stereovision in various application fields.

For example, tele-presence in videoconferences [Waldowski, 1991; Feldmann et al., 2010]

and tele-medicine [Herpers et al., 1999] are two potential applications of stereovision. An-

other interesting application field is entertainment. Indeed, adding the third dimension to

movies and computer games allows to add more interactivity and is more pleasant to the
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viewers/players. Stereoscopic vision has also been used in remote sensing. For instance,

today’s advances in satellite remote sensing technology provide the capability to collect

Stereo Image (SI) pairs for several applications such as cartography and urban planning.

Satellite stereo images (such as those generated by IKONOS 1 and SPOT5 2 sensors) are

especially helpful to generate a digital elevation model, which is a 3D representation of the

topography of a given area [Tsutsui et al., 2007].

The increasing interest in SIs has led to the constitution of image databases that require

huge amounts of storage capacity. For example, the on board stereoscopic instrument of

SPOT5 covers areas of 120 km × 60 km and a single view can be represented by 12000

× 12000 pixels [Poli et al., 2004]. In addition to SPOT5 and IKONOS sensors, it is

worth mentioning the Advanced Spaceborne Thermal Emission and Reflection Radiometer

(ASTER), which is a multispectral sensor with stereo capability [Marangaz et al., 2005].

The acquired SIs are used to generate a high-resolution digital elevation model and the

storage of a single stereo pair of any scene requires about 30 Megabits. The Multi-angle

Imaging SpectroRadiometer (MISR) also uses nine cameras to generate multiview data sets

[G. W. Bothwell, Miller, 2002] at a data rate of 3.3 Mbps. These images are used in the

study of Earth climate. Furthermore, combined with stereoscopic techniques, they enable

the construction of 3D models and provide very accurate estimations of cloud heights.

As shown by the previous application examples, the involved data amounts are prohibitive

and constitute a major limitation for developing stereoscopic applications. To overcome

this problem, the use of compression techniques is mandatory for image storage as well as

for image transmission.

Note that the use of stereo images for 3D reconstruction purposes, as well as the coding

of multicomponents images (in particular multispectral images), have been the subjects of

many studies developed in the Unité de Recherches en Imagerie Satellitaire et ses Appli-

cations (URISA, SUP’COM-Tunis). On the other hand, compressing multiview images is

one of the most important research topics in the Signal and Image processing Department

of Telecom ParisTech (TSI, Télécom ParisTech). Thus, the joint supervision of this thesis,

devoted to stereo images coding purposes, has been established between SUP’COM-Tunis

and Télécom ParisTech. Moreover, an old and intense collaboration between these insti-

1http://www.satimagingcorp.com/satellite-sensors/ikonos.html
2http://www.satimagingcorp.com/satellite-sensors/spot-5.html
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tutes and Laboratoire d’Informatique de l’Institut Gaspard Monge (LabInfo-IGM) of the

Université de Paris-Est Marne-la-Vallée in the field of wavelet analysis and optimization

has given me the opportunity to develop part of this work with LabInfo-IGM.

1.2 Objectives and contributions

The objectives of this thesis are twofold. The first one is to design and analyze new lifting

based coding methods for storing/transmitting stereo images. The second one is to focus

on the optimization of the different lifting operators, i.e update and prediction filters, to

build content-adaptive schemes.

More precisely, we are mainly interested in lossy-to-lossless compression schemes allowing

progressive reconstruction of the stereo images. Indeed, on the one hand, progressive re-

construction has become a highly desirable functionality for telebrowsing applications. It

consists of encoding the image in several layers: the base layer corresponds to a highly

compressed version of the image on which additional refinement layers are built to enhance

progressively the image quality. At the decoder side, once the users are satisfied with the

quality of the reconstructed image, they can decide to abort the transmission at a partic-

ular layer. On the other hand, lossless reconstruction is preferred in some applications,

such as medical imaging or remote sensing imaging since an even minor distortion in the

reconstructed images could affect the interpretation of the scene.

A detailed list of the main contributions of our research work follows:

• First, we propose a novel joint coding scheme for stereo pairs, based on the con-

cept of Vector Lifting Schemes (VLS). Indeed, unlike conventional approaches which

consist of encoding a reference image and a residual one as well as a disparity map,

our proposed method employs a joint multiscale decomposition which offers the ad-

vantage of generating simultaneously two compact multiresolution representations of

the left and the right images. Two versions of this new scheme, VLS-I and VLS-II,

are presented and discussed. Furthermore, we conduct a theoretical analysis of the

proposed schemes in terms of prediction efficiency.

• While a fixed size block-matching technique is used to estimate the disparity map

in the first part, we show in the second one the benefits of integrating a dense dis-
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parity estimation method in joint stereo image coding schemes. Unlike conventional

methods that employ a block-based disparity estimation technique, our method use

a dense and smooth disparity map. Since the coding cost of a dense disparity field is

too expensive compared to a block-based representation, we propose to resort to an

efficient quadtree decomposition and entropy coding that achieves a tradeoff between

the accuracy of the disparity representation and the coding cost.

• Next, we propose to adapt the lifting operators to the contents of the input images.

In the previously mentioned contributions, the stereo image coding process has been

performed by using separable multiscale decompositions. However, due to their sepa-

rate processing along the image lines and columns, separable lifting schemes may not

appear very efficient to cope with the two-dimensional characteristics of edges that

are neither horizontal nor vertical. For this reason, we will focus on the optimization

of all the operators involved in a two-dimensional non separable lifting scheme struc-

ture. While the prediction filters are optimized by minimizing the variance of the

detail coefficients, one of the main contributions of this part is to design the update

filter by using a criterion that allows us to reduce the aliasing effects. Moreover,

we show that the proposed optimization method leads to the same optimal update

filter when the optimization is performed either before or after the decimation step.

Another contribution consists of deriving theoretical expressions of the optimal filter

coefficients based on a simple first order 2D autoregressive model of the input im-

age. The use of such a statistical model requiring only two correlation factors highly

simplifies the implementation process of our optimization method.

• Finally, we investigate techniques for optimizing sparsity criteria, which can be used

for the design of all the filters defined in the previous structure. Indeed, unlike the

previous context of work where the prediction filters have been separately optimized

by minimizing an `2 criterion, we focus on the use of an `1 criterion instead of an

`2 one. Since the output of a prediction filter can be used as an input for another

prediction filter, we then propose to optimize such a filter by minimizing a weighted

`1 criterion related to the global prediction error. We will see that the optimization of

the diagonal prediction filter depends on the optimization of the remaining ones and

vice-versa. Related to this fact, we also propose to jointly optimize the prediction
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filters by using an algorithm that alternates between the optimization of the filters

and the computation of the weights.

1.3 Thesis outline

This thesis is organized as follows.

In Chapter 2, we first introduce the basic concepts of camera models, and then we establish

the geometrical relations between the two views. We also review the most important

techniques aiming at estimating the disparity field. This step is a key issue for exploiting

the cross-view redundancies and therefore achieving more efficient coding schemes.

In Chapter 3, we give an overview of stereo image coding schemes. To this end, we first

remind the most important concepts behind image compression techniques. A particular

attention will be paid to lifting based coding methods. We then review previous works on

stereo image coding.

In Chapter 4, we propose a novel stereo image coding structure based on a joint multiscale

decomposition of the left and the right images. Two versions of the proposed method are

provided and discussed. We also conduct a statistical analysis of the proposed schemes in

terms of prediction efficiency.

In Chapter 5, we propose to replace the block-based disparity estimation technique by a

recent dense disparity estimation method. We first describe the considered dense disparity

algorithm. We then address the problem of a suitable representation of the resulting dense

disparity map for coding purposes.

In Chapter 6, we first provide a survey of adaptive lifting schemes. We then describe

the considered non separable lifting scheme structure which will be optimized. We finally

propose a new optimization criterion for the design of the update filter. A theoretical

analysis of the proposed method in terms of the used adaptation criterion is also conducted.

As a continuation of Chapter 6, in Chapter 7, we propose sparse optimization criteria that

can be used for the design of all the filters involved in the previous lifting structure. We

first discuss the motivation of using an `1 criterion in lifting optimal design problems.

Then, we describe the iterative algorithm used to minimize such a criterion. Next, we

propose a weighted `1 criterion which aims at minimizing the global prediction error. A

novel algorithm which jointly optimizes the prediction filters is also presented.

Finally, some relevant conclusions and possible extensions of this research are addressed in
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Chapter 2

Main concepts in Stereo Vision

2.1 Introduction

This chapter outlines the main aspects relevant for understanding the stereoscopic imaging

process of a 3D scene through a camera system. We will first introduce the basic concepts of

camera models, and then we will establish the geometrical relation between the two views.

Next, we will present the stereo matching problem as well as the most commonly used

constraints that allow to simplify this process. Finally, an overview of the most frequently

used disparity estimation methods is provided.

2.2 Acquisition

Before discussing the stereo imaging acquisition process, we first introduce the pinhole

camera model which is considered as the most simplest camera model. Indeed, experiences

have shown that such a simple model can accurately approximate the geometry and optics

of most modern cameras [Faugeras, 1994]. Thus, it defines the geometric relationship

between a 3D object point and its 2D corresponding projection onto the image plane. This

geometric mapping from 3D to 2D is called a perspective projection.

2.2.1 Pinhole camera model

Acquisition of an image using the pinhole camera model is illustrated in Fig. 2.1.

This geometric representation consists of a retinal plane, a focal one and the image plane.

The point C is called the optical center or center of projection. The distance between the
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Retinal plane Focal plane                                   Image plane

Object

Optical axis

f

c
C

Figure 2.1: Pinhole camera model.

focal plane and the retinal one is called the focal length of the optical system and denoted

by f . The line going through the optical center and perpendicular to the retinal plane is

called the optical axis, and it intersects the image plane at a point c called the principal

point.

We should note that, for each object in the 3D world, the considered camera model forms an

inverted image of that object on the retinal plane located behind the focal plane. However,

it appears preferable to place the image plane at f distance in front of the focal plane in

order to avoid a non-inverted image of the object.

Now, let us explore the equations for the perspective projection describing the relation

between a point M in the 3D world and its projection m onto the image plane (Fig. 2.2).

This relationship is composed of the three following transformations:

• A perspective projection which defines the relation between the 3D point M ex-

pressed in the camera coordinate system and its projection m expressed in the same

coordinate system.

• A transformation from camera to image that consists in converting the coordinates

of m from the camera coordinate system to a new coordinate system attached to the

image.

• A transformation from world to camera which expresses the relation between the 3D

world coordinate system and the 3D camera coordinate system.

Perspective projection using homogeneous coordinates

Let Rc be the camera coordinate system originated at the optical center C and whose Z-

axis coincides with the optical axis of the camera. For the sake of simplicity, the horizontal
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Focal plane Image plane

Optical axis

R

C

Yc
yc

xc

x

Zc

Xc

o

y

m M

c

f

M ′

m′

Figure 2.2: Perspective projection.

and vertical axes are assumed to be parallel to those of the image plane.

Consider the point M in the 3D world with coordinates (Xc, Yc, Zc) inRc and its projection

m with coordinates (xc, yc) in Rc. Let m′ and M ′ be the projections of m and M onto the

optical axis, respectively. Using similarities of triangles (C,m, m′) and (C, M, M ′), we can

deduce that:

xc = f
Xc

Zc

yc = f
Yc

Zc
. (2.1)

It is important to note that these equations are not linear with respect to the Euclidean

coordinates Xc, Yc and Zc. For this reason, homogeneous coordinates will be introduced

in order to obtain linear equations. These coordinates are defined as follows: if (X, Y, Z)

are the Euclidean coordinates of a point in R3, its homogeneous coordinates are defined in

the projective space P3 ⊂ R4\{0} by (λX, λY, λZ, λ) for each nonzero real value of λ.

More precisely, the projective space P3 is a subset of R4\{0} defined by the relation of

equivalence:

(X, Y, Z, W ) ' (X ′, Y ′, Z ′,W ′) ⇐⇒ ∃ λ 6= 0 | (X, Y, Z, W ) = λ · (X ′, Y ′, Z ′,W ′)

(2.2)

Let us now denote by M̃ = (X,Y, Z, 1) ' (λX, λY, λZ, λ) ∈ P3, where λ 6= 0, the homoge-

neous coordinates of the point M whose Euclidean coordinates are (X,Y, Z) in R3. In a

similar way, we denote by m̃ = (x, y, 1) ' (λx, λy, λ) ∈ P2, where λ 6= 0, the homogeneous
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coordinates of the point m whose Euclidean coordinates are (x, y) in the image plane.

Using the homogeneous representation of the points, Eq. (2.1) can be rewritten as follows:




s.xc

s.yc

s


 =




f 0 0 0

0 f 0 0

0 0 1 0







Xc

Yc

Zc

1




(2.3)

where s is a nonzero scale factor.

Transformation from camera to image

Most of the the current imaging system define the origin O of the image coordinate system

at the top left pixel of the image. This coordinate system will be denoted by Ro. How-

ever, the previous image coordinates (xc, yc) are expressed in Rc. Thus, a transformation

between these two coordinate systems is required. If we denote by (x, y) the corresponding

pixel in the digitized image (i.e expressed in Ro), this position is related to the camera

coordinate system by the following transformation:




x

y

1


 =




kx 0 x0

0 ky y0

0 0 1







xc

yc

1


 (2.4)

where

• kx and ky are the horizontal and vertical scale factors (pixels/mm).

• x0 and y0 are the pixel coordinates of the principal point c in Ro.

These parameters are called the camera intrinsic parameters since they do not depend on

the position and orientation of the camera [Faugeras, 1994; Pedersini et al., 1999].

Therefore, the perspective projection equation (Eq. (2.3)) becomes:




s.x

s.y

s


 =




kx 0 x0

0 ky y0

0 0 1







f 0 0 0

0 f 0 0

0 0 1 0







Xc

Yc

Zc

1




(2.5)
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By defining αx = kxf and αy = kyf , this equation is often rewritten as:




s.x

s.y

s


 =




αx 0 x0

0 αy y0

0 0 1







1 0 0 0

0 1 0 0

0 0 1 0







Xc

Yc

Zc

1




. (2.6)

Transformation from world to camera

Let R be the 3D world coordinate system and (X, Y, Z) the coordinates of the point M in

R. These coordinates are related to those expressed in Rc by a rotation R followed by a

translation t. Thus, we obtain:



Xc

Yc

Zc


 = R




X

Y

Z


 + t (2.7)

Using the homogeneous coordinates, Eq. (2.7) can also be expressed as:



Xc

Yc

Zc

1




=


 R t

0 1







X

Y

Z

1




(2.8)

The matrix R of size 3 × 3 and the vector t of size 3 × 1 describe the orientation and

position of the camera with respect to the world coordinate system. They are called the

extrinsic parameters of the camera [Faugeras, 1994; Pedersini et al., 1999].

Finally, combining the three transformations described above yields the general form of

the perspective projection matrix P of the camera:

P = AP0K (2.9)

where

A =




αx 0 x0

0 αy y0

0 0 1


 , P0 =




1 0 0 0

0 1 0 0

0 0 1 0


 and K =


 R t

0 1


 (2.10)

This expression can also be rewritten as follows:

P = A[R t] (2.11)
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Consequently, the relationship between the homogeneous coordinates of a world point M̃

and its projection m̃ onto the image plane is described by:

m̃ = PM̃ (2.12)

2.2.2 Stereoscopic imaging system

The principle of a binocular stereoscopic imaging systems consists in generating two views,

called left image and right image, by recording two slightly different view angles of the

same scene (Fig. 2.3). The left and right cameras are respectively represented by their

optical centers C(l) and C(r), and their perspective projection matrix P(l) and P(r).

M

C(r)C(l)

m(r)

m(l)

B

Figure 2.3: Stereoscopic imaging system.

Assuming that the object point M is projected onto two points m(l) and m(r) in the left and

right images creating the so-called homologous points. Using Eq. (2.12), this projection

can be expressed as:

m̃(l) = P(l)M̃

m̃(r) = P(r)M̃. (2.13)

2.2.3 Epipolar geometry

The epipolar geometry describes the relation between the two generated images. The

different entities involved in this geometry are illustrated in Fig. 2.4. The plane passing

through the object point M and the centers of projection C(l) and C(r) is called the epipolar
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plane Π. The intersection of the line joining the optical centers (called baseline) with the

image plane results in two points e(l) and e(r) called the epipoles. The intersection of the

left (resp. right) image plane with the line joining the point M and the left (resp. right)

optical center C(l) (resp. C(r)) corresponds to m(l) (resp. m(r)).

Right epipolar lineLeft epipolar line

Epipolar plane Π

e(r)

l(r)

m(r)m(l)

l(l)

e(l)

M

C(r)C(l)

Figure 2.4: Epipolar geometry between a pair of images.

Suppose now that we only know m(r) and we have to search for its corresponding point

m(l). The plane Π is determined by the baseline and the ray defined by m(r). From above,

we know that the ray passing through m(l) lies in Π. Hence, the point m(l) lies on the line

of intersection l(l) of Π with the left image plane. This line is called the epipolar line l(r)

associated to m(r).

The knowledge of the epipolar geometry leads to an important observation. Given an

image point m(r) lying on the right epipolar line l(r), its corresponding point m(l) must lie

on the conjugate epipolar line l(l). This corresponds to the epipolar constraint which can

be expressed mathematically as:

(m̃(l))>Fm̃(r) = 0 (2.14)

where F is the Fundamental matrix. This matrix, of size 3 × 3, depends on the intrinsic

and extrinsic parameters of the cameras [Zhang, Xu, 1997]. An overview of techniques to

find F can be found in [Zhang, 1998].

Thus, such a constraint allows to reduce the search of homologous points to a 1-D search

problem rather than a 2-D one. In practice, this problem can be further simplified by using

an appropriate processing known as epipolar rectification.
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2.2.4 Epipolar rectification

There are two primary camera configurations used in stereoscopic vision. The first con-

figuration, which has been considered at the beginning of this section, is called converging

camera configuration. In this configuration, cameras are rotated towards each other by a

small angle and thus the epipolar lines appear inclined. The second configuration is called

parallel camera configuration (Fig. 2.5), and it is composed of two cameras with parallel

optical axes.

C(l)

M

C(r)

m(l) m(r)

Figure 2.5: Epipolar rectification.

It is important to note that the parallel camera configuration has several advantages. In-

deed, it simplifies the search for homologous points, which will be situated on parallel

horizontal lines. Furthermore, in this particular case, the epipolar lines are horizontal and

coincide with the image scan lines. Hence, two corresponding pixels are located at the

same line in the two images as shown in Fig. 2.5. In the opposite case (i.e converging

camera configuration), the epipolar lines can be rendered horizontal by using an appro-

priate processing. This procedure is called rectification. A survey of different rectification

methods proposed in the literature can be found in [Hartley, Gupta, 1993; Fusiello et al.,

2000; Papadimitriou, Dennis, 1996]

2.3 Stereo matching process

2.3.1 Disparity information

Given an image point m(r) = (m(r)
x ,m

(r)
y ) in the right image, the stereo matching process

aims at searching its homologous point m(l) = (m(l)
x ,m

(l)
y ) in the left image. The displace-
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ment between the coordinates of these points is called disparity.

So, the stereo matching problem can be formulated mathematically by the search for a

function v that associates a disparity vector to each pixel (m(r)
x ,m

(r)
y ) in the right image:

v :R2 −→ R2

(m(r)
x ,m(r)

y ) 7−→ v(m(r)
x ,m(r)

y ) = (m(l)
x −m(r)

x ,m(l)
y −m(r)

y ). (2.15)

When the left and right images are rectified, the displacement between the homologous

points is purely horizontal. In this case, the above equation becomes:

vx :R2 −→ R

(m(r)
x ,m(r)

y ) 7−→ vx(m(r)
x ,m(r)

y ) = m(l)
x −m(r)

x . (2.16)

2.3.2 Depth information

An important application of stereoscopic display technologies consists in adding the depth

information of the scene to the viewer. This kind of information can be computed based

on the triangulation method (see Fig. 2.6) [Hartley, P. Sturn, 1997].

Recall that a 3D object point M is defined by its coordinates (X,Y, Z) where the Z

component represents its depth and corresponds to the distance between the object and

the cameras. Using the similarity of the two triangles whose hypotenuses are respectively

m
(l)
x

x[pixels]

X[meter]

Z[meter]

m(l) m(r)

f

Z

X

B X −B

M

C(l)
C(r)

m
(r)
x

Figure 2.6: Relation between the disparity and depth information.
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(C(l)m(l)) and (C(l)M), we obtain:

m
(l)
x

f
=

X

Z
. (2.17)

Similarly, we can also check that:

m
(r)
x

f
=

X −B

Z
(2.18)

where B is the baseline and f denotes the camera focal length.

Finally, using the definition of the disparity information given by Eq. (2.16), we deduce

that:

vx(m(r)
x , m(r)

y ) = m(l)
x −m(r)

x =
B · f

Z
(2.19)

Thus, this equation allows us to calculate the depth information of the real scene. Fig. 2.7

shows the true disparity and depth maps computed from the“room3D”stereo pair based on

the camera parameters. Indeed, it can be observed that the depth information is inversely

proportional to the disparity.

2.3.3 Difficulties in stereo matching process

It is important to note that the stereo matching problem has been considered as a dif-

ficult problem in stereo vision for several reasons like depth discontinuities, illumination

variations and lack of texture [Dhond, Aggarwal, 1989].

• Occlusion problem [Dhond, Aggarwal, 1989]: In general, stereo images contain nearly

similar contents since they correspond to the same scene. However, there are some

areas in one image that are absent in the other image, and they are referred to as

occluded areas. The occlusion effect is illustrated in Fig. 2.8 where the point m(r) is

only visible in the right image.

This occlusion effect in stereo images is due to the different viewpoints of the cameras

and the presence of discontinuities in the scene. Therefore, the disparity is undefined

in occlusion areas because such areas cannot be found in the other image.

• Illumination variations: In real stereoscopic imaging system, the characteristics of

the cameras may be slightly different. Consequently, some illumination changes may

appear between the captured images. Fig. 2.9 shows an example of a SPOT5 stereo
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(a): Left image (b): Right image

(c): Disparity map (b): Depth map

Figure 2.7: Disparity and depth maps computed from the “room3D” stereo image based

on the camera parameters.

image which has significant illumination variations. This luminance difference is con-

firmed by displaying the histograms of both images.

This illumination variation will cause a serious problem in the correspondence pro-

cess. In order to overcome this problem, a pre-processing step, like the histogram

equalization, is often applied to the original stereo images.

• Textureless regions: Obviously, a pixel is less discriminating in areas with repetitive
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m
(r)

(a): Left image (b): Right image

Figure 2.8: Occlusion effects: the point m(r) is visible in the right image and absent in the

left image.

structure or texture. Indeed, it will be difficult to distinguish pixels in the same

area having similar intensity. Thus, such homogeneously textured regions result in

ambiguities in the stereo matching process, simply because of the presence of multiple

possible matches.

In conclusion, stereo matching is an ill-posed problem with inherent ambiguities.

2.3.4 Stereo matching constraints

In order to overcome the ambiguities mentioned above, some matching constraints can be

imposed. The most commonly used constraints are the following ones [Miled et al., 2006a;

Boufama, Jin, 2002]:

• Epipolar constraint: Given an image point in one image, the corresponding point

must lie on an epipolar line in the other image. The main advantage of this constraint

is that it reduces the matching problem from a 2D search problem to a 1D one.

Furthermore, when the stereo images are rectified, the 1D search problem is further

simplified since the epipolar line will coincide with the image scan line.

• Uniqueness constraint: It imposes that a given pixel in one image can match to no

more than one pixel in the other image. However, this constraint fails in the presence

of transparent objects.
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(a): Left image (b): Right image
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(c): Histogram of the left image (b): Histogram of the right image

Figure 2.9: Illumination variations between the left and the right images of the SPOT5

pair.

• Ordering constraint: It ensures that the order of two pixels in a line of one image is

preserved in its homologous line of the other image. However, this constraint fails at

the forbidden zone which is defined by the rays (C(r)M) and (C(l)M).

• Smoothing constraint: It imposes that disparity varies smoothly across homogeneous

areas (inside objects).
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2.4 Overview of stereo matching approaches

With an ultimate aim of producing a disparity map that can be used in the different

applications mentioned earlier in Chapter 1, stereo matching process has been extensively

studied in computer vision. A survey of the state-of-the-art methods can be found in

[Scharstein, Szeliski, 2002].

Traditionally, stereo matching algorithms are basically classified into two categories: local

methods and global ones.

2.4.1 Local methods

These methods can be mainly grouped into two categories: feature- and area-based ap-

proaches. Algorithms in the first category aim at pairing high-level features such as edges

[Otha, Kanade, 1985], segments [Medioni, Nevatia, 1985], etc. They yield accurate results

but their main drawback is the sparsity of the disparity map. Furthermore, they require a

prior feature extraction step.

In contrast with feature-based methods, area-based ones have the advantage of directly

generating a dense disparity field, but they are more sensitive to locally ambiguous regions

like occlusion regions or regions with uniform texture. This class of methods, where pixels

or regions are matched to find the corresponding points, is known as correlation-based

methods.

Although many local methods have been developed, we only present the correlation-based

methods, which summarize the techniques used by most algorithms. For instance, it is

worth pointing out that this technique has been widely employed in many applications such

as motion estimation [Alkanhal et al., 1999], image registration [Zitova, Flusser, 2003], etc.

The principle of the correlation-based method is illustrated in Fig. 2.10. Given a pixel

m(r) in the right image, the problem is to find the corresponding pixel in the left image.

For this purpose, a window of pixels around m(r) is firstly selected. Then, this window is

matched to a window in the left image by shifting the current window over a search area

S. At each shift, a cost function between the two windows is computed. To this respect,

many different similarity measures have been used in the literature. The most commonly

used are the Sum of Square Differences (SSD), the Sum of Absolute Differences (SAD) and

the Normalized Cross-Correlation (NCC). Finally, the shift which gives the minimum cost

function is considered as the best match.
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Right imageLeft image

 Correlation windowSearch area Moving window
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Figure 2.10: Correlation-based stereo matching method

A major difficulty of the correlation-based method is the selection of the window size and

shape. Indeed, the basic method uses a rectangular window with a fixed size. However,

the limitation of this technique is that it fails at object edges and boundaries. To overcome

this problem, more sophisticated approaches have been proposed by varying the size and

shape of the window according to the intensity variation [Kanade, Okutomi, 1994; Woo,

Ortega, 2000; Veksler, 2001; Xing et al., 2009].

2.4.2 Global methods

The second category that aims at reducing sensitivity to local regions in the image are

global methods. They typically find the disparity map that minimizes a global energy

function over the entire image. Generally, such a function consists of two terms and takes

the following form:

E(v) = E1(v) + αE2(v) (2.20)

where E1(v) is a data term that measures the distance between corresponding pixels, E2(v)

is a regularization term that enforces the smoothness of the disparity field and α is a pos-

itive constant weighting the two terms.

Finding the disparity map is achieved by minimizing the global cost function. For this pur-

pose, several energy minimization algorithms have been proposed to solve Eq. (2.20). The

most common approaches are dynamic programming [Veksler, 2005; Kim et al., 2005; Sun,

2002], graph cuts [Boykov et al., 2001; Kolmogorov, Zabih, 2001] and variational methods

[Slesareva et al., 2005; Miled et al., 2006b; Miled et al., 2009b; Kosov et al., 2009].

Dynamic programming (DP) technique uses the ordering and smoothness constraints to
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optimize correspondences in each scan line. It consists of two steps: a forward step for

building the path cost matrix for each possible candidate pixel and a backward step, where

the matching pixel with the minimum path cost is selected. While this method has the

advantage of enforcing the smoothness constraint of the disparity along the epipolar line,

it suffers from the inconsistency problem between scanlines. To solve this problem, a two-

pass dynamic programming technique has been developed in [Kim et al., 2005].

Graph cut based algorithms have also been proposed to cope with this problem. The idea

is to cast the stereo matching problem as a pixel labelling problem to find the minimal cut

through a constructed graph.

Much attention was also paid to variational approaches to compute a consistent dispar-

ity map while preserving the depth discontinuities. Indeed, these techniques have already

been attracted much interest in the computer vision community where they were first used

for the purpose of estimating a dense optical flow from a sequence of images. Variational

methods minimize the energy function (eq. (2.20)) by solving the associated non-linear

Euler-Lagrange equation [Alvarez et al., 2002].

While Dynamic programming and graph cuts methods have been performed in a discrete

manner, variational techniques work in a continuous space. Therefore, they have the ad-

vantage of producing a disparity field with ideally infinite precision. However, it should

be noted that all these global methods are often implemented using numerical schemes

which may be computationally intensive. For example, processing a single stereo image

pairs can take a few minutes on todays CPUs. In order to become well suited for real-time

applications, accurate real-time disparity estimation with variational methods has been

recently proposed [Kosov et al., 2009]. Also, more efficient implementation on multicore

architecture can be achieved by exploiting the structure of the used algorithm where dif-

ferent instructions may be computed in parallel as it has been addressed in [Miled et al.,

2009a]. Moreover, the choice of the regularization weight α may be a difficult task.

Finally, it is worth noting that among these global approaches, it has been shown in [Miled,

2008; Miled et al., 2009a] that variational-based disparity estimation methods are among

the most powerful techniques meanwhile preserving the depth discontinuities.
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2.5 Conclusion

In this chapter, we have reviewed the main issues on stereoscopic imaging system. More

precisely, we have focused on the acquisition process of stereo image while emphasizing

the geometrical relations between the generated views. We have also reminded the most

important techniques aiming at estimating the disparity map. This step plays a crucial

role in many applications like 3D reconstruction, view synthesis and stereo image coding.

The latter example of applications will be the objective of the next chapter.
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Chapter 3

Stereo image coding:

state-of-the-art

3.1 Introduction

Due to the widespread usage of stereo image in many application fields like those addressed

in Section 1.1, the demand for storing or transmitting these images over channels has

increased. Thus, compressing them would improve the performance of such channels or

storage devices.

This chapter gives a survey on conventional stereo images coding schemes. In the first part,

we start by presenting the most important concepts behind image compression techniques

which will be useful for the remainder of this dissertation. In the second part, we provide

an overview of previous works on stereo image coding.

3.2 Compression tools

Generally, compression techniques aim at reducing the number of bits needed to represent

an image. Several methods of data reduction are available, the choice of which strongly de-

pends on the underlying application requirement [Bovik, 2000]. Traditionally, compression

techniques are basically classified into two categories: lossy techniques and lossless ones.

A typical coding scheme is shown in Fig. 3.1. It incorporates three fundamentals steps

namely transformation/modelling, quantization and entropy coding.
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(lossy)
        Transformation    

   Image input Quantization
Entropy coding

Compressed

bitstream

Figure 3.1: Generic compression system.

3.2.1 Transformation

In most still images, the neighboring pixels are strongly correlated and therefore contain

redundant information. Thus, reducing the amount of data can be efficiently achieved by

exploiting the spatial redundancies in the images. For this purpose, two basic compression

techniques can be envisaged: predictive coding schemes and transform coding schemes.

