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émanant des établissements d’enseignement et de
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Abstract

This paper is devoted to regret lower bounds in the classical model of stochastic multi-
armed bandit. A well-known result of Lai and Robbins, which has then been extended
by Burnetas and Katehakis, has established the presence of a logarithmic bound for all
consistent policies. We relax the notion of consistence, and exhibit a generalisation of the
logarithmic bound. We also show the non existence of logarithmic bound in the general
case of Hannan consistency. To get these results, we study variants of popular Upper
Confidence Bounds (ucb) policies. As a by-product, we prove that it is impossible to
design an adaptive policy that would select the best of two algorithms by taking advantage
of the properties of the environment.

Keywords: stochastic bandits, regret bounds, selectivity, ucb policies.

1. Introduction and notations

Multi-armed bandits are a classical way to illustrate the difficulty of decision making in the
case of a dilemma between exploration and exploitation. The denomination of these models
comes from an analogy with playing a slot machine with more than one arm. Each arm has
a given (and unknown) reward distribution and, for a given number of rounds, the agent has
to choose one of them. As the goal is to maximize the sum of rewards, each round decision
consists in a trade-off between exploitation (i.e. playing the arm that has been the more
lucrative so far) and exploration (i.e. testing an other arm, hoping to discover an alterna-
tive that beats the current best choice). One possible application is clinical trial, when one
wants to heal as many patients as possible, when the latter arrive sequentially and when the
effectiveness of each treatment is initially unknown (Thompson, 1933). Bandit problems
has initially been studied by Robbins (1952), and its interest has then been extended to
many fields such as economics (Lamberton et al., 2004; Bergemann and Valimaki, 2008),
games (Gelly and Wang, 2006), optimisation (Kleinberg, 2005; Coquelin and Munos, 2007;
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Kleinberg et al., 2008; Bubeck et al., 2009),...

Let us detail our model. A stochastic multi-armed bandit problem is defined by:

• a number of rounds n,

• a number of arms K ≥ 2,

• an environment θ = (ν1, · · · , νK), where each νk (k ∈ {1, · · · ,K}) is a real-valued
measure that represents the distribution reward of arm k.

We assume that rewards are bounded. Thus, for simplicity, each νk is a probability on
[0, 1]. Environment θ is initially unknown by the agent but lies in some known set Θ of
the form Θ1 × . . . × ΘK , meaning that Θk is the set of possible reward distributions of
arm k. For the problem to be interesting, the agent should not have great knowledges of
its environment, so that Θ should not be too small and/or contain too trivial distributions
such as Dirac measures. To make it simple, each Θk is assumed to contain the distributions
pδa + (1 − p)δb, where p, a, b ∈ [0, 1] and δx denotes the Dirac measure centred on x. In
particular, it contains Dirac and Bernoulli distributions. Note that the number of rounds
n may or may not be known by the agent, but this will not affect the present study. Some
aspects of this particular point can be found in Salomon and Audibert (2011).
The game is as follows. At each round (or time step) t = 1, · · · , n, the agent has to
choose an arm It in the set of arms {1, · · · ,K}. This decision is based on past actions and
observations, and the agent may also randomize his choice. Once the decision is made, the
agent gets and observes a payoff that is drawn from νIt independently from the past. Thus
we can describe a policy (or strategy) as a sequence (σt)t≥1 (or (σt)1≤t≤n if the number of
rounds n is known) such that each σt is a mapping from the set {1, . . . ,K}t−1 × [0, 1]t−1 of
past decisions and outcomes into the set of arm {1, . . . ,K} (or into the set of probabilities
on {1, . . . ,K}, in case the agent randomizes his choices).
For each arm k and all times t, let Tk(t) =

∑t
s=1 1Is=k denote the number of times arm k

was pulled from round 1 to round t, and Xk,1,Xk,2, . . . ,Xk,Tk(t) the corresponding sequence
of rewards. We denote by Pθ the distribution on the probability space such that for any
k ∈ {1, . . . ,K}, the random variables Xk,1,Xk,2, . . . ,Xk,n are i.i.d. realizations of νk, and
such that these K sequences of random variables are independent. Let Eθ denote the
associated expectation.
Let µk =

∫

xdνk(x) be the mean reward of arm k. Introduce µ∗ = maxk∈{1,...,K} µk and
fix an arm k∗ ∈ argmaxk∈{1,...,K} µk, that is k∗ has the best expected reward. The agent
aims at minimizing its regret, defined as the difference between the cumulative reward he
would have obtained by always drawing the best arm and the cumulative reward he actually
received. Its regret is thus

Rn =

n
∑

t=1

Xk∗,t −
n
∑

t=1

XIt,TIt (t)
.

As most of the publications on this topic, we focus on expected regret, for which one
can check that:

EθRn =
K
∑

k=1

∆kEθ[Tk(n)], (1)

2
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where ∆k is the optimality gap of arm k, defined by ∆k = µ∗ −µk. We also define ∆ as the
gap between the best arm and the second best arm, i.e. ∆ := mink 6=k∗ ∆k.

Previous works have shown the existence of lower bounds on the performance of a large
class of policies. In this way Lai and Robbins (1985) proved a lower bound of the expected
regret of order log n in a particular parametric framework, and they also exhibited optimal
policies. This work has then been extended by Burnetas and Katehakis (1996). Both papers
deal with consistent policies, meaning that all the policies considered are such that:

∀a > 0, ∀θ ∈ Θ, Eθ[Rn] = o(na). (2)

The logarithmic bound of Burnetas and Katehakis is expressed as follows. For all environ-
ment θ = (ν1, · · · , νK) and all k ∈ {1, . . . ,K}, let us set

Dk(θ) := inf
ν̃k∈Θk:E[ν̃k]>µ∗

KL(νk, ν̃k),

where KL(ν, µ) denotes the Kullback-Leibler divergence of measures ν and µ. Now fix a
consistent policy and an environment θ ∈ Θ. If k is a suboptimal arm (i.e. µk 6= µ∗) such
that 0 < Dk(θ) < +∞, then

∀ε > 0, lim
n→+∞

P

[

Tk(n) ≥
(1− ε) log n

Dk(θ)

]

= 1.

