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Abstract 

 

Gases that are capable of absorbing and emitting infrared radiation due to their molecular 

structure are known as infrared active gases. Infrared activity is the underlying reason for 

the greenhouse effect. Hence, greenhouse gases are all infrared active. The 

vibrational/rotational structure that makes the molecule infrared active, also causes the 

energy exchange and the corresponding wavelength shift during Raman scattering.  

 

In this work, Raman scattering spectrum and infrared emission intensity in CO2-containing 

atmospheric jets at various temperatures and concentrations were measured. The results 

show that there is a linear relationship between Raman scattering intensity and infrared 

emission intensity. The linear relationship between Raman signal and infrared emission 

intensity indicates that Raman scattering can be used as a strong technique for 

measurement of greenhouse gases. 
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Chapter 1: Introduction 

 

The work presented in this thesis is focused primarily on Raman scattering from 

greenhouse gases. This chapter provides a brief overview of the literature on the 

greenhouse effect, infrared activity and the correlation between greenhouse potential and 

Raman scattering. 

 

1.1 Infrared Activity 

Greenhouse gases are gases that are capable of emitting/absorbing photons in the infrared 

range of electromagnetic radiation. For this reason, they are also referred to as infrared-

active gases. The reason that they are called “greenhouse” gases is that they bring about the 

“greenhouse effect” in earth’s atmosphere.  

 

Figure 1.1 shows spectral distribution of solar radiation at the top of the atmosphere 

(extraterrestrial radiation) as well as at the earth’s surface [1]. The difference between the 

two indicates absorption by atmospheric gases such as H2O, CO2, and O3. 
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Figure 1.1 – Spectral Distribution of Solar Radiation 

 

As shown in Fig. 1.1, solar radiation spectrum is very similar to a blackbody at 5800 K and 

has its peak spectral irradiance in the visible light range of the spectrum (close to 550 nm). 

Thus, the amount of absorption by infrared-active gases in the atmosphere will be 

relatively small. A large fraction of sun’s radiative energy that passes through the 

atmosphere is absorbed by earth’s surface, thus warming it up. According to Wien’s law, 

due to earth’s surface temperature, the peak spectral irradiance will be in the infrared 

region (near 10 µm). Infrared-active gases absorb part of the radiative energy from the 

earth that would have otherwise passed through the atmosphere and entered the outer 

space. Part of this absorbed energy is reemitted back to earth, absorbed by earth and 

reemitted by earth. This creates a cycle that results in heat being trapped in earth’s 

atmosphere. This phenomenon is referred to as the “greenhouse effect”, which is the 

mechanism that is responsible both for the habitable conditions on our planet, and at the 

same time, for recent concerns about climate change [2].  
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The underlying reason for this behavior is the vibrational structure of the molecules. Not all 

molecules are infrared-active. In order for a molecule to be infrared-active its electric 

dipole moment should change with the vibration of the atoms of the molecule, which is the 

case for CO, CO2, H2O and CH4 that are the most relevant greenhouse gases. On the other 

hand, O2, N2, H2 as well as any other diatomic homonuclear molecule are not infrared-

active. During absorption/emission of an infrared photon, the molecule transitions to a 

vibrational state with higher/lower energy. The energy difference between the initial and 

the final state is exactly equal to the energy of the absorbed/emitted photon. This energy 

difference is a characteristic of the molecule and is used for detecting different species [3, 

4]. 

 

1.2 Raman Scattering 

Spontaneous Raman scattering is the phenomenon of inelastic scattering of photons of light 

by molecules and has significant applications in laser diagnostics. This phenomenon, like 

infrared activity, also stems from the vibrational structure of the molecules. In this 

phenomenon, the molecule absorbs the energy of a photon and transitions to a virtual 

higher energy state. Through emitting a photon the molecule goes to a lower energy state, 

which is different from the initial state. As a result, the scattered radiation experiences a 

shift in frequency with respect to the incident radiation. This frequency shift is a 

characteristic of the irradiated molecule, which makes Raman scattering species specific [5, 

6]. If the final state is higher than the initial state, the frequency shift will be negative and 

the phenomenon is called Stokes Raman scattering (energy is transferred from the photon 

to the molecule). On the other hand, if the final state is lower than the initial state, the 
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frequency shift will be positive and the phenomenon is called anti-Stokes Raman scattering 

(energy is transferred from the molecule to the photon). Figure 1.2 shows a schematic 

diagram of Raman scattering and infrared emission/absorption. 

