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Abstract. The mainintrinsic source of error in the ensem-
ble Kalman filter (EnKF) is sampling error. External sources
of error, such as model error or deviations from Gaussianity,
depend on the dynamical properties of the model. Sampling
errors can lead to instability of the filter which, as a conse-
quence, often requires inflation and localization. The goal of
this article is to derive an ensemble Kalman filter which is
less sensitive to sampling errors. A prior probability density
function conditional on the forecast ensemble is derived us-
ing Bayesian principles. Even though this prior is built upon
the assumption that the ensemble is Gaussian-distributed, it
is different from the Gaussian probability density function
defined by the empirical mean and the empirical error co-
variance matrix of the ensemble, which is implicitly used in
traditional EnKFs. This new prior generates a new class of
ensemble Kalman filters, called finite-size ensemble Kalman
filter (EnKF-N). One deterministic variant, the finite-size en-
semble transform Kalman filter (ETKF-N), is derived. It is
tested on the Lorenz ’63 and Lorenz ’95 models. In this con-
text, ETKF-N is shown to be stable without inflation for en-
semble size greater than the model unstable subspace dimen-
sion, at the same numerical cost as the ensemble transform
Kalman filter (ETKF). One variant of ETKF-N seems to sys-
tematically outperform the ETKF with optimally tuned in-
flation. However it is shown that ETKF-N does not account
for all sampling errors, and necessitates localization like any
EnKF, whenever the ensemble size is too small. In order
to explore the need for inflation in this small ensemble size
regime, a local version of the new class of filters is defined
(LETKF-N) and tested on the Lorenz ’95 toy model. What-
ever the size of the ensemble, the filter is stable. Its perfor-
mance without inflation is slightly inferior to that of LETKF
with optimally tuned inflation for small interval between up-
dates, and superior to LETKF with optimally tuned inflation
for large time interval between updates.

Correspondence to:M. Bocquet
(bocquet@cerea.enpc.fr)

1 Introduction

The ensemble Kalman filter (EnKF) has become a very popu-
lar potential substitute to variational data assimilation in high
dimension, because it does not require the adjoint of the evo-
lution model, because of a low storage requirement, because
of its natural probabilistic formulation, and because it easily
lends itself to parallel computing (Evensen, 2009and refer-
ence therein).

1.1 Errors in the ensemble Kalman filter schemes

The EnKF schemes can be affected by errors of different na-
ture. A flaw of the original scheme (Evensen, 1994) which
incompletely took into account the impact of the uncertainty
of the observations in the analysis, was corrected byBurgers
et al.(1998). They introduced a stochastic EnKF, by perturb-
ing the observations for each member of the ensemble, in
accordance with the assumed observational noise. Alterna-
tives to the stochastic schemes are the deterministic ensem-
ble Kalman filters introduced byAnderson(2001); Whitaker
and Hamill(2002); Tippett et al.(2003).

Even with this correction, EnKF is known to often suffer
from undersampling issues, because it is based on the ini-
tial claim that the few tens of members of the ensemble may
suffice to represent the first and second-order statistics of er-
rors of a large geophysical system. This issue was diagnosed
very early byHoutekamer and Mitchell(1998); Whitaker and
Hamill (2002). Indeed, the failure to properly sample leads
to an underestimation of the error variances, and ultimately
to a divergence of the filter.

Adding to the error amplitude mismatch, undersampling
generates spurious correlations, especially at long distance
separation as addressed byHoutekamer and Mitchell(1998);
Hamill et al.(2001).

The sampling errors are intrinsic deficiencies of the EnKF
algorithms. In addition to these, one should also account for
model errors that are of external nature for an EnKF scheme.
Indeed, they are not due to a flaw in the data assimilation
algorithm but to deficiencies in the evolution model.
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1.2 Strategies to reduce error

Besides the early correction of the stochastic filter, tech-
niques were devised to correct, or make up for the sampling
issues. For both deterministic and stochastic filters, the er-
ror amplitude problem can be fixed by the use of an inflation
of the ensemble: the anomalies (deviations of the members
from the ensemble mean) are scaled up by a factor that ac-
counts for the underestimation of the variances (Anderson
and Anderson, 1999; Hamill et al., 2001). Alternatively, the
inflation can be additive via stochastic perturbations of the
ensemble members, as shown byMitchell and Houtekamer
(1999); Corazza et al.(2002) where it was used to account
for the misrepresented model error.

As far as stochastic filters are concerned,Houtekamer
and Mitchell(1998, 2001) proposed to use a multi-ensemble
configuration, where the ensemble is split into several sub-
ensembles. The Kalman gain of one sub-ensemble can be
computed from the rest of the ensemble, avoiding the so-
called inbreedingeffect. Remarkably, in a perfect model
context, the scheme was shown to avoid the intrinsic need
for inflation (Mitchell and Houtekamer, 2009).

Unfortunately, inflation or multi-ensemble configuration
do not entirely solve the sampling problem and especially the
long-range spurious correlations. These can be addressed in
two ways under the name of localization. The first route con-
sists in increasing the rank of the forecast error covariance
matrix by applying a Schur product with a short-range ad-
missible correlation matrix (Houtekamer and Mitchell, 2001;
Hamill et al., 2001). The second route consists in making the
analysis local by assimilating a subset of nearby observations
(Ott et al., 2004 and references therein). Though vaguely
connected, the two approaches still require common grounds
to be understood (Sakov and Bertino, 2010). But alternative
methods have emerged, either based on cross-validation (An-
derson, 2007a), on multiscale analysis (Zhou et al., 2006), or
on empirical considerations (Bishop and Hodyss, 2007).

Many of these techniques introduce additional parameters,
such as the inflation factor, the number of sub-ensembles, or
the localization length. A few of these parameters can even
be made local. They can be chosen from experience gathered
on a particular system, or they can be estimated online.

The online estimation methods are adaptive techniques,
which is a growing subject. Focussing on the inflation issue,
they are based on a specific maximum likelihood estimator
of the inflation scaling, or of several scalars that parameter-
ize the error covariance matrices (Mitchell and Houtekamer,
1999; Anderson, 2007b; Brankart et al., 2010) essentially
following the ideas ofDee (1995). Another adaptive ap-
proach (Li et al., 2009) use the diagnostics ofDesroziers et al.
(2005).

1.3 Towards objective identification of errors

More straightforward approaches have recently been ex-
plored through the identification of the sampling errors.Mal-
lat et al.(1998); Furrer and Bengtsson(2007); Raynaud et al.
(2009) put forward a quantitative argument that shows the
shortcomings of sampling. Let us define an ensemble ofN

state vectorsxk in RM , for k = 1,...,N . The empirical mean
of the ensemble is

x =
1

N

N∑
k=1

xk , (1)

and the empirical background error covariance matrix of the
ensemble is

P=
1

N −1

N∑
k=1

(xk −x)(xk −x)T . (2)

They assume that the ensemble members are drawn from
a multivariate Gaussian distribution of unknown covariance
matrix B, that generally differs from the empirically esti-
mated covariance matrixP. Then the variance of each entry
of P can be assessed using Wick’s theorem (Wick, 1950):

E
(
[P−B]

2
ij

)
=

1

N

(
[B]ii[B]jj +[B]

2
ij

)
, (3)

with i,j = 1,...,M indexing the state space grid-cells; E is
the expectation operator of the Gaussian process and[C]ij

generically denotes entry(i,j) of matrixC.
In particular one obtains the average of the error on the

estimated variances inB

E
(
[P−B]

2
ii

)
=

2

N
[B]

2
ii , (4)

which has been used in an ensemble of assimilations (Ray-
naud et al., 2009). Considering covariances at long distance
(i 6= j ), [B]ij is expected to vanish for most geophysical sys-
tems. And yet the errors in estimating[B]ij

E
(
[P−B]

2
ij

)
∼

1

N
[B]ii[B]jj , (5)

are all but vanishing for a small ensemble. The impact of
these errors on the analysis can be objectively estimated us-
ing the results ofvan Leeuwen(1999); Furrer and Bengtsson
(2007); Sacher and Bartello(2008).

This type of approach may offer objective solutions to ac-
count for sampling errors. However incorporating them into
data assimilation scheme is not straightforward. For instance,
the objective identification of the covariance errors Eq. (3)
depends on the true covariances, which are unknown, and
some approximate closure is needed.

The Gaussian assumption made by these authors on the
distribution from which the ensemble is generated should
be regarded as an approximation in the context of ensemble
Kalman filtering since such an ensemble often results from
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the propagation by a possibly nonlinear dynamical model.
However this assumption allows to perform analytical com-
putation using the properties of Gaussian distributions. Be-
sides if the analysis of the data assimilation system only
requires first- and second-order moments, higher-order mo-
ments are irrelevant for the update, although certainly not for
the global performance of a filter. Following these authors,
we shall use this statistical assumption.

