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ABSTRACT 

This dissertation examines the effects of social and spatial inequalities on late-stage diagnosis of 

colorectal and breast cancer, and it addresses several methodological challenges surrounding the use of 

ZIP codes as a study unit in analyzing late-stage cancer at diagnosis. Given that my dissertation follows 

the ‗three-paper‘ format, the abstract section is divided into three parts to describe each paper respectively.  

The first paper entitled  ―Spatial Distribution of Late-Stage Colorectal Cancer in Illinois from 

1988 to 2002: Associations with Social-Spatial Covariates‖, examines spatial patterns of late-stage 

colorectal cancer diagnosis over time in Illinois during a period of increasing screening, and it analyzes 

the varying associations between social, demographic and spatial risk factors and late-stage colorectal 

cancer diagnosis within the same period. The Bernoulli-based spatial scan statistic was used to detect 

clusters of late-to-early stage cancer ratios at the ZIP code level in Illinois during two periods: 1988 to 

1992, and 1998 to 2002. Then the whole state was divided into three study region: Chicago city, Chicago 

suburbs, and other areas. For each region in each time period, hierarchical logistic regression models were 

estimated to assess the associations between demographic, social and spatial factors and late-stage 

colorectal cancer risk. ZIP code level risk factors include three indicators of socio-economic status and 

the shortest travel time to the nearest colonoscopy facility and individual-level factors including age, race, 

and gender. The socio-economic indicators were created using factor analysis.  

The results show some changes over time in the spatial distribution of late-stage colorectal cancer 

and the impacts of risk factors at the ZIP code and individual levels. Specifically, results of the Bernoulli-

based spatial scan statistic find statistically significant clusters of late-stage colorectal cancer in the 

Chicago metropolitan area and rural region in southern Illinois in the period of 1988 to 1992. In the later 

time period, the cluster outcomes were no longer statistically significant. The change indicates that late-

stage risk of colorectal cancer has become more evenly distributed in Illinois over time. In terms of the 

hierarchical logistic regression results, both individual-level demographic factors and zip-code level 

covariates present variously important impacts on the risk of the late-stage colorectal cancer diagnosis in 

different study regions in the two time periods. The risk of late-stage diagnosis is higher among younger 

colorectal cancer patients. Gender has contradictory impacts on risk in Chicago city and its suburb. The 

shortest travel time to the nearest cancer screening providers is positively associated with late-stage 

diagnosis risk outside the Chicago region, suggesting that spatial access to screening services may be an 

important barrier to early detection in rural areas of the state. One socio-economic status indicator, 

Minority Disparities, demonstrated a significantly positive relationship with late-stage diagnosis risk 

outside the Chicago region. Similar to the effects of gender, Factor 3 (Cultural-Language Barriers) also 
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had contradictory effects in Chicago city and suburbs. Overall, the results showed no clear trends over 

time in the effects of various factors on late-stage risk, and few strong and statistically significant results.  

The inconsistent findings suggest the need for more detailed and localized information.  

The second paper is titled ―Analyzing Spatial Aggregation Error in Statistical Models of Late-

Stage Cancer Risk: A Monte Carlo Simulation Approach‖. This paper examines the effect of spatial 

aggregation error on statistical estimates of the association between spatial access to health care and late-

stage cancer. Monte Carlo simulation was used to disaggregate breast cancer cases for two Illinois 

counties from ZIP codes to census blocks in proportion to the age-race composition of the block 

population. After the disaggregation, a hierarchical logistic model was estimated examining the 

relationship between late-stage breast cancer and risk factors including travel distance to mammography, 

at both the ZIP code and census block levels. Model coefficients were compared between the two levels 

to assess the impact of spatial aggregation error.  

Spatial aggregation error is found to influence the coefficients of regression-type models at the 

ZIP code level, and this impact is highly dependent on the study area. In one study area (Kane County), 

block-level coefficients were very similar to those estimated on the basis of ZIP code data; whereas in the 

other study area (Peoria County), the two sets of coefficients differed substantially raising the possibility 

of drawing inaccurate inferences about the association between distance to mammography and late-stage 

cancer risk. The paper reveals that spatial aggregation error can significantly affect the coefficient values 

in statistical models of the association between cancer outcomes and spatial and non-spatial variables and 

thus affect inferences drawn from these models. Relying on data at the ZIP code level may lead to 

inaccurate findings on health risk factors, and the effects are likely to vary from one study area to another.  

The third paper, titled ―The Impact of Spatial Aggregation Error on Spatial Scan Analysis: A 

Case Study of Colorectal Cancer,‖ aims to examine the effect of spatial aggregation error on results of the 

spatial scan statistic by geographically and statistically comparing results at the ZIP code level and three 

reference (census tract, census block group and census block) levels. Data on colorectal cancer cases in 

Cook County, IL for a 5-year interval (1998-2002) were used. The Monte Carlo simulation approach from 

the second paper was applied to disaggregate the cancer data from the ZIP code level to each reference 

level. The Bernoulli-based spatial scan statistic was implemented in SaTScan to detect primary clusters 

based on cancer data at the four levels. An interactive procedure involving SAS and Java programming, 

was designed to automatically run SaTScan hundreds of times. Characteristics of clusters at each 

reference level were compared to those of the ZIP code level cluster to observe differences related to 

spatial aggregation. 
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The comparison reveals that the ZIP code level spatial scan statistic can generate reliable clusters 

at the global level in areas with a large number of cases. Nonetheless, the ZIP code analysis sometimes 

fails to detect clusters in areas with a lower density of cases. Spatial aggregation error is minimized in 

areas with sizeable numbers of cases. In the absence of cancer data at a lower level, the ZIP code level 

data can be used effectively to implement the spatial scan statistic and identify large and dominant 

clusters. However, smaller clusters located in areas with a relatively low density of cases may be missed.  

Given that this study focused on a highly urbanized and populated area, future research should assess the 

influence of spatial aggregation error on spatial scan analysis in suburban and rural regions.       
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INTRODUCTION 

My dissertation consists of three papers to examine the effects of social and spatial inequalities on 

late-stage diagnosis of colorectal cancer (CRC) and breast cancer, and to address several methodological 

challenges surrounding the use of zip codes as a study unit in analyzing late-stage cancer. Late-stage 

cancer is the term used to describe cancer tumors that, when first diagnosed, are large in size and /or have 

already spread beyond the initial site to nearby or distant tissues, organs or lymph nodes. Survival rates of 

cancer patients are highly dependent on cancer stage: patients diagnosed with early-stage cancer have 

much higher survival rates and much healthier prognostic outcomes, compared to those diagnosed with 

late-stage cancer. Thus, examining the risk determinants of late-stage cancer and addressing the 

methodological challenges researchers face in spatially analyzing late-stage cancer are crucial to 

identifying the main spatial and social barriers that hinder early detection.  

