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[1] This paper estimates the uncertainty in the outputs of a chemistry-transport model due
to physical parameterizations and numerical approximations. An ensemble of 20
simulations is generated from a reference simulation in which one key parameterization
(chemical mechanism, dry deposition parameterization, turbulent closure, etc.) or one
numerical approximation (grid size, splitting method, etc.) is changed at a time.
Intercomparisons of the simulations and comparisons with observations allow us to assess
the impact of each parameterization and numerical approximation and the robustness of the
model. An ensemble of 16 simulations is also generated with multiple changes in the
reference simulation in order to estimate the overall uncertainty. The case study is a four-
month simulation of ozone concentrations over Europe in 2001 performed using the
modeling system Polyphemus. It is shown that there is a high uncertainty due to the physical
parameterizations (notably the turbulence closure and the chemical mechanism). The low
robustness suggests that ensemble approaches are necessary in most applications.

Citation: Mallet, V., and B. Sportisse (2006), Uncertainty in a chemistry-transport model due to physical parameterizations and

numerical approximations: An ensemble approach applied to ozone modeling, J. Geophys. Res., 111, D01302,

doi:10.1029/2005JD006149.

1. Introduction

[2] Chemistry-transport models are now widely used in
air-quality applications ranging from impact studies to daily
forecasts. To date, they perform satisfactory simulations,
both in basic cases such as passive tracer tracking [e.g.,
Nodop, 1997] and in complex cases involving photochem-
ical mechanisms. The reliability of the models is partially
assessed through comparisons with measurements and nu-
merous statistical measures (as those defined by the Envi-
ronmental Protection Agency (EPA) [1991]). These
comparisons are performed with intensive observation peri-
ods from specific campaigns or with daily measurements
from regular monitoring sites. A large set of comprehensive
and reliable 3D Eulerian chemistry-transport models has
been ‘‘validated’’ this way, such as Chimere [Schmidt et al.,
2001], Community Multiscale Air Quality (CMAQ) [Byun
and Ching, 1999], Danish Eulerian Hemispheric Model
(DEHM) [Christensen, 1997], European Monitoring and
Evaluation Programme (EMEP) [Simpson et al., 2003],
European Air Pollution Dispersion (Eurad) [Hass, 1991],
Long Term Ozone Simulation (Lotos) [Builtjes, 1992], and
Polair3D [Boutahar et al., 2004].

[3] These models have usually been ‘‘tuned’’ in order to
deliver satisfactory model-to-observation statistics. Also
while the ‘‘validations’’ give the error of the simulations,
they do not give information on the uncertainty associated
with these simulations. The origin of the uncertainty is
threefold: the underlying physical parameterizations (bio-
genic emissions, deposition velocities, turbulent closure,
chemical mechanism, etc.), the input data (land use data,
emission inventories, raw meteorological fields, chemical
data, etc.) and the numerical approximations (mesh sizes,
time step and number of chemical species). The best
characterization of the uncertainty would be the probability
density functions of the simulation errors. Computing a
probability density function (PDF) for given model outputs
(such as forecast error statistics) is in practice a difficult
task primarily because of the computational costs.
[4] There are specific techniques to assess uncertainties.

The first-order derivatives of model outputs with respect to
model inputs can give ‘‘local’’ estimates of uncertainties
[e.g., Schmidt, 2002]. Monte Carlo simulations based on
different values for given input parameters or fields can
provide an approximation to the probability density functions
if the number of simulations is large enough [Hanna et al.,
2001]. An alternative approach, which is now widely used in
meteorology [Toth and Kalnay, 1993; Houtemaker et al.,
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1996;Buizza et al., 1999] andwhich is a promisingmethod in
air quality modeling (e.g., Delle Monache and Stull [2003]
for photochemistry or Galmarini et al. [2004] for radio-
nuclides), is the so-called ensemble approach based on a set
of models supposed to account for the range of uncertainties.
[5] This paper uses an ensemble approach to provide

estimates of the uncertainty in photochemical forecasts due
to the parameterizations and some data associated with
them. It also deals with numerical issues such as mesh size.
[6] The study is performed with a four-month European-

scale simulation, from May to August 2001. A comparison
between the reference simulation and a similar simulation
but for one change in a parameterization enables us to
estimate the impact of this parameterization. For each
modified parameterization, the reliability of the simulation
is checked with comparisons to measurements, which
allows us to assess the robustness of the whole modeling
system. The same experiment is finally performed with a set
of simulations in which several parameterizations may be
changed (at the same time, in the same simulation). This
allows us to study the robustness of the system with respect
to cumulated uncertainties.
[7] This paper is organized as follows. Section 2 briefly

summarizes the relevant methods to estimate uncertainties,
details the specific aims of this paper and describes the
methodology. Section 3 details the model, the reference
simulation and the involved parameterizations. In the last
section, the results are analyzed with intercomparisons of
the simulations and comparisons to observations.

2. Methodology

2.1. Definitions

[8] We define the following: (1) The error is the discrep-
ancy between model outputs and field observations. (2) The
uncertainty is the range of values in which the model
outputs may lie with a high degree of confidence. In this
paper, we only deal with a priori uncertainties, i.e., uncer-
tainties estimated without taking into account observations.
(3) Hereafter we refer to the variability of an ensemble as its
spread. The spread is a measure of the uncertainty and it can
be quantified by a standard deviation. (4) Herein the
variability solely refers to the spatial or/and temporal
variabilities of a concentration field. For the sake of clarity,
the variability of an ensemble is called a spread.

2.2. Motivation

[9] Assessing the uncertainties in model outputs is a field
of growing interest in environmental forecasting, especially
in meteorology. In meteorology, the dynamics of models
have a ‘‘chaotic’’ behavior. The uncertainties in initial
conditions have therefore a strong impact and the issue is
to propagate these uncertainties through ‘‘ensemble fore-
casts’’ [Toth and Kalnay, 1993; Houtemaker et al., 1996;
Buizza et al., 1999]. In air quality applications, there is not
such a strong dependence on initial conditions. The impact
of uncertainties in the input data (e.g., emissions, meteoro-
logical fields), in the parameterizations (e.g., deposition
velocities, turbulence closure) and in the numerical algo-
rithms is much stronger.
[10] The actual errors of a model, given by comparisons

to observational data, may be low with high uncertainties in

the results. A model may be tuned to fit the observations
(and all models are improved this way), which leads to low
errors. Nevertheless, if this model is used with different
parameterizations (assumed to be valid physical parameter-
izations), other data or alternative numerical schemes, then
it could lead to very different results, including those far
from the measurements, with the magnitude of spread
depending on the actual uncertainty. This is, of course, a
strong limitation of the models, and the uncertainty has to
be estimated in order to assess the ‘‘robustness’’ of the
models. One may refer to Russell and Dennis [2000] for an
overview of the strengths and limitations of photochemical
models.
[11] It is impossible to compute the error in all meteoro-

logical conditions, at every point in a given simulation
domain (even at ground level), for all chemical species,
and at every time. In the absence of observations, an
estimation of the uncertainty is essentially the only means
to assess the quality of the results. In an operational context,
the models may be used for risk assessment. The reliability
of the results is then a crucial issue and, if available, the full
PDFs associated with these results would be highly valu-
able. For instance, in prospective or screening studies (e.g.,
impact studies related to different emission scenarios), the
models may be used with uncommon input data (e.g.,
strongly corrected emissions) and without any available
observations with which to tune the models. From the
research point of view, an estimate of the uncertainty is
necessary for other communities to assess the feasibility and
the relevance of given applications. For instance, the effect
of pollution on health may or may not be effectively
estimated, depending on the accuracy of the underlying
air-quality models. For each model, the development is also
oriented to improve the description in the parameterizations
responsible for the main uncertainty.

