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A B S T R A C T
When constraining surface emissions of air pollutants using inverse modelling one often encounters spurious corrections
to the inventory at places where emissions and observations are colocated, referred to here as the colocalization problem.
Several approaches have been used to deal with this problem: coarsening the spatial resolution of emissions; adding
spatial correlations to the covariance matrices; adding constraints on the spatial derivatives into the functional being
minimized; and multiplying the emission error covariance matrix by weighting factors. Intercomparison of methods for
a carbon monoxide inversion over a city shows that even though all methods diminish the colocalization problem and
produce similar general patterns, detailed information can greatly change according to the method used ranging from
smooth, isotropic and short range modifications to not so smooth, non-isotropic and long range modifications. Poisson
(non-Gaussian) and Gaussian assumptions both show these patterns, but for the Poisson case the emissions are naturally
restricted to be positive and changes are given by means of multiplicative correction factors, producing results closer to
the true nature of emission errors. Finally, we propose and test a new two-step, two-scale, fully Bayesian approach that
deals with the colocalization problem and can be implemented for any prior density distribution.

1. Introduction

Observations of the atmosphere (and in general of any geophys-
ical system) are typically unevenly distributed in space and time
and have different precision and accuracy. Models, on the other
hand, provide a self consistent framework but are subject to mul-
tiple errors due to uncertain estimates of parameters, errors in
initial and/or boundary conditions, inadequate representation of
processes, and lack of process understanding. The combination
of both sources of incomplete and erroneous but complemen-
tary information provides a better description of the system state,
and its evolution. To achieve this improvement, the combination
must be made in an optimal sense, which either minimizes the
weighted distance between model and observations (variational
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approach) or minimizes the error variance of the system’s pre-
dictor (Kalman Filter techniques). Both variational and Kalman
filter methods have been widely used by the meteorological
community over the last decades for weather forecasting. They
were introduced as a way to avoid the uncontrolled propaga-
tion of errors due to the uncertain and incomplete description of
initial conditions (e.g. Kalnay, 2003). In atmospheric chemistry,
these methods are nowadays being increasingly used as observa-
tions are becoming more readily available. One such application
of inverse modelling techniques aims at reducing high uncer-
tainties diagnosed in spatially resolved emissions inventories
(e.g. Lindley et al., 2000). Again, both variational (e.g. Elbern
et al., 2007) and Kalman filter methods (e.g. Mulholland and
Seinfeld, 1995; Peters et al., 2005) have been used, both meth-
ods assuming underlying Gaussian distributions over the param-
eters to be estimated. However, there are other methods that use
non-Gaussian assumptions (Bocquet, 2005a) for the priors but
have not been tested for distributed sources until now. These
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methods are attractive since they deal naturally with positive
emissions and do not require the use of further constraints in the
minimization (e.g. Davoine and Bocquet, 2007).

When doing inverse modelling of emissions, one must be
aware that misfits between model and observations are not due
only to emission inaccuracies, but also can be due to errors in
meteorological fields and other model parameters, as well as
errors in the representation of physical and chemical processes.
For this reason, a strict model validation is often required pre-
vious to the inverse modelling stage (e.g. Saide et al., 2009) or
one must account for these errors incorporating them into the
methodology as an additional term into the minimized functional
(e.g. Elbern et al., 2007).

Independently of the inversion method used, when dealing
with a spatially and temporally distributed emission inventory
one often encounters unrealistic corrections to the a priori in-
ventory at places where ground observations are colocated with
distributed sources. This is referred to here as the colocaliza-
tion problem. These unrealistic corrections arise as the model
sensitivity to the emissions is locally maximum at the grid-box
where the observation is sampled and due to the scarcity of ob-
servations, leading to a correction that is overwhelmed by the
observation signal. Moreover, it is possible to prove that the
higher the resolution the worse this problem becomes (Bocquet,
2005b). This problem has also been identified by other authors
as unrealistic small scale variations (Seibert, 2000) or the effect
of not using correlations in the prior uncertainties (Houweling
et al., 2004), among others. This problem can arise indepen-
dently of the scale, from global (e.g. Ro′′ denbeck et al., 2003) to
local (e.g. Chang et al., 1997) scales and independently of the
numerical dispersion model used.

One objective of this work is to describe and intercom-
pare in a systematic way several approaches that have been
used to solve the colocalization problem. Those approaches in-
clude: coarsening the spatial resolution of the emissions (e.g.
Bocquet, 2005b); adding spatial correlations by means of intro-
ducing influence radii (e.g. Houweling et al., 2004; Peters et al.,
2005); adding constraints on the spatial derivatives (e.g. Seibert,
2000; Carmichael et al., 2008; Dubovik et al., 2008); and adding
weighting factors to the emission error covariance matrix (Saide
et al., 2009).