This readily implies that:

lim inf
n→+∞

Eθ[Tk(n)]

log n
≥ 1

Dk(θ)
.

Thanks to Equation (1), it is then easy to deduce a lower bound on the expected regret.
One contribution of this paper is to extend this bound to a larger class of policies. We will
define the notion of α-consistency (α ∈ [0, 1]) as a variant of Equation (2), where equality
Eθ[Rn] = o(na) only holds for all a > α. We show that the logarithmic bound still holds,
but coefficient 1

Dk(θ)
is turned into 1−α

Dk(θ)
. We also prove that the dependence of this new

bound in the term 1− α is asymptotically optimal when n → +∞ (up to a constant).
As any policy achieves at most an expected regret of order n (because the average cost of
pulling an arm k is a constant ∆k), it is also natural to wonder what happens when expected
regret is only required to be o(n). This notion is equivalent to Hannan consistency. In this
case, we show that there is no logarithmic bound any more.

Some of our results are obtained thanks to a study of particular Upper Confidence
Bound algorithms. These policies were introduced by Lai and Robbins (1985): it basically
consists in computing an index at each round and for each arm, and then in selecting the
arm with the greatest index. A simple and efficient way to design such policies is to choose
indexes that are upper bounds of the mean reward of the considered arm that hold with
high probability (or, say, with high confidence level). This idea can be traced back to
Agrawal (1995), and has been popularized by Auer et al. (2002), who notably described a
policy called ucb1. For this policy, each index is defined by an arm k, a time step t, and
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an integer s that indicates the number of times arm k has been pulled before stage t. It is
denoted by Bk,s,t and is given by:

Bk,s,t = X̂k,s +

√

2 log t

s
,

where X̂k,s is the empirical mean of arm k after s pulls, i.e. X̂k,s =
1
s

∑s
u=1 Xk,u.

To summarize, ucb1 policy first pulls each arm once and then, at each round t > K, selects
an arm k that maximizes Bk,Tk(t−1),t. Note that, by means of Hoeffding’s inequality, the
index Bk,Tk(t−1),t is indeed an upper bound of µk with high probability (i.e. the probability
is greater than 1 − 1/t4). Note also that a way to look at this index is to interpret the
empiric mean X̂k,Tk(t−1) as an ”exploitation” term, and the square root as an ”exploration”
term (as it gradually increases when arm k is not selected).
The policy ucb1 achieves the logarithmic bound (up to a multiplicative constant), as it was
shown that:

∀θ ∈ Θ, ∀n ≥ 3, Eθ[Tk(n)] ≤ 12
log n

∆2
k

and EθRn ≤ 12

K
∑

k=1

log n

∆k
≤ 12

log n

∆
.

Audibert et al. (2009) studied some variants of ucb1 policy. Among them, one consists in
changing the 2 log t in the exploration term into ρ log t, where ρ > 0. This can be interpreted
as a way to tune exploration: the smaller ρ is, the better the policy will perform in simple
environments where information is disclosed easily (for example when all reward distribu-
tions are Dirac measures). On the contrary, ρ has to be greater to face more challenging
environments (typically when reward distributions are Bernoulli laws with close parame-
ters).
This policy, that we denote ucb(ρ), was proven by Audibert et al. to achieve the logarith-
mic bound when ρ > 1, and the optimality was also obtained when ρ > 1

2 for a variant of
ucb(ρ). Bubeck (2010) showed in his PhD dissertation that their ideas actually enable to
prove optimality of ucb(ρ) for ρ > 1

2 . Moreover, the case ρ = 1
2 corresponds to a confi-

dence level of 1
t (in view of Hoeffding’s inequality, as above), and several studies (Lai and

Robbins, 1985; Agrawal, 1995; Burnetas and Katehakis, 1996; Audibert et al., 2009; Honda
and Takemura, 2010) have shown that this level is critical. We complete these works by
a precise study of ucb(ρ) when ρ ≤ 1

2 . We prove that ucb(ρ) is (1 − 2ρ)-consistent and
that it is not α-consistent for any α < 1 − 2ρ (in view of the definition above, meaning
that expected regret is roughly of order n1−2ρ). Not surprisingly, it performs well in simple
settings, represented by an environment where all reward distributions are Dirac measures.
A by-product of this study is that it is not possible to design an algorithm that would
specifically adapt to some kinds of environments, i.e. that would for example be able to
select a proper policy depending on the environment being simple or challenging. In par-
ticular, and contrary to the results obtained within the class of consistent policies, there
is no optimal policy. This contribution is linked with selectivity in on-line learning prob-
lem with perfect information, commonly addressed by prediction with expert advice such
as algorithms with exponentially weighted forecasters (see, e.g., Cesa-Bianchi and Lugosi
(2006)). In this spirit, a closely related problem to ours is the one of regret against the
best strategy from a pool studied by Auer et al. (2003): the latter designed a policy in the
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context of adversarial/nonstochastic bandit whose decisions are based on a given number
of recommendations (experts), which are themselves possibly the rewards received by a set
of given algorithms. To a larger extent, model selection have been intensively studied in
statistics, and is commonly solved by penalization methods (Mallows, 1973; Akaike, 1973;
Schwarz, 1978).
Finally, we exhibit expected regret lower bounds of more general ucb policies, with the
2 log t in the exploration term of ucb1 replaced by an arbitrary function. We obtain Han-
nan consistent policies and, as mentioned before, lower bounds need not be logarithmic any
more.