2.3. A Review of Existing Methods

[12] There are several methods to estimate the uncertainty
and to identify its sources. As for the uncertainty due to the
input data, one can compute first-order derivatives of the
model outputs with respect to the model inputs [e.g.,
Schmidt, 2002]. This provides ‘‘local’’ sensitivities from
which the uncertainty in the outputs can be derived, taking
into account the uncertainty in the input data.
[13] Ideally, one would want to compute the full PDF

associated with the results. This would mean solving the
Fokker-Planck equation (the equation satisfied by the output
PDF [Gardiner, 1996]) which is unfeasible. Instead, the
Monte Carlo methods can generate approximations of the
PDF. The idea is to generate a set of N input fields that
roughly describe the PDF associated with the input data.
The model is then run N times, which provides an approx-
imation of the output PDF. These methods may be well
suited but they are restricted to the uncertainty due to input
data or parameters in parameterizations, that is, due to
continuous variables. A related method, which could be
viewed as a Monte Carlo method too, is the use of a set of N
input fields generated by another model. In practice, the
ensemble forecasts from the meteorological centers may be
used as input to the air quality models. This leads to
promising applications but it is restricted to the meteoro-
logical fields [Warner et al., 2002].
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[14] Another method is the use of different air quality
models. This technique has already been used but with a
fairly low number of models (e.g., four models given by
Delle Monache and Stull [2003]). It is hard to assemble
enough models to claim a reliable estimate of the uncer-
tainty. Moreover, intercomparisons are difficult because the
models may not be operated under the same conditions
(e.g., with the same meteorological fields). Note that this
technique involves the uncertainties of several models and
is not suited to assess the uncertainty of a given model.
Moreover, the models have usually been tuned in compar-
isons to measured data; hence they do not embrace the
whole uncertainty in the physics and the chemistry.
[15] The method applied in this paper mainly takes

advantage of the multiple parameterizations that should be
available in a well designed modeling system [Mallet et al.,
2005]. The model is run in many configurations with
respect to the available state-of-the-art parameterizations,
but also with respect to changes in the parameters and the
base input data needed for these parameterizations. The
impact of the numerical approximations is studied as well.
This method allows fair comparisons since the framework is
exactly the same for all simulations. It gives an accurate
view of the uncertainty due to the parameterizations of a
given model. Notice that the method introduces discrete
changes, which is the only means to assess the impact of the
parameterizations. There is no continuous transition be-
tween two parameterizations or between their base input
data sets. Details about the method are provided below.

2.4. Multiconfiguration Approach

[16] The air quality system with which the experiments
have been performed relies on many parameterizations (see
section 3.1). There are often several valid parameterizations
to compute the same field. Furthermore most parameter-
izations depend on input data sets (including scalar param-
eters). For instance, the deposition velocities depend on the
land use coverage which may be given by U.S. Geological
Survey (USGS) data or by Global Land Cover Facility
(GLCF) data (see below). The alternatives between the
parameterizations themselves and their input data sets
introduce a finite number of choices. Hence the method
deals with discrete dependencies.
[17] The impact of numerical options are also assessed

through discrete changes, e.g., by changing a numerical
scheme. Nonetheless a few values that belong to a contin-
uous interval are studied as well. They are modified as if
they were discrete variables, i.e., only a few values are
allowed for them. For example, the time step is a continuous
variable but it can be restricted to a set of three values (a
reference time step, a small one and a large one).
[18] For the sake of clarity, the changes in the input data

to the parameterizations will be viewed as changes in the
parameterizations themselves. Since the numerical issues
are treated in the same way as the parameterizations (they
are associated with a finite number of choices), they are also
viewed as parameterizations hereafter.
[19] Assume that the model is written in the form

y ¼ f p1; p2; . . . ; pNð Þ ¼ f pð Þ ð1Þ

Every input parameter pi 2 {0, . . . , ni � 1} is associated
with a given parameterization that has ni possible values. f is

the model itself. The output y may be the pollutant
concentrations, deposition fields, evaluation statistics, etc.
Notice that f is already a discretized model.
[20] The reference simulation is associated with a refer-

ence vector assumed to be zero: pref = 0. The idea is to
estimate the uncertainty and the impact of every parameter-
ization by changing one parameterization at a time, i.e.,
computing all f ( p) where pi = 0 for all i except for one
component. There are

PN
i¼1 (ni � 1) such simulations. This

is only a small subset of the �
N
i¼1ni possible combinations,

but the computational cost makes it impossible to run all
simulations.
[21] This method allows us to estimate the impact of each

parameterization. The impact is estimated with the resulting
changes in the output concentrations. It is analyzed with the
concentration distributions and their spatial and temporal
variabilities. In addition, for each change, an evaluation of
the output can be performed. It shows whether the modified
parameterization leads to an improved agreement with the
measurements and therefore maybe to a better description of
the physics. The fact that not all combinations (pi)i are
available restricts the study: it is hard to decide whether a
parameterization should be discarded because its drawbacks
may be canceled by changes in other parameterizations.
There are still useful conclusions to draw: for instance, it
may be shown that a given parameterization limits the
variability in the results.
[22] Furthermore, the results are enhanced by combined

changes, but only with a few selected parameterizations to
reduce the computational cost of the study. Four parameter-
izations are selected mainly because of their significant
impact (even if other parameterizations have a similar
importance). The model is then put in the form y = f ( ~p)
where the vector ~p has four components. Each component
can take two values (0 or 1); therefore there are 16 possible
combinations. This provides a rough estimate of the overall
uncertainty.

3. Experiment Setup

3.1. Modeling System

[23] This study is based on the modeling system Poly-
phemus (available under the GNU General Public License
at http://www.enpc.fr/cerea/polyphemus/). This system is
divided into four parts: (1) The databases incorporate the
data needed in the parameterizations (one may also include
the meteorological fields here). (2) The libraries provide
(a) facilities to manage the multidimensional data involved
in atmospheric chemistry, (b) useful functions associated
with the physical and chemical fields (e.g., coordinate
transformations) and (c) the parameterizations. (3) A set
of programs make the calls to the libraries to generate
the input data needed by the chemistry-transport model.
Their flexibility is made possible by the input configuration
files that they read. (4) The chemistry-transport model
is responsible for the time integration of the chemistry-
transport equation. It therefore computes the output
concentrations.
[24] The databases contain the raw data: the land use

coverage, the anthropogenic emission inventories, chemical
constants, etc. The meteorological fields may also be
included even if they strongly depend on the application.
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[25] The libraries play a major role in this study since
they provide the basis of the flexibility of the parameter-
izations. They first provide the data structures and functions
needed for data processing. They then provide a set of
parameterizations. Most of the changes to the simulations
are made with a different call to the libraries, specifically to
the library dedicated to physical parameterizations, the C++
library AtmoData [Mallet and Sportisse, 2005].
[26] The programs of Polyphemus make calls to the

libraries in order to process the raw data. They format the
raw data for the chemistry-transport model, but the primary
function of the programs is to use the parameterizations
from the library AtmoData to compute the needed fields.
These programs read configuration files in which many
options are specified, including which parameterizations are
to be used and with which input data and parameters.
Roughly speaking, there exists a set of configuration files
for every vector p (vector defined in section 2.4). This study
therefore relies heavily on the flexibility characteristic of the
programs.
[27] Finally, the Eulerian chemistry-transport model

Polair3D computes the output concentrations through the
numerical integration of the transport-chemistry equation.
With respect to this study, a strong advantage of Polair3D is
its ability to deal with multiple chemical mechanisms.
Details about Polair3D are given by Boutahar et al. [2004].
[28] Further details about the architecture of the whole

system are given by Mallet et al. [2005]. A complete
description is not relevant here because not all features of
the system are used in this study. The system is able to
handle many applications (many chemical mechanisms,
data assimilation, Monte Carlo simulations, etc.) and its
flexibility enables the multiple experiments presented in this
paper. The next subsection describes the base application.

