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ABSTRACT 

Pathological anxiety and depression are prevalent forms of psychopathology and are 

associated with significant impairment in multiple areas of life, including occupational and social 

functioning. Although both forms of psychopathology have been heavily researched, the factors 

involved in their etiology and maintenance are still a matter of debate and require further 

investigation. Levels of trait approach and avoidance motivation may be relevant for 

understanding the differential correlates of anxiety and depression, given research indicating that 

they have distinct relationships with dimensions of trait motivation. An integrative model of the 

brain regions instantiating the approach and avoidance motivational systems is needed to 

understand how dysfunction in these systems manifests in anxiety and depression.  The present 

dissertation aims to advance these literatures by proposing a hierarchical model of the neural 

components implementing the approach and avoidance motivational systems and examining the 

functional relationships among the proposed brain regions for motivational control. This model 

is then used to delineate areas of motivational dysfunction associated with pathological anxiety 

and depression.  
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CHAPTER 1 

GENERAL INTRODUCTION 

Pathological anxiety and depression are prevalent forms of psychopathology (Kessler et 

al., 2005) and are associated with significant impairment in multiple areas of life, including 

occupational and social functioning (Kessler, DuPont, Berglund, & Wittchen, 1999). Although 

both forms of psychopathology have been heavily researched, the factors involved in their 

etiology and maintenance are still a matter of debate and require further investigation (Watson, 

2009). Additionally, anxiety and depression are highly comorbid (Clark & Watson, 1991). Thus, 

research is needed that accounts for this comorbidity in attempting to determine the factors 

involved in the initiation and maintenance of anxiety and depression and to inform potential 

interventions. 

Levels of trait approach and avoidance motivation may be relevant for understanding the 

differential correlates of anxiety and depression, given research indicating that they have distinct 

relationships with dimensions of trait motivation. Specifically, depression has been associated 

with decreased levels of approach motivation and increased levels of avoidance motivation, 

whereas anxiety has been associated with only increased levels of avoidance motivation 

(Spielberg, Heller, et al., 2011). This study provides data on the relevance of motivational 

systems for anxiety and depression, although it does not clarify what components of the 

approach and avoidance motivational systems are dysfunctional, nor whether this dysfunction is 

a vulnerability factor for or a result of anxiety/depression. An integrative model of the brain 

regions instantiating the approach and avoidance motivational systems is needed to understand 

how dysfunction in these systems manifests in anxiety and depression.   
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The present dissertation aims to advance these literatures by proposing a hierarchical 

model of the neural components implementing the approach and avoidance motivational systems 

and examining the functional relationships among the proposed brain regions for motivational 

control. This model is then used to delineate potential areas of motivational dysfunction 

associated with pathological anxiety and depression. A central feature of this model is the 

proposal that regions of dorsolateral prefrontal cortex (DLPFC) bias processing in other brain 

regions in the model to be in line with goals (Spielberg, Miller, et al., 2011). It is possible that 

the deficits in goal-directed behavior occurring in anxiety and depression may be partially due to 

dysfunction in the biasing of brain regions in the model by DLPFC, although this hypothesis has 

yet to be examined. Thus, the present dissertation has three primary goals: (1) identify and model 

the brain regions associated with motivational biasing of goal-directed behavior; (2) test the 

hypothesis that DLPFC regions associated with motivation bias processing in other areas of the 

brain during goal-directed behavior; (3) test the hypothesis that anxiety and depression moderate 

the motivational biasing of goal-directed behavior.  

Chapter Organization 

 The present dissertation is organized into six chapters. Chapter 1 serves as a brief 

introduction to the purpose and organization of the document. Chapter 2 presents an integrative 

hierarchical model of the neural instantiation of approach and avoidance motivation. This model 

builds, in part, on the findings of Spielberg, Miller, et al. (2011) indicating that regions of 

DLPFC are involved in integrating motivational and executive function processes. The task used 

in Spielberg, Miller, et al. contained stimuli that were not explicitly valenced. Given that 

differential sensitivity to valence is thought to be an important component of approach and 

avoidance motivation (Elliot & Thrash, 2002), it is possible that the integration of motivational 
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and executive function processes occurring in DLPFC may occur differently when task stimuli 

are valenced. Chapter 3 provides a test of this hypothesis, and a replication test of the hypothesis 

that regions of DLPFC are involved in integrating motivational and executive function processes. 

Chapter 4 provides a test of the hypothesis that regions of DLPFC associated with trait 

motivation are involved in biasing processing in other nodes in the model to be congruent with 

goals. Support for this hypothesis would provide evidence that these brain regions are 

functioning as a network. Building on the findings of Chapter 4, Chapter 5 tests the hypothesis 

that dysfunction associated with depression and pathological anxiety in processing in model 

nodes is due to dysfunctional biasing by regions of DLPFC associated with trait motivation. 

Finally, Chapter 6 provides a general discussion that reviews the implications of these findings 

for the model proposed in Chapter 2 and for depression and pathological anxiety. Chapters 2, 3, 

and 4 are written in the form of manuscripts ready to submit for publication.  
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CHAPTER 2 

A HIERARCHICAL MODEL OF THE NEURAL INSTANTIATION  

OF APPROACH AND AVOIDANCE MOTIVATION 

Abstract 

Approach/avoidance motivation has proven to be a useful conceptual framework to 

facilitate the understanding of the neural correlates of psychopathology and emotion, with 

lateralization in prefrontal cortex being a particular target of investigation. However, this 

literature has been limited by a lack of spatial specificity and has not identified the specific 

aspects of approach/avoidance motivation involved. There is a large body of available research 

that uses more spatially specific methodologies (e.g., functional magnetic resonance imaging) 

that can be used to inform the literature on approach/avoidance. However, this research has not 

taken advantage of the rich psychological literature on approach/avoidance motivation. 

Therefore, it would be beneficial to integrate the neuroscience literature with psychological 

conceptualizations of approach/avoidance motivation that deconstruct the fairly broad constructs 

of approach/avoidance into component processes. The present paper proposes an integrative 

model of the neural instantiation of approach/avoidance motivation that takes advantage of the 

strengths of each of these literatures.  
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A Hierarchical Model of the Neural Instantiation of Approach and Avoidance Motivation 

Approach/avoidance motivation has proven to be a useful framework to facilitate the 

understanding of the neural correlates of psychopathology (Davidson, 2002) and emotion 

(Carver & Harmon-Jones, 2009). This framework has been applied to findings suggesting that 

the prefrontal cortex (PFC) is lateralized with respect to motivational direction, with left PFC 

associated with approach and right PFC with avoidance (for review see Spielberg et al., 2008). 

For example, rightward lateralization of PFC activity has been offered as a biological marker of 

susceptibility to depression, thought to be due to decreased levels of approach motivation 

(Shankman et al., 2007; Tomarken et al., 2004; Heller et al., 2003). However, until recently, 

research investigating approach/avoidance lateralization in PFC has relied primarily on the low-

density measurement of electroencephalographic (EEG) activity, which does not allow for very 

specific spatial localization of activity related to approach/avoidance (Tomarken & Zald, 2009). 

Additionally, this research has not elucidated the specific aspects of approach/avoidance 

motivation that are associated with prefrontal asymmetry (Tomarken & Zald, 2009).  

There is a large body of available neuroscience research that can be used to refine the 

understanding of the instantiation of motivation in the brain. Of particular interest is a relatively 

recent set of studies investigating the instantiation of goal pursuit and control processes in PFC 

(for review, see Badre & D‟Esposito, 2009). However, this research has not taken advantage of 

the rich literature on approach/avoidance motivation (and motivation more generally), often 

preferring to rely on relatively simplistic conceptualizations of motivation (e.g., motivation as 

only energization of behavior, Kouneiher et al., 2009, supplementary figure 1), when motivation 

is explicitly discussed at all. This limits the utility of this research, because it cannot be used to 

further the understanding of more complex motivational processes. Therefore, it would be 
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beneficial to integrate the literature on goal pursuit processes in PFC with nuanced 

conceptualizations of approach/avoidance motivation that deconstruct the fairly broad constructs 

of approach/avoidance into component processes. Fortunately, highly researched 

conceptualizations that fulfill this criterion are available (e.g., Scholer & Higgins, 2008).  

The present paper attempts to fill these gaps in the literature by presenting an integrative 

model of the neural instantiation of approach/avoidance motivation. In order to accomplish this, 

the present paper selectively reviews and integrates psychological research on the structure of 

approach/avoidance motivation with neuroscience research on approach/avoidance motivation, 

goal pursuit, and motivation more generally.  

Motivation and Goal Pursuit 

Although many definitions of motivation have been proposed, several functional aspects 

are fairly consistent. Specifically, many theories conceptualize motivation as internal processes 

that select goals based on their predicted value (e.g., reward or punishment), initiate behavior to 

achieve goals, and maintain goal-directed action (e.g., Campbell & Pritchard, 1976; Jones, 1955; 

Lindsley, 1957). Thus, motivation is necessary for an organism to pursue goals.  

However, the construct of motivation does not encompass all processes needed to pursue 

goals. Many theorists have proposed that cognition interacts with motivational processes during 

goal pursuit (e.g., Locke & Latham, 2002; Sorrentino & Higgins, 1986). Although usually not 

explicitly defined, cognition has often been conceptualized as “those processes that mediate the 

acquisition and representation of knowledge about the world” (Kuhl, 1986, p. 407), including 

skills and abilities (Locke, 2000). This work rests on the assumption that motivation and 

cognition are separable processes (Kruglanski, 1999). However, there does not appear to be 

sufficient evidence to assume the veracity of this dichotomy, with many theorists asserting that 
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motivation and cognition are, at the very least, highly overlapping and interdependent (Lazarus, 

1991; Miller, 1996, 2010; Sherman & Sherman, 1999), if not simply different facets of the same 

construct (Kruglanski, 1999; Sorrentino & Higgins, 1986).  

Distinguishing between motivational and cognitive processes becomes even more 

difficult when considering executive function. Similar to cognition, the construct of executive 

function is often defined imprecisely and with a large amount of variability (Martin & Failows, 

2010). At a broad level, executive function is often conceptualized as the processes by which 

goal-directed action is carried out (Banich, 2009). Therefore, executive function shares with 

motivation a fundamental focus on goal pursuit. However, these constructs appear to have 

separable aspects. For example, processes involved in the energization of behavior are often 

considered to be solely the province of motivation. Additionally, executive function is associated 

with abilities, such as shifting, updating, and inhibition (Miyake et al., 2000), that are not usually 

considered to be part of the construct of motivation. The present paper provides a model of how 

the psychological processes involved in the pursuit of goals are instantiated in the brain, rather 

than delineating those processes which belong to motivation vs. executive function (or cognition 

more generally). Given that the present paper builds on psychological models of motivation, a 

motivational framework will be privileged. Some of the processes discussed in the present paper 

under the rubric of motivation could just as validly be conceptualized as cognitive or executive 

function.  

Hierarchical Approach and Avoidance Motivational Systems 

A number of theorists have proposed the existence of two fundamental motivational 

systems, one oriented toward potential desirable outcomes, termed the approach motivational 

system, and one oriented toward potential aversive outcomes, termed the avoidance motivational 
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system (for reviews see Elliot & Covington, 2001; Lang et al., 1998). These motivational 

systems are hypothesized to form the “basic building blocks that underlie the complexity of 

human behavior” (Carver et al., 2000, p. 741).  

Several researchers have suggested that the approach and avoidance motivational systems 

are comprised of a number of hierarchical levels, with lower levels of these models subservient 

to higher levels (Elliot, 2006; Lang et al., 1998; Scholer & Higgins, 2008). For instance, Higgins 

and colleagues (for a review see Scholer & Higgins, 2008) proposed a structure with three levels: 

the system, strategic, and tactical levels. They proposed that these levels are hierarchical but that 

the selection of approach and avoidance is independent at each level.  

System Level. At the system level, approach and avoidance are defined in relation to the 

goal that is held. Specifically, the goal can be to approach a potential desirable outcome or avoid 

a potential undesirable outcome. The critical determinant at this level is how the individual views 

the goal-object, rather than the properties of the goal-object itself. Therefore, the same goal-

object can be part of either an approach or avoidance goal, depending upon the individual‟s 

motivational orientation. For example, if two individuals strive to get an A grade on a test, one 

person could view an A grade as an accomplishment that will bring them pleasure (a desirable 

outcome), whereas the other person could view getting anything lower than an A grade as a 

failure that will bring them displeasure (an undesirable outcome). Based on their motivational 

orientation, the first individual wants to approach an A grade, whereas the second individual 

wants to avoid getting anything lower than an A grade.  

Given that numerous conceptualizations of the goal construct are available in the 

literature, it is important to outline the specific operationalization used in order to avoid 

confusion (Elliot & Fryer, 2008). Elliot and Niesta (2009) provided a definition in the context of 
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their hierarchical model of approach and avoidance motivation. According to these authors, a 

goal is defined as a “cognitive representation of a future object that the organism is committed to 

approach or avoid” (p. 58). In this conceptualization, the goal construct includes a commitment 

to pursue the goal-object. This commitment, along with the representation of the object (e.g., 

stimulus properties, associated value), must be sustained over time. Thus, one function of the 

system level is to maintain the goal construct over time.  

Strategic Level. At the strategic level, approach and avoidance are defined in relation to 

the means or process of attaining a potential desirable outcome or preventing a potential 

undesirable outcome. As shown in Figure 2.1, at the strategic level one can approach matches to 

a desirable outcome (i.e., outcomes consistent with the desired state) or mismatches to an 

undesirable outcome (i.e., outcomes inconsistent with the undesired state). Similarly, one can 

avoid mismatches to a desirable outcome (i.e., outcomes inconsistent with the desired state) or 

matches to an undesirable outcome (i.e., outcomes consistent with the undesired state). 

Therefore, when approaching a desirable outcome at the system level, one can either approach 

matches to that outcome or avoid mismatches to that outcome. For example, if the potential 

outcome was getting an A grade, approaching a match could be studying hard, and avoiding a 

mismatch could be staying away from situations that distract from studying. Similarly, when 

avoiding an undesirable outcome at the system level (e.g., not getting an A grade), one can either 

approach mismatches to that outcome or avoid matches to that outcome. In relation to the 

example above, studying hard would be approaching a mismatch, whereas staying away from 

situations that distract from studying would be avoiding a match. Approach and avoidance at the 

strategic level reflect general/broad plans or means, rather than the specific instantiations of 

means, which are instead captured in the tactical level.  
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As discussed above, at the system level individuals commit to approaching or avoiding a 

certain end-state. In contrast, at the strategic level, a commitment can be made to the goal-pursuit 

plan, which Gollwitzer (1999) labeled an implementation intention (for reviews see Gollwitzer, 

1999, Parks-Stamm & Gollwitzer, 2009). Gollwitzer conceptualized implementation intentions 

as if-then plans that link goal-directed actions to anticipated opportunities to engage in these 

actions. More specifically, the individual commits to act in a certain way when specific situations 

are encountered. For example, if a student commits to the goal of approaching an A grade in a 

class, that student may form an approach plan to complete extra credit assignments (the action) 

whenever they are offered by the instructor (the situation). This example highlights the two 

components of an implementation intention, the action and the situation.  

Research by Gollwitzer and colleagues indicates that forming implementation intentions 

increases the likelihood of goal attainment, especially for difficult-to-obtain goals (see Gollwitzer 

& Sheeran, 2006, for a meta-analysis of 94 studies indicating an effect size of d = 0.65).  

Gollwitzer (1999) attempted to explain this effect by suggesting that implementation intentions 

make the anticipated situation and planned response more cognitively accessible (i.e., primed). 

For instance, the increased accessibility of the anticipated situation makes that situation easier to 

detect in the presence of distraction. Further, the increased accessibility of the planned response 

makes that response easier to select in the presence of competing responses. Research has 

supported this hypothesis (for a review see Gollwitzer et al., 2004). For example, research 

indicates that forming implementation intentions enhances performance in tasks engaging 

executive function, such as switching and inhibition (Cohen et al., 2008). Additionally, forming 

implementation intentions was found to improve performance on an inhibition task in children 

with Attention Deficit Hyperactivity Disorder (ADHD, Gawrilow & Gollwitzer, 2008).  
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When implementation intentions are not formed, individuals must actively attend to the 

environment in order to detect opportunities to pursue the goal. This active monitoring is more 

effortful and does not take advantage of the benefits discussed above (Gollwitzer, 1999). 

However, in some circumstances the formation of implementation intentions can be detrimental, 

and active monitoring may be the more successful choice. For example, the formation of 

implementation intentions can interfere with the pursuit of concurrent goals (Achtziger et al., 

2010) unless the situation and action committed to in the implementation intention subserve both 

goals. Additionally, the formation of implementation intentions can be detrimental when novel 

goal-pursuit situations are encountered, because the heightened accessibility of the situation 

committed to in the implementation intention can direct attention away from novel situations 

(Parks-Stamm et al., 2007). In summary, at the strategic level, approach and avoidance goal-

pursuit plans are selected and can either be committed to (i.e., the formation of implementation 

intentions) or actively managed.  

Tactical Level. At the tactical level, approach and avoidance are defined in relation to 

the specific ways a strategy could be implemented in a particular context. For example, if the 

strategy were to study hard, an approach tactic could be setting aside a specific time to study. An 

avoidance tactic could be making sure that no important study materials are missing. The tactical 

level is still at a higher level than the actual behavior that is implemented in a given situation, 

because an avoidance tactic can be implemented through physically approaching a stimulus and 

vice versa. For example, an avoidance tactic, such as ensuring that no important study materials 

are missing, could be implemented with approach behavior, such as approaching a classmate to 

ask them to show you their study materials or approaching the professor to ask them whether 

your study materials are adequate.  
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Although the levels are considered to be independent, Scholer and Higgins (2008) 

hypothesized that individuals tend to be consistent across levels (e.g., approach at the system 

level tends to be associated with approach at the strategy level). Higgins (2000, 2005) accounted 

for this consistency by proposing that inconsistency across levels leads to disruption in 

motivational orientation (i.e., approach or avoidance), which, in turn, leads to decreases in goal 

engagement (i.e., the amount of attention and effort invested in the goal). When there is 

consistency across levels, motivational orientation is maintained, and goal engagement is 

sustained.  

Temperament Level. Elliot (2006) proposed a two-level hierarchical model of 

approach/avoidance motivation that appears complementary to that proposed by Scholer and 

Higgins (2008). This model consists of a temperament level situated above a goal-associated 

level that is similar to Scholer and Higgins‟ (2008) system level. The temperament level is 

comprised of general tendencies to be sensitive to desired (approach temperament) or undesired 

(avoidance temperament) potential outcomes and to adopt approach or avoidance goals 

accordingly (at the system level). For example, a student high on avoidance temperament who is 

faced with an upcoming test will be sensitive to the potential for failure (e.g., getting a low grade 

and looking stupid) and is likely to adopt the goal of getting an A on the test in order to avoid 

failure. In contrast, a student high on approach temperament in the same situation will be 

sensitive to the potential for success (e.g., getting a good grade and showing how smart they are) 

and is likely to adopt the goal of getting an A on the test in order to approach success. These two 

students share the same goal-object (i.e., getting an A), but the underlying reasons for that goal 

are different, which is reflected at the system level in Higgins‟ model (Scholer & Higgins, 2008).  
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Integrated Model. In summary, combining Scholer and Higgins‟ (2008) and Elliot‟s 

(2006) models, the present proposal offers a hierarchical model of approach/avoidance 

motivation that consists of four levels: temperamental, system, strategic, and tactical. The 

temperamental level consists of broad tendencies to be sensitive to desired or undesired potential 

outcomes and to implement approach or avoidance goals accordingly. The system level is 

comprised of the goal that is held, either approaching a desired outcome or avoiding an undesired 

outcome. The strategic level represents the general means or process by which the goal will be 

pursued, and, at the tactical level, the strategy is instantiated in a specific context.  

It is proposed here that these levels can be conceptualized along a gradient of both 

abstraction and timescale, with higher levels being more abstract and having a longer timescale. 

For example, the strategic level is more abstract than the tactical level, because the tactical level 

represents the implementation of the strategy in a given context. The system level is more 

abstract than the strategic level, because the same goal can be subserved by several strategies 

(i.e., equifinality, Martin & Tesser, 2009). Similarly, the system level has a longer time scale 

than the strategic level, because the goal must be maintained over time, during which a number 

of strategies can be employed. The temperament level is the most abstract and has the longest 

time scale, as it reflects dispositions over the lifetime to activate a motivational orientation that is 

independent of specific goals. 

The hierarchical model proposed here implies that higher levels in the structure exert 

control over lower levels. For example, to attain a goal held in the system level, the goal must be 

maintained over time and appropriate strategies employed at appropriate times. Therefore, the 

system level must engage the strategic level when needed. Consequently, the role of the system 

level can be conceptualized as biasing processing in lower levels of the structure in support of an 
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overarching goal. Given that multiple goals can be held at one time, the system level must also 

prioritize goals at any moment and bias processing accordingly. Therefore, one important 

function of this motivational system is the biasing of processing in lower levels to keep them in 

line with goals.  

In conclusion, the integrated hierarchical model of approach/avoidance motivation 

proposed here is a nuanced conceptualization that deconstructs the fairly broad constructs of 

approach/avoidance into important component processes. It is proposed here that this 

psychological model can serve as a framework for understanding the processes examined in 

neuroscience research on motivational systems.  

Neural Instantiation of Motivational Systems 

 A long line of research suggests that PFC is lateralized with respect to 

emotional/motivational valence, with right PFC associated with unpleasant emotion and 

avoidance motivation, and left PFC associated with pleasant emotion and approach motivation 

(for reviews see Heller, 1993; Davidson & Irwin, 1999). PFC lateralization with respect to 

emotional or motivational valence is supported by research using a number of different 

methodologies, including neuropsychological testing (e.g., Flor-Henry, 1976), brain lesion 

patients (e.g., Gainotti, 1972), and electroencephalography (EEG; e.g., Davidson et al., 1990). 

Although PFC asymmetries have regularly been observed in EEG and other methodologies, they 

have been elusive in studies employing functional magnetic resonance imaging (fMRI). This 

method complements EEG in that it provides better spatial resolution than traditional low-density 

EEG for locating specific areas of PFC involved in emotion and motivation. Herrington et al. 

(2005) were the first to demonstrate leftward lateralization for pleasant emotion using fMRI, 

which was localized to DLPFC. As discussed in Herrington et al. (2010), one reason why 
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lateralization findings are uncommon in fMRI may be that lateralization is usually not tested 

directly. Indeed, region (including hemisphere) is almost never a factor in analyses of fMRI data. 

Statements are often made about what are in effect multiple simple-effects tests without a 

systematic evaluation of the underlying interaction. 

State Motivation and Executive Function. Preliminary research on the interactive 

contributions of motivation and executive function to goal-directed behavior is beginning to 

emerge, including studies that investigate the effects of state motivation on the neural processes 

associated with tasks of executive function (e.g., Pochon et al., 2002; Taylor et al., 2004). This 

research has consistently implicated areas of prefrontal cortex (PFC) in the integration of 

motivation and executive function processes (Gilbert & Fiez, 2004; Gray et al., 2005; Krawczyk 

et al., 2007; Locke & Braver, 2008; Rowe et al., 2008; Szatkowska et al., 2008). Such integration 

is consistent with conceptualizations of PFC as being necessary “to orchestrate thought and 

action in accordance with internal goals” (Miller & Cohen, 2001). For example, Pochon et al. 

(2002) examined the relation between reward processing, a facet of motivation, and performance 

on a working memory task. Results revealed that left DLPFC was activated by both working 

memory demands and increasing levels of reward. Taylor et al. (2004) conducted a similar study 

that examined the interaction between state motivation and working memory by manipulating 

motivation in terms of both reward and punishment. Consistent with the findings of Pochon et al. 

(2002), motivational processes interacted with working memory load in bilateral DLPFC.  

Savine and Braver (2010) examined the interaction of state reward processing with a 

different aspect of executive function, task switching. Consistent with the findings of both 

Pochon et al. (2002) and Taylor et al. (2004), Savine and Braver (2010) found that reward level 

interacted with task-switching in left DLPFC, such that the possibility of a reward was associated 
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with increased task-switching activation. Importantly, right DLPFC did not exhibit this 

interactive effect, and a test of laterality indicated that the difference in this effect between 

hemispheres was significant. Additionally, activation in left DLPFC was positively associated 

with behavioral facilitation of task-switching, and this facilitation was increased when a reward 

was possible.  

Thus, at least three studies suggest that DLPFC is essential for the neural integration of 

motivation and executive function processes. These studies can be interpreted as manipulating 

the system level of the hierarchical model of motivation, because they manipulate the reasons for 

the goal (i.e., to do well in order to obtain a reward or avoid a punishment). Thus, this research 

suggests that the system level is instantiated in (at least) DLPFC, which is consistent with 

research suggesting that DLPFC is involved in representing and maintaining goals (e.g., 

MacDonald et al., 2000). Although involvement of DLPFC was observed in all three studies, 

activation was left-lateralized in Pochon et al. (2002) and Savine and Braver (2010) but bilateral 

in Taylor et al. (2004). Inconsistencies in the lateralization of DLPFC activation may be due to 

differences in the motivational manipulation used across the studies. More specifically, the 

differences in lateralization patterns might be due to the fact that Pochon et al. (2002) and Savine 

and Braver (2010) employed only a reward manipulation, consistent with leftward lateralization, 

whereas Taylor et al.‟s (2004) motivational manipulation included both reward and punishment, 

which should engage both hemispheres. The picture is further clouded by the fact that neither 

Pochon et al. (2002) nor Taylor et al. (2004) actually tested laterality effects. Thus, the extent of 

the inconsistency is not clear. However, although preliminary and in need of further 

investigation, the significant lateralization test in Savine and Braver (2010) suggests that DLPFC 

activation in relation to state motivation and executive function is, in fact, lateralized.  
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Trait Motivation and Executive Function. Extending the work on state motivation and 

executive function, recent research has examined the interaction of trait motivation with 

executive function. Spielberg et al. (2011) investigated moderation of neural activation 

associated with the color-word Stroop (1935) task by approach and avoidance temperament. 

Neural activation associated with incongruent words was contrasted with activation associated 

with congruent words, and approach and avoidance temperament scores, computed using a 

confirmatory factor analysis, were entered as between-subject predictors. Hemispheric 

lateralization was tested directly using methods similar to those of Herrington et al. (2010).  

Consistent with previous research on state motivation and regional brain activity, 

approach temperament moderated activation in two regions of left DLPFC (a relatively anterior 

region in BA 8 and 9 and a relatively posterior area in BA 9 only), and avoidance temperament 

moderated activation in one region of right DLPFC (BA 9 and 6), all of which were lateralized 

effects. These areas of DLPFC have been associated with a number of other functions. 

Specifically, these regions have been implicated in behavioral inhibition, planning upcoming 

action, attending to cues predicting the occurrence of a motivationally salient event, and 

responding when motivationally salient events occur (Abler et al., 2006; Bickel et al., 2009; 

Kaladjian et al., 2009; Volle et al., 2005). Incorporating this research with their findings, and 

consistent with Herrington et al. (2010), Spielberg et al. (2011) hypothesized that these regions 

of DLPFC are involved in implementing a motivational set that biases lower-order processing 

(i.e., attention to ink color vs. word meaning) to be congruent with goals. Given that the 

temperament level of the hierarchical model of motivation discussed above is hypothesized to 

reflect tendencies to adopt approach/avoidance goals (at the system level), it is likely that the 

areas identified in this study are involved in the instantiation of the system level. These findings 
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have recently been replicated using an emotion-word Stroop task (Spielberg et al., 2010), 

supporting the generalizability of these conclusions. Importantly, these studies provide a starting 

point from which to begin mapping the levels of the hierarchical model of motivation to brain 

areas in which they are instantiated.  

Intertemporal Choice. Neuroscience research in the field of intertemporal choice, which 

investigates choices between outcomes that differ in temporal delay and reward/punishment 

magnitude, provides another avenue to examine the instantiation of motivational systems in the 

brain. Humans are often faced with choices between options that differ in the timescale of the 

potential outcomes. Often, one option is associated with a shorter delay and a smaller reward, 

whereas the delay in the other option is longer and the reward value greater. For example, an 

individual may have the goal of losing weight and be faced with the choice of whether to eat a 

fattening desert. In order to maximize gain/minimize loss over time, goals (e.g., losing weight) 

must be maintained in the face of competing options (e.g., eating cake now), which is a process 

that can be associated with the system level of the hierarchical model of approach/avoidance, 

because this level is involved with the maintenance of goals. Although the choice with the longer 

delay has an objectively better outcome, this option is often not chosen, because humans 

discount the value of delayed rewards (Ainslie, 2001). The rate of future discounting can be 

thought of as a measure of impulsiveness, because it reflects the tendency to forgo larger, long-

term rewards in order to gain more immediate satisfaction (Ainslie, 1975). This contention is 

supported by research indicating that more impulsive individuals (e.g., children with ADHD) 

discount future rewards more than less impulsive individuals (Barkley et al., 2001).  

Recent research employing neuroscience methods has attempted to identify brain regions 

involved in integrating temporal delay into the decision-making process. Several studies suggest 
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that DLPFC and posterior cingulate cortex (PCC) are involved in decisions to forgo proximal 

reward or incur proximal punishment in order to maximize benefit over time, providing further 

support for the hypothesis that the system level is instantiated (in part) in DLPFC. Specifically, 

several studies have found that greater activation in DLPFC and PCC predicted the choice of the 

larger, later outcome (Ballard & Knutson, 2009; McClure et al., 2007; Weber & Huettel, 2008; 

Wittmann et al., 2007). As well, activation in DLPFC and PCC has been found to be positively 

correlated with the length of the delay associated with outcomes (Ballard & Knutson, 2009; 

Luhmann et al., 2008). Finally, gray matter volume in DLPFC has been found to be positively 

associated with the tendency to choose the larger, later outcome over the smaller, more 

immediate outcome (Bjork et al., 2009).  