The studies in my dissertation are tied to two important themes in recent research on medical and 

health geography, that is, the examination of geographic inequalities in cancer diagnosis and survival 

(Haynes et al., 2008, Palmer and Schneider, 2005, Whynes et al., 2003, Woods et al, 2006), and the 

utilization of spatial statistics and GIS in health geographic research with an emphasis on cancer studies 

(Jacquez and Greiling, 2003, Meliker et al., 2009, Pollack et al., 2006, Short et al., 2002). In terms of the 

first theme, it is well established that cancer incidence and mortality rates vary from place to place. These 

geographical inequalities are an important topic in the field of health/medical geography, given that 

understanding such inequalities is the ‗first step‘ in establishing  ‗target areas‘ where cancer issues have 

significant spatial disparity. Specifically, these target areas are usually correlated with local issues in the 

social and spatial domains. Finding these areas can help researchers and policy makers to address these 

local problems and design corresponding plans for alleviating the spatial disparity. In addition to targeting 

areas for intervention, researchers have analyzed the impacts of social and spatial variables on geographic 

inequalities in late-stage cancer risk (Haynes et al., 2008, Wang et. al., 2008). The results of these studies 

are sometimes contradictory, and the influence of spatial access to cancer screening services on late-stage 

risk has not been clearly established. It is likely that these influences will vary not only geographically, 

but also over time with the expansion of cancer screening services and improvements in cancer awareness, 

education and outreach. Understanding how social and spatial variables affect geographic inequalities in 

late-stage cancer in diverse study areas and time periods remains an important issue in health geographic 

research. 

For the second theme, analyzing the geographical inequalities in cancer incidence and mortality 

rates involves using spatial statistics and GIS to visualize and identify the significant spatial clusters and 
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detect the causes that can include socio-economic factors, healthcare accessibility, demographics, and 

other risk factors (Rushton, 2004, Thomas and Carlin, 2003). Spatial statistics and GIS provide a 

systematic and quantitative way to detect the spatial variation in cancer and to model the effects of risk 

factors. However, these kinds of spatial analysis also pose a series of challenges that stem from the 

geographic characteristics of the data analyzed. Specifically, most researchers have to use cancer data that 

is spatially aggregated to areas like ZIP codes or counties so that the privacy and confidentiality of 

individual health records will be protected. The extent and implications of this spatial aggregation error 

are topics of increasing interest in health/medical geography research (Shi, 2009).      

The three papers in this dissertation build on these themes. The results and subsequent 

conclusions clearly demonstrate the social-spatial determinants of late-stage CRC diagnosis in Illinois, 

and provide evidence that can help guide public administrators to generate appropriate cancer prevention 

strategies. Additionally, these analytical results also reveal that the reliability of the ZIP code as a study 

unit is case-sensitive, and that spatial aggregation error differs from one geographic context to another.  

This is an important finding for researchers who are analyzing geographic variation in cancer based on 

aggregated data, and the conclusions can potentially inform policies that govern release of cancer data at 

various geographic levels. Each paper contains detailed information about the relevant literature, variable 

selection and methodologies, and for that reason I do not devote much attention to these topics in the 

introduction section.  

 The first paper entitled ―Spatial Distribution of Late-Stage Colorectal Cancer in Illinois from 

1988 to 2002: Associations with Social and Spatial Covariates‖ examines the spatial patterns of late-stage 

CRC diagnosis within urban-rural settings of Illinois in two 5-year intervals (from 1988 to 1992 and from 

1998 to 2002). The goal is to analyze how spatial inequalities in late-stage risk have changed over time 

and to evaluate the influence of demographic-social-spatial risk factors. The study period witnessed the 

rapid expansion of screening services for CRC and increases in education and awareness about the 

importance of early detection. 

 To examine the spatial distribution of late-stage CRC, the Bernoulli-based spatial scan statistic is 

used to detect clusters with significantly high late-to-early CRC ratios in the whole state, the Chicago 

metropolitan area and non-Chicago metropolitan area. The results reveal the existence of statistically 

significant clusters in the former period and the disappearance of these clusters in the latter period, 

indicating that late-stage CRC diagnoses have become more evenly distributed across the state. 

Afterwards, covariates hypothesized to influence late-stage risk are collected and preprocessed. The 

covariates represent  three main medical geographic dimensions: 1) demographic factors consisting of 
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race, age and gender, 2)  socio-economic indicators (Socio-Economic Disadvantages, Minority Disparities, 

and Cultural-Language Barriers), and 3) spatial access to health care, measured by the shortest travel time 

to hospitals with colonoscopy services and accessibility to primary care physicians. Hierarchical logistic 

regression is applied to investigate the different impacts of these demographic, social and spatial factors 

on late-stage CRC diagnoses during the two time periods in Illinois.  

The analytical results from the hierarchical logistic regression clearly uncover risk factors of late-

stage CRC at diagnosis. The negative relationship of age and late-stage CRC at diagnosis reveals the high 

risk of late-stage diagnosis in young and middle-aged CRC patients, different from the well-established 

positive association between age and all-staged CRC cases in previous studies (Brawarsky et al., 2003, 

CDC 1999, CDC 2001, Cokkinides et al., 2003, Cooper et al., 1995, Nelson et al., 1999, Palmer and 

Schneider, 2005, Schneider, 2009, Wingo et la., 1998). The contrasting impacts of gender in neighboring 

study areas (Chicago city and Chicago suburbs) suggest no consistent gender discrepancy in screening 

and early detection. The strongly positive relationship between the SES factor, Minority Disparities, and 

late-stage CRC in the non-Chicago metropolitan area suggests that the black population in that setting is 

not receiving timely CRC screenings and early diagnoses as compared to other racial groups. The 

contradictory influences of another SES factor (Cultural-Language Barriers) in Chicago city and the 

Chicago suburbs, shows that the immigrant effect is also not consistent across the study area and may be 

highly dependent on immigrant demographic characteristics, such as marital status, socio-cultural 

characteristics and length of residence in the U.S. Spatial access to colonoscopy services is only 

significantly associated with late-stage risk for patients living in areas outside the Chicago metropolitan 

region.  Shortest travel time exhibits a significantly positive association with late-stage CRC, indicating 

that accessibility to specialized CRC facilities is lower and more variable in low population-density areas 

than in more densely settled regions. 

These associations between demographic-social-spatial variables and late-stage diagnosis of CRC 

can provide suggestions for both health care policies and cancer research. Specifically, policies can be 

designed for targeting CRC patients younger than 50 years old to ensure them receiving cancer prevention 

strategies and diagnosis in time. Cancer screening and prevention policies need to focus on vulnerable 

groups, such as black people living in impoverished and racially segregated regions and residents in 

remote rural areas. The contradictory findings for both gender and one SES factor (Cultural-Language 

Barriers) indicate that more localized risk variables, such as individual health insurance status, personal 

behaviors, and biological characteristics may be important in affecting late-stage diagnosis. These 

detailed personal characteristics are rarely obtainable from health datasets, because of the concern to 

protect privacy and personal identities. Providing researchers access to more localized health data without 
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violating privacy restrictions is an important policy challenge. Furthermore, the non-significant results 

from the interactions between ZIP code level variables and individual-level demographic predictors 

suggests that ZIP codes may be too large for studying rare events like CRC and  statistical analysis at this 

level may be strongly affected by spatial aggregation error. The second and third chapters in this 

dissertation address the topic of spatial aggregation error.         

In the second paper ―Analyzing Spatial Aggregation Error in Statistical Models of Late-Stage 

Cancer Risk: a Monte Carlo Simulation Approach‖, the influence of spatial aggregation error on ZIP code 

level statistical analysis is estimated. The study is motivated by the fact that health studies using 

predefined study units are often confronted with the analytical biases caused by the spatial disparity 

between the research interests and the predefined geographic level of health data. Spatial aggregation 

error happens when utilizing a large area or a single point to represent spatially distributed individuals. 