3.2. Reference Simulation

[29] The impact of the parameterizations is evaluated by
the changes they introduce with respect to the reference
simulation. The reference simulation takes place at Europe-
an scale during summer 2001 (22 April 2001 to 31 August

2001). A validation, over the same domain and the same
period, similar to the reference simulation, is given by
Mallet and Sportisse [2004].
[30] The domain is [40.25�N, 10.25�W] � [56.75�N,

22.25�E] and is shown in Figure 1. The first layer is located
between 0 m and 50 m; the concentrations are thus
computed at 25 m. The thickness of the other layers is
about 600 m with the top of the last layer at 3000 m. RACM
is the photochemical mechanism used in this simulation
[Stockwell et al., 1997]. Since the best results are obtained
for ozone and the number of ozone measurements is
significantly higher than for other species, this study focuses
on ozone. We are notably concerned with the ozone peaks
since they are often of high interest in forecasts (because of
the regulations that mostly limit the peaks).
[31] Here is a review of the main components of the

reference simulation: (1) meteorological data (the best
ECMWF data available for the period (i.e., 0.36� � 0.36�,
the TL511 spectral resolution in the horizontal, 60 levels,
time step of 3 hours, 12 hours forecast cycles starting from
analyzed fields)); (2) land use coverage (USGS finest land
cover map (24 categories, 1 km Lambert)); (3) emissions
(the Co-operative Programme for Monitoring and Evalua-
tion of the Long-range Transmission of Air Pollutants
in Europe (EMEP) inventory, converted according to
Middleton et al. [1990]); (4) biogenic emissions (computed
as advocated by Simpson et al. [1999]); (5) deposition
velocities (the revised parameterization proposed by Zhang
et al. [2003]); (6) vertical diffusion (within the boundary
layer, the Troen and Mahrt parameterization as described by
Troen and Mahrt [1986], with the boundary layer height
provided by the ECMWF; above the boundary layer, the
Louis parameterization [Louis, 1979]); (7) boundary con-
ditions (output of the global chemistry-transport model
Mozart 2 [Horowitz et al., 2003] run over a typical year);
and (8) numerical schemes (a first-order operator splitting,
the sequence being advection–diffusion–chemistry; a direct
space-time third-order advection scheme with a Koren flux
limiter [Verwer et al., 1998]; a second-order Rosenbrock
method for diffusion and chemistry).
[32] The performance of the reference simulation has

been evaluated through a comparison of the forecasted
ozone peaks with the observations from 242 stations
distributed over Europe (in a network with mixed
stations: urban, periurban and rural stations). With the
first five days excluded (because of the rough initial
conditions), the root mean square (with all observations
put together) is 23.5 mg m�3, the correlation is 71.4% and the
bias �4.5 mg m�3 (the mean of observed values being
94.7 mg m�3): the statistical measures are defined in Appen-
dix A. The results therefore show a reasonable agreement
with observations [Hass et al., 1997; Schmidt et al., 2001].

3.3. Parameterizations

[33] The modified parameterizations were chosen accord-
ing to the relevance and the availability of alternative
parameterizations. Only state-of-the-art parameterizations
or, at least, widely used parameterizations are involved.
The list of the parameterizations (and the data associated
with them) used in this study is shown in Table 1.
[34] The changes first include prominent processes such

as the chemistry (RADM 2). Several chemical mechanisms

Figure 1. Domain [40.25�N, 10.25�W] � [56.75�N,
22.25�E] of the reference simulation.
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are available in Polair3D but reliable emission inventories
were available only for RACM and for RADM 2. The same
speciation (for volatile organic compounds [Passant, 2002])
was used for the two mechanisms. A drawback is that both
mechanisms are too close to embrace the diversity of the
chemical mechanisms available in air quality modeling.
Nevertheless, as shown hereafter, there is a substantial
difference between the two mechanisms.
[35] The sensitivity to the turbulence closure is assessed

with the comparison between the Troen and Mahrt param-
eterization (well suited for models with a low vertical
resolution, which is the case with only five layers) and
the Louis parameterization. The Louis closure is used above
the boundary layer (for all simulations), in the boundary
layer under stable conditions (simulation 3) and under any
conditions (simulation 2). One should note that the leading
contribution to ground concentrations comes from the
vertical diffusion coefficient at the top of the first layer. It
determines the transfer between this and the above layer (up
to 600 m) which roughly corresponds to the residual layer in
the night. The Troen and Mahrt parameterization and the
Louis parameterization are designed in two different ways:
the first one is independent of the vertical discretization
while the second one relies on finite differences. There is a
clear difference in the coefficients computed by the two

parameterizations: the averages at the top of the first layer
are 7.6 m2 s�1 (Troen and Mahrt) and 5.7 m2 s�1 (Louis).
The correlation of 60% also shows the gap between the two
parameterizations for coarse vertical discretizations (the
differences decrease as the vertical mesh is refined).
[36] Another known important process with multiple

parameterizations is dry deposition. An alternative to the
reference velocities computed as proposed by Zhang et al.
[2003] is based on the method by Wesely [1989] (simula-
tion 4), which includes a reasonable parameterization and is
widely used. The two parameterizations rely on the same
fundamentals and the differences in the computed deposi-
tion velocities come as much from the input data (resistan-
ces, land use descriptions) as from the parameterization
itself. As for ozone deposition velocities, the relative bias
between the two parameterizations is only 3%, the correla-
tion is 96% but the ratio of the standard deviation of the
difference and the mean velocity is high: 0.31. In addition,
the surface flux used to compute the aerodynamic resis-
tance can be the heat flux or the momentum flux, although
the heat flux is usually assumed to be more suitable for a
scalar variable such as the concentration of a pollutant.
[37] The two last physical parameterizations (simulations

6 and 7) deal with the attenuation coefficients. The refer-
ence option is based on the optical depth, as described by

Table 1. Parameterizations, Raw Input Data, and Numerical Choices for the Reference Simulation and Their Alternativesa

Simulation Parameterization Reference Alternative(s) Comment

Physical Parameterizations
1b chemistry RACM RADM 2 [Stockwell et al., 1990]
2 vertical diffusion Troen and Mahrt Louis [Louis, 1979]
3 Louis in stable conditions Troen and Mahrt kept

in unstable conditions
4 deposition velocities Zhang [Zhang et al., 2003] Wesely [Wesely, 1989]
5 surface flux heat fluxc momentum fluxc for the aerodynamic resistance

(in deposition velocities)
6 cloud attenuation RADM method

[Chang et al., 1987;
Madronich, 1987]

ESQUIF [ESQUIF, 2001]

7 critical relative humidity depends on s two layers used in the RADM method
to compute cloud attenuation

Input Data
8 emission vertical distribution all in the first cell all in the two first cells
9 land use coverage USGS GLCF for deposition velocitiesd

10 land use coverage USGS GLCF for biogenic emissionsd

11 exponent p in Troen and Mahrt 2 3
12 photolytic constants JPROC depends on the zenith angle (only)

Numerical Issues
13 time step 600 s 100 s
14 1800 se,f

15 splitting method first order Strang splitting
16 horizontal resolution 0.5� 0.1�f