In these studies, the delay and magnitude associated with each option were explicitly 

presented to participants. Therefore, maximizing reward over time required only the ability to 

resist the earlier option. In many real-world choices, however, the magnitude and delay of the 

outcome will not be explicit. For example, when choosing whether to forgo eating (immediately 

available) cake in order to lose weight, the impact of cake eating on weight and how long it will 

be until the desired amount of weight will be lost (if cake is not eaten), will usually be unclear. In 

these situations, learning history can play an important role in determining which choice will be 

selected (e.g., how quickly a specific individual has lost weight in the past). Several studies have 

examined intertemporal choice when participants must learn the contingencies associated with 

different options. For example, Tanaka et al. (2004) employed a decision making task in which 

participants had to learn to incur small, immediate losses in order to gain large, delayed rewards. 

Results revealed that learning to obtain larger, later rewards was associated with increased 

activation in left DLPFC and PCC, which is consistent with research linking these brain regions 
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to forgoing proximal reward or incurring proximal punishment in order to maximize reward over 

time.  

Yarkoni et al. (2005) employed a task similar to that of Tanaka et al. (2004). However, in 

their task, the strategy of forgoing more immediate rewards to obtain the delayed reward did not 

always maximize the total reward over time. Instead, it was optimal to choose the immediate 

reward in one of the conditions. Results revealed that DLPFC activation was associated with 

optimum performance (i.e., maximizing total reward) on the task. Specifically, when reward was 

maximized by sacrificing smaller, earlier rewards to obtain larger, later rewards, sustained 

activation in DLPFC across the entirety of the trials was greater than activation during the time at 

which participants actually made choices. When reward was maximized by choosing smaller, 

earlier rewards, DLPFC exhibited greater activation during the actual choice period, relative to 

the sustained activation across trials. This indicates that the involvement of DLPFC is not 

restricted to obtaining delayed rewards. Rather, DLPFC appears to be involved in maximizing 

overall benefit.  

Taken together, this research supports the hypothesis that DLPFC is involved in 

maximizing benefit/minimizing harm over time. This would involve both the maintenance of 

appropriate goals in the face of competition (e.g., forgoing a small proximal reward for a larger, 

delayed reward) and the selection of appropriate strategies (e.g., determining whether obtaining 

proximal rewards or forgoing proximal rewards for larger, delayed rewards will maximize total 

benefit over time). Therefore, this research provides evidence that DLPFC is involved in 

instantiating both the system and strategic levels of the hierarchical model of motivation.  

Posterior cingulate cortex also appears to play a significant role in maximizing total 

reward over time. Research by Maddock (1999) indicates that PCC is involved in integrating 
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emotional and motivational information into memory during recall. This suggests a role for PCC 

in the anticipation of delayed rewards. When choosing between potential rewards, a 

representation of each outcome, incorporating motivationally relevant information based on past 

experience, is needed in order to evaluate the predicted subjective value of the outcome. In 

addition, the anticipation period itself can have value (Berns et al., 2007), because anticipation 

can be pleasant or unpleasant (or neutral). Better ability to incorporate motivationally relevant 

information into anticipation when considering a potential outcome will make that option seem 

more attractive (or unattractive if the outcome is unpleasant).  

The involvement of PCC in the anticipation of potential goals is supported by several 

studies, including a study that found increased PCC activation when participants self-reflected on 

both approach- and avoidance-related goals (Johnson et al., 2006). Additionally, dissociation in 

PCC activation to motivationally-relevant stimuli has been found in relation to approach and 

avoidance (Touryan et al., 2007). Specifically, when an approach orientation was induced, 

greater activation in PCC was observed during the evaluation of pleasant stimuli (relative to 

unpleasant stimuli). In contrast, when an avoidance orientation was induced, greater activation in 

PCC was observed during the evaluation of unpleasant stimuli. Finally, a recent study (Peters & 

Buchel, 2010) directly investigated the impact of imagery associated with potential future 

outcomes on temporal discounting. Participants performed a classic delay discounting task in 

which they chose between immediate and delayed rewards. Before performing the task, 

participants identified a number of planned future events (e.g., going to a workshop, going to a 

friend‟s wedding). In one condition, the delayed reward choice was linked to one of the 

identified future events (i.e., the reward would be given on the day that the event occurs). Results 

revealed that rewards were discounted less heavily in this condition, relative to a control 
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condition in which no links to future events were presented. Additionally, vividness ratings of 

future events correlated negatively with the rate of discounting, such that greater vividness was 

associated with less discounting. Importantly, PCC exhibited greater activation when links were 

presented, relative to the control condition, suggesting that PCC is involved in the imagery 

process. As well, the subjective value of the delayed reward option (i.e., the objective value 

multiplied by the delay discount rate) was correlated with brain activation for each condition. In 

PCC, this correlation was significantly greater during the condition in which links to future 

events were presented, suggesting that PCC is involved in representing the value of future 

outcomes through associated imagery. These findings are consistent with a model of the neural 

instantiation of prospection proposed recently (Buckner & Carroll, 2008). Prospection is the 

process by which past memories are used to envision potential future scenarios, and this process 

can be used to assist in planning for future goals. Buckner and Carroll (2008) suggest that PCC, 

along with other areas including genual anterior cingulate, is vital to the process of prospection.  

In summary, the present review of the literature on intertemporal choice supports the 

hypothesis that DLPFC plays an essential role in goal pursuit and additionally implicates PCC as 

being an important component due to its involvement in the representation of motivationally 

salient aspects of potential future outcomes. In combination with the research reviewed above on 

the interaction of motivation and executive function, this research provides a starting point for a 

model of motivation in the brain.  

A Model of Motivation in the Brain 

 Converging lines of research suggest that DLPFC implements a motivational set that 

biases lower-order neural processes to facilitate the achievement of goals. It is proposed here that 

this research can be interpreted by applying the framework of the hierarchical model of 
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motivation (Elliot, 2006; Scholer & Higgins, 2008) to a set of related proposals (for reviews see 

Badre & D'Esposito, 2009; Botvinick, 2008) that superior, lateral prefrontal cortex (SLPFC), 

including DLPFC, is organized along a dimension of abstraction. Generally, more anterior 

regions (e.g., BA 10, DLPFC) are involved in the most abstract aspects of goal-directed 

processing (e.g., maintaining the ultimate goal), and more posterior regions (e.g., supplementary 

motor area [SMA]) are involved in processing the least abstract aspects (e.g., programming 

motor sequences).  

 There is some disagreement regarding the nature of the abstraction that organizes SLPFC. 

One proposal is that the abstraction is temporal in nature. Specifically, goals become more 

abstract as the timescale of the task they direct increases (Badre & D‟Esposito, 2009). Another 

proposal is policy abstraction, in which more abstract goal representations are more general than 

lower-level goal representations (Badre & D‟Esposito, 2009). According to Botvinick (2008), 

timescale is likely the key parameter that governs the organization of SLPFC. Specifically, more 

anterior regions guide behavior over a longer time-span than do more posterior regions.  

It is proposed here that the gradient of abstraction and timescale evident in the 

hierarchical model of motivation can be mapped onto this SLPFC gradient, with the system level 

associated with more anterior SLPFC and lower levels (i.e., strategic, tactical) moving 

sequentially more posterior. The temperament level would be associated with the 

activity/reactivity of these regions (especially those instantiating the system level) rather than 

being associated with a specific region of the SLPFC. Additionally, it is proposed here that 

SLPFC is lateralized with respect to motivational orientation, with left SLPFC associated with 

approach and right SLPFC associated with avoidance. This organization is pictured in Figure 2.2. 

As shown, approach at the system level can recruit both approach and avoidance at the strategic 
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level. However, approach at the system level is more likely to recruit approach at the strategic 

level, as indicated by the thicker arrows.  

Support for this proposal can be found in a recent study by Kouneiher et al. (2009), which 

examined the integration of motivation and cognition in the context of a model of PFC 

abstraction proposed by Koechlin and colleagues (Koechlin et al., 2003; Koechlin & 

Summerfield, 2007). In this model, posterior DLPFC is hypothesized to be involved in 

contextual control (i.e., control based on rules related to the immediate context), whereas anterior 

DLPFC is hypothesized to be involved in episodic control (i.e., control based on a past event 

which indicates that a certain set of rules should be applied in the current context). The most 

anterior region, frontopolar PFC (e.g., BA 10), is hypothesized to be involved in branching 

control (i.e., maintaining a task set in memory while another task is carried out).  

Kouneiher et al. (2009) found that rewards/punishments associated with the context (the 

current trial) and the episode (the current set of trials, which were preceded by a cue signaling 

the possible incentives) moderated posterior and anterior DLPFC activation, respectively. They 

also found an anterior-to-posterior gradient in medial PFC, with dorsal anterior cingulate cortex 

(dACC) activation moderated by episodic motivation and pre-supplementary motor area 

activation moderated by contextual motivation. They proposed that reward/punishment-related 

signals from medial PFC influence DLPFC, which is carrying out what they term cognitive 

control, thus accounting for the observed association with motivation in DLPFC. Indeed, they 

tested this hypothesis with structural equation modeling and found that the data were consistent 

with the hypothesis that medial areas influence lateral areas. However, they did not test whether 

the effect of reward/punishment on lateral areas was (completely or partially) mediated through 
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medial areas, leaving open the question of whether the influence of medial areas on lateral areas 

is sufficient to account for the observed effect of reward/punishment on DLPFC.  

If full mediation is found to be present, these finding appear to be inconsistent with the 

model of motivation proposed in the present paper. However, a closer examination of what 

Kouneiher et al. (2009) consider motivation vs. cognitive control indicates that no such 

inconsistency is present. Specifically, they conceptualize motivation as only the energization of 

behavior, whereas cognitive control refers to the selection of appropriate behaviors (i.e., the 

direction of behavior; see Kouneiher et al., 2009, supplementary Figure 1). In the present 

proposal, motivation is hypothesized to encompass both of these factors.  

Support for the proposal that the hierarchical model of approach/avoidance motivation 

can be mapped onto an anterior/posterior gradient of SLPFC can also be found in a recent study 

investigating the effect of forming implementation intentions on neural activation associated 

with goal pursuit (Gilbert et al., 2009). The task contained two conditions, which differed only in 

whether implementation intentions were externally provided to participants by experimenters. 

Given that the formation of implementation intentions reduces the need for active engagement of 

the strategic level (discussed above), and given that the conditions were of equal difficulty and 

potential monetary reward level, the conditions differed only on the extent to which the strategic 

level was actively engaged during the task. Consistent with the present proposal, engagement of 

the strategic level (i.e., when participants were not provided with implementations intentions) 

was positively associated with activation in two areas of left anterior SLPFC (BA‟s 8 & 10). 

When participants were provided with implementation intentions, the only area of SLFPC 

exhibiting differential activation was left premotor cortex (BA 6).  
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Orbitofrontal Cortex. In addition to SLPFC, several other areas are likely to be 

important components of a model of motivation in the brain. As discussed above, PCC appears 

to play an important role in anticipatory processes. Another potential region is orbitofrontal 

cortex (OFC), which has been linked to the maintenance of the current and expected 

motivational value of stimuli (O‟Doherty & Dolan, 2006). This area likely provides information 

about stimulus value to superior areas such as DLPFC (Szatkowska et al., 2008). However, there 

is some question regarding the timescale of the value representations maintained in OFC (e.g., 

Roesch et al., 2007). Several studies suggest that the values maintained in OFC are relative to the 

individual‟s current state, rather than to potential future states involved in longer-term goals 

(e.g., Schoenbaum et al., 1998). Additionally, several studies indicate that OFC is associated 

with choosing smaller, earlier rewards in intertemporal choice paradigms (e.g., Bjork et al., 

2009; Tanaka et al., 2004). Therefore, it may be that OFC is involved in value maintenance only 

for short-term goals. For longer-term goals, PCC may play a similar function by integrating 

motivationally salient information into memory that is recalled during anticipation.  

 Research indicates that, like SLPFC, OFC may be organized along a gradient of 

abstraction. Specifically, a recent meta-analysis indicates that posterior OFC is more closely 

associated with primary reinforcers (e.g., sweet taste), whereas anterior OFC is more closely 

associated with abstract reinforcers (e.g., money; Kringelbach & Rolls, 2004). Additionally, 

O‟Doherty and Dolan (2006) have suggested that anterior, medial OFC is associated with 

maintaining a common neural currency, allowing the values of different types of reinforcers to 

be compared.  

 A medial vs. lateral distinction in OFC has been proposed by O‟Doherty (for review see 

O‟Doherty, 2007). Specifically, medial OFC is thought to represent the value of rewards, 
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whereas lateral OFC is thought to represent the value of punishments. However, there appears to 

be some disagreement regarding the role of lateral OFC. Specifically, Elliott et al. (2000) 

suggested that lateral OFC is activated when previously rewarded behavior must be inhibited, 

rather than representing the value of punishments per se. Kringelbach and Rolls (2004) 

incorporated both views and suggested that lateral OFC represents the value of punishments and 

signals that behavior should change.  

This organization of OFC conflicts with the proposal that left PFC is associated with 

pleasant valence and approach motivation and right PFC with unpleasant valence and avoidance 

motivation (Heller, 1993; Davidson & Irwin, 1999). However, a recent meta-analysis suggests 

that OFC is lateralized with respect to emotional valence, although not in the predicted direction 

(Wager et al., 2008). Specifically, bilateral medial and right lateral OFC was associated with 

pleasant emotional experience, whereas left middle and lateral OFC was associated with 

unpleasant emotional experience. The association between bilateral, medial OFC and pleasant 

valence is consistent with O‟Doherty‟s (2007) proposal. However, the findings of this meta-

analysis raise questions regarding the role of lateral OFC that should be pursued in future 

research.  

Anterior Cingulate Cortex. Anterior cingulate cortex (ACC) is likely to be another 

important component of a model of motivation. One relatively new theory of ACC function is 

that ACC is involved in encoding the predicted value associated with actions (for a review see 

Rushworth & Behrens, 2008). This includes the immediate reward or punishment value, as well 

as the value of potential information about future events prompted by the action. Additionally, 

ACC is hypothesized to influence the degree to which information gained from current actions 

influences future decisions (Rushworth & Behrens, 2008). Information represented in ACC is 
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needed to efficiently create action plans to pursue goals, suggesting that ACC provides this 

information to SLPFC, including DLPFC. In relation to the hierarchical model of motivation, 

information held in ACC will be particularly relevant at the strategic and tactical levels. An 

important consideration is to determine the regions of ACC that provide this information, given 

that several parcellations of ACC have been proposed. One influential parcellation (Bush et al., 

2000; Mohanty et al., 2007) divided ACC into two sections; dorsal ACC was hypothesized to be 

more involved in putatively cognitive tasks such as error processing, whereas rostral ACC was 

hypothesized to be more involved in putatively emotional tasks. A more recent parcellation 

employed both diffusion tractography, which estimates the degree of white matter connectivity 

with other brain regions, and a meta-analysis of fMRI studies (Beckmann et al., 2009). This 

analysis identified a region (roughly corresponding to the dorsal ACC region identified by Bush 

et al. [2000] but extending around the genu of the corpus callosum into rostral ACC) that was 

heavily connected to DLPFC and surrounding cortex and was reliably activated by reward 

manipulations. Given that this ACC region displays both motivation-related activation and 

connectivity to DLPFC, it is likely that this region provides motivational information regarding 

actions to DLPFC.  

The Proposed Model 

The model proposed here (illustrated in Figure 2.3) posits that the system, strategic, and 

tactical levels of the hierarchical model of approach/avoidance motivation are instantiated along 

an anterior to posterior gradient of SLPFC (including DLFPC). Further, the present review 

suggests that OFC and ACC provide information about stimulus and action value, respectively, 

to these areas. Lastly, PCC is involved in integrating motivationally salient information into the 

anticipation of potential future outcomes.  
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As an example of how the model may work with a specific goal, an individual may have 

the approach goal of losing weight in order to feel attractive, which would be maintained in 

anterior, left SLPFC (e.g., BA 10, anterior DLPFC). In order to pursue this goal, an area of left 

SLPFC posterior to this (e.g., posterior DLPFC) would be involved in the selection of an 

approach strategy and would engage ACC in order to obtain information regarding the potential 

value of different strategies. In this example, two approach strategies could be exercising 

regularly and eating healthy foods. The healthy eating strategy could be low value/high cost if 

the individual frequently encounters high calorie food and has not been successful in the past in 

losing weight by eating healthily. In contrast, the exercise strategy could be high value/low cost 

if the individual has easy access to exercise equipment and has been successful in losing weight 

with exercise in the past, and this would likely be the strategy chosen. Anterior cingulate would 

also be engaged by a more posterior region of left SLPFC (e.g., pre-SMA) in order to determine 

the value of different approach tactics when judging which tactic to employ. For example, if the 

strategy were to exercise, an approach tactic could be going to the gym to participate in an 

exercise class or calling a friend to jog with. If the individual is embarrassed about showing their 

fitness level in front of strangers, the gym class tactic could be low value/high cost, whereas the 

tactic of jogging with a friend could be high value/low cost if the friend is sympathetic because 

they are also out of shape and attempting to lose weight, and this would likely be the tactic 

chosen. Finally, when faced with a conflicting goal, for example to enjoy a sugary dessert, 

anterior SLPFC would engage PCC in anticipatory imagery of the future state of being thin, 

whereas OFC would be involved in representing the value of the dessert relative to the current 

state.  
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Although the brain areas currently integrated into the model are proposed to be 

fundamental to the pursuit of goals, they are almost certainly not the only brain areas involved. 

Other brain regions are likely involved in instantiating fundamental components of motivation 

and are not yet incorporated in the present model. In addition, specific situations will necessitate 

the engagement of brain areas that instantiate processes more specific to the demands of that 

situation. For example, although engagement of Broca‟s area is not necessarily fundamental to 

goal pursuit generally, it may be vital in situations where verbal rehearsal is needed to complete 

the task.  

 The proposed model has a number of implications for future research. For example, the 

type of task manipulation used in a study (i.e., approach vs. avoidance) should be carefully 

considered, because this information should guide hypotheses about what hemisphere is 

primarily involved. If a task manipulation could be both approach- and avoidance-related (e.g., 

across participants), the power of the experiment may be diluted, because some participants 

primarily engage left SLPFC, whereas others engage right. Another implication is that when 

conducting research aimed at understanding goal-pursuit or control processes in the brain, 

researchers should be aware of the motivational level(s) (e.g., system vs. tactical) manipulated by 

their task and examine specific areas of SLPFC (e.g., anterior DLPFC vs. pre-SMA) accordingly. 

If a task manipulation engages different levels at different times, and this is not accounted for in 

the analysis strategy, power may also be reduced, because SLPFC regions will not be 

consistently activated during the manipulation. Alternatively, if a task manipulation 

simultaneously engages multiple levels, specificity regarding regions of SLPFC involved may be 

lost. Another consideration implicated by the present model is the time frame at which goal 
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manipulations operate (e.g., relative to a current or future state) which should be examined to 

determine whether value information is likely to be represented in OFC and/or PCC.  

Most importantly, the present paper provides a framework which can inform research in a 

number of fields. For example, the present model can be used to generate novel hypotheses for 

psychological research on goal-pursuit processes based on what is known about the brain regions 

involved in implementing those processes. Additionally, the present paper presents a more 

spatially specific model of the areas of PFC involved in instantiating motivational processes than 

is currently extant in the laterality literature, and the present model can be used to make 

hypotheses more spatially specific. For example, the model can guide the placement of sources 

in EEG source localization research, which can assist in disentangling activity related to 

multiple, simultaneously occurring goal-pursuit processes associated with different brain areas in 

the model. Finally, the present model can improve the utility of neuroscience research on goal-

pursuit and control process by providing a framework, incorporating a rich psychological 

conceptualization of approach/avoidance motivation, in which to place this research.  

Reflected in the present model is an attempt to draw on nuanced conceptualizations of 

approach/avoidance motivation (i.e., Elliot, 2006; Scholer & Higgins, 2008) to provide a more 

specific (both spatially and in regard to the specific processes involved) model of how 

motivation is instantiated in the brain. This model benefits from being informed by several, often 

disconnected, literatures, including psychological research on the structure of 

approach/avoidance motivation and neuroscience research on approach/avoidance motivation, 

goal pursuit, and motivation more generally.  
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 System level 

Approach goal 

(desired outcome) 

Avoidance goal 

(undesired outcome) 

Strategic level Approach strategy Approach matches to 

desired outcome 

Approach mismatches 

to undesired outcome 

Avoidance strategy Avoid mismatches to 

desired outcome 

Avoid matches to 

undesired outcome 

 

Figure 2.1. Relationship between the system and strategic levels of the hierarchical model of 

motivation. Figure adapted from Higgins, Roney, Crowe, & Hymes (1994).  
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Figure 2.2. Lateralized organization of superior, lateral prefrontal cortex with regard to the 

hierarchical model of motivation. The thickness of the arrows corresponds to the hypothesized 

strength of the relationship. The larger brain is an axial view of the superior surface of the brain 

viewed from above. The smaller brain is a sagittal view of the lateral surface of the right 

hemisphere. The location and coverage of the ovals/circles is meant to represent a relative 

placement of areas rather than a delineation of specific cortex.  
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Figure 2.3. Motivational organization of superior, lateral prefrontal cortex and relationship with 

other brain areas in the model. Red oval = Posterior Cingulate Cortex. Blue oval = Anterior 

Cingulate Cortex. Orange ovals = Orbitofrontal Cortex. Green circles = Superior, Lateral 

Prefrontal Cortex. Only left hemisphere is shown, right hemisphere is similarly organized. The 

location and coverage of the circles/ovals is meant to represent a relative placement of areas 

rather than a delineation of specific cortex. 
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CHAPTER 3 

TRAIT MOTIVATION MODERATES NEURAL  

ACTIVATION ASSOCIATED WITH GOAL PURSUIT 

Abstract 

 Research indicates that regions of left and right dorsolateral prefrontal cortex (DLPFC) 

are involved in integrating motivational and executive function processes related to approach and 

avoidance goals, respectively. Given that sensitivity to pleasant and unpleasant stimuli is an 

important feature of conceptualizations of approach and avoidance motivation, respectively, it is 

possible that these regions of DLPFC are preferentially activated by valenced stimuli. The 

present study tested this hypothesis using a task in which goal pursuit was threatened by 

distraction from valenced stimuli while functional magnetic resonance imaging data was 

collected. Analyses examined whether the impact of trait approach and avoidance motivation on 

neural processes associated with executive function differed depending on the valence or arousal 

level of the distractor stimuli. Present findings did not find differential sensitivity to valence in 

the areas of DLPFC under investigation, although a region directly posterior to DLPFC did 

differentiate valence. Present findings support the hypothesis that the regions of DLPFC under 

investigation are involved in integrating motivational and executive function processes and 

indicate the involvement of a number of other brain areas in maintaining goal pursuit.  
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Trait Motivation Moderates Neural Activation 

Associated with Goal Pursuit in the Face of Emotional Distraction 

Motivation is fundamental to the pursuit of goals, as it is involved in selecting goals 

based on their predicted value (e.g., reward or punishment value), initiating behavior to achieve 

goals, and maintaining goal-directed action (e.g., Campbell & Pritchard, 1976; Jones, 1955; 

Lindsley, 1957). A number of theorists have proposed the existence of two fundamental 

motivational systems, one oriented toward potentially desirable outcomes, termed the approach 

motivational system, and one oriented toward potentially aversive outcomes, termed the 

avoidance motivational system (for reviews see Elliot & Covington, 2001; Lang, Bradley, & 

Cuthbert, 1998). These motivational systems are hypothesized to form the “basic building blocks 

that underlie the complexity of human behavior” (Carver, Sutton, & Scheier, 2000, p. 741), 

because they are central to attaining the goals necessary for survival.   

Approach and avoidance motivation are thought to be instantiated in neurobiological 

systems that are sensitive to the positive/desirable or negative/undesirable properties of stimuli, 

respectively (Elliot & Thrash, 2002). These systems are theorized to influence attention to and 

emotional processing of the rewarding and punishing features of stimuli as well as behavioral 

responses to motivationally-relevant stimuli (Elliot & Thrash, 2002). Individual differences in 

the activity and/or reactivity of these approach and avoidance motivational systems are 

conceptualized as temperament types (Clark, Watson, & Mineka, 1994; Elliot & Thrash, 2002), 

based on research indicating they are heritable, present early in life, and stable over the lifespan 

(Buss & Plomin, 1984). Further, approach and avoidance temperament types are hypothesized to 

influence the development of other personality dimensions, such as extraversion and positive 



50 
 

emotionality in relation to approach temperament, and neuroticism and negative emotionality in 

relation to avoidance temperament (Elliot & Thrash, 2002).    

Another set of processes hypothesized to be necessary for the pursuit of goals are those 

related to executive function, which are conceptualized as processes involved in the execution of 

goal-directed action (Banich, 2009). One prominent model proposed by Miyake and colleagues 

(Miyake et al., 2000) separates executive function into three processes: (a) shifting between 

mental sets, (b) updating working memory representations, and (c) inhibition of preponent 

responses. Although both sets of processes are thought to be essential to the pursuit of goals, the 

manner in which they interact is still a matter of debate (Pessoa, 2009).  

Integration of Motivation and Executive Function in Dorsolateral Prefrontal Cortex  

Consistent with conceptualizations of prefrontal cortex (PFC) as being necessary “to 

orchestrate thought and action in accordance with internal goals” (Miller & Cohen, 2001), recent 

research has implicated dorsolateral prefrontal cortex (DLPFC) and surrounding areas as being 

involved in the integration of motivation and executive function processes (e.g., Lee & Wang, 

2009; Spielberg, Miller, et al., 2011). For example, research has found that DLPFC activation 

increases as both working memory demands and reward levels increase (Pochon et al., 2002), 

and research suggests that the interaction of state motivational processes and working memory 

load is instantiated in bilateral DLPFC (Taylor et al., 2004).  

Inconsistencies have emerged in this research regarding the role of hemispheric 

lateralization in the relationship of DLPFC and motivational processes, with at least one study 

reporting activation selectively in left DLPFC (Pochon et al., 2002) and others reporting bilateral 

DLPFC activation (e.g., Taylor et al., 2004). A long line of research that suggests that PFC is 

lateralized with respect to motivational/emotional valence, with right PFC associated with 
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avoidance motivation and unpleasant emotion, and left PFC associated with approach motivation 

and pleasant emotion (for reviews see Heller, 1993; Davidson & Irwin, 1999). Thus, differences 

in the motivational manipulation(s) used across studies (reward versus punishment) could 

account for discrepancies regarding hemispheric lateralization in the literature. Another relevant 

factor not examined in these studies is the influence of individual differences in motivational 

temperament on the lateralization of DLPFC activation during executive function tasks. To 

address these questions, Spielberg, Miller, et al. (2011) investigated moderation of neural 

activation associated with incongruent versus congruent words on the color-word Stroop (1935) 

task by approach and avoidance temperament. Consistent with previous research on the 

integration of state motivation and executive function processes (Taylor et al., 2004), approach 

temperament moderated activation in two regions of left DLPFC, whereas avoidance 

temperament moderated activation in one region of right DLPFC, all of which were lateralized 

effects. Avoidance temperament also unexpectedly moderated activation in a region of left 

DLPFC, overlapping one of the areas associated with approach, suggesting that research on 

laterality, which often examines only hemispheric difference scores, has been overlooking 

important bilateral contributions to motivational processes.  

The regions of DLPFC identified in Spielberg, Miller, et al. (2011) have been associated 

with a number of other functions. Specifically, these regions have been implicated in behavioral 

inhibition, planning upcoming action, attending to cues predicting the occurrence of a 

motivationally salient event, and responding when motivationally salient events occur (Abler, 

Walter, Erk, Kammerer, & Spitzer, 2006; Bickel, Pitcock, Yi, & Angtuaco, 2009; Kaladjian et 

al., 2009; Volle et al., 2005). Incorporating this research with their findings, Spielberg, Miller, et 

al. hypothesized that these regions of DLPFC are involved in implementing a motivational set 
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that biases lower-order processing (i.e., attention to ink color vs. word meaning) to be congruent 

with goals. Thus, DLPFC appears to play a central role in the pursuit of goals.  

Brain Areas Involved in Other Aspects of Goal Pursuit 

Orbitofrontal Cortex 

In addition to DLPFC, a number of other brain areas have been implicated in the 

instantiation of processes important for the pursuit of goals. Orbitofrontal cortex (OFC) has been 

linked to the maintenance of the current and expected motivational value of stimuli (O‟Doherty 

& Dolan, 2006) and likely provides information about stimulus value to superior areas such as 

DLPFC (Szatkowska, Bogorodzki, Wolak, Marchewka, & Szeszkowski, 2008). O‟Doherty 

(2007) proposed a medial vs. lateral distinction in OFC, with the medial and lateral areas 

representing the value of rewards and punishments, respectively. However, there is disagreement 

in the literature regarding the role of lateral OFC in motivation. Elliott, Dolan, and Frith (2000) 

suggested that lateral OFC is activated when previously rewarded behavior must be inhibited, 

rather than representing the value of punishments, per se. Kringelbach and Rolls (2004) 

incorporated both views and suggested that lateral OFC represents the value of punishments and 

signals that behavior should change.  