The aggregation of individuals to zones such as ZIP codes or counties creates error in measurement of 

variables like distance to the nearest hospital facility. A sizeable literature has identified types of spatial 

aggregation error and their specific impacts on spatial analysis (Bonner et al., 2003, Fortney et al., 2000, 

Gregorio et al., 2005, Hewko et al., 2002, Hillsman and Rhoda, 1978, Jacquez and Waller, 1999, Krieger 

et al., 2001, McElroy et al., 2003). However, the impact of spatial aggregation error on coefficient 

estimates of statistical analysis at the ZIP code level has been rarely studied. Thus the major contribution 

of this paper is to analyze the impact of spatial aggregation error on parameters estimated in ZIP code 

level statistical models.  

To evaluate the impact of the spatial aggregation error, this study designs a Monte Carlo 

simulation method to proportionally disaggregate cancer cases from the ZIP code level to the census 

block (reference) scale, with an age-race demographic link to connect the two levels. The statistical 

coefficients at the ZIP code level are compared with coefficients from the same statistical analysis based 

on the same cancer data at the block level. If the coefficients at the two levels display a significant 

disparity, then spatial aggregation error may have a recognizable influence on the ZIP code level 

statistical analysis. Two study areas, Kane and Peoria, provide the opportunity to determine if the effect 

of spatial aggregation error differs between study regions.          

The Monte-Carlo simulation approach provides a new method of generating ‗valid‘ datasets at a 

more localized geographic scale when data about individual case locations are inaccessible. The approach 

involves generating 1,000 sets of cancer cases at the block level to maximally encompass possible spatial 

distribution patterns. Hierarchical logistic regression is selected to generate parameter estimates for a 

statistical model predicting late-stage breast cancer risk as a function of individual-level demographic 
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predictors and ZIP code level shortest travel distance to the nearest mammography facility. This study 

also evaluates the computational capacity of the widely-used statistical software package, SAS, because 

the macro-level syntaxes built in SAS automatically compute coefficients for the hierarchical logistic 

regression model 1,000 times. All the methods used in the paper provide a good model of 

interdisciplinary application of GIS visualization, intensive computing techniques, and applied statistics 

in cancer research.  

The results show a dramatic difference in spatial aggregation error between the Kane and Peoria 

study areas, indicating that the influence of spatial aggregation error is highly case-sensitive. The 

outcomes suggest characteristics associated with high spatial aggregation error.  These characteristics 

include large-sized study units, the uneven distribution of healthcare providers, highly uneven and 

segregated residential distributions, spatial autocorrelation of age-and racially-categorized populations, 

and a bifurcated rural-urban pattern centered on a densely population city. The findings from the paper 

also emphasize the need to develop methods and procedures for minimizing the impact of spatial 

aggregation error. The analytical results also infer that the ZIP code may not be a reliable study unit for 

cancer research in some cases. While recognizing the need to protect individual confidentiality, these 

results demonstrate the benefits to be gained by releasing cancer datasets at a smaller area level for 

research purposes.        

The third paper, ―The Impact of Spatial Aggregation Error on the Spatial Scan Analysis: A Case 

Study of Colorectal Cancer‖, evaluates the effect of spatial aggregation error on the spatial scan statistic 

at the ZIP code level. Many studies have utilized spatial scan statistics to detect spatial clusters of various 

diseases using different areal units (Gregorio et al., 2002, Gregorio et al., 2003, Gregorio et al., 2004, 

Jemal et al., 2002, Kulldorff et al., 1997, Pollack et al., 2006, Roche et al., 2002, Rushton et al., 2004, 

Seeff et al., 2003, Thomas and Carlin, 2003). However, few researchers have examined the effect of 

spatial aggregation error on the spatial scan statistic, and there are no guidelines about how the optimum 

areal unit for spatial scan statistics might be chosen. Hence, this paper serves as a beginning phase in 

evaluating the impact of spatial aggregation error on spatial scan statistics. The third paper is also highly 

related to the first and second papers, using data and methods from each paper.  

A non-significant late-stage CRC cluster at the ZIP code level (1998 to 2002) identified in the 

first paper stimulated the question: does this cluster accurately represent clusters that exist when data are 

disaggregated to the small area level? This third paper uses data on CRC cases from the first paper, and 

the Bernoulli-based spatial scan statistic from the first paper is also applied to discover clusters with 

significantly high late-to-early ratios. Using the Monte Carlo method developed in the second paper, 
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cancer data are disaggregated to three census geographical units, census tract, census block group and 

census block (referred to as ―reference scales‖), for comparison with the ZIP code level spatial scan 

analysis. The study area is limited to Cook County in order to reduce problems caused by inconsistent 

boundaries between ZIP codes and census tract/block group in sparsely populated areas.  

The Monte Carlo simulation approach from the second paper is applied to generate 100 patterns 

of CRC cases at each reference scale, linking with the cancer data at the ZIP code level by 12 age-race-

gender demographic combinations. Each run of the Bernoulli-based spatial scan statistic in SaTScan 

requires four input files with particular contents and file extensions, and separate import/output 

commands. These time-consuming steps challenge repeated manual runs of the spatial scan statistic in 

SaTScan. Thus, an important contribution of this study is to design a cost-effective and efficient way to 

auto-run spatial scan statistics in SaTScan. The auto-run procedure is composed of a macro-level SAS 

program to automatically generate input files for each SaTScan run, and a Javascript to automatically 

produce each parameter file with the corresponding import commands and non-duplicated output names 

for each SaTScan run. The procedure designed in this paper is simple and straightforward and can easily 

be adjusted for other spatial scan statistics by minor changes.  

Another contribution from this paper is the finding that the reliability of the ZIP code as a study 

unit is highly dependent on the local spatial density of cases. Generally, the Bernoulli-based spatial scan 

statistic based on ZIP code level health data can identify the primary cluster found based on small-area 

data in areas with a large sample size of cases. In areas with a low density of cases, utilizing ZIP code as 

the study unit misses clusters that exist on the basis of small-area data. Thus, as in the second paper, 

spatial aggregation error is found to be highly context-dependent for the spatial scan statistic at ZIP code 

level. Spatial aggregation error has a minimal effect in study regions with a high density of cases, while in 

areas with fewer cases spatial aggregation error has an unavoidable impact on zip-code level spatial scan 

analysis. In each spatial scan study, the specific locations and densities of study cases are the main factor 

affecting the results of spatial scan statistics. Given that the majority of health data is published at a 

predefined area level, the release policy requires flexibility to provide data for variable study units to 

match different case-distribution circumstances.   

    The main contributions of my dissertation can be divided into two domains. The first one 

emphasizes the development of innovative spatial analytical strategies. The papers integrate 

multidisciplinary methods from the fields of the spatial statistics, geovisualization, statistical analysis, 

epidemiology, and public health to examine the effects of social and spatial inequalities on late-stage 

diagnosis of colorectal cancer. I developed methods to better evaluate and understand the effects of spatial 
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aggregation error on health data analysis based on data for predefined study units. These methods include 

a Monte Carlo simulation method to disaggregate cancer case data from larger areal units to smaller ones, 

a macro-level SAS program to automate the generation of SaTScan input files, and the java program to 

produce the SaTScan parameter files automatically. These programs make it possible to auto-run SaTScan 

for use in Monte Carlo simulation modeling. The other domain focuses on the analytical results and 

subsequent conclusions from the three papers. Specifically, the risk factors of late-stage CRC were 

examined in different regions of Illinois. The results indicate that statistically significant risk factors vary 

over space and time, and that spatial clustering of late-stage CRC diminished during the 1990s. Spatial 

variation was also noted in the results from the second paper:  The effects of spatial aggregation error on 

ZIP code level statistical analysis were found to differ substantially from one study area to another. In the 

third paper, ZIP code was proved to be ‗not too bad‘ for implementing spatial scan analysis and detecting 

spatial clusters of late-stage cancer in  areas with large numbers of study cases. However, in areas with 

fewer cases, using health data at the ZIP code level was unable to detect some small and statistically 

significant clusters.   
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Chapter I 

Spatial Distribution of Late-Stage Colorectal Cancer in Illinois from 1988 to 2002: Associations 

with Social and Spatial Covariates 

 

1. Introduction 

Colorectal cancer (CRC) is a public health priority in the United States because of its high 

incidence and mortality. CRC is the third leading cause of cancer mortality for both men and women in 

the United States (Schneider, 2009). In 2007, 142,672 people (52.7 per 100,000) were diagnosed with 

colorectal cancer and 53,219 people (20.0 per 100,000) died of the disease (CDC, 2008).  