Predictive coding techniques

One of the simplest way to compress an image is the predictive coding approach which has

been adopted in the lossless JPEG standard [Wallace, 1991]. The most common approach

to predictive coding is Differential Pulse Code Modulation (DPCM) [Cutler, 1950].

Encoder    Decoder

P

e(m,n)I(m,n) I(m, n)

Î(m,n) Î(m, n)

P

Figure 3.2: DPCM technique in a lossless coding context.

The basic idea of this technique, which is illustrated in Fig. 3.2, consists of two steps.

First, the current pixel to be encoded is predicted from its neighboring based only on the

previous pixels (in the adopted scanning order):

Î(m,n) = P
(
I(m− k, n− l)

)
(k,l)∈P

(3.1)

where P is the support of the predictor P of I(m,n).

Then, instead of coding the current pixel I(m,n), the difference between this pixel and its

prediction, called prediction error, is encoded:

e(m,n) = I(m,n)− Î(m,n). (3.2)
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It is worth pointing out that a rounding operator should generally be applied on the pre-

dicted value if a lossless technique is required.

Thus, if the pixel values are very similar, the error to be encoded has a small magnitude

and the number of bits per pixel needed to transmit is thus reduced. Generally, such a

method provides a single-resolution version of the image and therefore is not appropriate

for progressive reconstruction. Furthermore, it is very sensitive to transmission error [Mar-

vell et al., 1999]. To increase the robustness against noise and improve the compression

performance, transform coding schemes have been proposed.

Transform coding techniques

An alternative approach for image compression is transform coding where the image is con-

verted from the spatial domain to another domain by applying an invertible transform. An

appropriate choice of transform should guarantee a good decorrelation of the coefficients

while simultaneously producing a new representation in which most of the original image

energy is concentrated on a few coefficients.

For this purpose, many transforms have been proposed, among them the most popular be-

ing the Karhunen-Loeve Transform (KLT) [Hua, Liu, 1998], the Discrete Cosine Transform

(DCT) [Rao, Yip, 1990] and the Discrete Wavelet Transform (DWT) [Mallat, 1998].

Block transforms: KLT and DCT

Generally speaking, a block-based transform consists of first partitioning the image into

nonoverlapping adjacent blocks of size N × N (usually, N = 8 or N = 16). Then, a

transform matrix T is applied to each block X yielding an output block of transformed

coefficients Y. Well-known examples of block-based transforms are the KLT and the DCT.

The KLT is the best transform from a theoretical viewpoint in the sense that it achieves

optimal decorrelation and energy compaction. However, it has two major problems. First,

KLT is data dependent since its transformation matrix depends on the autocovariance

matrix of the input image. Second, it is computationally intensive. Indeed, its complexity

is given by O(N2).

Due to these problems, various approximations to the KLT, that have fast implementation

algorithms, have been proposed. The most popular one is DCT which computes the output
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block Y as follows:

Y = TXT> (3.3)

where the generic element T (m, n), for (m,n) ∈ {0, . . . , N − 1}2, of the transform matrix

T is defined as:

T (m,n) = cm cos
((2n + 1)mπ

2N

)
with cm =





√
1
N if m = 0√
2
N if m > 0.

(3.4)

This transform has been widely used in image and video compression standards, such as the

JPEG standard, the H.264/AVC standard and the different MPEG standards [Pennebaker,

Mitchell, 1993]. However, DCT-based block coding also has some shortcomings. Its main

drawback is the fact that it causes blocking artifacts at very low bitrate coding (below 0.25

bpp).

To solve this problem, Lapped Orthogonal Transforms (LOT) have been developed [Malvar,

1992]. Rather than partitioning the input image into nonoverlapping blocks, LOT smooth

out the block boundaries by using overlapping blocks. Besides, an important feature of

such transforms is the existence of filter bank implementations.

Discrete Wavelet Transform

In order to overcome the aforementioned drawbacks of DCT, wavelets have been attracting

much attention in the most recent image compression algorithms, including the JPEG2000

standard [Taubman, Marcellin, 2001]. Wavelets have also been extensively used in various

signal processing applications due to their intrinsic properties: multi-scale representation

and good space-frequency localization. In fact, unlike the DCT where the image is trans-

formed from the spatial domain into the frequency domain, the wavelet transform provides

a good representation of the image in both space and scale domains.

In practice, the information that is produced and analyzed is generally discrete. This is

why we will focus on the Discrete Wavelet Transform (DWT) in what follows. More pre-

cisely, we will address the wavelet theory in the case of a one dimensional discrete signal

in `2(Z) (1D-DWT). Then, we will show that a separable two dimensional WT (2D-DWT)

can be easily deduced from the 1D-DWT to transform images.

Mallat has shown that continuous WT can be approximated by a DWT using a discrete

filter bank implementation [Mallat, 1998]. The link between the continuous and the dis-

crete wavelet transform has also been studied by Rioul [Rioul, 1993]. Let (s0(n))n∈Z be
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the original discrete signal in `2(Z) to be decomposed. Generally, M -band filter banks are

structures composed of M digital filters that allow a signal to be decomposed into M fre-

quency subbands [Vaidyanathan, 1993; Pau, Pesquet-Popescu, 2005; Chaux et al., 2005].

Fig. 3.3 shows an example of a two-band filter bank.

2

2

analysis stage synthesis stage

g1

2

2

h̄0

h̄1

s0(n)

s1(n)

d1(n)

s̃0(n)

g0

Figure 3.3: 2-band filter bank: analysis and synthesis.

As we can see in Fig. 3.3, the elements of s0 are first fed into two filters, whose impulse

responses are denoted by h̄0(n) = h0(−n) and h̄1(n) = h1(−n), called analysis filters. The

filter with impulse response h0 (resp. h1) is a low-pass (resp. high-pass) filter. Then, the

output of each filter is downsampled by 2 to get a low-pass version s1 (or a coarse resolu-

tion version) and respectively a high-pass version d1 of the input signal s0. The low-pass

version is called approximation signal, while the high-pass one is called detail signal.

In practice, it is common to repeat the decomposition process on the resulting approxima-

tion signal as illustrated in Fig. 3.4.

2

2

2

2

d1(n)

s0(n)

h̄0

h̄1

h̄0

h̄1

s2(n)

d2(n)

s1(n)

Figure 3.4: One dimensional wavelet decomposition over 2 resolution levels.

Each successive application of the filter bank is called a level of decomposition as it pro-

vides an approximation of a given resolution level. Thus, we get a representation of the

input signal at different levels, referred to as a multiresolution analysis [Mallat, 1989].
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The relation between the coefficients at two consecutive resolution levels j and j + 1 is:

sj+1(n) =
+∞∑

k=−∞
sj(k)h0(k − 2n) = (sj ? h̄0)(2n) (3.5)

dj+1(n) =
+∞∑

k=−∞
sj(k)h1(k − 2n) = (sj ? h̄1)(2n) (3.6)

where ? denotes the convolution operator and h̄0, h̄1 are the time-reversed versions of the

impulse responses h0 and h1 of the analysis filters.

Obviously, it is necessary to recover the original signal from its wavelets coefficients. For

this purpose, the outputs sj+1 and dj+1 are first upsampled by 2, then filtered with the

filters with impulse responses g0 and g1 called synthesis filters, and finally combined to

form a reconstructed signal s̃j :

s̃j(n) =
+∞∑

k=−∞
sj+1(k)g0(n− 2k) +

+∞∑

k=−∞
dj+1(k)g1(n− 2k). (3.7)

If the reconstructed signal is equal to the original one, the filter bank is said to be a perfect

reconstruction or a reversible filter bank. This property is guaranteed if the analysis and

synthesis filters satisfy the following conditions:


∀ f ∈ [0, 1],

ĥ∗0(f + 1
2)ĝ0(f) + ĥ∗1(f + 1

2)ĝ1(f) = 0

ĥ∗0(f)ĝ0(f) + ĥ∗1(f)ĝ1(f) = 2
(3.8)

where ĥ0, ĥ1, ĝ0 and ĝ1 respectively denote the frequency responses of the analysis and

synthesis filters.

In addition to the perfect reconstruction property, orthogonality and phase linearity are

also two desirable characteristics in the wavelet transform. The orthogonality property is

satisfied when the resulting families {h0(k − 2n), h1(k − 2n)}n∈Z is an orthogonal basis of

`2(Z). An orthogonal system must have filters of the same length which must be even.

The main advantage of orthogonality is to preserve the energy of the coefficients in both

the spatial and wavelet domains. Phase linearity is guaranteed by using symmetric filters.

Linear phase system filters allow simple symmetric boundary extension techniques that

minimize border artifacts. Furthermore, the phase linearity property can be exploited,

leading to faster and more efficient filter bank implementations. However, if we except

the Haar wavelet transform, a filter bank with real coefficients cannot simultaneously have

orthogonality and linear phase [Mallat, 1998].
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In the image compression literature, symmetry of filter impulse responses is often considered

as a desirable property since it allows to obtain linear phase [Belzer et al., 1995]. As a result,

new filters have been considered by relaxing the orthogonality property while preserving

the symmetry one. These filters are referred to as biorthogonal filter banks and therefore

define biorthogonal wavelets. An example is the family of wavelets constructed by Cohen,

Daubechis and Feauveau [Cohen et al., 1992; Daubechies, 1992].

To perform DWT for images, Mallat has extended the 1D-DWT to the 2D case by applying

separately the one dimensional transform to each dimension. That is, the 2D-DWT is

implemented as a 1D row transform followed by 1D column transform, or vice-versa. This

is shown in Fig. 3.5 for an input 2D signal xj(m,n).
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2

Transformation over columnsTransformation over rows

2

2

2

2

x
(LL)
j+1 (m, n)
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dj+1(m, n)

sj+1(m, n)

h̄1

h̄0

x
(LH)
j+1 (m, n)

x
(HL)
j+1 (m, n)

x
(HH)
j+1 (m, n)

h̄0

h̄1

h̄0

h̄0

Figure 3.5: Separable filter bank.

Every row of the input image xj(m,n) is first individually 1D transformed yielding an

approximation subband sj+1(m, n) and a detail subband dj+1(m,n). Then, each subband

is 1D transformed in a column wise fashion. Thus, four subbands per resolution level

are generated: an approximation subband x
(LL)
j+1 and three detail subbands x

(HL)
j+1 , x

(LH)
j+1

and x
(HH)
j+1 corresponding respectively to the horizontal, vertical and diagonal orientations.

Similarly to the 1D case, an image can be decomposed into different resolution levels by

iterating the same process on the approximation subband at each level. Fig. 3.6 illustrates

the generated subbands for two resolution levels.
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Figure 3.6: Two dimensional subbands after 2 stages of decomposition.

Lifting schemes

An alternative approach to the classical filter bank for computing DWT is the Lifting

Scheme (LS) [Sweldens, 1995; Sweldens, 1996]. This approach has been introduced by

Sweldens in order to construct biorthogonal wavelets by a simple, reversible and fast pro-

cess. A generic LS applied to a 1D signal consists of three modules referred to as split,

predict and update. Fig. 3.7 shows the block diagram of the LS-based structure.

Split

Analysis structure                                                                                 Synthesis structure

 Merge

+ −

+−sj(2n + 1)

sj+1(n)

dj+1(n)

sj(n)

sj(2n)

sj(n)

sj(2n + 1)

sj(2n)

P U U P

Figure 3.7: A generic one dimensional lifting structure.

• Split: In the first step, the input 1D signal sj(n) is partitioned into two disjoint data

sets formed by the even sj(2n) and odd samples sj(2n + 1), respectively. Such a splitting
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is sometimes called Lazy wavelet transform or polyphase decomposition.

• Predict: Then, each sample of one of the two resulting subsets (say the odd one) is

predicted from the neighboring even samples and a prediction error or detail signal is

computed:

dj+1(n) = sj(2n + 1)− p>sj(n) (3.9)

where p is the prediction vector, sj(n) =
(
sj(2n−2k)

)
k∈P

is the reference vector containing

the even samples used in the prediction step, and P represents the support of the predictor

of sj(2n + 1).

When the signal is highly correlated, such a prediction will usually be efficient and thus the

detail signal will contain much less information than the original signal. This represents

the key issue of the decorrelation step.

•Update: Finally, this step generates a coarser approximation of the original signal thanks

to a smoothing of the even samples using the detail coefficients:

sj+1(n) = sj(2n) + u>dj+1(n) (3.10)

where u is the update vector, dj+1(n) =
(
dj+1(n − k)

)
k∈U

is the reference vector con-

taining the detail coefficients used in the update step, and U represents the support of the

update operator.

Similarly to the filter bank based method, a separable 2D-DWT can be simply implemented

by separately applying the 1D-LS to the lines and the columns. Again, a multiresolution

representation is obtained by recursively repeating these steps to the resulting approxima-

tion coefficients.

One of the great advantages of the LS is its reversibility regardless of the choice of the

prediction and update operators. Indeed, the inverse transform can always be obtained

immediately from the forward transform. The inversion rules are obvious: revert the order

of the operations, invert the signs + and -, and replace the splitting step by a merging

step. Thus, inverting the three step procedure results in:

• Undo update:

sj(2n) = sj+1(n)− u>dj+1(n) (3.11)

• Undo predict:

sj(2n + 1) = dj+1(n) + p>sj(n) (3.12)
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• Merge:

{sj(n), n ∈ Z} = {sj(2n), n ∈ Z} ∪ {sj(2n + 1), n ∈ Z} (3.13)

It is worth pointing out that, in lossless coding context, a rounding operator should be

applied on the predict and update steps for both analysis and synthesis stages.

LS is known as the second generation wavelets because it has many advantages with

respect to the classical method for the construction of wavelets based on the Fourier trans-

form. The most important of them are:

• Simplicity: it is easier to understand and implement.

• The inverse transform is obvious to find and has the same complexity as the forward

transform.

• Computational cost reduction: LS reduces to one-half the computational cost of the

general Mallat’s algorithm.

• It is shown in [Daubechies, Sweldens, 1998] that every biorthogonal filter bank with finite

impulse response filters can be decomposed into a finite number of lifting steps, followed

by possible multiplication constants.

Due to these advantages, LS has proved to be an efficient tool for still image coding. In

what follows, we give few examples of LS which have been reported in [Calderbank et al.,

1998]. The most known ones are the family of (L, L̃) integer wavelet transforms where

L and L̃ represent the number of vanishing moments of the analysis and synthesis high

pass filters, respectively. It can also be noticed that L and L̃ correspond to the number of

coefficients of the predict and update filters, respectively.

• (2,2) integer wavelet transform:





dj+1(n) = sj(2n + 1)− b1
2(sj(2n) + sj(2n + 2)) + 1

2c
sj+1(n) = sj(2n) + b1

4(dj+1(n− 1) + dj+1(n)) + 1
2c

(3.14)

Note that this transform is also known as the integer 5/3 transform and it has been retained

for the lossless compression mode of the JPEG2000 standard.

• (4,2) integer wavelet transform:





dj+1(n) = sj(2n + 1)− b 9
16(sj(2n) + sj(2n + 2))− 1

16(sj(2n− 2) + sj(2n + 4)) + 1
2c

sj+1(n) = sj(2n) + b1
4(dj+1(n− 1) + dj+1(n)) + 1

2c
(3.15)
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• (2,4) integer wavelet transform:





dj+1(n) = sj(2n + 1)− b1
2(sj(2n) + sj(2n + 2)) + 1

2c
sj+1(n) = sj(2n) + b19

64(dj+1(n− 1) + dj+1(n))− 3
64(dj+1(n− 2) + dj+1(n + 1)) + 1

2c
(3.16)

• (4,4) integer wavelet transform:





dj+1(n) = sj(2n + 1)− b 9
16(sj(2n) + sj(2n + 2))− 1

16(sj(2n− 2) + sj(2n + 4)) + 1
2c

sj+1(n) = sj(2n) + b 9
32(dj+1(n− 1) + dj+1(n))− 1

32(dj+1(n− 2) + dj+1(n + 1)) + 1
2c

(3.17)

• (6,2) integer wavelet transform:





dj+1(n) = sj(2n + 1)− b 75
128(sj(2n) + sj(2n + 2))− 25

256(sj(2n− 2) + sj(2n + 4))

+ 3
256(sj(2n− 4) + sj(2n + 6)) + 1

2c
sj+1(n) = sj(2n) + b1

4(dj+1(n− 1) + dj+1(n)) + 1
2c.

(3.18)

• Another popular transform is the 9/7 one which has been selected for the lossy compres-

sion mode of the JPEG2000 standard. It is defined as follows:





ďj+1(n) = sj(2n + 1) + α
(
sj(2n) + sj(2n + 1)

)

šj+1(n) = sj(2n) + β
(
ďj+1(n− 1) + ďj+1(n)

)

d̃j+1(n) = ďj+1(n) + γ
(
šj+1(n) + šj+1(n + 1)

)

s̃j+1(n) = šj+1(n) + δ
(
d̃j+1(n− 1) + d̃j+1(n)

)

dj+1(n) = 1
ζ d̃j+1(n)

sj+1(n) = ζs̃j+1(n)

(3.19)

where

α = −1.586134342

β = −0.05298011854

γ = 0.8829110762

δ = 0.4435068522

ζ = 1.149604398.

It is worth pointing out that contrary to the previous mentioned examples, which corre-

spond to a Predict-Update (P-U) structure, the 9/7 transform is composed of two lifting

stages yielding a P-U-P-U structure.
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Extensions of LS

Motivated by the aforementioned advantages of LS, many research works have been de-

voted to the extension of LS and construction of new wavelet transforms.

A popular example is known as Quincunx Lifting Scheme (QLS) [Gouze et al., 2004;

Benazza-Benyahia et al., 2007]. Such a structure is a two dimensional non separable trans-

form performed on a quincunx grid, as shown in Fig. 3.8.

Figure 3.8: Quincunx sampling grid.

The pixels at site ’×’ are firstly predicted from the neighboring pixels at site ’◦’ and the

resulting prediction error corresponds to the detail coefficients. Then, the pixels at site ’◦’
are updated by using the neighboring detail coefficients and the resulting smooth version

corresponds to the approximation signal. It is important to note that QLS were found to

be efficient for coding satellite images acquired on a quincunx sampling grid.

Similar structures to LS have also been used in nonlinear subband decomposition [Hamp-

son, Pesquet, 1996]. Fig. 3.9 shows the diagram of a nonlinear two-band filter bank.

Note that H and G can be linear or nonlinear operators. An extension of this structure

to M -band nonlinear decompositions with maximal decimation and perfect reconstruction

properties was developed in [Hampson, Pesquet, 1998].

Solé and Salembier have also proposed another extension of LS referred to as Generalized

Lifting Scheme (GLS) [Solé, Salembier, 2004].

As it can be seen in Fig. 3.10, the GLS is very similar to the classical LS (Fig. 3.7) except

that the operator sums after the prediction and update steps are embedded in a more

general framework. For instance, in classical LS, the prediction operator is viewed as a
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Analysis structure                                                                                 Synthesis structure

+ −

+−

sj(2n) sj+1(n)

dj+1(n)

H G G H

sj(2n + 1) sj(2n + 1)

sj(2n)

Figure 3.9: Nonlinear two-band filter bank.

P−1P

U U−1

sj(2n + 1)

sj(2n)sj+1(n)

dj+1(n)sj(2n + 1)

sj(2n)

Figure 3.10: Generalized Lifting Scheme.

filter that generates a predicted value which is used to modify the current pixel sj(2n + 1)

through a subtraction. However, in the GLS, the prediction is viewed as a function that

maps sj(2n+1) to dj+1(n) taking into account the values of neighboring pixels sj(2n). One

of the main advantages of GLS is its ability to include possibly non linear and/or adaptive

operations. More details about the GLS and its reversibility conditions can be found in

[Solé, Salembier, 2004].

Moreover, directional transforms with lifting schemes, such as oriented wavelet transforms

[Chappelier, Guillemot, 2006] and grouplet [Mallat, 2009], have also been developed for

image coding and geometric image processing.

In addition to still image coding applications, many efforts have been deployed in the last

years to extend these lifting schemes to other coding applications like video compression

[Pesquet-Popescu, Bottreau, 2001], multi-view [Anantrasitichai et al., 2005] and 3D-mesh

data compression [Payan et al., 2005]. For example, in the video compression context,

motion compensated temporal filtering (MCTF) schemes, based on the LS concept, have

attracted a great attention due to their high compression performance comparable with

state-of-the-art methods based on the predictive technique [Pau et al., 2004; Cagnazzo

et al., 2007]. More precisely, motion estimation (ME) is first performed between the input
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frames of the video sequence, and the motion vector field (denoted by u = (ux, uy) in

Fig. 3.11) is used for motion compensated operations in both the predict and update steps.

ME

 

u = (ux, uy)

I2t(m, n)

I2t+1(m, n)

U

Ht(m, n)

Lt(m, n)

P

Figure 3.11: Temporal motion compensated lifting scheme.

As can be seen in Fig. 3.11, the odd indexed input frames I2t+1 are predicted from the

even indexed frames I2t, and the prediction error corresponds to the high-pass subband

frames Ht. Then, the low-pass subband frames Lt are generated by smoothing I2t using

the computed detail frames. It is important to note that the prediction and update steps

also involve the motion vectors used to match corresponding pixels.

Let ut1→t2 = (ut1→t2
x , ut1→t2

y ) denote the vector field used to predict the current frame It2

from the reference one It1 . Therefore, the analysis equations of temporal motion compen-

sated lifting scheme are given by:

Ht(m,n) = I2t+1(m,n)− p>I2t(m,n) (3.20)

Lt(m, n) = I2t(m,n) + u>Ht(m,n) (3.21)

where I2t(m,n) =
(
I2(t−k)(m − u

2(t−k)→2t+1
x , n − u

2(t−k)→2t+1
y )

)
k∈P

(resp. Ht(m,n) =
(
Ht−k(m+u

2(t−k)+1→2t
x , n+u

2(t−k)+1→2t
y )

)
k∈U

) is the reference vector containing the evenly

indexed frames (resp. high-pass subband frames) used in the prediction (resp. update)

step, and P (resp. U) represents the support of the temporal prediction (resp. update)

operator. However, motion compensated temporal filtering raises the problem of multiple

connected/unconnected pixels. Multiple connected pixels correspond to those used to pre-

dict more than one pixel in the current frame whereas unconnected pixels are those in the

reference frame not used for temporal prediction. To effectively deal with this problem,

[Xiong et al., 2004] for example propose a new and general lifting structure, called Barbell

lifting scheme, in which instead of a single pixel value, a function of a set of pixel values is

used as the input to the lifting step.
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In parallel with these works devoted to extending LS to a more general framework, other

works have also been focused on the design of adaptive lifting schemes. Indeed, in a coding

framework, the compactness of any LS-based multiresolution representation depends on

the choice of the prediction and update operators.

Adaptive lifting schemes

Adaptive lifting schemes aim at designing lifting filters to attain a certain objective. To

the best of our knowledge, most existing works have mainly focused on the optimization

of the prediction operators. For instance, Gerek and al. [Gerek, Çetin, 2006] proposed a

2D edge-adaptive lifting scheme by considering three direction angles of prediction (0◦, 45◦

and 135◦) and by selecting the orientation which leads to the minimum prediction error.

In [Boulgouris, Strintzis, 1999], three separable prediction filters with different numbers of

vanishing moments are employed, and then the best prediction is chosen according to the

local features. In [Claypoole et al., 1997], a set of linear predictors of different lengths are

defined based on a nonlinear function related to edge detector. In [Claypoole et al., 2003],

this work is extended by using a two dimensional window and analyzes the transform

reversibility, stability and frequency characteristics. Recently, Ding et al. [Ding et al.,

2007] have built an adaptive directional lifting structure with perfect reconstruction: the

prediction is performed in local windows in the direction of high pixel correlation. A good

directional resolution is achieved by employing fractional pixel precision level. A similar

approach was also adopted in [Chang, Girod, 2007]. An improvement was proposed in [Liu,

Ngan, 2008] thanks to a directional adaptive interpolation. In [Bekkouche et al., 2008], an

adapted generalized LS, in which the predictor is built upon two filters, is introduced for

lossless coding purpose. More precisely, Bekkouche et al. studied two kinds of adaptation

based on least squares estimation, according to different assumptions, which are either

a global or a local second order stationarity of the image. In [Solé, Salembier, 2007], a

generalized prediction step is optimized by minimizing at the same time the detail signal

energy and entropy given the pixel value probability conditioned to its neighbors pixels

values. By assuming that the signal probability density function (pdf) is known, the benefit

of this method has firstly been demonstrated for lossless image coding in [Solé, Salembier,

2007]. Then, an extension of this work to sparse image representation and lossy coding

contexts has been presented in [Rolon, Salembier, 2007]. Consequently, an estimation of
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the pdf should be available at the coder and the decoder side [Rolon et al., 2008; Rolon

et al., 2009]. Note that the main drawback of this method as well as directional wavelet

transform ones [Ding et al., 2007; Chang, Girod, 2007; Liu, Ngan, 2008; Mallat, 2009;

Chappelier, Guillemot, 2006] is that they require to transmit losslessly a side information

to the decoder which may affect the whole compression performance especially at low

bitrates. Furthermore, such adaptive methods lead to an increase of the computational

load required for the selection of the best direction of prediction.

Besides, it can be noticed that there are few works which have discussed the problem of

the update filter. Among these works, in [Piella et al., 2002; Abhayaratne et al., 2003], the

update operator of a separable LS is adaptively computed thanks to a non linear decision

rule using the local gradient information. An extension of this method to 2D non separable

schemes that have a spatially adaptive low-pass filter is proposed in [Abhayaratne, 2004;

Heijmans et al., 2005]. Another alternative is to adapt the update so that the reconstruction

error is minimized when the detail coefficients are canceled [Pesquet-Popescu, 1999; Gouze

et al., 2004]. Recently, an adaptation procedure was proposed in [Quellec et al., 2010]. It

consists of designing an update and prediction Neville filters whose corresponding primal

and dual wavelets have the desired number of vanishing moments. The remaining degrees

of freedom are used to optimize a criterion depending on the underlying application. In

their paper, the authors were interested in finding the wavelet basis that maximizes the

retrieval performance for content-based image retrieval applications.

Subband weighting procedure

A key point in the use of efficient bit allocation in wavelet based coders, such as rate-

distortion algorithms, consists in assuming an energy preservation transform. More pre-

cisely, these algorithms employ quantizers which minimize the distortion in the wavelet

domain [Usevitch, 1996]. Thus, such algorithms work well when an orthogonal transform

is performed.

However, as mentioned before, the main drawback of biorthogonal wavelets is that they do

not satisfy the energy preservation property. Therefore, standard bit allocation techniques

become suboptimal for biorthogonal transforms [Usevitch, 1996; Parrilli et al., 2008]. As

a result, an efficient bit allocation procedure can be achieved by weighting the average

distortion D
(o)
j in the wavelet subband, of orientation o at the jth resolution level, in order
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to obtain a good approximation of the distortion in the spatial domain Ds. It has been

shown in [Usevitch, 1996] that Ds can be expressed as:

Ds =
J∑

j=1

∑

o∈{HL,LH,HH,LL}

1
4j

w
(o)
j D

(o)
j (3.22)

where w
(o)
j is the weight of each wavelet subband at the jth resolution level and in the

orientation o. They depend on the filters used for reconstruction.

Note that the weights w
(o)
j are equal to 1 if an orthogonal transform is used. Generally,

these weights are computed based on the wavelet filters used for the reconstruction process

as it is addressed in [Usevitch, 1996; Parrilli et al., 2008]. Theoretically, it is shown

in [Parrilli et al., 2008] that such computation is a difficult task especially when using

adaptive lifting scheme with more than one decomposition level. To further simplify the

weight computation procedure, an alternative method based on the following assumption

can also be used. Indeed, as shown in [Usevitch, 1996], if the error signal in a subband

(i.e the quantization noise) is white and uncorrelated to the other subband errors, the

reconstruction distortion in the spatial domain is related to the distortion in the wavelet

domain by Eq. (3.22). Therefore, for each subband x
(o)
j , a white Gaussian noise of variance

(σ(o)
j )2 is firstly added while keeping the remaining subbands noiseless. Then, the resulting

distortion in the spatial domain D̂s is estimated. Finally, the corresponding subband weight

can be estimated as follows:

w
(o)
j =

D̂s × 4j

(σ(o)
j )2

. (3.23)

Once the weights are computed, each wavelet subband resulting from the applied wavelet

transform is scaled by a factor α
(o)
j . Indeed, if the wavelet coefficients xj = {x(o)

j } are

multiplied by α
(o)
j before quantization, then the quantized values are divided by the same

constants α
(o)
j before performing the inverse wavelet transform as shown in Fig. 3.12.

Transform

Wavelet
Quantization

Inverse

Transform

x xj x̃x̃j

1

α
(o)
j

α
(o)
j

Figure 3.12: Weighted wavelet coefficients.



44 3. Stereo image coding: state-of-the-art

Therefore, the distortion in the spatial domain (Eq. (3.22)) becomes:

Ds =
J∑

j=1

∑

o∈{HL,LH,HH,LL}

1
4j

w
(o)
j

(α(o)
j )2

D
(o)
j . (3.24)

Since the objective of the subband weighting procedure is to obtain a distortion in the

spatial domain which is very close to the distortion in the wavelet domain, the coefficients

α
(o)
j should be chosen equal to

√
w

(o)
j where w

(o)
j is given by Eq. (3.23).

3.2.2 Quantization

The goal of the quantization is to reduce the precision of the transformed coefficients by

reducing a continuous set of values (or a very large set of possible discrete values) to

a relatively small discrete and finite set. Such an operator is lossy (i.e not reversible)

and it is not employed in lossless compression schemes. We can distinguish two kinds of

quantization: the scalar quantization and the vector quantization.

A scalar quantization maps each input sample (i.e transform coefficient) to one symbol. A

simple example of scalar quantization of an input sample xj(m,n) into a quantized value

yj(m,n), is the common uniform quantization:

yj(m,n) = bxj(m,n)
Qstep

cQstep (3.25)

where Qstep is the quantization step size and b·c denotes the rounding operator.

Scalar quantization treats each coefficient of xj independently. If these coefficients are

highly dependent, further improvements can be achieved by using vector quantization that

assigns one symbol to each vector formed by several samples. It should be noted that

scalar quantization requires fewer computations and is thus more often used in practice.

Generally, optimal quantizers are designed by minimizing the distortion introduced by the

quantization step. This is the case of the JPEG2000 standard, which selects groups of

quantization indexes offering the best rate-distortion trade-offs.

3.2.3 Entropy coding: examples in wavelet-based codecs

After applying the spatial transform and the quantization step, the generated coefficients

must be encoded. However, the coding scheme should enable the quality scalability for

progressive reconstruction purposes. This is achieved by sending the wavelet coefficients

in decreasing order of their importance. In other words, the most significant ones are
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first encoded at a reduced accuracy. So, a first approximation image is produced, which

is further gradually refined by decoding the least significant coefficients. An overview of

the state-of-the-art embedded wavelet-based codecs can be found in [Fowler, 2003; Fowler,

Pesquet-Popescu, 2007]

The pioneering one is the Embedded Zerotree Wavelet coder (EZW) which is an iterative

algorithm based on the following three principles [Shapiro, 1993]. Firstly, it exploits the

cross-scale similarities of the wavelet coefficients. Secondly, the wavelet coefficients are

partially sorted by magnitude. Finally, successive approximations of ordered coefficient

amplitude are performed to enable a scalable reconstruction in accuracy. More precisely,

the coefficients whose magnitudes are above a given threshold are considered as significant

coefficients.