This organization of OFC conflicts with the proposal that left PFC is associated with 

approach motivation and pleasant valence and right PFC with avoidance motivation and 

unpleasant valence (Heller, 1993; Davidson & Irwin, 1999). A recent meta-analysis suggests that 

OFC is lateralized with respect to emotional valence, although not in the predicted direction 

(Wager et al., 2008). Bilateral/medial and right/lateral OFC was associated with pleasant 

emotional experience, whereas left middle and lateral OFC was associated with unpleasant 

emotional experience. The association between bilateral, medial OFC and pleasant valence is 
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consistent with O‟Doherty‟s (2007) proposal. In summary, although there appears to be some 

consistency in proposals of OFC organization regarding medial OFC, there is still debate 

regarding the role of lateral OFC.  

Anterior Cingulate Cortex 

Another area hypothesized to be important for goal pursuit is anterior cingulate cortex 

(ACC), which has been implicated in encoding the predicted values associated with actions (for a 

review see Rushworth & Behrens, 2008). This includes the immediate reward or punishment 

value, as well as the value of potential information about future events prompted by the action. 

Information represented in ACC is needed to efficiently create action plans to pursue goals, 

suggesting that ACC provides this information to DLPFC.  

Several parcellations of ACC have been proposed. One influential parcellation (Bush, 

Luu, & Posner, 2000; for a direct test see Mohanty et al., 2007) divides ACC into two sections: 

dorsal ACC, hypothesized to be involved in putatively cognitive tasks such as error processing, 

and rostral ACC, hypothesized to be involved in putatively emotional tasks. A more recent study 

that employed diffusion tractography and meta-analysis techniques (Beckmann, Johansen-Berg, 

& Rushworth, 2009) identified a region (roughly corresponding to the dorsal ACC region 

identified by Bush et al. [2000] but extending around the genu of the corpus callosum into rostral 

ACC) that was heavily connected to DLPFC and surrounding cortex and was reliably activated 

by reward manipulations. Given that this ACC region displays both motivation-related activation 

and connectivity to DLPFC, it is likely that this region provides motivational information 

regarding actions to DLPFC. This suggests that the role of this portion of ACC in goal pursuit is 

to provide information to DLPFC regarding the value of potential actions which is then used to 

select the appropriate course of action from among the available options.  



54 
 

Amygdala 

Although often discussed solely in the context of unpleasantly valenced emotions, 

particularly fear (Baxter & Murray, 2002), research has supported a role for the amygdala in 

pleasantly valenced emotions and reward learning as well (Baxter & Murray, 2002; Holland & 

Gallagher, 2004; Sabatinelli, Bradley, Fitzsimmons, & Lang, 2005). In particular, research has 

implicated the amygdala as important for the identification of the motivational relevance of 

stimuli and the enhancement of feature processing in salient stimuli (Pessoa & Adolphs, 2010). 

Thus, these studies suggest that amygdala is differentially engaged by the salience of stimuli, 

independent of valence. In summary, the role of the amygdala in goal pursuit appears to be in 

biasing the processing of perceptual information such that salient information is given more 

weight.  

Basal Ganglia 

Basal ganglia (BG), a set of subcortical nuclei that includes striatum, globus pallidus, 

substantia nigra, and subthalamic nucleus, has been heavily implicated in a number of reward 

processes (Haber, 2009) and, to a lesser extent, punishment processes (e.g., Delgado, Nystrom, 

Fissell, Noll, & Fiez, 2000; Redgrave, Coizet, & Reynolds, 2010). For example, research finds 

nucleus accumbens is activated during anticipation of appetitive stimuli (Knutson, Taylor, 

Kaufman, Peterson, & Glover, 2005). Additionally, striatum receives projections from a diverse 

set of areas involved in goal pursuit, including DLPFC, ACC, OFC, amygdala, and midbrain 

dopaminergic nuclei, and is thought to integrate information from processes in these areas 

(Haber, 2010).  

The striatal targets of these cortical projections appear to be organized topographically 

(Haber, 2009). Specifically, moving from ventral to dorsal striatum, focal projections appear to 
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be organized in this order: ventral-medial PFC, OFC, dorsal ACC, DLPFC, pre-motor/motor 

cortex (Haber, 2009, 2010; Tremblay, Worbe, & Hollerman, 2009). These areas receiving focal 

projections appear to partially overlap, providing one method by which information conveyed by 

such afferents may be integrated (Haber, 2010). In addition to areas of focal projection from 

cortex, diffuse projections from each of these cortical areas are found throughout striatum, 

providing another method by which information conveyed by these afferents can be integrated 

(Haber, 2010). This integrated information can feed back through the output nodes of BG (i.e., 

substantia nigra and internal segment of globus pallidus) to influence processing in these cortical 

areas (Gerfen & Bolam, 2010).  

Present Study 

One important aspect of motivational processes not tested in Spielberg, Miller, et al. 

(2011) is the hypothesized differential sensitivity to the valence of stimuli associated with 

temperamental motivation (i.e., approach temperament associated with greater sensitivity to 

pleasant valence, avoidance temperament associated with greater sensitivity to unpleasant 

valence). Sensitivity to pleasant valence, for example, could lead to increased distraction from 

goals if the pleasantly valenced stimuli are salient and task-irrelevant. Therefore, rather than 

being solely related to enhanced goal pursuit, it is possible that greater levels of temperamental 

motivation may also lead to disrupted goal pursuit in the presence of motivationally salient, but 

task-irrelevant, distracters. Consequently, greater recruitment of brain areas associated with 

maintaining goals would be needed to compensate for this disruption. Thus, one aim of the 

present study was to test the hypothesis that approach and avoidance temperament are associated 

with increased sensitivity to pleasant and unpleasant stimuli (valence manipulation), 

respectively, and greater compensatory recruitment of brain regions to maintain goal pursuit.  
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Emotionally arousing stimuli, independent of the valence, are often salient for goals and, 

therefore, should attract attention. In a context where the arousing aspect of the stimuli is 

irrelevant, this would lead to distraction from the goal and subsequent engagement of brain 

regions involved in maintaining task performance. A second aim of the present study was to test 

the hypothesis that brain areas observed to be differentially moderated by motivation in the 

context of tasks without an explicit emotional manipulation would be similarly engaged to ignore 

emotionally arousing information (arousal manipulation), which would suggest that these areas 

are engaged in the integration of motivational and executive function processes regardless of the 

nature of the distraction that threatens to interrupt the goal.  

To examine these hypotheses, the present study used fMRI to examine moderation of 

neural activation by trait approach and avoidance motivation in an emotion-word Stroop task 

(Williams, Mathews, & MacLeod, 1996). Unlike the color-word Stroop, the word meaning is 

distracting in the emotion-word Stroop, because it is emotionally valenced and arousing. The 

emotion-word Stroop task used in the present study included a valence manipulation (pleasant 

and unpleasant words) and an arousal manipulation (low and high arousal words).  

Hypotheses 

Based on existing research, approach temperament was hypothesized to be associated 

with greater distraction by pleasant words, and avoidance temperament was hypothesized to be 

associated with greater distraction by unpleasant words. Both approach and avoidance 

temperament were hypothesized to be associated with distraction by arousing words. The 

hypothesized effects of this distraction on brain activation are specified below.  

DLPFC. Approach and avoidance temperament were both hypothesized to be associated 

with increased engagement of the DLPFC areas identified in Spielberg, Miller, et al. (2011) as a 
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compensatory strategy to maintain goal pursuit and ignore emotionally arousing words. 

Additionally, approach temperament was hypothesized to differentially moderate left DLPFC 

with respect to the valence of the distracters, such that greater approach temperament was 

associated with greater activation to pleasant distracters (relative to unpleasant). Similarly, 

avoidance temperament was hypothesized to be associated with greater activation to unpleasant 

distracters (relative to pleasant) in bilateral DLPFC.    

OFC. Approach temperament was hypothesized be associated with greater activation to 

pleasant distracters in bilateral medial and right OFC, whereas avoidance temperament was 

hypothesized to be associated with greater activation to unpleasant distracters in left middle and 

lateral OFC, given research implicating these areas in the maintenance of appetitive and aversive 

value, respectively.  

ACC. Approach and avoidance temperament were hypothesized to be associated with 

greater activation to pleasant and unpleasant distracters, respectively, in the ACC region that 

research suggests provide action-related value information to DLFPC.  

Amygdala. As discussed above, research suggests that amygdala is differentially 

engaged by the salience of stimuli, independent of valence (Baxter & Murray, 2002). However, 

because approach temperament is thought to increase the salience of pleasant stimuli, it was 

hypothesized that amygdala activation to pleasant stimuli would increase as a function of 

approach temperament. Further, it was hypothesized that amygdala activation to unpleasant 

stimuli would increase as a function of avoidance temperament.  

BG. Given its proposed role in integrating information from DLPFC, OFC, and ACC, 

BG was hypothesized to show a pattern of activation similar to that of the brain areas that project 

to it. Specifically, BG was hypothesized to show greater activation to pleasant distracters as a 
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function of approach temperament, greater activation to unpleasant distracters as a function of 

avoidance temperament, and greater activation to emotionally arousing distracters as a function 

of both temperament types.  

Method 

Participants 

Participants were recruited from a larger pool of undergraduates, who completed a series 

of questionnaires as partial fulfillment of enrollment in an introductory psychology course. The 

questionnaires included the Penn State Worry Questionnaire (PSWQ, Meyer, Miller, Metzger, & 

Borkovec, 1990; Molina & Borkovec, 1994) as a measure of anxious apprehension and portions 

of the Mood and Anxiety Symptom Questionnaire (MASQ; Watson, Clark, et al., 1995; Watson, 

Weber, et al., 1995), which contains measures of anxious arousal and anhedonic depression. 

Participants were contacted if they scored above the 80th percentile on one of the three 

psychopathology dimensions and below the 50th percentile on the other two dimensions 

(creating three “pure” groups), if they scored above the 80th percentile on all three 

psychopathology dimensions (creating a “comorbid” group), or below the 50th percentile on all 

three psychopathology dimensions (creating a “control” group). Group membership was ignored 

in data analyses for the present study except when testing whether group membership was a 

confounding effect
1
. Participants were then screened for claustrophobia, left-handedness, history 

of serious brain injury, abnormal hearing or vision, metal in their body, pregnancy, or non-native 

English.  

                                                           
1
 For all fMRI analyses performed, a second analysis was conducted with psychopathology group entered as a 

between-subject factor. These analyses tested whether the relationship between temperament score and brain 

activation (and hemisphere in the laterality analysis) differed by psychopathology group. No findings differed by 

psychopathology group, indicating that the results of the present study are not driven by sample selection. It can also 

be noted that this sampling strategy covers all but about 1 SD of the range of scales. 
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A total of 107 participants completed the laboratory protocol. Participants were not used 

if (a) they moved more than 3.3 mm relative to the volume used for registration (the middle 

volume of the time series) or more than 2 mm relative to the previous volume (one participant 

exceeded this criterion only during the last block of words; therefore, this block was not used), 

(b) if they committed errors on 15% or more of the trials, (c) if they exhibited reaction times 

greater than 3 standard deviations from the mean, (d) if their scans exhibited apparent signal loss 

due to magnetic susceptibility in areas of interest, or (e) if their scans exhibited activation 

patterns that appeared to be due to residual motion-related variance. This left 80 participants (47 

female, mean age = 19). Seventy-six of the participants in the present sample overlapped with 

the sample used in Spielberg, Miller, et al. (2011). One participant‟s scans exhibited scanner 

artifact throughout the time series. Independent components analysis, as implemented in 

MELODIC (Beckmann & Smith, 2004), was used to isolate and remove this artifact. After 

removal, no artifact was apparent. 

Questionnaires 

To measure Approach and Avoidance Temperament, three questionnaires were 

administered that have been previously associated with these constructs (Elliot & Thrash, 2002): 

the Behavioral Inhibition and Behavioral Activation Scales (Carver & White, 1994), the 

Neuroticism and Extraversion sub-scales of the NEO-Five Factor Inventory (Costa & McRae, 

1992), and the Negative and Positive Temperament sub-scales of the General Temperament 

Survey (Watson & Clark, 1993). These scales were used as indicators in confirmatory factor 

analysis using AMOS. Based on previous research (Elliot & Thrash, 2002; Spielberg, Heller, et 

al., 2011; Spielberg, Miller, et al., 2011), two latent factors were modeled, with Behavioral 

Activation, Extraversion, and Positive Temperament used as indicators for approach 
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temperament, and Behavioral Inhibition, Neuroticism, and Negative Temperament used as 

indicators for avoidance temperament. Maximum likelihood estimation was used, and the two 

latent factors were allowed to co-vary freely. Factor scores were extracted with the regression 

method to use as measures of approach and avoidance temperament.  

Stimuli and experimental design 

Participants completed two tasks, an emotion-word Stroop and a color-word Stroop 

(findings from the latter are presented in Spielberg, Miller, et al., 2011). The order of 

presentation of the two tasks was counterbalanced across participants. In the emotion-word 

Stroop task, 256 trials were presented in 16 blocks (four pleasant, four unpleasant, and eight 

neutral) of 16 trials each, with a variable ITI (2000 +/- 225 ms) between trial onsets. A trial 

began with presentation of a word for 1500 ms, followed by a fixation cross for an average of 

500 ms. Each trial consisted of one word presented in one of four ink colors (red, yellow, green, 

blue), each color occurring equally often with each word type. Blocks of pleasant or unpleasant 

words alternated with blocks of neutral words. The order of presentation of blocks in the present 

investigation was counterbalanced for each participant. In addition to the word blocks, there 

were four fixation blocks (one at the beginning, one at the end, and two in the middle of the 

session) and five rest blocks (one at the beginning, one at the end, and one between each word 

block). In the fixation condition, a fixation cross intensified in place of word presentation, and in 

the rest condition the subject was instructed to rest and keep their eyes open.  

The 256 word stimuli were selected from the Affective Norms for English Words set 

(Bradley & Lang, 1998). Sixty-four were pleasant (e.g., birthday, ecstasy, laughter), 64 were 

unpleasant (e.g., suicide, war, victim), and two sets of 64 were neutral (e.g., hydrant, moment, 

carpet). The words were carefully selected on the basis of established norms for valence, arousal, 
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frequency of usage in the English language (Bradley & Lang, 1998), and number of letters. 

Words ranged from three to eight letters (visual angle 6 – 16 degrees). Each word was centered 

on a black background and projected. Participants responded with their index and middle fingers 

using a four-button response box (James Long Company) under each hand.  

fMRI data collection 

The fMRI data were 370 three-dimensional (3D) images acquired using a Siemens 

gradient-echo echo-planar imaging sequence (TR 2000 ms, TE 25 ms, flip angle 80°, FOV = 220 

cm) on a Siemens Allegra 3T scanner. Each image consisted of 38 oblique axial slices (slice 

thickness 3 mm, 0.3mm gap, in-plane resolution 3.4375 mm X 3.4375 mm) acquired parallel to 

the anterior and posterior commissures. After the fMRI acquisition, a 160-slice MPRAGE 

structural sequence was acquired (spatial resolution 1 mm X 1 mm X 1 mm) and used to warp 

the participant‟s functional data into standard space.    

fMRI data reduction and preprocessing 

Image processing and statistical analysis were implemented primarily using FMRI Expert 

Analysis Tool v5.98 (FEAT, www.fmrib.ox.ac.uk/analysis/research/feat/), part of the FSL 

analysis package (www.fmrib.ox.ac.uk/fsl). The first three time points (fMRI volumes) of the 

data set corresponding for each subject will be discarded to allow the MR signal to reach a 

steady state. Functional data for each participant were motion-corrected using rigid-body 

registration, implemented in FSL‟s linear registration tool, MCFLIRT (Jenkinson, Bannister, 

Brady, & Smith, 2002). Data were intensity-normalized, such that the mean intensity (across 

time and across voxels in the brain) was constrained to be equal across participants. Next, data 

were temporally filtered with a nonlinear high-pass filter that attenuates frequencies below 1/212 

Hz. and spatially smoothed using a 3D Gaussian kernel (FWHM = 5 mm). Temporal low-pass 
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filtering was carried out using AFNI‟s 3dDespike tool (http://afni.nimh.nih.gov/) to remove 

intensity spikes.  

fMRI data processing 

Regression analyses were performed on the processed functional time series of each 

participant using FMRIB‟s Improved Linear Model (FILM) with autocorrelation correction 

(Woolrich, Ripley, Brady, & Smith, 2001). Four predictors, one for each word type block 

(pleasant, neutral, unpleasant) and one modeling the rest condition, were included in the 

regression model (fixation was left unmodeled). For each predictor, the vector of assigned 

weights corresponding to word type was convolved with a gamma function to better approximate 

the temporal course of the blood-oxygen-dependent (BOLD) hemodynamic response function. 

Each predictor yielded a per-voxel effect-size parameter estimate (β) map representing the 

magnitude of activation associated with that predictor.  

In order to create comparisons of interest, β values for the relevant parameters were 

contrasted. Two comparisons of interest were created. A valence comparison (VAL) was created 

by contrasting the pleasant condition with the unpleasant condition. An arousal comparison 

(ARO) was created by averaging the pleasant and unpleasant conditions and contrasting this 

average against the neutral condition. For each participant, these functional activation maps were 

non-linearly warped into a common stereotaxic space (the 2009 Montreal Neurological Institute 

[MNI] 152 symmetrical 1mm x 1mm x 1mm template; Fonov, Evans, McKinstry, Almli, & 

Collins, 2009) using FMRIB‟s Non-Linear Image Registration Tool (FNIRT; Andersson, 

Jenkinson, & Smith, 2007).  

Group inferential statistical analyses were carried out using FMRIB‟s Local Analysis of 

Mixed Effects (FLAME). To examine the task main effects, a t-test of the mean across all 

http://afni.nimh.nih.gov/
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participants was conducted for VAL and ARO. To examine moderation by motivational 

temperaments, VAL and ARO were entered as dependent variables into second-level multiple 

regression analyses with approach and avoidance scores as predictor variables
2
. Each 

moderation-related regression analysis produced two β maps, one corresponding to the unique 

variance associated with approach temperament (with the shared variance associated with 

avoidance removed) and one corresponding to the unique variance associated with avoidance 

temperament (with the shared variance associated with avoidance removed). T-tests were 

conducted on the βs for approach and avoidance and then converted to z-scores to determine the 

significance of the βs. For the VAL contrast, 1-tailed t-tests based on a priori hypotheses 

(pleasant > unpleasant for approach, unpleasant > pleasant for avoidance) were used. For the 

ARO contrast, 2-tailed t-tests were used. Based on a priori hypotheses, several masks were used 

to constrain the number of voxels under consideration. These masks were of 1) bilateral frontal 

lobe gray-matter, in addition to the entire cingulate gyrus, 2) bilateral amygdala, 3) bilateral 

basal ganglia, and 4) ventral prefrontal gray-matter. Additionally, in order to examine the task 

main effects, a whole-brain gray-matter mask was used, because no a-priori hypotheses were 

made regarding these effects.  

Monte Carlo simulations via AFNI‟s AlphaSim program were used to estimate the 

overall significance level (probability of a false detection) for thresholding the 3D functional z-

                                                           
2
 fMRI analyses conducted using FEAT were rerun using FSL‟s outlier de-weighting (Woolrich, 2008) procedure to 

test whether findings were driven by outliers. Findings were virtually identical, indicating that findings were not due 

to outliers. Two additional analyses were conducted in order to rule out the potential confounding effects of 

structural differences that may correlate with approach or avoidance temperament.  First, voxel-based morphometry 

analysis was performed with approach and avoidance temperament predicting gray-matter density. Approach and 

avoidance did not predict gray matter density in any of the areas in which approach and avoidance predicted fMRI 

activation. Second, approach and avoidance FEAT analyses were rerun with gray-matter density as a voxel-

dependent covariate, thus removing any shared variance between temperament and gray-matter density. Approach 

and avoidance continued to significantly predict activation in all clusters. 
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map image (Ward, 2000). These simulations were conducted for several individual voxel z-

threshold values, providing the appropriate cluster size giving an overall two-tailed family-wise 

error rate of 0.05. An individual voxel level threshold of p = 0.04 was used in combination with 

minimum cluster sizes of 1,560 mm
3
 (frontal lobe), 351 mm

3
 (amygdala), 585 mm

3
 (basal 

ganglia), 897 mm
3
 (ventral-prefrontal gray-matter), and 2,340 mm

3
 (whole-brain gray-matter).  

Lateralization was tested using a locally written Matlab program. This program 

conducted a repeated-measures homogeneity-of-slopes ANCOVA, with hemisphere as the 

repeated measure, approach and avoidance scores as continuous predictors, and fMRI activation 

as the dependent variable. This ANCOVA was conducted on a per-voxel basis, with the resultant 

β map thresholded in the manner described above. For lateralization analyses, the masks were 

described above were edited to contain only the right hemisphere, and an individual voxel level 

threshold a threshold of p = 0.04 was used in combination with minimum cluster sizes of 1,287 

mm
3
 (frontal lobe mask), 312 mm

3 
(amygdala), 507 mm

3
 (basal ganglia), and 741 mm

3
 (ventral-

prefrontal gray-matter). Additionally, because a priori hypotheses were made regarding 

lateralization in DLFPC, a mask of DLPFC gray matter (cluster size threshold = 741 mm
3
) was 

used to test the laterality of DLPFC clusters.  

Behavioral Analyses 

 Mean reaction time (RT) and error frequency were calculated for each condition, for each 

participant. To calculate the effect of task on RT, two orthogonal paired-sample t-tests were 

conducted, one in which pleasant was compared to unpleasant and one in which the average of 

pleasant and unpleasant was compared to neutral. Similar comparisons were used with related-

samples Wilcoxon signed rank tests to calculate the effect of task on error rate. A VAL RT 

interference score was calculated by subtracting the unpleasant RT from the pleasant RT. A VAL 
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error rate difference score was similarly calculated. An ARO RT interference score was 

calculated by subtracting neutral RT from the average of pleasant and unpleasant RTs. An ARO 

error difference rate score was calculated by subtracting neutral error frequency from the sum of 

pleasant and unpleasant error frequencies (it was not necessary to calculate the mean of pleasant 

and unpleasant because the number of neutral trials was equal to the sum of the pleasant and 

unpleasant trials). RT interference and error rate difference score were entered as dependent 

variables in regression analyses (logistic regression was used with error difference scores) with 

approach and avoidance temperament entered simultaneously as predictors.  

To assess the potential effect of neural activity related to motivational temperaments on 

behavioral performance, a score for each ROI identified in the earlier analysis in which approach 

temperament and avoidance temperament predicted fMRI activation (i.e., not the lateralization 

analysis in which hemisphere was a factor) was created by averaging β values across voxels in 

each ROI, for each participant. ROI scores were then correlated with RT interference and error 

rate difference scores. Spearman rank-order correlations were used for error analyses.  

Results 

Confirmatory Factor Analysis 

The two-factor model of scales contributing to approach and avoidance scores was 

successfully estimated and was associated with a non-significant χ
2
 value of 10.3 (p = .25, 8 

degrees of freedom). The comparative fit index value (Bentler, 1990) was 0.993, and the root 

mean square error of approximation value (Brown & Cudeck, 1993) was 0.060, indicating that 

the model provided excellent fit to the data. All measurement weights were significant at p < 

0.001, and the standardized estimates are provided in Table 1.  
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Behavioral Analysis 

Paired-sample t-tests for RT did not reveal differences between emotion conditions (e.g., 

pleasant vs. unpleasant; p < .05). The related-samples Wilcoxon signed rank test revealed more 

errors in the high arousal blocks (mean = 6.8) than the neutral blocks (mean = 5.6, p < .001). 

Error rates in the pleasant and unpleasant blocks did not differ. Neither approach nor avoidance 

temperament predicted RT interference or differences in error rates.  

Main Effects of Task 

Table 2 lists brain regions where main effects of VAL and ARO were observed.  

Valence-Related Activation Moderated by Temperament 

Table 3 lists brain regions where activation related to VAL was moderated by trait 

approach or avoidance temperament. No areas emerged in which VAL activation was moderated 

by approach temperament. As illustrated in Figure 3.1, four clusters emerged in which VAL 

activation was moderated by avoidance temperament. In line with present hypotheses, greater 

levels of avoidance temperament were associated with a greater response to unpleasant 

distracters, relative to pleasant distracters, in right middle frontal gyrus/precentral gyrus, left 

putamen, and right amygdala. Additionally, greater levels of avoidance temperament were 

associated with a greater response to unpleasant distracters in medial precentral gyrus/paracentral 

lobule.  

Arousal-Related Activation Moderated by Temperament 

Table 4 lists brain regions where activation related to ARO was moderated by trait 

approach or avoidance temperament. In line with present hypotheses, activation to arousing 

distracters in left DLPFC and bilateral putamen increased as approach temperament increased, as 

illustrated in Figure 3.2. The area of left DLPFC identified in the present study overlapped both 
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areas found to be associated with approach temperament in Spielberg, Miller, et al. (2011). 

Unexpectedly, four additional clusters emerged in which activation to arousing distracters 

increased as a function of approach temperament. These included a cluster in genual 

ACC/paracingulate/left frontal pole, two clusters in posterior cingulate (one of which also 

included medial precentral gyrus), and one cluster in left anterior/middle OFC/frontal pole.  

As illustrated in Figure 3.3, results for avoidance motivation were also consistent with 

hypotheses. Specifically, activation to arousing distracters in regions of right and left DLPFC, 

overlapping the areas identified in Spielberg, Miller, et al. (2011), increased as avoidance 

temperament increased. The left DLPFC cluster partially overlapped with the left DLPFC cluster 

associated with approach temperament by 732 mm
3
 (34% of the approach cluster, 12% of the 

avoidance cluster). Also in line with present hypotheses, activation to arousing distracters in 

bilateral putamen and right nucleus accumbens/caudate increased as a function of avoidance 

temperament. Unexpectedly, activation to arousing distracters in two areas of right inferior 

frontal gyrus, one that extended superior into middle frontal gyrus and one that extended inferior 

into agranular OFC, increased as avoidance temperament increased. Additionally, activation to 

arousing distracters in a large cluster that included genual ACC, dACC, PCC, paracingulate, 

supplementary motor area, medial frontal pole, medial precentral gyrus, and right superior 

frontal gyrus increased as avoidance temperament increased.  

Correlations between Brain Activation and Behavior 

 In order to explore the potential influence of the brain areas associated with motivation 

on successful behavioral performance, an average β for each cluster, for each participant, was 

calculated and correlated with RT interference and error rate difference. These correlations are 

presented in Table 4. Valence-related activation in the medial precentral gyrus/paracentral lobule 
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associated with avoidance exhibited a positive correlation with RT interference, indicating that 

increased activation to unpleasant distracters, relative to pleasant, was associated with greater RT 

to unpleasant, relative to pleasant.  

 Four clusters in which approach temperament moderated arousal-related activation 

exhibited positive correlations with RT interference, indicating that activation to emotionally 

arousing distracters in these areas was related to longer relative reaction times to arousing words. 

This included all three cingulate clusters and the left DLPFC cluster. No reliable associations 

emerged between approach-related clusters and error interference.  

 Six clusters in which avoidance temperament moderated arousal-related activation 

exhibited positive correlations with RT interference, indicating that activation to emotionally 

arousing distracters in these areas was related to longer relative reaction times to arousing words. 

These were both DLPFC clusters, both IFG clusters, the cluster that included ACC, and the 

nucleus accumbens/caudate cluster. Four of these clusters also exhibited positive correlations 

with error interference, indicating that arousal related activation in these areas was associated 

with more errors to arousing distracters.  

Lateralization Analyses 

 Given work indicating that motivation influences laterality of activation in frontal 

regions, analyses were carried out to examine whether the activity in regions associated with 

each temperament type (approach, avoidance) were asymmetric across the hemispheres. As 

indicated in Table 3, the left putamen cluster was the only valence-related area to exhibit 

significant lateralization, with greater activation to unpleasant distracters in the left hemisphere. 

In line with present hypotheses, the left DLPFC area related to approach temperament exhibited 

significant lateralization, with greater activation to arousing distracters in the left hemisphere. As 
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indicated in Table 4, four areas in which arousal-related activation varied as a function of 

avoidance exhibited significant lateralization. In line with present hypotheses, this included the 

right DLPFC area, along with the right inferior and middle frontal gyrus cluster and the cluster 

located in the caudate head (the portion of this cluster located in nucleus accumbens was not 

lateralized).  

Discussion 

 The findings of the present study partially supported the hypothesis that approach and 

avoidance are differentially sensitive to valence. Avoidance motivation was associated with 

greater activation to unpleasant distracters in several of the hypothesized brain areas, although 

sensitivity was not observed in behavioral performance. No areas exhibited greater activation to 

pleasant distracters as a function of approach temperament. The hypothesis that approach and 

avoidance temperament would both be associated with greater recruitment of brain areas 

involved in maintaining goal pursuit to compensate for distraction due to emotionally arousing 

distracters was supported. This increased recruitment was observed for both approach and 

avoidance in a number of areas, including DLPFC.  

Dorsolateral Prefrontal Cortex 

The present findings confirm the importance of DLPFC in integrating motivational and 

executive function processes. As hypothesized, approach temperament was associated with 

greater activation to arousing distracters in a region of left DLPFC that substantially overlapped 

the two clusters found to be associated with approach temperament in Spielberg, Miller, et al. 

(2011), and this effect was lateralized as predicted. Also in line with hypotheses, avoidance 

temperament was associated with greater activation to arousing distracters in regions of right and 

left DLPFC that substantially overlapped the two clusters found in Spielberg, Miller, et al. to be 
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associated with avoidance temperament. Again similar to the findings of Spielberg, Miller, et al., 

the right DLPFC effect was lateralized, whereas the left DLFPC effect was not. Consistent with 

Spielberg, Miller, et al., these findings indicate that motivational temperaments are associated 

with increased engagement of DLPFC to maintain goal pursuit.  