All the approaches mentioned earlier modify the base method-
ology by making a posteriori corrections that might be more or
less arbitrary, and most of them use Gaussian assumptions for
emission errors, since they modify the non-diagonal structure
of the error covariance matrices. Consequently, a second objec-
tive of our work is to propose and test a new fully Bayesian
method that solves the problem by using a two-step two-scale
approach. The functional to be minimized is theoretically de-
veloped taking the colocalization problem into account without
making a posteriori modifications. It is based on previous stud-
ies of the phenomenon (Bocquet, 2005b) and it is derived from
the Bayes formula (Bocquet, 2005a) by making a rigorous infer-

ence using observation and prior information. Also, the method
can be implemented both for Gaussian and non-Gaussian prior
distributions, without any approximation.

In the next section, some of the previous inverse modelling
methodologies are presented. Then, in section 3, we present the
colocalization problem and briefly summarize the methods used
here to address it. Section 4 presents the fully Bayesian method
we propose. Thereafter (Sections 5 and 6), we test these meth-
ods by applying them to the test problem of the improvement
of a carbon monoxide inventory over the city of Santiago de
Chile using real observational data. This makes it possible to
present in a common framework to evaluate the advantages, dis-
advantages and similarities of the various methods. Finally, in
Section 7, we summarize the main results and conclusions of
this intercomparison study.

2. Inverse modelling methodology

The usual approach used for improving emission inventories
or estimating a source of a tracer is a variational method with
Gaussian assumptions for the mismatch between model and ob-
servations and mismatch between emissions and their priors,
presented in the following functional:

LGaussian(σ ) = 1

2
[H(σ ) − μ]T R−1[H(σ ) − μ]

+ α

2
(σ − σ b)T B−1(σ − σ b), (1)

where σ is the vector of emissions, σ b is the prior or first guess
over the emissions, H is the dispersion model composed with
the sampling function over the measurement locations, μ are the
measurements, R and B are the covariance matrices of the errors
in the measurements and in the emissions respectively and α is
a regularization parameter (see Saide et al., 2009, for details).
From now on we will consider that H can be approximated by
H(σ ) = H(σ b) + H(σ − σ b), where H is the Jacobian matrix
that maps emissions into measurements, because we intend to ap-
ply the inverse modelling methods on carbon monoxide, whose
physics is almost linear at the scales that will be considered.

Then the optimal emissions can be written as

σ = σ b + α−1 B HT(R + α−1 H B HT)−1[μ − H(σ b)] . (2)

In some applications the emissions are restricted to be positive.
This is not guaranteed by this method due to the Gaussian as-
sumption for the errors. One way to solve this problem is to
find the optimal emissions using eq. (1) with constraints (e.g.
Sandu et al., 2005; Chai et al., 2009; Saide et al., 2009). Another
path to solve this problem is to change the assumption for the
emissions using strictly positive distributions. Bocquet (2005a)
showed that functionals similar to eq. (1) can be derived using
the principle of maximum entropy on the mean (MEM). For in-
stance a Poisson distribution over the emissions can be assumed.
It means that in cell k, the probability that the mass of pollutant
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mkxk, where mk is a local mass scale, and xk an integer, is emitted
is given by

p(xk) = e−θk
θ

xk
k

xk!
, (3)

with θ k a free parameter of the prior distribution. Consid-
ering the mean as σ b = mθ and centred measurements μ̄ =
μ − H(σ b) + Hσ b (observations subtracting the difference be-
tween the non-linear and linear models), the corresponding pri-
mal cost function (parameters to be minimized are in the emis-
sion space) is (Bocquet, 2005a)

LPoisson(σ ) = 1

2α
(Hσ − μ̄)T R−1(Hσ − μ̄)

+
N∑

k=1

1

mk

(
σk ln

σk

σb,k

+ σb,k − σk

)
. (4)

Contrary to the Gaussian case, this functional does not have an
analytic solution for σ as in eq. (2). Thus it has to be solved
numerically. The computational time required to solve these
functionals is proportionally related to the number of parameters
to optimize [in eq. (4) this is the number of emissions in the
guess]. Usually, the number of surface emission parameters is
higher than the number of observations and in this case, in order
to save computing time, it is preferable to maximize the dual
version of this functional (parameters to be optimized are in the
observation space)

L̂Poisson(β) = βTμ̄ − 1

2α
βT Rβ

−
N∑

k=1

σb,k

mk

{
exp

(
mk[βT H]k

) − 1
}

, (5)

σ k = σb,k exp
(
mk[β

T
H]k

)
(6)

where β is the corresponding dual vector with a dimension cor-
responding to the number of observations and [·]k represents the
kth component of the vector between brackets. The equivalence
to this problem is ensured by the convexity of the MEM inference
(Bocquet et al., 2010, and references within). It is interesting to
note that in the case of Gaussian priors the optimal inventory is
the guess plus a correction term (eq. 2), while when considering
a Poisson prior the optimal emissions are the guess multiplied
by a correction term (eq. 6). Consequently, the right estimator
(Gaussian or Poisson) should be chosen accordingly with the a
priori knowledge on the error distribution of the emissions.