1.4 Objectives and outline

In the context of ensemble Kalman filtering, the first objec-
tive of this article is to build a prior, to be used in the analysis
step. Working on the first- and second-order empirical mo-
ments of the ensemble, a traditional ensemble Kalman filter
performs an update as if the prior distribution was given by a
Gaussian defined by the empirical momentsx andP. Instead,
our prior of the true state is conditioned on the entire forecast
ensemble, not only its first- and second-order empirical mo-
ments. Knowing about the discrete nature of the ensemble, it
should partly or completely account for the sampling flaws.

Our goal is, within the framework of ensemble Kalman
filtering, to perform a Bayesian analysis with this new prior.
In Sect.2, such a prior is derived.

The use of this prior in the analysis will result in the defini-
tion of a new class of algorithms for high-dimensional filter-
ing that are exploited in Sect.3, the finite-size (i.e. finite-
sample) ensemble Kalman filters (denoted EnKF-N). We
shall study one of its variant, which is an extension of the en-
semble transform Kalman filter (ETKF) ofHunt et al.(2007),
that we call the finite-size ensemble transform Kalman filter
(ETKF-N).

In Sect.4, the new filters are applied to the Lorenz ’63
and Lorenz ’95 models. Their performance is compared to
ETKF. The new filters do not seem to require inflation. Un-
fortunately, like any ensemble Kalman filter, ETKF-N di-
verges for small ensemble sizes in the Lorenz ’95 case. It
does require localization. This shows that the new filters do
not entirely solve the sampling issue, and the reason for this
is discussed in Sect.5. Yet, a local variant of ETKF-N, the
finite-size local ensemble transform Kalman filter (LETKF-
N), can be built. It is tested on the Lorenz ’95 toy model,
and compared to the local ensemble transform Kalman filter
(LETKF). The main goal of introducing LETKF-N is to ex-
amine whether the need for inflation is still avoided, in spite
of the imbalance that localization is known to generate. In
Sect.6, the results are summarized. A few leads to go further
are also discussed.

In this article, model error is not considered. It is assumed
throughout this study that the model is perfect. Therefore,
in this study, inflation is meant to compensate for sampling
errors (hence the adjectiveintrinsic in the title). Theoreti-
cally, (additive or multiplicative) inflation for model error is
a rather distinct subject from inflation for sampling errors,
even though it is difficult to untangle the two in practice.

The filters derived in this article should be applicable to
(very) high-dimensional geophysical systems. This requires
that only a small ensemble can be propagated between up-
dates (typically no more than 100 members).

2 Accounting for sampling errors

We would like to reformulate the traditional analysis step of
the EnKF. The prior (or previous forecast) is the focus of
the reasoning. The prior that is usually used in the EnKF
is given by the prior pdf of the state vectorx, a vector in
RM , conditional on the empirical meanx and on the empiri-
cal background error covariance matrixP, defined in Eqs. (1)
and (2). Moreover this conditional pdf of the priorp(x|x,P)

is implicitly assumed to be Gaussian. Lacking further infor-
mation, it is the more natural distribution knowing its first-
and second-order moments.

2.1 Getting more from the ensemble

Unfortunately, information is lost: this prior does not take
into account the fact thatx andP originate from sampling.
That is why we aim at computing the prior pdf ofx condi-
tional on the ensemble,p(x|x1,...,xN ). It is assumed that
the members of the ensemble are independently drawn from
a multivariate Gaussian distribution of mean statexb and co-
variance matrixB. As argued in the introduction this assump-
tion leads to an approximation, since the ensemble members
are rather samples of a (more or less) non-Gaussian distribu-
tion (Bocquet et al., 2010; Lei et al., 2010). There is no point
in modelling higher-order moments of the statistics prior to
the analysis, since the analysis of the Kalman filter only uses
the first- and second-order moments. The momentsxb and
B of the true sampled distribution are unknown a priori and
may differ fromx andP.

Summing over all potentialxb andB, whereB is a positive
definite matrix, the prior pdf reads

p(x|x1,...,xN )

=

∫
dxbdBp(x|x1,...,xN ,xb,B)p(xb,B|x1,...,xN )

=

∫
dxbdBp(x|xb,B)p(xb,B|x1,...,xN ). (6)

The symbol dB corresponds to the Lebesgue measure on all
independent entries

∏M
i≤j d[B]ij , but the integration is re-

stricted to the cone of positive definite matrices. From the
first to the second line, we used the fact that under the as-
sumption of Gaussianity of the prior pdf of the errors, the
conditioning ofp(x|x1,...,xN ,xb,B) on the ensemble is re-
dundant, since the pdf is completely characterized byxb, and
B. Bayes’ rule can be applied top(xb,B|x1,...,xN ), so that
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p(x|x1,...,xN ) =
1

p(x1,...,xN )
×∫

dxbdBp(x|xb,B)p(x1,...,xN |xb,B)p(xb,B). (7)

The probability densities that are conditional onxb and B
can be written explicitly thanks to the Gaussian assumptions.
The first one in Eq. (7) would be the prior ofx, if one knew
the exact mean and error covariance matrix. The second one
is the likelihood of the members to be drawn from the Gaus-
sian distribution of the same mean and error covariance ma-
trix (similarly to Dee, 1995). The third pdf in the integral of
Eq. (7) is a prior on the background statistics (anhyperprior)
whose choice will be discussed later. Writing explicitly the
two Gaussian pdfs in the integral of Eq. (7) and re-organizing
the terms, one gets

p(x|x1,...,xN ) ∝

∫
dxbdBexp(−L(x,xb,B))p(xb,B), (8)

where

L(x,xb,B) =
1

2
(x −xb)

TB−1(x −xb)+
1

2
(N +1)ln|B|

+
1

2

N∑
k=1

(xk −xb)
TB−1(xk −xb), (9)

where|B| denotes the determinant ofB.

2.2 Choosing priors for the background statistics

For the filters designed in this article, like for any (very) high-
dimensional ensemble-based Kalman filters, information on
the background error statistics can only be transported by the
ensemble between analyzes. Passing along information on
the full statistics of the errors requires too much storage. That
is one reason why the EnKF was preferred over the imprac-
tical extended Kalman filter. Still, we have to make a priori
assumptions on (the statistics of)xb andB.

The most popular one in multivariate statistics is Jeffreys’
prior. It maximizes the information that will be gained in any
subsequent analysis made with that prior (making it as much
less informative as possible). It is known that Jeffrey’s prior
for the couple(xb,B) is not satisfying in practice, and one
should make the independence assumption (Jeffreys, 1961):

p(xb,B) ≡ pJ(xb,B) = pJ(xb)pJ(B) (10)

and compute the Jeffreys’ priors forxb andB separately. Jef-
freys’ choice corresponds to

pJ(xb) = 1, pJ(B) = |B|
−

M+1
2 , (11)

whereM is the dimension of the state space. The fact that
pJ(xb,B) cannot be normalized is not truly an issue, like for
any non-informative priors in Bayesian statistics, provided

(as far as we are concerned) that integral Eq. (7) is proper.
The prior ofB has some important properties that are essen-
tial for this study. First, it is invariant by any reparameteriza-
tion of state vectors. Consider the change of state variables
x = Fx′, whereF is a non-singular matrix in state space. It
translates toB = FB′FT for the error covariance matrices.
The Jacobian of this change of variables forB is (see for
instanceMuirhead, 1982)

dB = |F|
M+1dB′ , (12)

so that

pJ(B)dB = |FB′FT
|
−

M+1
2 |F|

M+1dB′
= pJ(B′)dB′ . (13)

This justifies the power(M +1)/2. Besides we want the hy-
perprior to lead to asymptotic Gaussianity: in the limit of a
large ensemble, this choice should lead to the usual Gaussian
prior used in EnKF analysis. This will be checked in Sect.3.

2.3 EffectiveJb functional

Choosing the priorp(xb,B) ≡ pJ(xb)pJ(B), the integration
onxb in Eq. (8) is straightforward and leads to

p(x|x1,...,xN ) ∝

∫
dBexp(−J (x,B)) , (14)

where

J (x,B) =
1

2

N

N +1
(x −x)TB−1(x −x)

+
N +M +1

2
ln|B|+

1

2

N∑
k=1

(xk −x)TB−1(xk −x). (15)

This functional can be compactly written as

J (x,B) =
1

2
Tr
(
AB−1

)
+

N +M +1

2
ln|B|, (16)

where

A =
N

N +1
(x −x)(x −x)T

+(N −1)P. (17)

Like for most ensemble Kalman filters, especially ensemble
transform Kalman filters, it is assumed in the following that
x−x belongs to the vector spaceV spanned by the anomalies
xk −x. Because in the context of high-dimensional Kalman
filtering A is rank-deficient

rank(A) ≤ N −1� M, (18)

integral Eq. (14) turns out to be improper. The problem can
be circumvented. Indeed, theB matrices to integrate on are
merely test positive-definite matrices representing potential
error covariance matrices. We could choose to integrate on a
relevant subspace rather than on all positive definite matrices.
We are merely interested in the matrices that act onV only,
because the state vector lies inx+V. Integration on the other
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matrices will produce an infinite volume factor with no de-
pendence onx, that can be subtracted from the final effective
functional. On more rigorous grounds, one can extend matrix
A to a full rank positive definite matrixAε = A+εIM , where
IM is the identity matrix of state space, andε > 0. Then the
integral in Eq. (14) becomes proper. After the integration,
one can letε goes to 0. A diverging term depending onε

only, and hence of no interest, can then be safely ignored.
To perform the integration onB in Eq. (14), one can

proceed to the change of variablesB = A1/2
ε �A1/2

ε . From
Eq. (12), the Jacobian of this change of variable is

dB = |Aε |
M+1

2 d�. (19)

Therefore, the dependence inx throughAε can be extracted
from the integral:

p(x|x1,...,xN )

∝ |Aε |
−N/2

∫
d�|�|

−(N+M+1)/2exp

(
−

1

2
Tr�−1

)
∝ |Aε |

−N/2
∝ |A|

−N/2. (20)

It is important to realize that the last determinant ofA ac-
tually applies to the restriction of the linear operator repre-
sented byA in the canonical basis of subspaceV, which is of
dimension lower or equal toN −1, and is, by this definition,
not singular.