One interpretation of these findings is that these DLPFC areas are recruited to 

compensate for the distraction induced by the arousing nature of the distracters. If this were the 

case, it would be plausible to expect activation in these areas to be associated with better 

performance (decreased RT interference). However, activation in all three DLPFC areas was 

associated with increased RT interference to arousing words. This finding calls into question the 

interpretation that DLFPC is involved in maintaining the goal (i.e., ignore word meaning) in the 

face of distraction. An alternative interpretation of the positive correlation between activation 

and RT interference is that greater distraction, reflected in increased RT interference, is 

associated with greater compensatory activation in DLPFC areas, but this compensation is not 

completely successful, and, as a result, the correlation remains positive. Future research should 

investigate whether the positive relationship between RT interference and DLFPC activation 

reflects compensatory recruitment.  

Present hypotheses regarding moderation of valence-related activation in DLPFC by 

motivational temperaments were not supported. Specifically, approach temperament did not 

moderate activation to pleasant distracters in left DLPFC, and avoidance temperament did not 

moderate activation to unpleasant distracters in bilateral DLPFC. Additionally, approach and 

avoidance temperament did not moderate valence-related behavioral performance. Taken 

together with the DLPFC findings for arousal, these findings suggest that motivational 

temperaments are not differentially sensitive to stimuli valence, which conflicts with prominent 
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conceptualizations of these constructs (Elliot, 2006). However, this may be due to the fact that 

the valenced stimuli are task-irrelevant, and differential sensitivity to valence in DLPFC may be 

present when the valenced stimuli are the focus of goal-pursuit (e.g., approach temperament 

associated with increased sensitivity to appetitive goals).  

Future research should examine whether activation in the regions of DLPFC observed in 

the present study differentially varies as a function of approach and avoidance temperament 

when the goal itself is valenced. For example, activation in left DLPFC may increase as a 

function of approach temperament when the goal is appetitive (e.g., monetary reward), but not 

when the goal is aversive. Additionally, distracter word meaning was not directly relevant to the 

goal being pursued (attending to ink color) in the present study. It is possible that differential 

sensitivity to valence associated with motivational temperaments would be observed in DLPFC 

if the distracters were directly relevant to the task at hand. For example, if the goal were to 

identify whether a face was expressing disgust, approach temperament may show increased 

reaction time to pleasant faces vs. unpleasant faces.  

Although right DLPFC was not differentially sensitive to unpleasant valence as a 

function of avoidance temperament, a cluster located posterior to DLPFC in right 

MFG/precentral gyrus exhibited increased activation to unpleasant distracters as avoidance 

temperament increased. Therefore, it may be that integration of avoidance motivation and 

executive function processes also occurs in an area posterior to DLPFC, and the specific 

motivational processes involved are those more sensitive to distracter valence, such as biasing 

attention towards motivationally congruent stimuli. Support for this hypothesis comes from the 

finding that the superior portion of this cluster is located in what has been labeled the human 

frontal eye field (Kincade, Abrams, Astafiev, Shulman, & Corbetta, 2005), an area that has been 
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implicated in both top-down and bottom-up attentional processing (Corbetta, Patel, & Schulman, 

2008; Dosenbach, et al., 2006).  

Cingulate Cortex 

Similar to the findings for DLPFC, several clusters emerged in which approach and 

avoidance temperament moderated activation related to arousal, rather than valence as 

hypothesized. First, approach and avoidance temperament were both associated with increased 

activation in cingulate. Approach moderated activation in genual anterior cingulate, in the 

anterior end of the cingulate area hypothesized to be related to maintaining the value of actions, 

as well as posterior cingulate (PCC). Avoidance moderated activation in a larger swath of cortex, 

including both areas moderated by approach and extending further both dorsally and rostrally 

from genual anterior cingulate.  

Although not hypothesized, moderation of activation in PCC is consistent with research 

implicating this region as having an important role in goal pursuit. Specifically, research 

suggests that PCC is activated when individuals forgo proximal reward or incur proximal 

punishment in order to maximize reward over time (Ballard & Knutson, 2009; McClure, Ericson, 

Laibson, Loewenstein, & Cohen, 2007; Weber & Huettel, 2008; Wittmann, Leland, & Paulus, 

2007). Additionally, research by Maddock (1999) indicates that PCC is involved in integrating 

emotional and motivational aspects into memory during recall, which suggests a role for PCC in 

the anticipation of delayed rewards. This hypothesis is consistent with a recent theory that PCC, 

along with other areas such as genual ACC, are involved in using “past experiences adaptively to 

imagine perspectives and events beyond those that emerge from the immediate environment” (p. 

49, Buckner & Carroll, 2007).  



73 
 

PCC involvement has also been found in studies directly examining approach and 

avoidance motivation. Specifically, PCC activation has been found to increase when participants 

self-reflected on both approach- and avoidance-related goals (Johnson et al., 2006). Additionally, 

dissociation in PCC activation with respect to motivationally relevant stimuli has been found in 

relation to approach and avoidance (Touryan et al., 2007). Specifically, when an approach 

orientation was induced, greater activation in PCC was observed during the evaluation of 

pleasant stimuli (relative to unpleasant stimuli). In contrast, when an avoidance orientation was 

induced, greater activation in PCC was observed during the evaluation of unpleasant stimuli. 

This finding appears, at first, to conflict with the finding in the present study that motivational 

temperaments moderated arousal-, rather than valence-, related PCC activation. However, the 

valenced stimuli were goal-irrelevant in the present study, whereas, in Touryan et al. (2007), the 

valenced stimuli were directly relevant to the goal. As discussed above in relation to DLPFC, 

differential responses may be present only when the valenced stimuli are goal-relevant, a 

question for future research.  

Orbitofrontal Cortex 

Similar to the findings for DLPFC and ACC, approach and avoidance temperament 

moderated arousal-related activation in OFC, rather than valence-related activation as 

hypothesized. One interpretation of this discrepancy is that the stimulus value, with respect to the 

goal of the task used in the present study, was not dependent on the particular valence of the 

word. Rather, it was the arousing nature of the stimuli that was distracting, as evidenced by an 

increased error rate for high arousal distracters, and the value of these stimuli as impediments to 

the goal varied as a function of the arousal level. If this is true, activation in OFC in the present 

study should reflect the arousal level of the stimulus, because stimulus value is thought to be 
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maintained in OFC (O‟Doherty, 2007). In contrast, stimulus value (and OFC activation) would 

be more likely to reflect the valence of the stimulus in a task with valenced target stimuli.  

The location of the OFC activation moderated by motivational temperaments in the 

present study was opposite to that hypothesized and was, in fact, consistent with DLFPC 

lateralization. Specifically, approach moderated activation in left anterior, middle OFC, and 

avoidance moderated activation in right, agranular OFC. However, neither of these effects was 

significantly lateralized, and, when the overall cluster threshold was lowered to p < 0.10, 

avoidance significantly moderated activation in left agranular OFC as well. The findings for 

avoidance temperament are consistent with the OFC parcellation proposed by O‟Doherty 

(O‟Doherty 2007), in which punishment-related stimuli are hypothesized to be associated with 

lateral OFC.  

Amygdala 

As hypothesized, amygdala activation to unpleasant distracters increased as a function of 

avoidance temperament. Given research indicating that amygdala is involved in identifying the 

motivational relevance of stimuli (Pessoa & Adolphs, 2010), this finding suggests that avoidance 

temperament is associated with the assessment of unpleasant stimuli as being more salient than 

pleasant stimuli. The present hypothesis that amygdala activation to pleasant distracters would 

increase as a function of approach temperament was not supported. Taken together, these two 

findings are consistent with research indicating that, when valenced stimuli are task-irrelevant, 

amygdala responses are greater to unpleasantly valenced than pleasantly valenced, stimuli 

(Straube, Pohlack, Mentzel, & Miltner, 2008).  
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Basal Ganglia 

The hypothesis that arousal-related basal ganglia activation would increase as a function 

of approach and avoidance temperament was supported in bilateral putamen for both approach 

and avoidance and the head of the caudate for avoidance temperament. The putamen clusters 

observed for both approach and avoidance are located in an area of putamen that receives 

projections from pre-motor cortex (Haber, 2010) and is thought to be involved in action 

preparation (Tremblay, et al., 2009). Therefore, moderation of activation in this area of putamen 

may reflect the influence of motivation on action preparation. Research suggests that the area of 

caudate found in the present study receives projections from DLPFC, ACC, and OFC and is 

involved in integrating information from these areas (Haber, 2010). This caudate region projects 

back to cortex through connections with globus pallidus and substantia nigra (Gerfen & Bolam, 

2010), providing a route by which integrated information from DLPFC, ACC, and OFC can 

influence ongoing processing in these cortical areas.  

 Present hypotheses regarding basal ganglia and valence-related activation were partially 

supported. Specifically, activation to unpleasant distracters in left putamen increased as a 

function of avoidance temperament. This cluster partially overlapped the left putamen cluster in 

which arousal-related activation was moderated by avoidance and is within the region of 

putamen that receives projections from pre-motor cortex (Haber, 2010) and is implicated in 

action preparation (Tremblay, et al., 2009). This suggests that avoidance motivational 

information differentially influences the preparation of actions related to unpleasant stimuli. The 

hypothesis that activation in basal ganglia to pleasant distracters would increase as a function of 

approach temperament was not supported. However, this hypothesis was based on the proposal 

that approach temperament would moderate activation to pleasant distracters in cortical areas, 
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particularly DLPFC, which was not found. Therefore, the broad hypothesis that BG would show 

a similar pattern of activation as the brain areas that project to it was supported.  

Right Inferior and Middle Frontal Gyri 

 Unexpectedly, arousal-related activation in right inferior frontal gyrus/middle frontal 

gyrus increased as a function of avoidance temperament, and this effect was lateralized. 

Although unexpected, this finding is consistent with research implicating this area in the 

detection of cues that indicate a response should be inhibited (Aron, 2010), and the detection of 

salient, unexpected stimuli (Corbetta, et al., 2008). This is consistent with both the task used in 

the present study, which involves inhibiting distraction related to the arousing nature of the 

words, and conceptualizations of avoidance motivation, which include increased vigilance for 

potential threat and for information indicating that the goal-pursuit strategy is incorrect (Elliot & 

Thrash, 2002).   

Strengths and Limitations 

 The present study benefited from direct tests of laterality, the use of a relatively large 

sample size for the fMRI literature, and careful measurement of approach and avoidance 

temperament by estimation of latent factors from multiple indices. It extends the literature on the 

neural integration of approach and avoidance motivation and executive function processes by 

examining this integration in the context of emotionally valenced and arousing distraction. As 

with any study, however, there are several limitations that must be considered when interpreting 

the results. First, the present study used only self-report measures of approach and avoidance 

temperament. Future research would benefit from additional behavioral performance measures, 

such as differential detection of cues indicating monetary reward and punishment (e.g., 

Henriques, Glowacki, & Davidson, 1994). Second, motivational stimuli (e.g., monetary 
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reward/punishment) were not central to the goal of the present task. Future research should 

examine the interaction of state and trait motivation and how these processes are integrated with 

executive function processes to accomplish goals. Third, all potentially relevant aspects of 

executive function were not recruited by the task used in the present study. Future research could 

extend the present findings by examining how processes related to other aspects of executive 

function, such as shifting and updating (Miyake et al., 2000), are integrated with motivational 

processes.  

In spite of these limitations, the present study adds to the literature by supporting the 

proposed role for DLPFC in the integration of motivational and executive function processes and 

implicating a network of other brain areas as being involved in maintaining goal pursuit, 

including OFC, ACC, PCC, and basal ganglia. Additionally, present findings suggest that 

approach temperament is not associated with differential sensitivity to pleasant stimuli when 

those stimuli are goal-irrelevant. Future research should determine whether differential 

sensitivity for pleasant stimuli is present when the valenced stimuli are either central to or highly 

related to the goal being pursued. Results from the present study do indicate that avoidance 

temperament is associated with a differential sensitivity to unpleasant stimuli, given the finding 

that valence-related activation in amygdala, right IFG, and right MFG varied as a function of 

avoidance temperament.  
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Table 1  

Self-Report Indicators for Approach and Avoidance Temperament. 

 

Indicator Variable 

 

Standardized Coefficient Value 

 

Approach Temperament 

 

 BAS 

 

0.75 

 

 NEO-FFI Extraversion 

 

0.96 

 

 GTS Positive Temperament 

 

0.79 

 

Avoidance Temperament 

 

 BIS 

 

0.80 

 

 NEO-FFI Neuroticism 

 

0.98 

 

 GTS Negative Temperament 

 

0.89 

Note. BAS = Behavioral Activation Scale (Carver & White, 1994). NEO-FFI = NEO-Five Factor Inventory (Costa 

& McRae, 1992). GTS = General Temperament Survey (Watson & Clark, 1993). BIS = Behavioral Inhibition Scale 

(Carver & White, 1994). 
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Table 2 

Main Effects of Task 

 

 

 

Region 

 

 

Cluster  

Size (mm
3
) 

 

 

Direction of 

Relationship
 

 

 

Mean  

z-value 

 

Location 

 

X 

 

Y 

 

Z 

 

Valence 

 

L STG/IFG/OFC 

(BA 11/38/47) 

 

3,571 

 

Positive 

 

2.46 

 

-48 

 

16 

 

-25 

 

M OFC/frontal pole/rACC/paracingulate 

(BA 6/8/9/10/11/24/25/32) 

 

24,959 

 

Positive 

 

2.59 

 

-3 

 

55 

 

11 

 

L thalamus 

 

2,671 

 

Positive 

 

2.35 

 

-7 

 

-4 

 

1 

 

M PCC/cuneus 

(BA 18/23/30/31) 

 

3,732 

 

Positive 

 

2.40 

 

-9 

 

-42 

 

6 

 

R precentral gyrus/postcentral gyrus/IPL 

(BA 3/4/40) 

 

3,079 

 

Negative 

 

-2.50 

 

42 

 

-24 

 

56 

 

Arousal 

 

L STG/MTG/IFG/ITG/OFC/MFG/insula/fusiform 

gyrus/precentral gyrus/supramarginal gyrus/angular 

gyrus/precuneus 

(BA 6/7/8/9/11/13/19/20/21/22/37/38/39/44/45/46/47) 

 

60,027 

 

Positive 

 

3.29 

 

-47 

 

28 

 

-7 

 

R STG/MTG 

(BA 21/38) 

 

3,458 

 

Positive 

 

2.42 

 

42 

 

18 

 

-35 

 

M OFC/M & L frontal pole/M & L SFG 

(BA 6/8/9/10/11) 

 

33,463 

 

Positive 

 

3.05 

 

-3 

 

53 

 

32 

 

R declive/lingual gyrus/cuneus 

(BA 17/18/19) 

 

8,215 

 

Positive 

 

2.52 

 

16 

 

-

103 

 

1 

 

R MFG/IFG/precentral gyrus 

(BA 6/9/10/45/46/47) 

 

8,998 

 

Positive 

 

2.65 

 

51 

 

24 

 

-4 

 

L lingual gyrus/cuneus 

(BA 17/18) 

 

4,659 

 

Positive 

 

2.60 

 

-11 

 

-

103 

 

1 
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Table 2 con‟t 

 

L PCC 

(BA 23/30/31) 

 

2,515 

 

Positive 

 

2.66 

 

-5 

 

-44 

 

30 

 

R uncus/parahippocampus/culmen/PCC/precuneus 

(BA 20/23/28/30/31/35/36) 

 

16,715 

 

Negative 

 

-2.78 

 

10 

 

-58 

 

13 

 

L uncus/parahippocampus/culmen/PCC/precuneus 

(BA 20/23/28/30/31/35/36) 

 

14,870 

 

Negative 

 

-2.86 

 

-34 

 

-38 

 

-14 

 

B SPL/MFG/precentral gyrus/postcentral 

gyrus/precuneus/R MTG/ITG/insula/STG/putamen/ 

IPL/supramarginal gyrus/paracentral gyrus/SFG/M 

dACC/PCC 

(BA 2/3/5/6/7/8/13/21/22/24/31/40/41/42/43/44) 

 

96,519 

 

Negative 

 

-2.68 

 

55 

 

-16 

 

2 

 

L STG/insula/putamen/precentral gyrus/postcentral 

gyrus/IPL 

(BA 2/3/4/6/13/22/40/41/42) 

 

26,926 

 

Negative 

 

-2.69 

 

-64 

 

-15 

 

5 

Note. L = left. R = right. M = medial. B = bilateral. SFG = superior frontal gyrus. MFG = middle frontal gyrus. IFG 

= inferior frontal gyrus. STG = superior temporal gyrus. MTG = middle temporal gyrus. ITG = inferior temporal 

gyrus. rACC = rostral anterior cingulate cortex. dACC = dorsal anterior cingulate cortex. PCC = posterior cingulate 

cortex. SPL = superior parietal lobule. IPL = inferior parietal lobule. OFC = Orbitofrontal Cortex. BA = Brodmann‟s 

Area. Location = coordinates are for the maximum z-value and are for MNI152 space, with the x axis moving from 

left to right.  
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Table 3 

Valence-Related Activation Moderated by Approach and Avoidance Temperament. 

 

 

 

Region 

 

 

Cluster  

Size (mm
3
) 

 

 

Mean  

z-value
† 

 

Location 

 

X 

 

Y 

 

Z 

 

Approach Temperament 

 

No clusters observed  

  

   

 

Avoidance Temperament 

 

R MFG/precentral gyrus
a 

(BA 6) 

 

1,649 

 

-2.10 

 

54 

 

5 

 

36 

 

M precentral gyrus/paracentral lobule
a 

(BA 4/5/6) 

 

2,227 

 

-2.17 

 

3 

 

-22 

 

69 

 

L putamen
b‡ 

 

1,242 

 

-2.15 

 

-24 

 

2 

 

-7 

 

R amygdala
c 

 

566 

 

-2.10 

 

22 

 

-9 

 

-14 

 

Note. L = left. R = right. M = medial. MFG = middle frontal gyrus. BA = Brodmann‟s Area. Location = coordinates 

are for the maximum z-value and are for MNI152 2009 space, with the x axis moving from left to right. 
†
 = negative 

z-values indicate that avoidance correlates negatively with pleasant – unpleasant (i.e., positive correlation with 

unpleasant – pleasant). 
a
 = frontal lobe mask correction. 

b
 = basal ganglia mask correction. 

c
 = amygdala mask 

correction. 
‡
 = cluster is lateralized.  
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Table 4 

Arousal-Related Activation Moderated by Approach and Avoidance Temperament. 

 

 

 

Region 

 

 

Cluster  

Size (mm
3
) 

 

 

Mean  

z-value 

 

Location 

 

X 

 

Y 

 

Z 

 

Approach Temperament 

 

L DLPFC
a‡

 

(BA 8/9) 

 

2,150
 

 

2.38 

 

-34 

 

31 

 

49 

 

Genual ACC/paracingulate/L frontal pole
a
 

(BA 10/32) 

 

3,166 

 

2.33 

 

-6 

 

47 

 

11 

 

PCC
a
 

(BA 23/30/31) 

 

1,758 

 

2.50 

 

7 

 

-49 

 

11 

 

PCC/M precentral gyrus
a 

(BA 4/6/31) 

 

5,354 

 

2.39 

 

-5 

 

-34 

 

37 

 

R putamen
b 

 

1,091 

 

2.40 

 

29 

 

-2 

 

7 

 

L putamen
b
 

 

903 

 

2.43 

 

-32 

 

-14 

 

-4 

 

L anterior/middle OFC/frontal pole
c
 

(BA 10/11) 

 

982 

 

2.42 

 

-37 

 

58 

 

-3 

 

Avoidance Temperament 

 

R DLPFC
a‡ 

(BA 6/9) 

 

1,714 

 

2.39 

 

43 

 

14 

 

37 

 

L DLPFC/frontal pole
a
 

(BA 8/9/10) 

 

6,158 

 

2.35 

 

-32 

 

29 

 

46 

 

M Genual ACC/dACC/PCC/frontal pole/ 

paracingulate/SMA/precentral gyrus/R SFG
a
 

(BA 6/8/9/10/24/30/31/32/33) 

 

36,061 

 

2.52 

 

0 

 

-46 

 

25 

 

R IFG/MFG
a‡

 

(BA 9/44/45/46) 

 

5,712 

 

2.54 

 

55 

 

21 

 

7 

 

R caudate head
b‡

 

 

1,834 

 

2.55 

 

14 

 

21 

 

8 

 

R putamen
b
 

 

1,106 

 

2.42 

 

34 

 

-10 

 

2 
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Table 4 con‟t 

 

L putamen
b
 

 

648 

 

2.35 

 

-30 

 

-16 

 

2 

 

R agranular OFC/IFG
c
 

 

1,220 

 

2.48 

 

35 

 

24 

 

-10 

 

Note. L = left. R = right. M = medial. DLPFC = dorsolateral prefrontal cortex. ACC = anterior cingulate cortex. 

dACC = dorsal ACC. PCC = posterior cingulate cortex. SMA = supplementary motor area. SFG = superior frontal 

gyrus. MFG = middle frontal gyrus. IFG = inferior frontal gyrus. OFC = orbitofrontal cortex. BA = Brodmann‟s 

Area. Location = coordinates are for the maximum z-value and are for MNI152 2009 space, with the x axis moving 

from left to right. 
a
 = frontal lobe mask correction. 

b
 = basal ganglia mask correction. 

c
 = ventral prefrontal mask 

correction. 
‡
 = cluster is lateralized.  
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Table 5 

Correlations between Regions of Interest and Behavior 

 

Region 

 

RT 

 

p-value 

 

Errors 

 

p-value 

 

Valence 

 

Avoidance Temperament 

 

R MFG/precentral gyrus
 

 

.08 

 

.490 

 

-.02 

 

.862 

 

M precentral gyrus/paracentral lobule
 

 

.24 

 

.029 

 

.10 

 

.392 

 

L putamen
 

 

.15 

 

.172 

 

-.02 

 

.884 

 

R amygdala
 

 

.15 

 

.190 

 

.14 

 

.232 

 

Arousal 

 

Approach Temperament 

 

L DLPFC 
 

.37 

 

.001 

 

.03 

 

.798 

 

M genual ACC/paracingulate/L frontal pole 
 

.44 

 

<.001 

 

.15 

 

.18 

 

M PCC 
 

.26 

 

.021 

 

.05 

 

.680 

 

M PCC/precentral gyrus
 

 

.33 

 

.003 

 

.13 

 

.26 

 

L anterior/middle OFC/frontal pole 

 

.20 

 

.081 

 

.07 

 

.549 

 

R putamen
 

 

.01 

 

.938 

 

-.03 

 

.816 

 

L putamen 

 

.13 

 

.250 

 

.02 

 

.885 

 

Avoidance Temperament 

 

R DLPFC 
 

.26 

 

.019 

 

.24 

 

.030 

 

L DLPFC/frontal pole 
 

.35 

 

.002 

 

.17 

 

.144 

 

M genual ACC/dACC/PCC/frontal pole/ 

paracingulate/SMA/precentral gyrus/R SFG 

 

.38 

 

.001 

 

.26 

 

.023 

 

R IFG/MFG 
 

.29 

 

.010 

 

.31 

 

.005 

 

R agranular OFC/IFG 
 

.38 

 

<.001 

 

.32 

 

.004 

 

R nucleus accumbens/caudate head 
 

.31 

 

.006 

 

.20 

 

.074 

 

R putamen 

 

.04 

 

.760 

 

.05 

 

.655 

 

L putamen 

 

.06 

 

.574 

 

.07 

 

.536 
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Table 5 con‟t 

Note. L = left. R = right. M = medial. DLPFC = dorsolateral prefrontal cortex. ACC = anterior cingulate cortex. 

dACC = dorsal ACC. PCC = posterior cingulate cortex. SMA = supplementary motor area. SFG = superior frontal 

gyrus. MFG = middle frontal gyrus. IFG = inferior frontal gyrus. OFC = orbitofrontal cortex. BA = Brodmann‟s 

area. RT = reaction time interference. Errors = error rate interference. Correlations for RT are Pearson product-

moment correlations. Correlations for Errors are Spearman rank-order correlations. 
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Figure 3.1: Moderation of activation to unpleasant distractors by avoidance temperament. R = 

right. x, y, and z = coordinates in MNI 2009a space. A = cluster in right middle frontal and 

precentral gyri (including human frontal eye field). B = cluster in right amygdala. C = cluster in 

left putamen. D = cluster in medial precentral gyrus/paracentral lobule.  
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Figure 3.2: Moderation of activation to emotionally arousing distractors by approach 

temperament. R = right. x, y, and z = coordinates in MNI 2009a space. A = cluster in left 

dorsolateral prefrontal cortex. B = clusters in genual anterior cingulate cortex, posterior cingulate 

cortex, and posterior cingulate cortex/medial precentral gyrus. C = cluster in left orbitofrontal 

cortex/frontal pole. D = clusters in right and left putamen.  
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Figure 3.3 
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Figure 3.3 con‟t 

Figure 3.3: Moderation of activation to emotionally arousing distractors by avoidance 

temperament. R = right. x, y, and z = coordinates in MNI 2009a space. A = clusters in right 

dorsolateral prefrontal cortex and inferior/middle frontal gyri. B = cluster in left DLPFC/frontal 

pole. C = cluster in genual and dorsal anterior cingulate cortex/posterior cingulate cortex/frontal 

pole/paracingulate/supplementary motor area/precentral gyrus/right superior frontal gyrus (not 

visible). D = cluster in right agranular orbitofrontal cortex/inferior frontal gyrus. E = clusters in 

left and right putamen. F = cluster in right putamen/nucleus accumbens (not visible).  

 

 



90 
 

References 

Abler, B., Walter, H., Erk, S., Kammerer, H., & Spitzer, M. (2006). Prediction error as a linear 

function of reward probability is coded in human nucleus accumbens. NeuroImage, 31, 

790–795. doi:10.1016/j.neuroimage.2006.01.001 

Andersson, J. L. R., Jenkinson, M., & Smith, S. (2007). Non-linear optimization (Tech. Rep. 

TR07JA1). Oxford, United Kingdom: University of Oxford, FMRIB Centre. 

Aron, A.R. (in press). From reactive to proactive and selective control: Developing a richer 

model for stopping inappropriate responses. Biological Psychiatry. 

doi:10.1016/j.biopsych.2010.07.024 

Ballard, K., & Knutson, B. (2009). Dissociable neural representations of future reward 

magnitude and delay during temporal discounting. NeuroImage, 45, 143-150. 

doi:10.1016/j.neuroimage.2008.11.004 

Banich, M.T. (2009). Executive function: The search for an integrated account. Current 

Directions in Psychological Science, 18, 89-94. doi:10.1111/j.1467-8721.2009.01615.x 

Baxter, M.G., & Murray, E.A. (2002). The amygdala and reward. Nature Reviews Neuroscience, 

3, 563-573. doi:10.1038/nrn875 

Beckmann, C., & Smith, S. (2004). Probabilistic independent component analysis for functional 

magnetic resonance imaging. IEEE Transactions on Medical Imaging, 23, 137-152. 

doi:10.1109/TMI.2003.822821 

Beckmann, M., Johansen-Berg, H., & Rushworth, M. (2009). Connectivity-based parcellation of 

human cingulate cortex and its relation to functional specialization. Journal of 

Neuroscience, 29, 1175-1190. doi:10.1523/JNEUROSCI.3328-08.2009 



91 
 

Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107, 

238–246. doi:10.1037/0033-2909.107.2.238 

Bickel, W.K., Pitcock, J.A., Yi, R., & Angtuaco, E.J. (2009). Congruence of BOLD response 

across intertemporal choice conditions: Fictive and real money gains and losses. Journal 

of Neuroscience, 29, 8839-8846. doi:10.1523/JNEUROSCI.5319-08.2009 

Bradley, M.M., & Lang, P.J. (1998). Affective norms for English words (ANEW). Gainesville, 

FL: University of Florida, NIMH Center for the Study of Emotion and Attention. 

Brown, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen & 

J. S. Long (Eds.), Testing structural equation models (pp. 136-162). Newbury Park, CA: 

Sage. 

Buckner, R.L., & Carroll, D.C., (2007). Self-projection and the brain. TRENDS in Cognitive 

Sciences, 11, 49-57. doi:10.1016/j.tics.2006.11.004 

Bush, G., Luu, P., & Posner, M.I. (2000). Cognitive and emotional influences in anterior 

cingulate cortex. Trends in Cognitive Sciences, 4, 215-222. doi:10.1016/S1364-

6613(00)01483-2 

Buss, A. H. & Plomin, R. (1984). Temperament: Early developing personality traits. Hillsdale, 

NJ: Erlbaum.  

Campbell, J.P. & Pritchard, R.D. (1976). Motivation theory in industrial and organizational 

psychology. In M.D. Dunnette (Ed.), Handbook of industrial and organizational 

psychology. Chicago: Rand McNally. 

Carver, C. S., & White, T. L. (1994). Behavioral inhibition, behavioral activation, and affective 

responses to impending reward and punishment: The BIS/BAS scales. Journal of 

Personality and Social Psychology, 67, 319–333. doi:10.1037/0022-3514.67.2.319 



92 
 

Carver, C.S., Sutton, S.K., & Scheier, M.F. (2000). Action, emotion, and personality: Emerging 

conceptual integration. Personality and Social Psychology Bulletin, 26, 741-751. 

doi:10.1177/0146167200268008 

Clark, L. A., Watson, D., & Mineka, S. (1994). Temperament, personality, and the mood and 

anxiety disorders. Journal of Abnormal Psychology, 103, 103-116. doi:10.1037/0021-

843X.103.1.103 

Corbetta, M., Patel, G., & Shulman, G.L. (2008). The reorienting system of the human brain: 

From environment to theory of mind. Neuron, 58, 306-324. 

doi:10.1016/j.neuron.2008.04.017 

Costa, P.T., & McCrae, R.R. (1992). Revised NEO personality inventory (NEOPI-R and Five 

Factor Inventory (NEO-FFI) professional manual. Odessa, FL: Psychological 

Assessment Resources. 