The paper is organized as follows: in Section 2 we give bounds on the expected regret of
ucb(ρ) (ρ < 1

2). In Section 3 we study the problem of selectivity. Then we focus in Section
4 on α-consistent policies, and we conclude in Section 5 by results on Hannan consistency
by means of extended ucb policies.
Throughout the paper ⌈x⌉ denotes the smallest integer which greater than the real x, and
Ber(p) denotes the Bernoulli law with parameter p.

2. Bounds on the expected regret of ucb(ρ), ρ <
1
2

In this section we study the performances of ucb(ρ) policy, with ρ lying in the interval
(0, 12). We recall that ucb(ρ) is defined by:

• Draw each arm once,

• Then at each round t, draw an arm

It ∈ argmax
k∈{1,...,K}

{

X̂k,Tk(t−1) +

√

ρ log t

Tk(t− 1)

}

.

Small values of ρ can be interpreted as a low level of experimentation in the balance between
exploration and exploitation, and present literature has not provided precise regret bound
orders of ucb(ρ) with ρ ∈ (0, 12) yet.
We first study the policy in simple environments (i.e. all reward distributions are Dirac
measures), where the policy is supposed to perform well. We show that its expected regret
is of order ρ logn

∆ (Proposition 1 for the upper bound and Proposition 2 for the lower bound).
These good performances are compensated by poor results in complexer environments, as we
then prove that the overall expected regret lower bound is roughly of order n1−2ρ (Theorem
3).

Proposition 1 Let 0 ≤ b < a ≤ 1 and n ≥ 1. For θ = (δa, δb), the random variable T2(n)
is uniformly upper bounded by ρ

∆2 log(n) + 1. Consequently, the expected regret of ucb(ρ)
is upper bounded by ρ

∆ log(n) + 1.

Proof Let us prove the upper bound on the sampling time of the suboptimal arm by
contradiction. The assertion is obviously true for n = 1 and n = 2. If the assertion is false,
then there exists t ≥ 3 such that T2(t) >

ρ
∆2 log(t) + 1 and T2(t − 1) ≤ ρ

∆2 log(t − 1) + 1.

5
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Since log(t) ≥ log(t − 1), this leads to T2(t) > T2(t − 1), meaning that arm 2 is drawn at

time t. Therefore, we have a +
√

ρ log(t)
t−1−T2(t−1) ≤ b +

√

ρ log(t)
T2(t−1) , hence ∆ ≤

√

ρ log(t)
T2(t−1) , which

implies T2(t− 1) ≤ ρ log(t)
∆2 and thus T2(t) ≤ ρ log(t)

∆2 + 1. This contradicts the definition of t,
which ends the proof of the first statement. The second statement is a direct consequence
of Formula (1).

The following shows that Proposition 1 is tight and allows to conclude that the expected
regret of ucb(ρ) is equivalent to ρ

∆ log(n) when n goes to infinity.

Proposition 2 Let 0 ≤ b < a ≤ 1, n ≥ 2 and h : t 7→ ρ
∆2 log(t)

(

1 +
√

2ρ log(t)
(t−1)∆2

)−2
. For

θ = (δa, δb), the random variable T2(n) is uniformly lower bounded by

f(n) =

∫ n

2
min

(

h′(s), 1
)

ds− h(2).

As a consequence, the expected regret of ucb(ρ) is lower bounded by ∆f(n).

Straightforward calculations shows that h′(s) ≤ 1 for s large enough, and this explains why
our lower bound ∆f(n) is equivalent to ∆h(n) ∼ ρ

∆ log(n) as n goes to infinity.

Proof First, one can easily prove (for instance, by induction) that T2(t) ≤ t/2 for any t ≥ 2.
Let us prove the lower bound on T2(n) by contradiction. The assertion is obviously true
for n = 2. If the assertion is false for n ≥ 3, then there exists t ≥ 3 such that T2(t) < f(t)
and T2(t − 1) ≥ f(t − 1). Since f ′(s) ∈ [0, 1] for any s ≥ 2, we have f(t) ≤ f(t − 1) + 1.
These last three inequalities imply T2(t) < T2(t−1)+1, which gives T2(t) = T2(t−1). This
means that arm 1 is drawn at time t. We consequently have

a+

√

ρ log(t)

t− 1− T2(t− 1)
≥ b+

√

ρ log(t)

T2(t− 1)
,

hence

∆
√

ρ log(t)
≥ 1
√

T2(t− 1)
− 1
√

t− 1− T2(t− 1)
≥ 1
√

T2(t− 1)
−

√
2√

t− 1
.

We then deduce that T2(t) = T2(t − 1) ≥ h(t) ≥ f(t). This contradicts the definition of
t, which ends the proof of the first statement. Again, the second statement results from
Formula (1).

Now we show that the order of the lower bound of the expected regret is n1−2ρ. Thus, for
ρ ∈ (0, 12), ucb(ρ) does not perform enough exploration to achieve the logarithmic bound,
as opposed to ucb(ρ) with ρ ∈ (12 ,+∞).

6
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Theorem 3 For any ρ ∈ (0, 12), any θ ∈ Θ and any β ∈ (0, 1), one has

Eθ[Rn] ≤
∑

k:∆k>0

4 log n

∆k
+ 2∆k

(

log n

log(1/β)
+ 1

)

n1−2ρβ

1− 2ρβ
.

Moreover, for any ε > 0, there exists θ ∈ Θ such that

lim
n→+∞

Eθ[Rn]

n1−2ρ−ε
= +∞.