 

Figure 1.2 – Raman scattering 
h: Planck constant, ν: Frequency 
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the species under consideration. Visible and ultraviolet (UV) lasers are most commonly 

used in order to exploit the fact that Raman scattering signal intensity scale as the fourth 

power of frequency [5]. However, visible light laser was employed in almost all previous 

combustion-related works [7-23] in order to avoid fluorescence interference from a 

possible UV excitation. The other advantage is that Raman scattering occurs in a time on 

the order of 10-12 seconds which is essentially instantaneous compared to fluorescence (in 

laser induced fluorescence, LIF) that has a lifetime of 10-10-10-5 seconds [5]. Nevertheless, 

the most important advantage of Raman scattering is that in general (most of the time but 

not always) there is little overlap in vibrational Raman spectra of different species1 [6]. 

However, the biggest disadvantage of Raman scattering that limits its applicability to some 

extent, despite all the advantages mentioned above, is the weakness of Raman scattering 

signal. In fact, Raman cross sections of various species are typically several orders of 

magnitude smaller than their fluorescence and Rayleigh cross sections [5, 6]. The weakness 

of the signal poses a great experimental challenge for efficient collection of Raman 

scattering signal.  

 

Despite the difficulties and complexities involved in Raman scattering signal collection, this 

method has been extensively used in combustion diagnostics. D. A. Stephenson measured 

high-temperature (1000-2200 K) Raman spectra of CO2 and H2O for use in combustion 

studies [7]. D. P. Aeschliman and colleagues used Raman scattering to study hydrogen 

diffusion flame in air. They obtained time-averaged, spatially resolved measurements of 

temperature and H2, N2 and O2 concentration. [8]. R. J. Blint and D. A. Stephenson measured 

                                                           
1 Note that this is true only for vibrational Raman scattering and not for rotational Raman scattering. 
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temperature and CO2 concentration in methane-air flames. They concluded that 

temperature measurements from CO2 Raman spectrum is in agreement with but less 

accurate than temperature measurements using N2 spectrum [9]. S. M. Schoenung and R. E. 

Mitchell, measured temperatures in ammonia-oxygen flames using Raman spectroscopy 

and compared the results with thermocouple readings. Their results indicated that care 

must be taken when analyzing measured intensities obtained in flames with species 

fluorescing in the Raman spectra region [10].  

 

M. B. Long and colleagues performed two-dimensional (2-D) measurements of species 

using different techniques. They employed Mie scattering to obtain 2-D concentration 

measurements in seeded turbulent non-reacting jet [11]. They also used Raman scattering 

to obtain 2-D distribution of D2 concentration in a turbulent D2/Air diffusion flame and CH4 

concentration in a non-reacting turbulent jet [12]. Moreover, they employed Raman and 

Rayleigh scattering simultaneously to obtain 2-D mapping of temperature and CH4 

concentration in turbulent CH4 flames (both premixed and non-premixed) [13]. 

 

D.C. Kyritsis and colleagues established the feasibility of quantitative, 2-D, single-shot 

Raman measurements of methane concentration. They obtained quantitative 2-D Raman 

measurements of methane concentration in a laminar methane jet into nitrogen. They also 

obtained 2-D, instantaneous, quantitative measurements of hydrogen concentration in an 

optically accessible pressurized chamber [14, 15]. 
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R. S. Barlow, A. N. Karpetis and colleagues used Raman scattering along with Laser Induced 

Fluorescence (LIF) and Rayleigh scattering with several lasers and ICCD cameras to 

measure temperature, mixture fraction and scalar dissipation in turbulent flames. Raman 

scattering was used to measure major combustion species such as O2, N2, CO2, H2O and H2 

[16-20].  