3. The colocalization problem and methods
for addressing it

Bocquet (2005b, 2009) showed that when recovering sources
using ground measurements, the retrieved source often exhibits
an unrealistic influence by the observation sites, which is in-
creasingly pronounced as the grid resolution of the source is
increased. It was shown to be due to the dispersive nature of

atmospheric transport and to the location of the observations
in the manifold of the emission (in control space). Sensitivities
stored in the H matrix have local maxima where sources are
colocated with the observations. When applying the methods
described in Section 2 without any modifications, the system
has the tendency to overestimate changes in colocated emis-
sions creating this ‘colocalization problem’ (see Fig. 1a). Note
that this phenomenon of colocalization also affects cells around
the observation stations and not only the cells encompassing the
observations.

This behaviour is independent from the type of distribution
chosen to describe the emission inventory. However, when com-
paring Gaussian with non-Gaussian priors at the same scale,
this problem is more obvious on the Gaussian results. Indeed,
non-Gaussian priors are usually more informative than Gaussian
priors because they usually imply additional assumptions for the
emission fluxes (see Bocquet et al., 2010, for a quantitative il-
lustration).

Several methods have been used to solve this problem, so
before introducing the new two-scale method in the next section,
we review four of the most commonly used methods in the
following subsections.

3.1. Coarsening emission spatial resolution

The simplest way to avoid the colocalization problem is by
coarsening the emission inventory resolution to a point where the
problem is not apparent (Bocquet, 2005b). By choosing the right
emission resolution from the beginning the methods presented
in Section 2 can be applied directly without modifications. This
coarsening can be made in many ways, for instance by grouping
emissions by sectors (e.g. Bousquet et al., 1999; Pétron et al.,
2002; Jorquera and Castro, 2010) or by just using a coarse model
grid (e.g. Kaminski et al., 1999; Henze et al., 2009; Kopacz
et al., 2010). It is important to note that many inverse modelling
studies do not encounter the colocalization problem and do not
have the need to modify their methodology, probably because
their starting emission resolution is coarse enough.

3.2. Adding spatial correlations

Probably the most commonly used or standard methodology
when the problem is detected and emission resolution is not
modified consists in correlating emission cells with their neigh-
bouring grids by specifying the non-diagonal elements of the
B matrix (e.g. Houweling et al., 2004; Peters et al., 2005). By
doing this, high differences between neighbour cells are avoided
preventing the appearance of colocalization. This method is of-
ten presented as enforcing correlations coming from errors in
the calculation of the emission inventory. However, one must
realize that it adds additional information on the regularity of
the emission field which may be incorrect. Some examples on
how to construct correlations can be found in Gaspari and Cohn
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Fig. 1. Time average difference between the a priori (official) inventory and the optimized inventories after assimilating real observations using
Gaussian estimates: grid-cell values and smoothed contours. (a) Using no modifications. (b) Using correlations with a radius of influence r = 2.5
cells. (c) Adding a constraint on the derivative in the functional. (d) Using weighting factors over B. (e) Performing a two step multiscale inversion
on a coarse grid of 3 × 3 for one of the possible grid positions and (f) the same as (e) after averaging the nine possible placements of the 3 × 3 grid.
Note that positive values represent a decrease over the background emissions and negative values represent an increase over the background
emissions. See the text for details. Units are in µg m−2 s−1.

(1999). For instance, a commonly used method is to suppose a
radius of influence with an exponential decrease with the dis-
tance between cells:

Bnew = B : L

Lij = exp

(
−dij

l

)
(7)

with (:) the Schur product (i.e. piecewise multiplication), dij

some distance between emissions i and j and l a specified length
scale. Figure 1b illustrates this method in the Gaussian case.

This method cannot be applied directly to non-Gaussian ap-
proaches since a multivariate law (like Gaussian) is needed to
establish tractable spatial correlations.

To the knowledge of the authors, the use of anisotropic radii of
influence have not been used for estimation of surface sources.
However, some work has been done in this direction in data
assimilation applications using anisotropic diffusion operators
(e.g. Hoelzemann et al., 2001, 2009; Elbern et al., 2007) with
promising results.

3.3. Constraining the spatial derivatives

This method has been used in studies such as Seibert (2000),
Carmichael et al. (2008) and Dubovik et al. (2008) and consists
in adding a supplementary term to the functional from eq. (1) to

constraint the nth order derivative of the difference between the
guess emissions and the solution in order to obtain smoothness.
The additional term in eq. (1) has the following structure:

γ

2
[D(σ − σ b)]T [D(σ − σ b)] (8)

where γ is a regularization parameter similar to α in eq. (1) and
where for instance D = � (Laplacian n = 2, e.g. Seibert, 2000;
Carmichael et al., 2008) or D equals an operator that makes
an implicit representation of the nth order derivative (Twomey,
1977). One can show that adding the additional term shown in
eq. (8) to (1) is equivalent to replace α−1 B in eq. (1) by

α−1 Bnew = (αB−1 + γ DT D)−1

= α−1
{

B − B[B + αγ −1(DT D)−1]−1 B
}
, (9)

where the second equality is obtained using the Sherman–
Morrison–Woodbury formula (Golub and Van Loan, 1996). If
the original B matrix is diagonal, eq. (9) can be seen as adding
correlation to B matrix, since the numerical computation of the
derivative stored in D uses spatial neighbours resulting in a non-
diagonal square DT D matrix. In summary, this kind of methods
results in a specific case of the methods presented in Section 3.2.
Figure 1c illustrates this spatial derivative regularizing method
in the Gaussian case. Note the similarity with Figure 1b which
is the case of introducing spatial correlations.