As illustrated in Fig. 3.13, “parent” coefficients in a subband can be related to “children”

coefficients in the same relative location in a subband at the next higher resolution. Thus,

a zerotree is formed when a coefficient and all of its descendants are insignificant with

respect to a given threshold T . Hence, significant coefficients are transmitted first and

Figure 3.13: Zerotrees in a 2D dyadic transform.

the rest of the coefficients are not coded at this time. As mentioned, EZW is an iterative

algorithm, organized around two passes namely the dominant and the subordinate passes.

It also employs two lists: the dominant list contains the coordinates of insignificant coef-

ficients whereas the subordinate list contains the magnitude (amplitude) of the significant

coefficients. In the dominant pass, coefficients from the dominant list are tested for sig-

nificance and they are classified and encoded as a zerotree (ZR symbol), an isolated zero

(IZ symbol), positive significant (POS symbol), or negative significant (NEG symbol). To



46 3. Stereo image coding: state-of-the-art

encode these symbols, an adaptive arithmetic coder is used. For significant coefficients, the

sign is determined and the magnitude value is appended to the subordinate list. This list

is then used in the subordinate pass where the coefficients are sorted in decreasing order

and then are refined with an additional bit. The two passes are iterated until the threshold

T becomes lower than the minimum wavelet coefficient or until that some target bit rate

is reached.

The Set Partitioning In Hierarchical Trees (SPIHT) algorithm aims at improving the ze-

rotree concept by replacing the raster scan with sorted lists [Said, Pearlman, 1996]. The

SPIHT has became very popular since it was able to achieve equal or better performances

than the EZW algorithm without arithmetic encoder.

Another popular coding algorithm is the Embedded Block Coding with Optimal Truncation

(EBCOT) [Taubman, 2000], which has been adopted in the JPEG2000 image compression

standard [Taubman, Marcellin, 2001]. The basic idea of this algorithm is to employ ex-

tensively conditioned, multiple-context adaptive arithmetic coding. To code the wavelet

coefficients of an image, JPEG2000 firstly partitions each transform subband into small

2D rectangular blocks called codeblocks, which are typically of size 32 × 32 or 64 × 64

pixels. Then, the JEPG2000 encoder independently generates an embedded bitstream for

each codeblock. To assemble the individual bitstreams into a single, final bitstream, each

codeblock bitstream is truncated in some fashion, and the truncated bitstreams are concate-

nated together to form the final bitstream. The method for codeblock bitstream truncation

is typically a Lagrangian rate-distortion optimal technique, referred to as Post-Compression

Rate-Distortion (PCRD) optimization. This technique is performed simultaneously across

all of the codeblocks from the image, producing an optimal truncation point for each code-

block. Indeed, the PCRD optimization distributes the total rate for the image spatially

across the codeblocks in an optimal rate-distortion fashion such that codeblocks with higher

energy, which tend to more heavily influence the distortion measure, receive greater rate.

Additionally, the truncated codeblock bitstreams are interleaved in an optimal order such

that the final bitstream is close to being rate-distortion optimal at many truncation points.

More recently, a new Embedded Zero Block Coding algorithm (EZBC) has been proposed

[Hsiang, Woods, 2000]. Its concept is inspired by the success of two popular embedded

image-coding techniques: zero tree-block coding such as SPIHT, and context modeling

of the subband/wavelet coefficients such as EBCOT [Taubman, 2000]. Indeed, the zero
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tree-block coding takes advantage of the natural energy clustering of subband/wavelet

coefficients in frequency and in space and exploits the similarity between subbands. More-

over, instead of considering all the pixels, only a small number of elements in the lists

need to be processed in individual bitplane coding passes. Thus, processing speed for this

class of coders is very fast. However, in the context-model based coders [Taubman, 2000],

individual samples of the wavelet coefficients are coded bitplane-by-bitplane using context-

based arithmetic coding to effectively exploit the strong correlation of subband/wavelet

coefficients within and across subbands. Nevertheless, unlike zero tree-block coders, these

algorithms need to scan all subband/wavelet coefficients at least once to finish coding of

full bitplane, with an implied higher computational cost.

The main advantage of these embedded codecs is that the encoder can terminate the

encoding at any point thereby allowing a target bitrate to be met exactly. Similarly,

the decoder can also stop decoding at any point resulting in the image that would have

been produced at the rate corresponding to the truncated bitstream. Among these various

codecs, it is shown in [Hsiang, Woods, 2000] that EZBC and JPEG2000 codecs are the most

effective in terms of compression and reconstruction quality. In this thesis, we have chosen

the JPEG2000 codec which yields excellent results performance in terms of compression

efficiency and reconstruction quality.

3.3 Stereo image coding: state-of-the-art

After the MVC standardization [Chen et al., 2009], most of the ongoing activity on stereo-

scopic still image coding carried out independently of any standardization activity [Lau

et al., 2007]. Indeed, different approaches have been reported concerning still images.

3.3.1 Basic approach for joint coding of stereo images

A straightforward approach consists of separately coding each image by using existing

still image coders. However, this method is not so efficient since the images are often

highly correlated. Therefore, more efficient coding schemes have been designed to take

into account the inter-images redundancies [Lukacs, 1986; Perkins, 1992]. The basic-source

coding approach is a combination of inter-view prediction, to exploit the cross-view redun-
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dancies, and transform coding of the resulting signals to exploit the spatial redundancies

(see Fig. 3.14).
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Figure 3.14: Block diagram of a generic stereo image coding scheme.

As shown in Fig. 3.14, the generic stereo image coding scheme involves three steps. In

the first step, one image (the left one I(l)) is firstly selected as a reference image, and the

other image (the right one I(r)) is selected as a target image. After that, the disparity map

v = (vx, vy) between the right and the left images is estimated. In the second step, the

target image I(r) is predicted from the reference one I(l) along the disparity field, and the

difference between the original target image and the predicted one, called residual image

I(e) or Disparity Compensated Difference (DCD), is generated:

I(e)(m,n) = I(r)(m,n)− I(l)(m + vx(m,n), n + vy(m,n)) (3.26)

Finally, the reference image, the residual one and the disparity map are encoded. Obviously,

recovering the stereo image pair from these data is an easy task: the reference and the

residual images are first decoded. Then, the right image is decoded using the disparity

vectors.

This approach is known as Disparity Compensation (DC) due to its similarity with Motion

Compensation (MC) techniques which are popular for video coding [Wang, Chen, 1999].

3.3.2 Characteristics of the disparity map and the DCD

Because of the analogy between MC and DC, it could seem intuitive to apply the exist-

ing video coding techniques to stereo images. However, it must be emphasized that the
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disparity map and the DCD have different characteristics than their counterparts in video

coding. Generally, motion vectors do not have any “dominant” direction. Unlikely, the

disparity vectors tend to have an horizontal direction, they are all positively oriented and

their range of values is larger than that of motion vectors. The occlusion areas are due to

all the objects in the scene. It is very different from motion estimation, where only mov-

ing objects contribute to occlusions. Besides, typical moving images contain background

objects that are static and a small part of the image corresponds to moving areas, this

property being exploited at high compression rates whereas, in stereo images, all the ob-

jects are displaced from a view to another. Consequently, DCD may have higher average

energy than a displaced frame difference and thus may require a higher bitrate. Besides,

Moellenhoff and Maier [Moellenhoff, Maier, 1998a] have shown that DCD usually contains

very narrow vertical edges surrounded by large regions of very low intensity. For instance,

some studies of the characteristics of the DCD have been conducted in [Moellenhoff, Maier,

1998a; Perez et al., 2001]. In the sequel, we give an overview of the most popular stereo

image coders.

3.3.3 Overview of data compression schemes for stereo images

As mentioned in the beginning of this section, the basic approach for joint coding of stereo

images requires the encoding of the disparity field, the reference image and the residual

one. Indeed, the disparity map is generally losslessly encoded using DPCM with an entropy

coder as it is used with motion vectors in many video coding standards [Yang, Ngi, 2004];

whereas the reference and the residual images are encoded in different transform domains.

The most widely used one is the Discrete Cosine Transform [Woo, Ortega, 1997; Ahlvers

et al., 2003; Aydinoglu, Hayes, 1995]. However, Moellenhoff and Maier have shown in

[Moellenhoff, Maier, 1998a] that DCT yields to a moderate energy packing of the DCD and

proposed some improvements including an updated quantization matrix and data ordering

in [Moellenhoff, Maier, 1998b]. An important problem for DCT-based coding scheme is

that it causes unpleasant visual artifacts at the block boundaries of the decoded image at

very low bitrate. This is the reason why the wavelet transform has been envisaged in the

recent works.

Indeed, in [Q. Jiang, Hayes, 1999], both the estimation and the disparity compensation

are performed in the wavelet domain. A Subspace Projection Technique (SPT) is used
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for encoding the wavelet coefficients. More precisely, this method starts by applying a

wavelet transform to the original SI pair. We denote by {a(r)
J , (d(r,o)

j )1≤j≤J , o ∈ {1, 2, 3}}
(resp. {a(l)

J , (d(l,o)
j )1≤j≤J , o ∈ {1, 2, 3}}) the resulting approximation and detail subbands

for the right (resp. left) image. A block-based DE is performed between the corresponding

subbands (a(r)
J , a

(l)
J ) and (d(r,o)

J , d
(r,o)
J ). Then, a DC of each block of the image subbands

is carried out, leading to the predicted subbands {â(r)
J , d̂

(r,o)
j , o ∈ {1, 2, 3}}. Finally,

the computation of the DCD is obtained by projecting each block of the approximation

subband of the target image a
(r)
j onto the subspace S = span{â(r)

J , d̂
(r,o)
J , o ∈ {1, 2, 3}},

yielding the projection

ǎ
(r)
J = α0â

(r)
J +

3∑

o=1

αod̂
(r,o)
J (3.27)

where (α0, α1, α2, α3) are computed by a least squares approach. Consequently, the ap-

proximation subband of the residual image a
(e)
J and the three detail subbands are given

by:

a
(e)
J = a

(r)
J − ǎ

(r)
J (3.28)

d
(e,o)
j = d

(r,o)
j − d̂

(r,o)
j o ∈ {1, 2, 3}. (3.29)

The drawback of this technique is that it is computationally expensive as different bases

vectors need to be constructed for representing each block of wavelet coefficient.

Furthermore, several attempts have been carried out to improve the coding efficiency of

wavelet-based coders. In [Boulgouris, Strintzis, 2002], an efficient exploitation of the ze-

rotree algorithm [Shapiro, 1993] is performed to shorten the embedded bitstreams of the

wavelet coefficients of both the reference image and the DCD. In [Palfner et al., 2002],

the authors propose to introduce some modifications on SPIHT coder, which is basically

developed for monocular images, in order to be better adapted to stereo images coding.

Ellinas et al. [Ellinas, Sangriotis, 2006] have replaced the conventional wavelet coder by a

morphological wavelet-based coder, which can achieve a gain of about 1 dB.

Moreover, a few works aiming at designing adaptive schemes have also been conducted.

Indeed, based on the results reported in [Moellenhoff, Maier, 1998a] which indicate that

pixels in residual images are less correlated than those in natural images, Frajka and Zeger

[Frajka, Zeger, 2003] have analyzed the local correlation of pixels across block-boundaries

in these residual images. They show that this local correlation drops significantly at block-

boundaries. For this reason, they have proposed to design a hybrid coding scheme where
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DCT is employed for the best matching blocks and the Haar wavelet transform for the

occluded ones. To classify occluded blocks, the authors first evaluate the energy of all

blocks in the residual image. Then, any block having an energy above a certain threshold

is classified as an occluded block. An adaptive lifting scheme is also presented in [Darazi

et al., 2009]. Indeed, a luminance correction is firstly applied to the original images. Then,

the prediction filtering is locally adapted based on local horizontal and vertical gradient

information of the reference image. While this approach can achieve good results in terms

of compression ratio, it is not efficient in a lossy coding context (especially at low bit rate)

since it is very sensitive to the quality of the reference image. In a more recent work

[Maalouf, Larabi, 2010], the authors propose to generate the disparity map and the DCD

by applying a bandelet transform [Pennec, Mallat, 2005] to the left and the right images.

They apply first this kind of transform to the original images in order to find the differ-

ent blocks sharing the same geometric flow direction. Then, the disparity is estimated by

minimizing a cost function defined on the geometric property of each block. Finally, the

disparity map as well as the bandelet coefficients of the reference and the residual images

are encoded. The main limitation of this method is that it requires the transmission of a

side information corresponding to the size of each block which will affect its performance

at very low bitrate.

In addition to these works, we should note also that Annex I of Part II of the JPEG2000

standard is dedicated to multi-component image coding [Taubman, Marcellin, 2001]. It is

a two stage compression scheme. For instance, in our case, each view of the stereoscopic

image can be seen as a single component. At the first stage, a decorrelation of the SI pair

is performed. Note that this decorrelation step must use a reversible transform in order

to exactly recover the original SI pair in the context of lossless coding. As a result, a pair

(Ĩ , I(e)) is produced by using a variation of the Haar transform. More specifically, the

equations which define Ĩ and I(e) are the following ones:





I(e)(m,n) = I(r)(m,n)− I(l)(m + vx, n + vy)

Ĩ(m + vx, n + vy) = b(I(r)(m, n) + I(l)(m + vx, n + vy))/2c if (m + vx, n + vy) ∈ S
Ĩ(m,n) = I(l)(m,n) if (m,n) 6∈ S

(3.30)

where S is the set of connected pixels which represent the pixels in the reference image

used in the disparity compensation process [Pesquet-Popescu, Bottreau, 2001]. Then, a
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wavelet transform is applied separately to I(e) and Ĩ.

To conclude this part, it is worth pointing out that the common idea behind all the

existing stereo images compression methods consists of encoding the same signals which

are the disparity map, the reference image and the residual one. However, the main

differences between them can be classified in three classes categories. The first category

of methods attempt to propose an efficient disparity estimation approach to better exploit

the inter-view redundancies [Woo, Ortega, 1997; Woo, Ortega, 2000]. The second one

tries to improve the entropy coding of the transformed coefficients [Palfner et al., 2002;

Ellinas, Sangriotis, 2006]. The third category aims at improving the decomposition (i.e the

transform) applied to the images before the entropy encoding process [Frajka, Zeger, 2003;

Darazi et al., 2009; Maalouf, Larabi, 2010]. It is in this context that we will focus on our

contribution in the next chapter.

3.4 Conclusion

In this chapter, we have given some background on image compression tools. More precisely,

the concept of wavelet transforms, and particularly lifting schemes, has been introduced.

We have also reminded the main issues and the previous works on stereo image coding. In

the next chapter, we will present a novel joint coding scheme that allows a gradual and

finally exact decoding of the stereo image pairs.
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Chapter 4

Vector Lifting Schemes for stereo

image coding

4.1 Introduction

In this chapter, we propose a novel approach, based on the Vector Lifting Schemes (VLS),

which offers the advantage of generating two compact multiresolution representations of

the left and the right images.

The remainder of this chapter is organized as follows. In Section 4.2, we present the pro-

posed coding structure of which two versions (VLS-I and VLS-II) are given. In Section 4.3,

we conduct a theoretical analysis of the proposed schemes in terms of prediction efficiency.

Finally, in Section 4.4, experimental results are given and some conclusions are drawn in

Section 4.5.

4.2 Proposed Vector Lifting Schemes

4.2.1 Motivation

Fig. 4.1 illustrates our proposed approach based on a joint multiscale decomposition of the

left and the right images. It consists of coding the reference image I(l) in intra mode (purely

spatial), whereas the other image I(r) is coded by exploiting cross-image redundancies via

the available disparity map. The decomposition strategy is inspired from Vector Lifting

Schemes (VLS) [Benazza-Benyahia et al., 2002] and it has been presented in [Kaaniche

et al., 2007; Kaaniche et al., 2009a]. Our approach is quite different from the conventional
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Figure 4.1: Block diagram of the novel stereo image coding scheme.

one. Indeed, our main contribution is that the proposed coding scheme does not generate

any residual image, but directly two compact multiresolution representations of the left

and right images. Two versions of the VLS will be described in the following.

4.2.2 Generic VLS decompositions

For the sake of simplicity, a separable decomposition is considered in this chapter. There-

fore, it is enough to address the decomposition of a given line m. The corresponding

analysis structure is shown in Fig. 4.2.

More precisely, at each resolution level j, the even and odd samples of the approximation

(scaling) coefficients I
(l)
j (m, 2n), I

(r)
j (m, 2n), I

(l)
j (m, 2n + 1) and I

(r)
j (m, 2n + 1) of I

(l)
j and

I
(r)
j respectively are the input coefficients of the lifting scheme. Furthermore, we denote by

vj = (vx,j , vy,j) the available disparity vectors which are obtained by sampling and dividing

by 2j the initial (full resolution) disparity vectors v = (vx, vy) since the dimensions of the

initial images are divided by 2j at the j-th resolution level:

vj(m,n) =
1
2j

v(2jm, 2jn). (4.1)

It is important to note that Eq. (4.1) may yield non-integer values of the disparity vectors:




vx,j = bvx,jc+ δ1

vy,j = bvy,jc+ δ2

(4.2)
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Figure 4.2: Principle of the VLS-I decomposition.

where b·c designates the lower rounding operation and (δ1, δ2) ∈ [0, 1)2. Therefore, if the

components of vj are integer-valued, for any given pixel (m,n) in the right image corre-

sponds a pixel in the disparity-compensated left image I
(l)
j (m + vx,j(m,n), n + vy,j(m,n)).

Otherwise, the corresponding disparity-compensated intensity results from the usual bilin-

ear interpolation α1A1 + α2A2 + α3A3 + α4A4, where




A1 = I
(l)
j (m + bvx,jc, n + bvy,jc), α1 = (1− δ1)(1− δ2)

A2 = I
(l)
j (m + bvx,jc+ 1, n + bvy,jc), α2 = δ1(1− δ2)

A3 = I
(l)
j (m + bvx,jc, n + bvy,jc+ 1), α3 = (1− δ1)δ2

A4 = I
(l)
j (m + bvx,jc+ 1, n + bvy,jc+ 1), α4 = δ1δ2.

(4.3)

For simplicity, the notation I
(l)
j (m + vx,j , n + vy,j) will also be employed in this case.

Note that even though this bilinear interpolation can yield a disparity compensated image

with real values, the proposed VLS satisfy the perfect reconstruction property since the

decompositions are applied to the reference and the target images.

The objective of the vector lifting scheme is to simultaneously exploit the dependence

existing between I
(l)
j and I

(r)
j by producing 2 kinds of outputs: the detail coefficients d̃

(l)
j+1,
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d̃
(r)
j+1 and the approximation ones Ĩ

(l)
j+1, Ĩ

(r)
j+1 for both images. Similar lifting structures

operating along the image columns allow us to generate the approximation coefficients I
(l)
j+1

and I
(r)
j+1, as well as the associated detail coefficients in the horizontal, vertical and diagonal

directions at the resolution level (j+1).1 A wide range of nonlinear operators can be applied

to reduce the intra and inter-image redundancies. However, for tractability purposes, we

will only use combinations of shift operators, linear filters and rounding operations. For

the reference image I(l), the detail coefficients can be interpreted as intra-image prediction

errors at resolution (j + 1) expressed as:

d̃
(l)
j+1(m,n) = I

(l)
j (m, 2n + 1)− b

∑

k∈P(l)
j

p
(l)
j,kI

(l)
j (m, 2n− 2k)c (4.4)

where the set P(l)
j and the coefficients p

(l)
j,k denote respectively the support and the weights

of the predictor of I
(l)
j (m, 2n+1). Then, at the update step, the approximation coefficients

are computed as follows:

Ĩ
(l)
j+1(m,n) = I

(l)
j (m, 2n) + b

∑

k∈U(l)
j

u
(l)
j,kd̃

(l)
j+1(m,n− k)c, (4.5)

where the set U (l)
j is the spatial support of the update operator whose coefficients are u

(l)
j,k.

The reversibility of the basic lifting scheme is ensured since the prediction in Eq. (4.4) only

makes use of even indexed samples. The main difference between a vector lifting scheme

and a basic one is that for the image I(r), the prediction of the odd sample I
(r)
j (m, 2n + 1)

involves even samples from the same image and also neighbors of the matching sample

taken from the reference image. The location of the latter is derived from the transformed

disparity vector vj = (vx,j , vy,j) associated with the pixel (m, 2n + 1) to be predicted,

yielding:

d̃
(r)
j+1(m,n) =I

(r)
j (m, 2n + 1)− b

∑

k∈P(r)
j

p
(r)
j,kI

(r)
j (m, 2n− 2k)

+
∑

k∈P(r,l)
j

p
(r,l)
j,k I

(l)
j (m + vx,j(m, 2n + 1), 2n + 1 + vy,j(m, 2n + 1)− k)c

(4.6)

where P(r)
j (resp. P(r,l)

j ) denotes the spatial support of the intra-image (resp. inter-images)

whereas its weights are designated by p
(r)
j,k (resp. p

(r,l)
j,k ). Consequently, the vector lifting

1As we apply a separable decomposition, we denote by Ĩj the approximation coefficients after the first

mono-dimensional processing at the (j − 1)th level, and by Ij the final approximation subband.
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involves a hybrid predictor that exploits at the same time the intra and inter-image redun-

dancies in the stereo pair. The update step for Ĩ
(r)
j+1 can be performed similarly to Eq. (4.5).

The decomposition is iterated on the columns n of the resulting subbands, leading to 2× 4

sub-images for the left and right images at each resolution level j and the decomposition

is again repeated on the approximation sub-images over J resolution levels. It is worth

pointing out that the disparity based vector lifting scheme is perfectly reversible and that

it maps integers to integers. However, an appropriate choice of the involved prediction and

update operators remains necessary in order to generate compact representations of both

I(l) and I(r).

An example: VLS-I

To illustrate the ability of the considered vector lifting structure to produce a compact

decomposition, we provide a simple example (denoted by VLS-I) of the considered lifting

structure. The image I(l) is first decomposed following the well-known integer-to-integer

5/3 scheme retained for the lossless mode of JPEG 2000 [Sweldens, 1995]. This decompo-

sition can be described, using our notations, by the spatial supports for the prediction and

update operators: P(l)
j = {−1, 0}, U (l)

j = {0, 1} and the prediction and update weights are

set to: p
(l)
j,−1 = p

(l)
j,0 = 1

2 , u
(l)
j,0 = u

(l)
j,1 = 1

4 . Thus, equations (4.4) and (4.5) become:

d̃
(l)
j+1(m,n) = I

(l)
j (m, 2n + 1)− b1

2
(I(l)

j (m, 2n) + I
(l)
j (m, 2n + 2))c (4.7)

Ĩ
(l)
j+1(m,n) = I

(l)
j (m, 2n) + b1

4
(d̃(l)

j+1(m, n− 1) + d̃
(l)
j+1(m,n))c, (4.8)

The hybrid intra-inter prediction step related to I(r) is then expressed via the following

spatial supports: P(r)
j = {−1, 0}, P(r,l)

j = {0}. In other words, the prediction mask contains

the same spatial prediction indices as those used in the 5/3 scheme and the co-located

position in the left image. In this case, the detail signal given by Eq. (4.6) becomes:

d̃
(r)
j+1(m,n) = I

(r)
j (m, 2n + 1)− bp(r)

j,0I
(r)
j (m, 2n) + p

(r)
j,−1I

(r)
j (m, 2n + 2)

+p
(r,l)
j,0 I

(l)
j (m + vx,j(m, 2n + 1), 2n + 1 + vy,j(m, 2n + 1))c.

(4.9)

As the detail coefficients can be viewed as prediction errors, the prediction coefficients p
(r)
j,k

and p
(r,l)
j,k can be optimized at each resolution level by solving the well-known Yule-Walker

equations. More precisely, by omitting the rounding operators and imposing the following

symmetry property: p
(r)
j,−1 = p

(r)
j,0 (which allows us to obtain linear phase filters often
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considered as desirable for image coding [Belzer et al., 1995]), the detail signal d̃
(r)
j+1(m,n)

will be expressed as:

d̃
(r)
j+1(m,n) = I

(r)
j (m, 2n + 1)− p

(r)
j,0

(
I

(r)
j (m, 2n) + I

(r)
j (m, 2n + 2)

)

−p
(r,l)
j,0 I

(l)
j (m + vx,j(m, 2n + 1), 2n + 1 + vy,j(m, 2n + 1)).

(4.10)

The prediction weighting vector pj = (p(r)
j,0 , p

(r,l)
j,0 )> is then chosen so as to minimize the

variance of d̃
(r)
j+1(m, n). Consequently, the Yule-Walker equations reduce to:

E
[
Ij(m,n)Ij(m, n)>

]
pj = E

[
I

(r)
j (m, 2n + 1)Ij(m,n)

]
, (4.11)

where

Ij(m,n) =
(
I

(r)
j (m, 2n) + I

(r)
j (m, 2n + 2), I(l)

j (m + vx,j(m, 2n + 1), 2n + 1 + vy,j(m, 2n + 1)
)>

(4.12)

and E [.] denotes the mathematical expectation.

Concerning the update step, it is possible to generalize the optimization procedure de-

scribed in [Gouze et al., 2004; Pesquet-Popescu, 1999] in order to adapt the underlying

operators to the statistical properties of the input image. A straightforward alternative

solution that we have retained in our experiments has consisted in choosing the same up-

date operator at any resolution level, the update employed for I(r) being the same as the

two-tap filter employed for I(l) in Eq .(4.5).

4.2.3 An improved VLS

If we examine the previous VLS-I structure, we can note that it presents the following

drawback. It can be seen from Eq. (4.6) that the detail coefficients of the right image are

computed by using some samples of the left image. Then, these detail coefficients are used

through the update step to compute the approximation coefficients of the right image (see

Fig. 4.2). Therefore, a potential drawback of this structure is that it generates an update

leakage effect in the sense that the information coming from the left view in re-injected

into the approximation coefficients of the right view.

An alternative solution is given by the predict-update-predict (P-U-P) lifting structure

shown in Fig. 4.3.

The improved decomposition is described as follows:
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Figure 4.3: Principle of the VLS-II decomposition.

d̃
(r)
j+1(m, n) = I

(r)
j (m, 2n + 1)− b

∑

k∈P(r)
j

p
(r)
j,kI

(r)
j (m, 2n− 2k)c, (4.13)

Ĩ
(r)
j+1(m,n) = I

(r)
j (m, 2n) + b

∑

k∈U(r)
j

u
(r)
j,k d̃

(r)
j+1(m,n− k)c, (4.14)

ď
(r)
j+1(m,n) = d̃

(r)
j+1(m,n)− b

∑

k∈Qj

qj,kĨ
(r)
j+1(m,n− k)

+
∑

k∈P(r,l)
j

p
(r,l)
j,k I

(l)
j (m + vx,j(m, 2n + 1), 2n + 1 + vy,j(m, 2n + 1)− k)c (4.15)

where notations similar to those used in Section 4.2.2 are used and Qj is the support of

the second intra-image predictor for the right view, the corresponding prediction weights

being denoted by qj,k. It is worth noting that a prediction and an update as in Eqs. (4.13)

and (4.14) (with the same weights) are applied to I(l). In addition, at the last resolution

level j = J , instead of directly coding the approximation I
(r)
J , we predict it from the

approximation subband at the last level of the left image and only code the residual subband
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e
(r)
J given by:

e
(r)
J (m,n) = I

(r)
J (m,n)− b

∑

k∈P(r,l)
J

p
(r,l)
J,k I

(l)
J (m + vx,J(m,n),m + vy,J(m,n)− k)c. (4.16)

Let the coefficients qj,k and p
(r,l)
j,k (resp. p

(r,l)
J,k ) be optimized so as to minimize the variance

of ď
(r)
j+1 (resp. e

(r)
J ) at each resolution level j < J (resp. at the coarsest resolution level

J). Note that in Eq. (4.16), only an inter-prediction step is used. However, an hybrid

intra-inter prediction step can be also used showing thus a great flexibility of the proposed

structure.

An interesting property of the proposed decomposition is the following: in the ideal situa-

tion corresponding to I(l) = I(r), the multiresolution representation of I(r) reduces to zero

under some constraints that we are going to define in the following. Indeed, in the ideal

case when I(l) = I(r), the disparity vectors are zero: (vx, vy) = (0, 0). Therefore, Eq. (4.15)

becomes:

ď
(r)
j+1(m,n) =d̃

(r)
j+1(m,n)− b

∑

k∈Qj

qj,kĨ
(r)
j+1(m,n− k) +

∑

k∈P(r,l)
j

p
(r,l)
j,k I

(l)
j (m, 2n + 1− k)c

=I
(r)
j (m, 2n + 1)− b

∑

k∈P(r)
j

p
(r)
j,kI

(r)
j (m, 2n− 2k)c

− b
∑

k∈Qj

qj,kĨ
(r)
j+1(m,n− k) +

∑

k∈P(r,l)
j

p
(r,l)
j,k I

(l)
j (m, 2n + 1− k)c. (4.17)

It is worth pointing out that the coefficients qj,k and p
(r,l)
j,k are optimized, at each decom-

position level, by solving the Yule-Walker equations, the rounding operator being omitted.

Thus, the detail coefficients ď
(r)
j+1(m,n) can be viewed as the error involved in the prediction

of d̃
(r)
j+1(m,n) by the signal p(m,n) =

∑
k∈Qj

qj,kĨ
(r)
j+1(m,n−k)+

∑
k∈P(r,l)

j

p
(r,l)
j,k I

(l)
j (m, 2n+

1− k). In this way, we can ensure that the detail coefficients of the right image ď
(r)
j+1(m,n)

are zero if the prediction signal p(m,n) is a linear combination of (at least) the same

samples as those used by the reference signal d̃
(r)
j+1(m,n) to be predicted. This can be

guaranteed provided that the support of the hybrid predictor P(r,l)
j satisfies the following

conditions:

(i) The first term I
(r)
j (m, 2n + 1) in the expression of the signal d̃

(r)
j+1(m, n) can be found

in the expression of the prediction signal p(m,n) if 0 ∈ P(r,l)
j .
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(ii) The second term (I(r)
j (m, 2n−2k))

k∈P(r)
j

in the expression of the signal d̃
(r)
j+1(m,n) can

be found in the expression of the prediction signal p(m,n) if {2k+1, k ∈ P(r)
j } ⊂ P(r,l)

j .