Davidson, R.J., & Irwin, W. (1999). The functional neuroanatomy of emotion and affective style. 

Trends in Cognitive Sciences, 3, 11-21. doi:10.1016/S0896-6273(04)00264-8 

Delgado, M.R., Nystrom, L.E., Fissell, C., Noll, D.C., & Fiez, J.A. (2000). Tracking the 

hemodynamic responses to reward and punishment in the striatum. Journal of 

Neurophysiology, 84, 3072-3077.  

Dosenbach, N.U.F., Visscher, K.M., Palmer, E.D., Miezin, F.M., Wenger, K.K. et al. (2006). A 

core system for the implementation of task sets. Neuron, 50, 799-812. 

doi:10.1016/j.neuron.2006.04.031 

Elliot, A. (2006). The hierarchical model of approach-avoidance motivation. Motivation and 

Emotion, 30, 111-116. doi:10.1007/s11031-006-9028-7 



93 
 

Elliot, A.J., & Covington, M.V. (2001). Approach and avoidance motivation. Educational 

Psychology Review, 13, 73-92. doi:10.1023/A:1009009018235 

Elliot, A. J., & Thrash, T. M. (2002). Approach-avoidance motivation in personality: Approach 

and avoidance temperaments and goals. Journal of Personality and Social Psychology, 

82, 804–818. doi:10.1037/0022-3514.82.5.804 

Elliott, R., Dolan, R.J., & Frith, C.D. (2000). Dissociable functions in the medial and lateral 

orbitofrontal cortex: Evidence from human neuroimaging studies. Cerebral Cortex, 10, 

308-317. doi:10.1093/cercor/10.3.308 

Fonov, V.S., Evans, A.C., McKinstry, R.C., Almli, C.R., & Collins, D.L. (2009). Unbiased 

nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage, 

47, S102.doi:10.1016/S1053-8119(09)70884-5 

Gerfen, C.R., & Bolam, J.P. (2010). The neuroanatomical organization of the basal ganglia. In H. 

Steiner & K. Tseng (Eds.), Handbook of basal ganglia structure and function (pp. 3-28). 

London: Academic Press.  

Haber, S.N. (2009). Anatomy and connectivity of the reward circuit. In J.C. Dreher & L. 

Tremblay (Eds.), Handbook of reward and decision making (pp. 3-27). London: 

Academic Press. 

Haber, S.N. (2010). Integrative networks across basal ganglia circuits. In H. Steiner & K. Tseng 

(Eds.), Handbook of basal ganglia structure and function (pp. 409-427). London: 

Academic Press.  

Heller, W. (1993). Neuropsychological mechanisms of individual differences in emotion, 

personality, and arousal. Neuropsychology, 7, 476–489. doi:10.1037/0894-4105.7.4.476 



94 
 

Henriques, J.B., Glowacki, J.M., & Davidson, R.J. (1994). Reward fails to alter response bias in 

depression. Journal of Abnormal Psychology, 103, 460-466. doi:10.1037/0021-

843X.103.3.460 

Holland, P.C., & Gallagher, M. (2004). Aygdala-frontal interactions and reward expectancy. 

Current Opinion in Neurobiology, 14, 148-155. doi:10.1016/j.conb.2004.03.007 

Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the 

robust and accurate linear registration and motion correction of brain images. 

NeuroImage, 17, 825–841. doi:10.1016/S1053-8119(02)91132-8.  

Johnson, M., Raye, C., Mitchell, K., Touryan, S., Greene, E., Nolen-Hoeksema, S., et al. (2006). 

Dissociating medial frontal and posterior cingulate activity during self-reflection. Social 

Cognitive and Affective Neuroscience, 1, 56-64. doi:10.1093/scan/nsl004 

Jones, M. R. (1955). Nebraska symposium on motivation (Vol. 3). Lincoln, Nebraska: University 

of Nebraska Press. 

Kaladjian, A., Jeanningros, R., Azorin, J.M., Nazarian, B., Roth, M., Anton, J.L., et al. (2009). 

Remission from mania is associated with a decrease in amygdala activation during motor 

response inhibition. Bipolar Disorders, 11, 530-538. doi:10.1111/j.1399-

5618.2009.00722.x 

Kincade, M.J., Abrams, R.A., Astafiev, S.V., Shulman, G.L. & Corbetta, M. An event-related 

functional magnetic resonance imaging study of voluntary and stimulus-driven orienting 

of attention.  The Journal of Neuroscience, 25, 4593-4604. 10.1523/JNEUROSCI.0236-

05.2005 



95 
 

Knutson, B., Taylor, J., Kaufman, M. Peterson, R., & Glover, G. (2005). Distributed neural 

representation of expected value. The Journal of Neuroscience, 25, 4806-4812. 

doi:10.1523/JNEUROSCI.0642-05.2005 

Kringelbach, M.L., & Rolls, E.T. (2004). The functional neuroanatomy of the human 

orbitofrontal cortex: Evidence from neuroimaging and neuropsychology. Progress in 

Neurobiology, 72, 341-372. doi:10.1016/j.pneurobio.2004.03.006 

Lang, P.J., Bradley, M.M., & Cuthbert, B.N. (1998). Emotion, motivation, and anxiety: Brain 

mechanisms and psychophysiology. Biological Psychiatry, 44, 1248–1263. 

doi:10.1037/0735-7044.112.5.1069 

Lee, D., & Wang, X.J. (2009). Mechanisms for stochastic decision making in the primate frontal 

cortex: Single-neuron recording and circuit modeling. In P.W. Glimcher, C.F. Camerer, 

E. Fehr, & R.A. Poldrack (Eds.), Neuroeconomics, decision making, and the brain (pp. 

481-501). Oxford, United Kingdom: Elsevier.  

Lindsley, D.B. (1957). Psychophysiology and motivation. In M.R. Jones (Ed.), Nebraska 

symposium on motivation (Vol. 5). Lincoln, Nebraska: University of Nebraska Press. 

Maddock, R.J. (1999). The retrosplenial cortex and emotion: New insights from functional 

neuroimaging of the human brain. Trends in Neurosciences, 22, 310-316. 

doi:10.1016/S0166-2236(98)01374-5 

McClure, S.M., Ericson, K.M., Laibson, D.I., Loewenstein, G., & Cohen, J.D. (2007). Time 

discounting for primary rewards. Journal of Neuroscience, 27, 5796-5804. 

doi:10.1523/JNEUROSCI.4246-06.2007 



96 
 

Meyer, T.J., Miller, M.L., Metzger, R.L., & Borkovec, T.D. (1990). Development and validation 

of the Penn State Worry Questionnaire. Behaviour Research and Therapy, 28, 487-495.  

doi:10.1016/0005-7967(90)90135-6 

Miller, E.K., & Cohen, J.D. (2001). An integrative theory of prefrontal cortex function. Annual 

Review of Neuroscience, 24, 167–202. doi:10.1146/annurev.neuro.24.1.167 

Miyake, A., Friedman, N.P., Emerson, M.J., Witzki, A.H., Howerter, A., Wager, T.D., et al. 

(2000). The unity and diversity of executive functions and their contributions to complex 

“frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49–100. 

doi:10.1006/cogp.1999.0734 

Mohanty, A., Engels, A.S., Herrington, J.D., Heller, W., Ho, R.M., Banich, M.T., et al. (2007). 

Differential engagement of anterior cingulate cortex subdivisions for cognitive and 

emotional function. Psychophysiology, 44, 343-351. doi:10.1111/j.1469-

8986.2007.00515.x 

Molina, S., & Borkovec, T. D. (1994). The Penn State Worry Questionnaire: Psychometric 

properties and associated characteristics. In G. C. L. Davey & F. Tallis (Eds.), Worrying: 

Perspectives on theory, assessment, and treatment (pp. 265-283). Chichester, England: 

Wiley.  

O‟Doherty, J.P. (2007). Lights, camembert, action! The role of human orbitofrontal cortex in 

encoding stimuli, rewards, and choices. Annals or the New York Academy of Sciences, 

1121, 254-272. doi:10.1196/annals.1401.036 



97 
 

O‟Doherty, J.P., & Dolan, R.J. (2006). The role of human orbitofrontal cortex in reward 

prediction and behavioral choice: Insights from neuroimaging. In D.H. Zald & S.L. 

Rauch (Eds.), The orbitofrontal cortex (pp. 265-284). Oxford, United Kingdom: Oxford 

University Press. 

Pessoa, L., & Adolphs, R. (2010). Emotion processing and the amygdala: From a „low road‟ to 

„many roads‟ of evaluating biological significance. Nature Reviews Neuroscience, 11, 

773-782. doi:10.1038/nrn2920 

Pessoa, L. (2009). How do emotion and motivation direct executive control? TRENDS in 

Cognitive Sciences, 13, 160–166. doi:10.1016/j.tics.2009.01.006 

Pochon, J.B., Levy, R., Fossati, P., Lehericy, S., Poline, J.B., Pillon, B., et al. (2002). The neural 

system that bridges reward and cognition in humans: An fMRI study. Proceedings of the 

National Academy of Sciences, 99, 5669-5674. doi:10.1073/pnas.082111099 

Redgrave, P., Coizet, V., & Reynolds, J. (2010). Phasic dopamine signaling and basal ganglia 

function. In H. Steiner & K. Tseng (Eds.), Handbook of basal ganglia structure and 

function (pp. 549-559). London: Academic Press.  

Rushworth, M., & Behrens, T. (2008). Choice, uncertainty and value in prefrontal and cingulate 

cortex. Nature Neuroscience, 11, 389–397. doi:10.1038/nn2066 

Spielberg, J.M., Heller, W., Silton, R.L., Stewart, J.L., & Miller, G.A. (in press) Approach and 

avoidance profiles distinguish dimensions of anxiety and depression. Cognitive Therapy 

and Research.  



98 
 

Spielberg, J.M., Miller, G.A., Engels, A.S., Herrington, J.D., Sutton, B.P., Banich, M.T., et al. 

(2011). Trait approach and avoidance motivation: Lateralized neural activity associated 

with executive function. NeuroImage.54, 661-670. 

doi:10.1016/j.neuroimage.2010.08.037 

Straube, T., Pohlack, S., Mentzel, H.J., & Miltner, W.H.R. (2008). Differential amygdala 

activation to negative and positive emotional pictures during an indirect task. Behavioral 

Brain Research, 191, 285-288. doi:10.1016/j.bbr.2008.03.040 

Stroop, J.R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental 

Psychology: General, 18, 643–662. doi:10.1037/h0054651 

Szatkowska, I., Bogorodzki, P., Wolak, T., Marchewka, A., & Szeszkowski, W. (2008). The 

effect of motivation on working memory: An fMRI and SEM study. Neurobiology of 

Learning and Memory, 90, 475–478. doi:10.1016/j.nlm.2008.06.001 

Taylor, S.F., Welsh, R.C., Wager, T.D., Phan, K.L., Fitzgerald, K.D., Gehring, W.J., et al. 

(2004). A functional neuroimaging study of motivation and executive function. 

NeuroImage, 21, 1045–1054. doi:10.1016/j.neuroimage.2003.10.032 

Touryan, S.R., Johnson, M.K., Mitchell, K.J., Farb, N., Cunningham, W.A., & Raye, C.L. 

(2007). The influence of self-regulatory focus on encoding of, and memory for, 

emotional words. Social Neuroscience, 2, 14-27. doi:10.1080/17470910601046829 

Tremblay, L., Worbe, Y., & Hollerman, J.R. (2009). The ventral striatum: A heterogenous 

structure involved in reward processing, motivation, and decision-making. In J.C. Dreher 

& L. Tremblay (Eds.), Handbook of reward and decision making (pp. 51-77). London: 

Academic Press. 



99 
 

Volle, E., Pochon, J.B., Lehericy, S., Pillon, B., Dubois, B., Levy, R., et al. (2005). Specific 

cerebral networks for maintenance and response organization within working memory as 

evidenced by the double delay/double response paradigm. Cerebral Cortex, 15, 1064- 

1074. doi:10.1093/cercor/bhh207 

Wager, T.D., Feldman Barrett, L., Bliss-Moreau, E., Lindquist, K.A., Duncan, S., Kober, H., et 

al. (2008). The neuroimaging of emotion. In M. Lewis, J.M. Haviland-Jones, & L. 

Feldman-Barrett (Eds.), Handbook of emotions, third edition (pp. 272-290). New York: 

Guilford Press.  

Ward, D. B. (2000). Simultaneous inference for FMRI data. 

http://afni.nimh.nih.gov./pub/dist/doc/manual/AlphaSim.pdf, accessed July 27, 2006. 

Watson, D., & Clark, L. A. (1993). Behavioral disinhibition versus constraint: A dispositional 

perspective. In D. M. Wegner & J. W. Pennebaker (Eds.), Handbook of mental control 

(pp. 506-527). New York, NY: Prentice Hall.  

Watson, D., Clark, L.A., Weber, K., Assenheimer, J.S., Strauss, M.E., & McCormick, R.A. 

(1995). Testing a tripartite model: II. Exploring the symptom structure of anxiety and 

depression in student, adult, and patient samples. Journal of Abnormal Psychology, 104, 

15-25. doi:10.1037/0021-843X.104.1.15 

Watson, D., Weber, K., Assenheimer, J. S., Clark, L. A., Strauss, M. E., & McCormick, R. A. 

(1995). Testing a tripartite model: I. Evaluating the convergent and discriminant validity 

of anxiety and depression symptom scales. Journal of Abnormal Psychology, 104, 3-14. 

doi:10.1037/0021-843X.104.1.3 

Weber, B.J., & Huettel, S.A. (2008). The neural substrates of probabilistic and intertemporal 

decision making. Brain Research, 1234, 104–115. doi:10.1016/j.brainres.2008.07.105 



100 
 

Williams, J.M.G., Mathews, A., & MacLeod, C. (1996). The emotional Stroop task and 

psychopathology. Psychological Bulletin, 120, 3-24. doi:10.1037/0033-2909.120.1.3 

Wittmann, M., Leland, D.S., & Paulus, M.P. (2007). Time and decision making: differential 

contribution of the posterior insular cortex and the striatum during a delay discounting 

task. Experimental Brain Research, 179, 643-653. doi:10.1007/s00221-006-0822-y 

Woolrich, M. (2008). Robust group analysis using outlier inference. NeuroImage, 41, 286–301. 

doi:10.1016/j.neuroimage.2008.02.042 

Woolrich, M.W., Ripley, B.D., Brady, M., & Smith, S.M. (2001). Temporal autocorrelation in 

univariate linear modeling fMRI data. NeuroImage, 14, 1370-1386. 

doi:10.1006/nimg.2001.0931 



101 
 

CHAPTER 4 

TOP-DOWN BIASING BY REGIONS OF DORSOLATERAL PREFRONTAL 

CORTEX ASSOCIATED WITH APPROACH AND AVOIDANCE MOTIVATION 

WHEN GOAL-PURSUIT IS THREATENED 

Abstract 

 Research indicates that regions of dorsolateral prefrontal cortex (DLPFC) are important 

for goal pursuit and are involved in integrating processes related to approach and avoidance 

motivation with those related to executive function. DLPFC is hypothesized to function within a 

network of brain regions involved in goal pursuit and to bias processing in other regions to be 

congruent with goals. The present study tested this hypothesis by examining the relationship 

between regions of DLPFC found to be associated with trait approach and avoidance motivation 

and other brain regions thought to be important for goal pursuit while participants performed a 

task in which goal pursuit was threatened. Present analyses located regions in which the 

correlation between BOLD activity in that region and activity in DLPFC was greater when goal 

pursuit was threatened. Present findings support a role for DLPFC in the biasing of processing in 

a number of brain regions to be congruent with goals, including orbitofrontal cortex, anterior and 

posterior cingulate cortex, amygdala, and basal ganglia. Findings were largely replicated in a 

second independent sample, indicating that the findings are reliable.  
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Top-Down Biasing by Regions of Dorsolateral Prefrontal Cortex Associated with  

Approach and Avoidance Motivation When Goal-Pursuit is Threatened 

A long line of research indicates that dorsolateral prefrontal cortex (DLPFC) is centrally 

involved in the pursuit of goals (e.g., MacDonald et al., 2000). One potential role for DLPFC 

during goal pursuit is the integration of motivational and executive function processes that are 

necessary for goal pursuit. This hypothesis has been supported by research examining the 

integration of executive function processes and processes related to state motivation (i.e., 

motivation induced by the presence of immediate reward/punishment; Taylor et al., 2004) and 

trait motivation (i.e., temperamental tendencies to be sensitive to, and motivated by, potential 

appetitive or aversive outcomes; Spielberg et al., 2011; Spielberg, Heller, & Miller, in prep). 

However, the role of DLPFC in relation to other brain regions thought to instantiate motivational 

processes important in goal pursuit has not been explicitly examined. The goal of the present 

study was to extend this literature by testing the hypothesis that the role of motivation related 

regions of DLPFC is to influence processing in other nodes of a network of brain areas involved 

in goal pursuit to be congruent with motivational biases during goal-directed behavior. 

A Network for Goal Pursuit 

Research supports the existence of two fundamental motivational systems, one oriented 

toward potential desirable outcomes, termed the approach motivational system, and one oriented 

toward potential aversive outcomes, termed the avoidance motivational system (for reviews see 

Elliot & Covington, 2001; Lang et al., 1998). Support has been found for the presence of stable 

individual differences in the activity/reactivity of these motivational systems, and these 

differences have been hypothesized to reflect temperament types (Elliot & Thrash, 2002). Recent 

research indicates that approach temperament, reflecting stable differences in the approach 
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motivational system, is associated with left-lateralized regions of DLPFC, and avoidance 

temperament, reflecting stable differences in the avoidance motivational system,  is associated 

with a right lateralized region of DLPFC (Spielberg et al., 2011; Spielberg et al., in prep). These 

findings suggest that left DLPFC is differentially associated with the pursuit of approach-related 

goals and right DLPFC with the pursuit of avoidance-related goals, which is consistent with a 

large body of research suggesting that prefrontal cortex (PFC) is lateralized with respect to 

motivational direction/emotional valence (for a review see Spielberg et al., 2008).  

However, there is also evidence that certain regions of DLPFC are associated with both 

approach and avoidance temperament (Spielberg et al., 2011; Spielberg et al., in prep), 

suggesting that some areas of DLPFC implement general motivational processes that are not 

specific to approach or avoidance motivation. These findings are consistent with the theory 

proposed by Spielberg et al. (2011) that the role of DLPFC in goal pursuit is to integrate 

motivational and executive function processes and bias processing in other brain regions to be 

congruent with goals. Although DLPFC is thought to be fundamentally involved in goal pursuit, 

it is unlikely that DLPFC functions in isolation. Rather, DLPFC is likely part of a network, with 

each node having distinct roles in the pursuit of goals (Miller & Cohen, 2001). The present study 

tested this hypothesis by examining the influence of DLPFC on processing in brain regions that 

research suggests are active during goal pursuit, specifically orbitofrontal cortex (OFC), anterior 

cingulate cortex (ACC), amygdala, and basal ganglia (BG).  

Orbitofrontal Cortex 

 OFC is thought to be involved in maintaining the current and expected motivational value 

of stimuli (O‟Doherty & Dolan, 2006) and to provide information about stimulus value to 

DLPFC (Szatkowska et al., 2008). DLPFC is thought to use this information in the selection of 
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appropriate goals. A medial/lateral parcellation of OFC may be particularly important to consider 

with respect to a goal pursuit network, given that research suggests that medial and lateral OFC 

are involved in maintaining reward values and punishment values, respectively (Elliott et al., 

2000; Kringelbach & Rolls, 2004; O‟Doherty, 2007). However, the medial/lateral parcellation 

does not incorporate hemispheric laterality, which research suggests is an important organizing 

factor for PFC with respect to motivation and emotion (Heller, 1993; Davidson & Irwin, 1999).  

A recent meta-analysis (Wager et al., 2008) suggests that OFC is lateralized with respect 

to emotional valence, although not in the same direction as more superior areas, such as DLPFC. 

Specifically, Wager et al. (2008) found that bilateral medial and right lateral OFC were 

associated with pleasant emotional experience, whereas left middle and left lateral OFC were 

associated with unpleasant emotional experience. The association between right lateral OFC and 

pleasant valence is inconsistent with the proposed medial/lateral organization of OFC 

(O‟Doherty, 2007), which suggests that OFC organization depends on the type of processes 

examined, with those processes related to motivation having a somewhat different organization 

that those related to emotional experience. Thus, the organization of OFC appears still to be a 

matter of debate, with evidence depending heavily on the specific processes being studied.  

Anterior Cingulate Cortex 

ACC is also thought to have a central role in the pursuit of goals (Rushworth, Behrens, 

Rudebeck, & Walton, 2007). One popular theory of ACC is that it is involved in the detection of 

error/conflict (e.g., Carter, Braver, Barch, Botvinick, Noll, & Cohen, 1998). However, ACC 

activation has also been observed in contexts without error/conflict, such as in the detection of 

cues signaling reward (Bush, Vogt, Holmes, Dale, Greve, Jenike, & Rosen, 2002). One relatively 

new theory that sought to reconcile the extant theories of ACC function proposes that ACC is 
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involved in encoding the predicted value associated with actions, including both the immediate 

reward/punishment value and the value of information learned by carrying out the action (for a 

review see Rushworth & Behrens, 2008).  

Thus, ACC appears to play an important role in the creation of efficient action plans 

during goal pursuit. Given that DLPFC has also been implicated in the selection of optimal 

action plans (Frith, 2000), the creation of action plans may occur through interactions between 

ACC and DLPFC. The findings of a recent study that employed both diffusion tractography and 

a meta-analysis of fMRI studies (Beckmann et al., 2009) are consistent with this hypothesis. This 

study identified a region (roughly corresponding to what has been labeled dorsal ACC [Bush, 

Luu, & Posner, 2000] and extending around the genu of the corpus callosum) that was reliably 

activated by reward manipulations and had abundant white-matter connections with DLPFC and 

surrounding cortex, suggesting that this ACC region provides motivational information regarding 

actions to DLPFC.  

Amygdala 

In addition to DLPFC, OFC, and ACC, amygdala has been implicated as being important 

for the pursuit of goals. Specifically, amygdala is involved in the identification of motivationally 

relevant stimuli and the enhancement of perceptual processing of such stimuli (Pessoa & 

Adolphs, 2010). Although traditionally discussed with regard to the identification of 

unpleasantly valenced stimuli (e.g., Adolphs, Tranel, Damasio, & Damasio, 1995), amygdala is 

also involved in the identification of pleasantly valenced stimuli (e.g. Holland & Gallagher, 

2004; Sabatinelli, Bradley, Fitzsimmons, & Lang, 2005), suggesting that its engagement is not 

dependent on valence. However, context moderates differential amygdala activation as a 

function of valence. For example, when stimuli are task-irrelevant, amygdala responses to 
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unpleasantly-valenced stimuli are greater than to pleasantly-valenced stimuli (Straube, Pohlack, 

Mentzel, & Miltner, 2008). In contrast, amygdala activation is greater to pleasantly-valenced 

than unpleasantly-valenced stimuli when the stimuli are task-relevant (Williams, McGlone, 

Abbott, & Mattingley, 2005).  

Basal Ganglia 

Another set of regions thought to be important for the pursuit of goals is BG, which is 

made up of striatum, globus pallidus, substantia nigra, and subthalamic nucleus. This set of sub-

cortical nuclei has been implicated in a number of motivational processes (Haber, 2009), such as 

the anticipation of rewarding stimuli (Knutson, Taylor, Kaufman, Peterson, & Glover, 2005) and 

the reinforcement of actions (Tricomi, Delgado, & Fiez, 2004). As the input node of BG, the 

striatum receives projections from DLPFC, ACC, OFC, amygdala, and other areas important in 

goal pursuit, and the internal segment of globus pallidus and substantia nigra project back to 

these regions (via the thalamus; Gerfen & Bolam, 2010). Based on these patterns of connectivity, 

it has been researchers have proposed that BG is involved in integrating motivational 

information from diverse areas and using this integrated information to moderate ongoing 

processing in target brain areas (Haber, 2009).  

Summary 

In summary, a number of brain areas play vital roles in goal-directed behavior and may 

form a neural network implementing goal pursuit. The role of OFC appears to be the 

maintenance of the motivational value of stimuli, whereas the role of at least one region of ACC 

appears to be the maintenance of the motivational value of actions. Amygdala appears to play a 

role in the identification of salient stimuli and enhancement of the processing of the features of 

such stimuli. The role of BG appears to be the integration of information from diverse cortical 
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and subcortical areas, which then feeds back to influence ongoing processing. Finally, certain 

regions of DLPFC are theorized in the present paper to bias processing in OFC, ACC, amygdala, 

and BG to be congruent with task goals.  

Present Studies 

Although research suggests that all of the brain areas discussed above are important for 

goal pursuit, the manner in which they function as a network remains unclear. One important 

aspect of this network is the proposed role of DLPFC in top-down biasing of other brain regions 

to be congruent with goals, which was tested here using a task that threatens goal pursuit, the 

color-word Stroop task (Stroop, 1935). More specifically, analyses tested the hypothesis that 

connectivity between DLPFC and other areas of the proposed network increases when goal 

pursuit is threatened by distracting information (i.e., when word meaning and ink color are 

incongruent) relative to when no such distraction is present (i.e., when word meaning and ink 

color are congruent). Thus, the present investigation examined psychophysiological interactions 

between DLPFC activation and task condition (incongruent and congruent) predicting activation 

in the brain areas discussed above.  

The specific areas of DLPFC examined here were the clusters found in Spielberg et al. 

(2011) to be moderated by trait approach and avoidance motivation, which included one cluster 

in left DLPFC that was associated with approach temperament and one cluster in right DLPFC 

that was associated with avoidance temperament. Additionally, one cluster in left DLPFC was 

examined that merged two overlapping clusters associated with approach and avoidance 

identified in Spielberg et al., given that this area may implement general processes not specific to 

approach or avoidance motivation. Thus, three DLPFC clusters were used: 1) one in left DLPFC 
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related to approach temperament, 2) one in right DLPFC related to avoidance temperament, and 

3) one in left DLPFC related to both approach and avoidance.  

The first study presented here used the same data set examined in Spielberg et al. (2011). 

However, because this data set was used to identify the DLPFC seed clusters, it is possible that 

the findings could be biased by overfitting of the seed clusters. Specifically, cluster shape in 

Spielberg et al. may have been partially determined by error variance shared with other areas of 

the brain. Therefore, a second study was conducted that used an independent participant sample 

to rule out potential confounding effects due to overfitting of the seed clusters.  

Study 1 

Methods
 

Participants. Participants were the same sample of undergraduate students used in 

Spielberg et al. (2011). Participant data were not used if they (a) moved more than 3.3 mm 

relative to the volume used for registration (the middle volume of the time series) or more than 2 

mm relative to the previous volume, (b) committed errors on 15% or more of the trials, (c) 

exhibited reaction times greater than 3 standard deviations from the mean, (d) exhibited apparent 

signal loss due to magnetic susceptibility in areas of interest, or (e) exhibited activation patters 

that appeared to be due to residual motion artifact. The final sample consisted of 82 participants 

(57% female, mean age = 19.1). One participant‟s scans exhibited scanner artifact throughout the 

time series. Independent components analysis, as implemented in MELODIC (Beckmann & 

Smith, 2004), was used to isolate and remove this artifact. After removal, no artifact was 

apparent.  

Stimuli and Experimental Design. Participants completed two tasks, a color-word 

Stroop and an emotion-word Stroop (duration of each task = 12 min 20 sec) in fMRI and EEG 
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sessions (findings from the emotion-word Stroop and EEG sessions are not presented here). The 

order of presentation of the two tasks and the two sessions was counterbalanced across 

participants. In the color-word Stroop task, blocks of color-congruent or color-incongruent words 

alternated with blocks of neutral words. Additional neutral trials were intermixed 50:50 in 

congruent and incongruent blocks to prevent the development of word-reading strategies. This 

type of blocked-design color-word Stroop task has been shown to effectively elicit Stroop 

interference (Banich et al., 2000b; Milham & Banich, 2005; Milham, Banich, Claus, & Cohen, 

2003). The order of presentation of blocks in the present investigation was counterbalanced for 

each participant. In addition to the word blocks, there were four fixation blocks (one at the 

beginning, one at the end, and two in the middle of the session) and five rest blocks (one at the 

beginning, one at the end, and one between each word block). In the fixation condition a fixation 

cross intensified in place of word presentation, and in the rest condition the subject was 

instructed to rest and keep their eyes open while the screen was blank.  