Proof Let us first show the upper bound. The core of the proof is a peeling argument and
makes use of Hoeffding’s maximal inequality. The idea is originally taken from Audibert
et al. (2009), and the following is an adaptation of the proof of an upper bound in the case
ρ > 1

2 which can be found in S. Bubeck’s PhD dissertation.
First, let us notice that the policy selects arm k such that ∆k > 0 at step t only if at least
one of the three following equations holds:

Bk∗,Tk∗(t−1),t ≤ µ∗, (3)

X̂k,t ≥ µk +

√

ρ log t

Tk(t− 1)
, (4)

Tk(t− 1) <
4ρ log n

∆2
k

. (5)

Indeed, if none of the equations holds, then:

Bk∗,Tk∗(t−1),t > µ∗ = µk +∆k ≥ µk + 2

√

ρ log n

Tk(t− 1)
> X̂k,t +

√

ρ log t

Tk(t− 1)
= Bk,Tk(t−1),t.

We denote respectively by ξ1,t, ξ2,t and ξ3,t the events corresponding to Equations (3), (4)
and (5).
We have:

Eθ[Tk(n)] = E

[

n
∑

t=1

1It=k

]

≤ 4 log n

∆2
k

+ E





n
∑

t=⌈4 logn/∆2
k⌉
1{It=k}\ξ3,t





≤ 4 log n

∆2
k

+ E





n
∑

t=⌈4 logn/∆2
k⌉
1ξ1,t∪ξ2,t ≤ 4 log n

∆2
k

+

n
∑

t=⌈4 logn/∆2
k⌉
P(ξ1,t) + P(ξ2,t).

7
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We now have to find a proper upper bound for P(ξ1,t) and P(ξ2,t). To this aim, we apply
the peeling argument with a geometric grid over the time interval [1, t]:

P(ξ1,t) ≤ P

(

∃s ∈ {1, · · · , t}, X̂k∗,s +

√

ρ log t

s
≤ µ∗

)

≤

log t
log(1/β)
∑

j=0

P

(

∃s : {βj+1t < s ≤ βjt}, X̂k∗,s +

√

ρ log t

s
≤ µ∗

)

≤

log t
log(1/β)
∑

j=0

P

(

∃s : {βj+1t < s ≤ βjt},
s
∑

l=1

Xk∗,l − µ∗ ≤ −
√

ρs log t

)

≤

log t
log(1/β)
∑

j=0

P

(

∃s : {βj+1t < s ≤ βjt},
s
∑

l=1

Xk∗,l − µ∗ ≤ −
√

ρβj+1t log t

)

.

By means of Hoeffding-Azumas inequality for martingales, we then have:

P(ξ1,t) ≤

log t
log(1/β)
∑

j=0

exp






−
2
(

√

βj+1tρ log t
)2

βjt






=

(

log t

log(1/β)
+ 1

)

1

t2ρβ
,

and, for the same reasons, this bound also holds for P(ξ2,t).
Combining the former inequalities, we get:

Eθ[Tk(n)] ≤ 4 log n

∆2
k

+ 2

n
∑

t=⌈4 logn/∆2
k⌉

(

log t

log(1/β)
+ 1

)

1

t2ρβ
(6)

≤ 4 log n

∆2
k

+ 2

(

log n

log(1/β)
+ 1

) n
∑

t=⌈4 logn/∆2
k⌉

1

t2ρβ

≤ 4 log n

∆2
k

+ 2

(

log n

log(1/β)
+ 1

)
∫ n

1

1

t2ρβ
dt

≤ 4 log n

∆2
k

+ 2

(

log n

log(1/β)
+ 1

)

n1−2ρβ

1− 2ρβ
.

As usual, the bound on the expected regret then comes formula (1).

Now let us show the lower bound. The result is obtained by considering an environment

θ of the form
(

Ber(12), δ 1
2
−∆

)

, where ∆ > 0 is such that 2ρ(1 +
√
∆)2 < 2ρ + ε. We set

Tn := ⌈ρ logn∆ ⌉, and define the event ξn by:

ξn =

{

X̂1,Tn <
1

2
− (1 +

1√
∆
)∆

}

.

8
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When event ξn occurs, for any t ∈ {Tn, . . . , n} one has

X̂1,Tn +

√

ρ log t

Tn
≤ X̂1,Tn +

√

ρ log n

Tn
<

1

2
− (1 +

1√
∆
)∆ +

√
∆

≤ 1

2
−∆,

so that arm 1 is chosen no more than Tn times by ucb(ρ) policy. Thus:

Eθ [T2(n)] ≥ Pθ(ξn)(n− Tn).

We shall now find a lower bound of the probability of ξn thanks to Berry-Esseen inequality.
We denote by C the corresponding constant, and by Φ the c.d.f. of the standard normal
distribution. For convenience, we also define the following quantities:

σ :=

√

√

√

√

E

[

(

X1,1 −
1

2

)2
]

=
1

2
, M3 := E

[

∣

∣

∣

∣

X1,1 −
1

2

∣

∣

∣

∣

3
]

=
1

8
.

Using the fact that Φ(−x) = e−
x2

2√
2πx

β(x) with β(x) −−−−→
x→+∞

1, we are then able to write:

Pθ(ξn) = Pθ

(

X̂1,Tn − 1
2

σ

√

Tn ≤ −2

(

1 +
1√
∆

)

∆
√

Tn

)

≥ Φ
(

−2(∆ +
√
∆)
√

Tn

)

− CM3

σ3
√
Tn

≥
exp

(

−2(ρ logn∆ + 1)(∆ +
√
∆)2

)

2
√
2π(∆ +

√
∆)

√
Tn

β
(

2(∆ +
√
∆)
√

Tn

)

− CM3

σ3
√
Tn

≥ n−2ρ(1+
√
∆)2

exp
(

−2(∆ +
√
∆)2

)

2
√
2π(∆ +

√
∆)

√
Tn

β
(

2(∆ +
√
∆)
√

Tn

)

− CM3

σ3
√
Tn

.