17 1.0�
18 vertical resolution five layers nine layers the first layer height

remains 50 m
19 first layer height 50 m 40 m the top of every other

layer does not change
aThe impact of the parameterizations is assessed in this study through the use of the alternatives shown in this table.
bThe reference simulation will be referred to as simulation 0.
cComputed using the Louis formulae.
dConsistency between the land use coverage used for the deposition velocities and for the biogenic emissions is not required. Indeed, a large part of the

uncertainty lies in the data associated with the land use categories (e.g., resistances for deposition and emission factors for the biogenic emissions).
Moreover, a given description may be more suited only for the emissions (vegetation) or only for the deposition (roughness, etc.).

eThe advection is integrated over submultiples of 1800 s so as to satisfy the Courant-Friedrichs-Lewy (CFL) condition.
fThe numerical scheme is also slightly modified in this simulation: It uses source splitting. It is used to enforce the stability but has only slight

consequences in the results.
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Chang et al. [1987] and Madronich [1987], estimated with
the cloud liquid water content. The liquid water content is
integrated within the clouds and the cloud fraction is
calculated on the basis of the relative humidity q and its
critical value qc:

cloud fraction ¼ 1� q

1� qc
ð2Þ

qc ¼ 1� asa 1� sð Þb 1þ b s� 1

2

� �� �

ð3Þ

where s = P/Ps, P is the pressure, Ps is the surface pressure,
a = 1.1, b =

ffiffiffiffiffiffiffi

1:3
p

, a = 0 and b = 1.1. In an alternative
simulation (7), the critical relative humidity is simply
constant over two distinct layers: qc = 0.75 below 700 hPa
and qc = 0.95 above.
[38] Another set of simulations is derived from changes in

the input data. The land use coverage is described by the
USGS data (24 categories, 1 km Lambert) or by the GLCF
data (14 categories, 0.0083�). The GLCF data contain less
categories worldwide but they involve more categories over
Europe than the USGS data do. The impact of the land use
description is assessed through the deposition velocities
(simulation 9) and the biogenic emissions (simulation 10)
independently.
[39] In the Troen and Mahrt parameterization, the vertical

diffusion coefficients depend on several parameters, partic-
ularly an exponent p [see Troen and Mahrt, 1986], which
determines the shape of the vertical profile. Since it is a free
parameter (with p = 2 or p = 3 recommended), the exponent
is set to 2 in the reference simulation and also set to 3 as
an alternative (which increases the diffusion coefficients:
simulation 11).
[40] The emission inventories are a concern of most

modelers, especially the time and spatial distributions asso-
ciated with them. The time distribution is known to have a
slight impact at continental scale [Tao et al., 2004]. The
horizontal distribution is given with the EMEP inventory.
Meanwhile the vertical distribution is not well known and is
chosen by the modeler. In the reference simulation, all
emissions are released in the first layer (therefore below
50 m). In an alternative simulation (simulation 8), the
emissions from industrial combustion (sectors 1 and 3 in
the EMEP inventory) and from the waste treatment (sector 9
in the EMEP inventory) are released in the second layer.
The emissions due to the combustion of nonindustrial plants
(sector 2 in the EMEP inventory) are released in both layers
(one half in each).
[41] Finally, the impact of the database for the photolytic

constants is estimated. The reference simulation takes
advantage of the photolytic constants computed by JPROC
(part of CMAQ [Byun and Ching, 1999]) that are a function
of the latitude, the altitude, the day in the year and the hour
angle. The alternative simulation uses a coarser description
with a single dependence on the zenith angle derived from
the values given by Stockwell et al. [1997].
[42] The last set of simulations involves changes in the

numerical approximations. The time step is set to 100 s
(simulation 13) and 1800 s (simulation 14) instead of
600 s (reference simulation). In the reference simulation,

the splitting method is a first-order method (advection–
diffusion–chemistry). An alternative simulation (15) takes
advantage of the Strang splitting method (advection–chem-
istry–diffusion over (Dt)/2 and then diffusion–chemistry–
advection still over (Dt)/2) [Sportisse, 2000]. Finally, the
spatial discretization is changed horizontally (simulations
16 and 17) and vertically (simulations 18 and 19). When the
spatial discretization changes, the raw meteorological fields
(ECMWF fields) are interpolated on the new grid.
[43] The 19 alternative simulations address a reasonable

range of the choices that can be made in a forecasting
system, in the parameterizations, their input data and the
numerical options.

4. Results and Discussion

[44] Because of the coarse initial conditions, the five first
days of the simulations are excluded in the following
comparisons. The comparison is limited to hourly ozone
concentrations in the first layer. Moreover, the comparisons
between the computed fields (not with the observations) are
not performed in all cells to avoid the influence of the
boundary conditions. A three-cell band at the domain
borders is excluded from the comparisons in sections 4.1,
4.2 and 4.4.
[45] The first subsection compares all simulations in order

to estimate the spread due to the parameterizations (and
numerical choices). The second subsection focuses on the
impact of each parameterization. The comparisons are
relative to the reference simulation. In the third subsection,
a comparison with the observations evaluates the impact of
the parameterizations on the forecasts. In the last section,
the impact of combined changes in the parameterizations is
performed to give an estimate of the overall uncertainty.

4.1. Intercomparison Between the Simulations

[46] The distribution of the spatiotemporal means and
standard deviations of the fields is shown in Table 2. The
means and the standard deviations are well spread consid-
ering that the simulations differ only at most in two
parameterizations. The mean is particularly affected by
the splitting method, the number of layers, the time step
(1800 s), the chemical mechanism and the vertical diffusion.
The standard deviation increases due to the turbulent
closure and decreases with RADM 2, the vertically distrib-
uted emissions and the land use coverage used to compute
the biogenic emissions. From these comparisons, it appears
that the turbulent closure and the chemical mechanism have
a strong impact on the output ozone concentrations. Even
the use of the Louis closure only in stable conditions
modifies both the mean and the standard deviation. The
numerical issues also have a clear impact on the ozone
mean. Finally the emissions can modify the standard devi-
ation of the output concentrations. These conclusions may
already be known issues, but this study shows the promi-
nent impacts.
[47] Notice that the standard deviation has a greater

spread than the mean. The relative standard deviation (the
standard deviation divided by the mean) of the means and of
the standard deviations shown in Table 2 are 5.5% and
10.4%, respectively.
[48] More details are provided by the distribution of each

ozone field. The percentiles associated with the simulations
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are shown in Table 3. In addition, Figure 2 shows the
relative frequency distributions of (1) simulation 15 (split-
ting order), which provides the highest concentrations
(highest mean and highest percentiles) with a standard
deviation close to the reference simulation; (2) simulation
2 (Louis turbulence closure), which has the lowest concen-
trations and the highest standard deviation; and (3) simula-
tion 1 (chemical mechanism RADM 2), which is associated
with the lowest standard deviation. These three simulations
exhibit the most extreme behavior and therefore give a

good idea of the uncertainty due to the changes in the
parameterizations.
[49] The comparisons deal with the concentrations com-

puted over the whole (restricted) domain and at all time
steps. A finer analysis of the variability deals with the
spatial and temporal variabilities.
[50] The spatial variability is estimated from the time

average of the spatial standard deviations (the standard
deviations computed with the concentrations in all cells
and at a given time step). It appears that the spatial
variability and the standard deviation on the whole field at
once lead to the same conclusions. The correlation between
the spatial variability and the global standard deviation of
all simulations can be as high as 98.7%.
[51] The temporal variability is estimated from the spatial

average of the temporal standard deviations (computed with
all concentrations in a given cell). The correlation of this
temporal variability with the global standard deviations is
still above 98%. The variability can also be estimated daily
and then averaged over the days. In this case, the correlation
with the global standard deviation is 94%, which is still
high. Hence the parameterizations that introduce some
variability increase both the temporal and the spatial vari-
abilities. In section 4.4, the most strongly impacted regions
are identified.
[52] A key point in ozone forecasts is the daily maximum.