From the expression ofp(x|x1,...,xN ), we deduce the
background functional to be used in the subsequent analysis
of our variant of the EnKF:

Jb(x) = −lnp(x|x1,...,xN ) =
N

2
ln|A|+Cst

=
N

2
ln

∣∣∣∣ N

N +1
(x −x)(x −x)T

+(N −1)P

∣∣∣∣ , (21)

up to some irrelevant constant. Let us remark that the mean
of the ensemblex is the mean and mode ofp(x|x1,...,xN ).

2.4 AlternateJb functional

One can argue against the choice ofpJ(xb) = 1. It might be
considered too weakly informative. However as an hyper-
prior, it provides information before the observation, but also
before exploiting the ensemble. So, whatever information is
passed on to the subsequent analysis, it is weak, unless the
information content of the ensemble is weak and the obser-
vation are not dense (small ensemble size, sparse/infrequent
observation).

One alternative to the uniform distribution is to use a cli-
matology forxb. It is not tested in this study. However it was
recently demonstrated in the context of ensemble Kalman fil-
tering that such an approach is helpful for sparsely observed
systems (Gottwald et al., 2011). Another alternative is to
make specific choices forxb. Equation (6)

p(x|x1,...,xN ) =

∫
dxbdBp(x|xb,B)p(xb,B|x1,...,xN ), (22)

would be affected in the following way. The probability den-
sity p(x|xb,B) is conditional on the knowledge ofB and
xb. For this density, we additionally assume a great confi-
dence inx, like any standard EnKF, so that the first guess
xb of the sampled prior is believed to be very close tox and
p(x|xb,B) ' p(x|x,B). This assumption can be wrong for
small ensemble size. Therefore:

p(x|x1,...,xN )

'

∫
dBp(x|x,B)

∫
dxbp(xb,B|x1,...,xN ). (23)

The rest of the derivation is fundamentally unchanged. The
final background functional reads

J alt
b (x) =

N

2
ln
∣∣∣(x −x)(x −x)T

+(N −1)P
∣∣∣ . (24)

However the disappearance of theN/(N +1) factor is not
cosmetic, and may have consequences that are investigated
later.

3 Finite-size ensemble transform Kalman filter

BecauseJb andJ alt
b are not quadratic, it is clear that the

analysis should be variational, in a similar flavor as the max-
imum likelihood ensemble filter (Zupanski, 2005; Carrassi
et al., 2009). As such it can accommodate nonlinear observa-
tion operators. Therefore, in this study, the analysis step will
be variational, similarly to 3D-Var. One should minimize the
cost function

Ja(x) =Jo(x)+Jb(x), (25)

with

Jo(x) =
1

2
(y −H(x))TR−1(y −H(x)) , (26)

wherey is the observation vector in observation spaceRd ,
R is the observation error covariance matrix, andH is the
observation operator.

We shall call finite-size (or finite-sample) ensemble
Kalman filters (EnKF-N), the ensemble Kalman filters that
could be generated using this type ofJb term in the analysis
step of the filter. In the following, the focus will be on the
ensemble transform Kalman filter (ETKF) variant, following
Hunt et al.(2007). The analysis is expressed as an element of
subspacex +V. The state vector is characterized by a set of
(redundant) coordinates{wk}k=1,...,N in the ensemble space:

x = x +

N∑
k=1

wk(xk −x). (27)

If Xk = xk −x are the anomalies, andX the matrix of these
anomalies,X = (X1,...,XN ), thenx −x = Xw. Hence, one
has

A =
N

N +1
XwwTXT

+XXT . (28)
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740 M. Bocquet: Ensemble Kalman filtering without inflation

Recall that|A| represents the determinant of the linear oper-
ator related toA but restricted to subspaceV. In the same
subspace, the linear operator related toXXT is invertible, of

inverse denoted
(
XXT

)−1
. One gets

|A| =

∣∣∣∣ N

N +1
XwwTXT

+XXT
∣∣∣∣

=

∣∣∣XXT
∣∣∣∣∣∣∣IV +

N

N +1

(
XXT

)−1
XwwTXT

∣∣∣∣
∝ 1+

N

N +1
wTXT

(
XXT

)−1
Xw . (29)

There is a subtlety that we need to develop on, and which
generalizes the clear explanation given byHunt et al.(2007).

3.1 Gauge-invariance of the parameterization

As a family of vectors, the anomalies are not indepen-
dent since

∑N
k=1Xk = 0. Therefore parameterizingJb(x) =

Jb (x +Xw) with w entails a so-calledgauge invariance(a
redundancy inw): Jb(x +Xw) is invariant under a shift of
all wk by a same constant. The number of degrees of freedom
of this invariance is given by the dimension of the kernel of
X, which is at least one according to the previous remark.

The expression given by Eq. (29) is not invariant under ro-
tations ofw. We could make it invariant by using the freedom
of the gauge invariance. We can fix this gauge by choosing
to minimize the cost function over thew that have a null or-
thogonal projection on the kernel ofX:(

IN −XT
(
XXT

)−1
X
)

w = 0. (30)

With this constraint,|A| is proportional to 1+ N
N+1wTw.

This is cumbersome to enforce though. Instead, to perform
the same task, a gauge-fixing term

G(w) =
N

N +1
wT
(

IN −XT
(
XXT

)−1
X
)

w, (31)

is inserted into the cost function Eq. (25)

Ja(x) =Jo(x)+
N

2
ln(|A|) , (32)

yielding an augmented cost function

J̃a(w) =Jo(x +Xw)+
N

2
ln(|A|+G(w)) . (33)

For instance, in the case where rank(A) = N −1, one has

G(w) =
1

N +1

(
N∑

k=1

wk

)2

. (34)

Because ln is a monotonically increasing function, one gets
J̃a(w) ≥Ja(x +Xw), for all w in RN , with equality if and
only if G(w) = 0. Moreover, for anyx there is aw? in the
kernel of X (G(w?) = 0) such thatJa(x) = J̃a(w

?). As a

consequence, the two cost functions̃Ja(w) andJa(x) have
the same minimum. Note that this implies that at the mini-
mumwa of J̃a , one hasG(wa) = 0.

Hence, instead of Eq. (25) one can use the cost function
with a gauge-fixing term:

J̃a(w) =
1

2
(y −H(x +Xw))TR−1(y −H(x +Xw))

+
N

2
ln

(
1+

1

N
+wTw

)
. (35)

Cost function Eq. (35) is not necessarily convex because the
ln function is concave. Let us assume a linear observation op-
erator, or linearized around the innovationy −H(x). Then a
minimum always exists since for a linear observation opera-
tor,Jo(x) is convex inw, and

J̃b(w) =
N

2
ln

(
1+

1

N
+wTw

)
, (36)

is a monotonically increasing function when the norm ofw

goes to infinity. Conversely, the cost function may have sev-
eral minima (see AppendixA). As a consequence the nature
of the minimizer, as well as the first guess of the iterative op-
timization, may have an impact on the result. The first guess
of the iterative minimization was chosen to bew = 0, which
favors the prior against the observation if several minima do
exist. Even though it may sound wiser to favor observation,
the choicew = 0 is clearly simpler.

3.2 Posterior ensemble

Oncewa is obtained as the minimizer of Eq. (35), the poste-
rior state estimate is given by

xa
= x +Xwa . (37)

We wish to compute a local approximation of the error co-
variances at the minimum. The Hessian ofJ̃b can be com-
puted in ensemble space:

H̃b = ∇
2
wJ̃b(w) = N

(
1+

1
N

+wTw
)

IN −2wwT(
1+

1
N

+wTw
)2

. (38)

The Hessian of the observation term is

H̃o = ∇
2
wJo(x +Xw) = (HX)TR−1HX , (39)

whereH is the tangent linear ofH . The analysis error covari-
ance matrix̃Pa in ensemble space is approximately obtained
from the inverse matrix of the total Hessian at the minimum

P̃a ' H̃−1
a , (40)

whereH̃a = H̃b(w
a)+H̃o(w

a). Note thatH̃a must be posi-
tive definite by construction, even though̃Hb(w

a) is not nec-
essarily so.