The task consisted of 256 trials presented in 16 blocks (four congruent, four incongruent, 

and eight neutral) of 16 trials each, with a variable ITI (2000 +/- 225 ms) between trial onsets. A 

trial began with presentation of a word for 1500 ms, followed by a fixation cross for an average 

of 500 ms. Each trial consisted of one word presented in one of four ink colors (red, yellow, 

green, blue), each color occurring equally often with each word type. The task consisted of 

congruent trials in which the word named the ink color in which it was printed (e.g., the word 

„„RED‟‟ printed in red ink), incongruent trials in which the word named a color incongruent with 

the ink color in which it was printed (e.g., „„GREEN‟‟ in red ink), and neutral trials in which the 

word was unrelated to color (e.g., „„LOT‟‟ in red ink). Neutral words were matched with color 

words for word frequency and length. Each word (visual angle 6 – 16 degrees) was centered on a 
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black background and projected. Participants responded to the color of the ink with their index 

and middle fingers using a four-button response box (James Long Company) under each hand.  

fMRI Data Collection. The fMRI data were 370 three-dimensional (3D) images 

acquired using a Siemens gradient-echo echo-planar imaging sequence (TR 2000 ms, TE 25 ms, 

flip angle 80°, FOV = 220 cm) on a Siemens Allegra 3T scanner. Each image consisted of 38 

oblique axial slices (slice thickness 3 mm, 0.3mm gap, in-plane resolution 3.4375 X 3.4375 mm) 

acquired parallel to the anterior and posterior commissures. After the fMRI acquisition, a 160-

slice MPRAGE structural sequence was acquired (spatial resolution 1 mm X 1 mm X 1 mm) and 

used to warp the participant‟s functional data into standard space.  

fMRI Data Reduction and Preprocessing. Image processing and statistical analysis 

were implemented primarily using FEAT v5.98 (FMRI Expert Analysis Tool, FMRIB‟s 

Software Library, http://www.fmrib.ox.ac.uk/analysis/research/feat/), part of the FSL analysis 

package (http://www.fmrib.ox.ac.uk/fsl). The first three time points (fMRI volumes) of the data 

set corresponding to each task for each subject were discarded to allow the MR signal to reach a 

steady state. Functional data for each participant were motion-corrected using FMRIB‟s linear 

registration tool, MCFLIRT (Jenkinson, Bannister, Brady, & Smith, 2003), intensity-normalized, 

temporally filtered with a nonlinear high-pass filter, and spatially smoothed using a 3D Gaussian 

kernel (FWHM = 5 mm). Temporal low-pass filtering was carried out using AFNI‟s 3dDespike 

tool (http://afni.nimh.nih.gov/).  

fMRI Data Processing. Psychophysiological interaction analyses were performed on the 

preprocessed functional time series of each participant using FILM, FMRIB‟s Improved Linear 

Model with autocorrelation correction (Woolrich, Ripley, Brady, & Smith, 2001). For each 

participant, a separate analysis was conducted for each of the three DLPFC ROIs. For each 
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DLPFC ROI, a predictor was created by extracting the mean value across all voxels in the ROI 

for each of the 370 time points. In each analysis, six predictors were entered: 1) one of the 

DLPFC predictors, 2) a congruence predictor (IvC) that modeled the difference between 

incongruent and congruent conditions (coded as 1 during the incongruent condition, -1 during the 

congruent condition, 0 at all other times), 3) the interaction (i.e., product) of these two predictors, 

and 4-6) three predictors of no interest that modeled the variance associated with the sum of the 

incongruent and congruent conditions, the neutral condition, and the rest condition. The IvC 

predictor and the three predictors of no interest were convolved with a gamma function to better 

approximate the temporal course of the BOLD hemodynamic response function (this convolution 

was performed on the IvC predictor prior to creating the interaction term). Each predictor yielded 

a per-voxel effect-size parameter estimate (β) map representing the magnitude of activation 

associated with that predictor. For each participant, these functional activation maps, as well as 

the corresponding structural MRI map, were warped into a common stereotaxic space  (the 2009 

Montreal Neurological Institute [MNI] 152 symmetrical 1mm x 1mm x 1mm template; Fonov, 

Evans, McKinstry, Almli, & Collins, 2009) using FMRIB‟s Non-Linear Image Registration 

Tool, FNIRT (Andersson, Jenkinson, & Smith, 2007).  

Group inferential statistical analyses were carried out using FLAME (FMRIB‟s Local 

Analysis of Mixed Effects). The β maps corresponding to the interaction terms were entered as 

dependent variables into separate one-sample, 2-tailed t-tests. Each t-test produced one β map 

that corresponded to the mean of the interaction across the sample. The t-tests were then 

converted to z-scores to determine the significance of the βs.  

Monte Carlo simulations via AFNI‟s AlphaSim program were used to estimate the 

overall significance level for thresholding the 3D functional z-map image (Ward, 2000). These 
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simulations provided the appropriate cluster size, which, in combination with an individual voxel 

z-threshold of p = 0.04, gave an overall two-tailed family-wise error rate of 0.05. Four masks of 

a priori regions of interest were used to limit the number of voxels under consideration. 

Specifically, these masks were of 1) ventral prefrontal cortex (including OFC; cluster threshold = 

897 mm
3
), 2) cingulate and paracingulate gyri (cluster threshold = 819 mm

3
), 3) amygdala 

(cluster threshold = 351 mm
3
), and 4) striatum and globus pallidus (cluster threshold = 585 

mm
3
).  

 Confound Detection Analyses. An additional set of analyses was conducted in order to 

rule out the potential confound that the findings for a given DLPFC cluster were being driven by 

shared variance with the other DLPFC two clusters, rather than variance specific to that cluster. 

Specifically, analyses were rerun with new DLPFC predictors (and associated interaction 

predictors) that captured only the unique variance associated with that DLPFC cluster. These 

predictors were created for each participant, for each DLPFC cluster, by partialling out the 

variance associated with the two other DLPFC predictors. In addition to the new DLPFC and 

interaction predictors and the other predictors included in the original analyses (i.e., IvC and the 

predictors of no interest), two predictors were included in each analysis. These were the 

predictors corresponding to the timeseries from the other two DLPFC clusters and were included 

so that the shared variance, which was removed from the new DLPFC predictor, would also be 

removed from the error term to ensure that the tests were not biased toward Type II errors. In 

order to ensure that the inclusion of these two predictors did not interfere with the test of the 

interaction, the variance associated with the interaction was partialled out of the two predictors 

before entering them into the model. These analyses were thresholded in the same manner as the 
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original analyses described above, except that 1-tailed t-tests were used, given that the direction 

of the effect of interest was specified by the original analysis.  

 Interaction Decomposition. For each DLPFC cluster, the interaction analysis identifies 

voxels in other brain regions with timeseries that show significantly different correlations with 

DLPFC depending on the task condition (incongruent vs. congruent). Thus, the interaction 

analysis tests whether there is a significant difference in correlations between conditions and can 

also indicate the sign of that difference (e.g., the correlation is more positive during incongruent 

than congruent). However, these analyses cannot provide the size or sign of the individual 

correlations for each condition, which limits the interpretations that can be made about the 

relationships.  

Therefore, analyses were conducted to determine the size and sign of the individual 

correlations for each condition. For each cluster that emerged from an interaction analysis, the 

timeseries data for that cluster were extracted separately for the incongruent and congruent 

blocks and regressed (separately for incongruent and congruent) on the relevant DLPFC seed 

cluster timeseries. Only timepoints corresponding to when the convolved congruence predictor 

had reached its maximum absolute value were used, leaving 12 timepoints per block. These 

regressions were conducted using the Mixed procedure in SPSS version 18. Participant was the 

nesting variable, and block and timepoint were repeated factors. The level 1 covariance matrix 

was modeled with a lag 1 autoregressive function. Regression β‟s were converted into 

correlations using the t-value and degrees of freedom corresponding to that β. Specifically, the t-

value was divided by the square root of the sum of the degrees of freedom and the squared t-

value.  
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Results 

Overlapping Approach and Avoidance Cluster in Left DLPFC. The first set of 

analyses was conducted with the left DLPFC cluster found to be associated with both approach 

and avoidance temperament in Spielberg et al. (2011). Table 6 lists brain regions that evidenced 

stronger positive correlations with activation in this DLPFC cluster during the incongruent 

condition than congruent condition. No clusters emerged in which the opposite pattern held (i.e., 

a stronger association during the congruent than incongruent condition). Also listed in Table 6 

are the correlations between the identified brain regions and activation in this DLPFC cluster for 

each condition (i.e., incongruent and congruent).  

As illustrated in Figure 4.1A, two clusters emerged in OFC. One cluster was located in 

right agranular OFC extending into inferior frontal gyrus (IFG) and insula, and the second cluster 

was located in right anterior-middle OFC. Three clusters emerged in cingulate, as illustrated in 

Figure 4.1B. One large cluster was located in dorsal ACC (dACC), genual ACC (gACC), and 

paracingulate gyrus. Additionally, two clusters emerged in posterior cingulate gyrus (PCC), one 

of which extended into precuneus. As illustrated in Figure 4.1C, one cluster emerged in left 

amygdala. Additionally, two clusters emerged in BG, as illustrated in Figure 4.1D. One cluster 

was located in right putamen and globus pallidus, and the other cluster was located in right 

caudate.  

With the exception of the putamen/globus pallidus cluster, all clusters remained 

significant when only the unique variance associated with the seed cluster was used, indicating 

that these findings are not due to the shared variance with other DLPFC seed clusters. All 

clusters exhibited larger positive correlations with DLPFC activation during incongruent blocks 

than during congruent blocks.  
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Approach Temperament Cluster in Left DLPFC.  The second set of analyses was 

conducted with the left DLPFC cluster found to be selectively associated with approach 

temperament in Spielberg et al. (2011). Table 6 lists brain regions that evidenced stronger 

positive correlations with activation in this DLPFC cluster during the incongruent condition than 

congruent condition. No clusters emerged in which the opposite pattern held. Also listed in Table 

6 are the correlations between the identified brain regions and activation in this DLPFC cluster 

for each condition (i.e., incongruent and congruent).  

Three clusters emerged in OFC, as illustrated in Figure 4.1E. One cluster was located in 

right agranular OFC, one in left agranular and posterior-middle OFC, and the third in medial-

anterior OFC. As illustrated in Figure 4.1F, one cluster emerged in cingulate located in dACC, 

gACC, subgenual ACC, and paracingulate gyrus. Two clusters emerged in bilateral amygdala, 

shown in Figure 4.1G. Additionally, three clusters emerged in BG, illustrated in Figure 4.1H. 

Two clusters were located in bilateral putamen/globus pallidus, and one cluster was located in 

right caudate.  

All clusters remained significant when only the unique variance associated with the seed 

cluster was used, indicating that these findings are not due to the shared variance with other seed 

clusters. All clusters exhibited larger positive correlations with DLPFC activation during 

incongruent blocks than during congruent blocks.  

Avoidance Temperament Cluster in Right DLPFC. The third set of analyses was 

conducted with the right DLPFC cluster found to be selectively associated with avoidance 

temperament in Spielberg et al. (2011). Table 6 lists brain regions that evidenced stronger 

positive correlations with activation in this DLPFC cluster during the incongruent condition than 

congruent condition. No clusters emerged in which the opposite pattern held. Also listed in Table 
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6 are the correlations between the identified brain regions and activation in the DLPFC cluster 

for each condition (i.e., incongruent and congruent).  

As illustrated in Figure 4.1I, two clusters emerged in OFC. One cluster was located in left 

agranular and posterior-middle OFC, and the second cluster was located in medial-anterior OFC 

and frontal pole. Two clusters emerged in cingulate, as illustrated in Figure 4.1J. One large 

cluster was located in dACC, gACC, subgenual ACC, and paracingulate gyrus, and the second 

cluster was located in PCC, extending into precuneus. One cluster emerged in left amygdala, 

shown in Figure 4.1K. Additionally, as illustrated in Figure 4.1L, three clusters emerged in BG. 

One cluster was located in right nucleus accumbens, putamen, and globus pallidus, one in left 

putamen, and one in right caudate.  

With the exception of the amygdala cluster, all clusters remained significant when only 

the unique variance associated with the seed cluster was used, indicating that these findings are 

not due to the shared variance with the other DLPFC seed clusters. All clusters exhibited larger 

positive correlations with DLPFC activation during incongruent blocks than during congruent 

blocks.  

Discussion 

 The hypothesis that activity in regions of dorsolateral prefrontal cortex associated with 

trait approach and avoidance motivation would exhibit greater positive correlations with activity 

in orbitofrontal cortex, anterior cingulate, amygdala, and basal ganglia when goal pursuit was 

threatened was supported in all three of the DLPFC clusters investigated in Study 1. Although 

the present analysis strategy is correlational in nature and cannot speak to causal direction, the 

present findings support the hypothesis that regions of DLPFC thought to be involved in the 
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integration of motivational and executive function processes (Spielberg et al., 2011; Spielberg et 

al, in prep) bias processing in these cortical and subcortical regions to be congruent with goals.  

Orbitofrontal Cortex. Several areas of OFC were found to exhibit greater connectivity 

with DLPFC clusters when goal pursuit was threatened, and there did not appear to be a 

discernable pattern of differential connectivity between the three DLPFC areas that were 

investigated. Specifically, both left DLPFC clusters exhibited increased connectivity with right 

agranular OFC, and the right DLPFC cluster and the left DLPFC cluster associated with 

approach temperament both exhibited increased connectivity with left agranular OFC, left 

posterior-middle OFC, and anterior-medial OFC. The finding that the left and right DLPFC areas 

associated with approach and avoidance temperament, respectively, exhibited increased 

connectivity with similar OFC areas suggests that the processing occurring in these OFC areas is 

not specific to a particular type of goal pursuit (approach vs. avoidance). Similarly, the fact that 

these DLPFC areas did not exhibit differential connectivity either by hemisphere or 

medial/lateral parcellation suggests that, although there may be some functional organization of 

OFC according to emotional valence or reward/punishment value (e.g., O‟Doherty, 2007; Wager, 

et al., 2008), the processes occurring in these OFC areas are not specific to approach or 

avoidance goal pursuit.  

Cingulate Cortex. Several areas of cingulate were found to exhibit greater connectivity 

with DLPFC clusters when goal pursuit was threatened, including the region of ACC 

hypothesized to be involved in maintaining action values. In fact, this area of ACC exhibited 

increased connectivity with all three DLPFC clusters when goal pursuit was threatened, 

suggesting that it plays a central role in maintaining goal pursuit. Additionally, all three DLPFC 

clusters exhibited greater connectivity with genual ACC when goal pursuit was threatened. 
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Relevant to the maintenance of goal-pursuit, this area has been implicated in using past 

memories to envision potential future outcomes, a process known as prospection (Buckner & 

Carroll, 2007).  

Prospection is essential to goal pursuit, because a representation of each potential 

outcome, based on past experience, is needed in order to evaluate the predicted subjective value 

of that outcome. The ability to incorporate motivationally relevant information into anticipation 

when considering a potential outcome will make that option seem more attractive (or unattractive 

if the outcome is unpleasant). PCC, which has also been implicated in prospection (Buckner & 

Carroll, 2007), exhibited greater connectivity with two of the DLPFC clusters when goal pursuit 

was threatened in the present study. Research suggests that the aspect of prospection that PCC is 

involved in is the incorporation of the emotional and motivational aspects of memories into 

imagined scenarios (Maddock, 1999). This hypothesized role for PCC has been supported by 

several studies, including one that found greater PCC activation when participants considered 

approach- and avoidance-related goals (Johnson et al., 2006). Additionally, a recent study found 

that PCC activation was associated with imagining potential future outcomes, and activation in 

PCC predicted both the subjective value of a delayed reward option and the choice of this 

delayed reward over a smaller, but less delayed reward (Peters & Buchel, 2010). In summary, the 

present findings suggest that regions of DLPFC associated with trait motivation bias processing 

in two nodes of a network involved in prospection of future goals.  

Amygdala. All three DLPFC clusters were found to exhibit greater connectivity with 

amygdala when goal pursuit was threatened, although the relationship between right DLPFC and 

amygdala did not survive when only the unique variance in the right DLPFC cluster was used, 

indicating that this finding may be an artifact of variance shared with the other DLPFC clusters. 
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The finding of increased connectivity between DLPFC and amygdala when goal pursuit was 

threatened suggests that DLPFC recruited amygdala in a compensatory fashion to identify and 

enhance processing of the salient stimulus features (i.e., ink color).  

Basal Ganglia. All three DLPFC clusters were found to exhibit greater connectivity with 

basal ganglia when goal pursuit was threatened. Perhaps unsurprisingly, all three DLPFC clusters 

exhibited connectivity with an area of right caudate that has been found to be connected with 

DLPFC (Haber, 2009), although the relationship with one of the left DLPFC clusters did not 

survive when only the unique variance in the left DLPFC cluster was used. All three DLPFC 

clusters also exhibited greater connectivity with right putamen (two of the clusters were also 

associated with the contralateral area of left putamen) when goal pursuit was threatened. This 

area of putamen, along with the caudate area mentioned above, have been found to be associated 

with action selection and preparation (Tremblay, Worbe, & Hollerman, 2009), providing one 

possible means by which DLPFC can influence behavior.  

Conclusions 

 In summary, Study 1 provided support for the involvement of DLPFC areas associated 

with motivation in biasing processing in other brain areas involved in goal pursuit to be 

congruent with goals. Additionally, the findings of Study 1 indicated that each DLPFC cluster 

independently influenced the brain areas examined. However, Study 1 suffers from a potential 

confound due to the fact that the data set used to examine connectivity was the same data set 

used to initially identify the DLPFC clusters. This may be problematic, because the cluster shape 

may have been partially determined by error variance shared with other areas of the brain. To 

address this potential confound, an independent sample of unselected individuals from the 
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community was used as a replication sample in Study 2. The use of this sample also served to 

test the generalizability of the present findings beyond an undergraduate population.  

Study 2 

Methods 

Participants. The sample consisted of unselected participants recruited from the 

community using advertisements placed in local newspapers. Participant screening and data 

quality procedures were identical to that used in Study 1. A total of 120 participants completed 

the protocol, and data from 102 participants (63% female, mean age = 34.2) passed data quality 

screening.  

Stimuli, Experimental Design, and Data Analyses. The stimuli, experimental design, 

and data analysis procedures were identical to that used in Study 1.  

Results 

Overlapping Approach and Avoidance Temperament Cluster in Left DLPFC. The 

first set of analyses was conducted with the left DLPFC cluster found to be associated with both 

approach and avoidance temperament in Spielberg et al. (2011). Table 7 lists brain regions that 

evidenced stronger positive correlations with activation in this DLPFC cluster during the 

incongruent condition than congruent condition. No clusters emerged in which the opposite 

pattern held. Also listed in Table 7 are the correlations between the identified brain regions and 

activation in this DLPFC cluster for each condition (i.e., incongruent and congruent).   

As illustrated in Figure 4.2A, four clusters emerged in OFC. Two clusters were located in 

bilateral agranular OFC, extending into IFG and insula. Additionally, two clusters were located 

in bilateral anterior-middle OFC. One cluster emerged in cingulate, illustrated in Figure 4.2B, 

located in dACC, gACC, subgenual ACC, paracingulate gyrus, PCC, and precuneus. As 
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illustrated in Figure 4.2C, two clusters emerged in bilateral amygdala. Four clusters emerged in 

BG, as illustrated in Figure 4.2D. Two clusters emerged in bilateral putamen and globus pallidus, 

and two clusters emerged in bilateral caudate.  

All clusters remained significant when only the unique variance associated with the 

DLPFC cluster was used, indicating that these findings are not due to the shared variance with 

other DLPFC seed clusters. All clusters exhibited larger positive correlations with DLPFC 

activation during incongruent blocks than during congruent blocks.  

Approach Temperament Cluster in Left DLPFC. The second set of analyses was 

conducted with the left DLPFC cluster found to be selectively associated with approach 

temperament in Spielberg et al. (2011). Table 7 lists brain regions that evidenced stronger 

positive correlations with activation in this DLPFC cluster during the incongruent condition than 

congruent condition. No clusters emerged in which the opposite pattern held. Also listed in Table 

7 are the correlations between the identified brain regions and activation in this DLPFC cluster 

for each condition (i.e., incongruent and congruent). 

Two clusters emerged in OFC, as illustrated in Figure 4.2E. One cluster was located in 

right agranular OFC, and one in medial-anterior OFC. As illustrated in Figure 4.2F, three clusters 

emerged in cingulate. One cluster emerged in dACC and paracingulate gyrus, one in gACC, and 

one in PCC. One cluster emerged in right amygdala, shown in Figure 4.2G. Additionally, three 

clusters emerged in BG, illustrated in Figure 4.2H. The first cluster was located in right nucleus 

accumbens, caudate, putamen, and globus pallidus, the second in right caudate, and the third in 

left putamen and globus pallidus.  

Several clusters did not remain significant when only the unique variance associated with 

the DLPFC seed cluster was used. These included the clusters in subgenual ACC and right 
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caudate. Additionally, the clusters in medial-anterior OFC and PCC did not remain significant, 

although these clusters were evident when an individual z-threshold of p = 0.05 (corrected for 

multiple comparisons) was used, suggesting that these effects are present, albeit weak. All other 

clusters remained significant when only the unique variance associated with the DLPFC seed 

cluster was used, indicating that these findings are not due to the shared variance with other 

DLPFC seed clusters. All clusters exhibited larger positive correlations with DLPFC activation 

during incongruent blocks than during congruent blocks.  

Avoidance Temperament Cluster in Right DLPFC. The third set of analyses was 

conducted with the right DLPFC cluster found to be selectively associated with avoidance 

temperament in Spielberg et al. (2011). Table 7 lists brain regions that evidenced stronger 

positive correlations with activation in this DLPFC cluster during the incongruent condition than 

congruent condition. No clusters emerged in which the opposite pattern held. Also listed in Table 

7 are the correlations between the identified brain regions and activation in this DLPFC cluster 

for each condition (i.e., incongruent and congruent). 

As illustrated in Figure 4.2I, three clusters emerged in OFC. Two clusters emerged in 

bilateral agranular OFC, and one cluster emerged in left and medial anterior OFC and frontal 

pole. Two clusters emerged in cingulate, as illustrated in Figure 4.2J. One large cluster was 

located in dACC, gACC, and paracingulate gyrus, and the second cluster was located in PCC, 

extending into precuneus. No clusters emerged in amygdala. Additionally, as illustrated in Figure 

4.2K, four clusters emerged in BG. One cluster was located in left nucleus accumbens, one in left 

putamen, one in right putamen and globus pallidus, and one in left caudate.  

With the exception of the clusters in right putamen/globus pallidus and left caudate, all 

clusters remained significant when only the unique variance associated the DLPFC seed cluster 
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was used, indicating that these findings are not due to the shared variance with other DLPFC 

seed clusters. All clusters exhibited larger positive correlations with DLPFC activation during 

incongruent blocks than during congruent blocks.  

Discussion 

 The findings of Study 2 largely replicated Study 1 findings, indicating that the results of 

Study 1 cannot be attributed to using the same sample to identify the DLPFC clusters and test the 

network connectivity model. Additionally, this replication supports the generalizability of the 

present findings beyond the undergraduate sample used in Study 1, who were relatively 

homogenous in age and education. Most importantly, this replication provides further support for 

the hypothesis that regions of DLFPC thought to be involved in the integration of motivational 

and executive function processes (Spielberg et al., 2011; Spielberg et al., in prep) bias processing 

in OFC, cingulate, amygdala, and basal ganglia to be congruent with goals.  

 DLPFC Cluster Associated With Approach and Avoidance Temperament. As shown 

in Table 8, all areas found in Study 1 to exhibit greater connectivity with this DLPFC cluster 

when goal pursuit was threatened were also observed in Study 2. In addition to this replication, 

results of Study 2 also indicated increased connectivity bilaterally in all areas in which increased 

connectivity was found in only one hemisphere in Study 1. Specifically, increased connectivity 

was found bilaterally in agranular OFC/IFG/insula, anterior-middle OFC, amygdala, 

putamen/globus pallidus, and caudate, whereas increased connectivity was found for these 

regions in only one hemisphere in Study 1. As well, increased connectivity was observed in 

subgenual ACC in Study 2, in addition to the genual and dorsal ACC areas found in Study 1, 

suggesting a larger pattern of connectivity may be present between DLPFC and cingulate than 

evidenced in Study 1.  
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 DLPFC Cluster Associated With Approach Temperament. Study 2 largely replicated 

the Study 1 findings for the left DLPFC cluster associated with approach temperament, as shown 

in Table 8. However, a number of areas were not replicated, including left agranular and 

posterior-middle OFC, left amygdala, subgenual ACC, and the part of dACC near the genu. This 

suggests that these areas exhibit weaker or inconsistent connectivity with this DLPFC cluster. 

Importantly, replications were found in medial-anterior and right agranular OFC, right amygdala, 

dorsal and genual ACC, and all of the regions of BG found in Study 1. Thus, the overall 

hypothesis that this area of DLPFC would exhibit increased connectivity with these cortical and 

subcortical areas was supported by the findings of Study 2. Additionally, in Study 2, both left 

nucleus accumbens and PCC exhibited increased connectivity when goal pursuit was threatened, 

whereas these areas were not observed in Study 1.  

DLPFC Cluster Associated With Avoidance Temperament. As shown in Table 8, 

Study 2 largely replicated the Study 1 findings for the right DLPFC cluster associated with 

avoidance temperament. However, some areas were not replicated, including posterior-middle 

OFC, left amygdala, subgenual ACC, and right caudate and nucleus accumbens. This suggests 

that these areas exhibit weaker or inconsistent connectivity with the right DLPFC cluster. Given 

that the left amygdala finding in Study 1 did not survive when only the unique variance 

associated with the right DLPFC cluster was used and that left amygdala was not found in Study 

2, it seems likely that the Study 1 finding was driven by shared variance with other DLPFC 

clusters.  

Importantly, replications were found in left agranular and medial-anterior OFC (although 

the cluster in Study 2 was largely inferior to the cluster found in Study 1), dorsal and genual 

ACC, PCC, and bilateral putamen. Although the cluster in right caudate was not replicated in 
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Study 2, a cluster was observed in contralateral left caudate (not found in Study 1).Thus, the 

overall hypothesis that the right DLPFC cluster would exhibit increased connectivity with these 

cortical and subcortical areas was supported by the findings of Study 2. Additionally, in Study 2, 

both right agranular OFC and left nucleus accumbens exhibited increased connectivity when goal 

pursuit was threatened, whereas these areas were not observed in Study 1.  

General Discussion 

 Across two independent samples, the findings of the present study support the hypothesis  

that the role of these DLPFC regions is to influence processing in other nodes of the network to 

be congruent with goals when goal pursuit is threatened. This network included regions of OFC, 

ACC, amygdala, and BG.  

Present findings also indicate that each of the DLPFC clusters examined has an 

independent relationship with OFC, ACC, amygdala, and BG, with the exception of the right 

DLPFC cluster and amygdala. The finding that each DLPFC cluster independently influenced 

brain regions in the network indicates that the regions of DLPFC examined are each providing a 

distinct influence on goal pursuit. Specifically, the left and right DLPFC clusters related to 

approach and avoidance motivation, respectively, may each be providing top-down biasing 

specific to the particular type of goal related to that cluster (i.e., approach or avoidance goals). 

The cluster related to both approach and avoidance motivation may be providing top-down 

biasing independent of motivational direction. Additionally, present findings indicate that these 

relationships are consistent, given that they were generally replicated in Study 2. This provides 

support for the hypothesis that these areas are consistently functioning as nodes in a network 

involved in goal pursuit.  
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Supporting present hypotheses, DLPFC clusters exhibited increased connectivity with 

OFC when goal pursuit was threatened. Given the proposed association of medial and lateral 

OFC with the maintenance of reward and punishment values, respectively (O‟Doherty, 2007), it 

would have made sense for the left and right DLFPC clusters associated with approach and 

avoidance motivation to exhibit specific relationships with medial and lateral OFC, respectively. 

However, this was not found to be the case, as both DLPFC clusters were consistently associated 

with both medial and lateral OFC. When only the consistent findings across Studies 1 and 2 are 

considered, there does appear to be a pattern of cross-hemispheric connectivity. Specifically, 

both left DLPFC clusters consistently exhibited increased connectivity with right agranular OFC, 

and the right DLPFC cluster consistently exhibited increased connectivity with left agranular 

OFC. Agranular OFC, along with adjacent anterior insula, has been implicated in parsing the 

most salient stimuli for current goals from all internal and external stimuli (e.g., Seeley, et al., 

2007), indicating that DLPFC areas associated with motivation may be biasing what is identified 

as salient. The consistent pattern of cross-hemispheric connectivity found in the present study is 

consistent with a meta-analysis that found that OFC exhibited the reverse pattern of lateralization 

as DLPFC with regard to emotional valence (Wager, et al., 2008). However, it should be noted 

that this reflects only the findings that were consistent across Studies 1 and 2, and it is possible 

that there is a more complicated pattern of connectivity given that bilateral clusters that did not 

replicate across studies were also observed.  

As hypothesized, the present study found that, when goal pursuit was threatened, all three 

DLFPC clusters exhibited increased connectivity with the area of ACC thought to be involved in 

maintaining the average value of actions (Rushworth & Behrens, 2008). This is consistent with 

that hypothesis that regions of DLPFC are recruiting this region of ACC during the selection of 
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the appropriate action to take. In addition to this cingulate area, PCC and gACC were observed 

in the present study to consistently show increased connectivity with DLPFC (all three DLPFC 

clusters for gACC; the right cluster and one of the left clusters for PCC). Researchers have 

proposed that these areas of cingulate are involved in using past memories to generate potential 

future scenarios, information that can be used to aid prediction of future events (Buckner & 

Carroll, 2007). Thus, present findings suggest that DLPFC is engaging several areas of cingulate 

associated with different predictive functions in order to determine the best course of action.  

Also in line with present hypotheses, two of the DLPFC clusters consistently exhibited 

increased connectivity with amygdala when goal pursuit was threatened. This suggests that 

DLPFC is recruiting amygdala, likely along with agranular OFC/insula, to bias the stimulus 

features that are considered salient during the incongruent condition (i.e., ink color). This biasing 

by DLPFC is not needed during the congruent condition, because both ink color and word 

meaning contain the same information.  