Previous calculations and Formula (1) gives

Eθ[Rn] = ∆Eθ[T2(n)] ≥ ∆Pθ(ξn)(n − Tn)

and the former inequality easily leads to the conclusion of the theorem.

3. Selectivity

In this section, we address the problem of selectivity in multi-armed stochastic bandit mod-
els. By selectivity, we mean the ability to adapt to the environment as and when rewards
are observed. More precisely, it refers to the existence of a procedure that would perform at
least as good as the policy that is best suited to the current environment θ among a given
set of two (or more) policies. Two mains reasons motivates this study.
On the one hand this question was answered by Burnetas and Katehakis within the class
of consistent policies. Let us recall the definition of consistent policies.

9
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Definition 4 A policy is consistent if

∀a > 0, ∀θ ∈ Θ, Eθ[Rn] = o(na).

Indeed they show the existence of lower bounds on the expected regret (see Section 3, Theo-
rem 1 of Burnetas and Katehakis (1996)), which we also recall for the sake of completeness.

Theorem 5 Fix a consistent policy and θ ∈ Θ. If k is a suboptimal arm (i.e. µk < µ∗)
and if 0 < Dk(θ) < +∞, then

∀ε > 0, lim
n→+∞

Pθ

[

Tk(n) ≥
(1− ε) log n

Dk(θ)

]

= 1.

Consequently

lim inf
n→+∞

Eθ[Tk(n)]

log n
≥ 1

Dk(θ)
.

Remind that the lower bound on the expected regret is then deduced from formula (1).
Burnetas and Katehakis then exhibits an asymptotically optimal policy, i.e. which achieves
the former lower bounds. The fact that a policy does as best as any other one obviously
solves the problem of selectivity.
Nevertheless one can wonder what happens if we do not restrict our attention to consistent
policies any more. Thus, one natural way to relax the notion of consistency is the following.

Definition 6 A policy is α-consistent if

∀a > α, ∀θ ∈ Θ, Eθ[Rn] = o(na).

For example we showed in the former section that ucb(ρ) is (1 − 2ρ)-consistent for any
ρ ∈ (0, 12 ). The class of α-consistent policies will be studied in Section 4.
Moreover, as the expected regret of any policy is at most of order n, it seems simpler and
relevant to only require it to be o(n):

∀θ ∈ Θ, Eθ[Rn] = o(n),

which corresponds to the definition of Hannan consistency. The class of Hannan consistent
policies includes consistent policies and α-consistent policies for any α ∈ (0, 1). Some results
on Hannan consistency will be provided in Section 5.

On the other hand, this problem has already been studied in the context of adversarial
bandit by Auer et al. (2003). Their setting differs from our not only because their bandits
are nonstochastic, but also because their adaptive procedure takes only into account a
given number of recommendations, whereas in our setting the adaptation is supposed to
come from observing rewards of the chosen arms (only one per time step). Nevertheless,
there are no restrictions about consistency in the adversarial context and one can wonder
if an ”exponentially weighted forecasters” procedure like Exp4 could be transposed to our
context. The answer is negative, as stated in the following theorem.

10
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Theorem 7 Let Ã be a consistent policy and let ρ be a real in (0, 0.4). There are no policy
which can both beat Ã and ucb(ρ), i.e.:

∀A, ∃θ ∈ Θ, lim sup
n→+∞

Eθ[Rn(A)]

min(Eθ[Rn(Ã)],Eθ[Rn(ucb(ρ))])
> 1.

Thus there are no optimal policy if we extend the notion of consistency. Precisely, as
ucb(ρ) is (1 − 2ρ)-consistent, we have shown that there are no optimal policy within the
class of α-consistent policies (which is included in the class of Hannan consistent policies),
where α > 0.2.
Moreover, ideas from selectivity in adversarial bandits can not work in the present context.
As we said, this impossibility may also come from the fact that we can not observe at each
step the decisions and rewards of more than one algorithm. Nevertheless, if we were able
to observe a given set policies from step to step, then it would be easy to beat them all: it
is then sufficient to aggregate all the observations and simply pull the arm with the greater
empiric mean. The case where we only observe decisions (and not rewards) of a set of
policies may be interesting, but is left outside of the scope of this paper.

Proof Assume by contradiction that

∃A, ∀θ ∈ Θ, lim sup
n→+∞

un,θ ≤ 1,

where un,θ =
Eθ[Rn(A)]

min(Eθ [Rn(Ã)],Eθ[Rn(UCB(ρ))])
.

One has
Eθ[Rn(A)] ≤ un,θEθ[Rn(Ã)],

so that the fact that Ã is a consistent policy implies that A is also consistent. Consequently
the lower bound of Burnetas and Katehakis has to hold. In particular, in environment
θ = (δ0, δ∆) one has for any ε > 0 and with positive probability (provided that n is large
enough):

T1(n) ≥
(1− ε) log n

Dk(θ)
.

Now, note that there is simple upper bound of Dk(θ):

Dk(θ) ≤ inf
p,a∈[0,1]:(1−p)a>∆

KL(δ0, pδ0 + (1− p)δa)

= inf
p,a∈[0,1]:(1−p)a>∆

log

(

1

p

)

= log

(

1

1−∆

)

.

And on the other hand, one has by means of Proposition 2:

T1(n) ≤ 1 +
ρ log n

∆2
.

Thus we have that, for any ε > 0 and if n is large enough

1 +
ρ log n

∆2
≥ (1− ε) log n

log
(

1
1−∆

)

11



Salomon, Audibert, El Alaoui

Letting ε go to zero and n to infinity, we get:

ρ

∆2
≥ 1

log
(

1
1−∆

) .

This means that ρ has to be lower bounded by ∆2

log( 1
1−∆)

, but this is greater than 0.4 if

∆ = 0.75, hence the contradiction.

