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1 Introduction

The issue of surface velocity estimation from satellite images has been exten-
sively studied in the literature [1, 2, 3, 4, 5, 6, 7]. Data Assimilation (DA)
techniques have been applied in the last five years and gain importance in the
scientific community [8, 9, 10, 11]. The key points of the DA approach are:
availability of heuristics on the dynamics of a satellite sequence, knowledge on
links between velocity and image data.

This paper proposes an analysis and a validation of the DA approach for mo-
tion estimation from ocean satellite images. Two Image Models were proposed
in [12, 13, 14]. They express heuristics on the dynamic of the motion field. The
comparison of the estimation using the two models allows us to analyze the
impact of these heuristics. The main issue of the paper is then to validate the
estimation approach by evaluating the quality of the result, compared to real
data.

The motion estimation is performed with NOAA/AVHRR Sea Surface Tem-
perature (SST) data acquired over the Black Sea. The analysis is conducted by
comparing the stationary and the shallow-water heuristics. The validation is
obtained by quantifying the discrepancy of the water layer thickness, estimated
with the shallow-water image model, and the one computed from altimetry data.
The altimetry measures, used in this study, come from the Envisat and GFO
sensors.

The paper is organized as follows. Section 2 summarizes the principles of
variational data assimilation. The definition of the Stationary Image Model
(SIM) and Shallow Water Image Model (SWIM) is given in Section 3. Sec-
tion 4 describes the application of DA to perform motion estimation. Section 5
describes the SST images (5.1), displays and analyzes the estimated motion re-
sult (5.2), describes the altimetry data (5.3), and validates the approach (5.4).

2 Variational Data Assimilation

2.1 Mathematical setting

Let X being the state vector depending on the spatial coordinate x (x = (x, y)
for image data) and time t. X is defined on A = Ω× [0, τ ], Ω being the bounded
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spatial domain and [0, τ ] the temporal domain.
We assume X is evolving in time according to:

∂X

∂t
(x, t) +▼(X)(x, t) = 0 (1)

▼, named the evolution model, is supposed differentiable.
Observations Y(x, t), for instance satellite image acquisitions, are available

at location x and date t and linked to the state vector through an observation
equation:

Y(x, t) = ❍(X)(x, t) + EO(x, t) (2)

In this paper, we assume that one component of X is directly comparable to Y.
Consequently, ❍ reduces to a projection operator. The observation error EO
simultaneously represents the imperfection of the observation operator ❍ and
the measurement errors.

We consider having some knowledge on the initial condition of the state
vector at t = 0:

X(x, 0) = Xb(x) + Eb(x) (3)

Xb is named background value of the initial condition and Eb the background
error.

Eb and EO are assumed to be Gaussian and fully characterized by their
covariance matrices B and R.

2.2 Variational formulation

In order to solve the system (1), (2), (3) with respect to X having a maximal a
posteriori probability given the observations, a functional E(X) is defined and
minimized:

E(X) =

∫

A

[Y(x, t)−❍(X)(x, t)]TR−1(x, t)[Y(x, t)−❍(X)(x, t)])dxdt

+

∫

Ω

[X(x, 0)−Xb(x)]
T
B

−1(x)[X(x, 0)−Xb(x)]dx

+Reg

(4)

In this formulation, we consider no correlation of the errors between two space-
time positions. Reg is a regularization term used to obtain a convex function
and allow the minimization process to converge to a global minimum. The
minimization of E(X) is carried out with an iterative method based on the one
described in [10] and summarized in the following.

At each iteration k, the analysis Xk
a is obtained from the background X

k
b by

computing the increment δX at t = 0.

X
k
a(x, 0) = X

k
b (x, 0) + δX(x) (5)

1. Initialization

(a) k = 0
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(b) Compute X0
b(x, t) from the initial condition Xb(x) of the state vector

at t = 0 in (3):
X

0
b(x, 0) = Xb(x) (6)

∂X0
b

∂t
(x, t) +▼(X0

b)(x, t) = 0, for t = 0 to τ (7)

(c) Initialize the analysis X
0
a(x, t):

X
0
a(x, t) = X

0
b(x, t) ∀t ∈ [0, τ ] (8)

2. Repeat

(a) Compute the adjoint variable λ from t = τ to t = 0:

λ(x, τ) = 0 (9)

−
∂λ

∂t
(t)+

(

∂▼

∂X

)

∗

λ(t) = ❍T
R

−1[Y(t)−❍Xk
a], for t = τ to 0 (10)