All three DLPFC clusters consistently exhibited increased connectivity with regions of 

BG when goal pursuit was threatened, supporting present hypotheses. Unsurprisingly, this 

included an area of caudate that research indicates is connected to DLPFC (Haber, 2009). Also 

found were areas of putamen that research suggests influence action selection and preparation 

(Tremblay, Worbe, & Hollerman, 2009), providing a means by which DLPFC may influence 

behavior.  

Strengths and Limitations 

The present study benefited from the use of two samples that are quite large for the fMRI 

literature and the use of an independent sample to validate the present findings. Additionally, an 

empirically based method of identifying the seed clusters was used to locate clusters involved in 
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the integration of motivational and executive function processes, which is likely to be a vital 

function for efficient goal pursuit. As with any study, however, there are several limitations that 

must be considered when interpreting the results. First, the connectivity analysis method used is 

correlational in nature and cannot determine the presence or direction of causality. Future 

research should employ methods that can inform causality, such as Granger (1969) causality 

analysis. Second, the present study used a task in which the goal was consistent across the entire 

task, leaving unclear the role of DLPFC when a new task set must be initiated. Future research 

should examine DLPFC connectivity during a task in which participants have to switch back and 

forth between task sets, because research suggests that more anterior areas of PFC (e.g., BA 10) 

may be involved in switching between task sets (Koechlin & Summerfield, 2007).  

In spite of these limitations, the present study provides important insight into the role of 

DLPFC in biasing other brain areas involved in goal-directed behavior to be consistent with task 

goals. Consistent with hypotheses, areas of DLPFC associated with the integration of 

motivational and executive function processes exhibited increased positive correlations with 

OFC, ACC, amygdala, and BG when goal pursuit was threatened, supporting a role for DLPFC 

in biasing processing in these areas as part of a network of goal pursuit.  
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Table 6 
 

Areas Exhibiting Condition-Dependent Correlations with DLPFC Clusters in Study 1 
 

 

 

Region 

 

 

Cluster  

Size (mm
3
) 

 

 

Mean  

z-value 

 

Location 

 

 

 

Inc r 

 

 

 

Con r 
 

X 

 

Y 

 

Z 

 

L DLPFC Associated with Approach and Avoidance Temperament 

 

R anterior-middle OFC 

(BA 10/11) 

 

1,303 

 

2.50 

 

31 

 

65 

 

-6 

 

.19 

 

.10 

 

R agranular OFC/IFG/insula 

(BA 11/13/47) 

 

3,215 

 

2.47 

 

47 

 

23 

 

-10 

 

.27 

 

.19 

 

M dACC/gACC/paracingulate gyrus 

(BA 6/24/32/33) 

 

11,666 

 

2.56 

 

8 

 

25 

 

28 

 

.41 

 

.33 

 

M PCC 

(BA 23/31) 

 

1,032 

 

2.31 

 

2 

 

-37 

 

24 

 

.31 

 

.22 

 

M PCC/precuneus 

(BA 7/31) 

 

1,807 

 

2.53 

 

6 

 

-50 

 

45 

 

.37 

 

.26 

 

L amygdala 

 

622 

 

2.68 

 

-18 

 

1 

 

-22 

 

.23 

 

.12 

 

R putamen/globus pallidus
‡
 

 

840 

 

2.29 

 

11 

 

-6 

 

-5 

 

.23 

 

.10 

 

R caudate 

 

1,146 

 

2.86 

 

13 

 

6 

 

12 

 

.32 

 

.24 

 

L DLPFC Associated with Approach Temperament 

 

M anterior OFC 

(BA 11) 

 

1,625 

 

2.50 

 

3 

 

52 

 

-23 

 

.08 

 

-.01 

 

L agranular OFC/posterior-middle OFC 

(BA 11/47) 

 

4,163 

 

2.49 

 

-30 

 

9 

 

-20 

 

.20 

 

.10 

 

R agranular OFC 

(BA 11/47) 

 

2,429 

 

2.35 

 

21 

 

5 

 

-18 

 

.17 

 

.07 

 

M dACC/gACC/subgenual ACC/paracingulate 

gyrus 

(BA 6/9/24/32/33) 

 

7,692 

 

2.39 

 

0 

 

21 

 

28 

 

.22 

 

.12 

 

L amygdala 

 

1,217 

 

2.69 

 

-19 

 

-2 

 

-15 

 

.13 

 

.01 

 

R amygdala 

 

535 

 

2.36 

 

22 

 

3 

 

-18 

 

.08 

 

.03 

 

L putamen/globus pallidus 

 

3,158 

 

2.45 

 

-28 

 

-19 

 

5 

 

.14 

 

.06 

 

R putamen/globus pallidus 

 

1,440 

 

2.39 

 

28 

 

-2 

 

-2 

 

.13 

 

.05 

 

R caudate 

 

767 

 

2.46 

 

9 

 

0 

 

12 

 

.13 

 

.08 
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Table 6 con‟t 

 

R DLPFC Associated with Avoidance Temperament 

 

M anterior OFC/frontal pole 

(BA 10) 

 

2,322 

 

2.39 

 

2 

 

67 

 

4 

 

.14 

 

.07 

 

L agranular OFC/posterior-middle OFC 

(BA 11/47) 

 

2,911 

 

2.49 

 

-47 

 

19 

 

-8 

 

.21 

 

.12 

 

M dACC/gACC/subgenual 

ACC/paracingulate/PCC 

(BA 6/9/23/24/31/32/33) 

 

20,674 

 

2.56 

 

1 

 

42 

 

0 

 

.30 

 

.22 

 

M PCC/precuneus 

(BA 7/31) 

 

2,782 

 

2.44 

 

-6 

 

-54 

 

23 

 

.30 

 

.16 

 

L amygdala
‡ 

 

381 

 

2.50 

 

-17 

 

-1 

 

-24 

 

.11 

 

.01 

 

L putamen 

 

1,011 

 

2.45 

 

-33 

 

-15 

 

-3 

 

.21 

 

.14 

 

R NAc/putamen/globus pallidus 

 

5,103 

 

2.53 

 

22 

 

-5 

 

-8 

 

.29 

 

.17 

 

R caudate 

 

1,271 

 

2.39 

 

15 

 

10 

 

13 

 

.24 

 

.18 

Note. L = left. R = right. M = medial. OFC = orbitofrontal cortex. IFG = inferior frontal gyrus. ACC = anterior 

cingulate cortex. dACC = dorsal ACC. gACC = genual ACC. PCC = posterior cingulate cortex. NAc = nucleus 

accumbens. BA = Brodmann‟s Area. Location = coordinates are for the maximum z-value and are for MNI152 2009 

space, with the x axis moving from left to right. Inc r = correlation with DLPFC seed cluster timeseries during the 

incongruent condition. Con r = correlation with DLPFC seed cluster timeseries during the congruent condition. 
‡
 = 

cluster did not survive when only using the unique variance associated with the seed cluster.  
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Table 7 

Areas Exhibiting Condition-Dependent Correlations with DLPFC Clusters in Study 2 

 

 

 

Region 

 

 

Cluster  

Size (mm
3
) 

 

 

Mean  

z-value 

 

Location 

 

 

 

Inc r 

 

 

 

Con r 
 

X 

 

Y 

 

Z 

 

L DLPFC Associated with Approach and Avoidance Temperament 

 

L anterior-middle OFC 

(BA 10) 

 

1,112 

 

2.45 

 

-40 

 

51 

 

3 

 

.33 

 

.23 

 

R anterior-middle OFC 

(BA 10/11) 

 

4,696 

 

2.56 

 

28 

 

53 

 

-12 

 

.29 

 

.18 

 

L agranular OFC/IFG/insula 

(BA 11/13/47) 

 

1,740 

 

2.51 

 

-29 

 

28 

 

-6 

 

.33 

 

.23 

 

R agranular OFC/IFG/insula 

(BA 11/13/47) 

 

4,396 

 

2.69 

 

49 

 

21 

 

-2 

 

.30 

 

.18 

 

M dACC/gACC/subgenual ACC/ paracingulate 

gyrus/PCC/precuneus 

(BA 6/7/9/23/24/29/31/32/33) 

 

33,943 

 

2.70 

 

-1 

 

38 

 

11 

 

.53 

 

.42 

 

L amygdala 

 

384 

 

2.30 

 

-25 

 

-4 

 

-15 

 

.25 

 

.13 

 

R amygdala 

 

1,134 

 

2.88 

 

26 

 

-1 

 

-17 

 

.24 

 

.11 

 

L putamen/globus pallidus 

 

2,556 

 

2.59 

 

-19 

 

4 

 

6 

 

.28 

 

.15 

 

R putamen/globus pallidus 

 

3,661 

 

2.50 

 

20 

 

5 

 

1 

 

.31 

 

.18 

 

L caudate 

 

2,278 

 

2.68 

 

-10 

 

0 

 

11 

 

.40 

 

.33 

 

R caudate 

 

3,062 

 

2.80 

 

13 

 

-2 

 

16 

 

.37 

 

.26 

 

L DLPFC Associated with Approach Temperament 

 

M anterior OFC
‡
 

(BA 10/11) 

 

1,186 

 

2.37 

 

1 

 

56 

 

-14 

 

.09 

 

.00 

 

R agranular OFC 

(BA 11/47) 

 

1,156 

 

2.52 

 

38 

 

 

25 

 

-16 

 

.08 

 

.01 

 

M dACC/paracingulate 

(BA 6/23/24/32) 

 

5,785 

 

2.58 

 

-2 

 

 

5 

 

 

39 

 

.15 

 

.04 

 

M gACC
‡
 

(BA 32) 

 

1,120 

 

2.30 

 

6 

 

50 

 

-1 

 

.13 

 

.07 

 

M PCC
‡
 

(BA 29/31) 

 

1,918 

 

2.34 

 

2 

 

-47 

 

36 

 

.18 

 

.06 
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Table 7 con‟t 

 

R amygdala 

 

730 

 

2.69 

 

27 

 

-1 

 

-15 

 

.10 

 

.01 

 

L putamen/globus pallidus 

 

2,078 

 

2.44 

 

-15 

 

0 

 

6 

 

.14 

 

.05 

 

R NAc/caudate/putamen/globus pallidus 

 

3,889 

 

2.42 

 

12 

 

-2 

 

-1 

 

.15 

 

.02 

 

R caudate
‡
 

 

741 

 

2.65 

 

16 

 

4 

 

21 

 

.12 

 

.04 

 

R DLPFC Associated with Avoidance Temperament 

 

L/M anterior OFC/frontal pole 

(BA 10/11) 

 

1,433 

 

2.54 

 

-9 

 

68 

 

-13 

 

.11 

 

.02 

 

L agranular OFC 

(BA 11/47) 

 

2,274 

 

2.41 

 

-36 

 

25 

 

-20 

 

.22 

 

.13 

 

R agranular OFC 

(BA 11/47) 

 

1,221 

 

2.85 

 

43 

 

17 

 

-11 

 

.27 

 

.17 

 

M dACC/gACC/paracingulate 

(BA 6/9/24/32) 

 

7,193 

 

2.44 

 

-7 

 

20 

 

40 

 

.37 

 

.25 

 

M PCC/precuneus 

(BA 7/23/29/20/29/31) 

 

9,749 

 

2.63 

 

-8 

 

-49 

 

30 

 

.36 

 

.27 

 

L putamen 

 

696 

 

2.33 

 

-31 

 

6 

 

6 .20 

 

.09 

 

R putamen/globus pallidus
‡
 

 

1,385 

 

2.27 

 

32 

 

3 

 

5 .27 

 

.16 

 

L caudate
‡
 

 

608 

 

2.44 

 

-15 

 

-13 

 

22 .29 .19 

 

L NAc 

 

615 

 

2.36 

 

-13 

 

13 

 

-5 .21 

 

.13 

Note. L = left. R = right. M = medial. OFC = orbitofrontal cortex. IFG = inferior frontal gyrus. ACC = anterior 

cingulate cortex. dACC = dorsal ACC. gACC = genual ACC. PCC = posterior cingulate cortex. NAc = nucleus 

accumbens. BA = Brodmann‟s Area. Location = coordinates are for the maximum z-value and are for MNI152 2009 

space, with the x axis moving from left to right. Inc r = correlation with DLPFC seed cluster timeseries during the 

incongruent condition. Con r = correlation with DLPFC seed cluster timeseries during the congruent condition. 
‡
 = 

cluster did not survive when only using the unique variance associated with the seed cluster.  
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Table 8 

Areas Exhibiting Condition Dependent Correlations with DLPFC Clusters Across Both Studies 

 

L DLPFC Associated with Approach and Avoidance Temperament 

 

Orbitofrontal Cortex:  

 

R anterior-middle OFC, R agranular OFC/IFG/insula 

 

Cingulate Cortex:  

 

M dACC/gACC/paracingulate gyrus/PCC/precuneus 

 

Amygdala:  

 

L amygdala 

 

Basal Ganglia:  

 

R putamen/globus pallidus, R caudate 

 

L DLPFC Associated with Approach Temperament 

 

Orbitofrontal Cortex:  

 

R agranular OFC, M anterior OFC 

 

Cingulate Cortex:  

 

M dACC/subgenual ACC/paracingulate gyrus 

 

Amygdala:  

 

R amygdala 

 

Basal Ganglia:  

 

L putamen/globus pallidus, R putamen/globus pallidus, R caudate 

 

R DLPFC Associated with Avoidance Temperament 

 

Orbitofrontal Cortex:  

 

M anterior OFC/frontal pole, L agranular OFC 

 

Cingulate Cortex:  

 

M dACC/gACC/paracingulate/PCC/precuneus 

 

Amygdala:  

 

- 

 

Basal Ganglia:  

 

L putamen, R putamen/globus pallidus 

Note. L = left. R = right. M = medial. OFC = orbitofrontal cortex. IFG = inferior frontal gyrus. ACC = anterior 

cingulate cortex. dACC = dorsal ACC. gACC = genual ACC. PCC = posterior cingulate cortex.  
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Figure 4.1: Areas Exhibiting Condition Dependent Correlations with DLPFC Clusters in Study 

1. R = right. x, y, and z = coordinates in MNI 2009a space. A – D = clusters exhibiting greater 

connectivity with the left DLPFC cluster associated with approach and avoidance temperament. 

E – H = clusters exhibiting greater connectivity with the left DLPFC cluster associated with 

approach  temperament. I – L = clusters exhibiting greater connectivity with the right DLPFC 

cluster associated with avoidance temperament.  



135 
 

 

Figure 4.2: Areas Exhibiting Condition Dependent Correlations with DLPFC Clusters in Study 

2. R = right. x, y, and z = coordinates in MNI 2009a space. A – D = clusters exhibiting greater 

connectivity with the left DLPFC cluster associated with approach and avoidance temperament. 

E – H = clusters exhibiting greater connectivity with the left DLPFC cluster associated with 

approach  temperament. I – K = clusters exhibiting greater connectivity with the right DLPFC 

cluster associated with avoidance temperament.  
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CHAPTER 5 

ANXIETY AND DEPRESSION MODERATE FUNCTIONAL CONNECTIVITY 

ASSOCIATED WITH TOP-DOWN ATTENTIONAL CONTROL 

Pathological anxiety and depression are prevalent forms of psychopathology (Kessler et 

al., 2005) and are associated with significant impairment in multiple areas of life, including 

occupational and social function (Kessler, DuPont, Berglund, & Wittchen, 1999). These 

impairments are associated with substantial costs to society in the form of decreased 

occupational productivity and increased utilization of health care resources (Simon, Ormel, 

VonKorff, & Barlow, 1995; Wittchen, Carter, Pfister, Montgomery, & Kessler, 2000). Research 

on the development and maintenance of anxiety and depression would benefit both affected 

individuals and society, given that this type of research has the potential to inform prevention 

and treatment interventions. Although both anxiety and depression have been heavily researched, 

the factors involved in their etiology and maintenance remain a matter of debate and require 

further investigation (Watson, 2009). 

Pathological anxiety and depression are both characterized by high levels of general 

distress and are highly comorbid (i.e., negative affect, Clark & Watson, 1991). Despite the high 

comorbidity, anhedonic depression is distinguishable from two types of anxiety, anxious 

apprehension and anxious arousal (Nitschke, Heller, Imig, McDonald, & Miller, 2001; Nitschke, 

Heller, Palmieri, & Miller, 1999). At the symptom level, anxious apprehension is characterized 

by worry and verbal rumination (Andrews & Borkovec, 1988; Barlow, 1986, 1991), whereas 

anxious arousal is characterized by somatic tension and sympathetic hyperarousal (Watson, 

Clark et al., 1995; Watson, Weber et al., 1995). Depression is characterized by depressed mood 

and decreased response to pleasurable stimuli (APA, 2000). Neuroscience research supports the 
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distinction between these constructs. For example, anxious apprehension is associated with 

increased activation in Broca‟s area (Engels et al., 2007, 2010), anxious arousal with increased 

activation in right temporal gyrus (Engels et al., 2007, 2010), and depression with greater 

rightward lateralization in dorsolateral prefrontal cortex (DLPFC, Herrington et al., 2010). Thus, 

the extant literature supports the hypothesis that anxious apprehension, anxious arousal, and 

depression represent separate forms of psychopathology and underscores the importance of 

investigating their distinct etiological components.   

Dysfunction in Goal Pursuit 

One fundamental difficulty found in individuals with anxiety and depression is 

dysfunction in goal pursuit. Beck (1967) hypothesized that decreased approach of previously 

valued goals and increased avoidance of “the usual pattern or routine of life” (p. 29) are 

fundamental manifestations of depression. As well, anxiety has been associated with increased 

desire to avoid potentially threatening outcomes (e.g., Maner & Schmidt, 2006). Dysfunction in 

goal pursuit could be due to abnormal function in a number of processes that are important for 

goal-directed behavior. One fundamental set of processes important in goal pursuit are those 

related to approach and avoidance motivation (Elliot, 2006). The approach motivational system 

is oriented toward guiding behavior in pursuit of potential desirable goals, whereas the avoidance 

motivational system is oriented toward guiding behavior away from potential aversive goals 

(Elliot & Thrash, 2002). Understanding potential dysfunction in these systems would advance 

research on anxiety and depression, because this dysfunction may be a dispositional risk factor 

involved in the etiology and maintenance of these forms of psychopathology. For example, 

dysfunction in approach motivation in depression might lead an individual to have fewer 
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pleasant experiences, which could reinforce the expectation that they would not have pleasant 

experiences in the future.  

Emerging research indicates that anxious apprehension, anxious arousal, and anhedonic 

depression are differentially associated with approach and avoidance temperament. Spielberg, 

Heller, et al. (2011) examined the relationship between motivational temperaments and anxious 

apprehension, anxious arousal, and anhedonic depression using structural equation modeling and 

found that avoidance temperament exhibited a positive relationship with all three measures of 

psychopathology, with anxious apprehension exhibiting the strongest relationship. In contrast, 

approach temperament exhibited a negative relationship with anhedonic depression and weak 

and inconsistent positive relationships with both types of anxiety. Taken together, the findings 

support the relevance of approach and avoidance motivation for anxiety and depression. They 

also indicate some specificity in these relationships, such that increased avoidance may 

predispose toward both pathological anxiety and depression, whereas decreased approach may be 

specific to depression. Thus, anxiety and depression are associated with hyper- and 

hypoactivation in motivational systems.  

Although there is evidence of dysfunction in motivational systems in anxiety and 

depression, it remains unclear what components of the approach and avoidance motivational 

systems are dysfunctional. Chapter 2 proposed a model of the neural instantiation of approach 

and avoidance motivation that can be used as a framework for identifying potential areas of 

dysfunction in pathological anxiety and depression. This model consists of a network of brain 

areas thought to instantiate different processes that are important for goal-pursuit. Briefly, 

orbitofrontal cortex (OFC) has been associated with the maintenance of the average motivational 

value of stimuli (O‟Doherty, 2007), whereas portions of anterior cingulate cortex (ACC) are 
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thought to maintain the average motivational value of actions (Rushworth & Behrens, 2008). 

Additionally, posterior cingulate cortex (PCC) may be involved in integrating motivational 

information into prospection (Buckner & Carroll, 2007; Maddock, 1999). Regions of dorsolateral 

prefrontal cortex (DLPFC) have been implicated in the integration of motivational and executive 

function processes (Spielberg, Miller, et al., 2011; Chapter 3) and are hypothesized to bias 

processing in other nodes in the model to be congruent with goals. Finally, an important 

component of this model in relation to DLPFC is hemispheric laterality. Specifically, left 

DLFPC is posited to be selectively related to approach motivation, whereas right DLPFC is 

posited to be selectively related to avoidance motivation. However, research also indicates that 

there are some regions of DLPFC that instantiate motivational processes more broadly and are 

not specific to approach or avoidance (Spielberg, Miller, et al., 2011; Chapter 3).  

Chapter 4 provided a test of the role of DLPFC in this model. Psychophysiological 

interactions showed that activation in all nodes in the model (OFC, ACC, and PCC) was more 

highly correlated with DLPFC when goal pursuit was threatened. Interpreted another way, this 

study found that task-related activation (activation in response to goal-pursuit being threatened) 

in all nodes in the model was greater when concurrent DLPFC activation was higher. Thus, this 

study supports the role of DLFPC in biasing processing in other brain regions to be congruent 

with goals.  

Dysfunction in Model Nodes in Anxiety and Depression 

 As discussed above, there is evidence of dysfunction associated with anxiety and 

depression in the psychological processes engaged in goal pursuit. Additionally, there is 

evidence of dysfunction associated with anxiety and depression in brain areas thought to 

instantiate these processes.  
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Hyperactivation in Right DLPFC 

Hyperactivation in right DLPFC has been observed in studies of both anxiety and 

depression. For example, several studies have found an association between depression and 

greater rightward lateralization in DLPFC (e.g., Herrington et al., 2010). Hyperactivation in right 

DLPFC has also been reported in individuals with posttraumatic stress disorder when viewing 

trauma-related stimuli (PTSD; Lindauer et al., 2008; Morey, Petty, Cooper, Labar, & McCarthy, 

2008), individuals with panic disorder when viewing panic-related words (van den Heuvel et al., 

2005), and individuals with generalized anxiety disorder (GAD) during a worry-provoking 

situation (Bystritsky et al., 2008). Intervention research indicates that the rightward lateralization 

of DLPFC that is associated with anxiety and depression has functional significance. In one 

study, right DLPFC activation in individuals with PTSD when viewing trauma-related imagery 

was normalized after successful psychotherapy (Lindauer et al., 2008). Additionally, repetitive 

transcranial magnetic stimulation of right DLPFC in individuals with GAD was associated with a 

reduction in scores on a measure of anxiety (Bystritsky et al., 2008).  

Taken together, these studies indicate that anxiety and depression are associated with 

hyperactivation in right DLPFC. Further, they suggest that individuals with anxiety and 

depression are engaging the avoidance motivational system to a greater extent than individuals 

without these forms of psychopathology, because research has linked rightward lateralization in 

DLPFC with avoidance motivation (Spielberg, Miller, et al., 2011).  

Posterior Cingulate Cortex 

Dysfunction in PCC has also been associated with anxiety disorders and depression, 

although these relationships often emerge in opposite directions. Several studies have found PCC 

hypoactivation at rest in individuals with depression, which normalizes after treatment (Lozano 
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et al., 2008; Mayberg, 1997; Mayberg et al., 1999). Bench, Friston, Brown, Frackowiak, and 

Dolan (1993) found that activation in PCC was positively associated with anxiety symptoms and 

negatively associated with cognitive impairment in individuals with depression. A number of 

studies have found hyperactivation of PCC when individuals with anxiety disorders encountered 

disorder-relevant stimuli (panic disorder, Maddock, Buonocore, Kile, Garrett, 2003; obsessive 

compulsive disorder, Maltby, Tolin, Worhunsky, Keefe, & Kiehl, 2005; specific phobia, Straube, 

Mentzel, Glauer, & Miltner, 2004; social phobia, Straube, Kolassa, Glauer, Mentzel, & Miltner, 

2004).  

In combination, these findings suggest PCC that hyperactivation and hypoactivation are 

associated with anxiety disorders and depression, respectively. The findings of PCC 

hypoactivation at rest associated with depression may reflect a lack of spontaneous consideration 

of future outcomes. In contrast, the findings of PCC hyperactivation suggest that, in the face of 

threatening stimuli, avoidance-related anticipation is initiated, a process that may be more likely 

to occur in individuals with an anxiety disorder.  

Orbitofrontal Cortex 

Studies investigating OFC dysfunction in depression find both hyper- and hypoactivation, 

depending on the valence of the stimuli. For example, Elliott, Rubinsztein, Sahakian, and Dolan 

(2002) found more right, lateral OFC activation to sad than happy stimuli in individuals with 

depression. A meta-analysis of emotional challenge studies conducted on depression also found 

increased activation in OFC for sad stimuli (Fitzgerald, Laird, Maller, & Daskalakis, 2008), this 

time in left, posterior OFC (overlapping the area found to be negatively correlated with approach 

temperament in Spielberg, Miller, et al.. 2011). Additionally, this area of OFC was found to be 

hypoactive when happy stimuli were used. These findings are consistent with research indicating 
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overestimation of costs (e.g., Voncken, Bögels, & Peeters, 2007) and underestimation of benefits 

(e.g., Chentsova-Dutton & Hanley, 2010) in depression.  

Studies of OFC function in anxiety disorders have shown consistent hyperactivation to 

aversive stimuli. For example, individuals with panic disorder exhibited greater OFC activation 

when viewing anxiety-related images (Bystritsky et al., 2001). In a study of individuals with 

social phobia, increased activation was observed when viewing neutral faces that had been paired 

with a painful stimulus (Veit et al., 2002). In fact, higher activation to the faces was observed 

even before pairing with shock (after shock pairing, the difference was larger). In addition, in a 

study with a mixed sample of individuals with GAD or social phobia, a measure of intolerance of 

uncertainty correlated positively with OFC activation during an uncertain gambling task (Krain 

et al., 2008). These findings are consistent with research indicating an overestimation of costs in 

anxiety disorders (e.g., Foa, Franklin, Perry, & Herbert, 1996).  

Anterior Cingulate Cortex 

Research investigating dysfunction associated with depression in the area of ACC 

specified in the model has produced mixed results. For example, one study found hypoactivation 

in ACC at rest (Goldapple et al., 2004), which was normalized after successful cognitive 

behavioral therapy. In contrast, hyperactivation in ACC has been observed when participants 

with major depressive disorder viewed sadness-inducing film clips (Beauregard et al., 1998). 

Since anxiety was not examined in these studies, it is possible that differences in the amount of 

comorbid anxiety account for the conflicting findings. Another potential explanation is that, 

when at rest, individuals with depression are not considering goal-directed action (leading to 

decreased recruitment of ACC), whereas, when sadness is induced, individuals with depression 

overestimate the costs associated with action (leading to increased recruitment of ACC). Both 
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hypotheses are consistent with the withdrawal from goal-directed action associated with 

depression (APA, 2000).  

Anxiety has consistently been associated with hyperactivation in the area of ACC under 

consideration. For example, hyperactivation has been observed when individuals with panic 

disorder view panic-related words (van den Heuvel et al., 2005), in individuals with PTSD 

during shock anticipation (Bremner et al., 2005), and in individuals with social phobia in 

response to negative comments and harsh facial expressions (Amir et al., 2005; Blair et al., 2008; 

Phan, Fitzgerald, Nathan, & Tancer, 2006). Additionally, anxious apprehension has been shown 

to interact with ACC activation to predict behavioral deficits in inhibition, such that higher 

anxious apprehension and ACC hyperactivation together were associated with the longest 

reaction times during a color word Stroop task (Silton et al., 2011). Hyperactivation in ACC has 

been shown to normalize after anti-depressant treatment in individuals with social phobia (Kilts 

et al., 2006). This research suggests that individuals with anxiety disorders overestimate the costs 

associated with action.  

Hyperactivation in Amygdala 

Although not included in the model outlined in Chapter 2, amygdala was found in 

Chapter 4 to be part of the network of brain areas involved in goal pursuit and research suggests 

that this area exhibits dysfunction in anxiety and depression. Therefore, amygdala was examined 

in the present study. Amygdala is hypothesized to be involved in the identification of salient 

stimuli and the enhancement of processing of relevant stimulus features (Pessoa & Adolphs, 

2010). Both anxiety and depression have been associated with amygdala hyperactivation (e.g, 

Engels et al., 2010; Herrington et al., 2010). For example, one study found that depression was 

associated with hyperactivation in amygdala when participants made ratings of emotionally 
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arousing stimuli (Siegle, Thompson, Carter, Steinhauer, & Thase, 2007). A different study found 

that amygdala hyperactivation when viewing aversive faces predicted the severity of social 

phobia (Phan et al., 2006). Thus, there is evidence to suggest dysfunction associated with anxiety 

and depression is present in the areas included in the proposed model, along with amygdala.  

Present Study 

Although there is evidence of dysfunction in the areas in the proposed model of goal 

pursuit associated with anxiety disorders and depression, research has yet to determine whether 

this dysfunction results from dysfunctional biasing by DLPFC. For example, it is possible that 

hyperactivation in amygdala in anxiety is due to anxiety being associated with increased 

recruitment of amygdala by right DLPFC. Thus, the purpose of the present study is to test the 

hypothesis that anxiety and depression are associated with dysfunctional DLPFC biasing of 

nodes in the proposed model. Specifically, this study tested whether the relationships between 

DLPFC areas associated with motivation and brain areas observed to have a condition-dependent 

relationship with DLPFC in Chapter 4 (i.e., a stronger correlation during incongruent condition 

than congruent condition) vary as a function of anxiety and depression. In relation to the example 

above, the present study tested whether the relationship between amygdala and right DLPFC 

showed a condition-dependent increase as a function of dimensions of anxiety. If found to be 

true, this would suggest that the amygdala hyperactivation associated with anxiety is due to 

dysfunctional biasing by right DLPFC.  