Note that the former proof give us a simple alternative to Theorem 3 to show that ucb(ρ)
is not consistent if ρ ≤ 0.4. Indeed if it were consistent, then in environment θ = (δ0, δ∆),

T1(n) would also have to be greater than (1−ε) logn
Dk(θ)

and lower than 1+ ρ logn
∆2 , and the same

contradiction would hold.

4. Bounds on α-consistent policies

We now study α-consistent policies. We first show that the main result of Burnetas and
Katehakis (Theorem 5) can be extended in the following way.

Theorem 8 Fix an α-consistent policy and θ ∈ Θ. If k is a suboptimal arm and if 0 <
Dk(θ) < +∞, then

∀ε > 0, lim
n→+∞

Pθ

[

Tk(n) ≥ (1− ε)
(1 − α) log n

Dk(θ)

]

= 1.

Consequently

lim inf
n→+∞

Eθ[Tk(n)]

log n
≥ 1− α

Dk(θ)
.

Recall that, as opposed to Burnetas and Katehakis (1996), there are no optimal policy (i.e.
a policy that would achieve the lower bounds in all environment θ), as proven in the former
section.

Proof We adapt Proposition 1 in Burnetas and Katehakis (1996) and its proof, which one
may have a look at for further details. We fix ε > 0, and we want to show that:

lim
n→+∞

Pθ

(

Tk(n)

log n
≥ (1− ε)(1 − α)

Dk(θ)

)

= 0.

Set δ > 0 and δ′ > α such that 1−δ′

1+δ > (1− ε)(1−α). By definition of Dk(θ), there exists θ̃
such that Eθ̃[Xk,1] > µ∗ and

Dk(θ) < KL(νk, ν̃k) < (1 + δ)Dk(θ),
1

1. In Burnetas and Katehakis (1996), Dk(θ) is denoted Ka(θ) and KL(νk, ν̃k) is denoted I(θ
a
, θ′

a
). The

equivalence between other notations is straightforward.

12
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where we denote θ = (ν1, . . . , νK) and θ̃ = (ν̃1, . . . , ν̃K).
Let us define Iδ = KL(νk, ν̃k) and the sets

Aδ′
n :=

{

Tk(n)

log n
<

1− δ′

Iδ

}

, Cδ′′
n :=

{

logLTk(n) ≤
(

1− δ′′
)

log n
}

,

where δ′′ is such that α < δ′′ < δ′ and Lj is defined by logLj =
∑j

i=1 log
(

dνk
dν̃k

(Xk,i)
)

.

We show that Pθ(A
δ′
n ) = Pθ(A

δ′
n ∩ Cδ′′

n ) + Pθ(A
δ′
n \ Cδ′′

n ) −−−−−→
n→+∞

0.

On the one hand, one has:

Pθ(A
δ′
n ∩ Cδ′′

n ) ≤ e(1−δ′′) logn
Pθ̃(A

δ′
n ∩ Cδ′′

n ) (7)

≤ n1−δ′′
Pθ̃(A

δ′

n ) = n1−δ′′
Pθ̃

(

n− Tk(n) > n− 1− δ′

Iδ
log n

)

≤ n1−δ′′
Eθ̃[n− Tk(n)]

n− 1−δ′

Iδ
log n

(8)

≤
∑

l 6=k n
−δ′′

Eθ̃[Tl(n)]

1− 1−δ′

Iδ
logn
n

−−−−−→
n→+∞

0,

where (7) is consequence of the definition of Cδ′′
n , (8) comes from Markov’s inequality, and

where the final limit is a consequence of the α-consistence.
On the other hand we set bn := 1−δ′

Iδ
log n, so that we have:

Pθ(A
δ′
n \ Cδ′′

n ) ≤ P

(

max
j≤⌊bn⌋

logLj > (1− δ′′) log n

)

≤ P

(

1

bn
max
j≤⌊bn⌋

logLj > Iδ
1− δ′′

1− δ′

)

.

This term then tends to zero, as a consequence of the law of large numbers.
Now that Pθ(A

δ′
n ) tends to zero, the conclusion comes from the following inequality:

1− δ′

Iδ
>

1− δ′

(1 + δ)Dk(θ)
≥ (1− ε)(1 − α)

Dk(θ)
.

The former lower bound is asymptotically optimal, as claimed in the following proposi-
tion.

Proposition 9 There exists θ ∈ Θ and a constant c > 0 such that, for any α ∈ [0, 1), there
exists an α-consistent policy and k 6= k∗ such that:

lim inf
n→+∞

Eθ[Tk(n)]

(1− α) log n
≤ c.

13
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Proof By means of Proposition 1, the following holds for ucb(ρ) in any environment of
the form θ = (δa, δb) with a 6= b:

lim inf
n→+∞

EθTk(n)

log n
≤ ρ

∆2
,

where k 6= k∗.
As ucb(ρ) is (1 − 2ρ)-consistent (Theorem 3), we can conclude by setting c = 1

2∆2 and by
choosing the policy ucb(1−α

2 ).

5. Hannan consistency and other exploration functions

We now study the class of Hannan consistent policies. We first show the necessity to have a
logarithmic lower bound in some environments θ, and then a study of extended ucb policies
will prove that there does not exist a logarithmic bound on the whole set Θ.