Like many other cancers, CRC involves a complicated set of risk factors, including biological, 

behavioral, social and geographical conditions. Because CRC prognosis is strongly and negatively 

associated with the tumor stage at time of diagnosis (Rossi et al., 1990), early detection is a critical 

determinant of CRC patient survival rates (Wang et al., 2010). Regular screening helps to detect tumors at 

an early and treatable stage. However, mortality rates of CRC demonstrate significant geographic 

variation (Devesa et al., 1999). Given that the greatest proportion of colorectal cancer deaths (90.2%) 

occurs among patients diagnosed at an advanced (late) stage, geographic variation in mortality indicates 

that the rates of late-stage CRC diagnosis vary from place to place. This significant geographic variation 

in late-stage CRC also suggests that in some regions, CRC screening remains well below ‗ideal‘ 

screening levels (McMahon and Gazelle, 2002). Geographic barriers such as long travel times and 

distances to screening facilities may play an important role in late-stage diagnosis especially in remote 

and impoverished rural areas and among populations with limited access to transportation (Amey et al., 

1997, Fazio et al., 2005, Jemal et al., 2005, Lengerich et al., 2005, Rushton et al., 2004).   

Recent studies suggest that socio-economic status (SES), demographic factors, and spatial 

accessibility to healthcare are critical predictors of late-stage CRC diagnosis (Gomez et al., 2007, Henry 

et al., 2009, Palmer and Schneider 2005). However, with the increase in cancer screening facilities and 

expansion of health insurance coverage for screening, access to screening has improved over time, so it is 

likely that the impacts of social and spatial factors on late-stage CRC diagnosis will show a spatial-

temporal variation. Thus, the primary objective of this study is to examine the clustering patterns of late-

stage CRC at diagnosis over time in Illinois during a period of increasing cancer screening, and the 

varying associations between social-demographic-spatial risk factors and late-stage CRC diagnosis in the 

same period. This paper addresses three questions: 1) Are there spatial clusters of late-stage CRC in 
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Illinois, and did clustering change over time? 2) How do SES and geographic factors influence the risk of 

late-stage CRC? 3) Did these associations change over time during the period from 1988 to 2002?  

2. Background 

Late-stage CRC is the term used to describe CRC tumors that, when first diagnosed, are large in 

size and/or have already spread beyond the colon and rectum to nearby or distant tissues, organs or lymph 

nodes (NCI, 1999). As discussed in introduction section, early-stage diagnosis of CRC is very critical to 

reducing CRC mortality. In terms of diagnostic methods, it is generally agreed that colonoscopy screening 

is the preferred screening test, because of its simultaneous abilities to visualize the entire colon in most 

(80% ~ 90%) cases and to remove precursor polyps (Godreau 1992, Lieberman and Smith 1991). In 

addition to specialized cancer screening, primary healthcare is also important for early CRC diagnosis, 

because it is the beginning step for CRC patients to seek professional help (Mullins 1999). Therefore, 

timely and accessible colonoscopy screening services and primary healthcare directly improve prognostic 

outcomes of CRC patients, and high rates of late-stage CRC may be an indication of poor access to and 

underutilization of CRC screening services and primary health care.   

Although CRC mortality has declined since the 1970s (Ries et al., 2000), mortality disparities 

appear to be increasing among population groups differentiated by race, gender, age, SES, and health 

insurance status. One can also infer that late-stage diagnosis varies among specific sub-population 

categories. The risk factors that make people delay colonoscopy screening and result in late-stage 

diagnosis/death are explicitly described in the following parts of the background section.    

2.1. Race and Ethnicity 

 Research has found that, compared to their white counterparts, blacks are more likely to be 

diagnosed with an advanced stage of CRC and have a much lower survival rate (Alexander et al., 2007, 

Amey et al., 1997, Doubeni et al., 2007, Du et al., 2007, Henry et al., 2009, Huang et al., 2007, Krieger et 

al., 1999, Mayberry et al., 1995, Marcella and Miller 2001; Le et al., 2009, Lengerich et al., 2005, Pagano 

et al., 2003, Palmer and Schneider, 2005). Both individual and area-based factors contribute to this racial 

disparity. Lack of health insurance and related knowledge about cancer screening is the major hindrance 

for blacks to access cancer screening in a timely manner (Bryant and Mah, 1992, Carr et al., 1996, Elnicki 

et al., 1995, Giovannucci et al., 1995, Thun et al., 1992, Willett et al., 1990). Blacks living in 

impoverished areas, either rural or urban, are most vulnerable for late-stage CRC diagnosis (Amey et al., 

1997, Lengerich et al., 2005, Paquette and Finlayson, 2007). The CRC mortality rate in this country has 

declined, since Medicare began covering colorectal cancer screening in 1998 (CMS, 2011) and use of 
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colonoscopy screening has increased. However, the decline in CRC mortality from 1992 to 2002 was 

much smaller for blacks (0.8%) than for whites (1.9%) (Schneider, 2009). Furthermore, Chien et al. (2005) 

found that, in addition to blacks, American Indians, Hawaiians, and Mexicans had higher hazard ratios for 

stage-adjusted CRC mortality, compared to whites. First generation Asian and South Asian immigrants 

have a relatively lower incidence and mortality of CRC; however, the next acculturated generation 

experiences a much higher rate (Blesch et al., 1999, Flood et al., 2000, Le Marchand et al., 1997). Given 

its significant and interactive effects on late-stage CRC diagnosis, treating race and ethnicity as important 

risk factors in late-stage CRC diagnosis study is a must. 

2.2. Gender 

 In the gender domain, studies have provided contradictory results with regard to whether men or 

women have a higher incidence of late-stage CRC diagnosis (Wu et al., 2001, Mandelblatt et al., 1996; 

9:1). Wu et al., (2001) concluded that men-to-women rate ratios dramatically increase from local-stage to 

advanced-stage CRC. However, Mandelblatt et al. (1996) suggested that women are more likely than men 

to be diagnosed with late-stage CRC. Another study found that both sexes have an equal likelihood of 

CRC mortality (Ries et al., 1999). Callcut et al. (2006) suggested that gender differences in late-stage 

CRC may be caused by different screening rates within different age groups. Uncertainty still remains 

about the gender disparity in late-stage CRC at diagnosis and the disparity is expected to vary with 

screening accessibility.            

2.3. Age 

 A sizeable body of research has shown a positive relationship between age and CRC incidence 

(CDC, 2011, Nelson et al., 1999, Cokkindes et al., 2003, Brawarsky et al., 2003, Cooper et al., 1995, 

Wingo et al., 1998). Specifically, the incidence of CRC is more than 10 times higher in people 60-64 

years old than in those 40-44 years old (Ries et al., 1999). In the U.S., the median age of people who die 

from CRC is 75 years (Schneider, 2009). However, although only 8.5% of CRC cases are diagnosed in 

people under 50 years old, the incidence of CRC is increasing among this sub-population group (Fairley 

et al., 2006, Pine et al., 2007). Moreover, individuals within this group diagnosed with CRC are likely to 

be diagnosed with the disease at an advanced stage (Schneider, 2009). Younger CRC patients have lower 

rates of screening than older CRC patients (Palmer and Schneider, 2005).  