Tellus 63B (2011), 3
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Fig. 2. Time average relative difference between the a priori (official) inventory and the optimized inventories after assimilating real observations
using Poisson estimates. (a) Using no modifications. (b) Using factors over B. (c) Performing a two step multiscale inversion on a coarse grid of 3 ×
3 and averaging the nine possible placements of the grid. Units are in µg m−2 s−1.

3.4. Adding a weighting factor in B matrix

The method of the weighting factor consists in applying a factor
F that smooths singularities or peaks on the collocated spots
in the retroplumes (Issartel, 2003), which in this study corre-
sponds to the rows of the sensitivity matrix (H). This can be
equivalently achieved by weighting the B matrix by a weighting
factor F−1. The factor can be chosen as the relative sensitivity
computed using some norm of the columns of the H matrix,
further preventing colocalization (Saide et al., 2009).

More precisely, to apply this method to a Gaussian case, B is
replaced by

Bnew = F−ρ/2 B F−ρ/2 (10)

for some ρ > 0 and with the diagonal of F computed as (Saide
et al., 2009)

[F]k = ‖hk‖q

maxk ‖hk‖q

(11)

with ‖hk‖q the q-norm of the kth column of the H matrix.
Figure 1d illustrates the method for the Gaussian case using q =
1 and ρ = 1.

This method can be generalized to non-Gaussian non-
multivariate distributions. Since the weighting factor is origi-
nally applied to the B matrix, one assumes that the factor affects
the variance, while keeping the mean constant. For the Poisson
case, the vector of means is mθ = σ b and the vector of variances
is m2θ = mσ b. Then to fulfil the generalization m and θ must
be divided and multiplied by the weighting factor, respectively.
Figure 2b illustrates the method for the non-Gaussian case using
q = 1 and ρ = 1. Although it has been shown to be efficient,
this methodology is empirical and it has not been justified theo-
retically so far, but it is interpreted as a priori information as is
also the case for (7) and (8).

4. Two-step two-scale inversion

As stated in Section 3.1, the colocalization problem can be solved
by decreasing the resolution (coarsening) of the emissions in

order to exploit all the information from the observations. How-
ever, there should be finer residual information at the smaller
scale in the first guess emissions (σ b) that can be utilized. Fol-
lowing this idea, once the inversion is performed at a coarser
scale (first step), one still wants to infer how this result maps to a
finer scale taking into account the finest component of the prior
(second step). To do so, a projection operator � is defined so as
to map an emission field σ ∈ R

N at fine scale (original emission
inventory scale) to an emission field σ ′ ∈ R

N ′
at a coarser scale.

� could be considered for instance, as the operator that averages
fine cells into a coarser cell maintaining emission mass. Assume
σ ′ is the coarse scale estimate that results from the first step
inversion.

We use maximum entropy on the mean because it will allow
the use of primal and dual versions of a non-Gaussian formalism
(Bocquet, 2005a). Define ν(σ ) as the probability density prior
on the emission field at the finer scale. Assume it can be split
cell-wise (ν = ⊗N

k=1νk), which means that the background errors
are independent from one grid-cell to another (no covariances
prescribed). Even if it is not a realistic assumption, we will as-
sume it in order to obtain a first set of simplified equations. Then,
the primal cost function that can help to define the emission field
at fine scale knowing an estimation at a coarser scale reads

L(σ , β, λ) =
N∑

k=1

ν̂∗
k (σk) + βT (μ̄ − Hσ ) + λT(σ ′ − �σ ) .

(12)

In this equation, the first constraint (second term on the right
hand side) implemented by Lagrange multipliers β ∈ R

d en-
forces that the finer emission field still satisfies the measurement
equation μ̄ = Hσ . For the sake of simplicity, we have not added
observation errors but it can easily be done and will be included
in the two following application cases. The second constraint
(third term on the right hand side), implemented by Lagrange
multipliers λ ∈ R

N ′
enforces that the same mass obtained in the

coarse inversion (σ ′) is distributed into the fine emission field
(σ ) block cell by block cell. This last constraint prevents the
colocalization problem to happen.
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The log-Laplace transform ν̂ of ν is defined by

ν̂(ω) =
∑

σ

ν(σ ) exp(ωTσ ) , (13)

where the sum over σ is symbolical here and may be a real
sum or an integral depending on the actual distributions. The
Legendre–Fenchel transform ν̂∗ of ν̂ is defined by

ν̂∗(σ ) = sup
ω

[ωTσ − ν̂(ω)] . (14)

Since the constraints have been taken into account by the
Lagrange multipliers, this cost function can be freely optimized
on the σ , β and λ vectors. The first step is to get rid of the σ

set of variables. The optimal σ , called σ ∗ from now on, should
satisfy for all k = 1, . . . , N

∇σk
ν̂∗

k

(
σ ∗

k

) − [βT H]k − [λT�]k = 0 . (15)

Then the cost function becomes

L̂(β, λ) =
N ′∑
k=1

ν̂∗
k

[
σ ∗

k (β, λ)
]

+βT[μ̄ − Hσ ∗(β, λ)] + λT[σ ′ − �σ ∗(β, λ)] ,

(16)

with σ ∗
k (β, λ) = [∇σk

ν̂∗
k ]−1([βT H]k + [λT�]k).