When these two conditions are satisfied and I
(l)
j = I

(r)
j , the decomposition of I

(r)
j first pro-

vides a detail subband ď
(r)
j+1(m,n) which is equal to zero and an approximation subband

Ĩ
(r)
j+1 which is equal to that of I

(l)
j : Ĩ

(r)
j+1(m,n) = Ĩ

(l)
j+1(m,n). Then, while processing the

image along the columns, the decomposition of Ĩ
(r)
j+1 generates in the same way a detail sub-

band which is equal to zero and an approximation subband I
(r)
j+1 which is equal to that of

Ĩ
(l)
j+1: I

(r)
j+1(m,n) = I

(l)
j+1(m,n). Finally, the decomposition of ď

(r)
j+1 provides two null detail

subbands since ď
(r)
j+1(m,n) = 0. Consequently, the resulting multiresolution representation

of I
(r)
j based on the new scheme allows us to generate an approximation subband which is

identical to that of I
(l)
j and three detail subbands equal to zero. Since at each resolution

level the approximation subbands of I
(r)
j and I

(l)
j are equal, the residual sub-image e

(r)
J

(Eq. (4.16)) becomes null if 0 ∈ P(r,l)
J . Therefore, the P-U-P decomposition satisfies the

property of cancelling the values of the wavelet coefficients of the multiresolution represen-

tation of I(r) provided that {0} ∪ {2k + 1, k ∈ P(r)
j } ⊂ P(r,l)

j , when j < J , and 0 ∈ P(r,l)
J .

This is a desirable property of the considered decomposition in order to get a consistent

joint representation of I(l) and I(r). In contrast, this property does not hold for VLS-I.

An example: VLS-II

As a supporting example, we design a scheme, which will be denoted in the following by

VLS-II, by adding a prediction stage to the conventional 5/3 lifting structure. This amounts

to choose P(r)
j = {−1, 0}, U (r)

j = {0, 1}, and p
(r)
j,−1 = p

(r)
j,0 = 1

2 , u
(r)
j,0 = u

(r)
j,1 = 1

4 , while the

last prediction stage is performed by setting Qj = {−1, 0} and P(r,l)
j = {−3, . . . , 3} for

j ∈ {0, . . . , J − 1} and P(r,l)
J = {0}. The coefficients qj,k and p

(r,l)
j,k are determined by

solving the Yule-Walker equations (still omitting the rounding operations) and imposing

again the symmetry properties: qj,−1 = qj,0 and p
(r,l)
j,k = p

(r,l)
j,−k.

4.2.4 Coding cost of prediction coefficients

The prediction coefficients involved in the proposed VLS decompositions have to be trans-

mitted to the decoder in order to proceed to the inverse transform with perfect reconstruc-

tion of the stereo pairs. The prediction weights correspond to an amount of op = 3 LJ

floating point coefficients, where L is the number of prediction weights in the VLS and
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J represents the number of resolution levels (the factor 3 stems from the fact that one

horizontal prediction and two vertical predictions, one in the low-pass horizontal subband

and the other in the high-pass horizontal subband, are performed). Generally, the filter

coefficients can be stored on 32 bits, inducing a negligible increase of the bitrate. More

precisely, for a stereo pair of size M × N , the transmission cost of the prediction coeffi-

cients will increase the bitrate achieved by VLS-I and VLS-II, by op

2MN bits per pixel. For

example, when M = N = 512 and J = 2, the gain will be increased by 0.0007 bpp (resp.

0.0018 bpp) in the case of VLS-I (resp. VLS-II) which is a very small fraction of the overall

data bitrate.

4.3 Theoretical analysis

In this section, we perform a theoretical analysis of the performances of VLS-I and VLS-II

in terms of prediction efficiency, which is directly related to the coding efficiency [Gersho,

Gray, 1993; Jayant, Noll, 1984].

Notations

In the following, we will develop our analysis in the case of 1D signals since we have

considered a separable decomposition. More precisely, let (m,n) be a given pixel, we

consider the pair of 1D signals defined for all y ∈ Z by:




i
(r)
j (y) = I

(r)
j (m, y)

i
(l)
j (y) = I

(l)
j (m + vx,j(m, 2n + 1), y + vy,j(m, 2n + 1)).

(4.18)

We assume that, at a given resolution level j, these signals satisfy the following symmetric

linear statistical model: 



i
(r)
j (y) = αjaj(y) + βjbj(y)

i
(l)
j (y) = βjaj(y) + αjbj(y)

(4.19)

where (αj , βj) ∈ R2 such that α2
j + β2

j = 1, and aj and bj are two stationary random

processes which are mutually independent. For the sake of simplicity, we assume that they

are zero-mean and they have the same autocorrelation function Rj with Rj(0) > 0:

E
[
i
(r)
j (y)i(r)j (y − k)

] 4
=E

[
i
(l)
j (y)i(l)j (y − k)

]
= Rj(k). (4.20)

Then, it is easy to show that:

E
[
i
(r)
j (y)i(l)j (y − k)

]
= sjRj(k) (4.21)
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where

sj
4
= sin(2θj) (4.22)

θj
4
=arg(αj + ıβj) with ı2 = −1. (4.23)

At this point, it is worth noticing that the spatial similarities between the samples of

i
(r)
j (or i

(l)
j ) are related to the autocorrelation function Rj . The factor θj controls the

cross-redundancies between the samples of i
(r)
j and i

(l)
j .

4.3.1 Minimum prediction error variance of VLS-I

By considering the support and the weights of the prediction operator involved in VLS-I

(still omitting the rounding operators), the detail signal d̃
(r)
j+1(y) is expressed as follows:

d̃
(r)
j+1(y) =i

(r)
j (2y + 1)− p

(r)
j,0

(
i
(r)
j (2y) + i

(r)
j (2y + 2)

)
− p

(r,l)
j,0 i

(l)
j (2y + 1). (4.24)

Thus, d̃
(r)
j+1(y) can be viewed as the error in the prediction of i

(r)
j (2y + 1) by the following

multivariate reference signal ij(y)
4
=

(
i
(r)
j (2y) + i

(r)
j (2y + 2), i(l)j (2y + 1)

)>
. The prediction

weight vector pj = (p(r)
j,0 , p

(r,l)
j,0 )> satisfies the normal equations:

E
[
ij(y)ij(y)>

]
pj = E

[
i
(r)
j (2y + 1)ij(y)

]
. (4.25)

Hence, the optimal weights can be deduced as follows:





p
(r)
j,0 = γ1,j(θj)Rj(0)Rj(1)(s2

j − 1)

p
(r,l)
j,0 = γ1,j(θj)sj

(
2Rj(1)2 −Rj(0)2 −Rj(0)Rj(2)

) (4.26)

where γ1,j(θj)
4
=

(
2s2

jRj(1)2 −Rj(0)2 −Rj(0)Rj(2)
)−1

.

Consequently, the minimum value ε1,j of the prediction error variance achieved by VLS-I

is:

ε1,j(Rj , θj) =E
[
i
(r)
j (2n + 1)2

]
− p>j E

[
i
(r)
j (2n + 1)ij(n)

]

=γ1,j(θj) cos2(2θj)Rj(0)
(
2Rj(1)2 −Rj(0)2 −Rj(0)Rj(2)

)
. (4.27)
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4.3.2 Minimum prediction error variance of VLS-II

Considering now VLS-II (still omitting the rounding operators), the detail signal ď
(r)
j+1(y)

is given by:

ď
(r)
j+1(y) = i

(r)
j (2y + 1)− 1

2

(
i
(r)
j (2y) + i

(r)
j (2y + 2)

)
− qj,0

(
ĩ
(r)
j+1(y) + ĩ

(r)
j+1(y + 1)

)

− p
(r,l)
j,0 i

(l)
j (2y + 1)−

3∑

k=1

p
(r,l)
j,k

(
i
(l)
j (2y + 1− k) + i

(l)
j (2y + 1 + k)

)
(4.28)

where, as shown by Eq. (4.14), the signal ĩ
(r)
j+1(y) can be expressed as:

ĩ
(r)
j+1(y) = i

(r)
j (2y) +

1
4

(
d̃

(r)
j+1(y − 1) + d̃

(r)
j+1(y)

)

=
1
4

(
3i

(r)
j (2y) + i

(r)
j (2y + 1) + i

(r)
j (2y − 1)

)
− 1

8

(
i
(r)
j (2y − 2) + i

(r)
j (2y + 2)

)
.

(4.29)

Therefore, it can be checked that:

ďj+1(y) = rj(y)− qj,0uj(y)− p
(r,l)
j,0 i

(l)
j (2y + 1)−

3∑

k=1

p
(r,l)
j,k

(
i
(l)
j (2y + 1− k) + i

(l)
j (2y + 1 + k)

)

(4.30)

where

rj(y)
4
=i

(r)
j (2y + 1)− 1

2

(
i
(r)
j (2y) + i

(r)
j (2y + 2)

)
, (4.31)

uj(y)
4
=

1
2
i
(r)
j (2y + 1) +

5
8

(
i
(r)
j (2y) + i

(r)
j (2y + 2)

)
+

1
4

(
i
(r)
j (2y − 1) + i

(r)
j (2y + 3)

)

− 1
8

(
i
(r)
j (2y − 2) + i

(r)
j (2y + 4)

)
. (4.32)

From Eq. (4.30), ď
(r)
j+1(y) can be viewed as the error in the prediction of rj(y) by the

reference samples grouped into the vector r̃j(y) given by:

r̃j(y)
4
=

(
uj(y), i(l)j (2y + 1), i(l)j (2y) + i

(l)
j (2y + 2), i(l)j (2y − 1) + i

(l)
j (2y + 3),

i
(l)
j (2y − 2) + i

(l)
j (2y + 4)

)>
.

(4.33)

The vector of prediction weights pj =
(
qj,0, p

(r,l)
j,0 , p

(r,l)
j,1 , p

(r,l)
j,2 , p

(r,l)
j,3

)>
is found by mini-

mizing the variance of ď
(r)
j+1(n). Consequently, the following set of normal equations

Γjpj = cj must be solved where Γj = E
[
r̃j(y)r̃j(y)>

]
and cj = E [rj(y)r̃j(y)]. Once

the auto-correlation matrix Γj and the cross-correlation vector cj are determined, the
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optimal weights are obtained as follows:

qj,0 =− 4γ2,j

(
Rj(0)− 4Rj(1) + 4Rj(3)−Rj(4)

)
, (4.34)

p
(r,l)
j,0 =γ2,jsj

(
40Rj(0) + 48Rj(1) + 31Rj(2) + 20Rj(3)− 8Rj(4)− 4Rj(5) + Rj(6)

)
,

(4.35)

p
(r,l)
j,1 =− γ2,jsj

(
33Rj(0) + 76Rj(1) + 31Rj(2)− 8Rj(3)−Rj(4)− 4Rj(5) + Rj(6)

)
/2,

(4.36)

p
(r,l)
j,2 =γ2,jsj

(
Rj(0)− 4Rj(1) + 4Rj(3)−Rj(4)

)
, (4.37)

p
(r,l)
j,3 =− γ2,jsj

(
Rj(0)− 4Rj(1) + 4Rj(3)−Rj(4)

)
/2 (4.38)

where γ2,j =
(
38Rj(0) + 56Rj(1) + 31Rj(2) + 12Rj(3)− 6Rj(4)− 4Rj(5) + Rj(6)

)−1
.

Finally, the minimal value of the variance ε2,j of the prediction error generated by VLS-II

is:

ε2,j(Rj , θj) =E
[
r2
j (y)

]− p>j E [rj(y)r̃j(y)]

=
1
2
γ2,j cos2(2θj)

(
113Rj(0)2 − 240Rj(1)2 + 31Rj(2)2 − 16Rj(3)2 −Rj(4)2

− 4Rj(1)Rj(6) + 28Rj(0)Rj(3)− 16Rj(0)Rj(4) + 131Rj(0)Rj(2)

− 4Rj(2)Rj(5) + 3Rj(0)Rj(6)− 16Rj(1)Rj(3) + 16Rj(1)Rj(4)

− 68Rj(1)Rj(2) + 16Rj(1)Rj(5) + 12Rj(2)Rj(3) + Rj(2)Rj(6)

+ 8Rj(3)Rj(4) + 24Rj(0)Rj(1)− 6Rj(2)Rj(4)− 12Rj(0)Rj(5)
)
. (4.39)

4.3.3 Discussion

It is interesting to note that, unlike ε1,j , ε2,j has a separable form in Rj and θj . Further-

more, it should be noticed that this expression is not dependent on a particular form of the

autocorrelation function Rj , so it can be applied to any second-order stationary process.

In order to emphasize the advantages of VLS-I and VLS-II, we will consider a simple mul-

tivariate random process model driven by two autoregressive processes of order 1, aj(y)

and bj(y) in Eq. (4.19). In this particular case, the autocorrelation function is given by:

∀k ∈ Z, Rj(k) = σ2
j ρ
|k|
j (4.40)
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where ρj ∈ [−1, 1] is the correlation factor. Therefore, the variances ε1,j and ε2,j of the

prediction errors reduce to:

ε1,j(ρj , θj) =σ2
j γ̃1,j(θj) cos2(2θj)(ρ2

j − 1), (4.41)

ε2,j(ρj , θj) =
1
2
σ2

j γ̃2,j cos2(2θj)(1− ρj)(3ρ4
j − 16ρ3

j + 4ρ2
j + 24ρj + 113) (4.42)

where γ̃1,j(θj) = (2s2
jρ

2
j − ρ2

j − 1)−1 and γ̃2,j = (ρ5
j − 5ρ4

j − ρ3
j + 13ρ2

j + 18ρj + 38)−1.

Fig. 4.4(a) shows the variations of E
[
rj(y)2

]
, ε1,j and ε2,j with respect to ρj for a given

value of θj .
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(a): Variations w.r.t ρj when σj = 1 and θj = π
6 . (b): Variations w.r.t θj when σj = 1 and ρj = 0.9.

Figure 4.4: Prediction efficiency: E[r2
j (y)] (in green), ε1,j(ρj , θj) (in blue), ε2,j(ρj , θj) (in

red).

We recall that E
[
rj(y)2

]
represents the variance of the prediction error generated by the 5/3

transform as indicated by Eq. (4.31). Thus, by taking into account the spatial redundancies

(controlled by ρj), the variance ε1,j is lower than E
[
rj(y)2

]
. Lower values of the prediction

error variance ε2,j are further achieved by the VLS-II transform for any value of ρj . We

are also interested in comparing the variations of these three prediction errors with respect

to θj for a given value of ρj as depicted by Fig. 4.4(b). It can be noticed that VLS-II gives

also the best results by taking into account the inter-image redundancies (controlled by

θj). This study has clearly shown the benefit that can be drawn from the use of the VLS-II

structure in simultaneously exploiting the spatial and the cross-view redundancies.
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4.4 Experimental results

Simulations are performed on 6 image pairs of size 512 × 512 which have been extracted

from a SPOT5 scene. The full scene, which corresponds to an urban zone, is shown in

Fig. 4.5 and the six image pairs are represented in white squares.

Figure 4.5: Original SI pair “spot5”: the left and right images.

All the test images are coded at 8 bpp. We have also used 4 pairs of natural stereo im-

ages (“fruit”, “pentagon”, “shrub” and “birch”) downloaded from 2 and 3. It should be

noted that some stereo images have significant illumination variations between the views.

For this reason, DC is performed by applying to the original SI the reversible remap-

ping technique based on sorting permutations introduced in [Arnavut, Narumalani, 1996].

This preprocessing step is often used to improve the coding efficiency of pairs of images

[Benazza-Benyahia, Pesquet, 2002; U. Fecker, 2007]. The disparity map is computed using

a block-matching technique with a 8 × 8 block size and a search area that depends on

the acquisition of the stereo pair (+50 pixels in the horizontal direction and ±2 in the

vertical direction for SPOT5 stereo images, and +30 pixels in the horizontal direction and

±4 in the vertical direction for natural stereo images). The SSD is the retained matching

criterion. The resulting disparity vectors are losslessly encoded using a median prediction

and DPCM with arithmetic encoding. In order to show the benefit of the joint coding by

2http://vasc.ri.cmu.edu/idb/html/stereo/index.html
3http://vasc.ri.cmu.edu/idb/html/jisct/
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VLS, we compare VLS-I and VLS-II decompositions carried out over two resolution levels

with some conventional SI wavelet-based coding methods:

• The first one is the baseline coder which consists of coding the SI pairs by applying a

wavelet transform to the left image I(l) and the DC-residual I(e) [Boulgouris, Strintzis,

2002]. In the following, this method will be designated by scheme B.

• The second one is the subspace projection approach in the wavelet domain proposed by

Jiang et al. [Q. Jiang, Hayes, 1999]. We recall that this method is described in Section 3.3.3

and it will be designated by SPT-WT.

• We have also tested a version of JPEG2000 (Annex I of part II) dedicated to multi-

component images. This method has also been described in Section 3.3.3 and it will be

designated in the following by scheme C.

The compression measure is given by the final bitrates of the multiresolution representa-

tions. Let us denote by R(v), R(l), R(r) and R(e), respectively, the bitrate of the disparity

vectors v and, the images I(l), I(r) and I(e). For the methods based on the coding of the

residual image, we have computed the following average bitrate:

Rav =
R(l) + R(e) + R(v)

2
(4.43)

whereas the average bitrate for the proposed decompositions is given by:

Rav =
R(l) + R(r) + R(v)

2
. (4.44)

It can be noticed that the average coding cost R(v) of the disparity vectors is equal to about

0.07 bpp. Table 6.3 shows the final bitrates obtained in a lossless context by applying the

JPEG2000 codec used only as an entropy codec.

Our simulations indicate that VLS-I results in an average gain of about 0.1 bpp over

conventional methods. If we now compare the performance of VLS-II to those provided by

VLS-I, our experiments show that VLS-II leads to a further improvement of about 0.1 bpp.

We have also tested the performance of our methods when applied as a lossy codec. In this

case, the improved VLS are also compared in terms of Peak-Signal-to-Noise Ratio (PSNR)

given by:

PSNR = 10 log10

( 2552

(MSE(l) + MSE(r))/2

)
, (4.45)

where MSE(l) and MSE(r) correspond respectively to the mean squared error of the left

and right images reconstructed at the rates R(l) and R(r). We also used the SSIM quality
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Table 4.1: Performance of SI wavelet-based lossless codecs in terms of average bitrate (in

bpp) using JPEG2000.

Transform scheme B SPT-WT scheme C VLS-I VLS-II

spot5-1 3.63 3.59 3.58 3.49 3.35

spot5-2 3.85 3.80 3.78 3.67 3.53

spot5-3 4.27 4.21 4.24 4.03 3.93

spot5-4 4.22 4.18 4.21 4.05 3.92

spot5-5 3.91 3.87 3.89 3.80 3.73

spot5-6 3.89 3.84 3.81 3.73 3.63

fruit 4.05 3.99 3.97 3.78 3.72

shrub 3.73 3.69 3.69 3.81 3.63

birch 4.52 4.49 4.47 4.44 4.37

pentagon 5.37 5.32 5.20 5.12 5.04

Average 4.14 4.09 4.08 3.99 3.88

metrics, which is based on models of visual perceptions, to evaluate the reconstruction

quality of each compression method [Wang et al., 2004; Rouse, Hemami, 2008]. We are

first interested in studying the evolution of the PSNR versus the bitrates achieved by VLS-

I, VLS-II, the conventional schemes B and C, and the independent SI coder. In order to

decode the SI pair, two alternatives can be envisaged:

• The most basic one consists of firstly decoding exactly the reference image. Then, the

target image is decoded by using the original left image and the disparity vectors.

• However, in order to minimize the latency on the decoder side and to achieve the recon-

struction of both images for a given bandwidth, we choose to simultaneously decode the

SI pair. In other words, the decoding of the target image I(r) at a specified bitrate R(r) is

achieved by using the decoded left image I
(l) at a bitrate R(l) without waiting for the final

decoding of the reference image.

More precisely, for the coding scheme B, the reconstructed target image I
(r) is obtained

by using the reconstructed left image I
(l) and residual image I

(e) decoded respectively at
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R(l) and R(e):

I
(r)(m,n) = I

(e)(m,n) + I
(l)(m + vx, n + vy). (4.46)

Then, by comparing the original images I(l) and I(r) with the reconstructed ones I
(l) and

I
(r), we can evaluate the quality of reconstruction of the SI pair at the average bitrate

defined by Eq. (4.43).

Concerning the proposed methods, the reference image is decoded at different bitrates in

the same way as in the previously mentioned methods. Then, the right image is decoded

at some bitrate R(r) by using the reference image decoded at a bitrate R(l). Thus, we

still evaluate the quality of reconstruction of the SI pair at the average bitrate given by

Eq. (4.44). Figures 4.6 and 4.7 show the scalability in quality of the reconstruction proce-

dure by providing the variations of the PSNR versus the bitrate for the SIs pair “shrub”

and “spot5-5” using JPEG2000 as an entropy codec. These plots show that schemes B and

C (based on the coding of the residual image) outperform the independent decomposition

scheme especially at low bitrates. VLS-I performs more poorly than these schemes at low

bitrates but beyond some bitrate it is more performant than scheme B. Finally, VLS-II

outperforms VLS-I and improves the PSNR by at least 0.5 dB at high bitrate and the

difference becomes much more important at low bitrates.
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Figure 4.6: PSNR (in dB) versus the bitrate (bpp) after JPEG 2000 encoding for the SI pair

“shrub”: for independent scheme, schemes B and C, a 5/3 integer transform was applied.
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Figure 4.7: PSNR (in dB) versus the bitrate (bpp) after JPEG 2000 encoding for the SI pair

“spot5-5”: for independent scheme, schemes B and C, a 5/3 integer transform was applied.

Figure 4.8 shows the performance of our structures at high bitrate for the SIs pair

“spot5-5”. It can be noticed that the proposed schemes remain more performant than the

conventional ones. Since the human eye cannot distinguish the subjective image quality

at middle and high bitrate, we will focus in the rest of this thesis on the low bitrate when

simulations are performed in a lossy coding context.

Figures 4.9 and 4.10 display a zoom applied on the reconstructed target image of the SI

pairs “pentagon” and “spot5-5” for scheme B and VLS-II.
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Figure 4.8: PSNR (in dB) versus the bitrate (bpp) after JPEG 2000 encoding for the SI pair

“spot5-5”: for schemes B and C, a 5/3 integer transform was applied: illustration at high bitrate

(a): PSNR=25.10 dB, SSIM=0.647 (b): PSNR=25.99 dB, SSIM=0.676

Figure 4.9: Reconstructed target image I(r) of the “pentagon”SI at 0.15 bpp: (a) scheme B

(using the 5/3 integer transform); (b) VLS-II.
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(a): PSNR=30.78 dB, SSIM=0.837 (b): PSNR=33.04 dB, SSIM=0.870

Figure 4.10: Reconstructed target image I(r) of the “spot5-5” SI at 0.25 bpp: (a) scheme

B (using the 5/3 integer transform); (b) VLS-II.

We notice that the coding of the residual image leads to blocking artifacts at low

bitrates. This problem is significantly reduced by using a VLS based decomposition, which

jointly takes into account the intra and inter predictions.

Figures 4.11 and 4.12 display the reconstructed target image of the SI pairs “shrub” and

“spot5-5” for VLS-I and VLS-II. Fig. 4.13 illustrates the reconstructed right image of the

“shrub”pair at the decoder side corresponding to a progressive reconstruction. The quality

of these images is compared both in terms of PSNR and SSIM. The difference in PSNR

(resp. SSIM) between VLS-I and VLS-II ranges from 0.5 dB to 1.5 dB (resp. 0.03 to 0.1).
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(a): PSNR=30.28 dB, SSIM=0.770 (b): PSNR=30.75 dB, SSIM=0.800

Figure 4.11: Reconstructed target image I(r) of the “shrub” SI at 0.2 bpp: (a) VLS-I; (b)

VLS-II.

(a): PSNR=32.55 dB, SSIM=0.860 (b): PSNR=33.04 dB, SSIM=0.870

Figure 4.12: Reconstructed target image I(r) of the “spot5-5” SI at 0.25 bpp: (a) VLS-I;

(b) VLS-II.
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Bitrate=0.15 bpp, PSNR=27.31 dB, SSIM=0.656 Bitrate=0.15 bpp, PSNR=28.81 dB, SSIM=0.742

Bitrate=0.2 bpp, PSNR=30.28 dB, SSIM=0.770 Bitrate=0.2 bpp, PSNR=30.75 dB, SSIM=0.800

Figure 4.13: Reconstructed target image I(r) of the “shrub” SI at different bitrates: (a)

VLS-I; (b) VLS-II.

Additional results in terms of scalability and quality of reconstruction are given when

using the 9/7 wavelet transform for scheme B, scheme C and independent scheme. More

precisely, figures 4.14 and 4.15 (resp. figures 4.16 and 4.17) show the evolution of the PSNR

versus the bitrate when the integer version (resp. non integer version) of the 9/7 transform
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was applied.
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Figure 4.14: PSNR (in dB) versus the bitrate (bpp) after JPEG 2000 encoding for the SI pair

“shrub”: for independent scheme, schemes B and C, a 9/7 integer transform was applied.
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Figure 4.15: PSNR (in dB) versus the bitrate (bpp) after JPEG 2000 encoding for the SI pair

“spot5-5”: for independent scheme, schemes B and C, a 9/7 integer transform was applied.
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Figure 4.16: PSNR (in dB) versus the bitrate (bpp) after JPEG 2000 encoding for the SI pair

“shrub”: for independent scheme, schemes B and C, a 9/7 non integer transform was applied.
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Figure 4.17: PSNR (in dB) versus the bitrate (bpp) after JPEG 2000 encoding for the SI pair

“spot5-5”: for independent scheme, schemes B and C, a 9/7 non integer transform was applied.
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Figure 4.18 displays an example of the reconstructed target image of the SI pairs “spot5-5”

for scheme B (using the non integer version of the 9/7 transform), scheme C (using the

non integer version of the 9/7 transform), VLS-I and VLS-II.

(a): PSNR=32.44 dB, SSIM=0.849 (b): PSNR=32.02 dB, SSIM=0.843

(c): PSNR=32.78 dB, SSIM=0.856 (d): PSNR=33.31 dB, SSIM=0.874

Figure 4.18: The reconstructed target image I(r) of the “spot5-5” SI at 0.25 bpp using: (a)

scheme B (using the non-integer 9/7 transform) (b) scheme C (using the non-integer 9/7

transform) (c) VLS-I (d) VLS-II.
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It can be noticed that VLS-II still outperforms all the conventional methods. Note that

even though the PSNR illustrated in these curves is the average PSNR (as defined in

Eq. 4.45), the gain on the quality of the target image I(r) may be significantly bigger,

especially when using VLS-II.

Finally, we propose to compare the different schemes in terms of execution time. Table 6.1

presents the encoding and decoding time of a Matlab implementation of the tested meth-

ods, at 0.2 bpp, for two stereo images of size 512× 512.

Table 4.2: Execution time of the proposed methods (in seconds).

independent scheme scheme B VLS-I VLS-II

encoding decoding encoding decoding encoding decoding encoding decoding

spot5-6 0.57 0.15 0.83 0.49 2.29 1.20 2.44 1.46

fruit 0.55 0.15 0.84 0.50 2.31 1.25 2.58 1.48

Simulations are carried out by using a computer Intel Core 2 (3 GHz). Indeed, we can note

that the proposed methods VLS-I and VLS-II respectively require an additional average

time of about 1.1 and 1.3 seconds compared to the residual image coding based method

(scheme B). However, this difference in execution time is compensated by the good com-

pression performance of the proposed VLS.

4.5 Conclusion

In this chapter, we have presented a new technique for lossy-to-lossless compression of stereo

image pairs. In order to take advantage of the correlations between the two images, we have

proposed two schemes based on the vector lifting concept. Unlike conventional methods

which generate a residual image to encode the stereo pair, the proposed schemes rely on a

joint multiscale decomposition directly applied to the left and the right views. They exploit

the intra and inter-image redundancies by using the estimated disparity map between the

two views. Furthermore, the proposed decompositions guarantee the perfect reconstruction

of the original stereo images. It is worth pointing out that these decompositions are also

adapted to the content of the images. A theoretical analysis in terms of prediction error

variance was conducted in order to show the benefits of the underlying VLS structure.

Experimental results, carried out on a set of remote sensing and natural stereoscopic images,



80 4. Vector Lifting Schemes for stereo image coding

have indicated the good performance of the VLS over the conventional approaches in terms

of bitrate and quality of reconstruction.
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Chapter 5

Dense disparity estimation for

stereo image coding

5.1 Introduction

In the previous chapter, we have mainly focused on the transform coding schemes used to

encode the reference and the target images of a stereo pair. However, it is shown that all

the proposed approaches rely on the disparity estimation/compensation process to exploit

the inter-view redundancies. Therefore, the overall encoding performance can be improved

by using an efficient disparity estimation technique instead of a block-matching method as

it has been considered in the previous work. Due to the limitations of a Block-based Dis-

parity Estimation (BDE) technique (discussed in Section 2.4.1), we propose in this chapter

to replace this technique by employing a recent Dense Disparity Estimation (DDE) algo-

rithm.

Indeed, since the pioneering work by Lukacs [Lukacs, 1986], the most widely used ap-

proaches in stereo image coding have been based on the fixed size block-matching tech-

nique. However, as mentioned in Chapter 2, the limitation of such techniques is that

they fail around depth discontinuities and in textureless regions. Further improvements

can be achieved by employing variable block size [Woo, Ortega, 2000] and resorting to

rate-distortion based algorithms similar to those employed in the framework of motion-

compensated video coding [Tzovaras, Strintzis, 1998; Deever, Hemami, 1998]. However,

the classical block-based techniques do not always guarantee a consistent disparity map

which may affect the disparity compensation process.
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Dense pixel-based approaches attempt to overcome this drawback by assigning a dispar-

ity value to each point visible in the stereo pair. Recently, the dense disparity estimation

problem has been formulated as a convex programming problem within a global variational

framework [Miled et al., 2009a]. Intensive experiments have shown that variational-based

disparity estimation methods are among the most powerful techniques, meanwhile preserv-

ing the depth discontinuities. Indeed, a quantitative comparison with results from other

stereo algorithms available at the Middlebury website1 shows that this approach is compa-

rable with state-of-the-art methods, such as graph cuts [Boykov et al., 2001; Kolmogorov,

Zabih, 2001] and dynamic programming based methods [Veksler, 2005; Kim et al., 2005;

Sun, 2002]. This naturally motivates our choice to integrate this global convex variational

framework, along with the disparity estimation, within a generic joint stereo image coding

scheme.

However, the obvious price for generating an accurate disparity field is its very expensive

cost in terms of bitrate, compared to a BDE method. To reduce the bitrate needed to

transmit/store the resulting dense disparity field, we propose to perform a quadtree de-

composition, which was found to be a very effective method for encoding a dense disparity

field [Tzovaras et al., 1998; Morvan et al., 2007] in order to achieve a tradeoff between the

accuracy of the disparity representation and the coding cost.

The remainder of this chapter is organized as follows. In Section 5.2, we describe the cho-

sen DDE method recently presented in [Miled et al., 2009a]. In Section 5.3, we address

the problem of a suitable representation of the resulting dense disparity map for coding

purposes. Finally, in Section 7.6, experimental results are given and some conclusions are

drawn in Section 5.5.

5.2 Dense disparity estimation: Variational framework

The basic principle of the considered DDE method is to formulate the matching problem

as a convex programming problem. More precisely, a quadratic objective function is mini-

mized under some specific constraints and the resulting optimization problem is solved via

a block-iterative algorithm, as we shall address next.