2.4. Socio-Economic Status 

 Conceptually, SES is a combinatorial variable that reflects the availability of resources needed for 

a healthy and prosperous life.  It is composed of factors like educational attainment, occupation, 
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household income, and employment. These factors influence access to resources, including healthcare 

access and health insurance status. Although SES is a characteristic of individuals and households, it is 

often measured at the area level because of the lack of data on individual SES. In cancer research, studies 

have generally shown that area-based SES is associated with cancer outcomes (Singh et al., 2003). Social 

epidemiologists have suggested that, while the area-based SES has limits for individual-level cancer 

research, it is very reasonable and acceptable to study the association between area-based SES and cancer 

outcomes (Kawachi and Berkman, 2003, Krieger et al., 2006). Furthermore, some literature concludes 

that area-based SES plays a critical role in influencing prognostic outcomes of CRC, independent of SES 

at the individual level (Diez-Roux et al., 1998, Diez-Roux et al., 2001, Gomez et al., 2007, Krieger et al., 

2002). Studies show that people living in high-poverty areas are less likely to regularly utilize cancer 

screening services and more likely to present with a late-stage diagnosis than are individuals residing in 

wealthy areas (Abe et al., 2006; Mackinnon et al., 2007; Pollack et al., 2006; Roche et al., 2002, Sheehan 

et al., 2004). In these studies, a spatial correlation has also been discovered: clusters of late-stage CRC 

often coincide with low SES areas. Other research indicates that SES may be an important mediator of the 

black-white disparity in late-stage CRC at diagnosis (Du et al., 2007, Marcella and Miller 2001, Mayberry 

et al., 1995, Polite et al., 2006). In the US, individuals residing in low SES areas often lack adequate 

health insurance, are unable to afford screening services, and/or have difficulty travelling to screening 

services. This results in a higher incidence of late-stage CRC diagnosis (Walsh and Terdiman, 2003). 

However, measuring area-based SES lacks a ‗gold-standard‘ for defining appropriate neighborhood areas, 

and results are highly case-specific. Different studies (Cokkindides et al., 2003, Holmes-Rovner et al., 

2002, Marcella and Miller 2001) select different variables to represent SES, which makes it difficult to 

assess the quantitative influence of area-based SES on late-stage CRC diagnosis. Additionally, area-based 

SES is often correlated with other demographic risk factors.   

2.5. Spatial Disparity 

 CRC incidence and mortality also vary among geographic contexts (Ries et al., 2000, Cooper et 

al., 1997). In general, the largest difference is observed between rural and urban settings. Some studies 

find that individuals living in remote rural areas suffer a higher risk of CRC (CDC, 1999, CDC, 2001, 

Cooper et al., 1996, Coughlin et al., 2002, Hawlet et al., 2001, Nelson et al., 2003, Ries et al., 2000, 

Thomas and Carlin, 2003). However, other research shows a higher incidence in urban areas. Hsu and 

Mas (2006) have shown that within Texas, the greatest excess mortality of CRC occurred in the urban 

areas of Houston and Dallas. A recent study revealed that the risk of late-stage CRC diagnosis is higher in 

urban areas, after controlling for spatial and demographic factors (Paquette and Finlayson, 2007). 

McLafferty and Wang (2009) created a continuous rural-urban gradient on the basis of Rural/Urban 
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Commuting-Area (RUCA) codes to investigate the geographic variation of late-stage CRC diagnosis in 

Illinois. They concluded that geographical differences in late-stage CRC are mainly explained by 

demographic and social-spatial characteristics in different areas. More research is needed to understand 

the importance of spatial disparity on late-stage CRC diagnosis.                       

2.6. Healthcare Accessibility  

 Healthcare accessibility is the ease with which people can receive healthcare services at a given 

location. Healthcare accessibility has been divided into two major categories: revealed accessibility and 

potential accessibility (Joseph and Phillips, 1984, Phillips 1990, Thouez et al., 1988). While the former 

measures utilization of services, the latter estimates the availability of services in an area. Given the 

difficulty in measuring revealed accessibility for population-based research, many studies focus on 

potential accessibility (Schneider, 2009, Guagliardo, 2004, Luo and Wang 2003, Luo 2004, Wang et al., 

2010). Potential accessibility can be measured in many different ways including distance or travel time to 

service facilities, or more complex measures that assess the supply of services in relation to demand 

(Guagliardo 2004, Huff 2000, Joseph and Bantock 1982, Joseph and Phillips 1984, Shen 1998, Wang and 

Minor 2002, Weibull 1976, Yang et al., 2006). Studies have found that potential accessibility to primary 

care is an important predictor of cancer diagnostic or prognostic outcomes (Harold and Winder, 2000, 

Pandya et al., 1985, Winchester et al., 1979). Several studies have used network analysis to examine 

potential accessibility to colonoscopy screening services at the neighborhood level, and have evaluated 

the impacts of spatial accessibility on late-stage cancer (Luo et al. 2010, Wang, et al., 2010).  

Healthcare accessibility also depends on transportation. Zenk et al. (2006) showed that travel time 

using public transportation was, on average, at least 10 minutes longer than that using a private 

automobile. Paskett et al. (2004) found a relationship between healthcare accessibility and lack of a 

countywide public transportation system in a rural county of North Carolina. Rushton et al. (2004) 

concluded that high rates of late-stage CRC at diagnosis appeared in places where the average distances to 

diagnostic facilities were lengthy. Furthermore, the types of transportation available and the amount of 

travel time are often associated with neighborhood poverty level. Residents in neighborhoods with greater 

poverty levels are more likely to rely on public transportation, which is associated with higher travel 

times to healthcare facilities (Paskett et al., 2004).      

2.7. Health Insurance Status      

 In CRC research, evidence has been mounting to indicate that health insurance status has a 

relationship with late-stage CRC at diagnosis (Ayanian et al., 1993, Chen et al., 2007, Committee on the 
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Consequences of Uninsurance, 2002, Halpern et al., 2007, Halpern et al., 2008, Roetzheim et al., 1999,). 

Research shows that individuals without health insurance have worse prognostic outcomes compared to 

those with private health insurance (Ayanian et al., 1993, Chen et al., 2007, Halpern et al., 2007, Halpern 

et al., 2008, Roetzheim et al., 1999). Individuals without health insurance are likely to be diagnosed with 

late-stage CRC, given that they are less likely to participate in regular colorectal cancer screening (Palmer 

and Schneider, 2005). Individuals covered by Medicaid also tend to present with late-stage CRC at 

diagnosis, compared to people with private insurance (Cooper et al., 1997, Mayberry et al., 1995, Thomas 

and Carlin, 2003, VanEenwyk et al., 2002). However, differences in health insurance status fail to explain 

other socio-demographic disparities in CRC studies, especially racial discrepancies (Klabunde et al., 2006, 

McMahon et al., 1999, O‘Malley et al., 2005, Seeff et al., 2004, Shih et al., 2006). Moreover, privacy 

restrictions create barriers for researchers to access data on insurance status. Thus it is extremely difficult 

to incorporate health insurance status in studies of cancer disparities.  