 

1.3 Motivation for this Thesis 

Despite the extensive use of Raman scattering in combustion diagnostics, this method has 

not yet been used for the purpose of measuring infrared activity and greenhouse potential 

in an environment where there is no combustion or flame; i.e. flue gas stream of thermal 

power plants that use fossil fuels. In fact, due to the absence of background luminosity, 

such measurements are less challenging than those performed in flames. This work 

presents preliminary data on feasibility of such measurements.  

 

This work will present the behavior of Raman scattering intensity and infrared emission 

intensity as functions of temperature and composition. Infrared emission results will be 

compared to computational data. The infrared emission data and Raman scattering 

measurements are compared in order to establish a quantitative correlation between the 

two signals. 
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Chapter 2: Experimental Setup 

 

A schematic of the experimental apparatus is shown in Fig. 2.1. Greenhouse-gas-containing 

mixtures with controlled composition were metered through a steel tube heater. The 

heated gas then emerged as an atmospheric jet. The inner and outer diameter of the tube 

was 1.5 and 2 inch respectively and the length of the tube was 1 m. The tube was heated by 

a radiative heater from ZIRCAR Ceramics, Inc. The heater consisted of a ceramic shell, with 

an inner diameter of 8 cm, containing an electric heating coil. The power of the heater was 

controlled by varying its voltage using a potentiometer and varied between 0 and 1400 W.  

 

Figure 2.1 – Experimental setup 
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The greenhouse gas studied in the experiment was CO2. Nitrogen was the gas that was 

mixed with CO2 in order to vary CO2 concentration at constant pressure. The mole-fraction 

range that was tested was 5-40% CO2 and it was scanned with a 5% increment in mole-

fraction. The flow rates were controlled by two Tylan General FC-320 mass flow controllers 

that were controlled by a Tylan General RO-28 control unit. The total flow rate was kept 

constant at 30 SLPM. The reason for having such a relatively high flow rate was to have a 

jet with high enough velocity and momentum that was inertially driven not affected by the 

drafts in ambient air and by buoyancy that is unavoidable in this configuration. In order to 

figure out the significance of buoyancy forces,        was calculated, as suggested in [24]. 

The mixture was considered to be an ideal gas. The diameter of the tube and the length of 

the tube were the length scales used for Reynolds number and Grashof number 

respectively. Based on these assumptions: 

   

   
  

          

      
 

Where   is the gravity acceleration,    is the tube surface temperature,    is the 

temperature of the gas,   is the length of the tube,   is the inner diameter of the tube and   

is the velocity of the gas. Neither the gas temperature nor the tube wall temperature was 

constant along the tube. In order to get an estimate,       and    were assumed to be 

100 K and 600 K. The calculations yielded Gr/Re2 ≈ 1400 >> 1, which indicates that the jets 

were driven by buoyancy forces. 

 

As mentioned above, the power of the heater could be varied, and this was used in order to 

control the temperature of the gas. A K-type thermocouple was used to measure the 
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temperature of the gas. It was placed in a way that its tip was at the center of the exit plane 

of the tube. Radiation shielding was not used for this thermocouple.  

 

2.1 Raman Spectroscopy 

The second harmonic (532 nm) of a Quanta-Ray Pro-250 Nd:YAG laser with maximum 

nominal output of 800 mJ per pulse was used as an excitation source. The laser was 

triggered at 10 Hz using a four-channel Stanford Research Systems DG535 digital 

delay/pulse generator. The laser was operated at half of its maximum power, and was run 

for a minimum of 30 minutes before the experiment in order to reach steady state where 

the power did not change with time. The laser power was measured at about 25 cm above 

the probe volume, using a Scientech AC2501 calorimeter. The power measured was 

0.50±0.01 W throughout the experiment. This corresponds to 50 mJ/pulse and is 

substantially smaller than the power at the laser output, because of significant losses in the 

prisms in the beam path. It was not possible to measure the laser beam power at the probe 

volume without damaging the detector, because, the energy density was too large due to 

focusing, but there is no reason to believe that this figure would change drastically. 