By reciprocity of the Legendre–Fenchel transforms, ν̂(ω) =
supσ (σ Tω − ν̂∗

k (σ )), so that, if ωk = ∇σk
ν̂∗(σk),

ν̂k(ωk) = ωk

[∇σk
ν̂∗

k

]−1
(ωk) − ν̂∗

([∇σk
ν̂∗

k

]−1
(ωk)

)
. (17)

We set: ωk = [βT H]k + [λT�]k . Therefore the dual cost func-
tion reads

L̂(β, λ) = βTμ̄ + λTσ ′ −
N∑

k=1

ν̂k

(
[βT H]k + [λT�]k

)
. (18)

Denote β, λ, the unique argument of the maximum of L̂(β, λ).
Then an estimator of the fine emission field is

σ k = (∇ωk
ν̂k)

(
[β

T
H]k + [λ

T
�]k

)
. (19)

For ν we can typically choose a Gaussian law or a Poisson
law.

4.1. Gaussian case

Here, it is assumed that the prior on the emission νσ is Gaussian:
σ ∼ N (σ b, B) and that the fluxes can be correlated a priori and
thus we do not make any splitting assumption. In addition, we
will consider Gaussian observation errors distributed according
to ε ∼ N (0, R), leading to the Gaussian prior νε . The corre-
sponding log-Laplace transforms are

ν̂σ (χ) = 1

2
χT Bχ ν̂ε(δ) = 1

2
δT Rδ , (20)

and the related Legrendre transforms of the latter are

ν̂∗
σ (σ ) = 1

2
(σ − σ b)T B−1(σ − σ b) ν̂∗

ε (ε) = 1

2
εT R−1ε ,

(21)

This leads to the dual cost function

L̂(β, λ) = βT(μ̄ − Hσ b) + λT(σ ′ − �σ b) − 1

2
βT Rβ

− 1

2
(βT H + λT�)B(HTβ + �Tλ) , (22)

and to the estimators

σ = σ b + B HTβ + B�Tλ ε = Rβ . (23)

Analytically the β and λ are solutions of(
R + H B HT H B�T

�B HT �B�T

) (
β

λ

)
=

(
μ̄ − Hσ b

σ ′ − �σ b

)
, (24)

which leads to the explicit solutions for the Lagrange parameters

β = [R + H(B − B�T(�B�T)−1�B)HT]−1

×[
μ̄ − Hσ b − H B HT(�B�T)−1(σ ′ − �σ b)

]
,

λ = [�(B − B HT(R + H B HT)−1 H B)�T]−1

× [
σ ′ − �σ b − �B HT(R + H B HT)−1(μ̄ − Hσ b)

]
.

(25)

Then, by replacing β and λ into eq. (23) one obtains the explicit
solution for the estimator of the source

σ = σ b + B HT(R + H B HT)−1(μ̄ − Hσ b)

+ [B − B HT(R + H B HT)−1 H B]�T

× [�(B − B HT(R + H B HT)−1 H B)�T]−1

× [
σ ′ − �(σ b + B HT(R + H B HT)−1(μ̄ − Hσ b))

]
.

(26)

It can be noted that the first two terms in the equation corre-
sponds exactly to the terms in eq. (2) (without the introduction
of the α factor), then eq. (26) can be interpreted as the same so-
lution as the base methodology plus a correction term to address
the constraint coming from the coarse a posteriori estimate. It
can also be shown that eq. (2) is a specific case of eq. (26) when
the projection operator � is the identity (no change in spatial
resolution, σ ′ = σ ). Figures 1e and f illustrate the two-scale
method for the Gaussian case.

4.2. Poisson case

Assuming a Poisson distribution for the emission (see Sec-
tion 2), the corresponding MEM primal cost function is (Boc-
quet, 2005a)

L(σ , ε, β,λ) =
N∑

k=1

1

mk

(
σk ln

σk

σb,k

+ σb,k − σk

)
+ 1

2
εT R−1ε

+βT (μ̄ − Hσ − ε) + λT
(
σ ′ − �σ

)
. (27)
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Then the dual cost function to be maximized is:

L̂(β, λ) = βTμ̄ + λTσ ′ − 1

2
βT Rβ

−
N∑

k=1

σb,k

mk

{
exp

(
mk[βT H]k + mk[λT�]k

) − 1
}

,

(28)

and the estimators are:

σ k = σb,k exp
(
mk[β

T
H]k + mk[λ

T
�]k

)
. (29)

and

ε = Rβ . (30)

Figure 2c illustrates the performance of the two-scale method
for the non-Gaussian (Poisson) case.