 In summary, research shows that a variety of demographic, SES and geographic factors influence 

the risk of late-stage CRC. However, although each aforementioned risk factor has been thoroughly 

studied, it remains unclear how all these demographic, social and geographical factors work together to 

affect disparities in late-stage cancer, and how their effects have changed over time. Since 1990, the 

number of CRC screening facilities has increased in the U.S., awareness of the importance of CRC 

screening has also increased, and insurance coverage of CRC screening has improved. These trends may 

reduce social and spatial inequalities in late-stage CRC and change the associations between risk factors 

and late-stage CRC. The purpose of this paper is to integrate all these risk determinants together to study 

their influences on late-stage CRC in two time periods, from 1988 to 2002. The following conceptual 

framework illustrates how late-stage cancer risk is influenced by demographic, SES and spatial factors at 

the individual and area levels (Figure 1).  
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 Figure 1. Conceptual Framework Showing the Relationships between Multilevel Predictors and Late-

Stage Colorectal Cancer    

 3. Dataset and Methodology 

 This study area covers the state of Illinois. Illinois is an ideal study area, because of its vast 

spatial-demographic variation, from the highly populated Chicago metropolitan area to remote rural 

regions (McLafferty and Wang, 2009). This research uses four main data sets: 1) CRC cancer cases, 2) 

SES characteristics of residential areas, 3) locations of primary care and CRC screening services, and 4) 

the road networks linking populations and services. The following sections introduce the four main 

datasets, the corresponding methods to create variables for analysis, and the subsequent statistical models 

to address the research questions in this paper.   

3.1. Colorectal Cancer Data 

The CRC case data used in this spatial-temporal study were obtained from the Illinois State 

Cancer Registry (ISCR). ISCR follows the guidelines of the National Cancer Institute (NCI) Surveillance 

Epidemiology and End Results (SEER) Registries, and it includes data on all cancers diagnosed in Illinois 

residents. Illinois residents who were diagnosed in neighboring states, such as Missouri and Wisconsin, 
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are also included in the registries, and the completeness of case ascertainment is estimated as 98% 

(Lehnerr and Havener, 2002).  

The data are for 5-year time intervals. To focus on the 1990s, a period of rapid growth in CRC 

screening, CRC cases within the time periods, the time intervals 1988 to 1992, and 1998 to 2002 were 

analyzed. The cancer dataset consists of individual records, which are geocoded to the ZIP code of 

residence. No cancer data were available for smaller areas like census tracts or blocks because of privacy 

and confidentiality restrictions. For each case, data on cancer type, age group, sex, race, diagnosis stage 

and year are included. The ISCR uses a classification scheme consistent with SEER summary stage to 

measure diagnosed cancer stage (Young et al., 2001). Early-stage CRC cases comprise the localized 

categories (0 and 1), and late-stage CRC cases include regional and distant categories (stages 2 to 7). 

Unstaged or unknown-staged cases were excluded.  

In addition to staging information, data on gender, race and age are also included. Gender is 

divided into male and female. The race data identify black and non-black populations; no other racial or 

ethnic designations are included in the dataset. Age information is stored as 5-year groups from 0 to over 

80 years old. To clearly differentiate the age disparity in advanced-stage CRC diagnoses, the age 

information was re-divided into three groups: age less than 50 years old, age between 50- and 70-years 

old, and age above 70 years old. Using 50 as the cut-off point makes sense because health insurance plans 

start to cover regular colorectal cancer screening when the insured person reaches 50 years old. Choosing 

70 as another dividing point separates senior patients from young and mid-age patients for examining the 

influence of age on late-stage CRC at diagnosis. Cases with unknown gender, unknown racial group, and 

missing age information are all excluded from this study.  

3.2. Socio-Economic Status       

 Based on prior measures of area-based SES, I analyzed SES using a series of census variables to 

represent local concentrations of vulnerable population groups. The variables include race, immigrant 

status, language barrier, education attainment, economic level, marriage status, occupation, and physical 

limitation at zip-code level. Note that the midpoints of the CRC data time intervals match the census years. 

The original variables were extracted from US Census Bureau decennial Summary Files 3 (SF3) in 1990 

and 2000 (US Census Bureau, 1990 and 2000). The detailed information of the 14 SES indicators is 

explained below: 
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Table 1. Socio-Economic Variables in 1990 and 2000 

Variable Name Description 

RACE Percentage of black people among the total population 

IMMIGRANT Percentage of people born overseas among the total population 

LANGUAGE BARRIER Percentage of people who speak English as the secondary language 

EDUCATIONAL 

ATTAINMENT 

Percentage of people without a high school diploma among the total population ≥ 25 

years old 

MEDHHINC Median household income 

HOUSEHOLD W/O 

PLUMBING 

Percentage of households without complete plumbing facilities among the total 

households 

HOUSEHOLD W/O 

VEHICLE 

Percentage of households not owning a vehicle in the total households 

POPULATION BELOW 

POVERTY LEVEL 

Percentage of population below the poverty level 

SINGLE STATUS  Percentage of people ≥ 15 years old who are unmarried (single status) among the total 

population ≥15 years old 

DIVORCE STATUS Percentage of people ≥ 15 years old who are divorced among the total population ≥15 

years old 

POPULATION IN 

WORKING CLASS 

Percentage of people employed in working class occupations (clerical and blue collar 

jobs) among the total employed population 

UNEMPLOYED 

POPULATION 

Percentage of people unemployed among the total population in the labor force 

PHYSICAL 

LIMITATION 

Percentage of people with limited mobility and/or self-care among the total population 

COMMUNTING TIME Percentage of people ≥ 16 years old who do not work at home, travelling ≥ 30 minutes  

 

It is likely that these variables are correlated with each other which can potentially cause 

multicollinearity in statistical analysis. Thus factor analysis (FA) was used to examine the 

intercorrelations among the variables, and to identify latent dimensions that aggregate correlated variables 

together. PROC FACTOR in SAS (SAS, 2011) was implemented to run the factor analysis. Varimax, one 

of the common orthogonal rotations in factor analysis, was chosen to maximize the differences in variable 

loadings to clearly describe different dimensions of SES. Following the Kaiser criterion, factors whose 

eigenvalues were less than 1 were excluded (Griffth and Amrhein, 1997). In each factor, the widely used 

cutoff value, ±0.5 was chosen to identify variables that load highly on a factor. 

For 1990, the SES variables were available at the ZIP code level, while in 2000 these variables were 

only available at the census-tract level. Areal interpolation (Fisher and Langford, 1996, Tobler, 1979), 

specifically the areal-weighting transformation, was employed to translate the SES factors from census 

tracts to ZIP code areas in 2000.  
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3.3. Healthcare Accessibility  

 Healthcare accessibility varies across geographical areas, given the uneven distribution of 

healthcare providers and patients with geographical and financial limitations. This study focuses on 

potential spatial accessibility because data are not available for the study periods on actual health care 

utilization. I analyze three components of potential accessibility: spatial access to primary healthcare, 

access to the nearest colorectal cancer screening services, and health professional shortage areas (HPSAs). 