Then, a posterior ensemble can be obtained from the
square root of(N − 1)̃Pa . More precisely, the posterior
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ensemble anomalies, in ensemble space, are given by the
columnsWa

k of the transform matrix

Wa
=
(
(N −1)̃Pa

)1/2
U, (41)

whereU is an arbitrary orthogonal matrix that preserves the
ensemble mean:Uu = u whereu = (1,...,1)T. The degrees
of freedom introduced byU allow to span the ensemble space
of any ensemble square root Kalman filter (Sakov and Oke,
2008). Accordingly, the posterior ensemble in state space is
given fork = 1,...,N by

xa
k = xa

+XWa
k . (42)

Let us check that the posterior ensemble is centered on
xa . To do so, one has to verify thatu is in the kernel of
XWa . If we can prove thatu is an eigenvector of̃Pa , then
XWau ∝ Xu = 0. The eigenvectors of̃Pa are those of the
HessianH̃a at the minimum. SinceJo(x + Xw) is gauge
invariant, it is easy to check thatu is in the kernel of the
HessianH̃o. (Note that this remark also applies without ap-
proximation to nonlinear observation operators.) As forJ̃b

whose gauge-invariance has been intentionally broken, the
argument cannot apply. But it was seen earlier that at the
minimumG(wa) = 0. In particular, one hasuTwa

= 0. As a
consequence, it is clear from Eq. (38) thatu is an eigenvector
of H̃b, of eigenvalueN(1+1/N + (wa)Twa)−1. Therefore
the posterior ensemble is centered onxa . This property is
important for the consistency and ultimately the stability and
performance of the filter (Wang et al., 2004; Livings et al.,
2008; Sakov and Oke, 2008).

The new filters are based on several mild approximations
that are imposed by the non-Gaussianity of the prior. Firstly,
one might not sample the right minimum when there are sev-
eral of them (see AppendixA). Or the right estimator could
be the average rather than a mode of the posterior pdf. Sec-
ondly, and unlike the Gaussian case, the inverse Hessian is
only a local approximation of the analysis error covariance
matrix (Gejadze et al., 2008).

3.3 Asymptotic Gaussianity

When the ensemble size goes to largeN → ∞, the ln term in
the background part of cost function Eq. (36), must decrease
to smaller, yet always positive, values. So shouldε ≡ wTw =∑N

k=1w2
k . Therefore, in this limit, one has

J̃b =
N

2
ln

(
1+

1

N
+wTw

)
'

1

2
+

N −1

2
wTw+O

(
N−1,N−1ε,ε2

)
, (43)

and the ETKF ofHunt et al.(2007) is recovered (assuming
U is the identity matrix).

3.4 Algorithm

The variant of the finite-size EnKF that has just been de-
scribed is the finite-size ensemble transform Kalman filter
(ETKF-N). The numerical implementation is similar to that
of Harlim and Hunt(2007) (see Algorithm 2). The pseudo-
code for ETKF-N is:

1. Obtain the forecast ensemble{xk}k=1,···,N from the
model propagation of the previous ensemble analysis.

2. Form the meanx, and the anomaly matrixX, necessary
for the evaluation of cost function Eq. (35).

3. Minimize cost function Eq. (35) iteratively starting with
w = 0, to obtainwa .

4. Compute xa and the HessianH̃a , from Eq. (37),
Eq. (38), and Eq. (39).

5. ComputeWa
=
(
H̃a/(N −1)

)−1/2
U.

6. Generate the new ensemble:xa
k = xa

+XWa
k .

The complexity is the same as that of ETKF. The mini-
mization of the analysis cost function, which is already well
conditioned by construction, might be longer in such non-
quadratic, and even non-convex context. However, the mini-
mization remains in ensemble space, and is almost negligible
in cost for high-dimensional applications with an ensemble
size in the range of 10–100.

3.5 Interpretation

The influence of the background term of the cost func-
tion, J̃b =

N
2 ln

(
1+1/N +wTw

)
, within the full cost func-

tion Eq. (35), is compared to its counterpart in ETKF,̃Jb =
N−1

2 wTw. Firstly, let us assume that the innovation is such
that, in the ETKF system, the analysis is driven away from
the ensemble mean:

wTw =

N∑
k=1

w2
k ≥ O(1). (44)

In the ETKF-N system, the constraint enforced by the back-
ground term would be alleviated by the presence of the ln
function. Therefore, in the same situation (same innova-
tion), ETKF-N would be more controlled by the observation
than ETKF. In particular, larger deviations from the ensem-
ble mean would be allowed. It is reminiscent of the way the
Huber norm operates (Huber, 1973).

Secondly, assume that the innovation drives the ETKF sys-
tem towards an analysis close to the ensemble mean

wTw =

N∑
k=1

w2
k � 1. (45)

From Eq. (43), it is clear that the ETKF-N system is in a
similar regime. However, because of the 1/N offset in the ln
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function, the prior term cannot vanish even when the ensem-
ble mean is taken as the optimal state. This is confirmed by
the inverse of the HessiañHb, the contribution of the prior to
P̃a , which isN−1(1+1/N) atwa

= 0, instead ofN−1. This
also corresponds to the residual 1/2 term inJ̃b of Eq. (43).
Algebraically, this offset comes in the formula by the inte-
gration onxb: this blurring tells the system not to trust the
ensemble mean entirely at finiteN .

We believe this is the same term 1+1/N that was diag-
nosed bySacher and Bartello(2008), who showed that, for a
Gaussian process, the dispersion of the ensemble around the
mean of the Gaussian should be(1+1/N)P, instead ofP,
because the ensemble mean does not coincide with the mean
of the Gaussian distribution.

3.6 Alternate ETKF-N

The alternative formulation of ETKF-N, that assumesx is
the best estimator for the prior, leads to the background term

J̃ alt
b =

N

2
ln
(
1+wTw

)
. (46)

The only difference is in the missing 1/N offset term, which
is not surprising since it was identified as a measure of the
mistrust in the ensemble mean to represent the true forecast
mean.

4 Tests and validation with simple models

In this section, the new filters will be numerically tested, on a
three-variable chaotic dynamical toy model, as well as a one-
dimensional chaotic dynamical toy model. For the numerical
experiments,U is chosen to be the identity.

4.1 Lorenz ’63 toy-model

4.1.1 Setup

The Lorenz ’63 model (Lorenz, 1963) is a model withM = 3
variables, defined by the equations:

dx

dt
= σ(y −x)

dy

dt
= ρx −y −xz

dz

dt
= xy −βz. (47)

The parameters are set to the original values(σ,ρ,β) =

(10,28,8/3), which are known to lead to chaotic dynamics,
with a doubling time of 0.78 time units. In the following
simulations, a reference simulation stands for the truth. The
model is considered to be perfect: the model of the truth is
the same as the one used in data assimilation runs. We gener-
ate synthetic observations from the reference simulation for
the three variables each1t time interval, with1t = 0.10,
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From Eq. (43), it is clear that the ETKF-N system is in a
similar regime. However, because of the1/N offset in theln
function, the prior term cannot vanish even when the ensem-
ble mean is taken as the optimal state. This is confirmed by
the inverse of the HessiañHb, the contribution of the prior to
P̃a, which isN−1(1+1/N) atwa =0, instead ofN−1. This
also corresponds to the residual1/2 term in J̃b of Eq. (43).
Algebraically, this offset comes in the formula by the inte-
gration onxb: this blurring tells the system not to trust the
ensemble mean entirely at finiteN .

We believe this is the same term1+1/N that was diag-
nosed by Sacher and Bartello (2008), who showed that, for a
Gaussian process, the dispersion of the ensemble around the
mean of the Gaussian should be(1+1/N)P, instead ofP,
because the ensemble mean does not coincide with the mean
of the Gaussian distribution.

3.6 Alternate ETKF-N

The alternative formulation of ETKF-N, that assumesx is
the best estimator for the prior, leads to the background term

J̃ alt
b =

N

2
ln
(
1+wTw

)
. (46)

The only difference is in the missing1/N offset term, which
is not surprising since it was identified as a measure of the
mistrust in the ensemble mean to represent the true forecast
mean.

4 Tests and validation with simple models

In this section, the new filters will be numerically tested, on a
three-variable chaotic dynamical toy model, as well as a one-
dimensional chaotic dynamical toy model. For the numerical
experiments,U is chosen to be the identity.