Experimental Design 

In order to examine moderation of model relationships by anxiety and depression, three-

way interactions between brain activation in DLPFC clusters, the task contrast of interest 
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(incongruent vs. congruent), and questionnaire measures of anxious apprehension, anxious 

arousal, and anhedonic depression were tested.  

Hypotheses 

Hypotheses for the present study are pictured in Figure 5.1 and summarized below.  

Anxious Apprehension. Given that anxious apprehension has been associated with 

avoidance motivation (Spielberg, Heller, et al., 2011) and overestimation of potential costs 

(Berenbaum, Thompson, & Pomerantz, 2007), recruitment of OFC and ACC by the DLPFC 

cluster associated with avoidance temperament in Spielberg, Miller, et al. (2011) was 

hypothesized to increase as levels of anxious apprehension increase. Additionally, anxious 

apprehension was hypothesized to interfere with engagement of imagery processes when 

moderation by motivational systems is needed (i.e., when task demands are high), because 

anxious apprehension has been associated with decreased levels of imagery, even at rest 

(Borkovec & Inz, 1990). Therefore, recruitment of PCC by the DLPFC cluster associated with 

avoidance temperament was hypothesized to decrease as anxious apprehension increased. 

Anxious apprehension has been associated with increased salience of threat stimuli (MacLeod & 

Rutherford, 2004). Therefore, recruitment of amygdala by the DLPFC cluster associated with 

avoidance motivation was hypothesized to increase as anxious apprehension increased. Finally, 

because anxious apprehension has exhibited a weak and inconsistent relationship with approach 

motivation (Spielberg, Heller, et al., 2011), relationships with the DLPFC area associated with 

approach were not expected to be moderated by anxious apprehension. 

Anxious Arousal. Although anxious arousal has been associated with greater avoidance 

motivation, it has not been associated with overestimation of costs (Berenbaum et al., 2007). 

Therefore, anxious arousal was not expected to moderate recruitment of ACC and OFC by the 
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DLPFC area associated with avoidance. There is some evidence that imagery ability is positively 

correlated with somatic anxiety and sympathetic hyperarousal (e.g., Cook, Melamed, Cuthbert, 

McNeil, & Lang, 1988; Miller et al., 1987). Therefore, recruitment of PCC by the DLPFC cluster 

associated with avoidance temperament was hypothesized to increase as anxious arousal 

increases. Anxious arousal has been associated with increased detection of potentially salient 

stimuli (Nitschke, Heller, & Miller, 2000), and recruitment of amygdala by the DLPFC cluster 

associated with avoidance was anticipated to increase as anxious arousal increases. Based on the 

weak and inconsistent relationship between anxious arousal and approach motivation, anxious 

arousal was not expected to moderate relationships with the DLPFC area associated with 

approach. 

Anhedonic Depression. Research associates anhedonic depression with decreased levels 

of approach temperament (Spielberg, Heller, et al. 2011) and underestimates of benefit (e.g., 

Chentsova-Dutton & Hanley, 2010). Consequently, recruitment of OFC and ACC by the DLPFC 

cluster associated with approach temperament was hypothesized to decrease as anhedonic 

depression increases. Anhedonic depression has also been associated with increased levels of 

avoidance temperament (Spielberg, Heller, et al. 2011) and overestimates of cost (Voncken et al., 

2007), which suggests that recruitment of OFC and ACC by the DLPFC cluster associated with 

avoidance temperament should decrease as anhedonic depression increases. Additionally, 

research indicates that depression is associated with decreased levels of pleasant imagery and 

increased levels of unpleasant imagery (Holmes, Lang, Moulds, & Steele, 2008; Patel et al., 

2007). Therefore, recruitment of PCC by the DLPFC cluster associated with approach 

temperament was hypothesized to decrease as anhedonic depression increases, whereas 

recruitment of PCC by the DLPFC cluster associated with avoidance was hypothesized to 
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decrease as anhedonic depression increases. Finally, depression has been associated with 

decreased salience of appetitive stimuli (Henriques & Davidson, 2000). Consequently, 

recruitment of amygdala by the DLPFC cluster associated with approach was hypothesized to 

decrease as anhedonic depression increases.  

Methods 

The present study used the Study 1 sample from Chapter 4. One individual from that 

sample was not included in the present study, because psychopathology questionnaire data were 

not available. Stimuli, experimental design, data collection, data reduction, and preprocessing are 

described in Chapter 4.  

Questionnaires 

The 16-item Penn State Worry Questionnaire (PSWQ) was used to assess anxious 

apprehension. For this questionnaire, participants rated how characteristic (1 = not at all, 5 = 

very typical) each item was of them. Participants completed a 39 item portion of the Mood and 

Anxiety Symptom Questionnaire (MASQ) that provided two scales, the Anxious Arousal scale 

(MASQ-AA), consisting of 17 items, and the Anhedonic Depression scale (MASQ-AD), 

consisting of 22 items. For both MASQ scales, participants rated how much they experienced 

each item during the previous week (1 = not at all, 5 = extremely). Two subscales of the MASQ-

AD were examined, given evidence indicating that they reflect different sub-facets of anhedonic 

depression (e.g., Nitschke et al., 2001; Spielberg, Heller, et al. 2011). These were the Loss of 

Interest subscale (MASQ-AD-LI) and the Low Positive Affect subscale (MASQ-AD-LP).  

fMRI Data Processing 

Three-way psychophysiological interaction analyses were performed with FLAME 

(FMRIB‟s Local Analysis of Mixed Effects) using the two-way interaction β maps created in 



155 
 

Chapter 4. Instead of entering the interaction maps into a t-test (as done in Chapter 4), the 

interaction maps were entered as dependent variables into a group-level regression, with PSWQ, 

MASQ-AA, MASQ-AD-LI, and MASQ-AD-LP as between-subject predictors. Three 

regressions were conducted, one for each DLPFC cluster. For each regression analysis, each 

predictor yielded a per-voxel effect-size parameter estimate (β) map representing the unique 

variance associated with that predictor. As done in Chapter 4, t-tests were conducted on the β 

maps and converted to z-scores to determine the significance of the β‟s. For β‟s in which an a 

priori hypothesis was made, 1-tailed t-tests were used. For all other β‟s, 2-tailed t-tests were 

used.  

Monte Carlo simulations via AFNI‟s AlphaSim program were used to estimate the 

overall significance level for thresholding the 3D functional z-map image (Ward, 2000). These 

simulations provided the appropriate cluster size, which, in combination with an individual voxel 

z-threshold of p = 0.05, gave an overall two-tailed family-wise error rate of 0.05. Four masks of 

a priori regions of interest were used to limit the number of voxels under consideration. 

Specifically, these masks were of 1) ventral prefrontal cortex (including OFC; cluster threshold = 

1,131 mm
3
), 2) anterior cingulate cortex (cluster threshold = 702 mm

3
), 3) posterior cingulate 

cortex (cluster threshold = 741 mm
3
), and 4) amygdala (cluster threshold = 390 mm

3
).  

Results 

 Table 9 lists clusters where the psychopathology dimensions moderated the relationship 

between the area listed and the DLPFC clusters.  

Anxious Apprehension 

In line with hypotheses, PSWQ was associated with increased recruitment of right 

agranular and middle OFC by the right DLPFC cluster associated with avoidance temperament, 
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pictured in Figure 5.2B. Unexpectedly, PSWQ was also associated with increased recruitment of 

right middle and left lateral and middle OFC by the left DLPFC cluster associated with approach 

temperament, illustrated in Figure 5.2A. PSWQ was not associated with differential recruitment 

in any of the other brain areas examined.  

Anxious Arousal 

Supporting present hypotheses, MASQ-AA was associated with increased recruitment of 

left amygdala by the right DLPFC cluster associated with avoidance temperament, illustrated in 

Figure 5.2D. Unexpectedly, MASQ-AA was also associated with decreased recruitment of 

dACC by the left DLPFC cluster associated with approach temperament, pictured in Figure 5.2C. 

MASQ-AA was not associated with differential recruitment in any of the other brain areas 

examined.  

Anhedonic Depression – Loss of Interest 

 In line with hypotheses, MASQ-AD-LI was associated with increased recruitment of 

posterior dACC by the right DLPFC cluster associated with avoidance temperament, pictured in 

Figure 5.2E. MASQ-AD-LI was not associated with differential recruitment in any of the other 

brain areas examined. 

Anhedonic Depression – Low Positive Affect 

 MASQ-AD-LP was not associated with differential recruitment in any of the brain areas 

examined.  

Discussion 

The findings of the present study suggest that observed dysfunction in brain areas 

associated with goal pursuit in anxiety and depression is due, at least in part, to dysfunctional 

recruitment by regions of DLPFC associated with trait motivation. Additionally, the present 
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findings indicate some specificity, in that dimensions of anxiety and anhedonic depression were 

associated with dysfunctional biasing by DLPFC in different brain regions. Specifically, anxious 

apprehension was associated with increased recruitment of regions of OFC by both DLPFC 

clusters. Anxious arousal was associated with increased recruitment of amygdala by the right 

DLPFC cluster associated with avoidance and decreased recruitment of dACC by the left 

DLPFC cluster associated with approach. Finally, the loss of interest sub-facet of anhedonic 

depression was associated with increased recruitment of dACC by the right DLPFC cluster 

associated with avoidance. No effects were found for the low positive affect sub-facet of 

anhedonic depression, nor was either of the sub-facets associated with differential recruitment by 

the left DLPFC cluster associated with approach.  

Present findings indicate that the hyperactivation in OFC that has been observed in 

individuals with pathological anxiety (e.g., Bystritsky et al., 2001; Veit et al., 2002) may be due 

to increased top-down recruitment by DLPFC. Anxious apprehension was associated with 

increased recruitment of OFC for both of the DLPFC clusters examined in the present study, 

whereas only the right DLPFC cluster associated with avoidance temperament was expected to 

show this finding. This suggests that anxious apprehension is associated with increased 

assessment of the value of stimuli, independent of the type of goal (approach or avoidance). This 

is consistent with evidence that hyperactivation in OFC associated with anxiety is related to 

uncertainty (Krain et al., 2008), which is important for both approach and avoidance goals. 

Future research should investigate potential dysfunction associated with anxious apprehension in 

the estimates of value related to both approach and avoidance goals, and, if present, whether this 

dysfunction is moderated by the level of uncertainty. Present findings also suggest that the 

hyperactivation of OFC observed in anxiety is due to symptoms of anxious apprehension, rather 
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than anxious arousal, which was not associated with increased recruitment by DLPFC in the 

present study. This is consistent with evidence that anxious apprehension, and not anxious 

arousal, is associated with overestimation of costs (Berenbaum et al., 2007).  

Present findings also suggest that the hyperactivation in amygdala that has been observed 

in individuals with anxiety (e.g., Engels et al., 2010; Phan et al., 2006) is due to increased top-

down recruitment by regions of right DLPFC associated with avoidance motivation. This effect 

was found only for anxious arousal, suggesting that amygdala hyperactivation observed in 

individuals with pathological anxiety is specific to symptoms of anxious arousal. Hyper-

recruitment of amygdala by right DLPFC is consistent with research suggesting that anxious 

arousal is associated with hyperactivation in a system involved in responding to threat that 

includes right DLPFC and amygdala (Nitschke et al., 2000).  

Unexpectedly, anxious arousal was also associated with decreased recruitment of dACC 

by the left DLPFC cluster associated with approach motivation. This finding suggests that, 

during the planning of actions related to approach goals, anxious arousal is associated with 

decreased reliance on information regarding the average value of these actions. Instead, anxious 

arousal may be associated with a reliance on more stereotyped action plans associated with 

emotion, specifically fear (e.g., fight, flight). This is consistent with research indicating that 

anxious arousal is a major component of Panic Disorder (Brown, Chorpita, & Barlow, 1998), 

which is associated with hyperactivation of physiological responses related to fear (Gorman, 

Kent, Sullivan, & Coplan, 2004). Future research should test whether anxious apprehension is 

associated with deficits in the efficient planning of actions, especially when information related 

to potential threats is present.  
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Consistent with present hypotheses, the loss of interest sub-facet of anhedonic depression 

was associated with stronger recruitment of dACC by the DLPFC cluster associated with 

avoidance motivation. This suggests that the hyperactivation of ACC associated with depression 

is due to increased recruitment by right DLPFC. This finding was present only for the loss of 

interest sub-facet of anhedonic depression, which is consistent with research indicating that this 

sub-facet has a greater relationship with avoidance motivation than the low positive affect sub-

facet (Spielberg, Heller, et al., 2011).  

Neither sub-facet of depression moderated recruitment of the brain areas examined by the 

left DLPFC cluster associated with approach motivation, which is inconsistent with present 

hypotheses. This result may be due to a number of factors. First, the present task may not have 

induced approach motivation to the degree necessary to observe differential recruitment by left 

DLPFC, which would be consistent with the fact that the task used in the present study relied on 

inhibition of responses, which is often associated with avoidance motivation, rather than 

approach motivation (e.g., Gray, 1994). Another possible explanation is that the dysfunction in 

approach-related goal pursuit observed in depression may not be due to dysfunctional biasing by 

DLPFC. Rather, DLPFC may bias other brain areas appropriately, but these areas are 

dysfunctional for other reasons.  

In summary, present findings suggest that dysfunction associated with anxious 

apprehension and anhedonic depression in the neural processes involved in the estimation of 

costs is due, at least in part, to dysfunction in top-down biasing by DLPFC. Present findings 

indicate that dysfunction associated with anxious arousal in the neural processes involved in the 

identification of salience is also due to dysfunctional top-down biasing by DLPFC. Additionally, 

present findings suggest that anxious arousal is associated with dysfunction in the efficient 
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planning of actions related to approach goals. Finally, present findings indicate that dysfunction 

associated with anhedonic depression in brain areas involved in pursuing approach goals may not 

be due to dysfunctional biasing by DLPFC, in contrast to present hypotheses.  

Strengths and Limitations  

The present study benefitted from a large sample for the fMRI literature. Additionally, 

the present study carefully measured dimensions of both anxiety and depression, which are often 

not examined in the same study. The present approach diminishes the likelihood that findings are 

confounded by high levels of co-occurrence among anxiety and depression. Further, the present 

study used an empirically-based method of selecting seed clusters in DLPFC associated with 

approach and avoidance motivation.  

As with any study, there are a number of limitations that must be considered when 

interpreting the findings. Specifically, the present study used correlational methods that cannot 

determine causality. Therefore, although the present study interpreted the findings as DLPFC 

biasing other brain regions involved in goal pursuit, it is possible that the relationship occurs in 

the opposite direction or is bidirectional. Consequently, future research should employ methods 

that can better determine causality (e.g., Granger causality analysis, Granger, 1969), which 

would be important for determining the roles different nodes in the proposed network have for 

goal pursuit and understanding how these relationships may be dysfunctional in pathological 

anxiety and depression. Additionally, the present study relied on the use of a canonical 

hemodynamic response function to estimate the shape and latency of the hemodynamic response. 

However, it is possible that psychopathology is associated with differences in latency of the 

response. For example, it is possible that anxious arousal is associated with an increase in latency 

of the hemodynamic response in dACC, rather than being associated with a lack of recruitment 
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by DLPFC. Future research should examine potential differences in the latency of the 

hemodynamic response associated with anxiety and depression to determine whether there are 

differences in communication between areas of the network or whether the present findings are 

due to latency differences in the hemodynamic response that make it appear that connectivity 

differences are present.  

In spite of these limitations, the present study provides novel insight into potential causes 

of dysfunction in brain areas associated with goal pursuit in anxiety and depression. Specifically, 

the present study suggests that dysfunction in brain areas associated with goal pursuit observed 

in anxiety and depression is due, in part, to dysfunction in top-down biasing by areas of DLPFC 

associated with motivation. Therefore, research attempting to develop interventions that target 

this dysfunction may be better served by attempting to ameliorate dysfunctional biasing by 

DLPFC.  
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Table 9 

Brain Areas Exhibiting Moderation by Psychopathology 
 

 

 

Region 

 

 

Direction 

of Effect 

 

 

Cluster  

Size (mm
3
) 

 

 

Mean  

z-value 

 

Location 

 

X 

 

Y 

 

Z 

 

 

Anxious Apprehension 

 

L DLPFC Associated with Approach Temperament 

 

        L lateral/middle OFC (BA 11/47) 

 

Positive 

 

3,276 

 

2.38 

 

-37 

 

40 

 

-12 

 

        R middle OFC (BA 11/47) 

 

Positive 

 

1,204 

 

2.43 

 

27 

 

28 

 

-20 

 

R DLPFC Associated with Avoidance Temperament 

 

        R agranular/middle OFC (BA 11/47) 

 

Positive 

 

1,619 

 

1.97 

 

26 

 

23 

 

-20 

 

 

Anxious Arousal 

 

L DLPFC Associated with Approach Temperament 

 

       M dACC (BA 24/32) 

 

Negative 

 

2,584 

 

-2.30 

 

0 

 

25 

 

25 

 

R DLPFC Associated with Avoidance Temperament 

 

        L amygdala 

 

Positive 

 

503 

 

2.12 

 

-27 

 

2 

 

-22 

 

 

Anhedonic Depression – Loss of Interest 

 

L DLPFC Associated with Approach Temperament 

 

        ― 

 

― 

 

― 

 

― 

 

― 

 

― 

 

― 

 

R DLPFC Associated with Avoidance Temperament 

 

        M dACC (BA 24) 

 

Positive 

 

940 

 

2.00 

 

0 

 

9 

 

30 

 

 

Anhedonic Depression – Low Positive Affect 

 

L DLPFC Associated with Approach Temperament 

 

        ― 

 

― 

 

― 

 

― 

 

― 

 

― 

 

― 

 

R DLPFC Associated with Avoidance Temperament 

 

        ― 

 

― 

 

― 

 

― 

 

― 

 

― 

 

― 
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Table 9 con‟t 

Note. L = left. R = right. M = medial. DLPFC = dorsolateral prefrontal cortex. OFC = orbitofrontal cortex. dACC = 

dorsal anterior cingulate cortex. BA = Brodmann‟s Area. Location = coordinates are for the maximum z-value and 

are for MNI152 2009 space, with the x axis moving from left to right. Direction of Effect: Positive = stronger 

relationship between DLPFC and cluster as psychopathology score is greater. Negative = weaker relationship 

between DLPFC and cluster as psychopathology score is greater.  
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Figure 5.1. Predicted moderation of model relationships by anxiety and depression. ↑ = 

hypothesized increase in relationship strength when questionnaire scores are greater. ↓ = 

hypothesized decrease in relationship strength when questionnaire scores are greater. App = 

anxious apprehension, Aro = anxious arousal, and Dep = anhedonic depression. DLPFC = 

dorsolateral prefrontal cortex. ACC = anterior cingulate cortex. OFC = orbitofrontal cortex. PCC 

= posterior cingulate cortex.  
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Figure 5.2: Brain Areas Exhibiting Moderation by Psychopathology.  

R = right. x, y, and z = coordinates in MNI 2009a space. A = anxious apprehension associated 

with stronger condition dependent connectivity between bilateral orbitofrontal cortex and left 
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dorsolateral prefrontal cortex. B =  anxious apprehension associated with stronger condition 

dependent connectivity between right orbitofrontal cortex and right dorsolateral prefrontal 

cortex. C = anxious arousal associated with weaker condition dependent connectivity between 

dorsal anterior cingulate and left dorsolateral prefrontal cortex. D = anxious arousal associated 

with stronger condition dependent connectivity between left amygdala and right dorsolateral 

prefrontal cortex. E = anhedonic depression loss of interest associated with stronger condition 

dependent connectivity between dorsal anterior cingulate and right dorsolateral prefrontal cortex. 
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CHAPTER 6 

GENERAL DISCUSSION 

The present dissertation proposed a model of the neural instantiation of approach and 

avoidance motivation and tested several aspects this model. First, Chapter 2 reviewed and 

integrated research suggesting that 1) approach motivation and avoidance motivation are 

preferentially associated with left and right superior-lateral prefrontal cortex, respectively, 2) the 

levels of hierarchical approach and avoidance motivation can be mapped onto a proposed 

abstraction gradient running anterior-posterior in superior-lateral prefrontal cortex, 3) 

orbitofrontal cortex (OFC) maintains stimulus value information, 4) anterior cingulate cortex 

(ACC) maintains action value information, and 5) posterior cingulate cortex (PCC) is involved 

with the incorporation of motivational information into memory used to anticipate future 

outcomes. Based on reviewed research, a model was proposed in which these brain areas 

function as a network in which OFC, ACC, and PCC provide value-related information to 

superior-lateral PFC, particularly dorsolateral prefrontal cortex (DLPFC). The role of DLPFC in 

this model is to integrate motivational and executive function processes and bias processing in 

other brain areas to be congruent with goals.  

 Chapter 3 provided a test of a number of aspects of the model, including the hypothesis 

that regions of DLPFC are involved in integrating motivational and executive function 

information, the hypothesis that OFC, ACC, and PCC are involved in maintaining goal pursuit, 

and the hypothesis that regions of DLPFC related to trait motivation are differentially sensitive to 

stimulus valence. Chapter 4 provided a test of the hypothesis that DLPFC is involved in top-

down biasing of other nodes in the model to be congruent with goals. Lastly, Chapter 5 provided 

a test of the hypothesis that dysfunction associated with anxiety and depression in nodes in the 
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model proposed in Chapter 2 is due to dysfunctional biasing by regions of DLPFC associated 

with trait motivation.  

Implications for the Model of Approach and Avoidance 

The findings reported in Chapters 3, 4, and 5 have a number of implications for the model 

of the neural instantiation of approach and avoidance motivation presented in Chapter 2. First, 

Chapters 3 and 4 provide support for several aspects of the model. Specifically, Chapter 3 

supports the hypothesis that dorsolateral prefrontal cortex (DLPFC) is involved in integrating 

motivational and executive function processes, because it largely replicated the findings of 

Spielberg et al. (2011) but with a different type of distracting information threatening goal 

pursuit. Additionally, Chapter 3 provides support for the inclusion of orbitofrontal cortex (OFC), 

anterior cingulate (ACC), and posterior cingulate (PCC) as nodes in the model, because 

activation in these regions was also found to be moderated by approach and avoidance 

temperament when goal pursuit was threatened.  

Chapter 4 provides support for the hypothesis that DLPFC provides top-down biasing of 

nodes in the model to be congruent with goals, because activation in DLPFC was more highly 

correlated with activation in model nodes when goal pursuit was threatened. It should be noted 

that interpretation of the findings of Chapter 4 should be qualified by the fact that the analysis 

strategy used was correlational in nature and cannot determine causality or direction of influence. 

Chapter 4 also provides support for the inclusion of OFC, ACC, and PCC as nodes in the model, 

given that connectivity with DLPFC was found for all of these regions. The fact that the findings 

of Chapter 4 were replicated in two independent samples drawn from different populations 

indicates that these findings are reliable. Overall, Chapter 4 provides support for the hypothesis 

that the brain regions incorporated in the model proposed in Chapter 2 function as a network.  
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The findings of Chapters 3 and 4 also provide information that can be used to refine the 

model proposed in Chapter 2. First, the findings of Chapter 3 suggest that regions of DLPFC 

associated with approach and avoidance temperament are not differentially sensitive to the 

valence of stimuli, at least when these stimuli are not relevant to the goal being pursued. This is 

important, because differential sensitivity to valence is an important aspect of conceptualizations 

of approach and avoidance motivation (e.g., Elliot & Thrash, 2002). Thus, the findings of 

Chapter 3 raise questions regarding the role of DLPFC in the model, particularly the proposal 

that different regions of DLPFC are differentially sensitive to approach- and avoidance-related 

goals. However, the findings of Chapter 3 leave open the possibility that regions of DLPFC 

associated with trait motivation will be differentially sensitive to the valence of stimuli when 

these stimuli are directly relevant to the goal being pursued or are related to a competing goal. 

Thus, it remains possible that these regions of DLPFC are differentially sensitive to approach- 

and avoidance-related goals. Future research in which the valence of the goal object itself is 

manipulated would provide a test of this hypothesis.  

The findings of Chapter 3 also suggest that amygdala and basal ganglia (BG) should be 

added as nodes in the model, because activation in these areas was found to be moderated by trait 

motivation when goal pursuit was threatened. The findings of Chapter 4 support the inclusion of 

these areas in the model, given that activation in these areas was more strongly correlated with 

activation in DLPFC areas associated with trait motivation when goal pursuit was threatened. 

Thus, it appears that the model should be expanded to include these areas.  

The findings of Chapters 3 and 4 also indicate the involvement of a network of brain 

areas that has been hypothesized to be involved in using past memories to imagine potential 

future scenarios (i.e., prospection). Prospection is important for goal pursuit, because it can 
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improve the selection of goals or goal-pursuit actions by providing more information to use in 

the decision-making process (Buckner & Carroll, 2007). This appears to be especially important 

when selecting between goals that the individual has not already encountered directly or when 

planning the actions necessary to attain a goal in situations in which the individual has not 

previously pursued a goal in this manner successfully. Among the brain areas thought to be 

involved in prospection are PCC, which is already part of the proposed model, and genual ACC. 

Genual ACC was found to be moderated by trait motivation in Chapter 3 and to show increased 

connectivity with DLPFC when goal pursuit was threatened in Chapter 4, providing support for 

the inclusion of this area in the model.  

The findings of Chapter 5 also have implications for the model proposed in Chapter 2, 

although of a different type. Specifically, Chapter 5 provides support for the hypothesis that the 

proposed model can be used as a framework in which to attempt to better understand the 

dysfunction in goal pursuit observed in pathological anxiety and depression. The findings of 

Chapter 5 suggest that some of the dysfunction associated with pathological anxiety and 

depression observed in brain areas involved in goal pursuit, and with the psychological processes 

instantiated therein, is due to dysfunction in biasing by regions of DLPFC associated with trait 

approach and avoidance motivation. In summary, the findings of Chapters 3 and 4 provide 

support for several aspects of the model and provide further refinement, and the findings of 

Chapter 5 provide support for the utility of the model in improving the understanding of 

dysfunction associated with pathological anxiety and depression.  

Implications for Pathological Anxiety and Depression 

The findings of Chapters 3, 4, and 5 have a number of implications for psychopathology. 

As discussed above, Chapters 3 and 4 provide evidence that the proposed model functions as a 
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network in which DLPFC is involved in top-down biasing of other brain areas, and Chapter 5 

indicates that this biasing is dysfunctional in anxiety and depression. Thus, some of the 

dysfunction in goal pursuit observed in pathological anxiety and depression appears to be due to 

dysfunction in the proper coordination of the brain areas involved, rather than, or in addition to, 

dysfunction specific to the processes occurring in those areas.  

The findings of Chapter 5 also suggest that a large portion of the dysfunction in goal 

pursuit associated with anxiety and depression is not due to dysfunctional biasing by DLPFC, 

because a number of the hypotheses were not supported. Although the absence of a significant 

effect in a sample does not entail the absence of that effect in the population, several aspects of 

the present research suggest that a different avenue of exploration may prove more fruitful. This 

includes the fact that the sample used in Chapter 5 was substantial and the complete absence of 

significant moderation by either sub-facet of depression of connectivity with the left DLPFC area 

associated with approach motivation.  

 A number of alternative explanations for the dysfunction associated with depression in 

the psychological and neural processes involved in the pursuit of approach goals are possible. 

First, dysfunction may be localized to one psychological process or brain area, rather than being 

associated with the interaction between processes or brain areas. Alternatively, it is possible that 

there is dysfunction in the influence of one of the nodes in the network (aside from DLPFC) on 

the other nodes. For example, one of the proposed roles for BG is integrating information from 

nodes in the model (among other brain regions) and feeding this information back to influence 

ongoing processing (Haber, 2009). Thus, it is possible that dysfunction in BG impacts other 

nodes in the model through this feedback process. This could be an important factor in the 
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maintenance of pathological anxiety and depression, because this feedback loop could maintain 

and reinforce dysfunctional processing.  

 A third potential explanation for dysfunction associated with depression is the presence 

of dysfunctional biasing by a brain area not already included in the model. One promising 

candidate is subgenual ACC, which projects to a number of areas including OFC, amygdala, and 

other regions of ACC (Hamani et al., 2011). Depression has been associated with hyperactivation 

in this area (e.g., Drevets et al., 1997), and successful treatment has been associated with 

normalization of activation (e.g., Nobler et al., 2001). Additionally, high-frequency deep brain 

stimulation of subgenual ACC has been associated with remission of treatment-resistant 

depression, and this remission is also associated with normalization of activation in brain areas 

that receive projections from subgenual ACC (Lozano et al., 2008). Thus, subgenual ACC 

appears to be an excellent candidate area to explain dysfunction associated with depression in 

brain areas involved in goal pursuit.  

However, there is some evidence that dysfunction in subgenual ACC may be due to 

dysfunctional biasing by DLPFC. Research indicates that hyperactivation in subgenual ACC is 

sometimes accompanied by hypoactivation in DLPFC (Mayberg, 2003). Additionally, Chapter 4 

provided evidence that subgenual ACC exhibits greater connectivity with the left DLPFC cluster 

associated with approach when goal pursuit is threatened. Therefore, it is possible that the effect 

of dysfunctional biasing by left DLPFC is mediated by subgenual ACC.  

 In summary, the present dissertation provides insight into the neural instantiation of 

approach and avoidance motivation and the specific roles of different brain areas in goal pursuit. 

Further, the present dissertation suggests an explanation for a portion of the dysfunction 
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associated with pathological anxiety and depression in goal pursuit and provides a framework for 

future research to use to determine other sources of dysfunction.  
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