1http://vision.middlebury.edu/stereo/
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5.2.1 Problem statement

Energy function

In this part, the stereo images are assumed to be geometrically rectified. Hence, the

disparity field is restricted to the horizontal component which will be denoted by v. Indeed,

DDE methods aim at assigning a disparity value to every pixel (m,n) in I(r) so that the

resulting field minimizes a given cost functional J̃ . Let v = (v(m, n))(m,n)∈D be the dense

disparity field to be estimated where D = {1, . . . , M} × {1, . . . , N} is the image support.

Generally, the chosen criterion J̃ is the sum of squared intensity differences:

v̂ = (v̂(m,n))(m,n)∈D = arg min J̃ (v)

= arg min
v∈Ω

∑

(m,n)∈D
[I(r)(m,n)− I(l)(m + v(m,n), n)]2 (5.1)

where Ω is the range of candidate disparity values. Generally, an initial coarse estimate

v̄ = (v̄(m,n))(m,n)∈D of v is made available, say thanks to a correlation based-method.

Assuming that the magnitude difference of both fields v and v̄ is relatively small, the

warped left image around v̄ is approximated by a Taylor expansion:

I(l)(m+v(m,n), n) ' I(l)(m+ v̄(m,n), n)+∇I(l)(m+ v̄(m,n), n)(v(m,n)− v̄(m,n)) (5.2)

where ∇I(l)(m + v̄(m, n), n) is the horizontal gradient of the warped left image.

In the following, the spatial position (m, n) in each image will be denoted by s for notation

concision. Using the linearization (5.2), the criterion J̃ in (6.23) can be approximated by

a quadratic functional J which is convex in v:

J (v) =
∑

s∈D
[r(s)− L(s) v(s)]2, with v = (v(s))s∈D, (5.3)

where
L(s) = ∇I(l)(m + v̄(s), n)

r(s) = I(r)(s)− I(l)(m + v̄(s), n) + v̄(s) L(s).

Now, the goal is to recover the disparity image from the observed fields L(s) and r(s).

Since L(s) may be zero, an additive term has been introduced in the criterion J to make it

strictly convex, in compliance with the assumption required to guarantee the convergence

of the algorithm we will use. Therefore, J becomes:

J(v) =
∑

s∈D
[r(s)− L(s) v(s)]2 + α

∑

s∈D
[v(s)− v̄(s)]2, with v = (v(s))s∈D (5.4)
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where α is a positive real number. Although this additional term tends to make the

disparity field close to the initial values, we emphasize that the primary role of this term

is not to regularize the solution but to make J strictly convex.

Minimizing this quadratic objective function is an ill-posed problem as the components

of L may locally vanish (for example in homogeneous regions). Thus, to convert this

problem to a well-posed one, it is useful to incorporate additional constraints so as to

formulate the problem within a set theoretic framework [Combettes, 1993].

Convex constraints

The goal of set theoretic estimation is to obtain a feasible solution satisfying multiple con-

straints reflecting the prior knowledge about the disparity field. Typically, each constraint

is represented by a closed convex set Sk with k ∈ {1, . . . , K}, in a Hilbert image space

H, endowed with the standard scalar product 〈. | .〉 and the associated Euclidean norm

‖ . ‖. The intersection S of all the K sets (Sk)1≤k≤K , the feasibility set, constitutes the

family of admissible solutions [Miled et al., 2006b; Miled et al., 2009a]. Therefore, the

stereo matching problem can be stated as a constrained optimization problem where the

quadratic objective function (given by Eq. (5.4)) is minimized over the feasibility set. A

new formulation of the matching problem is then:

Find v̂ ∈ S =
K⋂

k=1

Sk such that J(v̂) = inf
v∈S

J(v). (5.5)

The constraint sets can be modeled as level sets:

∀k ∈ {1, . . . , K}, Sk = {v ∈ H | fk(v) ≤ δk} (5.6)

where fk : H → R is a continuous convex function for every k ∈ {1, . . . ,K} and (δk)1≤k≤K

are real-valued parameters such that S =
⋂K

k=1 Sk 6= ∅.
Hence, it is required to define the convex sets (Sk)1≤k≤K to proceed to the DDE procedure

within the set theoretic framework. Indeed, the construction of the convex sets is based on

the various properties of the field to be estimated. In what follows, we will focus on K = 2

constraints.

An example of possible prior knowledge is the range of the disparity values. Given a set

of candidate disparity values, we can restrict the variation of their amplitudes within a
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specific range [vmin, vmax]. This can be expressed by the following constraint set S1:

S1 = {v ∈ H | ∀s ∈ D, vmin ≤ v(s) ≤ vmax}. (5.7)

Note that in practice vmin and vmax are often available.

Most importantly, another constraint can be incorporated in order to strengthen the

smoothness of the disparity field in the homogeneous areas while preserving edges. In-

deed, neighboring pixels belonging to the same object should have similar disparities. This

can be achieved by considering the total variation tv(v) which can be defined as the sum

over D of the norm of the spatial gradient of v [Rudin et al., 1992]. The total variation of

the discrete disparity image v is given by:

tv(v) =
M−1∑

m=1

N−1∑

n=1

√
|v(m + 1, n)− v(m,n)|2 + |v(n, n + 1)− v(m,n)|2

+
M−1∑

m=1

|v(m + 1, N)− v(m,N)|

+
N−1∑

n=1

|v(M, n + 1)− v(M, n)|.

Hence, a total variation based regularization constraint amounts to impose an upper bound

τ on tv:

S2 = {v ∈ H | tv(v) ≤ τ}. (5.8)

The influence of the bound τ parameter will be discussed in Section 7.6.

Finally, the disparity estimation problem is formulated by minimizing the quadratic

objective function J in (5.4) under the two mentioned constraint sets. Among the ex-

isting optimization algorithms, we employ a parallel block-iterative algorithm based on

subgradient projections onto the convex sets [Combettes, 2003].

5.2.2 Optimization algorithm

Before describing the optimization algorithm developed in [Miled et al., 2009a], we re-

call some basic facts on subgradient projections which are necessary for our minimization

problem.

Subgradient Projections

Let Sk be nonempty closed and convex subset of the Hilbert image space H. For every

point v in H, there exists a unique point Pk(v) ∈ Sk, called the projection of v onto Sk,
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such that ‖v − Pk(v)‖ = dSk
(v), where dSk

(v) = infu∈Sk
‖v − u‖. Now suppose that Sk

is given by Eq. (5.6), where fk is a continuous convex function. For every v ∈ H, fk

possesses at least one subgradient at v, i.e., a vector gk ∈ H such that

∀z ∈ H, 〈z− v | gk〉+ fk(v) ≤ fk(z). (5.9)

The set of all subgradients of fk at v is the subdifferential of fk at v and it is denoted

by ∂fk(v). If fk is differentiable at v, then ∂fk(v) = {∇fk(v)}. Now, fix v ∈ H and a

subgradient gk ∈ ∂fk(v). The subgradient projection Gk(v) of v onto Sk is given by:

Gk(v) =





v − fk(v)− δk

‖gk‖2
gk , if fk(v) > δk

v , otherwise.
(5.10)

Note that computing Gk(v) requires only the availability of a subgradient (the gradient

in the differentiable case) and is, therefore, often much easier than computing the exact

projection Pk(v) onto Sk. However, when the projection is simple to compute, one can

use it as a subgradient projection corresponding to fk : v 7→ ‖v − Pk(v)‖ and δk = 0.

Subsequently, we will need to compute the subgradient projections onto the sets S1 and

S2. Exact projection onto S1 is straightforwardly obtained, whereas the expression of a

subgradient projection G2(v) of a point v onto S2 is given by:

G2(v) =





v − tv(v)− τ

‖t2‖2
t2 if tv(v) > τ

v otherwise.
(5.11)

where

t2 ∈
M−1∑

m=1

N−1∑

n=1

∂
√
|v(m + 1, n)− v(m, n)|2 + |v(n, n + 1)− v(m,n)|2

+
M−1∑

m=1

∂|v(m + 1, N)− v(m,N)|

+
N−1∑

n=1

∂|v(M, n + 1)− v(M, n)| (5.12)

More details about computing the subdifferential of the different terms involved in Eq. (5.12)

can be found in [Combettes, Pesquet, 2004].

We now proceed with the description of the proposed algorithm to estimate the displace-

ment vector field v. This algorithm starts from an initial point v0 and iteratively constructs

a sequence (vi)i∈N, converging to the optimal solution v̂, as follows.
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Algorithm [Miled et al., 2006b; Miled et al., 2009a]

À Fix ε ∈]0, 1/K[ and set the iteration number i to zero (i = 0). Compute v0 as:

v0(s) = (L(s) r(s) + αv̄(s))/(L(s)2 + α)

Á Take a nonempty index set Ki ⊆ {1, . . . , K}.

Â For every index k ∈ Ki, set ai,k = Gk(vi) − vi, where Gk(vi) is a subgradient

projection of vi onto Sk as in Eq. (5.10).

Ã Choose weights {ζi,k}k∈Ki ⊂]ε, 1[ such that
∑

k∈Ki
ζi,k = 1. Set:

– zi =
∑

k∈Ki
ζi,kai,k,

– κi =
∑

k∈Ki
ζi,k ‖ai,k‖2,

Ä If κi = 0, exit iteration. Otherwise set:

– bi such that

bi(s) = v0(s)− vi(s),

– ci such that

ci(s) = (L(s)2 + α)bi(s),

– di such that

di(s) = zi(s)/(L(s)2 + α),

– κ̃i = κi/〈di, zi〉.

Å Choose λi ∈ [εκ̃i, κ̃i] and set d̃i = λidi.

Æ Set:

– πi = −〈ci, d̃i〉,

– µi = 〈bi, ci〉,

– νi = λi〈d̃i, zi〉,

– ρi = µiνi − π2
i .
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Ç Set:

vi+1 =





vi + d̃i, if ρi = 0, πi ≥ 0,

v0 + (1 + πi/νi)d̃i if ρi > 0, πiνi ≥ ρi,

vi + νi
ρi

(πibi + µid̃i) if ρi > 0, πiνi < ρi.

È Increment i and go to step Á.

As stop criterion, a difference magnitude observation of the current solution and the

solution at the previous iteration may be used. Otherwise, a maximum number of iterations

can be specified.

Note that, as proved in [Miled et al., 2009a], if there exists a positive integer W such

that

∀i ∈ N,
i+W−1⋃

l=i

Kl = {1, . . . ,K}, (5.13)

then every sequence (vi)i∈N generated by Algorithm 1 converges to the unique solution of

(5.5).

Finally, some comments about this optimization algorithm can be done at this point:

• This algorithm allows us to easily incorporate additional convex constraints if these

are available. Its ability to use approximate (subgradient) projections onto the con-

straint sets makes it possible to handle a wide range of complex convex constraints.

• Due to its block iterative structure, this algorithm offers a lot of flexibility in terms

of parallel implementation. Indeed, the set Ki defines the constraints to be activated

at iteration i and, according to Eq. (5.13), different blocks of constraint sets may

be used. Therefore, the optimization algorithm can be efficiently implemented on

parallel computing architectures by adapting the number of elements in Ki to the

number of available parallel processors.

• Concerning the computational complexity of this algorithm, the main computation

at one iteration is related to the calculation of a subgradient for the total variation

constraint which can be estimated in O(MN + M + N), where M and N are respec-

tively the width and the height of the image. Concerning the global computational

cost, complexity can be estimated in O(i(MN + M + N)) where i is the number of

iterations required for the convergence of the optimization algorithm.

In the next section, we will describe our main contribution which consists of representing

and efficiently encoding the dense field issued from this algorithm.



5.3. Proposed dense disparity map coding method 89

5.3 Proposed dense disparity map coding method

Unlike BDE method where the disparity is estimated for each block of the images, a DDE

method computes the disparity information for each pixel of the images. Therefore, the

resulting dense field raises an important issue in the context of coding applications: the

expensive cost of transmission/storage of the disparity map in terms of bitrate. To overcome

this problem, we propose to apply a quadtree decomposition (QTD) to the estimated field

v̂ followed by an entropy coding of the segmented field.

5.3.1 Partition-based segmentation

Generally speaking, a quadtree decomposition method aims at subdividing an image or a

block into four subblocks according to a given criterion. The segmentation is repeatedly

applied until the size of subblock reaches 1 × 1 or some criterion is met. An example of

quadtree decomposition is illustrated in Fig. 5.1.

(b)(a)

Figure 5.1: Illustration of quadtree decomposition: (a): image partitions, (b): correspond-

ing quadtree structure.

In our context, the segmentation procedure attempts to adapt the generated dense dispar-

ity map into a block-based representation as defined in the H.264 AVC standard [ITU-T

Recommentation H.264 & ISO/IEC 14496-10 AVC, 2003]. Note that in this standard, the

field is estimated for variable size blocks.

To this end, the map v̂ is firstly segmented into a set of nonoverlapping macroblocks Bk

of size 16× 16. Then, the homogeneity of Bk, retained as a criterion for the segmentation



90 5. Dense disparity estimation for stereo image coding

step, is measured by its local variance σ2
Bk

. Thus, for a given threshold value T , if σ2
Bk
≤ T ,

all the disparity values within Bk are replaced by a single disparity value: it may be their

average or their median value. At the opposite, if σ2
Bk

> T , Bk is subdivided into four sub-

macroblocks and then the test of homogeneity is recursively repeated until the size of the

current sub-macroblock reaches 4× 4 (which corresponds to the minimum sub-macroblock

size defined in the H.264 AVC standard). Therefore, homogeneous areas will be represented

by larger blocks, whereas small blocks will correspond to object boundaries or occluded

regions.

Consequently, unlike block-based technique in which the disparity estimation is causal and

local, our proposed estimation has a global approach which promotes the regularization

of the disparity field. Furthermore, the main relevance of the segmentation of the dense

disparity map which finally ends in a block-based representation is to make good use of

the smoothness of the dense disparity field. Thus, the neighboring disparity values become

highly correlated which may result in decreasing the bitrate of the disparity information.

5.3.2 Entropy coding with H.264 JM software

It is worth pointing out that the segmented disparity map and the mode information cor-

responding to the block size assigned to each disparity value must be transmitted as side

information. For this purpose, we have employed the encoding module integrated in the

H.264 JM software based on the classical DPCM technique with median predictors and

variable-length codes.

An alternative approach for encoding the dense disparity map would be to consider this

map as a component picture, and thus, utilizing some near-lossless image encoders like

H.264 AVC in intra mode or other wavelet-based coding methods [Daribo et al., 2008].

For the moment, these methods lead to a much higher amount of bits for encoding smooth

field, and therefore, in our joint stereo image coding scheme, we prefer the described ap-

proach based on segmenting the dense disparity field.

5.4 Experimental results

Simulations results are performed on the following real stereo image pairs: “Shrub”,“Spot5”,

“Book arrival” (taken from the “Book arrival” multiview sequence, frame 1) and “Outdoor”
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(taken from the “Outdoor” multiview sequence, frame 1) which are all rectified. Before

illustrating the performances of integrating the proposed dense disparity estimation method

in a joint stereo image coding scheme, we firstly discuss the influence of the parameters

defined in the estimation algorithm.

5.4.1 Influence of the parameters

In practice, the optimal value of the parameters [vmin, vmax], τ and α may not be known

exactly and it is, therefore, important to evaluate their impact in terms of coding rate and

PSNR of the disparity compensated image.

Range values

The choice of the range [vmin, vmax] can be accurately found by matching certain points of

interest selected manually in the two stereo views.

Regularization parameters

The upper bound τ , used to enforce the smoothness of the estimated disparity map, may

be estimated from a scale value of the total variation of the initial disparity map v̄x, as

shown in Fig. 5.2. A low scale value results in smoothing more the disparity map, and so,

reducing the number of bits required for the transmission.

The parameter α introduced in (5.4) has to be set in order to weight the influence of the

additive term introduced to make J strictly convex. By choosing a high value of α, the

criterion J simply reduces to the distance between v and v̄. Conversely, assigning a small

value privileges the first data term.

Table 5.1: Example of the influence of the parameter τ with α = 6 on the bitrate and the

PSNR of the dense disparity compensated image for the “Book arrival” stereo pair.

bitrate (H.264 intra, QP=0) PSNR

τ = 50000 0.641 bpp 37.13 dB

τ = 40000 0.522 bpp 37.23 dB

τ = 30000 0.403 bpp 37.24 dB

τ = 20000 0.305 bpp 36.48 dB

τ = 10000 0.287 bpp 33.44 dB
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Table 5.2: Example of the influence of the parameter α with τ = 30000 on the bitrate and

the PSNR of the dense disparity compensated image for the “Book arrival” stereo pair.

bitrate (H.264 intra, QP=0) PSNR

α = 0.1 0.466 bpp 35.79 dB

α = 6 0.403 bpp 37.24 dB

α = 10 0.394 bpp 37.20 dB

α = 50 0.390 bpp 36.50 dB

α = 100 0.383 bpp 35.78 dB

Table 5.1 and Table 5.2 show the impact of the parameters τ and α on the coding rate

of the disparity map and on the quality of the disparity compensated image, evaluated

through the PSNR between the original view and the disparity-compensated one. Note

that the bitrate of the dense disparity field has been computed using the dense disparity

field as a picture with H.264 JM software in intra mode at a quantization parameter QP

of 0. First, an arbitrary fixed value of α is used to determine the parameter τ . Then, the

optimal value of α is determined. The value of both parameters is selected according on

the highest PSNR value of the disparity compensated picture.

Based on this strategy, we have obtained heuristically the set of parameters for each stereo

pair as depicted in Table 5.3.

Table 5.3: Parameter settings.

range values τ α

Shrub [1,15] 10000 10

Spot5-5 [1,64] 30000 10

Book arrival [14,35] 30000 6

Outdoor [8,32] 15000 10

5.4.2 Performances in stereo image coding context

Figure 5.3 shows the“Outdoor”stereo image and the disparity maps provided by the Block-

based disparity estimation method (BDE) and the proposed Dense disparity estimation

method (DDE). It can be noticed that the DDE method generates the smoothest map.

Furthermore, the resulting bitrate R(v) for the dense map is 50 times greater than the
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bitrate of the block-based map. However, by exploiting the smoothness of the dense map

owing to a QTD with median filtering (DDE+QTD) followed by a rounding operation,

R(v) is dramatically reduced. The corresponding disparity map is displayed in Fig. 5.3(e):

it is more robust to noise estimation compared with the BDE. Similar illustrations are also

given for “Book arrival” (Fig. 5.4) and “Shrub” (Fig. 5.5) stereo images.

In order to emphasize the benefit from using the DDE, we will consider two stereo image

coding schemes (designated by scheme B and VLS-II) which have been already described in

the previous chapter. Recall that scheme B is the basic algorithm which consists of coding

the left and the residual images, whereas VLS-II corresponds to our proposed Vector Lifting

Scheme. Figures 6.10 and 5.7 illustrate the scalability in quality of the reconstruction

procedure by providing the PSNR versus the bitrate for the stereo pairs “Shrub” and

“Outdoor”. It is worth pointing out that the retained DDE method followed by a quadtree

decomposition outperforms the classical BDE method by 0.3-1 dB for our VLS-II (resp. by

0.1-0.9 dB for the scheme B) whatever the employed decomposition scheme of the stereo

pair.

It is worth pointing that our proposed stereo still image coding scheme based on VLS is

a lossy-to-lossless technique in which the disparity map is estimated only once, and from

this point of view it differs from existing stereo video schemes based on H.264 coding

tools where the disparity is estimated for different bitrates (i.e for each point of the PSNR

curve). However, the benefit of the retained DDE has been also confirmed when considering

a multiview video coding framework [Daribo et al., 2009]. Some related results will be given

in the next part.

5.4.3 Performances in multiview video coding context

Multiview video coding is an emerging application where, in addition to classical temporal

estimation, an efficient disparity estimation should be performed in order to achieve the

best compression performance. A popular coder is the multiview video coding (MVC)

extension of H.264/AVC, which uses a block-based disparity estimation (just like temporal

estimation in H.264/AVC) [Chen et al., 2009].

Within the MVC framework, the disparity estimation module generates different disparity

fields at different QP values. More precisely, for each point of the PSNR-plot, an optimal

field (in a rate-distortion sense) is estimated by minimizing a Lagrangian cost function
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according to the available bit budget or allowable distortion.

Inspired by these works in video coding, the retained DDE method has been recently

employed in a Multiview Video Coding (MVC) framework [Daribo et al., 2009]. Thus, the

estimated dense disparity field is segmented at different QP values by performing a rate-

distortion optimization technique. Figures 5.8 and 5.9 show the results in terms of rate-

distortion performance when using the block-based reference estimation in the MVC and

the DDE method followed by a segmentation optimized in a rate-distortion sense. These

plots indicate that the proposed approach achieves a gain of about 0.1-1.5 dB compared

with the classical approach.

5.5 Conclusion

In this chapter, we have presented the benefits of integrating a dense disparity map in stereo

image coding and multiview video coding frameworks. Unlike conventional methods that

employ a block-based disparity estimation method, our method uses a dense and smooth

disparity map. Experimental results showed that our approach produces better results

than classical methods.
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Left image Right image

Initial disparity map v̄ τ = 0.15 · tv(v̄)

τ = 0.10 · tv(v̄) τ = 0.05 · tv(v̄)

Figure 5.2: Example of dense disparity maps at different values of the upper bound τ

parameter for the “Book arrival” stereo pair.
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(a) Left image (b) Right image

(c) BDE method (R(v) = 0.072 bpp) (d) DDE method (R(v) = 3.990 bpp)

(e) DDE + QTD method (R(v) = 0.041 bpp)

Figure 5.3: Extracted disparity maps for the “Outdoor” stereo image using (c) a block-

based DE method (d) the proposed DDE method (e) a quadtree decomposition of the

computed dense disparity map (T=0.2).
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(a) Left image (b) Right image

(c) BDE method (R(v) = 0.068 bpp) (d) DDE method (R(v) = 3.283 bpp)

(e) DDE + QTD method (R(v) = 0.059 bpp)

Figure 5.4: Extracted disparity maps for the “Book arrival” stereo image using (c) a block-

based DE method (d) the proposed DDE method (e) a quadtree decomposition of the

computed dense disparity map (T=0.1).
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(a) Left image (b) Right image

(c) BDE method (R(v) = 0.061 bpp) (d) DDE method (R(v) = 3.011 bpp)

(e) DDE + QTD method (R(v) = 0.041 bpp)

Figure 5.5: Extracted disparity maps for the “Shrub” stereo image using (c) a block-based

DE method (d) the proposed DDE method (e) a quadtree decomposition of the computed

dense disparity map (T=0.2).
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Figure 5.6: PSNR (in dB) versus the bitrate (bpp) after JPEG 2000 encoding for the SI

pair “shrub”.
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Figure 5.7: PSNR (in dB) versus the bitrate (bpp) after JPEG 2000 encoding for the SI

pair “Outdoor”.
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Figure 5.8: Rate-distortion coding results for the multiview video sequence “Book arrival”.
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Figure 5.9: Rate-distortion coding results for the multiview video sequence “Outdoor”.
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Chapter 6

Non separable lifting scheme with

adaptive update step

6.1 Introduction

In the two previous chapters, the stereo image coding process has been performed by using

separable lifting schemes (LS). Such structures are generally handled in a separable way for

two-dimensional (2D) signals by cascading 1D LS along the horizontal direction, then along

the vertical direction. However, it is well known that conventional separable LS may not

appear very efficient to cope with the two-dimensional characteristics of contours which are

neither horizontal nor vertical. For instance, Moellenhoff and Maier [Moellenhoff, Maier,

1998a] analyzed the characteristics of the residual images and proved that such images

have properties different from natural images. This suggests that transforms working well

for natural images may not be as well-suited for residual images.

Based on these observations, we propose in this chapter to use 2D non separable lifting

schemes (NSLS) that still enable progressive reconstruction and exact decoding of images.

More precisely, we will focus on the optimization of all the operators (i.e prediction and

update filters) in order to build a content-adaptive decomposition. Indeed, we design

the prediction operators by minimizing the detail signal variance, which is a common

criterion. Concerning the update filter, we propose a new optimization criterion which

aims at reducing the aliasing effects. Furthermore, we show that the proposed optimization

method leads to the same optimal update filter when the optimization is performed either

before or after the decimation step.
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The remainder of this chapter is organized as follows. In Section 6.2, a 2D non separable

lifting structure is presented and studied. In Section 6.3, we describe the proposed approach

for the design of both optimal prediction and update filters. In Section 6.4, we conduct a

theoretical analysis of the proposed method in order to evaluate the gain achieved by the

proposed update filter optimization together with a simple statistical modeling of images.

We show that in the case of a first order 2D autoregressive model for the input images, the

filters can be easily deduced only based on the spatial correlation coefficients. Finally, in

Section 6.6, experimental results are given and some conclusions are drawn in Section 6.7.

6.2 Non separable lifting schemes

6.2.1 Motivation

Instead of using samples from the same rows (resp. columns) while processing the image

along the lines (resp. columns), 2D NSLS provide smarter choices in the selection of

the samples by using horizontal, vertical and oblique directions at the prediction step

[Gerek, Çetin, 2000]. As an example, quincunx lifting schemes were found to be efficient

for coding satellites images acquired on a quincunx sampling grid [Gouze et al., 2001;

Benazza-Benyahia et al., 2007]. However, for natural images, we should note that it has

been observed that quincunx LS present an important limitation in the sense that they

are less performant than the conventional separable LS. To confirm these observations, one

can refer to results presented in [Benazza-Benyahia et al., 2007; Gouze et al., 2004]. In

[Heijmans et al., 2002], a 2D wavelet decomposition comprising an adaptive update lifting

step and three consecutive fixed prediction lifting steps is proposed. Another structure,

which is composed of three prediction lifting steps followed by an update lifting step, has

also been considered in the nonadaptive case [Chokchaitam, 2004; Sun, 2004]. The interest

of this structure is twofold. First, its integer version is different from the separable lifting

structure and shows a better coding performance due to the reduction of lifting steps and

rounding operations. Furthermore, it is equivalent to any separable predict-update LS

structure.

Due to these advantages, we will retain the latter 2D NSLS structure in the rest of this

work.
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6.2.2 Principle of the retained 2D NSLS structure

Let x denote the digital image to be coded. At each resolution level j and each pixel

location (m,n), its approximation coefficient is denoted by xj(m,n) and the associated

four polyphase components by x0,j(m,n) = xj(2m, 2n), x1,j(m,n) = xj(2m, 2n + 1),

x2,j(m,n) = xj(2m + 1, 2n), and x3,j(m,n) = xj(2m + 1, 2n + 1). Without loss of gener-

ality, we assume that the polyphase components are the input coefficients of the 2D NSLS

depicted in Fig. 6.1, where P(HH)
j , P(LH)

j , P(HL)
j and Uj represent the four analysis filters

employed to generate the detail coefficients x
(HH)
j+1 oriented diagonally, x

(LH)
j+1 oriented ver-

tically, x
(HL)
j+1 oriented horizontally, and the approximation coefficients xj+1. It is easy to

−

−

−

+

split

Uj

x
(LH)
j+1 (m, n)

x
(HH)
j+1 (m, n)x3,j(m, n)

x2,j(m, n)

x1,j(m, n)

x0,j(m, n)

xj(m, n)

xj+1(m, n)

x
(HL)
j+1 (m, n)

P
(HH)
j

P
(LH)
j

P
(HL)
j

Figure 6.1: NSLS decomposition structure.

derive the expressions of the resulting coefficients in the 2D z-transform domain.1 Indeed,

the z-transforms of the output coefficients can be written as follows:

X
(HH)
j+1 (z1, z2) = X3,j(z1, z2)− bP (HH)

0,j (z1, z2)X0,j(z1, z2) + P
(HH)
1,j (z1, z2)X1,j(z1, z2)

+ P
(HH)
2,j (z1, z2)X2,j(z1, z2)c, (6.1)

X
(LH)
j+1 (z1, z2) = X2,j(z1, z2)− bP (LH)

0,j (z1, z2)X0,j(z1, z2) + P
(LH)
1,j (z1, z2)X

(HH)
j+1 (z1, z2)c,

(6.2)

X
(HL)
j+1 (z1, z2) = X1,j(z1, z2)− bP (HL)

0,j (z1, z2)X0,j(z1, z2) + P
(HL)
1,j (z1, z2)X

(HH)
j+1 (z1, z2)c,

(6.3)

1The z-transform of a signal x will be denoted in capital letters by X.
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Xj+1(z1, z2) = X0,j(z1, z2) + bU (HL)
j (z1, z2)X

(HL)
j+1 (z1, z2) + U

(LH)
j (z1, z2)X

(LH)
j+1 (z1, z2)

+ U
(HH)
j (z1, z2)X

(HH)
j+1 (z1, z2)c (6.4)

where, for every i ∈ {0, 1, 2} and o ∈ {HH,HL,LH},

P
(o)
i,j (z1, z2) =

∑

(k,l)∈P(o)
i,j

p
(o)
i,j (k, l)z−k

1 z−l
2 , (6.5)

U
(o)
j (z1, z2) =

∑

(k,l)∈U(o)
j

u
(o)
j (k, l)z−k

1 z−l
2 . (6.6)

The set P(o)
i,j (resp. U (o)

j ) and the coefficients p
(o)
i,j (k, l) (resp. u

(o)
j (k, l)) denote the support

and the weights of the three prediction filters (resp. of the update filter). Note that we

introduced the rounding operations b.c in order to allow lossy-to-lossless encoding of the

coefficients.

Once the considered NSLS structure has been defined, it may appear instructive to see

how it is related to some conventional separable lifting structures.

6.2.3 Links with conventional separable lifting structures

It can be checked that the conventional 5/3 transform and the Haar one are particular cases

of the structure illustrated in Figure 6.1. For example, for the separable 5/3 transform

which was selected for the lossless mode of the JPEG2000 standard, we get:

P
(HH)
0,j (z1, z2) = −1

4
(1 + z1 + z2 + z1z2),

P
(HH)
1,j (z1, z2) =

1
2
(1 + z1), P

(HH)
2,j (z1, z2) =

1
2
(1 + z2), (6.7)

P
(LH)
0,j (z1, z2) =

1
2
(1 + z1), P

(LH)
1,j (z1, z2) = −1

4
(1 + z−1

2 ), (6.8)

P
(HL)
0,j (z1, z2) =

1
2
(1 + z2), P

(HL)
1,j (z1, z2) = −1

4
(1 + z−1

1 ), (6.9)

U
(HL)
j (z1, z2) =

1
4
(1 + z−1

1 ), U (LH)
j (z1, z2) =

1
4
(1 + z−1

2 ),

U
(HH)
j (z1, z2) = − 1

16
(1 + z−1

1 + z−1
2 + z−1

1 z−1
2 ). (6.10)

More generally, it was shown in [Chokchaitam, 2004] that any separable predict-update

LS structure (whose 1D prediction and update filters will be denoted by P1D
j and U1D

j ,

respectively) has an equivalent 2D-NSLS counterpart given by Figure 6.1. For instance,
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this equivalence is guaranteed by taking the 2D operators as follows:

P
(HH)
0,j (z1, z2) = −P 1D

j (z1)P 1D
j (z2),

P
(HH)
1,j (z1, z2) = P 1D

j (z1), P
(HH)
2,j (z1, z2) = P 1D

j (z2), (6.11)

P
(LH)
0,j (z1, z2) = P 1D

j (z1), P
(LH)
1,j (z1, z2) = −U1D

j (z2), (6.12)

P
(HL)
0,j (z1, z2) = P 1D

j (z2), P
(HL)
1,j (z1, z2) = −U1D

j (z1), (6.13)

U
(HL)
j (z1, z2) = U1D

j (z1), U
(LH)
j (z1, z2) = U1D

j (z2),

U
(HH)
j (z1, z2) = −U1D

j (z1)U1D
j (z2). (6.14)

Subsequently, we will show that this equivalence facilitates the derivation of adaptive ex-

tensions of the associated operators. Indeed, in a coding framework, the sparsity of any

LS-based multiresolution representation clearly depends on the choice of the prediction

and update operators.