4.1 Lorenz ’63 toy-model

4.1.1 Setup

The Lorenz ’63 model (Lorenz, 1963) is a model withM =3
variables, defined by the equations:

dx

dt
= σ(y−x)

dy

dt
= ρx−y−xz

dz

dt
= xy−βz. (47)

The parameters are set to the original values(σ,ρ,β) =
(10,28,8/3), which are known to lead to chaotic dynamics,
with a doubling time of0.78 time units. In the following
simulations, a reference simulation stands for the truth. The
model is considered to be perfect: the model of the truth is
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Fig. 1. Time-averaged analysis rmse for ETKF, ETKF-N and the al-
ternate ETKF-N, for three experiments with different time intervals
between updates, and for an ensemble size fromN = 3 to N = 9.

the same as the one used in data assimilation runs. We gener-
ate synthetic observations from the reference simulation for
the three variables each∆t time interval, with∆t = 0.10,
∆t = 0.25 and ∆t = 0.50. These choices are expected to
generate mild, medium and strong impact of non-linearity
and, as a possible consequence, non-Gaussianity of errors.
These observations are independently perturbed with a nor-
mal white noise of standard deviation2 following Harlim and
Hunt (2007). In comparison, the natural variability (standard
deviation from the mean of a long model run) of the x, y, and
z variables is7.9, 9.0, and8.6 respectively.

All the simulations are run for a period of time correspond-
ing to 5×105 cycles, for the three values of∆t. We use a
burn-in period of104 cycles to minimize any impact on the fi-
nal result. The ensemble size is varied fromN =3 to N =9.
The filters are judged by the time-averaged value of the root
mean square error between the analysis and the true state of
the reference run.

4.1.2 Best rmse

For ETKF, a multiplicative inflation is applied by rescaling
of the ensemble deviations from the mean:

xk −→x+r(xk−x) , (48)

so thatr = 1 means no inflation. A wide range of inflation
factorsr is tested. The inflation factor leading to the smallest
(best) rmse is selected. For finite-size filters, inflation isnot
considered. Therefore for each finite-size filter score, only
one run is necessary.

The results are reported in Fig. 1. For mild non-linearity,
the ETKF is slightly better than ETKF-N. With a stronger
impact of non-linearity (∆t = 0.25 and∆t = 0.50), ETKF-
N significantly outperforms ETKF. The alternate ETKF-N is

Fig. 1. Time-averaged analysis rmse for ETKF, ETKF-N and the al-
ternate ETKF-N, for three experiments with different time intervals
between updates, and for an ensemble size fromN = 3 toN = 9.

1t = 0.25 and1t = 0.50. These choices are expected to
generate mild, medium and strong impact of non-linearity
and, as a possible consequence, non-Gaussianity of errors.
These observations are independently perturbed with a nor-
mal white noise of standard deviation 2 followingHarlim and
Hunt (2007). In comparison, the natural variability (standard
deviation from the mean of a long model run) of the x, y, and
z variables is 7.9, 9.0, and 8.6 respectively.

All the simulations are run for a period of time correspond-
ing to 5×105 cycles, for the three values of1t . We use a
burn-in period of 104 cycles to minimize any impact on the
final result. The ensemble size is varied fromN = 3 toN = 9.
The filters are judged by the time-averaged value of the root
mean square error between the analysis and the true state of
the reference run.

4.1.2 Best rmse

For ETKF, a multiplicative inflation is applied by rescaling
of the ensemble deviations from the mean:

xk −→ x +r (xk −x) , (48)

so thatr = 1 means no inflation. A wide range of inflation
factorsr is tested. The inflation factor leading to the smallest
(best) rmse is selected. For finite-size filters, inflation is not
considered. Therefore for each finite-size filter score, only
one run is necessary.

The results are reported in Fig.1.
For mild non-linearity, the ETKF is slightly better than

ETKF-N. With a stronger impact of non-linearity (1t = 0.25
and 1t = 0.50), ETKF-N significantly outperforms ETKF.
The alternate ETKF-N is diverging for1t = 0.10 and for
small ensemble sizeN ≤ 6. This emphasizes the fact that
the ensemble meanx is not a fine estimation ofxb, the mean
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of the true error distribution. For1t = 0.25 and1t = 0.50,
where the errors are larger and the estimation ofxb may be
relatively less important, the performance is almost as good
as ETKF-N, with slight deviations for the smallest ensem-
bles.

To a large extent, these results are similar to those ofHar-
lim and Hunt(2007). However, even though getting better
results than ETKF, their filter still necessitates to adjust one
parameter.

4.2 Lorenz ’95 toy-model

4.2.1 Setup

The filters are also applied to the one-dimensional Lorenz ’95
toy-model (Lorenz and Emmanuel, 1998). This model rep-
resents a mid-latitude zonal circle of the global atmosphere,
discretized intoM = 40 variables{xm}m=1,...,M . The model
reads, form = 1,...,M,

dxm

dt
= (xm+1−xm−2)xm−1−xm +F , (49)

whereF = 8, and the boundary is cyclic. Its dynamics is
chaotic, and its attractor has a topological dimension of 13, a
doubling time of about 0.42 time units, and a Kaplan-Yorke
dimension of about 27.1.

The experiments follow the configuration ofSakov and
Oke(2008). In the first experiment, the time interval between
analyzes is1t = 0.05, representative of time intervals of 6
hours for a global meteorological model. With this choice,
non-linearity mildly affects the dynamics between updates.
All variables are observed every1t . Therefore, the observa-
tion operator is the identity matrix. All observations, which
are obtained from a reference model run (the truth), are per-
turbed with a univariate normal white distribution of stan-
dard deviation 1. The observation error prior is accordingly
a normal distribution of error covariance matrix the identity.
In comparison, the natural variability of the model (standard
deviation from the mean) is 3.6 for any of theM = 40 vari-
ables. The performance of a filter is assessed by the root
mean square error (rmse) of the analysis with the truth, aver-
aged over the whole experiment run.

As a burn-in period, 5× 103 analysis cycles are used,
whereas 104 analysis cycles are used for the assimilation ex-
periments. This may be considered relatively short. How-
ever, on the one hand, the convergence was deemed suffi-
cient for this demonstrative study. On the other hand, about
5×104 assimilation experiments have been performed, be-
cause the inflation (and later the localization) parameters are
investigated for many sizes of the ensemble. Longer runs
(105 analysis cycles) have also been performed, but no (long-
term) instability was noted. Moreover these tests showed that
the rmses of the 104-cycle cases had reasonably converged.

4.2.2 Ensemble size – inflation diagrams

FollowingSakov and Oke(2008) and many others, we inves-
tigate the rmse of the analysis with the reference state (the
truth). The ensemble size is varied from 5 to 50. A mul-
tiplicative inflation is applied by rescaling of the ensemble
deviations from the mean according to Eq. (48). The infla-
tion factorr is varied from 1. to 1.095 by step of 0.005. As
a result, one obtains two-dimensional tables of rmse, which
are displayed graphically.

The results for ETKF are reported in Fig.2a. They are sim-
ilar to the symmetric ensemble square root Kalman filter of
Sakov and Oke(2008). The filter starts converging when the
ensemble size is larger than the model unstable subspace di-
mension. Inflation is always necessary, even for a size of the
ensemble greater than the Kaplan-Yorke dimension pointing
to a systematic underestimation of sampling errors.

The results of ETKF-N are reported on Fig.2b. At first,
it is striking that the filter diverges for ensemble sizes below
N = 15. This is disappointing, since the original goal of this
study was to remedy to all sampling flaws in a deterministic
context. This is obviously not achieved, similarly to any kind
of EnKF without localization. However, the formalism de-
veloped here allows to understand the reason of this failure,
and how it could later be amended. This will be discussed in
Sect.5.

BeyondN = 15 (which corresponds to a rank of 14 or less
from the anomaly subspace, close to the model unstable sub-
space dimension), the filter is unconditionally stable.

The results of the alternate ETKF-N are also reported on
Fig. 2c. It is also unconditionally stable beyondN = 15, but
the rmses are better.

4.2.3 Best rmse

In the case of ETKF, the best root mean square error is ob-
tained by taking, for each ensemble size, the minimal rmse
over all inflation factors. For ETKF-N, there is only one
rmse, since inflation is not considered. In Fig.3 are plot-
ted the best rmses for the three filters. The alternate ETKF-N
seems to outperforms ETKF slightly. But its major asset is
that the alternate ETKF-N obtains the best rmses without in-
flation.

Both ETKF-N and alternate ETKF-N perform better than
ETKF over the rangeN = 5–16, especially in the critical
rangeN = 14–16. This has been checked for other config-
urations (changingM andF ) of the Lorenz ’95 model.

The ETKF-N is not as good as the other two filters be-
yondN = 16. It underperforms both filters by a maximum of
30 %, forN = 20. We believe this is explained by the robust-
ness of the filter. Indeed, as discussed in Sect.3, ETKF-N
assumes that the mean state can be different from the mean
state of the true distribution, whereas the alternate ETKF-N
assumes they match. Both finite-size filters are symmetric.
If the model flow remains approximately linear, which is the
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Fig. 2. Root mean square errors of ETKF (a), ETKF-N (b), and alternate ETKF-N (c), for a wide range of ensemble size (5−50) and inflation
parametersr = 1,1.005,...,1.095 and in panel (b) a larger range of inflation/deflationr = 0.945,...,1.095.