Table 4 shows the distribution of the means and the standard
deviations of the ozone daily peaks. The behavior of the
daily maxima differs from the field averages previously
analyzed.
[53] While the means of the maxima are less widely

spread, the standard deviations are strongly spread and
range from 16.75 mg m�3 (simulation 1, RADM 2) to
33.50 mg m�3 (simulation 2, Louis parameterization). On
one hand, the highest standard deviation is reached with the
Louis closure. Notice that if the Louis closure is only used
in stable conditions (simulation 3), the impact on the daily
maxima is much lower, which means that the nighttime
concentrations have a small influence on the peaks. On the

Table 2. Means and Standard Deviations of the Hourly Ozone

Concentrations of the 20 Simulationsa

Simulation

Sorted by Mean

Simulation

Sorted by
Standard Deviation

Mean
Standard
Deviation Mean

Standard
Deviation

15 90.30 25.73 2 68.94 34.23
18 89.15 24.27 3 79.15 28.83
14 87.49 26.14 11 84.14 26.22
7 85.92 25.16 16 83.27 26.20
6 85.92 24.75 4 85.18 26.19
4 85.18 26.19 14 87.49 26.14
17 85.15 24.74 15 90.30 25.73
0 84.92 25.11 19 82.62 25.22
13 84.73 24.99 7 85.92 25.16
8 84.23 21.81 0 84.92 25.11
11 84.14 26.22 12 84.00 25.06
12 84.00 25.06 13 84.73 24.99
9 83.96 24.39 5 81.38 24.87
16 83.27 26.20 6 85.92 24.75
19 82.62 25.22 17 85.15 24.74
5 81.38 24.87 9 83.96 24.39
10 81.30 22.88 18 89.15 24.27
3 79.15 28.83 10 81.30 22.88
1 77.11 21.14 8 84.23 21.81
2 68.94 34.23 1 77.11 21.14

aValues are given in mg m�3. The reference simulation is indexed by 0,
and the other simulations are indexed as in Table 1. On the left, the
simulations are sorted by their mean; on the right, they are sorted by their
standard deviation. The relative standard deviation of the means is 5.5%,
and the relative standard deviation of the standard deviations is 10.4%.

Table 3. Percentiles of Ozone Concentrations, Sorted by the Mean

of the Percentilesa

Simulation 10th 20th 30th 40th 50th 60th 70th 80th 90th

15 58 69 77 84 91 97 104 111 122
18 60 69 76 83 88 94 101 109 120
14 55 66 74 81 87 94 101 109 121
6 55 66 74 80 86 92 98 106 117
7 55 66 73 80 86 92 98 106 117
4 53 64 72 79 85 91 98 107 118
17 55 65 72 79 85 91 97 105 117
0 54 65 72 79 85 91 97 105 116
13 54 65 72 79 84 90 97 105 116
8 57 66 73 79 84 89 95 102 111
9 54 65 72 78 84 90 96 104 114
11 52 63 71 77 84 90 97 105 117
12 53 64 71 78 84 90 96 104 115
16 52 63 71 77 83 89 96 104 115
19 51 63 70 77 83 89 95 103 114
10 52 63 70 76 82 88 94 100 110
5 50 61 69 75 81 87 94 101 112
3 41 55 65 73 80 87 95 103 115
1 50 61 68 73 78 84 89 95 102
2 28 40 50 58 67 75 85 96 111

aValues are given in mg m�3.

Figure 2. Relative frequency distributions of ozone
concentrations (mg m�3) for simulations 15, 2, and 1,
which show the most extreme behavior (in terms of mean
and standard deviation).
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other hand, the lowest standard deviation comes from the
chemical mechanism RADM 2. It is also associated with the
lowest concentrations, which is consistent with Gross and
Stockwell [2003].
[54] Contrary to the concentration averages, the daily

maxima are more variable in space than in time, as shown

in Figure 3. The simulation with RADM 2 is essentially the
only simulation for which the temporal variability is similar
to the spatial variability. The impact of the parameteriza-
tions is also greater on the spatial variability than on the
temporal variability: their relative standard deviations are
15.1% and 9.5%, respectively.

4.2. Comparisons With the Reference Simulation

[55] Now that the global variability has been analyzed,
comparisons with the reference simulation allow us to give
details about the impact of each change in the parameter-
izations or in the numerical choices.
[56] First examined are the bias, the standard deviation of

the distance to the reference simulation (namely the differ-
ence with the reference simulation) and the correlation with
the reference simulation. These values are shown in Table 5.
[57] The changes in the turbulence closure (simulations 2

and 3) lead to the largest differences. The chemical mech-
anism RADM 2 (simulation 1) also has an impact but not as
strong as what was seen in the previous subsection with
respect to the variability. On the contrary, the fine resolution
(0.1�, simulation 16) leads to strong differences with the
reference simulation, even if this was not obvious from the
previous analyses. It is noteworthy that simulation 17, with
a 1.0� resolution, has a lower but still significant impact.
[58] The other main changes are due to the splitting

method (simulation 15), the vertical resolution (nine levels,
simulation 18), the emission vertical distribution (simula-
tion 8) and the land use coverage used for the biogenic
emissions (simulation 10).
[59] For each change in the model, there is an explanation

for its low or high impact on the output concentrations. We
do not provide such explanations due to the number of
simulations and because the purpose of the paper is to
describe the global uncertainty due to the parameterizations
and the numerical choices. What should be emphasized
instead is that the results are sensitive to the physical

Table 4. Means and Standard Deviations of the Ozone Daily

Maxima of the 20 Simulationsa

Simulation

Sorted by Mean

Simulation

Sorted by
Standard Deviation

Mean
Standard
Deviation Mean

Standard
Deviation

15 108.79 22.62 2 95.71 33.50
14 104.40 23.87 16 101.39 24.35
18 104.11 22.87 11 101.04 23.98
4 102.39 23.38 14 104.40 23.87
7 102.03 22.58 4 102.39 23.38
6 101.71 22.05 3 99.73 23.17
16 101.39 24.35 12 99.59 22.94
11 101.04 23.98 18 104.11 22.87
0 100.92 22.62 0 100.92 22.62
17 100.62 22.49 15 108.79 22.62
13 100.52 22.57 7 102.03 22.58
9 99.77 21.68 13 100.52 22.57
3 99.73 23.17 17 100.62 22.49
12 99.59 22.94 19 98.96 22.25
19 98.96 22.25 6 101.71 22.05
5 98.34 21.61 9 99.77 21.68
8 97.90 20.10 5 98.34 21.61
10 96.31 19.32 8 97.90 20.10
2 95.71 33.50 10 96.31 19.32
1 91.49 16.75 1 91.49 16.75

aValues are given in mg m�3. On the left, the simulations are sorted by
their mean; on the right, they are sorted by their standard deviation. The
relative standard deviation of the means is 3.6%, and the relative standard
deviation of the standard deviations is 13.5%.