3.3.1. Spatial Access to Primary Healthcare    

 Access to primary care doctors is very critical to prevent late-stage diagnosis of CRC, because 

these physicians are the first contacts for patients and the gateways for referral to specialty care 

(Guagliardo, 2004, Wang et al., 2010). Two key factors, physician supply and population demand, greatly 

influence primary healthcare accessibility. Physicians in primary healthcare are family physicians, general 

practitioners, general internists, obstetricians-gynecologists, and physician specialists such as oncologists 

(Cooper, 1994). The data for Illinois primary care physicians in 1990 and 2000 were obtained from the 

Physician Master File of the American Medical Association (AMA). Constrained by the geographical 

accuracy in the AMA data (a significant amount of physicians have P.O.Box addresses which are useless 

for street address geocoding), physicians were geocoded to the zip code level. The population-weighted 

centroid of a ZIP code was used to approximate the location of physicians whose general addresses are 

within the ZIP code area. To represent demand for physicians, because individual street addresses for all 

Illinois residents in 1990 and 2000 were not obtainable, the population-weighted centroids of census 

tracts were treated as population residential locations. The travel time along the street network from 

residential locations to primary care physicians was calculated using ArcGIS Network Analyst (ESRI, 

2006). Population data in 1990 and 2000 was obtained from US Census Bureau Summary File 1 (SF1) at 

the census tract level. The street networks in the two periods came from Tiger/Line 2000 (US Census 

Bureau, 2000), because 2000 was the starting point to systematically and nationally publish electronic 

road network data. The speed limit along each street segment was estimated using street type and 

population density around the segment, according to a previous study (Luo and Wang, 2003). Given that 

people mainly access primary healthcare during regular business hours, the speed estimation also 

considered possible traffic congestion. Consequently, the speed limit ranged from 65 miles/hour on 

interstate highways to 5 miles/hour on unpaved dirt roads (Table 2). Then the Enhanced Two-Step 

Floating Catchment Area (E2SFCA) method was applied to evaluate primary healthcare accessibility in 

1990 and 2000.  
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The E2SFCA measures healthcare accessibility by calculating physician to population ratios for 

small areas. E2SFCA is applied in two steps: (1) define the travel time zones around each physician (ZIP 

code), and search all population locations that are within the threshold travel time; then compute the 

weighted physician-to-population ratios in each travel time zone and sum the values; (2) for each 

population location (census tract), search all physician locations that are within the threshold travel time, 

and sum the weighted physician-to-population ratios. Detailed information about the E2SFCA method is 

provided in Luo and Qi (2009). Travel times are calculated based on network distances and estimated 

speeds. In this paper, 30-minutes served as the maximum travel time threshold (Lee, 1991). Subsequently, 

each area was separated into three travel time zones: 0-10min, 10-20min, and 20-30min. The distance 

decay weight for each zone was computed according to a Gaussian function, generating the values: 1.0 - 

0.42 - 0.03. The end result was a population to physician ratio for each census tract representing the local 

supply of primary care physicians relative to local population. Spatial interpolation, specifically the areal 

weighting method, was used to transform the healthcare accessibility values from the census tract to ZIP 

code level (Flowerdew and Green, 1994).  

Table 2. Estimated Speed Limits on Different Road Categories in Illinois 

Road Category(CFCC)  Population Density 

 (per km-square ) 

Area Speed Limit 

(MPH) 

A1*(Interstate Highway) >=100 Urban and Suburban 55 

<100 Rural 65 

A2* (US and State 

Highway) 

>=1000 Urban 35 

1000>density>=100 Suburban 45 

<100 Rural 55 

A3* (State Highway) >=1000 Urban 35 

1000>density>=100 Suburban 45 

<100 Rural 55 

A4*(Local Road) >=1000 Urban 20 

1000>density>=100 Suburban 25 

<100 Rural 35 

A5*(Vehicle Trail: one-

lane dirt road) 

No Matter where  5 

A6*(Road with Special 

Utilities: intersections, 

bicycle line etc.) 

>=1000 Urban 15 

1000>density>=100 Suburban 20 

<100 Rural 25 

          *: Any integral number between 0 and 9.  

3.3.2. Spatial Access to Colonoscopy Screening 

  Cancer screening services are also important components of accessibility to health care for CRC 

patients. To accurately measure accessibility to CRC screening in 1990 and 2000, effort was put into 

obtaining the street addresses of screening facilities. I focused on colonoscopy because it is the most 

recommended screening method (McMahon and Gazelle, 2002). This service is typically performed in 
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specialized hospitals rather than at individual doctors‘ offices, so finding specific locations of the 

hospitals providing colonoscopy screening services was crucial. After numerous contacts and consults 

with different health data providers, the addresses of hospitals in 1990 and 2000 were extracted from 

American Hospital Association (AHA) yearly guides for 1991 and 2001. The AHA guide is an annually-

updated encyclopedia, containing hospital system profiles, hospital listings and healthcare statistics (AHA, 

2011). Based on recommendations from managers at the National Cancer Data Base, hospitals coded as 2 

(2 designates a cancer program approved by American College of Surgeons) in the cancer category were 

identified as facilities that offer colonoscopy screening services (Anderson, 2010). Data from AHA was 

verified by comparing data for 2000 with the same year‘s data on colonoscopy screening facilities from 

the U.S. Food and Drug Administration (FDA) (Wang et al., 2010).   

Ninety-five hospitals in 1990 and 194 hospitals in 2000 provided colonoscopy screening services 

in Illinois, reflecting the expansion of screening services across the state. Hospitals in 2000 were more 

evenly-distributed, while hospitals were mainly concentrated in the Chicago Metropolitan area in 1990 

(Figures 2 and 3). Travel distance and travel time along the road network from each ZIP code residential 

location to the nearest colonoscopy screening service were calculated.  

     

 3.3.3. Health Professional Shortage Areas 

  

Figure 3. Locations of Hospitals with 

Colonoscopy Screening Services in 2000  

Figure 2. Locations of Hospitals with 

Colonoscopy Screening Services in 1990 
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It is also interesting to examine the impact of living in a Health Professional Shortage Area 

(HPSA) on late-stage colorectal cancer risk. ―Health Professional Shortage Areas (HPSAs) are designated 

by HRSA (Health Resources and Services Administration) as having shortages of primary medical care, 

dental or mental health providers and may be geographic (a county or service area), demographic (low 

income population) or institutional (comprehensive health center, federally qualified health center or 

other public facility).‖ (U.S. DHHS , 2011). HPSA‘s are defined based on the ratio of population to full-

time-equivalent (FTE) physicians within an area and the availability of providers in contiguous areas (U.S. 

DHHS, 2011). Primary care HPSAs in Illinois in 1990 and 2000 were selected. Like other historical 

datasets, HPSA suffers from inconsistent terminology. The areas were named Health Manpower Shortage 

Area (HMSA) in 1990, as verified by HRSA staff through emails. The geographic components of HPSAs 

are civil townships and census tracts. The corresponding boundary shapefiles were obtained from 

Cartographic Boundary Files, County subdivisions section in US Census Bureau website (U.S. Census 

Bureau, 1990 and 2000). According to these files, 490 townships and census tracts were located in 

HMSAs in1990, and 287 townships and census tracts were designated as primary care HPSAs in 2000. A 

dummy variable designating HPSA location (or not) was defined for each year.         

3.4. Study Units 

  To maintain consistency with the geographical characteristics of the CRC dataset from ISCR, 

data on CRC risk factors were obtained at two geographic levels: individual and ZIP code. Demographic 

information (race, gender, and age), was available at the individual-level from the cancer dataset. Other 

social-spatial covariates, such as SES and healthcare accessibility, were measured at the ZIP code level to 

match information about the ZIP code of residence for cancer cases. ZIP codes, 5-digit numeric codes, 

were designed by U.S. Postal Service to facilitate mail delivery, and each ZIP code consists of a 

collection of mail distribution points and routes. The spatial analysis of late-stage CRC in this paper 

requires ZIP codes as polygons. One particular debate in using ZIP code level data is which ZIP code 

zones – ZIP code boundaries created by zonal interpolation, or ZIP Code Tabulation Areas (ZCTA) 

developed by US Census Bureau (U.S. Census Bureau, 2000) – are more accurate in reflecting postal ZIP 

codes. Each ZCTA was built by aggregating census blocks whose addresses shared a given ZIP code. 