If the model flow remains approximately linear, which is the
case for small∆t, the forecasted ensemble will remain cen-
tered on the trajectory of the mean, so that the mean of the
ensemble will remain a good estimate of the true distribution
mean. Therefore, the alternate ETKF-N, as well as symmet-
ric ensemble square root filters, have an advantage in linear
conditions over the more conservative, too cautious ETKF-
N. If this is correct, then the performance of ETKF-N (which
is symmetric) should be better, or at worst equal to the per-
formance of a non-symmetric ensemble square root Kalman
filter for small∆t. Indeed this can be checked by compari-
son of Fig. 3 of the present article and Fig. 4 of Sakov and
Oke (2008). Moreover, according to this argument, the per-
formance of ETKF-N should improve for larger ensemble
size and larger∆t, in comparison with ETKF (with optimal
inflation).

As mentioned earlier, the time interval between updates

has been set to∆t = 0.05. We know from the experiment
on the Lorenz ’63 model and from the previous remark, that
the performance of ETKF-N as compared to ETKF is sus-
ceptible to vary with∆t. Let us take the example of an en-
semble size ofN = 20. The setup is unchanged except for
the time interval which is set to∆t = 0.05,0.10,...,0.30. As
shown in Fig. 4,∆t≤ 0.15 is a turning point beyond which
ETKF-N obtains better rmse than ETKF without inflation.
The alternate ETKF-N offers the best of ETKF (with optimal
inflation) and ETKF-N, over the full range of∆t.

5 Local extension of ETKF-N

5.1 Can the use of localization be avoided?

We saw numerical evidence that ETKF-N does not solve the
full sampling problem. A similar conclusion can be reached

Fig. 2. Root mean square errors of ETKF(a), ETKF-N (b), and alternate ETKF-N(c), for a wide range of ensemble size (5–50) and inflation
parametersr = 1,1.005,...,1.095 and in panel(b) a larger range of inflation/deflationr = 0.945,...,1.095.

case for small1t , the forecasted ensemble will remain cen-
tered on the trajectory of the mean, so that the mean of the
ensemble will remain a good estimate of the true distribution
mean. Therefore, the alternate ETKF-N, as well as symmet-
ric ensemble square root filters, have an advantage in linear
conditions over the more conservative, too cautious ETKF-
N. If this is correct, then the performance of ETKF-N (which
is symmetric) should be better, or at worst equal to the per-
formance of a non-symmetric ensemble square root Kalman
filter for small1t . Indeed this can be checked by compari-
son of Fig.3 of the present article and Fig. 4 ofSakov and
Oke(2008). Moreover, according to this argument, the per-
formance of ETKF-N should improve for larger ensemble
size and larger1t , in comparison with ETKF (with optimal
inflation).

As mentioned earlier, the time interval between updates
has been set to1t = 0.05. We know from the experiment on

the Lorenz ’63 model and from the previous remark, that the
performance of ETKF-N as compared to ETKF is susceptible
to vary with 1t . Let us take the example of an ensemble
size ofN = 20. The setup is unchanged except for the time
interval which is set to1t = 0.05,0.10,...,0.30.

As shown in Fig.4, 1t ≤ 0.15 is a turning point beyond
which ETKF-N obtains better rmse than ETKF without in-
flation. The alternate ETKF-N offers the best of ETKF (with
optimal inflation) and ETKF-N, over the full range of1t .

5 Local extension of ETKF-N

5.1 Can the use of localization be avoided?

We saw numerical evidence that ETKF-N does not solve the
full sampling problem. A similar conclusion can be reached
from a more mathematical standpoint. The functional form
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Fig. 4. Best rmse for ETKF over a wide range of inflation factors,
rmse of ETKF-N without inflation and rmse of the alternate ETKF-
N without inflation, for several time intervals between updates, and
for an ensemble sizeN = 20.

from a more mathematical standpoint. The functional form
of ETKF-N Eq. (35) is formulated in ensemble space, via a
set of ensemble coordinates that do not depend on the real
space position. This functional form is due to the choice of
the Jeffrey’s prior. It implies that the dimension of the anal-
ysis space has a very reduced rank. Localization, which is
meant to increase this rank, is therefore mandatory below
some context-dependent ensemble size. We could contem-
plate two ways to tackle this difficult problem.

The first one would consist in trading Jeffrey’s prior for a
more informative one. The particular form of the ETKF-N
background term which depends only on the ensemble co-
ordinates was due to the specific choice of Jeffrey’s prior,
which had the merit to be simple. However, errors of the
Lorenz ’95 data assimilation system, or of more realistic geo-

physical systems, often have short-range correlations. If, us-
ing an hyperprior different from Jeffreys’, one could inte-
grate on a restricted set of error covariance matrices of cor-
relation matching the climatological correlations of the data
assimilation system, we conjecture that localization could be
consistently achieved within the proposed formalism.

Let us take an example where it is assumed that the corre-
lations of the data assimilation system are very short-range.
At the extreme, we integrate Eq. (14) on the set of all posi-
tive definite diagonal matricesB, that is a set ofM positive
scalars, with the non-informative univariate prior:

pJ([B]ii) = [B]−1
ii . (50)

Following the derivation of Section 2, one obtains

Jb(x)=
N

2

M∑

i=1

ln

[
N

N +1
(xi−xi)

2 +

N∑

k=1

(xk
i −xi)

2

]
. (51)

As opposed to the background terms introduced earlier, this
Jb cannot be written in ensemble space, i.e., not in terms
of the coordinateswk in the vector space of anomalies. As-
suming the same setup used for the Lorenz ’95 model, the
average analysis rmse of such EnKF-N is in the range0.50
for N =5 down to0.35 for N =40. It has been checked to be
similar to any EnKF or ETKF with a minimal (meaningful)
localization length, except that, for this new filter, inflation is
not necessary even for smallN . We conclude that localiza-
tion can potentially be expressed in the formalism. Pursuing
this idea is well beyond the scope of this article, because it
seems mathematically challenging.

As an alternative, simpler, and widespread solution, a lo-
cal version of the filter will be developed and tested in the
remaining of this section.

5.2 LETKF-N

The extension of ETKF-N to a local ensemble transform
Kalman filter is the same as the passage from ETKF to
LETKF as described by Hunt et al. (2007), and by Harlim
and Hunt (2007) for non-quadratic cost functions. For high-
dimensional and computationally challenging systems, this
requires to follow their algorithm. However, for the Lorenz
’95 toy-model the passage from ETKF-N to LETKF-N is
trivial. Indeed, fixing a localization lengthl for each point
of control space, one performs a local analysis using all ob-
servations within a radius ofl units. Hence, for the Lorenz
’95 model, l ranges froml = 0, using the single local ob-
servation if any, tol = 20, meaning that all observations are
assimilated, i.e. no localization. We shall call this filterthe
finite-size (finite-sample) local ensemble transform Kalman
filter (LETKF-N).

Fig. 3. Best rmse over a wide range of inflation factors for ETKF,
and rmse without inflation for ETKF-N and for the alternate ETKF-
N.
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The first one would consist in trading Jeffrey’s prior for a
more informative one. The particular form of the ETKF-N
background term which depends only on the ensemble co-
ordinates was due to the specific choice of Jeffrey’s prior,
which had the merit to be simple. However, errors of the
Lorenz ’95 data assimilation system, or of more realistic geo-
physical systems, often have short-range correlations. If, us-
ing an hyperprior different from Jeffreys’, one could inte-
grate on a restricted set of error covariance matrices of cor-
relation matching the climatological correlations of the data
assimilation system, we conjecture that localization could be
consistently achieved within the proposed formalism.

Let us take an example where it is assumed that the corre-
lations of the data assimilation system are very short-range.
At the extreme, we integrate Eq. (14) on the set of all posi-
tive definite diagonal matricesB, that is a set ofM positive
scalars, with the non-informative univariate prior:

pJ([B]ii) = [B]
−1
ii . (50)

Following the derivation of Sect.2, one obtains

Jb(x) =
N

2

M∑
i=1

ln

[
N

N +1
(xi −xi)

2
+

N∑
k=1

(xk
i −xi)

2

]
. (51)

As opposed to the background terms introduced earlier, this
Jb cannot be written in ensemble space, i.e. not in terms of

M. Bocquet: Ensemble Kalman filtering without inflation 11

5 10 15 20 25 30 35 40 45 50
Ensemble size

0.2

0.3

0.4

0.5

1

2

3

4

5

A
ve

ra
ge

 a
na

ly
si

s 
rm

se

ETKF (optimal inflation)
ETKF-N
Alt. ETKF-N

Fig. 3. Best rmse over a wide range of inflation factors for ETKF,
and rmse without inflation for ETKF-N and for the alternate ETKF-
N.