5. Intercomparison test bed

The inversion is performed to improve a carbon monoxide (CO)
emission inventory over the city of Santiago de Chile. Emissions
correspond to the official 2002 emission inventory provided by
the Chilean Environmental Agency (http://www.conama.cl) and
are produced by a bottom-up approach (Corvalán and Osses,
2002). It has a spatial resolution of 2 km and a temporal res-
olution of one hour for a representative day of the week. Car-
bon monoxide observations correspond to Santiago air quality
monitoring network (MACAM2 network, http://www.asrm.cl/).
MM5 meteorological fields are used to feed the dispersion model
(Grell et al., 1995), using 2 km horizontal resolution and 31
vertical levels as used for the same region in previous studies
(Schmitz, 2005; Jorquera and Castro, 2010). Air quality simu-
lations are performed using the Polyphemus platform (Mallet
et al., 2007) for 2 km horizontal resolution and twelve verti-
cal levels up to 6 km. The model horizontal domain is centred
around Santiago (33.5S, 70.5W) and encompasses an area of
140 km × 126 km. Polyphemus is run in tracer mode, since CO
at the city scale can be assumed so (residence time in the basin
is not more than a couple of days and CO life time of order of
months). CO boundary conditions are set to zero since emission
rates in Santiago are very high and no relevant sources are found
up-wind from the city. The sensitivity matrix (H) is computed by
running Polyphemus in adjoint mode. For a tracer, this is done
by shifting winds in the opposite direction and running back-
wards in time (e.g. Davoine and Bocquet, 2007). Further details
on model settings, validation of the meteorological and air qual-
ity models and assumptions made can be found in Saide et al.
(2009).

The inversion experiment consists in improving the CO emis-
sion inventory using seven ground monitoring stations for a sum-
mer period going from January 15 to January 25, that was shown
to be representative of the whole summer period for this region
(Saide et al., 2009). Methods described in Sections 2–4 are used

to obtain improved emissions which are compared in order to
obtain differences, similarities and advantages or disadvantages
in between them. The method of coarsening the emission inven-
tory (Section 3.1) is not applied since the objective is to compare
a posteriori emissions under the same resolution.

The covariance matrices (when existent) are considered di-
agonal with a value of one and the weight of each term in
the functional is controlled by the α parameter. Parameter α is
considered the same for all methodologies (Gaussian and non-
Gaussian) and is the same as in the previous work (1.4 × 107,
Saide et al., 2009), where it was estimated with the L-curve
approach (Hansen and O’Leary, 1993; Davoine and Bocquet,
2007) given the lack of information on the uncertainty of the
model and parameter errors. For the Poisson case, where there
is no matrix B, parameters m and θ need to be adjusted. For
this case study it was found that better results are obtained when
setting m constant and computing θ as θ k = σ bk/mk (distribu-
tion mean equation, see Section 3.4). Since m is multiplying the
emission term in eq. (5), it is assumed to be equal to 1 and the
weighting of the terms is handled only by α.

For the case of adding spatial correlations (Section 3.2) eq. (7)
is used for computing the B matrix with l = 2.5 cells, which
is the optimum found when doing synthetic inversion for this
specific case (Saide et al., 2009). The Laplacian is chosen for
the method that constrains the spatial derivatives (Section 3.3).
Operator D is computed using the centred differences. The γ

parameter for this approach is chosen testing several values until
no colocalization is found (γ = 0.1α).

For the two-step two-scale method (Section 4) the emission
resolution has to be decreased, and this can be done by several
ways (e.g. Bocquet, 2009). In this study, the two scales are
characterized by two regular grids with different resolutions. If
a coarse grid-cell contains n fine grid-cells, then there exists
n different ways to place the coarse grid with respect to the
finest grid. Since there is no a priori preference for any of these
choices, the inversion is performed for all the cases and the
results are averaged to obtain a representative inventory for the
chosen resolution. The same parameters are used for inversions
at different scales (R, B,m, α). For the case study, the resolution
is coarsened in cells that group 3 × 3 grid-cells obtaining nine
possible shifts of the grid.

As mentioned in Section 2, numerical minimization is re-
quired to obtain the optimized emissions for the non-Gaussian
scheme. Also, to obtain positive emissions in the Gaussian case,
eq. (1) is minimized using additional positivity constraints. The
minimization routine used in both cases is the L-BFGS-B code
(Zhu et al., 1997).