5.1 The necessity of a logarithmic regret in some environments

A simple idea enables to understand the necessity of a logarithmic regret in some envi-
ronments. Assume that the agent knows the number of rounds n, and that he balances
exploration and exploitation in the following way: he first pulls each arm s(n) times, and
then selects the arm that has obtained the best empiric mean for the rest of the game. If
we denote by ps(n) the probability that the best arm does not have the best empiric mean
after the exploration phase (i.e. after the first Ks(n) rounds), then the expected regret is
of the form

c1(1− ps(n))s(n) + c2ps(n)n. (9)

Indeed if the agent manages to match the best arm then he only suffers the pulls of subop-
timal arms during the exploration phase, and that represents an expected regret of order
s(n). If not, the number of pulls of suboptimal arms is of order n, and so is the expected
regret.
Now we can approximate ps(n), because it has the same order as the probability that the
best arm gets an empiric mean lower than the second best mean reward, and because
Xk∗,s(n)−µ∗

σ

√

s(n) (where σ is the variance of Xk∗,1) approximately has a standard normal
distribution by the central limit theorem:

ps(n) ≈ Pθ(Xk∗,s(n) ≤ µ∗ −∆) = Pθ

(

Xk∗,s(n) − µ∗

σ

√

s(n) ≤ −∆
√

s(n)

σ

)

≈ 1√
2π

σ

∆
√

s(n)
exp



−1

2

(

∆
√

s(n)

σ

)2




≈ 1√
2π

σ

∆
√

s(n)
exp

(

−∆2s(n)

2σ2

)

.
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Then it is clear why the expected regret has to be logarithmic: s(n) has to be greater than
log n if we want the second term ps(n)n of Equation (9) to be sub-logarithmic, but then first
term (1− ps(n))s(n) is greater than log n.

This idea can be generalized, and this gives the following proposition.

Proposition 10 For any policy, there exists θ ∈ Θ and such that

lim sup
n→+∞

EθRn

log n
> 0.

This result can be seen as a consequence of the main result of Burnetas and Katehakis
(Theorem 5): if we assume by contradiction that lim supn→+∞

EθRn

logn = 0 for all θ, the con-
sidered policy is therefore consistent, but then the logarithmic lower bounds have to hold.
The reason why we wrote the proposition anyway is that our proof is based on the simple
reasoning stated above and that it consequently holds beyond our model (see the following
for details).

Proof The proposition results from the following property on Θ: there exists two environ-
ments θ = (ν1, . . . , νK) and θ̃ = (ν̃1, . . . , ν̃K) and k ∈ {1, . . . ,K} such that

• k has the best mean reward in environment θ,

• k is not the winning arm in environment θ̃,

• νk = ν̃k and there exists η ∈ (0, 1) such that

∏

ℓ 6=k

dνℓ
dν̃ℓ

(Xℓ,1) ≥ η Pθ̃ − a.s. (10)

The idea is the following: in case νk = ν̃k is likely to be the reward distribution of arm
k, then arm k has to be pulled often for the regret to be small if the environment is θ,
but not so much, as one has to explore to know if the environment is actually θ̃ (and the
third condition ensures that the distinction can be tough to make). The lower bound on
exploration is of order log n, as in the sketch in the beginning of the section.

The proof actually holds for any Θ that has the above-mentioned property (i.e. without
the assumptions we made on Θ, i.e. being of the form Θ1 × . . . × ΘK and/or containing
distributions of the form pδa + (1 − p)δb). In our setting, the property is easy to check.
Indeed the three conditions hold for any k and any pair of environments θ = (ν1, . . . , νK),
θ̃ = (ν̃1, . . . , ν̃K) such that each νℓ (resp. ν̃ℓ) is a Bernoulli law with parameter pℓ (resp. p̃ℓ)
and such that

• ∀ℓ 6= k, p̃k > p̃ℓ,

• ∃ℓ 6= k, pk < pℓ,

• p̃k = pk and pℓ, p̃ℓ ∈ (0, 1) for any ℓ 6= k.

15



Salomon, Audibert, El Alaoui

It is then sufficient to set

η =

(

min

{

p1
p̃1

, . . . ,
pk−1

p̃k−1
,
pk+1

p̃k+1
, . . . ,

pK
p̃K

,
1− p1
1− p̃1

, . . . ,
1− pk−1

1− p̃k−1
,
1− pk+1

1− p̃k+1
, . . . ,

1− pK
1− p̃K

})K−1

,

as dνℓ
dν̃ℓ

(Xℓ,1) equals
pℓ
p̃ℓ

when Xℓ,1 = 1 and 1−pℓ
1−p̃ℓ

when Xℓ,1 = 0.

We will now compute a lower bound of the expected regret in environment θ̃. To this
aim, we set

g(n) :=
2EθRn

∆
.

In the following, ∆̃k denotes the optimality gap of arm k in environment θ̃. Moreover the

switch from θ̃ to θ will result from Equality (10) and from the fact that event
{

∑

ℓ 6=k Tℓ(n) ≤ g(n)
}

is measurable with respect to Xℓ,1, . . . ,Xℓ,⌊g(n)⌋ (ℓ 6= k) and to Xk,1, . . . ,Xk,n. That enables
us to introduce the function q such that1{∑ℓ 6=k Tℓ(n)≤g(n)} = q

(

(Xk,s)s=1..n, (Xℓ,s)ℓ 6=k, s=1..⌊g(n)⌋
)

and to write:

Eθ̃Rn ≥ ∆̃kEθ̃[Tk(n)] ≥ ∆̃k(n− g(n))Pθ̃ (Tk(n) ≥ n− g(n))

= ∆̃k(n− g(n))Pθ̃





∑

ℓ 6=k

Tℓ(n) ≤ g(n)





= ∆̃k(n− g(n))

∫

q
(

(xℓ,s)ℓ 6=k, s=1..t, (xk,s)s=1..n

)

∏

ℓ 6= k
s = 1..⌊g(n)⌋

dν̃ℓ(xℓ,s)
∏

s=1..n

dν̃k(xk,s)

≥ ∆̃k(n− g(n))η⌊g(n)⌋
∫

q
(

(xℓ,s)ℓ 6=k, s=1..t, (xk,s)s=1..n

)

∏

ℓ 6= k
s = 1..⌊g(n)⌋

dνℓ(xℓ,s)
∏

s=1..n

dνk(xk,s)