 

Using a plano-convex lens with a focal length of 1 m the laser beam was focused to an 

approximately 2 mm wide and 4 cm long vertical line. It was attempted to make the laser 

beam coincide with the tube/jet axis, however, this was not achieved completely because of 

the complexities involved in aligning the laser beam in an optical setup with 3 prisms, 1 

mirror and 1 lens. Although the beam did not coincide perfectly with the jet axis, it is safe to 

say that it was within 1 cm of the jet axis. 
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A 50 mm Nikon f#1.8 lens was used for signal collection. Dispersion was achieved using a 

68 mm×68 mm grating with 1200 grooves/mm and 300 nm blaze wavelength mounted on 

the triple grating turret in an Acton Research 300i imaging spectrograph with a focal length 

of 300 mm. An Anodr iStar DH734-18F-A3 intensified-CCD camera, with a CCD chip having 

1024×1024 pixels with a pixel size of 13 µm was used for recording the spectra. The 

camera was mounted at the exit plane of the spectrograph in a way that the image plane of 

the spectrograph coincided with the CCD plane of the camera. 

 

In order to reject Rayleigh, Mie scattered and stray reflected light, an OG 550, 3 mm thick 

glass filter was placed in front of the slit of the spectrograph. The slit opening of the 

spectrograph was set at 0.25 mm. 

 

The image intensifier of the camera was a Gen III intensifier whose diameter was 18 mm 

and had a gating speed of 5 ns in the ultra‐fast mode. The intensifier was equipped with a 

glass window and a Type EVS photocathode with P43 phosphor and had a spectral range of 

270-810 nm. The readout speeds of the controller card were 1, 2, 16 and 32 µs per pixel.  In 

order to synchronize the camera and the laser, the camera was triggered using the same 

digital delay/pulse generator that was used for triggering the laser. Data acquisition was 

performed with a PC using the Andor Solis software. For each point of measurement, the 

exposure time of the camera was set to minimum (0.002 s) and the image intensifier was 

gated for 100 ns in order to minimize interference. 300 such exposures were accumulated 

on the CCD before readout to improve the signal-to-noise ratio.  
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2.2 Infrared Imaging 

Infrared emission was detected and measured using an Electrophysics PV320L infrared 

camera. The camera was equipped with a 50 mm, f#1.0 germanium lens that was 

transparent in the 2-14 µm range of the spectrum. The resolution of this camera was 

320×240 pixels. Data acquisition was performed by converting the analog video output 

from the camera to digital using a StarTech USB 2.0 Video Capture Cable and a PC. 

 

Infrared radiation from hot metal surfaces is much stronger than the infrared radiation 

from greenhouse gases. A hot metal surface in the viewing area of the camera could affect 

the accuracy of results negatively. In such a case, the relatively weak emission from the gas 

(especially at low temperature and concentration) will not be easily distinguishable from 

the background when a very strong source of emission is present. For this reason, the 

camera was positioned in a way that the metal tip of the thermocouple and the hot steel 

tube were not in the viewing area. Figure 2.2 shows the viewing area of the infrared camera 

with respect to the heated tube, thermocouple and the hot jet. 
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Figure 2.2 – Viewing area of the infrared camera with respect to the thermocouple, heated tube 
and the jet 
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Chapter 3: Infrared Emission 

 

CO2 is an infrared active gas, which means that it can emit/absorb photons in the infrared 

region. The strongest infrared emission/absorption bands of CO2 are at 667.3, 2349.3, 

3609, 3716 cm-1 that correspond to 15.0, 4.26, 2.77 and 2.69 µm respectively [25]. Fig. 3.1 

presents CO2 absorption bands. The infrared camera that we used was able to detect 

wavelengths in the 2-14 µm range.  