5.1. Colocalization index

To provide a quantitative measure of the colocalization problem
to be able to compare the behaviour of the different methods,
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the following colocalization index (CLI) index was constructed

CLI =
Nest∑
i=1

∣∣∣∣∣∣
(∑4

j=1 δσi,j

)
− 4δσi

1
5

[(∑4
j=1 δσi,j

)
+ δσi

]
∣∣∣∣∣∣ , (30)

where δσ = σ b − σ (difference between guess and analysis,
plotted on Fig. 1), i loops on Nest total number of stations and j
loops on the four spatial neighbours of each i station spot. The
numerator in the right hand side of the equation is the numer-
ical Laplacian estimator on the observation spots, which gives
an estimation of the smoothness of the δσ field on the obser-
vation places. The higher the Laplacian the less smooth is the
solution, meaning that colocalization is present. The denomi-
nator on eq. (31) is the average of the δσ i and its neighbours.
It is added in order to locally normalize the index and make
it comparable in between methods (different methods generate
different magnitude on δσ ).

6. Results and discussion

The following results correspond to inversions that use only real
observations. Results are classified by the use of Gaussian or
non-Gaussian estimates.

6.1. Gaussian estimates

The inversions performed are: one without accounting for the
colocalization problem (base run); one for each method pre-
sented in Section 3 (but coarsening spatial resolution); and one
with the two-step inversion. Table 1 presents a summary of the
following discussion and the CLI for each method.

Figure 1 shows the spatial distribution of the difference be-
tween the background and the optimized emissions. All methods
agree in a decrease of emissions in the centre-western area and
in an increase of emissions in the eastern area. However, sev-
eral differences can be found depending on the method used.
The base methodology (Fig. 1a) shows the colocalization prob-
lem with the highest CLI values (Table 1), where modifications
are done preferably over the colocalized emissions and the rest
remains almost the same.

Figures 1b and c present results from the methods that add cor-
relation and the one that constrains the derivatives, respectively,
and show really similar behaviour between them. Both solve the
colocalization problem with smooth modifications on the emis-
sions, showing low values on their CLI (Table 1). The derivative
method shows the minimum CLI of all methods, which is rea-
sonable since this method minimizes the Laplacian, which is
how the CLI is constructed. It is interesting to note that changes
in the emissions for both methods seem to be spatially isotropic
(similar in all directions, see contours in Figs 1b and c). An-
other aspect that is notable is that there are regions far from
the observations that are not changed at all (short influence
range).

The results from the method that uses a weighting function
over the B matrix is presented in Fig. 1d. The method is able
to solve colocalization (CLI similar to the spatial correlation
method, Table 1), but the pattern of modification is more spa-
tially anisotropic, contrary to the previous methods (see contours
in this figure). No covariance is built into the method, which per-
mits changes that may not be as smooth as the previous results.
Also, this method changes emissions far from the observation
(long influence range). We cannot argue if this is favourable or
unfavourable, since it depends mainly in where we think that
emissions should be changed.

Finally, Figs 1e and f present the results from the two-step
two-scale inversion, where the first one is the result of a single
run of the method and the second the average of all possible
grid positions for a determined coarse grid size, as mentioned in
Section 5. The single run optimized emissions present marked
influence from the coarse grid, but when averaging smoothness
is achieved, the artefact disappears. Comparing to previous re-
sults, Fig. 1f presents a mixed behaviour. The modifications are
not as isotropic as Figs 1b and c, but they do have a radius of in-
fluence where emissions at a certain distance from observations
are not modified. The colocalization problem is solved, but not
completely (CLI index is slightly higher than the spatial correla-
tion or the weighting factor method, Table 1), as the maximum
changes are at the colocated spots. This method has an additional
limitation of the necessity to chose an arbitrary total amount of
cells to group, which is similar to choosing a radius of influence
for the correlation methods. However, this could be solved by

Table 1. Summary of features of different methods for solving colocalization. CLI stands for the
colocalization index (see Section 5.1). See text in section 6 for further explanations

Method Bayesian Non-Gaussian Isotropy/ Influence CLI
applicability anisotropy range

No method (base) Yes Yes – Very short 56.5
Spatial correlations No No i Short 10.0
Constraint derivatives No No i Short 5.2
Weight factor to B No Yes a Long 10.6
Two-scale Yes Yes i/a Short 11.2
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using optimal choices criteria (Bocquet, 2009). Another limita-
tion is the necessity to do the two steps of the inversion and then
repeat it several times to get a smooth solution which would cost
more computational time than other methods.

Figure 3 shows the emissions temporal profiles in a selection
of grid-cells for some of the methods. When comparing the re-
sults between Gaussian methods (Fig. 3, left column) many con-
clusions can be drawn. Since the Gaussian functional assumes
an additive error in the mismatch of emissions, the difference
between the optimized emissions and the guess tends to be sim-
ilar for each parameter (Fig. 1). However, when looking at the
plot with higher emissions (Fig. 3a3) it seems that the modifi-
cations are low compared with the plots with lower emissions
(Fig. 3a1 and a4), but this is only due to use of different scales
in the plots. As mentioned in Saide et al. (2009), during the
morning, when the boundary layer is shallow and the winds are
weak, emissions have higher sensitivity to the observations than
the ones in the afternoon when the boundary layer deepens and
winds are strong. This results in higher modifications of morning
emissions and lower modifications in the afternoon ones when
not applying a weighting factor. This behaviour can be found in
Fig. 3a1 (colocated spot) and Fig. 3a2 (non-colocated spot).