In the next section, we aim at fully exploiting the flexibility of a NSLS through an adap-

tation of all the involved operators. Note that adaptive NSLS were already investigated

[Taubman, 1999; Benazza-Benyahia et al., 2007; Gouze et al., 2004] by putting emphasis

on the optimization of the predictor. One of the main contributions of this paper is the

optimization of the update filter by using a criterion which allows us to reduce aliasing

effects. In this way, we build a fully-optimized NSLS which is better adapted to the char-

acteristics of the input image. Moreover, we show that the proposed optimization method

leads to the same optimal update filter when the optimization is performed either before

or after the decimation step.

6.3 Proposed optimization method

In what follows, for the sake of simplicity, we assume that the initial image x (after sub-

tracting its mean value) is modeled as the realization of a zero-mean wide-sense stationary

random process. If we omit the rounding operations, at a given resolution level j, the

approximation image xj is also the realization of a 2D wide sense stationary process with

autocorrelation function Rxj :

∀(k, l) ∈ Z2, Rxj (k, l) = E[xj(m,n)xj(m− k, n− l)]. (6.15)
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6.3.1 Optimization of the predictors

Since the detail coefficients are defined as prediction errors, the prediction operators can

be optimized so as to minimize the variance of the coefficients at each resolution level. The

rounding operators being omitted, it is readily shown that the minimum variance predictors

must satisfy the well-known Yule-Walker equations. For example, for the prediction vector

p(HH)
j , the normal equations read

E[x̃(HH)
j (m,n)x̃(HH)

j (m,n)>]p(HH)
j = E[x3,j(m, n)x̃(HH)

j (m, n)] (6.16)

where

• p(HH)
j = (p(HH)

0,j ,p(HH)
1,j ,p(HH)

2,j )> is the prediction vector where, for each i ∈ {0, 1, 2},

p(HH)
i,j =

(
p
(HH)
i,j (k, l)

)
(k,l)∈P(HH)

i,j

,

• x̃(HH)
j (m, n) = (x(HH)

0,j (m,n),x(HH)
1,j (m, n),x(HH)

2,j (m,n))> is the reference vector with

x(HH)
i,j (m,n) =

(
xi,j(m− k, n− l)

)
(k,l)∈P(HH)

i,j

.

The other optimal prediction filters p(HL)
j and p(LH)

j are obtained in a similar way.

6.3.2 Optimization of the update operator

Optimizing the update operator is less obvious than optimizing the predictions. An update

optimization method has been proposed in [Pesquet-Popescu, 1999; Gouze et al., 2004]. It

consists of designing the update operator in order to minimize a reconstruction error. In

other words, the update operator is optimized by minimizing the distortion between the

original image xj and the reconstructed image x̂j , when the detail coefficients are canceled.

In the case of the NSLS, this criterion is given by:

J = E[(xj(m,n)− x̂j(m,n))2]

=
1
4

(
E[(x0,j(m,n)− x̂0,j(m,n))2] + E[(x1,j(m,n)− x̂1,j(m,n))2]

+ E[(x2,j(m,n)− x̂2,j(m,n))2] + E[(x3,j(m,n)− x̂3,j(m,n))2]
)
. (6.17)
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The sets
(
x̂i,j(m,n)

)
i∈{0,1,2,3}

are defined by the synthesis lifting scheme while setting the

details coefficients to zero. After some calculations, we get:

x̂0,j(m, n) = x0,j(m,n) + u>j xj+1(m,n) (6.18)

x̂1,j(m, n) =
(
p(HL)

0,j

)>
x(HL)

0,j (m,n) + u>j D(HL)
0,j+1(m,n)p(HL)

0,j (6.19)

x̂2,j(m, n) =
(
p(LH)

0,j

)>
x(LH)

0,j (m,n) + u>j D(LH)
0,j+1(m,n)p(LH)

0,j (6.20)

x̂3,j(m, n) =
(
p(HH)

0,j

)>
x(HH)

0,j (m,n) + u>j D(HH)
0,j+1(m,n)p(HH)

0,j

+
(
p(HH)

1,j ⊗ p(HL)
0,j

)>
x(HH)

0,j (m,n) + u>j D(HH)
1,j+1(m,n)

(
p(HH)

1,j ⊗ p(HL)
0,j

)

+
(
p(LH)

0,j ⊗ p(HH)
2,j

)>
x(HH)

0,j (m,n) + u>j D(HH)
2,j+1(m,n)

(
p(HH)

2,j ⊗ p(LH)
0,j

)
(6.21)

where ⊗ is the Kronecker product and

• uj =
(
u

(o)
j (k, l)

)>
(k,l)∈U(o)

j ,o∈{HL,LH,HH}
is the update weight vector,

• xj+1(m, n) =
(
x

(o)
j+1(m − k, n − l)

)>
(k,l)∈P(o)

i,j ,o∈{HL,LH,HH}
is the update reference

vector containing the detail signals.

• ∀o ∈ {HL, LH, HH}, x(o)
0,j(m, n) =

(
x0,j(m− k, n− l)

)>
(k,l)∈P(o)

0,j

• ∀o ∈ {HL, LH, HH}, D(o)
0,j+1(m,n) =

(
xj+1(m− k, n− l)

)>
(k,l)∈P(o)

0,j

• D(HH)
1,j+1(m, n) =

(
D(HL)

0,j+1(m− k, n− l)
)

(k,l)∈P(HH)
1,j

• D(HH)
2,j+1(m, n) =

(
D(LH)

0,j+1(m− k, n− l)
)

(k,l)∈P(HH)
2,j

Once the different terms involved in the criterion (6.17) are defined by Eq. (6.18)-(6.21),

the optimal update operator can be deduced by minimizing (6.17). Due to the complexity

of the resulting linear system of equations when a NSLS is considered, its expression will

not be provided.

However, when examining the expressions of
(
x̂i,j(m,n)

)
i∈{0,1,2,3}

, it can be noticed that

the minimization of the criterion (6.17) requires the determination of many terms (Eq. (6.18)-

(6.21)) which will increase the computational effort of this optimization method. The

complexity of this method will be compared with the proposed one in Section 6.6.
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To reduce the complexity of the previous method, we propose to employ an optimization

criterion, which aims at reducing the inherent aliasing artefacts [Kaaniche et al., 2010].

Firstly, it can be noticed that the transfer function of the low-pass filter relating xj to the

undecimated version of xj+1 can be expressed as

Fj(z1, z2) = 1 +
∑

o∈{HL,LH,HH}

∑

(k,l)∈U(o)
j

u
(o)
j (k, l)z−2k

1 z−2l
2 A

(o)
j (z1, z2) (6.22)

where A
(o)
j (z1, z2) is a transfer function which depends on the prediction coefficients. Since

Fj aims at computing a smooth version of the image xj , we propose to design the update

filter in order to reduce the aliasing effects. More precisely, we adopt a new criterion J̃
which accounts for the difference between the output of the Fj filter and the output of an

ideal low-pass filter

J̃ (uj) =
∫ π

−π

∣∣∣Fj(eıω1 , eıω2)−H(eıω1 , eıω2)
∣∣∣
2
Sxj (ω1, ω2)dω1dω2 (6.23)

where Sxj is the power spectrum density of xj and H denotes the transfer function of the

ideal filter (h will subsequently designate its impulse response). Note that J̃ is not limited

to a simple quadratic mean square error between the update filter and the ideal low-pass

filter: the proposed criterion exploits the characteristics of the input signals, so making the

method contents adaptive. By cancelling the gradient of J̃ , the optimal update weights

satisfy, for each (k′, l′) ∈ U (o′)
j and o′ ∈ {HL, LH, HH}, the following condition:

∑

o∈{HL,LH,HH}

∑

(k,l)∈U(o)
j

u
(o)
j (k, l)

∑

(p,q)

∑

(p′,q′)

a
(o)
j (p, q)a(o′)

j (p′, q′)

×Rxj (p
′ − p + 2k′ − 2k, q′ − q + 2l′ − 2l)

=
∑

(p,q)

∑

(p′,q′)

h(p, q)a(o′)
j (p′, q′)Rxj (p

′ − p + 2k′, q′ − q + 2l′)

−
∑

(p′,q′)

a
(o′)
j (p′, q′)Rxj (p

′ + 2k′, q′ + 2l′). (6.24)

It must be emphasized that this criterion J̃ measures the quadratic error between the

output of the low-pass filter Fj and the ideal one H before decimation. However, it may

also be interesting to minimize the error after the decimation step. For this purpose, we

propose to use an alternative criterion which measures the error between the decimated
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versions:

J (uj) = E
[(

xj+1(m, n)− yj+1(m,n)
)2]

= E
[(

x0,j(m,n) +
∑

o∈{HL,LH,HH}

∑

(k,l)∈U(o)
j

u
(o)
j (k, l)x(o)

j+1(m− k, n− l)

− yj+1(m,n)
)2]

(6.25)

where

yj+1(m,n) = ỹj(2m, 2n) = (h ∗ xj)(2m, 2n).

Recall that the impulse response of the 2D ideal rectangular low-pass filter is defined in

the spatial domain by:

∀(m,n) ∈ Z2, h(m,n) =
1
4
sinc

(mπ

2

)
sinc

(nπ

2

)
. (6.26)

The optimal update coefficients minimizing the second criterion J verify, for each (k′, l′) ∈
U (o′)

j and o′ ∈ {HL, LH, HH}, the following equation:

∑

o∈{HL,LH,HH}

∑

(k,l)∈U(o)
j

u
(o)
j (k, l)E[x(o)

j+1(m− k, n− l)x(o′)
j+1(m− k′, n− l′)]

= E[yj+1(m, n)x(o′)
j+1(m− k′, n− l′)]− E[x0,j(m,n)x(o′)

j+1(m− k′, n− l′)]. (6.27)

It is worth pointing out that the resulting solution (6.27) is equivalent to the one obtained

by minimizing J̃ (6.24). Indeed, by using (6.4) and (6.22), it can be checked that:

x
(o)
j+1(m,n) =

∑

(p,q)

a
(o)
j (p, q)xj(2m− p, 2n− q) (6.28)

where a
(o)
j (p, q) are the coefficients of the transfer function A

(o)
j (z1, z2). Thus, by substi-

tuting this expression into (6.27), we deduce that the minimizations of criteria J̃ and J
lead to the same optimal solution.

As computing an error between the decimated versions of the image allows us to reduce

the complexity of our optimization method, we propose to use the second criterion J . In

this case, it can be noticed that (6.27) can be rewritten concisely as follows:

E[xj+1(m,n)xj+1(m,n)>]uj =E[yj+1(m,n)xj+1(m,n)]− E[x0,j(m,n)xj+1(m,n)] (6.29)

where
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• uj =
(
u

(o)
j (k, l)

)>
(k,l)∈U(o)

j ,o∈{HL,LH,HH}
is the update weight vector,

• xj+1(m, n) =
(
x

(o)
j+1(m − k, n − l)

)>
(k,l)∈P(o)

i,j ,o∈{HL,LH,HH}
is the update reference

vector containing the detail signals.

Consequently, the optimal update weights are solutions of a linear system of equations

given the second order characteristics of the involved signals. More specifically, in order to

solve (6.29), we need to compute

• the autocorrelation matrix Γj = E[xj+1(m,n)xj+1(m,n)>],

• the cross-correlation vector cxj = E[x0,j(m,n)xj+1(m,n)] and,

• the cross-correlation vector cxj ỹj = E[yj+1(m,n)xj+1(m,n)].

It is important to note that (6.16) and (6.29) can be solved if on the one hand, the NSLS

decomposition is explicitly defined through the reference prediction and update vectors

and, on the other hand, the autocorrelation function Rxj and cross-correlation one Rxj ỹj

are known at each resolution level j. Figures 6.2 and 6.3 display the magnitude plots of

the frequency responses of the low-pass filter F0 for the 5/3 wavelet transform obtained

before and after each optimization step applied respectively on a natural image (“castle”)

and a residual one obtained from the “spot5-3” stereo image.

It is clearly seen that the optimization of the update filter yields an optimal low-pass filter

which better attenuates the high frequency components than that obtained without the

update optimization step. Furthermore, it is worth pointing out that the optimal low-pass

filters corresponding respectively to the texture image and the residual one are different

since the update filter depends on the contents of the input image to be encoded.

6.4 Theoretical analysis

In this part, we perform a statistical analysis of our method in terms of the adaptation

criterion used in the optimization of the update filter. Firstly, we give explicit expressions

of the optimal update coefficients for a given class of input signals. Then, we confirm that

optimizing the update filter leads to lower values of criterion J than the ones obtained

with non-optimized coefficients.
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Figure 6.2: Frequency responses of the low-pass filter F0 when the prediction filters are

optimized by minimizing the variance of the detail coefficients, and (b) the update filter

is not optimized, (c) the update filter is optimized using Gouze’s method (d) the update

filter is optimized using the proposed method.

6.4.1 Notations

In order to study the theoretical performance of the optimization method, we will consider

the optimization of the 2D non separable 5/3 transform whose underlying operators are

given by (6.7)-(6.10). This amounts to choosing the following spatial supports for the
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(a): “SPOT5-3” residual image (b)
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Figure 6.3: Frequency responses of the low-pass filter F0 when the prediction filters are

optimized by minimizing the variance of the detail coefficients, and (b) the update filter

is not optimized, (c) the update filter is optimized using Gouze’s method (d) the update

filter is optimized using the proposed method.

prediction and update filters:

P(HH)
0,j = {(0, 0), (0,−1), (−1, 0), (−1,−1)},

P(HH)
1,j = {(0, 0), (−1, 0)},P(HH)

2,j = {(0, 0), (0,−1)}, (6.30)

P(LH)
0,j = {(0, 0), (−1, 0)},P(LH)

1,j = {(0, 0), (0, 1)}, (6.31)

P(HL)
0,j = {(0, 0), (0,−1)},P(HL)

1,j = {(0, 0), (1, 0)}, (6.32)

U (HL)
j = {(0, 0), (0, 1)},U (LH)

j = {(0, 0), (1, 0)}, (6.33)

U (HH)
j = {(0, 0), (0, 1), (1, 0), (1, 1)}. (6.34)
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To obtain tractable expressions, we assume that, at a given resolution level j, the approx-

imation image xj is modeled as the realization of a first order 2D autoregressive process,

the auto-correlation function of which is given by:

∀(k, l) ∈ Z2, Rxj (k, l) = E[xj(m,n)xj(m− k, n− l)] = σ2
j ρ
|k|
1,jρ

|l|
2,j (6.35)

where σj ∈ R∗+, and ρ1,j and ρ2,j ∈ [−1, 1] are the correlation factors along the vertical

and horizontal directions.

Although the considered autoregressive model is separable, it is worth noticing that such

a model has been widely used to represent a large class of textured images [Edward et al.,

1979]. Furthermore, it is convenient to derive simple theoretical expressions of the filter

coefficients.

6.4.2 Optimal prediction coefficients

Concerning the prediction filter p(HH)
j , its optimal coefficients are obtained by solving

(6.16) as described at the beginning of Section 6.3. Thus, once the autocorrelation matrix

E[x̃(HH)
j (m,n)x̃(HH)

j (m,n)>] and the cross-correlation vector E[x3,j(m,n)x̃(HH)
j (m,n)] are

calculated using (6.35), the optimal weights of p(HH)
j are deduced as follows:

p
(HH)
0,j (0, 0) = p

(HH)
0,j (0,−1) = p

(HH)
0,j (−1, 0) = p

(HH)
0,j (−1,−1) = − ρ1,jρ2,j

(1 + ρ2
1,j)(1 + ρ2

2,j)

p
(HH)
1,j (0, 0) = p

(HH)
1,j (−1, 0) =

ρ1,j

1 + ρ2
1,j

p
(HH)
2,j (0, 0) = p

(HH)
2,j (0,−1) =

ρ2,j

1 + ρ2
2,j

. (6.36)

By applying the same optimization method to the other prediction filters p(LH)
j and p(HL)

j ,

we get that their optimal weights are given by:

p
(HL)
0,j (0, 0) = p

(HL)
0,j (0,−1) =

ρ2,j

1 + ρ2
2,j

p
(LH)
0,j (0, 0) = p

(LH)
0,j (−1, 0) =

ρ1,j

1 + ρ2
1,j

p
(HL)
1,j (0, 0) = p

(HL)
1,j (1, 0) = p

(LH)
1,j (0, 0) = p

(LH)
1,j (0, 1) = 0. (6.37)

Once the optimal prediction filters are determined, we have to find the optimal weights for

the update filter.
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6.4.3 Optimal update coefficients

As mentioned above, the optimal update coefficients are optimized by solving (6.29) where

the reference vector xj+1(m,n) is defined as:

xj+1(m,n) =
(
x

(HL)
j+1 (m,n), x(HL)

j+1 (m,n− 1), x(LH)
j+1 (m,n), x(LH)

j+1 (m− 1, n),

x
(HH)
j+1 (m,n), x(HH)

j+1 (m,n− 1), x(HH)
j+1 (m− 1, n), x(HH)

j+1 (m− 1, n− 1)
)>

.

(6.38)

The components of Γj and cxj can be easily found by using (6.35). To derive the expression

of cxj ỹj , we have to calculate the cross-correlation between the input signal xj and the

output of the ideal low-pass filter ỹj :

Rxj ỹj (k, l) = E[ỹj(m,n)xj(m− k, n− l)] =
p=+∞∑
p=−∞

q=+∞∑
q=−∞

h(p, q)Rxj (k − p, l − q)

= σ2
j

p=∞∑
p=−∞

q=+∞∑
q=−∞

h(p, q)ρ|k−p|
1,j ρ

|l−q|
2,j . (6.39)

At this point, from (6.26), we note that h(p, q) has a separable form in p and q:

h(p, q) = h(p)h(q) (6.40)

where

h(p) =
1
2
sinc(

pπ

2
) =





1
2 if p = 0

0 if p is even
(−1)(p−1)/2

pπ if p is odd.

(6.41)

As a result, the expression of Rxj ỹj (k, l) can be rewritten in a separable way as:

Rxj ỹj (k, l) = σ2
j R

1
xj ỹj

(k)R2
xj ỹj

(l) (6.42)

where

R1
xj ỹj

(k) =
p=+∞∑
p=−∞

h(p)ρ|k−p|
1,j , (6.43)

R2
xj ỹj

(l) =
q=+∞∑
q=−∞

h(q)ρ|l−q|
2,j . (6.44)
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In addition, from (6.43) and (6.41), we deduce that:

R1
xj ỹj

(0) =
1
2

+
2
π

arctg(ρ1,j),

R1
xj ỹj

(−1) =
ρ1,j

2
+

(ρ−1
1,j + ρ1,j

π

)
arctg(ρ1,j),

R1D
xj ỹj

(2k) =





ρ2k
1,j

2 +
ρ2k
1,j

π

(
arctg(ρ1,j) +

∑−1
p=−k

(−1)pρ2p+1
1,j

2p+1

)

+
ρ−2k
1,j

π

(
arctg(ρ1,j)−

∑k−1
p=0

(−1)pρ2p+1
1,j

2p+1

)
if k > 0,

ρ−2k
1,j

2 +
ρ2k
1,j

π

(
arctg(ρ1,j)−

∑−k−1
p=0

(−1)pρ2p+1
1,j

2p+1

)

+
ρ−2k
1,j

π

(
arctg(ρ1,j) +

∑−1
p=k

(−1)pρ2p+1
1,j

2p+1

)
if k < 0,

R1
xj ỹj

(2k + 1) =





ρ2k+1
1,j

2 +
ρ2k+1
1,j

π

(
arctg(ρ1,j) +

∑−1
p=−k−1

(−1)pρ2p+1
1,j

2p+1

)

+
ρ
−(2k+1)
1,j

π

(
arctg(ρ1,j)−

∑−k
p=0

(−1)pρ2p+1
1,j

2p+1

)
if k > −1,

ρ
−(2k+1)
1,j

2 +
ρ2k+1
1,j

π

(
arctg(ρ1,j)−

∑−k−2
p=0

(−1)pρ2p+1
1,j

2p+1

)

+
ρ
−(2k+1)
j

π

(
arctg(ρ1,j) +

∑−1
p=k+1

(−1)pρ2p+1
1,j

2p+1

)
if k < −1.

The expressions of R2
xj ỹj

(l) are easily derived by replacing ρ1,j by ρ2,j in the above equali-

ties. Altogether, we obtain Rxj ỹj (k, l) by using (6.42).

Once Γj , cxj and cxj ỹj are determined, after some calculations, the optimal update coeffi-

cients are simply given by:

u
(HL)
j (0, 0) = u

(HL)
j (0, 1) =

π + 4 arctg(ρ1,j)
2π2

u
(LH)
j (0, 0) = u

(LH)
j (1, 0) =

π + 4 arctg(ρ2,j)
2π2

u
(HH)
j (0, 0) = u

(HH)
j (0, 1) = u

(HH)
j (1, 0) = u

(HH)
j (1, 1) =

1
π2

. (6.45)

Note that, although the simple separable autoregressive modeling which was adopted in-

duces a separable form of the optimized prediction and update filters, the resulting NSLS

cannot be put under the classical form of a separable lifting structure. This can be jus-

tified by the fact that the vector u(HH)
j is not equal to the Kronecker product of u(HL)

j

and u(LH)
j . Indeed, the necessary conditions for satisfying the equivalence between a non

separable scheme and a separable one are given at the end of Section 6.2.

6.4.4 Adaptation criterion values

In order to show the interest of our optimization approach, we aim at comparing the values

of the criterion J in the two following cases:
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• Case I: the update vector unonopt
j has non optimized components corresponding to

the conventional 5/3 transform, given by (6.10):

unonopt
j = [1/4, 1/4, 1/4, 1/4,−1/16,−1/16,−1/16,−1/16].

• Case II: the update vector uopt
j corresponds to weights minimizing J .

Our objective is to evaluate the gain resulting from the optimization of J by calculating

J (unonopt
j ) and J (uopt

j ). To this respect, we recall that the optimal value of J can be

expressed as:

J (uopt
j ) =E

[
x0,j(m, n)2

]
+ E

[
yj+1(m, n)2

]− 2E
[
x0,j(m,n)yj+1(m,n)

]

+ (uopt
j )>E

[
x0,j(m,n)xj+1(m,n)

]− (uopt
j )>E

[
yj+1(m,n)xj+1(m,n)

]
. (6.46)

Eq. (6.46) indicates that the evaluation of J requires to find the expressions of Rxj (k, l),

Rxj ỹj (k, l), and the value Ryj+1(0, 0) of the autocorrelation of yj+1 at (0, 0). The first two

expressions are readily given by (6.35) and (6.45) whereas the third one is easily derived:

Ryj+1(0, 0) = σ2
j

(1
2

+
2
π

arctg(ρ1,j)
)2(1

2
+

2
π

arctg(ρ2,j)
)2

. (6.47)

It is worth pointing out that the calculation of the adaptation criterion has not led to a

simple expression as a function of ρ1,j and ρ2,j . In order to obtain more easily interpretable

results, we propose to consider the case of an approximation image that presents strong

correlations in the horizontal and vertical directions. In other words, we focus on the case

when the couple (ρ1,j , ρ2,j) is close to (1,1). Hence, we propose to approximate J by its

second-order Taylor expansion Ĵ when (ρ1,j , ρ2,j) is around (1,1):

Ĵ
(
unonopt

j

)
' σ2

j

2

[1
4
(2− ρ1,j − ρ2,j) +

1
8
(1− ρ1,j)2 +

1
8
(1− ρ2,j)2

+ (
3
π2

+
1
32

)(1− ρ1,j)(1− ρ2,j)
]

Ĵ
(
uopt

j

)
' σ2

j

π2

[
(π − 2)(2− ρ1,j − ρ2,j) +

π − 2
2

(1− ρ1,j)2

+
π − 2

2
(1− ρ2,j)2 +

π2 − 8π + 4
π2

(1− ρ1,j)(1− ρ2,j)
]
. (6.48)

6.4.5 Discussion

In order to emphasize the usefulness of the optimization of the update filter, we illustrate in

Fig. 6.4 the variations of the criterion in (6.48) with respect to ρj , where we have assumed

that ρ1,j = ρ2,j = ρj .



6.5. Transmission cost of the filter coefficients 117

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Figure 6.4: Variations of the adaptation criterion w.r.t ρj : J (unonopt) in solid blue line,

J (uopt) in solid red line, Ĵ (unonopt) in dotted blue line, Ĵ (uopt) in dotted red line.

At first, Fig. 6.4 shows that the Taylor expansion closely approximates the criterion when

ρj ≥ 0.85. Note that in practice, for natural images, the values of ρj are within such a

range [Chabrier et al., 2005]. Besides, by adapting the update filter coefficients to the image

statistical characteristics, we can see that the optimized scheme leads to an improvement

compared with the non-optimized one. In summary, the interest of this theoretical study

is twofold. First, it allows us to better understand the benefits that can be drawn from the

proposed optimization method. Furthermore, it provides closed form expressions of the

prediction and update filters which can be used in order to simplify the implementation of

the proposed optimization method.

6.5 Transmission cost of the filter coefficients

The entire set of optimal weights for the update and the three prediction filters corresponds

to an amount of op,u = (Lp + Lu) J floating point coefficients, where Lp and Lu denote

respectively the number of prediction and update weights in the adaptive NSLS and J

represents the number of resolution levels. For an image of size N1 ×N2, the transmission

cost of the filters coefficients will increase the bitrate achieved by the proposed optimization

method, by 32 op,u

N1N2
bits per pixel. For example, if we consider the supports of the prediction

and update filters corresponding to the 2D 5/3 transform with Lp = 16 and Lu = 8 (see

(6.7)-(6.10)) , when N1 = N2 = 512, J = 2 and if the weights are stored on 32 bits, the

bitrate will be increased by 0.0059 bpp which is a very small fraction of the overall data
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bitrate. However, if we use the explicit expressions of the filter coefficients given by the

theoretical analysis, it is enough to send only the correlation factors ρ1,j and ρ2,j . This

leads to a significant reduction of the transmission cost of the filter coefficients, which

becomes 0.0004 bpp.

6.6 Experimental results

Simulations were carried out on two kinds of still images originally quantized on 8 bpp

which are either single views2 or stereoscopic ones3. The gain related to the optimization

of the NSLS operators was evaluated in these contexts.

Since we are mainly interested in lossy-to-lossless coding schemes, we will consider the

integer-to-integer 5/3 transform recommended for the lossless mode of JPEG2000 [Taub-

man, Marcellin, 2001]. In order to show the benefits of the optimization of all the involved

operators, we provide the results for the following decompositions carried out over two

resolution levels:

• The first one is the lifting scheme corresponding to the 5/3 integer transform, which is

known as the (2,2) wavelet transform [Calderbank et al., 1998]. Its underlying decomposi-

tion operators are given by (6.7)-(6.10). In the following, this method will be designated

by NSLS(2,2).

• The second variant consists of optimizing only the prediction filters of the NSLS(2,2)

while the update filter is kept unchanged. Note that the prediction support is preserved.

This method will be denoted by NSLS(2,2)-OPT1.

• The third method consists of optimizing both the prediction and update operators. In

what follows, our proposed method will be designated by NSLS(2,2)-OPT2-PM1 (resp.

NSLS(2,2)-OPT2-PM2) when using the experimental (resp. theoretical) optimal update

coefficients.

• We have also tested for comparison the update optimization method of Gouze et al.

which aims at designing the update filter in order to minimize a reconstruction error

[Pesquet-Popescu, 1999; Gouze et al., 2004]. This optimization method will be desig-

nated by NSLS(2,2)-OPT2-GM.

As mentioned earlier, the proposed method for the design of all filters can be applied

2taken from the URL http://sipi.usc.edu/database
3http://vasc.ri.cmu.edu/idb/html/stereo/index.html
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to any classical P-U lifting structure. To illustrate the performance of the optimization

method when using longer filters, we will consider a simple example corresponding to the

(4,2) integer wavelet transform. Indeed, after applying this transform to the lines then

to the columns, it is easy to show that the corresponding support of the two-dimensional

prediction and update filters are given by:

P(HH)
0,j = {(k, l) | −2 ≤ k ≤ 1,−2 ≤ l ≤ 1},P(HH)

1,j = {(k, 0) | −2 ≤ k ≤ 1},

P(HH)
2,j = {(0, l) | −2 ≤ l ≤ 1}, (6.49)

P(LH)
0,j = {(k, l) | −2 ≤ k ≤ 1,−2 ≤ l ≤ 1},P(LH)

1,j = {(0, 0), (0, 1)}, (6.50)

P(HL)
0,j = {(k, l) | −2 ≤ k ≤ 1,−2 ≤ l ≤ 1},P(HL)

1,j = {(0, 0), (1, 0)}, (6.51)

U (0)
j = {(0, 0), (0, 1)},U (1)

j = {(0, 0), (1, 0)},U (2)
j = {(0, 0), (0, 1), (1, 0), (1, 1)}. (6.52)

In what follows, NSLS(4,2)-OPT1 and NSLS(4,2)-OPT2-PM1 will designate respectively

the decompositions when optimizing the predict and both filters.

First of all, the performance of the proposed method has been assessed on monocular im-

ages. Starting with the evaluation of these decompositions in a progressive reconstruction

context, Figures 6.5 and 6.6 give the variations of the PSNR versus the bitrate for the

“lena” and “castle” images.
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Figure 6.5: PSNR (in dB) versus the bitrate (bpp) after JPEG2000 progressive encoding

for the “lena” image.
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Figure 6.6: PSNR (in dB) versus the bitrate (bpp) after JPEG2000 progressive encoding

for the “castle” image.