(b) Update the value of the background variable:

X
k+1

b = X
k
a (11)

(c) Compute the incremental variable δX at t = 0:

δX(x) = B(x)λ(x, 0) (12)

(d) Update the value of the analysis variable:

X
k+1
a (x, 0) = X

k+1

b (x, 0) + δX(x) (13)

(e) Compute X
k+1
a (x, t) from the initial condition:

∂Xk+1
a

∂t
(x, t) +▼(Xk+1

a )(x, t) = 0, for t = 0 to τ (14)

(f) k = k + 1

Until ||δX||2 ≤ ε

3. Final result is X
k
a.

Equation (10) makes use of the adjoint model

(

∂▼

∂X

)

∗

. In our study, the

discrete adjoint model is automatically obtained by the Tapenade software1.

1http://www-sop.inria.fr/tropics/
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3 Image models

The two Image Models used in the paper are based on the assumption that a
pixel value is a passive tracer transported by the surface velocity field. The
state vector X includes the motion vector W and a tracer q that can be di-
rectly compared to the image observations. The evolution of q is given by the
advection-diffusion equation:

∂q

∂t
+W · ∇q = νq∆q (15)

with νq standing for the diffusion coefficient.
The Stationary Image Model (SIM) is based on the restrictive assumption

that, at each position, the velocity is constant over time. The underlying hy-
pothesis is that the surface velocity field evolves much slower than the temper-
ature field. This heuristic is acceptable for a large range of marine processes.
If a vortex, whose spatial scale is more than 10 − 50km, is transported with a
velocity less than 0.1 to 0.5m/s, then the temporal scale of that phenomenon
will be more than one day. It means that the surface velocity field can be con-
sidered as stationary during one day. Defining X = (u, v, q)T , with u and v
the two components of the 2D motion vector W, SIM is defined as: However,
the stationary hypothesis makes this image model only applicable on a short
temporal window.

The shallow-water equations, derived from the Navier-Stokes equations, link
the 2D velocity (u, v) of the layer to its thickness h and take into account the
gravity and Coriolis forces. The state vector X is (u, v, h, q)T and the Shallow
Water Image Model (SWIM) is defined as: with B = gh + 1

2
(u2 + v2), g the

reduced gravity, f the Coriolis parameter (depending on the latitude), ξ the

vorticity (ξ =
∂v

∂x
−

∂u

∂y
).

4 Application of Data Assimilation

Data Assimilation is applied to perform motion estimation. The sequence of
SST images T (x, t) is assimilated in the two models SIM or SWIM, using the
incremental method described in Section 2.2.

As said in Section 2.1, the pixel value T (x, t) is directly comparable to the
component q(x, t) of the state vector. The observation operator ❍ reduces to
a projection operator, ❍(X(x, t)) = q(x, t). The regularization term is based
on the L2-norm of the motion gradient (to obtain a smooth vector field) and
on the motion divergency (incompressibilty assumption). Its impact is analyzed
in [14]. As we consider perfect models, the value of X(t) is obtained from the
initial conditions X(0) by integrating in time. Hence, the cost function (4) only
depends on the initial conditions and is rewritten as:

E(X(0)) =

∫

A

(T − q)TR−1(x, t)(T − q)dxdt

+

∫

Ω

(

X(0)−Xb

)T
B

−1(x)
(

X(0)−Xb

)

dx

∫

Ω

α(|∇u|2 + |∇v|2)dx+

∫

Ω

β|div v|2dx

(16)
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The choice of the covariance matrix R is crucial for the quality of results. As
the satellite images are provided with meta-data information (see section 5.1),
the quality of the acquisitions is approximately known. R

−1(x, t) is then given
a small value when the acquisition is noisy at (x, t) (because of cloud occlusion
for instance). The choice of the initial background conditions has also a strong
impact on the quality of the result. It has been discussed in [14] that the best
results are obtained with the first observation as background for q, null value
for W and a constant value hm for h, with hm being the thickness value at rest
state. As the background value of q is reliable, Bq is given a small value.

5 Results

5.1 Image data

A huge amount of images are acquired over the ocean by space remote sensors.
Those obtained by optical instruments, such as Sea Surface Temperature (SST)
data, display a high space-time coherence. The images, used in the paper,
are acquired on-board NOAA-AVHRR satellites. Their spatial resolution is
1.1 km2 at nadir and the temporal revisit is at best one day. However, several
acquisitions over the same area are usually acquired on the same day by different
satellites. Some of these data are contaminated by clouds or corrupted by noise.
Figure 1 displays a SST image acquired over the Black Sea in October 2005,
with the cyan color corresponding to clouds or noise.