Methods that add covariance to the background errors are
prone to aggregation errors, although in a less obvious way than
the methods based on straight coarsening of grid-cells. For in-
stance, emissions in between the centre of the city and the north-
east edge mainly affect the north-eastern station. When adding
statistical correlations between emission flux errors (Figs 1b and
c) these emission go down as they are correlated with emissions
in the centre of the city. However, when looking at results where
no additional correlations are enforced (Fig. 1d) they have the
opposite behaviour, which helps to improve the fit in the north-
east station. For details, Fig. 3a4 shows this behaviour for the
afternoon hours. Other example of this behaviour is the pattern
of modification of emissions colocated with the northwestern
station. The misfits between observations and model in this sta-
tion occur only during morning hours. However, correlation with
neighbouring cells allows emission changes during the afternoon
hours (line A in Fig. 3a1).

6.2. Poisson estimates

As mentioned in Section 3.2, methods that result in using a non-
diagonal B matrix cannot be used with the Poisson distribution.
Hence results are presented for the base case, with weighting
factor and for the two-step inversion. Fig. 2 shows the relative
difference (difference divided by the first guess σ b) between the
guess and the optimized emissions . The behaviour is similar to
the Gaussian estimates, but with relative differences, since the
error is assumed multiplicative for this distribution (Section 2).
This is desirable if the error in emissions are thought to be mul-
tiplicative. The two-step two-scale approach and the weighting
factor method results show that the colocalization problem can

Fig. 3. Emission time series for a selection of grid-cells (1–4). Left (a)
and right (b) columns present Gaussian and Poisson results
respectively. Line A are the result using a non-diagonal B matrix using
a radius of influence r = 2.5 cells, line B using a weighting factor over
B matrix, line C applying the two-step method for 3 × 3 cells and
averaging all possible results, and line D the initial emissions (guess).
Bottom figure shows the grid-cell selection. Cell 1 is an emission
colocated with an observation, cell 3 is the place where maximum
emissions occur and cells 2 and 4 are cells selected to explain different
behaviour of the inverse modelling methods. Numbers in the axis
represent the cell number in the model grid. See the text for details.
Units are in µg m−2 s−1.
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be solved even though no covariance matrices are specified in
the methodology.

Figure 3 right column (b) shows the emission time series for
Poisson estimates. Now, since changes are multiplicative, the
change for high values first guess emissions is higher than in
the Gaussian case (compare Fig. 3b3, where changes are close
to 10 µg m−2 s−1, to Fig. 3a3 where changes are less notable).
Also, due to the multiplicative changes, the low value emissions
remain close to the background, which is not true for most of the
Gaussian estimates that tend to approach 0 (compare first hours
of the time series on the left and right columns of Fig. 3).

7. Summary and conclusions

Inverse modelling for improving spatially and temporary re-
solved emission inventories is being more extensively used by
the atmospheric chemistry community. When performing the
inversion one of the problems found is due to the fact that the
observations lie in the space and time manifold of the emissions,
resulting in spurious corrections to the emissions (colocalization
problem).

Several methods have been used to solve this problem that
consist in making modifications to a base inverse modelling
technique (essentially 4D-Var). Several of these methods were
reviewed and a new strictly Bayesian method was presented.
They were all tested and qualitatively and quantitatively com-
pared in an experiment that consists in improving a CO emission
inventory at the scale of Santiago de Chile. Moreover, non-
Gaussian (e.g. Poisson) probability density distributions of the
background emission fluxes were introduced for this application
and the different methods to solve colocalization were applied
when possible.

Methods for solving colocalization that add correlations or
constraint derivatives are similar in construction and showed
similar results like an isotropic pattern of modification, smooth-
ness and a short range radius of modification. But these methods
are likely to be impacted by smooth aggregation errors: emis-
sion fluxes may be changed because of correlations with other
emission flux errors and do not improve any misfit between
model and observations. The method that considers the use of a
weighting factor over the B matrix showed a more anisotropic
spatial pattern of modification and less smooth results. Also, it
has the tendency to modify emissions that can be far from the
observation locations, which can be preferable or not depending
on the application.

A two-step two-scale fully Bayesian method was developed
and applied with satisfactory results, solved the colocalization
almost completely and showed a mixed behaviour compared to
the previous methods used. It was shown to be a method inde-
pendent of the emissions prior density distribution chosen by
testing it successfully with Gaussian and Poisson priors. How-
ever, the method has some limitations like arbitrary estimation

of parameters and additional computational time required to ex-
ecute it.

Results using Poisson estimates showed similar modification
patterns as the Gaussian approach for all methods tested but
consider multiplicative corrections for emissions, which is the
most commonly used assumption for emissions inventories. This
feature is reflected by avoiding the decrease in small emissions
to zero values as in the Gaussian tests, and allowing high values
to vary far from their original estimate.

Future research should be focused on finding the most suit-
able method depending on the application, based on the a priori
knowledge on the emissions being optimized.
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