It is worth pointing out that NSLS(2,2)-OPT2-PM1 outperforms NSLS(2,2) by 0.2-0.9 dB

and NSLS(2,2)-OPT1 by about 0.4 dB. It can be noticed that the proposed update opti-

mization method NSLS(2,2)-OPT2-PM1 and Gouze’s method NSLS(2,2)-OPT2-GM have

similar performances in terms of quality of reconstruction. However, it is worth pointing

out that our work present two advantages with respect to Gouze’s work. Firstly, the pro-

posed method reduces significantly the complexity of the optimization algorithm. Indeed,

although both minimization approaches amount to solving a linear system Ajuj = bj , it

is worth noting that calculating Aj and bj is more intricate and requires more operations

in the case of Gouze’s method [Pesquet-Popescu, 1999; Gouze et al., 2004]. More precisely,

in this case, the matrix Aj (resp. vector bj) is completely defined by the computation

of four matrices of size 8 × 8 (resp. four vectors of dimension 8) since the reconstruction

error is evaluated for each of the four polyphase components (see (6.17)). Our optimiza-

tion method requires only the computation of one matrix of size 8 × 8 and two vectors

of dimension 8 as shown in (6.29). To better illustrate this fact, we propose to compare

these two optimization methods in terms of their computation time. Table 6.1 presents the

computation time of a Matlab implementation of the optimization methods of the update

filter for some images of size 512× 512. Simulations are carried out by using an Intel Core
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2 (3 GHz) computer. It can be noticed that the proposed method is three times faster than

Gouze’s method based on the minimization of the reconstruction error. Secondly, the main

advantage of the current work is that it provides explicit expressions of the optimal filter

coefficients based only on the horizontal and vertical correlation factors. In order to show

the benefit of the statistical analysis we conducted, we evaluate our method when using

directly the obtained theoretical filter coefficient expressions. We can see in Figures 6.5

and 6.6 that using the theoretical values of the optimal filters NSLS(2,2)-OPT2-PM2 yields

results comparable with the method based on experimental filter coefficients NSLS(2,2)-

OPT2-PM1. This confirms that the considered autoregressive model allows us to obtain

theoretical results which are close to the experimental ones. We however noticed that the

simple autoregressive model becomes inaccurate in the case of some specific images show-

ing a strong correlation in another direction than the horizontal or vertical ones. For

Table 6.1: Computation time of the optimization method of the update filter (in seconds).

Image lena einst castle elaine

Gouze’s method 3.14 3.11 3.09 3.11

Our method 1.06 1.07 1.08 1.06

example, Table 6.2 illustrates the optimized filter coefficients for the “castle” and “straw”

images. An additional gain of 0.3 dB can be achieved by using longer filters NSLS(4,2)-

OPT2-PM1. Figures 6.7, 7.7 and 6.9 display the reconstructed images of “airport” and

“lena” and “elaine”. The quality of these images is compared both in terms of PSNR and

Structural SIMilarity (SSIM) [Wang et al., 2004; Rouse, Hemami, 2008]. It can be observed

that optimizing both the prediction and update filters significantly improves the quality of

reconstruction. The difference in PSNR (resp. SSIM) ranges from 0.35 dB to 0.4 dB (resp.

from 0.03 to 0.07) compared with the decompositions in which only the prediction filters

are optimized. In addition, we have tested these methods in a lossless coding context and

the related final bitrates are given in Table 6.3. Slight improvements (about 0.02 bpp com-

pared to the Gouze’s method) are obtained when our optimization method is employed in

a lossless coding scheme.
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Table 6.2: Experimental and theoretical results of filter coefficients for the “castle” and

“straw” images

Image Filter Experimental optimized coefficients Theoretical optimized coefficients

castle p(HH)
0 [−0.2153,−0.2041,−0.2081,−0.2139, [−0.2496,−0.2496,−0.2496,−0.2496,

0.4749, 0.4798, 0.4457, 0.4419]> 0.4997, 0.4997, 0.4997, 0.4997]>

p(HL)
0 [0.5041, 0.5054,−0.1192,−0.1081]> [0.4994, 0.4994, 0, 0]>

p(LH)
0 [0.4983, 0.5039,−0.1494,−0.1542]> [0.4997, 0.4997, 0, 0]>

u0 [0.2897, 0.2855, 0.2839, 0.2771, [0.3150, 0.3150, 0.3132, 0.3132,

0.0906, 0.0753, 0.0827, 0.0849]> 0.1013, 0.1013, 0.1013, 0.1013]>

straw p(HH)
0 [−0.2410, 0.0855, 0.0676,−0.2505, [−0.2293,−0.2293,−0.2293,−0.2293,

0.3446, 0.3360, 0.3160, 0.3289]> 0.4769, 0.4769, 0.4808, 0.4808]>

p(HL)
0 [0.5206, 0.5298,−0.0763,−0.0659]> [0.4808, 0.4808, 0, 0]>

p(LH)
0 [0.5568, 0.4904,−0.1051,−0.1554]> [0.4769, 0.4769, 0, 0]>

u0 [0.1990, 0.1881, 0.1744, 0.1949, [0.2874, 0.2874, 0.2901, 0.2901,

0.2118,−0.0928,−0.0949, 0.2110]> 0.1013, 0.1013, 0.1013, 0.1013]>

Table 6.3: Performance of the lossless decompositions in terms of bitrate (bpp) using

JPEG2000.
Image NSLS(2,2) NSLS(2,2) NSLS(2,2)- NSLS(2,2)-

OPT1 OPT2-GM OPT2-PM1

spot5-1 3.94 3.87 3.88 3.85

spot5-2 4.17 4.09 4.09 4.06

spot5-3 4.15 4.07 4.08 4.04

lena 4.31 4.31 4.31 4.31

straw 6.35 6.34 6.34 6.34

airport 5.49 5.48 5.48 5.48

earthquake 6.48 6.30 6.33 6.30

castle 3.70 3.66 3.66 3.66

Average 4.82 4.76 4.77 4.75

The second part of the experiments is concerned with stereo images. More precisely, we

also evaluate our optimization method for coding residual images obtained after disparity-
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(a): Original image (b): PSNR=28.42 dB, SSIM=0.734

(c): PSNR=28.45 dB, SSIM=0.738 (d): PSNR=28.80 dB, SSIM=0.741

Figure 6.7: Zoom applied on the reconstructed “airport” image at 0.35 bpp using:

(b) NSLS(2,2) (c) NSLS(2,2)-OPT1 (d) NSLS(2,2)-OPT2-PM1.

compensation between the right and the left views. Note that this stereo image coding

scheme was designated by scheme B in the previous chapters. Figures 6.10 and 6.11 illus-

trate the evolution of the PSNR versus the bitrate of the residual image generated respec-

tively from the“shrub”and“spot5-3”stereo image pairs. An improvement of 0.1-0.25 dB is

obtained by optimizing the update filter. The gain becomes more important (up to 0.6 dB)

when compared with the non-optimized NSLS(2,2) wavelet transform. Furthermore, we
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(a): Original image (b): PSNR=31.81 dB, SSIM=0.860

(c): PSNR=32.49 dB, SSIM=0.872 (d): PSNR=32.92 dB, SSIM=0.877

Figure 6.8: The reconstructed “lena” image at 0.25 bpp using: (b) NSLS(2,2)

(c) NSLS(2,2)-OPT1 (d) NSLS(2,2)-OPT2-PM1.

show that using the theoretical filter coefficient expressions, NSLS(2,2)-OPT2-PM2 yields

performances similar to the NSLS(2,2)-OPT2-PM1 scheme. An additional gain of 0.3 dB

is achieved by using NSLS(4,2)-OPT2-PM1. Figure 6.12 displays the reconstructed im-

ages of the residual one generated from the “pentagon” stereo pair. It can be observed

that optimizing both the prediction and update filters leads to an improvement of 0.22 dB

(resp. 0.04) in PSNR (resp. SSIM) compared with the decomposition in which only the
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(a): Original image (b): PSNR=30.64 dB, SSIM=0.733

(c): PSNR=30.99 dB, SSIM=0.741 (d): PSNR=31.37 dB, SSIM=0.748

Figure 6.9: The reconstructed “elaine” image at 0.2 bpp using: (b) NSLS(2,2)

(c) NSLS(2,2)-OPT1 (d) NSLS(2,2)-OPT2-PM1.

prediction filters are optimized.

All these results, obtained with monocular images and residual images of stereo pairs,

confirm the effectiveness of our method in terms of reconstruction quality.
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Figure 6.10: PSNR (in dB) versus the bitrate (bpp) after JPEG2000 progressive encoding

for the “shrub” residual image.
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Figure 6.11: PSNR (in dB) versus the bitrate (bpp) after JPEG2000 progressive encoding

for the “spot5-3” residual image.
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(a): Original residual image (b): PSNR=29.60 dB, SSIM=0.484

(c): PSNR=29.65 dB, SSIM=0.515 (d): PSNR=29.87 dB, SSIM=0.541

Figure 6.12: The reconstructed“pentagon”residual image at 0.31 bpp using: (b) NSLS(2,2)

(c) NSLS(2,2)-OPT1 (d) NSLS(2,2)-OPT2-PM1.

6.7 Conclusion

In this chapter, we have exploited the flexibility offered by non separable lifting schemes in

the optimization of their operators. A new criterion has been presented for the optimiza-

tion of the update filter in this context. The proposed method adapts the filters to the

contents of the input image while ensuring perfect reconstruction. A theoretical analysis in

terms of the chosen adaptation criterion was conducted in order to show the benefits that
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can be drawn from this optimization method. Furthermore, this study provides closed form

expressions of the optimal filter coefficients which, due to their simplicity, can be exploited

in the implementation process. Experimental results, carried out on still images and resid-

ual images of stereo pairs have illustrated the good performance in terms of bitrate and

quality of reconstruction when optimizing both the prediction and the update filters.
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Chapter 7

Sparse optimization criteria for

still and stereo image coding

7.1 Introduction

In this chapter, we investigate techniques for optimizing a sparsity promoting criterion,

which can be used for the design of all the operators involved in a two-dimensional non

separable lifting scheme. Unlike the previous work presented in chapter 6 [Kaaniche et al.,

2011] where the prediction filters have been separately optimized by minimizing an `2 cri-

terion, we propose here to perform the optimization process by minimizing an `1 criterion.

Furthermore, the main contribution of this work is to jointly optimize the prediction filters

by minimizing a weighted `1 criterion.

The remainder of this chapter is organized as follows. In Section 7.2, the motivation for

using an `1 criterion in lifting optimal design problems is firstly discussed. Then, the iter-

ative algorithm for minimizing such a criterion is described in Section 7.3. In Section 7.4,

we present a weighted `1 criterion which aims at minimizing the global prediction error.

In Section 7.5, we propose to jointly optimize the prediction filters by using an algorithm

that alternates between optimizing all the filters and redefining the weights. Finally, in

Section 7.6, experimental results are given and some conclusions are drawn in Section 7.7.
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7.2 From `2 minimization to `1 minimization

Generally, wavelet coefficient statistics are exploited in order to increase the compression

efficiency of images [LoPresto et al., 1997]. More precisely, detail wavelet coefficients are

often viewed as realizations of a continuous zero-mean random variable X whose probability

density function f is given by a Generalized Gaussian Distribution (GGD) [Mallat, 1989;

Payan, Antonini, 2005]:

∀x ∈ R, f(x; α, β) =
β

2αΓ( 1
β )

e
−
(
|x|
α

)β

(7.1)

where Γ(z) =
∫ +∞
0 tz−1e−tdt is the Gamma function, α > 0 is the scale parameter, and

β > 0 is the shape parameter. We should note that in the particular case when β = 2

(resp. β = 1), the GGD corresponds to the Gaussian distribution (resp. the Laplace one).

The parameters α and β can be easily estimated from the empirical moments χ = E[|X|]
and ψ = E[|X|2]. More precisely, by using the following relationship

ψ

χ2
=

Γ( 1
β )Γ( 3

β )

Γ2( 2
β )

(7.2)

we can use a look-up table for different values of β and determine the optimal value from

the pair (χ, ψ) [Sharifi, Leron-Garcia, 1995]. Once we have obtained β, α can be deduced

by using Eq. (7.2). Alternatively, maximum likelihood estimates, based on the Newton-

Raphson iterative algorithm [Kay, 1993], can be used [Do, Vetterli, 2002].

Let us now adopt this GGD model for the probability of the detail coefficients generated

by a lifting structure. More precisely, at each resolution level j and orientation o (o ∈
{HL, LH, HH}), the wavelet coefficients x

(o)
j+1(m,n) are viewed as a realization of random

variable X
(o)
j+1 with probability distribution given by a GGD function of parameters α

(o)
j+1

and β
(o)
j+1. Thus, this class of distributions allows us to simply express the differential

entropy h of the variable X
(o)
j+1 as follows [Gish, Pierce, 1969; Benazza-Benyahia et al.,

2007]:

h(X(o)
j+1) =

( 1

Mj+1Nj+1(α
(o)
j+1)

β
(o)
j+1 ln(2)

) Mj+1∑

m=1

Nj+1∑

n=1

∣∣∣x(o)
j+1(m, n)

∣∣∣
β

(o)
j+1 − log2

( β
(o)
j+1

2α
(o)
j+1Γ( 1

β
(o)
j+1

)

)

(7.3)

where (Mj+1, Nj+1) corresponds to the dimensions of x
(o)
j+1.

Let
(
x̄

(o)
j+1(m,n)

)
1≤m≤Mj+1

1≤n≤Nj+1

be the outputs of a uniform quantizer with quantization step q
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driven with the real-valued coefficients
(
x

(o)
j+1(m,n)

)
1≤m≤Mj+1

1≤n≤Nj+1

. The coefficients x̄
(o)
j+1(m,n)

can be viewed as a realization of a random variable X
(o)
j+1 taking its values in

{. . . ,−2q,−q, 0, q, 2q, . . .}. At high resolution, it was proved in [Gish, Pierce, 1969] that

the following relation holds between the discrete entropy H of X
(o)
j+1 and the differential

entropy h of X
(o)
j+1:

H(X(o)
j+1) ≈ h(X(o)

j+1)− log2(q). (7.4)

Thus, from Eq. (7.3), we can see [Petrisor et al., 2007] that the entropy H of X
(o)
j+1 is (up

to a ln(2) dividing factor and an additive constant) approximatively equal to:

( 1

α
(o)
j+1

)β
(o)
j+1

Mj+1∑

m=1

Nj+1∑

n=1

∣∣∣x(o)
j+1(m,n)

∣∣∣
β

(o)
j+1

. (7.5)

Therefore, we conclude that the minimization of the entropy of the detail wavelet coeffi-

cients is equivalent to the minimization of their `
β

(o)
j+1

-norm.

Based on these results, we have analyzed the wavelet coefficients generated from the pre-

vious NSLS(2,2) decomposition described in Section 6.6. Figure 7.1 (resp. 7.2) shows the

distribution of each detail subband for the “einst” image when the prediction filters are not

optimized (resp. they are optimized by minimizing the `2-norm of the detail coefficients).

The maximum likelihood technique is used to estimate the β parameter.
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Figure 7.1: The generalized Gaussian distribution of the: (b) horizontal detail subband

x
(HL)
1 (β(HL)

1 = 1.01), (c): vertical detail subband x
(LH)
1 (β(LH)

1 = 1.12), (d): diagonal

detail subband x
(HH)
1 (β(HH)

1 = 1.16). The detail coefficients are generated from the non-

optimized NSLS(2,2) decomposition when applied to the “einst” image.

It is important to note that the shape parameters of the resulting detail subbands are closer
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Figure 7.2: The generalized Gaussian distribution of the: (b) horizontal detail subband

x
(HL)
1 (β(HL)

1 = 1.07), (c): vertical detail subband x
(LH)
1 (β(LH)

1 = 1.14), (d): diagonal

detail subband x
(HH)
1 (β(HH)

1 = 1.15). The detail coefficients of the “einst” image are

optimized by minimizing their `2-norm.

to β = 1 than to β = 2. Therefore, this observation suggests that minimizing the `1-norm

may be more efficient than the `2 minimization technique.

An additional advantage of `1 minimization techniques is that they yield a sparse rep-

resentation of the signal [Cai et al., 2009]. Sparse representation approaches have been

attracted a considerable attention over the last few years in the signal processing litera-

ture such as in the Compressed Sensing field [Donoho, 2006; Mun, Fowler, 2009], image

deblurring [Yang et al., 2009] and image compression [Fowler et al., 2007; Masmoudi et al.,

2010]. For instance, the common wisdom in data compression community holds that the

rate-distortion performance of coding is directly tied to the energy of the signal being

compressed. On the other hand, in practical implementations of compression systems, the

sparsity of a signal, where a portion of the signal samples are zero, has a great impact

on the ultimate rate-distortion performance. For example, embedded wavelet-based image

coders can spend a majority of their bit budget coding the significance map needed to

locate non-zero coefficients within the wavelet domain. Here, we should note that there are

relatively few works that have focused on the design of sparse decompositions for coding

purposes. Indeed, geometric wavelet transforms such as curvelets [Candes, Donoho, 2004]

and contourlets [Do, Vetterli, 2005] have been proposed to provide sparse representations

of the images. One difficulty of such transforms is their redundancy: they produce a num-

ber of coefficients that is larger than the number of pixels in the original image. This
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can be a main obstacle for achieving efficient coding schemes. To control this redundancy,

a mixed contourlet and wavelet transform is proposed in [Chappelier et al., 2004] where

contourlet is used at fine scales and wavelet transform is employed at coarse scales. Later,

bandelet transforms that aim at developing sparse geometric representation of the images

have been introduced and studied in the context of image coding and image denoising

[Pennec, Mallat, 2005]. Unlike contourlets and curvelets which are fixed transforms, ban-

delet transforms require an edge detection stage followed by an adaptive decomposition.

Furthermore, the directional selectivity of 2D complex dual-tree discrete wavelet trans-

forms [Kingsbury, 2001] has been exploited in the context of image [Fowler et al., 2007]

and video coding [Boettcher, Fowler, 2007]. Since such a transform is redundant, Fowler

et al. apply a noise-shaping process [Reeves, Kingsbury, 2002] to increase the sparsity of

the wavelet coefficients. Recently, a sparse block-based transform that exploits regular-

ity along directional image singularities was proposed in [Sezer et al., 2008]. This work

classifies image blocks and optimizes transforms for each class by using a set of training

images. In [Drémeau et al., 2010b; Drémeau et al., 2010a], the authors build a library

of directional DCT bases using a bintree block segmentation. Then, the selection of the

optimal basis from this set is made according to a rate-distortion criterion by employing

dynamic programming.

However, while the minimization of an `1 criterion is often considered in the aforemen-

tioned domains, it is worth pointing out that the use of such a criterion for lifting operator

design has not been previously investigated. Note that the optimization of the prediction

operator in a lifting scheme based on an entropy criterion has already been investigated in

[Benazza-Benyahia et al., 2007; Solé, Salembier, 2007]. In [Benazza-Benyahia et al., 2007],

the approach is limited to a quincunx structure and the optimization is performed in an

empirical manner. In [Solé, Salembier, 2007], a generalized lifting scheme is considered.

The prediction step, viewed as a mapping function, is optimized by minimizing the detail

signal energy. The authors show that the resulting mapping function also minimizes the

output entropy.

7.3 `1 minimization method

Due to the aforementioned advantages of `1 minimization techniques, it appears interesting

to study the benefits of using such techniques in lifting filters design. For this purpose,
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instead of minimizing the `2-norm of the detail coefficients x
(o)
j+1 [Kaaniche et al., 2011],

we propose in this section to optimize the prediction filters by minimizing the following `1

criterion:

∀ o ∈ {HL,LH, HH} and i ∈ {1, 2, 3},

J`1(p
(o)
j ) =

Mj∑

m=1

Nj∑

n=1

∣∣∣xi,j(m, n)− (p(o)
j )>x̃(o)

j (m,n)
∣∣∣ (7.6)

where xi,j(m,n) is the (i + 1)th polyphase component to be predicted, x̃(o)
j (m,n) is the

reference vector containing the samples used in the prediction step, p(o)
j is the prediction

operator to be optimized (L will subsequently designate its length), and [Mj , Nj ] corre-

sponds to the dimensions of the image xj divided by 2.

Although the criterion in (7.6) is convex, a major difficulty that arises in solving this prob-

lem stems from the fact that the function to be minimized is not differentiable. For this

purpose, a class of efficient proximal optimization algorithms has been proposed to solve

(7.6) [Combettes, Pesquet, 2010]. In our context, we have employed the Douglas-Rachford

algorithm which is known as one of the simplest and most efficient optimization algorithms

[Eckstein, Bertsekas, 1992].

Douglas-Rachford algorithm

For minimizing the `1 criterion, we will resort to the concept of proximity operators

[Moreau, 1965], which has been recognized as a promising tool in the recent convex opti-

mization literature [Chaux et al., 2007; Combettes, Wajs, 2005]. For this reason, before

describing the algorithm, we need to address the necessary background on convex analysis

and proximity operators [Hiriart-Urruty, Lemaréchal, 1993; Rockafellar, 1970]. The main

definitions which will be useful to understand the remaining of this chapter are summarized

briefly below:

• RK is the usual K-dimensional Euclidean space with norm ‖.‖.

• The distance function to a nonempty set C ⊂ RK is defined by

∀x ∈ RK , dC(x) = inf
y∈C

‖x− y‖.

• The projection of x ∈ RK onto a nonempty closed convex set C ⊂ RK is the unique

point PC(x) ∈ C such that dC(x) = ‖x− PC(x)‖.
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• The indicator function of C is given by

∀x ∈ RK , ıC(x) =





0 if x ∈ C,

+∞ otherwise.
(7.7)

• Γ0(RK) is the class of functions from RK to ] − ∞, +∞] which are lower semi-

continuous, convex, and not identically equal to +∞.

• The proximity operator of f ∈ Γ0(RK) is proxf : RK → RK : x 7→ arg miny∈RK f(y)+
1
2‖x−y‖2. It is important to note that the proximity operator generalizes the notion

of a projection operator into a closed convex set C in the sense that proxıC = PC ,

and it moreover possesses most of its attractive properties [Moreau, 1965] that make

it particularly well-suited for designing iterative minimization algorithms.

Now, we will describe the Douglas-Rachford algorithm for solving our minimization prob-

lem (7.6). We recall here that we are interested in optimizing the prediction filters by

minimizing the `1-norm of the difference between the current pixel xi,j and its predicted

value. In this context, xi,j =
(
xi,j(m,n)

)
1≤m≤Mj

1≤n≤Nj

can be viewed as an element of the

Euclidean space RKj where Kj = Mj ×Nj .

The minimization problem (7.6) can be rewritten as:

∀ o ∈ {HL,LH, HH} and i ∈ {1, 2, 3},

min
z
(o)
j ∈V

Mj∑

m=1

Nj∑

n=1

∣∣∣xi,j(m,n)− z
(o)
j (m,n)

∣∣∣ (7.8)

where V is the vector space defined as

V = {z(o)
j =

(
z
(o)
j (m, n)

)
1≤m≤Mj

1≤n≤Nj

| ∃ p(o)
j ∈ RL, ∀ (m,n) ∈ {1, ..., Mj} × {1, ..., Nj},

z
(o)
j (m, n) = (p(o)

j )>x̃(o)
j (m,n)}.

Based on the definition of the indicator function, Problem (7.8) is equivalent to the following

minimization problem:

∀ o ∈ {HL, LH, HH} and i ∈ {1, 2, 3},

min
z
(o)
j ∈RKj

Mj∑

m=1

Nj∑

n=1

∣∣∣xi,j(m,n)− z
(o)
j (m,n)

∣∣∣ + ıV (z(o)
j ). (7.9)
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Therefore, Problem (7.9) can be viewed as a minimization of a sum of two functions f1

and f2 defined by:

f1(z
(o)
j ) = ‖xi,j − z(o)

j ‖`1 =
Mj∑

m=1

Nj∑

n=1

∣∣∣xi,j(m, n)− z
(o)
j (m,n)

∣∣∣ (7.10)

f2(z
(o)
j ) = ıV (z(o)

j ). (7.11)

In this case, the Douglas-Rachford algorithm can be applied to provide an appealing nu-

merical solution to Problem (7.9). The solution is obtained by the following iterative

algorithm:

Set t(o)
j,0 ∈ RKj , γ > 0, λ ∈]0, 2[, and,

for k = 0, 1, 2, ...

z(o)
j,k = proxγf2

t(o)
j,k

t(o)
j,k+1 = t(o)

j,k + λ
(
proxγf1

(2z(o)
j,k − t(o)

j,k)− z(o)
j,k

)
. (7.12)

An important feature of this algorithm is that it proceeds by splitting, in the sense that the

functions f1 and f2 are dealt with in separate steps: in the first step, only the function f2

is required to obtain z(o)
j,k and, in the second step, only the function f1 is required to obtain

t(o)
j,k+1. Furthermore, it can be seen that the algorithm requires to compute two proximity

operators proxγf1
and proxγf2

at each iteration. One can find in [Combettes, Pesquet,

2010] closed-form expression of the proximity operator of various functions in Γ0(R). In

our case, the proximity operator of γf1 is given by:

∀ t(o)
j,k ∈ RKj , proxγf1

(t(o)
j,k) =

(
π

(o)
j,k (m,n)

)
1≤m≤Mj

1≤n≤Nj

(7.13)

where

π
(o)
j,k (m, n) = soft[−γ,γ]

(
t
(o)
j,k(m,n)− xi,j(m,n)

)
+ xi,j(m,n) (7.14)

where

∀ α ∈ R, soft[−γ,γ](α) =





sign(α)(|α| − γ) if |α| > γ

0 otherwise.
(7.15)

Concerning γf2, it is easy to check that its proximity operator is expressed as:

∀ t(o)
j,k ∈ RKj , proxγf2

(t(o)
j,k) = PV (t(o)

j,k)

=
(
ẑ
(o)
j,k (m,n)

)
1≤m≤Mj

1≤n≤Nj

=
(
(p(o)

j,k)>x̃(o)
j (m,n)

)
1≤m≤Mj

1≤n≤Nj

(7.16)
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where p(o)
j,k =

(∑
m,n x̃(o)

j (m,n)(x̃(o)
j (m,n))>

)−1 ∑
m,n x̃(o)

j (m,n)t(o)j,k(m,n).

Finally, it is important to note that it has been shown (see [Combettes, Pesquet, 2007]

and references therein) that every sequence z(o)
j,k generated by the Douglas-Rachford algo-

rithm (7.12) converges to a solution to problem (7.9) provided that the parameters γ and

λ are fixed as indicated.

Once the different terms involved in the iterative algorithm (7.12) are defined, this one can

be applied to optimize all the prediction filters.

7.4 Global prediction error minimization technique

7.4.1 Motivation

Up to now, each prediction filter p(o)
j (o ∈ {HL,LH, HH}) has been separately optimized

by minimizing the `1-norm of the corresponding detail signal x
(o)
j+1 which seems appropriate

to determine p(LH)
j and p(HL)

j . However, it can be noticed from Fig. 7.3 that the diagonal

detail signal x(HH)
j+1 is also used through the second and the third prediction steps to compute

the vertical and the horizontal detail signals respectively. Therefore, the solution p(HH)
j

resulting from the previous optimization method may be suboptimal.

As a result, we propose to optimize the prediction filter p(HH)
j by minimizing a global

prediction error as we describe in detail in the next section.

7.4.2 Optimization of the prediction filter p
(HH)
j

More precisely, instead of minimizing the `1-norm of x
(HH)
j+1 , the filter p(HH)

j will be opti-

mized by minimizing the sum of the `1-norm of the three detail subbands x
(o)
j+1. To this

respect, we will consider the minimization of the following weighted `1 criterion:

Jw`1(p
(HH)
j ) =

∑

o∈{HL,LH,HH}

∑
m,n

√
w

(o)
j

∣∣∣x(o)
j+1(m,n)

∣∣∣ (7.17)

where w
(o)
j is a strictly positive weighting term.

Before focusing on the method used to minimize the proposed criterion, we should first

express Jw`1 as a function of the filter p(HH)
j to be optimized.

Let
(
x

(1)
i,j (m,n)

)
i∈{0,1,2,3}

be the four outputs obtained from
(
xi,j(m,n)

)
i∈{0,1,2,3}

following

the first prediction step (see Fig. 7.3). Although x
(1)
i,j (m,n) = xi,j(m,n) for all i ∈ {0, 1, 2},
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Figure 7.3: NSLS decomposition structure.

the use of the superscript will make the presentation below easier. Thus, x
(o)
j+1 can be

expressed as:

x
(o)
j+1(m,n) =

∑

i∈{0,1,2,3}

∑

k,l

h
(o,1)
i,j (k, l)x(1)

i,j (m− k, n− l)

=
∑

i∈{0,1,2}

∑

k,l

h
(o,1)
i,j (k, l)x(1)

i,j (m− k, n− l) +
∑

k,l

h
(o,1)
3,j (k, l)x(1)

3,j (m− k, n− l)

(7.18)

where h
(o,1)
i,j is a filter which depends on the prediction coefficients of p(LH)

j and p(HL)
j .

Knowing

x
(1)
3,j (m, n) = x3,j(m,n)− (p(HH)

j )>x̃(HH)
j (m,n) (7.19)

where x̃(HH)
j (m,n) =

(
xi,j(m− r, n− s)

)
(r,s)∈P(HH)

j

i∈{0,1,2}
(P(HH)

j is the support of the predictor

p(HH)
j ), we thus obtain, after some simple calculations,

∀ o ∈ {HH,LH, HL}, x
(o)
j+1(m,n) = y

(o,1)
j (m,n)− (p(HH)

j )>x(o,1)
j (m,n) (7.20)
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where

y
(o,1)
j (m,n) =

∑

i∈{0,1,2}

∑

k,l

h
(o,1)
i,j (k, l)x(1)

i,j (m− k, n− l) +
∑

k,l

h
(o,1)
3,j (k, l)x3,j(m− k, n− l),

(7.21)

x(o,1)
j (m,n) =

(∑

k,l

h
(o,1)
3,j (k, l)xi,j(m− k − r, n− l − s)

)
(r,s)∈P(HH)

j

i∈{0,1,2}
. (7.22)

Consequently, the proposed weighted `1 criterion (Eq. 7.17) can be expressed as:

Jw`1(p
(HH)
j ) =

∑

o∈{HL,LH,HH}

∑
m,n

√
w

(o)
j

∣∣∣y(o,1)
j (m, n)− (p(HH)

j )>x(o,1)
j (m,n)

∣∣∣. (7.23)

It is worth noting that in practice, the determination of y
(o,1)
j (m,n) and x(o,1)

j (m,n) does

not require to find the explicit expressions of h
(o,1)
i,j and these signals can be determined

numerically as follows:

• The first term (resp. the second one) in the expression of y
(o,1)
j (m,n) (Eq. (7.21)) can

be found by computing x
(o)
j+1(m,n) from the components

(
x

(1)
i,j (m, n)

)
i∈{0,1,2,3}

while setting

x
(1)
3,j (m,n) = 0 (resp. while setting x

(1)
i,j (m,n) = 0 for i ∈ {0, 1, 2} and

x
(1)
3,j (m,n) = x3,j(m,n)).

• The vector x(o,1)
j (m,n) (Eq. (7.22)) can be found as follows. For each i ∈ {0, 1, 2},

the computation of its component
∑

k,l h
(o,1)
3,j (k, l)xi,j(m − k, n − l) requires to compute

x
(o)
j+1(m,n) by setting x

(1)
3,j (m,n) = xi,j(m,n) and x

(1)
i′,j(m,n) = 0 for i′ ∈ {0, 1, 2}. We

perform this operation for the different shift values (r, s) (as it can be seen in Eq. 7.22).