Figure 1: Cyan area corresponds to clouds or noise.

5.2 Analysis

In this paper, motion estimation is tested on a sequence of four images, displayed
on Figure 2. The cyan areas, on the third and fourth frames, correspond to
missing data.

The two Image Models are used to estimate the surface velocity on these
data. Figure 3 compares the motion fields estimated with SIM and SWIM, at t =
0. The results obtained with SWIM visualize a cyclonic vortex on the western
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Figure 2: SST data acquired from October 23th to October 24th, 2005.
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part of the Black Sea. SWIM, due to its physical assumptions on the dynamic,
permits a more realistic motion estimation and characterizes structures occuring
on the sea surface. In comparison, the potential of SIM highly depends on the
size of the temporal window compared to the dynamics involved during that
period. That makes SIM no more relevant for data such as those displayed
in Figure 2. In conclusion, the DA approach for motion estimation permits to

Figure 3: Motion estimation. Up: SIM; down: SWIM.

retrieve the major currents of the Black Sea basin. Moreover, the high resolution
of NOAA/AVHRR images allows to better evaluate the size of some well known
mesoscale structures [12].

5.3 Altimetry data

Satellite altimeters provide an accurate measure of the Sea Level Anomaly (SLA)
that corresponds to the sea surface deviation from its rest state (see the black
curve on Figure 4).

The altimeters are nadir-pointing instruments providing an along-track ac-
quisition. The coverage of Envisat1 over the Black Sea is for instance displayed
on Figure 5. In this paper, we use altimetry measures provided by Envisat2

with a 35 days cycle and by GFO 3 with a 17 days cycle.

2http://envisat.esa.int
3http://ilrs.gsfc.nasa.gov/satellite_missions/list_of_satellites/gfo1_general.html
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Figure 4: Sea Level Anomaly.

Figure 5: 35 days cycle of Envisat1.

8



5.4 Validation

The outputs of SWIM are W, the surface velocity, and h the thickness of the
surface layer. The thickness anomaly, denoted hSWIM , is estimated from h as
its deviation from the value at rest. On another hand, the altimeters are 1-
dimensional instruments measuring the Sea Level Anomaly, denoted halt, along
their tracks. We then compare hSWIM and halt at the same positions. The
physical formula linking these two quantities is:

ρ× halt = ∆ρ× hSWIM (17)

with ρ being the density of the upper layer, ∆ρ the difference of density between
the upper and the lower layer, halt the sea level anomaly measured by the
satellite, hSWIM the thickness anomaly (h− hm) of the shallow-water model.

Figure 6: Two altimeter tracks displayed over the average of hSWIM .

Figure 6 displays the value of hSWIM , averaged in time. The two straight
lines represent altimeter tracks. The green line comes from Envisat and the
pink one from GFO.

The number of altimetry measures available on the same space-time period
than the SST data is rather small. However, we apply the conversion given in
(17) and perform a quantitative comparison of halt and hSWIM along a track.
Figure 7 displays these curves for the two tracks displayed on Figure 6: on the
left with Envisat and on the right with GFO. Black crosses locate the altimeter
measures. The shapes and values of halt and hSWIM curves are very similar.
There is no error in the slope directions. The extrema are well localized. It is
almost perfect in the case of Envisat. As the velocity field is strongly related to
the shape of the thickness image, these promising results on thickness estimation
validate the estimation of the motion. Figure 8 illustrates the link between
velocity and thickness: a bump correspond to an anticyclonic velocity field and
a bowl to a cyclonic one.
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Figure 7: Sea Level Anomaly, given by the altimeters, compared with the
estimation with SWIM.
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Figure 8: From left to right. 1. 3D water layer thickness. 2. Its 2D projection.
The magenta line figures the track of an altimeter. 3. SLA along this track. 4.
Velocity field.
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6 Conclusion

In this paper, we propose an analysis and validation of the data assimilation
approach for motion estimation from satellite image sequences. We compared
two dynamic assumptions, i.e. we assimilated the same data in two image mod-
els, SIM and SWIM, and analyzed motion results. Moreover, we used altimetry
data to quantify the quality of the estimation. The comparison between the
surface anomaly estimated by SWIM and measured by altimeters validates our
approach.
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