≥ ∆̃k(n− g(n))ηg(n)Pθ





∑

ℓ 6=k

Tℓ(n) ≤ g(n)





= ∆̃k(n− g(n))ηg(n)



1− Pθ





∑

ℓ 6=k

Tℓ(n) > g(n)









≥ ∆̃k(n− g(n))ηg(n)



1−
Eθ

(

∑

ℓ 6=k Tℓ(n)
)

g(n)





≥ ∆̃k(n− g(n))ηg(n)



1−
Eθ

(

∑

ℓ 6=k ∆ℓTℓ(n)
)

∆g(n)





≥ ∆̃k(n− g(n))ηg(n)
(

1− EθRn

∆g(n)

)

= ∆̃k
n− g(n)

2
ηg(n),
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where the very first inequality is a consequence of Formula (1).
We are now able to conclude. Indeed, if we assume that EθRn

logn −−−−−→
n→+∞

0, then one has

g(n) ≤ min
(

n
2 ,

− logn
2 log η

)

for n large enough and:

Eθ̃Rn ≥ ∆̃k
n− g(n)

2
ηg(n) ≥ ∆̃k

n

4
η

− log n
2 log η = ∆̃k

√
n

4
.

In particular, we have
Eθ̃Rn

logn −−−−−→
n→+∞

+∞, hence the conclusion.

To finish this section, note that a proof could have been written in the same way with
a slightly different property on Θ: there exists two environments θ = (ν1, . . . , νK) and
θ̃ = (ν̃1, . . . , ν̃K) and k ∈ {1, . . . ,K} such that

• k has the best mean reward in environment θ,

• k is not the winning arm in environment θ̃,

• νℓ = ν̃ℓ for all ℓ 6= k and there exists η ∈ (0, 1) such that

dνk
dν̃k

(Xk,1) ≥ η Pθ̃ − a.s.

The dilemma is then between exploring arm k or pulling the best arm of environment θ̃.

5.2 There are no logarithmic bound in general

We extend our study to more general ucb policies, and we will find that there does not
exist logarithmic lower bounds of the expected regret in the case of Hannan consistency.
With ”ucb”, we now refer to an ucb policy with indexes of the form:

Bk,s,t = X̂k,s +

√

fk(t)

s

where functions fk (1 ≤ k ≤ K) are increasing.

To find conditions for Hannan consistency, let us first show the following upper bound.

Lemma 11 If arm k does not have the best mean reward, then for any β ∈ (0, 1) the
following upper bound holds:

Eθ[Tk(n)] ≤ u+
n
∑

t=u+1

(

1 +
log t

log( 1β )

)

(

e−2βfk(t) + e−2βfk∗(t)
)

,

where u =
⌈

4fk(n)
∆k

⌉

.
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Proof We adapt the arguments leading to Equation (6) in the proof of Theorem 3. We
begin by noticing that, if arm k is selected, then at least one of the three following equations
holds:

Bk∗,Tk∗(t−1),t ≤ µ∗,

X̂k,t ≥ µk +

√

fk(t)

Tk(t− 1)
,

Tk(t− 1) <
4fk(n)

∆2
k

,

and the rest follows straightforwardly.

We are now able to give sufficient conditions on the fk for ucb to be Hannan consistent.

Proposition 12 If fk(n) = o(n) for all k ∈ {1, . . . ,K}, and if there exists γ > 1
2 and

N ≥ 1 such that fk(n) ≥ γ log log n for all k ∈ {1, . . . ,K} and for any n ≥ N , then ucb is
Hannan consistent.

Proof Fix an index k of a suboptimal arm and choose β ∈ (0, 1) such that 2βγ > 1. By
means of Lemma 11, one has for n large enough:

Eθ[Tk(n)] ≤ u+ 2

n
∑

t=u+1

(

1 +
log t

log( 1β )

)

e−2βγ log log t,

where u =
⌈

4fk(n)
∆k

⌉

.

Consequently, we have:

Eθ[Tk(n)] ≤ u+ 2

n
∑

t=2

(

1

(log t)2βγ
+

1

log( 1β )

1

(log t)2βγ−1

)

. (11)

Sums of the form
∑n

t=2
1

(log t)c with c > 0 are equivalent to n
(log n)c as n → +∞. Indeed,

on the one hand we have

n
∑

t=3

1

(log t)c
≤
∫ n

2

dx

(log x)c
≤

n
∑

t=2

1

(log t)c
,

so that
∑n

t=2
1

(log t)c ∼
∫ n
2

dx
(log x)c . On the other hand, one can write

∫ n

2

dx

(log x)c
=

[

x

(log x)c

]n

2

+ c

∫ n

2

dx

(log x)c+1
.

As both integrals are divergent we have
∫ n
2

dx
(log x)c = o

(

∫ n
2

dx
(log x)c+1

)

, so that
∫ n
2

dx
(log x)c ∼

n
(logn)c .
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Now, by means of Equation (11), there exists C > 0 such that

Eθ[Tk(n)] ≤
⌈

4fk(n)

∆

⌉

+
Cn

(log n)2βγ−1
,

and this proves Hannan consistency.

The fact that there is no logarithmic lower bound then comes from the following propo-
sition (which is a straightforward adaptation of Propostion 1).

Proposition 13 Let 0 ≤ b < a ≤ 1 and n ≥ 1. For θ = (δa, δb), the random variable T2(n)

is uniformly upper bounded by f2(n)
∆2 + 1. Consequently, the expected regret of ucb is upper

bounded by f2(n)
∆ + 1.

Then, if f1(n) = f2(n) = log log n, ucb is Hannan consistent and the expected regret
is of order log log n in all environments of the form (δa, δb). Hence the conclusion on the
non-existence of logarithmic lower bounds.
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