Table 5. Biases and Standard Deviations of the Distance to the

Reference Simulation for the 19 Simulationsa

Simulation

Sorted by Bias

Simulation

Sorted by
Standard Deviation

Bias
Standard
Deviation Bias

Standard
Deviation Correlation

15 5.39 6.65 2 �15.97 18.60 0.85
18 4.23 5.10 3 �5.77 10.40 0.93
14 2.57 3.60 16 �1.64 8.95 0.94
7 1.00 1.32 1 �7.81 7.55 0.96
6 1.00 2.63 15 5.39 6.65 0.97
4 0.26 2.69 8 �0.69 5.62 0.98
17 0.24 5.07 18 4.23 5.10 0.98
13 �0.18 0.98 17 0.24 5.07 0.98
8 �0.69 5.62 10 �3.62 5.04 0.98
11 �0.78 2.81 5 �3.54 3.69 0.99
12 �0.92 2.48 14 2.57 3.60 0.99
9 �0.96 2.30 11 �0.78 2.81 0.99
16 �1.64 8.95 4 0.26 2.69 1.00
19 �2.30 2.34 6 1.00 2.63 0.99
5 �3.54 3.69 12 �0.92 2.48 1.00
10 �3.62 5.04 19 �2.30 2.34 1.00
3 �5.77 10.40 9 �0.96 2.30 1.00
1 �7.81 7.55 7 1.00 1.32 1.00
2 �15.97 18.60 13 �0.18 0.98 1.00

aValues are given in mg m�3. On the left, the simulations are sorted by
their bias; on the right, they are sorted by their standard deviation.

Figure 3. Spatial, temporal, and global variabilities
(mg m�3) of ozone daily maxima for the 20 simulations.
The spatial variability is estimated with the time average of
the spatial standard deviations (the standard deviations
computed with the peaks in all cells, for a given day). The
temporal variability is estimated with the spatial average of
the temporal standard deviations (computed with all daily
maxima in a given cell). The global variability is measured
by the standard deviation of all daily maxima.
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parameterizations, the input data sets and the numerical
issues.
[60] The relative frequency distribution of all concentra-

tions of the reference simulation is shown in Figure 4 with
its uncertainty due to the parameterizations. The concentra-
tion distribution is sensitive to the parameterizations. The
uncertainty (estimated with the relative standard deviation)
in the relative frequency distribution is about 25–30% for
concentrations in [30 mg m�3, 170 mg m�3]. This high
uncertainty is consistent with the uncertainty roughly shown
in Figure 2.
[61] In Figure 5, the mean of the daily evolution for ozone

over the whole domain and all days is shown for all
simulations. This daily evolution is also shown indepen-
dently for the ensembles generated with changes (1) in the
physical parameterizations, (2) in the input data and (3) in
the numerical approximations. From this figure, the prom-
inent changes are the turbulence closure and the chemical
mechanism. The profile is less sensitive to the input data,
but this is an average profile that can hide spatial or
temporal variabilities (which are analyzed below). The
spread (estimated with the relative standard deviation) is
4% on the peak and 6% for the whole profile. It reaches 9%
at 0400 UT, which is high since the impacts are not
cumulative (see section 4.4 for the cumulative effects).
[62] One question about the nature of the variability

introduced by each change lies in the bias and its nocturnal
and diurnal evolutions. The standard deviation of the
difference with the reference simulation does not provide
this information since it may be low even with systematic
biases in the night or in the daytime. In the same way,
systematic biases may appear in given regions. In Table 6,
the amount of negative biases (concentrations less that the
reference concentrations) is reported for the following:
(1) the daily biases (the biases (mean over all grid cells of the
difference) computed for each day); (2) the daytime biases
(the biases computed for each day but only during the
daytime (from 0400 UT to 1800 UT)); (3) the nocturnal
biases (the biases computed for each day but only during the

night); and (4) the spatial biases (the biases (mean over all
time steps of the difference) computed for each grid cell).
[63] It first indicates that the simulations with the largest

biases are characterized by a clear trend: they are either
above or below the reference simulation at nearly all hours. It
also demonstrates that the biases at night and during the
daytime can strongly differ. This is true for simulation
8 (emission vertical distribution) because of the fact that
the pollutants emitted at night and in the second layer barely
influence the ground concentrations. During the daytime, the
emissions are mixed in the boundary layer which decreases
the impact of the vertical location of the pollutants at release
time. In simulation 4 (Wesely’s parameterization), the noc-
turnal concentrations are often below the reference concen-
trations but only slightly below since the total amount of
negative biases is very close to the amount associated with
the daytime. The last simulation that shows such differences
is simulation 13 (100 s as a time step) for unclear reasons.
The active chemical reactions are not the same at night as in
the daytime, which may explain why the numerical time step
has a different impact.
[64] Another point lies in the spatial and temporal differ-

ences. The day-by-day bias may hide spatial inhomogeneities
of the bias. Simulations 16 and 17 (0.1� and 1.0� horizontal
resolution, respectively) are good examples. Loosely speak-
ing, choices in the simulation setup may impact the spatial
distributions independently from their temporal effects.

4.3. Comparisons With Observations

[65] The results of the simulations are compared to ozone
peaks which are usually a major concern of forecasting
systems. The comparisons are performed with 242 stations
over Europe. Each selected station has a reasonable amount
of measurements (at least 30 peak measurements during the
126 days of the comparison period). There are 27,000 peak
observations and 620,000 hourly observations.
[66] Following EPA [1991], we first evaluate the results

with the normalized bias (MNBE), the mean normalized
gross error (MNGE) and the daily unpaired (in time,
paired in space) peak prediction (UPA). A cutoff level
of 80 mg m�3 is used and the errors are evaluated as
‘‘computed minus observed’’ (a positive bias represents
overestimation). A simulation is assessed through the
amount of stations that match the most restrictive EPA
suggested performances: ±5% for the normalized bias,
±30% for the normalized gross error and ±15% for the
unpaired peak prediction accuracy. The root mean square
(RMS), the correlation and the overall bias of all daily
ozone peaks are also reported in Table 7.
[67] The mean normalized gross error is within the EPA

limits at almost all stations for all simulations except for the
simulation 2 with the Louis closure: for this simulation, the
underestimation is indeed too high (�8.26 mg m�3 on
the peaks). Simulations 1 and 10 also have a strong bias
on the daily peaks, but they do not underestimate all
concentrations above 80 mg m�3 as much as simulation 2.
In this case, the MNGE does not distinguish the simulations,
even if other indicators give a wide spread. One might
consider that the uncertainty due to the parameterizations is
below the error that the EPA limit on the MNGE can detect.
This is rather speculative since only single changes were
introduced in the simulations and, in the next subsection, it is

Figure 4. Relative frequency distribution f([O3]) of the
ozone concentrations (mg m�3) of the reference simulation
and the functions f([O3]) ± sf ([O3]), where sf ([O3]) is the
standard deviation of f([O3]) computed from all simulations.

D01302 MALLET AND SPORTISSE: CHEMISTRY-TRANSPORT MODEL UNCERTAINTY

9 of 15

D01302



shown that the amount of stations below the MNGE limit
can increase if several changes are introduced at the same
time.
[68] Meanwhile, there is a high uncertainty in the con-

centrations above 80 mg m�3 according to the normalized
bias statistics. The amount of stations whose bias is accept-
able (±5%) ranges from 7% to 62%. In the opposite way as
for the MNGE, the MNBE test may be questionable
precisely because of its variability. A conclusion may be
that this test is too severe to be relevant: a good percentage
of acceptable stations would come mainly from a favorable
configuration of the model. The uncertainty in the model is
too high to grant a reasonable validity for this test.