 
 

Figure 3.1 – CO2 infrared absorption spectrum [25] 

 

Given that the infrared camera was able to detect wavelengths in the range of 2-14 µm, the 

output basically consisted of the sum of infrared emissions from 2.69, 2.77 and 4.26 µm 

bands. The output of the camera was interlaced 8-bit grayscale images. As an example, Fig. 

3.2 shows the output of the camera for emission from a 40%-molar CO2/N2 mixture at 

250°C.  



15 
 

 
 

Figure 3.2 – Infrared Camera Output for 40% CO2 by Volume at 250°C 

 

Figure 3.3 shows the intensity profile on row#218 of the image (blue line shown in Fig. 3.2) 

as well as the average over rows 210-225, with background subtracted. In the following 

paragraph, the method used for determining the background intensity is explained. 

 
 

Figure 3.3 – Infrared Emission Profile 
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According to Fig. 3.3, the emission intensity profile is symmetric about the axis of the jet, 

and there is little difference between the averaged profile and single-row profile. The 

results also show that the emission intensity profile has a flat maximum in the center of the 

jet (pixels 130-190). For this reason, the average pixel value over a 60×15 pixel area (red 

rectangle shown in Fig. 3.2) was used as the raw signal for measurements in different 

cases.  Also, in order to calculate the average background intensity, an area away from the 

jet was chosen. For this purpose, the average pixel value over a 30×15 pixel area (green 

rectangle shown in Fig. 3.2) was used as the background intensity, which was subtracted 

from the raw signal in order to account for the effects of background infrared radiation. 

 

Figures 3.4 and 3.5 report results of infrared measurements. As shown in Fig. 3.4, the 

relationship between intensity and concentration is linear to a very good approximation. In 

Fig. 3.5, fourth order polynomials are fit to the data. These polynomials represent the 

relationship between infrared emission and temperature quite accurately, with R2 values 

very close to unity. The reason for choosing fourth-order polynomials was the fourth-

power dependence of Stefan-Boltzmann blackbody radiation on temperature. 
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Figure 3.4 – Infrared Emission Intensity vs. Concentration for CO2 

 
Figure 3.5 – Infrared Emission Intensity vs. Temperature for CO2 
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oscillator approximation to calculate band intensities, and anharmonicity is brought into 

account to compute the spectral distribution. These calculations were done by Professor 

Quinxing Huang who is a visiting professor from Institute of Thermal Power Engineering of 

ZJU in China at University of Illinois at Urbana-Champaign. The data points and the lines 

correspond to experimental results and the simulation results respectively.  

 
Figure 3.6 – Experimental and Numerical Results Comparison for Infrared  

Emission Intensity vs. CO2 mole fraction 
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Figure 3.7 – Experimental and Numerical Results Comparison for Infrared  

Emission Intensity vs. Temperature 
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Figure 3.8 –Infrared Emission Measurements for 10% CO2 by volume 
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Chapter 4: Raman Scattering 

 

In the vibrational Raman spectrum of CO2 molecule, under low resolution, there is one 

strong band at 1340 cm-1, which corresponds to the symmetric stretch of the carbon 

oxygen bond. However, under higher dispersion it becomes evident that this strong band 

really consists of two lines at 1285 cm-1 and 1388 cm-1. This phenomenon is due to the 

vibrational structure of the molecule that causes a Fermi resonance which in turn leads to 

the occurrence of two almost equally intense Raman lines –instead of one [25]. So, since the 

exciting laser wavelength was 532 nm, the Stokes peaks were expected to occur at 571 nm 

and 574.4 nm.  

 

The spectra recorded on the spectrograph were processed in order to determine the effect 

of temperature and concentration on the spectra in the manner that will be described here. 

Figure 4.1 shows the spectrum obtained for a 20%-CO2-by-volume jet at 104°C as an 

example. Figure 4.1b presents the same data as Fig. 4.1a over a narrower range of 

wavelengths in order to focus on the peaks. 
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                                 (a)       (b) 

 
Figure 4.1 – Raman spectrum (20% CO2 by volume at 104°C) 
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Figure 4.2 – Raman spectrum (20% CO2 by volume at 104°C) 
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Figure 4.3 – Raman Spectrum (20% CO2 by volume at 104°C) 
 

 

Figure 4.4 – Raman Spectrum (20% CO2 by volume at 104°C) 
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The calculated polynomial was then subtracted from the smoothed spectrum, and all 

resulting negative values were replaced by zeros. Fig. 4.5 shows the processed spectrum 

for 20% CO2 by volume at 104°C.  