0.05 0.10 0.15 0.20 0.25 0.30
Time interval between updates ∆t

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

A
ve

ra
ge

 a
na

ly
si

s 
rm

se

ETKF (optimal inflation)
ETKF-N
Alt. ETKF-N

Fig. 4. Best rmse for ETKF over a wide range of inflation factors,
rmse of ETKF-N without inflation and rmse of the alternate ETKF-
N without inflation, for several time intervals between updates, and
for an ensemble sizeN = 20.

from a more mathematical standpoint. The functional form
of ETKF-N Eq. (35) is formulated in ensemble space, via a
set of ensemble coordinates that do not depend on the real
space position. This functional form is due to the choice of
the Jeffrey’s prior. It implies that the dimension of the anal-
ysis space has a very reduced rank. Localization, which is
meant to increase this rank, is therefore mandatory below
some context-dependent ensemble size. We could contem-
plate two ways to tackle this difficult problem.

The first one would consist in trading Jeffrey’s prior for a
more informative one. The particular form of the ETKF-N
background term which depends only on the ensemble co-
ordinates was due to the specific choice of Jeffrey’s prior,
which had the merit to be simple. However, errors of the
Lorenz ’95 data assimilation system, or of more realistic geo-

physical systems, often have short-range correlations. If, us-
ing an hyperprior different from Jeffreys’, one could inte-
grate on a restricted set of error covariance matrices of cor-
relation matching the climatological correlations of the data
assimilation system, we conjecture that localization could be
consistently achieved within the proposed formalism.

Let us take an example where it is assumed that the corre-
lations of the data assimilation system are very short-range.
At the extreme, we integrate Eq. (14) on the set of all posi-
tive definite diagonal matricesB, that is a set ofM positive
scalars, with the non-informative univariate prior:

pJ([B]ii) = [B]−1
ii . (50)

Following the derivation of Section 2, one obtains

Jb(x)=
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2 +
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(xk
i −xi)

2

]
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As opposed to the background terms introduced earlier, this
Jb cannot be written in ensemble space, i.e., not in terms
of the coordinateswk in the vector space of anomalies. As-
suming the same setup used for the Lorenz ’95 model, the
average analysis rmse of such EnKF-N is in the range0.50
for N =5 down to0.35 for N =40. It has been checked to be
similar to any EnKF or ETKF with a minimal (meaningful)
localization length, except that, for this new filter, inflation is
not necessary even for smallN . We conclude that localiza-
tion can potentially be expressed in the formalism. Pursuing
this idea is well beyond the scope of this article, because it
seems mathematically challenging.

As an alternative, simpler, and widespread solution, a lo-
cal version of the filter will be developed and tested in the
remaining of this section.

5.2 LETKF-N

The extension of ETKF-N to a local ensemble transform
Kalman filter is the same as the passage from ETKF to
LETKF as described by Hunt et al. (2007), and by Harlim
and Hunt (2007) for non-quadratic cost functions. For high-
dimensional and computationally challenging systems, this
requires to follow their algorithm. However, for the Lorenz
’95 toy-model the passage from ETKF-N to LETKF-N is
trivial. Indeed, fixing a localization lengthl for each point
of control space, one performs a local analysis using all ob-
servations within a radius ofl units. Hence, for the Lorenz
’95 model, l ranges froml = 0, using the single local ob-
servation if any, tol = 20, meaning that all observations are
assimilated, i.e. no localization. We shall call this filterthe
finite-size (finite-sample) local ensemble transform Kalman
filter (LETKF-N).

Fig. 4. Best rmse for ETKF over a wide range of inflation factors,
rmse of ETKF-N without inflation and rmse of the alternate ETKF-
N without inflation, for several time intervals between updates, and
for an ensemble sizeN = 20.

the coordinateswk in the vector space of anomalies. As-
suming the same setup used for the Lorenz ’95 model, the
average analysis rmse of such EnKF-N is in the range 0.50
for N = 5 down to 0.35 forN = 40. It has been checked to be
similar to any EnKF or ETKF with a minimal (meaningful)
localization length, except that, for this new filter, inflation is
not necessary even for smallN . We conclude that localiza-
tion can potentially be expressed in the formalism. Pursuing
this idea is well beyond the scope of this article, because it
seems mathematically challenging.

As an alternative, simpler, and widespread solution, a lo-
cal version of the filter will be developed and tested in the
remaining of this section.

5.2 LETKF-N

The extension of ETKF-N to a local ensemble transform
Kalman filter is the same as the passage from ETKF to
LETKF as described byHunt et al.(2007), and byHarlim
and Hunt(2007) for non-quadratic cost functions. For high-
dimensional and computationally challenging systems, this
requires to follow their algorithm. However, for the Lorenz
’95 toy-model the passage from ETKF-N to LETKF-N is
trivial. Indeed, fixing a localization lengthl for each point
of control space, one performs a local analysis using all ob-
servations within a radius ofl units. Hence, for the Lorenz
’95 model, l ranges froml = 0, using the single local ob-
servation if any, tol = 20, meaning that all observations are
assimilated, i.e. no localization. We shall call this filter the
finite-size (finite-sample) local ensemble transform Kalman
filter (LETKF-N).
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5.3 Application to the Lorenz ’95 toy-model

5.3.1 Ensemble size – inflation diagrams

The results of the experiments with LETKF, LETKF-N, and
with the alternate LETKF-N are reported in Fig.5.

For LETKF, inflation is still necessary to stabilize the filter
for not-so-small ensemble sizes (N ≤ 11). LETKF-N does
not require inflation (at least forN ≥ 5, the caseN < 4 was
not investigated). Again, it means that LETKF-N estimates
well, or over-estimates, sampling errors. But it is uncondi-
tionally stable with the best performance obtained without
inflation. The alternate LETKF-N may still be the best fil-
ter for an ensemble size beyond the model unstable subspace
dimension, but it disappoints by requiring inflation for small
and moderate ensemble size. This indicates that trusting the
meanx as the first guess is a source of error for small ensem-
ble size.

5.3.2 Best rmse

In Fig. 6 are plotted the best rmses for the three filters, with
localization.

LETKF-N is always slightly suboptimal (with a maximal
discrepancy of 10 % forN = 5). However, it is the only un-
conditionally stable filter of the three: it does not require in-
flation.

The alternate LETKF-N is as good as LETKF-N for small
ensembles but it does require inflation, which is why it is
not so interesting in this regime. The alternate LETKF-N is
as good as LETKF in thelarge ensemble size regime, but
without inflation.

As we increase the time interval between updates, the
performance of the filters degrades but their relative perfor-
mance evolves. Let us take the example of an ensemble size
of N = 10, following Harlim and Hunt(2007). The setup
is unchanged except for the time interval between updates
which is set to1t = 0.05,0.10,...,0.50. The results are re-
ported in Fig.7.

For1t ≤ 0.20, LETKF with optimal inflation and localiza-
tion outperforms LETKF-N with optimal localization and no
inflation. For1t ≥ 0.20, LETKF-N dominates. Like in the
Lorenz ’63 case, this is reminiscent of the results ofHarlim
and Hunt(2007). This indicates that the relative performance
of filters as shown for instance by Fig.6 should not be taken
as a rule, since there are regimes where LETKF-N (without
inflation) performs better than LETKF.

The good performances of EnKF-Ns relative to the EnKFs
in the strong nonlinear regime, is not an indication that
EnKF-N can handle non-Gaussianity in this regime. How-
ever the sampling errors may be created and exacerbated by
the non-linearity of the model flow, and hence of the non-
Gaussianity of the underlying pdf of errors. This may give
an advantage to the finite-size ensemble filters in this regime.

6 Summary and future directions

Current strategies for stabilizing the ensemble Kalman fil-
ter are empirical tuning of inflation, use of multi-ensemble
configuration, explicit identification of the sampling/model
errors, or adaptive optimization of inflation. In this article,
we have followed a somehow different route. A new back-
ground prior pdf that takes into account the discrete nature
of the ensemble was derived using Bayesian principles. It
accounts for the uncertainty attached to the first- and second-
order empirical moments of the ensemble seen as a sample
of a true error distribution. The definition of the prior pdf
leads to a new class of filters (EnKF-N). Even though the re-
sulting prior is non-Gaussian, it is entirely based on Gaussian
hypotheses for the errors. In principle, through this prior, the
analysis should take into account sampling errors.

Specifically, an ensemble transform variant (ETKF-N)
was derived in the spirit of the ETKF ofHunt et al.(2007).
It is tested on the Lorenz ’63 and the Lorenz ’95 toy models.
In the absence of model error, the filter appear to be stable
without inflation for ensemble size greater than the model
unstable subspace dimension of the attractor. Moreover, for
large enough time interval between updates, its performance
is superior to that of ETKF. A variant of ETKF-N is expected
to outperform ETKF-N for small time interval between up-
dates: without inflation, it seems to systematically perform as
well as, or better than ETKF. Unfortunately, as shown in the
case of the Lorenz ’95 model, these finite-size filters diverge
for smaller ensemble size, like any ensemble Kalman filter.
Localization is mandatory. That is why a local variant of the
filter (LETKF-N) which parallels LETKF, is developed.