[69] TheUPA statistics are alsowell spread but they show a
lower variability: their relative standard deviation is 9%
against 37% for the MNBE. In comparison, the RMS and
the correlations vary slightly with 6% and 3%, respectively,
of relative standard deviation among the simulations. There-
fore the correlations do not provide substantial information.
Moreover, the correlation between RMS and 1 � UPA
reaches 90%, which means that it is essentially useless to
compute both.
[70] Finally there is a rather high uncertainty in the peak

levels: almost 20 mg m�3 of bias between simulations 1 and
15, with mean observed peaks at 103 mg m�3. Nevertheless
the standard deviation of the biases is only 4 mg m�3. This

Figure 5. Ozone daily profile for (a) the 20 simulations and for the three groups related to (b) the
physical parameterizations, (c) the input data, and (d) the numerical approximations. The circles represent
the reference simulation (simulation 0), the squares represent simulation 2 (Louis closure), the triangles
represent simulation 3 (Louis closure under stable conditions), and the diamonds represent simulation 1
(RADM 2).

D01302 MALLET AND SPORTISSE: CHEMISTRY-TRANSPORT MODEL UNCERTAINTY

10 of 15

D01302



means that an overall bias is not detailed enough to show the
uncertainty.
[71] Even if these results can only barely be generalized,

defining indicators adequately related to the uncertainty in
the models is not an easy task. They are supposed to
distinguish simulations and, at the same time, to be robust
enough to changes (within the uncertainty range) in the
models. None of the previous indicators seem to be bal-
anced enough for this purpose.

4.4. Combined Changes

[72] In this section, we try to estimate the impact of
combined changes: several parameterizations are changed
at the same time. All combinations of the parameterizations
and the numerical choices introduced in Table 1 cannot be
applied because of the computational costs (there would be
184,320 simulations). Hence only four alternatives are kept:
the Louis closure, the RADM 2 mechanism, the deposition
velocities as computed by Wesely [1989] and the vertically
distributed emissions. The first two parameterizations are
included because of their strong impact, the third one
because of its improvements in the results as compared to
the observations and the fourth one because of its low
variability. Refer to Table 8 for the list of the simulations.
[73] Table 9 shows the spread on ozone peaks for the new

set of simulations. It should be compared to Tables 2 and 4.
The spread is clearly higher in the new set of simulations.

Table 6. Amount of Negative Biases Among the Daily Biases, the Daytime Biases, the Nocturnal Biases, and

the Spatial Biasesa

Simulation

Standard
Deviation,
mg m�3

Daily
Negative Bias,

%

Daytime
Negative Bias,

%

Nocturnal
Negative Bias,

%

Spatial
Negative Bias,

%

2 18.60 100 100 100 98
3 10.40 100 100 100 100
16 8.95 100 100 100 79
1 7.55 100 100 100 100
15 6.65 0 0 6 1
8 5.62 70 84 44 64
18 5.10 0 0 0 0
17 5.07 27 25 33 44
10 5.04 100 100 100 100
5 3.69 100 100 100 100
14 3.60 0 13 0 0
11 2.81 88 84 90 76
4 2.69 35 30 60 33
6 2.63 15 17 15 1
12 2.48 81 90 71 91
19 2.34 100 100 100 100
9 2.30 85 85 83 79
7 1.32 0 0 0 0
13 0.98 61 42 95 82

aThe simulations are sorted by their standard deviation.

Table 7. Percentages of Stations That Meet the Most Restrictive

EPA Recommendations on Hourly Concentrations (Cutoff of 80 mg

m�3) for the Mean Bias, the Mean Gross Error, and the Unpaired

(in Time, Paired in Space) Peak Prediction; the Root Mean Square,

the Correlation, and the Overall Bias for the Ozone Daily Peaks

(All Stations Put Together)a

Simulation
MNBE,

%
MNGE,

%
UPA,
%

RMS
(Peaks)

Correlation
(Peaks)

Bias
(Peaks)

0 43 100 61 23.54 0.71 �4.47
1 7 97 21 29.22 0.65 �14.19
2 13 85 39 24.86 0.73 �8.26
3 32 98 59 23.54 0.72 �5.27
4 52 100 69 22.73 0.73 �2.33
5 24 99 48 24.47 0.71 �7.25
6 45 100 61 24.03 0.69 �3.36
7 48 100 64 23.67 0.70 �3.18
8 35 100 52 25.03 0.69 �6.29
9 36 99 56 24.02 0.71 �5.50
10 21 99 36 26.40 0.67 �9.65
11 43 99 62 23.02 0.73 �4.38
12 29 99 45 24.59 0.70 �6.75
13 41 100 55 23.85 0.71 �4.99
14 57 100 76 22.26 0.74 0.01
15 47 100 64 25.11 0.67 5.39
16 62 100 75 22.83 0.72 �0.39
17 33 99 51 24.12 0.71 �6.60
18 38 98 52 24.48 0.68 �2.70
19 46 100 58 23.72 0.71 �4.67

aThe root mean square and overall bias are given in mg m�3. MNBE,
mean normalized bias error; MNGE, mean gross error; UPA, unpaired peak
prediction; and RMS, root mean square.

Table 8. Setup of the 16 Simulations With the Four Alternative

Parameterizations

Simulation Emissions Depositiona Turbulencea Chemistry

a ground Zhang Troen and Mahrt RACM
b ground Zhang Troen and Mahrt RADM 2
c ground Zhang Louis RACM
d ground Zhang Louis RADM 2
e ground Wesely Troen and Mahrt RACM
f ground Wesely Troen and Mahrt RADM 2
g ground Wesely Louis RACM
h ground Wesely Louis RADM 2
i two layers Zhang Troen and Mahrt RACM
j two layers Zhang Troen and Mahrt RADM 2
k two layers Zhang Louis RACM
l two layers Zhang Louis RADM 2
m two layers Wesely Troen and Mahrt RACM
n two layers Wesely Troen and Mahrt RADM 2
o two layers Wesely Louis RACM
p two layers Wesely Louis RADM 2

aZhang, Zhang et al. [2003] parameterization; Troen and Mahrt, Troen
and Mahrt [1986] parameterization; Wesely, Wesely [1989] parameter-
ization; Louis, Louis [1979] parameterization.
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As a consequence, the whole uncertainty due to the param-
eterizations cannot be easily assessed on the basis of single
changes in the parameterizations. The results from the
previous sections cannot claim more than an estimate of a
lower bound on the uncertainty.
[74] The same is true about the error statistics. Even the

MNGE limitation (±30%) is not satisfied by more than 90%
of the stations for 6 simulations of the 16. Five simulations
have a root mean square above 30 mg m�3 whereas none
of the previous 20 simulations reaches such a RMS (see
Table 7). This is obviously due to the combination of
changes that individually contribute to decrease the con-
centrations: the underestimation is then worsened.
[75] The ‘‘cumulative underestimations’’ can be seen in

Figure 6 (to be compared to Figure 5). For instance, the
simulation that combines the Louis closure and the chemical
mechanism RADM 2 shows low concentrations. The non-
linearity even increases this effect. In Figure 7 we compare
simulation d (Louis closure and RADM 2) and the linear
combination ‘‘c + b � a.’’ Both should be equal if the
dependencies were linear. The concentrations of the simu-
lation d are even lower than the concentrations of the linear
combination. This means that the uncertainty is not additive.
[76] The mean spread (relative standard deviation of the

ensemble) of the daily profile concentrations reaches 16%
(against 6% with single changes). The highest spread is
reached at 0400 UT with 23%. The spread on the peak is
9%. Notice that this spread is a measure of the uncertainty.
[77] Another measure is the relative standard deviation of

all concentrations, not of the mean profile. The relative
standard deviation is computed for concentrations in
[40 mg m�3, 130 mg m�3] to include only the main concen-
trations (refer to the relative frequency distribution shown in
Figure 4). Figure 8 shows the relative standard deviation
versus ozone concentrations. The average of the relative
standard deviation on this interval is 17%. The lowest
concentrations have the largest uncertainty. It means that
the processes at night are sensitive to the available param-

eterizations. The turbulence closure plays an important role
at night when the values of the vertical diffusion coefficients
are hard to estimate in stable conditions and at the top of the
first layer. As for the daily peaks, the relative standard
deviation, computed over the whole domain and with all
days, reaches 11%. It is difficult to determine the reason why
the peaks have a low uncertainty as compared to the other
concentrations (Figure 8): It may be due to less uncertainty
in all parameterizations, or the peaks may be sensitive only