Once the different terms involved in the proposed weighted criterion (Eq. (7.23)) are

defined (the weighting values w
(o)
j are supposed to be known), we will focus now on its

minimization. Indeed, unlike the previous criterion (Eq. (7.6)) which consists only of an `1

term, the proposed criterion is a sum of three `1 terms. To minimize such a criterion (7.23),

one can still use the Douglas-Rachford algorithm through a formulation in a product space

[Combettes, Pesquet, 2010].

Douglas-Rachford algorithm in a product space

Consider the `1 minimization problem:

min
p

(HH)
j

∑

o∈{HL,LH,HH}

∑
m,n

√
w

(o)
j

∣∣∣y(o,1)
j (m,n)− (p(HH)

j )>x(o,1)
j (m,n)

∣∣∣ (7.24)
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where w
(o)
j are positive weights.

Since the Douglas-Rachford algorithm described hereabove is designed for the sum of two

functions, we can attempt to reformulate (7.24) under this form in the 3-fold product space

Hj

Hj = RKj × RKj × RKj (7.25)

If we define the vector subspace U as

U =
{
Zj =




z(HH,1)
j

z(LH,1)
j

z(HL,1)
j


 ∈ Hj | ∃ p(HH)

j ∈ RL, ∀ o ∈ {HH,LH, HL},

∀ (m,n) ∈ {1, 2, ..., Mj} × {1, 2, ..., Nj}, z
(o,1)
j (m,n) = (p(HH)

j )>x(o,1)
j (m,n)

}

=
{
Zj =




z(HH,1)
j

z(LH,1)
j

z(HL,1)
j


 ∈ Hj | ∃ p(HH)

j ∈ RL, ∀ (m,n) ∈ {1, 2, ..., Mj} × {1, 2, ..., Nj},

Zj(m,n) = Xj(m, n)>p(HH)
j with Xj(m,n) =

(
x(HH,1)

j (m,n),x(LH,1)
j (m,n),x(HL,1)

j (m,n)
) }

,

(7.26)

the minimization problem (7.24) is equivalent to

min
zj∈Hj

f1(zj) + f2(zj) (7.27)

where

f1(zj) =
∑

o∈{HL,LH,HH}

∑
m,n

√
w

(o)
j

∣∣∣y(o,1)
j (m,n)− z

(o,1)
j (m,n)

∣∣∣

f2(zj) = ıU (zj). (7.28)

We are thus back to a problem involving two functions in a larger space Hj . So, the

Douglas-Rachford algorithm can be applied to solve our minimization problem:

Set tj,0 ∈ Hj , γ > 0, λ ∈]0, 2[, and,

for k = 0, 1, 2, ...

zj,k = proxγf2
tj,k

tj,k+1 = tj,k + λ
(
proxγf1

(2zj,k − tj,k)− zj,k

)
. (7.29)
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Note that the above algorithm requires to compute the proximity operators of 2 new

functions γf1 and γf2. Concerning the proximity operator of γf1, we have

∀ tj =




t(HH,1)
j

t(LH,1)
j

t(HL,1)
j


 ∈ Hj , proxγf1
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where

∀ o ∈ {HH, LH,HL},

soft[
−γ

√
w

(o)
j ,γ

√
w

(o)
j

](t(o,1)
j,k ) =

(
soft[

−γ
√

w
(o)
j ,γ

√
w

(o)
j

](t(o,1)
j,k (m,n))

)
1≤m≤Mj

1≤n≤Nj

. (7.31)

Concerning γf2, its proximity operator is given by:

proxγf2
(tj,k) = PU (tj,k)

=
(
Ẑj,k(m,n)

)
1≤m≤Mj

1≤n≤Nj

=
(
Xj(m,n)>p(HH)

j,k

)
1≤m≤Mj

1≤n≤Nj

(7.32)

where

p(HH)
j,k =

(∑
m

∑
n

Xj(m,n)Xj(m,n)>
)−1 ∑

m,n

Xj(m,n)tj,k(m,n).

Finally, once the prediction filter p(HH)
j is optimized and fixed, it can be noticed that

the other prediction filters p(HL)
j and p(LH)

j can be separately optimized by minimizing

J`1(p
(HL)
j ) and J`1(p

(LH)
j ) as explained in Section 7.3. This is justified by the fact the

inputs of the filter p(HL)
j (resp. p(LH)

j ) are independent of the output of the filter p(LH)
j

(resp. p(HL)
j ).

7.5 Joint optimization method

7.5.1 Motivation

From Equations (7.21) and (7.22), it can be observed that y
(o,1)
j and x(o,1)

j , which are used

to optimize p(HH)
j , depend on the coefficients of the prediction filters p(HL)

j and p(LH)
j . On

the other hand, since p(HL)
j and p(LH)

j use x
(HH)
j+1 as a reference signal in the second and

the third prediction steps, their optimal values will depend on the optimal prediction filter
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p(HH)
j . Thus, we conclude that the optimization of the filters (p(HL)

j ,p(LH)
j ) depends on

the optimization of the filter p(HH)
j and vice-versa.

A joint optimization method can therefore be proposed which iteratively optimizes the

prediction filters p(HH)
j , p(HL)

j and p(LH)
j .

7.5.2 Proposed algorithms

While the optimization of the prediction filters p(HL)
j and p(LH)

j is simple, the optimization

of the prediction filter p(HH)
j is less obvious. Indeed, if we examine the criterion Jw`1 , the

immediate question that arises is: which values of the weighting parameters will produce

the sparsest decomposition?

A simple solution consists of setting all the weights w
(o)
j to one. Then, we are considering

the particular case of the unweighted `1 criterion which simply represents the sum of the

`1-norm of the three details subbands x
(o)
j+1. In this case, the joint optimization problem is

solved by applying the following simple iterative algorithm at each resolution level j.

First proposed algorithm

À Initialize the iteration number it to 0.

• Optimize separately the three prediction filters as explained in section 7.3. The

resulting filters will be denoted respectively by p(HH,it)
j , p(LH,it)

j and p(HL,it)
j .

• Compute the resulting global unweighted prediction error (i.e. the sum of the

`1-norm of the three resulting details subbands).

Á for it = 1, 2, 3, ...

• Set p(LH)
j = p(LH,it−1)

j , p(HL)
j = p(HL,it−1)

j , and optimize P(HH)
j by minimizing

Jw`1(p
(HH)
j ) (while setting w

(o)
j = 1). Let p(HH,it)

j be the new optimal filter.

• Set p(HH)
j = p(HH,it)

j , and optimize P(LH)
j by minimizing J`1(p

(LH)
j ). Let p(LH,it)

j

be the new optimal filter.

• Set p(HH)
j = p(HH,it)

j , and optimize P(HL)
j by minimizing J`1(p

(HL)
j ). Let p(HL,it)

j

be the new optimal filter.

Once the prediction filters are optimized, the update filter is finally optimized by minimizing

the difference between the approximation signal and the decimated version of the output
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of an ideal low-pass filter (as explained in Section 6.3.2).

Table 7.1 shows the global unweighted prediction error (w(o)
j = 1), obtained at a resolution

level j, with respect to the iteration number of the algorithm. In this case, it can be noticed

that this error decreases from an iteration it to it + 1. However, in practice, once all the

filters are optimized and the decomposition is performed, the different generated wavelet

subbands are weighted before the entropy encoding as discussed at the end of Section

3.2.1. Therefore, the resulting filters are suboptimal in the sense that they do not take into

account the weighting procedure. For this reason, we have noticed in our experiments that

this optimization technique does not improve the coding performance.

A more judicious choice of w
(o)
j consists of setting their values to the weights of the detail

subbands x
(o)
j+1 as given by Eq. (3.23). As mentioned at the end of Section 3.2.1, these

weights depend on the filters used for the reconstruction process [Usevitch, 1996]. Thus,

the main difficulty in this case is that our criterion uses weights which also depend on the

prediction filters. To solve this problem, we propose an alternative iterative algorithm that

alternates between optimizing all the filters and redefining the weights. This algorithm,

which is performed for each resolution level j, is as follows.

Second proposed algorithm

À Initialize the iteration number it to 0.

• Optimize separately the three prediction filters as explained in section 7.3. The

resulting filters will be denoted respectively by p(HH,it)
j , p(LH,it)

j and p(HL,it)
j .

• Optimize the update filter (as proposed in Section 6.3.2)).

• Compute the weights w
(o,it)
j of each detail subband (using Eq. (3.23)) as

well as the resulting global weighted prediction error (i.e. the weighted

sum of the `1-norm of the three resulting detail subbands).

Á for it = 1, 2, 3, ...

• Set p(LH)
j = p(LH,it−1)

j , p(HL)
j = p(HL,it−1)

j , and optimize P(HH)
j by minimizing

Jw`1(p
(HH)
j ). Let p(HH,it)

j be the new optimal filter.

• Set p(HH)
j = p(HH,it)

j , and optimize P(LH)
j by minimizing J`1(p

(LH)
j ). Let p(LH,it)

j

be the new optimal filter.

• Set p(HH)
j = p(HH,it)

j , and optimize P(HL)
j by minimizing J`1(p

(HL)
j ). Let p(HL,it)

j
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be the new optimal filter.

• Optimize the update filter (as proposed in Section 6.3.2)).

•Compute the new weights w
(o,it)
j (using Eq. (3.23)) as well as the resulting

global weighted error.

Â Select the best optimal filters from the iteration giving the minimum criterion value.

It is worth pointing out that step 3 has been introduced at the end of this algorithm

because the global weighted prediction error does not necessary decrease from an iteration

it to it + 1. This can be explained by the fact that the weights are updated after the

optimization process of all the filters at each iteration of the algorithm.

Table 7.1: Evolution of the global prediction error obtained at each resolution level j for

the “lena” and “einst” images.

Image Filter it = 0 it = 1 it = 2 it = 3 it = 4 it = 5 it = 6 it = 7

einst Global j=1 15.864 15.820 15.769 15.658 15.554 15.522 15.585 15.647

weighted j=2 28.191 27.797 27.451 27.466 27.601 27.804 27.827 27.908

error j=3 64.336 62.963 62.556 62.971 63.568 64.042 64.863 64.996

global j=1 17.143 17.133 17.102 17.040 16.971 16.930 16.919 16.918

unweighted j=2 21.168 21.017 20.840 20.747 20.725 20.723 20.722 20.722

error j=3 26.218 25.924 25.739 25.639 25.617 25.615 25.613 25.611

lena Global j=1 9.191 9.081 9.066 9.216 9.352 9.400 9.423 9.421

weighted j=2 23.360 23.163 23.073 23.342 23.627 23.647 23.707 23.691

error j=3 71.178 69.928 69.071 69.266 71.284 71.429 72.383 73.268

global j=1 9.679 9.617 9.563 9.535 9.525 9.523 9.523 9.522

unweighted j=2 16.948 16.811 16.691 16.627 16.615 16.613 16.613 16.612

error j=3 27.898 27.645 27.404 27.308 27.291 27.281 27.275 27.272

Table 7.1 shows also the global weighted prediction error, obtained at a resolution level j,

with respect to the iteration number of the algorithm. It can be noticed that the decrease

of the weighted error is mainly achieved during the early iterations. As a result, we have

chosen the iteration number equal to 5.

Using this optimization method to design the prediction filters of the NSLS(2,2), Figure

7.4 shows the distribution of the resulting detail subbands for the“einst” image. This figure
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confirms that the shape parameters of these distributions remain closer to one than to two.
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Figure 7.4: The generalized Gaussian distribution of the: (b) horizontal detail subband

x
(HL)
1 (β(HL)

1 = 1.02), (c): vertical detail subband x
(LH)
1 (β(LH)

1 = 1.12), (d): diagonal

detail subband x
(HH)
1 (β(HH)

1 = 1.17). The detail coefficients of the “einst” image are

optimized by minimizing the weighted `1 criterion.

7.6 Experimental results

Simulations were carried out on two kinds of still images originally quantized over 8 bpp

which are either single views1 or stereoscopic ones2. The gain related to the optimization of

the NSLS operators, using different minimization criteria, was evaluated in these contexts.

Since we are interested in the optimization of all the operators involved in the considered

NSLS (which corresponds to the 2D scheme of any 1D P-U lifting structure), we will mainly

consider the example of the 5/3 wavelet transform. In order to show the benefits of the

proposed `1 optimization criterion, we provide the results for the following decompositions

carried out over three resolution levels:

• The first one is the lifting scheme corresponding to the 5/3 transform, which is known as

the (2,2) integer wavelet transform [Calderbank et al., 1998]. In the following, this method

will be designated by NSLS(2,2).

• The second variant corresponds to our previous method presented recently in [Kaaniche

et al., 2011]. We recall that this method consists of optimizing the prediction filters of

1taken from the URL http://sipi.usc.edu/database
2http://vasc.ri.cmu.edu/idb/html/stereo/index.html
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the NSLS by minimizing the `2-norm of the detail coefficients. Moreover, the update fil-

ter is optimized by minimizing the difference between the approximation signal and the

decimated version of the output of an ideal low-pass filter. We emphasize here that the

prediction filters are separately optimized. This method will be denoted by NSLS(2,2)-

OPT-L2.

• The third method modifies the optimization stage of the prediction filters by using the `1-

norm instead of the `2-norm. In what follows, this method will be designated by NSLS(2,2)-

OPT-L1.

• The fourth method consists of jointly optimizing the prediction filters by using the pro-

posed weighted `1 minimization technique. This optimization method will be designated

by NSLS(2,2)-OPT-WL1.

Figures 7.5 and 7.6 show the scalability in quality of the reconstruction procedure by pro-

viding the variations of the PSNR versus the bitrate for the images“castle”and“einst”using

JPEG2000 as codec. These plots show that NSLS(2,2)-OPT-L2 outperforms NSLS(2,2)

by 0.1-0.5 dB. An improvement of 0.1-0.3 dB is obtained by using the `1 minimization

technique instead of the `2 one. Finally, the joint optimization technique (NSLS(2,2)-

OPT-WL1) outperforms the separate optimization technique (NSLS(2,2)-OPT-L1) and

improves the PSNR by 0.1-0.2 dB. The gain becomes more important (up to 0.55 dB)

when compared to NSLS(2,2)-OPT-L2.

Figures 7.7 and 7.8 display the reconstructed images of “lena” and “einst”. In addition

to PSNR and SSIM metrics, the quality of the reconstructed images are also compared

in terms of VSNR (Visual Signal-to-Noise ratio) which was found to be an efficient met-

ric for quantifying the visual fidelity of natural images [Chandler, Hemami, 2007]: it is

based on physical luminances and visual angle (rather than on digital pixel values and

pixel-based dimensions) to accommodate different viewing conditions. It can be observed

that the weighted `1 minimization technique significantly improves the visual quality of

reconstruction. The difference in VSNR (resp. PSNR) between NSLS(2,2)-OPT-L2 and

NSLS(2,2)-OPT-WL1 ranges from 0.35 dB to 0.6 dB (resp. 0.25 dB to 0.3 dB).
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Figure 7.5: PSNR (in dB) versus the bitrate (bpp) after JPEG2000 progressive encoding

for the “castle” image.
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Figure 7.6: PSNR (in dB) versus the bitrate (bpp) after JPEG2000 progressive encoding

for the “einst” image.
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(a): Original image (b): PSNR=30.44 dB, SSIM=0.844, VSNR=22.96 dB

(c): PSNR=30.93 dB, SSIM=0.845, VSNR=23.46 dB (d): PSNR=31.24 dB, SSIM=0.851, VSNR=24.06 dB

Figure 7.7: Reconstructed “lena” image at 0.15 bpp using: (b) NSLS(2,2) (c) NSLS(2,2)-

OPT-L2 (d) NSLS(2,2)-OPT2-WL1.
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(a): Original image (b): PSNR=28.55 dB, SSIM=0.648, VSNR=17.82 dB

(c): PSNR=28.94 dB, SSIM=0.649, VSNR=18.24 dB (d): PSNR=29.11 dB, SSIM=0.654, VSNR=18.59 dB

Figure 7.8: Reconstructed “einst” image at 0.1 bpp using: (b) NSLS(2,2) (c) NSLS(2,2)-

OPT-L2 (d) NSLS(2,2)-OPT2-WL1.

The performance of these optimization methods are also compared in stereo image cod-

ing context. More precisely, each method is applied to encode the reference image and the

residual one. Figures 7.9 and 7.10 illustrate the evolution of the average PSNR (as defined

in chapter 4) versus the average bitrate for the stereo image pairs “shrub” and “pentagon”.

An improvement of 0.05-0.4 dB is obtained by jointly optimizing the prediction filters.
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Figure 7.9: PSNR (in dB) versus the bitrate (bpp) after JPEG2000 progressive encoding

for the “shrub” stereo images.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
25

25.5

26

26.5

27

27.5

28

28.5

29

Bitrate (bpp)

P
S

N
R

 (
d

B
)

NSLS(2,2)
NSLS(2,2)−OPT−L2
NSLS(2,2)−OPT−L1
NSLS(2,2)−OPT−WL1

Figure 7.10: PSNR (in dB) versus the bitrate (bpp) after JPEG2000 progressive encoding

for the “pentagon” stereo images.
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Figure 7.11 displays the reconstructed target image of the “pentagon” stereo pair. It can

be observed that the proposed joint optimization method leads to an improvement of 0.35

dB (resp. 0.016) in VSNR (resp. SSIM) compared with the decomposition in which the

prediction filters are optimized separately.

(a): Original image (b): PSNR=26.44 dB, SSIM=0.693, VSNR=12.17 dB

(c): PSNR=26.56 dB, SSIM=0.691, VSNR=12.49 dB (d): PSNR=26.90 dB, SSIM=0.697, VSNR=13.06 dB

Figure 7.11: Reconstructed target image for the “pentagon” stereo images at 0.15 bpp

using: (b) NSLS(2,2) (c) NSLS(2,2)-OPT-L2 (d) NSLS(2,2)-OPT2-WL1.

For completeness sake, the performance of the proposed method (NSLS(2,2)-OPT-WL1)
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has also been compared with the 9/7 transform retained for the lossy mode of JPEG2000

standard. Table 7.2 shows the performance of the latter methods in terms of PSNR, SSIM

and VSNR. Since the human eye cannot always distinguish the subjective image quality

at middle and high bitrate, the results were restricted to the lower bitrate values.

Table 7.2: Performance of the proposed method vs the 9/7 transform

0.05 bpp 0.1 bpp 0.15 bpp 0.2 bpp

NSLS(2,2)- 9/7 NSLS(2,2)- 9/7 NSLS(2,2)- 9/7 NSLS(2,2)- 9/7

OPT-WL1 OPT-WL1 OPT-WL1 OPT-WL1

el
ai

ne

PSNR 27.85 27.06 30.25 30.22 31.23 31.31 31.76 31.92

SSIM 0.669 0.646 0.716 0.713 0.739 0.738 0.754 0.756

VSNR 18.44 16.84 23.10 22.78 25.60 25.41 27.28 27.42

ca
st

le

PSNR 25.10 24.69 27.08 26.96 28.36 28.41 29.51 29.58

SSIM 0.725 0.701 0.790 0.775 0.825 0.819 0.855 0.851

VSNR 17.54 16.46 21.55 20.86 23.74 23.17 25.80 25.32

ei
ns

t

PSNR 27.51 27.50 29.12 29.18 29.92 30.06 30.50 30.70

SSIM 0.603 0.596 0.653 0.652 0.687 0.687 0.710 0.715

VSNR 15.33 15.17 18.62 18.48 20.37 20.40 21.59 21.94

le
na

PSNR 26.70 26.33 29.59 29.50 31.22 31.42 32.70 32.90

SSIM 0.747 0.725 0.818 0.807 0.850 0.850 0.871 0.873

VSNR 15.95 15.18 20.56 20.03 24.05 23.79 26.12 26.15

ca
m

er
am

an PSNR 26.51 26.34 29.81 30.28 31.84 32.63 33.61 34.44

SSIM 0.783 0.767 0.847 0.839 0.887 0.892 0.914 0.915

VSNR 16.74 16.14 21.73 21.61 24.94 25.70 27.75 28.34

bo
at

PSNR 24.65 24.55 26.82 26.86 28.43 28.54 29.52 29.74

SSIM 0.675 0.661 0.753 0.746 0.806 0.802 0.837 0.836

VSNR 13.41 13.03 17.14 16.89 20.24 19.76 22.19 21.89

While the proposed method is less performant in terms of PSNR than the 9/7 transform for

some images, better results are obtained in terms of perceptual quality. For instance, Fig-

ures 7.12-7.16 illustrate some reconstructed images. It can be observed that the proposed

method (NSLS(2,2)-OPT-WL1) achieves a gain of about 0.12-1.6 dB (resp. 0.004-0.023)
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in terms of VSNR (resp. SSIM).

(a): PSNR=28.54 dB, SSIM=0.802, VSNR=19.76 dB (b): PSNR=28.43 dB, SSIM=0.806, VSNR=20.24 dB

Figure 7.12: Zoom applied on the reconstructed “boat” image at 0.1 bpp using: (a) 9/7

transform ; (b) NSLS(2,2)-OPT-WL1 .

(a): PSNR=30.28 dB, SSIM=0.839, VSNR=21.61 dB (b): PSNR=29.81 dB, SSIM=0.847, VSNR=21.73 dB

Figure 7.13: Zoom applied on the reconstructed “cameraman” image at 0.1 bpp using: (a)

9/7 transform; (b) NSLS(2,2)-OPT-WL1 .
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(a): PSNR=26.33 dB, SSIM=0.725, VSNR=15.18 dB (b): PSNR=26.70 dB, SSIM=0.747, VSNR=15.95 dB

Figure 7.14: Zoom applied on the reconstructed “lena” image at 0.05 bpp using: (a) 9/7

transform ; (b) NSLS(2,2)-OPT-WL1 .

(a): PSNR=29.50 dB, SSIM=0.807, VSNR=20.03 dB (b): PSNR=29.59 dB, SSIM=0.818, VSNR=20.56 dB

Figure 7.15: Zoom applied on the reconstructed “lena” image at 0.1 bpp using: (a) 9/7

transform ; (b) NSLS(2,2)-OPT-WL1.
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(a): PSNR=27.06 dB, SSIM=0.646, VSNR=16.84 dB (b): PSNR=27.85 dB, SSIM=0.669, VSNR=18.44 dB

Figure 7.16: Zoom applied on the reconstructed “elaine” image at 0.05 bpp using: (a) 9/7

transform ; (b) NSLS(2,2)-OPT-WL1.

(a): PSNR=30.22 dB, SSIM=0.713, VSNR=22.78 dB (b): PSNR=30.25 dB, SSIM=0.716, VSNR=23.10 dB

Figure 7.17: Zoom applied on the reconstructed “elaine” image at 0.1 bpp using: (a) 9/7

transform ; (b) NSLS(2,2)-OPT-WL1.

Furthermore, Figures 7.18 and 7.19 display the reconstructed target image for the stereo

image pairs “shrub” and “pentagon”. While NSLS(2,2)-OPT-WL1 and 9/7 transform show
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similar visual quality for the “pentagon” pair, the proposed method leads to better quality

of reconstruction than the 9/7 transform for the “shrub” stereo images.

(a): PSNR=28.68 dB, SSIM=0.682, VSNR=19.27 dB (b): PSNR=28.76 dB, SSIM=0.698, VSNR=19.63 dB

Figure 7.18: Zoom applied on the reconstructed target image for the “shrub” stereo images

at 0.1 bpp using: (a) 9/7 transform ; (b) NSLS(2,2)-OPT-WL1.

(a): PSNR=27.11 dB, SSIM=0.706, VSNR=13.12 dB (b): PSNR=26.90 dB, SSIM=0.697, VSNR=13.06 dB

Figure 7.19: Zoom applied on the reconstructed target image for the “pentagone” stereo

images at 0.15 bpp using: (a) 9/7 transform ; (b) NSLS(2,2)-OPT-WL1.
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7.7 Conclusion

In this chapter, we have studied different optimization techniques for the design of filters in

a NSLS structure. A new criterion has been presented for the optimization of the prediction

filters in this context. The idea consists of jointly optimizing these filters by minimizing

iteratively a weighted `1 criterion. Experimental results carried out on still images and

stereo images pair have illustrated the benefits which can be drawn from the proposed

optimization technique.
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Chapter 8

Conclusion and future work

In the context of an increased interest for stereoscopic images in many application fields

such as entertainment and remote sensing, this thesis has been mainly devoted to the design

and analysis of new and efficient coding schemes for stereo images. Furthermore, another

goal of this work was to design adaptive decompositions well adapted to the characteristics

of the images. In the following, we summarize the main contributions of this work while

mentioning some possible future extensions at the end of each paragraph.

The first contribution of this research work is the development of new methods, based

on Vector Lifting Schemes (VLS), for stereo image coding purpose. More precisely, unlike

the most commonly used approaches which consist of encoding a reference image (say the

left one) and a residual one as well as a disparity map, the proposed schemes use a joint

multiscale decomposition which has the advantage of producing two compact multiresolu-

tion representations of the left and the right views. In this context, we have provided two

examples of structures denoted by VLS-I and VLS-II. The first scheme (i.e. VLS-I) relies

on a basic prediction-update structure. Despite its simplicity, one drawback of VLS-I is

that it generates an update leakage effect in the sense that the information coming from

the left image, which is used for the prediction of the right one, is also used, through the

update step, to compute the approximation coefficients of the right image. To alleviate this

shortcoming, we have proposed an alternative scheme given by a predict-update-predict

structure (i.e. VLS-II). A theoretical analysis in terms of prediction error variance was

conducted in order to show the benefits of the underlying VLS structure. Experimental

results have shown that VLS based decompositions significantly reduce the problem of
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blocking artifacts which appears at low bitrates with conventional residual image based

coding methods.

The proposed method still requires further investigations. Indeed, the encoding perfor-

mance of the VLS can be improved by better taking into account the effect of occlusions.

More precisely, a hybrid coding scheme can be designed where the occluded blocks (resp.

non occluded ones) are encoded using an intra (resp. inter) prediction step in the previous

VLS structures. Such method will require to transmit a side information corresponding

to the block type, that may limit its performance especially at low bitrates. Thus, it will

be interesting to use a technique that allows the decoder to detect the occluded blocks

without any overhead cost.

Furthermore, the proposed VLS structure can be extended to a multiview/video coding

framework. Note that rate-distortion techniques developed in video coding could also be

used in conjunction with our schemes.

The second contribution of this work was to integrate a dense disparity estimation tech-

nique in joint stereo image coding schemes. Unlike conventional methods that employ a

block-based disparity estimation technique, our method uses a dense and smooth disparity

map. However, in a coding application context, the problem of coding the resulting dense

disparity is a challenging issue because of the high bitrate needed to store/transmit such a

field. For this reason, we have proposed to resort to a quadtree decomposition and entropy

encoding that achieve a good tradeoff between the accuracy of the disparity representation

and the coding cost. Experimental results, carried out on stereo and multiview video se-

quences, have shown the improvements achieved by this approach.

Considering an alternative of segmenting the dense disparity map requires further work on

the improvement of the coding efficiency in terms of bitrate and quality of the reconstructed

image. Furthermore, the smoothness of the disparity field can be exploited to develop a

fully scalable stereo image coder. In other words, instead of using a DPCM technique to

encode the disparity map, a progressive coding technique can also be employed. Indeed,

as it has been recently investigated in scalable video coding, the disparity representation

in a scalable strategy can help to improve the encoding performance at low bitrates.

The third contribution of this research work has been focused on the optimization of all

the operators involved in lifting schemes (LS). As mentioned before, an important limitation
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of conventional separable LS is that they may not appear very efficient to cope with the two

dimensional characteristics of contours which are neither horizontal nor vertical. For this

reason, we have proposed to perform the optimization techniques on a two-dimensional non

separable lifting scheme (NSLS). The considered structure is composed of three prediction

lifting steps followed by an update lifting step. Concerning the predictions filters, each

one is optimized by minimizing the detail signal variance, which is a standard criterion.

The optimization of the update filter constitutes the main contribution of this part. More

precisely, we have designed an update filter that aims at reducing the aliasing effects. Thus,

it is optimized by minimizing the difference between its output and the output of an ideal

low-pass filter. Moreover, we have shown that the proposed optimization method leads

to the same optimal update filter when the optimization is performed either before or

after the decimation step. Experimental results have firstly indicated that such a method

improves the encoding performance compared with structures where only the prediction

filters are optimized. Secondly, compared with the state-of-the-art update optimization

method based on the minimization of the reconstruction error, the proposed technique

performs similarly in terms of quality of reconstruction. However, we have shown that our

method presents the advantage of reducing significantly the complexity of the optimization

algorithm. Furthermore, an additional advantage of our work was to derive theoretical

expressions of the optimal filter coefficients based on the correlation factors of the input

image. This may be interesting in the implementation process of our optimization method.

While the considered autoregressive model is separable, it will be interesting to extend

the theoretical analysis by using a more sophisticated model which takes into account the

directional structures in the image. Furthermore, a local adaptive approach, where the

filters are optimized for different regions of the image, could be investigated.

As a continuation of this work, the last contribution of this thesis has been devoted to

investigating sparse optimization criteria to improve the encoding performance. For this

purpose, we have firstly introduced the motivation of using an `1 criteria instead of `2

ones. Then, unlike the previous optimization techniques where each prediction filter was

separately optimized by minimizing the `2-norm of each detail subband, we have proposed

to design these filters by minimizing the `1-norm of each detail subband. Based on the

fact that the output of a prediction filter can be used as an input for another prediction
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filter, we have proposed to optimize such a filter by minimizing a global prediction error

which is a weighted sum of the `1-norms of the three resulting detail subbands. Moreover,

we have seen that the optimization of a prediction filter depends on that of the remaining

filters and vice-versa. To solve this problem, we have proposed an iterative algorithm that

jointly optimizes the different prediction filters. Our simulations, carried out on still and

residual images, have shown the benefits of using the `1 minimization technique and the

proposed joint optimization method. These results motivate us to investigate further ideas

in this direction.

A first important area of research may consider the extensions of the proposed optimization

methods to other lifting structures. Indeed, up to now, we have focused on the optimization

of the filters involved in a one stage lifting scheme (i.e a P-P-P-U non separable structure

as depicted in Figure 7.3). Recently, it was shown in [Iwahashi, Kiya, 2010] that the 9/7

transform can be put in a non separable way by using a cascade of the previous structure

yielding a P-P-P-U-P-P-P-U structure. Thus, it will be interesting to extend this opti-

mization technique to lifting schemes with more than one stage like the 9/7 transform and

the proposed VLS-II decomposition.

While the considered non separable structure consists of 4 branches containing one approx-

imation and three detail subbands, further improvements may be achieved by adding other

channels that take into account the variety of directions in images. However, an impor-

tant limitation of such a structure is the introduction of redundancy which may affect the

compression efficiency. To reduce this problem, coding techniques should be investigated

as performed in [Reeves, Kingsbury, 2002; Fowler et al., 2007].

Another important area of research is to investigate more efficient optimization methods

for lifting design problems. As discussed in Section 7.2, we optimized in this work some

sparse criteria which are related to the bitrate of the quantized signal. However, it will be

interesting to minimize such criteria subject to some rate-distortion constraints.
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