 

Figure 4.5 – Processed Raman Spectrum (20% CO2 by volume at 104°C) 
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Figure 4.6 – Raman Intensity vs. Concentration for CO2 

 

 

Figure 4.7 – Raman Intensity vs. Temperature for CO2 
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Eckbreth [5] suggests that the power of the Raman signal can be calculated from a relation 

of the form, 

             (4.1) 

where    is the measured Raman intensity,   is a factor that depends on geometry, species 

and optical setup,    is the incident laser intensity,   is the number density of the scattering 

species and      is the bandwidth factor which is a temperature-dependent term. So if the 

temperature and laser power are kept constant, and the optical setup is not changed, the 

Raman Stokes intensity will then be proportional to the number density (and 

concentration), which is evident in Fig. 4.6.  

 

Figure 4.7 shows experimental measurements of Raman scattering intensity with 

temperature at various constant CO2 concentrations. According to these results, Raman 

scattering intensity does not very monotonically with temperature. However, based on Fig. 

4.7 the general trend is that at constant concentration, the Raman scattering intensity 

decreases as temperature increases. As shown in Fig. 4.9, the peak intensity dropped and 

the peaks became slightly broader with increasing temperature. 
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Figure 4.8 – Processed Raman spectra for 20% by volume CO2 at different temperatures 

 

Nevertheless, it should be mentioned here that the number density does change when 

temperature changes at constant pressure. So on the right hand side of Eq. 4.1, both   and 

     vary with temperature.  However, the relation between   and   can be obtained from 

thermodynamics. From the ideal gas law,  

     ̅   (4.2) 

where   is the pressure,   is the number density,  ̅ is the ideal gas constant and   is the 

temperature. In our experiments, the pressure was constant and equal to the atmospheric 

pressure. Rearranging Eq. 4.2 shows that the number density is inversely proportional to 

the temperature:  
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(4.3) 

Thus, with constant concentration,   drops as   increases. So, the decrease in Raman 

intensity with increasing temperature in Fig. 4.7 could be attributed in part to this effect. In 
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order to account for this effect, Raman intensity can be multiplied by absolute temperature. 

In this way, Raman scattering can be compared between samples with the same number 

density. 

Replacing   in Eq. 4.1 from Eq. 4.3 yields: 

 
       (

 

 ̅
 
 

 
)       

(4.4) 

An expression for the bandwidth factor,     , will be: 

     
 ̅

    
     

As stated earlier, in our experiments,    was kept constant. Also,   is a factor that depends 

on geometry, species and optical setup. So, it can also be considered to be constant, because 

the optical setup and the geometry were kept unchanged. Furthermore,   was equal to the 

atmospheric pressure. Thus,  ̅,   ,   and   can all be incorporated in a new constant,  . 

Then      will be: 

                      
 ̅

       
 (4.5) 

 

Figure 4.9 presents corrected Raman intensity (which is equivalent to      or       ) 

versus temperature. It basically shows how the bandwidth factor varies with temperature. 

The results indicate that the dependence of      on temperature in the conducted 

experiment is very week, or in other words, the variations in Raman scattering intensity 

with temperature at constant number density is small. As shown in Fig. 4.8, the R2 value for 

the linear regression of signal dependence on temperature for CO2 mole fractions of 10% 

and 15% is very close to zero. It should be noted that the use of R2 value can be a little 
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misleading here, because a small R2 value does not necessarily mean a low quality curvefit. 

In fact, R2=0 corresponds to a constant horizontal curvefit whose value is equal to the 

average of the y-coordinates of the data points. 