From experiments on the Lorenz ’95 toy model, LETKF-
N scheme seems stable without inflation. Depending on the
time interval between updates, its performance with opti-
mally tuned localization can be slightly inferior or superior
to LETKF with optimally tuned localization and optimally
tuned inflation.

The methodology presented here is mainly aproof of con-
cept. We believe that more work is needed to explore the
strengths and limitations of the methodology, and that there
is room for improvement of the schemes.

For instance, we conjectured that the incapacity of ETKF-
N to fully account for sampling errors (as opposed to
LETKF-N with optimally tuned localization), was mainly
due to the use of an hyperprior which generates correlations
different from that of the data assimilation system built on
the particular model. To avoid using weakly informative
(hyper)priors onxb andB, one solution is to pass informa-
tion between analyzes beyond the knowledge of the ensem-
ble. In the context of oil reservoir monitoring,Myrseth and
Omre(2010) have built a sophisticated and elegant ensem-
ble Kalman filter that could be seen as a stochastic extension
of ETKF-N that achieves such a goal. They see covariance
matrices as random matrices with an inverse Wishart distri-
bution of precision matrix9 in RM×M (Muirhead, 1982).
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(b) LETKF-N
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(c) Alt. LETKF-N
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Fig. 5. Root mean square errors of LETKF (a), LETKF-N (b), and alternateLETKF-N (c), for a wide range of ensemble size (5−50) and
inflation factorsr = 1,1.005,...,1.095 and in panel (b) a larger range of inflation/deflationr = 0.945,...,1.095.

The hyperprior forxb andB are chosen in such a way (con-
jugate distribution) that the posterior error covariance matrix
still follows an inverse-Wishart distribution. However, such
a B matrix should be drawn from this distribution for each
member, and the corresponding innovation statistics com-
puted and inverted, which could become very costly. Even
though one assumes all members use the same draw ofB, it
is necessary to store the precision matrixΨ, which cannot be
afforded in the high-dimensional context of geophysics. Still,
to pass supplementary information (beyond the ensemble)
one might contemplate adapting the algorithm of Myrseth
and Omre (2010) so as to maintain a reduced-order, short
memory, precision matrix, with a rank of a few ensemble
sizes.

The behavior of EnKF-N in limiting regimes is worth ex-
ploring. For instance, in the limiting case where the dynami-
cal model is linear, EnKF-N may not exhibit optimal perfor-

mance since EnKF-N does not make implicit assumptions on
the linearity of the model as opposed to traditional EnKFs. In
this limiting case, the hyperpriorp(xb,B) should optimally
be a Dirac delta function pdf peaked at the empirical mo-
ments of the ensemble, which would make EnKF-N the tra-
ditional EnKF. But what happens to EnKF-N with Jeffreys’
hyperprior in this regime is less clear.

Another lead for improvement points to the derivation of
the new prior used in the (L)ETKF-N filters, which, by def-
inition, ignores the observations to be assimilated. From
a Bayesian perspective, this is suboptimal: in our scheme,
anyB matrix’s likelihood is tested against the ensemble, but
not against both the ensemble and the observations, which is
what a full Bayesian scheme would prescribe. Indeed Eq. (6)
should be generalized to:

p(x|y,x1,...,xN )

Fig. 5. Root mean square errors of LETKF(a), LETKF-N (b), and alternate LETKF-N(c), for a wide range of ensemble size (5–50) and
inflation factorsr = 1,1.005,...,1.095 and in panel(b) a larger range of inflation/deflationr = 0.945,...,1.095.

The hyperprior forxb andB are chosen in such a way (con-
jugate distribution) that the posterior error covariance matrix
still follows an inverse-Wishart distribution. However, such
a B matrix should be drawn from this distribution for each
member, and the corresponding innovation statistics com-
puted and inverted, which could become very costly. Even
though one assumes all members use the same draw ofB, it
is necessary to store the precision matrix9, which cannot be
afforded in the high-dimensional context of geophysics. Still,
to pass supplementary information (beyond the ensemble)
one might contemplate adapting the algorithm ofMyrseth
and Omre(2010) so as to maintain a reduced-order, short
memory, precision matrix, with a rank of a few ensemble
sizes.

The behavior of EnKF-N in limiting regimes is worth ex-
ploring. For instance, in the limiting case where the dy-
namical model is linear, EnKF-N may not exhibit optimal

performance since EnKF-N does not make implicit assump-
tions on the linearity of the model as opposed to traditional
EnKFs. In this limiting case, the hyperpriorp(xb,B) should
optimally be a Dirac delta function pdf peaked at the empir-
ical moments of the ensemble, which would make EnKF-N
the traditional EnKF. But what happens to EnKF-N with Jef-
freys’ hyperprior in this regime is less clear.

Another lead for improvement points to the derivation of
the new prior used in the (L)ETKF-N filters, which, by def-
inition, ignores the observations to be assimilated. From
a Bayesian perspective, this is suboptimal: in our scheme,
anyB matrix’s likelihood is tested against the ensemble, but
not against both the ensemble and the observations, which is
what a full Bayesian scheme would prescribe. Indeed Eq. (6)
should be generalized to:
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Fig. 6. Best rmse over a wide range of inflation factors, and all
possible localization lengths for LETKF and the alternate LETKF-
N. Best rmse without inflation over all possible localization lengths
for LETKF-N.
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Fig. 7. Best rmse for LETKF and LETKF-N over all possible lo-
calization lengths and a wide range of inflation factors for LETKF,
for several time intervals between updates, and for an ensemble size
N = 10.

=

∫
dxbdBp(x|y,x1,...,xN ,xb,B)p(xb,B|y,x1,...,xN )

=

∫
dxbdBp(x|y,xb,B)p(xb,B|x1,...,xN )

= p(y|x)

∫
dxbdB

p(x|xb,B)

p(y|xb,B)
p(xb,B|x1,...,xN ). (52)

Because of the presence ofp(y|xb,B) in the last integral and
its dependence inxb andB, it seems difficult to analytically
solve the problem in order to generalize ETKF-N.

Stability without inflation is a property shared by ETKF-
N, or LETKF-N, with the multi-ensemble configuration of
Mitchell and Houtekamer (2009). However the two ap-
proaches draw their rationale from two different standpoints:

Bayesian statistics and cross-validation respectively, whose
connections are not clearly understood in Statistics. Addi-
tionally, we note that the multi-ensemble approach makes
use of the observation while the finite-size ensemble trans-
form filters do not. In other words, the multi-ensemble ap-
proach reduces the errors in the analysis while the finite-size
ensemble transform filters do so prior to the analysis. The
methodology developed in this article naturally led to deter-
ministic filters, whose comparison with stochastic filters can-
not be simple. Therefore it would be interesting to develop
a stochastic filter counterpart to the deterministic EnKF-N
presented here.

The focus of this study was primarily on sampling errors.
In a realistic context, one should additionally take into ac-
count model errors, and the errors that come from the de-
viation from Gaussianity due to model non-linearity. If one
trusts from the previous results that EnKF-N reduces signif-
icantly the need for inflation meant to compensate for sam-
pling errors, then the use of inflation in EnKF-N would es-
sentially be a measure of model errors. It could also be a
measure of the deviation from Gaussianity, or of the misspec-
ification of the hyperprior as discussed earlier. These ideas
have been successfully tested on the context of the Lorenz
’95 using the setup of this article. However, reporting these
results is beyond the scope of this article.

As a final remark, we would like to mention that the prior
pdf p(x|x1,...,xN )∝ exp(−Jb(x)), whereJb is defined by
Eq. (21), could more generally be useful in environmental
statistical studies, when one needs to derive a pdf from sam-
ples of the system state, or of some error about it, which is
assumed Gaussian-distributed. Note that the ensemble size
needs to be large enough otherwise localization is still nec-
essary.
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In order to diagonalize the left-hand side matrix, we can use
the singular value decomposition

(HX)TR−1
= UDVT , (A3)

whereU is an orthogonal matrix inRN×N , V is in Rd×N and
satisfiesVTV = IN , andD is a diagonal matrix inRN×N .
Defineŵ = UTw, then[

D2
+

N

1+
1
N

+ ŵTŵ

]
ŵ = Dv, (A4)

wherev = VTR−1/2δ. Then the left-hand side matrix is di-
agonal.

In the case of a single observation (serial assimilation),D
has only one non-zero entry (call itα), andDv is a vector
with at most one non-zero entry (call itβ). Then solving for
all the other components, it is clear that the components ofŵ

not related toα are zero. Then the remaining scalar equation
for the non-trivial componentγ of ŵ is[

α2
+

N

1+
1
N

+γ 2

]
γ = β . (A5)

This third-order algebraic equation inγ has either one real
solution or three real solutions. Therefore, the cost function
J̃a has a global minimum, and possibly another local
minimum. Note that with several observations assimilated in
parallel, there may be more local minima.
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