Table 9. Means and Standard Deviations of the Ozone Concen-

trations and Their Daily Peaks for the 16 Simulationsa

Simulation

All Concentrations

Simulation

Daily Maxima

Mean
Standard
Deviation Mean

Standard
Deviation

g 69.26 35.71 g 97.58 35.03
c 68.94 34.23 c 95.71 33.50
o 70.14 31.94 o 95.32 31.39
k 69.73 30.52 k 93.29 30.17
h 56.17 27.08 e 102.39 23.38
e 85.18 26.19 a 100.92 22.62
d 56.26 26.07 h 80.91 21.75
a 84.92 25.11 m 99.36 20.70
p 58.47 24.49 d 79.80 20.67
l 58.41 23.46 i 97.90 20.10
m 84.49 22.84 p 80.67 19.82
f 77.27 21.96 l 79.29 18.96
i 84.23 21.81 f 92.72 17.12
b 77.11 21.14 b 91.49 16.75
n 77.51 19.30 n 90.85 15.73
j 77.34 18.50 j 89.61 15.50

aValues are given in mg m�3. For all concentrations, the relative standard
deviation of the means is 15%, and the relative standard deviation of the
standard deviations is 20%. For the daily maxima, the relative standard
deviations are 8% and 28%, respectively.

Figure 6. Ozone daily profile for the 16 simulations. The
circles represent the reference simulation (simulation a), the
diamonds represent simulation b (RADM 2), the squares
represent simulation c (Louis closure), and the triangles
represent simulation d, which combines the Louis closure
and RADM 2.

Figure 7. Ozone daily profile of reference simulation a,
simulation d (Louis closure and RADM 2), and the linear
combination ‘‘c + b � a,’’ which adds linearly the effects of
simulations b (RADM 2) and c (Louis closure). The
nonlinearity increases the impact of the parameterizations,
and the concentrations of simulation d are closer to the
reference concentrations than the concentrations of the
linear combination. This is especially true for the peak.
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to a few leading processes. For instance, the turbulence
may be less determinant in well mixed conditions whereas
the photochemical activity is strong at the same time.
[78] The ensemble is not equally spread everywhere in

the domain as shown in Figure 9. The uncertainty measured
by the standard deviation (for concentrations in [40 mg m�3,
130 mg m�3]) is high around the coasts and it tends to be
high in polluted regions (southern regions and, because of
the emissions, in Great Britain and Poland). In northern
Italy, the Alps are also associated with a high uncertainty.

The uncertainty on the peaks has the same spatial distribu-
tion. The turbulence closure may notably explain these
uncertainties, and the chemical mechanism has probably a
strong impact close to the emission locations. However, a
more detailed study of each process is necessary to properly
analyze the spatial inhomogeneities due to each process.

5. Conclusion

[79] It has been shown that a chemistry-transport model is
sensitive to its physical parameterizations, to the associated
input data and to the numerical approximations. The turbu-
lent closure and the chemical mechanism introduce the
highest uncertainty. The overall uncertainty, measured with
the relative standard deviation of an ensemble of 16
simulations, is estimated at 17% for the common concen-
tration levels and at 11% for the daily peaks. It has been
shown that this uncertainty was notably high along the
coasts. The uncertainty is too high to let any configuration
of the chemistry-transport model fully satisfy the common
requirements in comparisons with observations. This low
robustness suggests that ensemble approaches are necessary
in most applications.
[80] A remaining question is whether these conclusions

are limited to the Polyphemus system, even if this system
includes commonly used parameterizations. Moreover, this
work should be extended to aerosol modeling for which
many physical parameterizations and numerical algorithms
are also available (hybrid models, nucleation laws, etc.).
Another extension deals with the uncertainty due to the
input fields to the model such as the meteorological fields or
the emissions.

Figure 8. Relative standard deviation of the ensemble
versus ozone concentrations. The average standard devia-
tion is 17%.

Figure 9. Relative standard deviation of the ensemble for concentrations in [40 mg m�3, 130 mg m�3].
The average standard deviation is 17%. The uncertainty is notably high along the coasts.
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[81] In a next step, one may want to take advantage of the
ensemble to provide improved forecasts. The point is to find
(actually to forecast) the best combination of the models, as
an improvement of the ensemble-mean or ensemble-median
approaches.

Appendix A: Statistical Measures

[82] Notation is as follows: Let y be the vector of model
outputs and let o be the vector of the corresponding
observations. These vectors both have n components. Their
means are �y and �o.

Relative standard deviation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Pn
i¼1 yi � �yð Þ2

q

�y
ðA1Þ

Bias

Bias ¼ 1

n

X

n

i¼1

yi � oið Þ ðA2Þ

Root mean square error (RMS)

RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

i¼1

yi � oið Þ2
s

ðA3Þ

Correlation

correlation ¼
Pn

i¼1 yi � �yð Þ oi � �oð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 yi � �yð Þ2 Pn

i¼1 oi � �oð Þ2
q ðA4Þ

Mean normalized bias error (MNBE)

MNBE ¼ 1

n

X

n

i¼1

yi � oi

oi
ðA5Þ

Mean normalized gross error (MNGE)

MNGE ¼ 1

n

X

n

i¼1

yi � oij j
oi

ðA6Þ

Unpaired peak prediction accuracy (UPA) for 1 day

UPAday ¼
ymax � omax

omax

ðA7Þ

The UPA is then averaged over all days.
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(2004), Development and validation of a fully modular platform for
numerical modelling of air pollution: POLAIR, Int. J. Environ. Pollut.,
22(1/2), 17–28.

Builtjes, P. (1992), The LOTOS–Long Term Ozone Simulation–project,
summary report, Tech. Rep. R92/240, Neth. Organ. for Appl. Sci. Res.
TNO, Delft.

Buizza, R., M. Miller, and T. N. Palmer (1999), Stochastic representation of
model uncertainties in the ECMWF ensemble prediction system, Q. J. R.
Meteorol. Soc., 125, 2887–2908.

Byun, D. W., and J. K. S. Ching (Eds.) (1999), Science algorithms of the
EPA Models-3 Community Multiscale Air Quality (CMAQ) modeling
system, EPA/600/R-99/030, Off. of Res. and Dev., U.S. Environ. Prot.
Agency, Washington, D. C.

Chang, J., R. Brost, I. Isaken, S. Madronich, P. Middleton, W. Stockwell,
and C. Walcek (1987), A three-dimensional Eulerian acid deposition
model: Physical concepts and formulation, J. Geophys. Res., 92(D12),
14,681–14,700.

Christensen, J. H. (1997), The Danish Eulerian hemispheric model: A three-
dimensional air pollution model used for the arctic, Atmos. Environ., 31,
4169–4191.

Delle Monache, L., and R. B. Stull (2003), An ensemble air-quality forecast
over western Europe during an ozone episode, Atmos. Environ., 37,
3469–3474.

Environmental Protection Agency (EPA) (1991), Guideline for regulatory
application of the urban airshed model, EPA-450/4-91-013, Off. of Air
Qual. Plann. and Stand., Research Triangle Park, N. C.
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