 

Figure 4.9 – Corrected Raman Intensity vs. Temperature for CO2 
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On the other hand, for a certain bandwidth (Filter 2 in Fig. 4.10), the fraction of total Raman 

scattering signal detected stays almost constant. For such a configuration, the dependence 

of       on temperature is very weak.  

 

Figure 4.10 – Hypothetical Raman spectrum at different temperatures 
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decreases as the bandwidth becomes narrower at constant temperature. Also, as 

temperature increases, the decrease in bandwidth factor is more noticeable for narrow 

bandwidths than for wide ones.  

 

Figure 4.11 – Bandwidth Factor 
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Figure 4.12 – Raman Intensity vs. Infrared Intensity 
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Chapter 5: Summary, Conclusions and Recommendations  

 

5.1 Summary and Conclusions 

Raman scattering spectrum and infrared emission intensity in CO2-containing atmospheric 

jets at various temperatures and concentrations were measured. The results indicated that 

the infrared emission intensity from CO2-containing jets increased linearly with CO2 

concentration at constant temperature. Also, the infrared emission intensity increased with 

temperature at constant concentration in manner that was very closely described by 4th 

order polynomials. Measured infrared emission intensities were compared to numerical 

simulations from the RADCAL code of NIST and good agreement was established. 

 

The results of Raman scattering measurements indicated that Raman scattering intensity 

increased linearly with concentration at constant temperature, which was expected from 

theory [5]. On the other hand, Raman scattering intensity decreased with temperature at 

constant concentration. It was established that, this decrease was partly due to the increase 

in temperature that decreased the number density. In order to resolve this issue, Raman 

signal intensity multiplied by absolute temperature was also recorded. This quantity is 

equivalent to the bandwidth factor,     , defined by Eckbreth [5]. The results showed that 

the bandwidth factor was only weakly dependent on temperature. The effect bandwidth on 

the integration of spectra was systematically evaluated and an optimal bandwidth was 

determined for data processing. 
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Finally, Raman scattering results taken at constant temperature for CO2 mole fractions of 5-

40% with a 5% increment were correlated with the corresponding infrared emission data. 

The results indicated that the Raman scattering intensity increased linearly with infrared 

emission intensity to a very good approximation, which points to the potential importance 

of Raman as a technique for the measurement of greenhouse activity. 

 

The results of this work show that it is possible to use the Raman scattering technique to 

measure greenhouse gases. This is because Raman scattering and infrared activity stem 

from the same source, which is the rotational and vibrational molecular motion. Moreover, 

the linear dependence of Raman signal on concentration as well as infrared emission 

intensity points to the fact that Raman scattering can be a strong technique for 

measurement of greenhouse gases. 

 

5.2 Recommendations for Future Work 

The results presented in this work provide a preliminary framework for study of a Raman 

based measurement of greenhouse gases. Due to the high noise level of the ICCD camera 

used, it was not possible to obtain reliable data for CO2 mole fractions less than 5%. Also it 

was not possible to take data for more closely spaced mole fractions. For the purpose of 

this experiment, a non-intensified CCD camera will be much more appropriate than the 

intensified CCD camera used. Intensifiers are a “must” for applications with high 

background luminosity; e.g. flames. However, they are inherently noisy devices and not 

very suitable for the application considered here. 
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In order to improve the signal-to-noise ratio, a multipass optical setup could be employed. 

The configuration described by Hill and Hartley [27] can result in two orders of magnitude 

increase in scattered signal intensity. The setup used by Hill and coworkers is simpler 

compared to the former setup and can provide gains of 20-30 [28]. Placing a spherical 

mirror in line with the collection lens, on the opposite side of the probe volume can double 

the solid angle and hence the signal intensity [5].  

 

In a more efficient optical setup with a non-intensified CCD camera, possibility of  

single-shot Raman measurements can be investigated as well. Such a technique can be used 

for instantaneous in situ measurement of greenhouse gas emissions. 

 

In this work CO2 was studied which is the greenhouse gas that is under the most serious 

consideration in the context of greenhouse gas emissions and global warming. Future work 

could include other greenhouse gases such as CH4, H2O, NO, CO, etc.  
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