Grubesic (2008) thoroughly examined the differences between both systems, and concluded that the 

regular ZIP-code scheme is more appropriate for research. Thus, this study utilized ZIP code zones 

created by interpolation by TeleAtlas based on mailing addresses and roads (Grubesic and Matisziw, 

2006). To avoid variation in boundaries and size caused by periodic updates of ZIP code areas, ZIP codes 

in 2000 were selected as the basic areal units. This may cause some inaccuracy in the 1990 analysis, if 

particular ZIP code boundaries changed between 1990 and 2000. The original data were improved by 
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deleting isolated islands, merging small-sized areas, and dissolving separated parts to build a continuous 

topology. After this, there were 1,236 ZIP code polygons.       

3.5. Spatial Clustering Analysis of Late-Stage Colorectal Cancer Cases 

An exploratory statistical method, the spatial scan statistic, was performed to identify spatial 

clusters of late-stage CRC cases during the two study periods. Many researchers have used spatial scan 

statistics, implemented in SaTScan software, to examine geographic differences in incidence and 

mortality of cancer (Gregorio et al., 2002, Jemal et al., 2002, Kulldorff et al., 1997, Seeff et al., 2003, 

Roche et al., 2002, Thomas and Carlin, 2003). SaTScan‘s free availability and powerful detection 

techniques make it a popular choice (Kulldorff et al., 2003). The Bernoulli-based scan statistic was used 

to detect spatial clustering based on ratios of late-to-early CRC diagnoses at the ZIP code level. The 

analysis was performed separately for the state as a whole and for two sub-areas: the Chicago 

metropolitan area and non-Chicago metropolitan area because of the large and dense concentration of 

population and cases in Chicago. To apply the spatial scan statistic, a circular scanning window whose 

maximum size contains 33% of CRC cases was selected as the optimal parameter, after multiple trials in 

each study region. Within each circular window, the maximum likelihood method was utilized to test 

deviations from the null hypothesis of equality between the late-to-early ratio inside the circle and that 

outside. Subsequently, a Monte Carlo permutation technique (999) was applied to evaluate the statistical 

significance of clusters. Finally, clusters with high late-to-early ratios of CRC cases were mapped in 

ArcGIS.        

3.6. Hierarchical Logistic Regression 

 Hierarchical logistic regression was applied to examine the relationship of late-stage CRC 

diagnosis with multilevel risk determinants within the two time periods (1988 to 1992 and 1998 to 2002). 

A two-level logistic model was implemented to maximally use demographic information about 

individual-level CRC cases (age, gender, race), as well as ZIP code level covariates. The dependent 

variable in the multilevel logistic model was late-stage CRC diagnosis; the micro-level predictors 

included patient‘s age, gender, and race categories. Specifically, age was modeled as the two younger 

groups (Age < 50, Age 50 -70), and the reference category was the oldest group (≥70). Race was treated 

as a binary variable: Black and Non-Black (reference category). Gender was divided into male and female 

(reference category). The macro-level predictors were: (1) factor scores representing the three dimensions 

of socio-economic status (SES Disadvantage, Minority Disparities, and Cultural-Language Barriers), (2) 

shortest travel time to the nearest hospital with colonoscopy screening services, and (3) accessibility to 
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primary healthcare. HPSA was included in initial models, but its coefficients were never statistically 

significant and therefore it was dropped from the final models. 

The specific formulation is a 2-level random intercept model, which specifies the fixed-effect of 

individual variables across ZIP code areas and the random-effect of intercepts at the ZIP-code level 

caused by the variation of macro-level predictors across ZIP codes. This study also utilized the strategy of 

entering ‗blocks‘ variables, separately entering ZIP code level predictors and individual-level covariates, 

to examine their respective influences on late-stage CRC diagnosis. Subsequently, independent variables 

at both levels were combined in a final model. The ‗proc glimmix‘ statement in SAS (SAS, 2006) was 

used to build these multilevel logistic models. The formulations of the hierarchical logistic model are 

shown below: 

The micro specification (level 1) is: 

ijijjijjijjjij RGenderAgeRaceRClatestageCYobLogit  )()()())((Pr 3210               

where the  s denote the intercept and regression coefficients of the predictors at the individual level, 

i=1,…,nj denotes individuals within different ZIP code areas, and j=1,…,J denotes ZIP code areas. The

ijR are micro errors with independent normal distributions, ijR ~N(0, σ
2
).  

The macro stage (level 2) model is: 
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where Us represent  random effects of the intercept at the ZIP-code level, U0j ~N(0, 
2

0 ) and they are 

independent over j and with ijR . Equations (1) and (2) can be combined to form a single-equation model 

(3): 

(2) 

(1) 
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Given the large geographic and social differences across Illinois, I expect that the impact of social 

and spatial variables on late-stage risk might differ among geographic contexts. To address this, the state 

was divided into three zones: Chicago city, Chicago suburbs, and other areas. To differentiate Chicago 

suburbs from other areas, the Rural-Urban Commuting Areas (RUCA) ZIP code approximation scheme, 

developed by the Office of Rural Health Policy was used. That scheme categorizes areas into 4 general 

taxonomies, urban core areas, suburban areas, large town areas, and small town and isolated rural areas, 

based on urbanized population and commuting flow (Hart et al., 2005). All contiguous ZIP codes 

classified as ―urban‖ or ―suburban‖ and located in areas neighboring Chicago were grouped into the 

Chicago suburbs category. The RUCA ZIP code approximation codes for Illinois in 1990 and 2000 were 

derived from the following website (http://depts.washington.edu/uwruca/ruca-data.php). Comparing the 

classifications in 1990 and 2000, shows little difference in the number of ZIP codes in the three 

geographical zones between the two years, except for a small decrease in the Other Areas category and a 

corresponding increase in the Chicago suburbs (Table 3). Multilevel models were estimated for each of 

the three regions in each year. 

Table 3. Number of RUCA ZIP-Codes in the Three Regions of Illinois in 1990 and 2000  

Time Frame Chicago City Chicago Suburbs Other Areas 

1990 57 224 955 

2000 57 242 937 

 

4. Results and Discussion 

4.1. Late-Stage Colorectal Cancer Incidence  

 The number of CRC cancer cases in Illinois increased during the 1990s, from 32,843 cases in 

1988 to 1992 to 36, 053 in 1998 to 2002 (Table 4). The number of late-stage CRC cases also increased, 

but the percent late-stage cases declined from 61.19% to 57.34%. Additionally, cases in the youngest age 

group showed an increasing trend, while the numbers in the other two age groups declined. CRC cases in 

the black population increased from 3,381 (10.29%) to 4,000 (11.09%), which is consistent with findings 

from other studies (Alexander et al., 2007, Amey et al, 1997, Doubeni et al., 2007, Du et al., 2007, Huang 

et al., 2007, Henry et al., 2009, Krieger et al., 1999, Le et al., 2009, Lengerich et al, 2005, Pagano et al., 

2003, Palmer and Schneider, 2005, Mayberry et al., 1995, Marcella and Miller 2001). In the period of 

(3) 

http://depts.washington.edu/uwruca/ruca-data.php.%20RUCA%20data%20version%202.0
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1988 to 1992, the percentages of late-stage CRC cases in Chicago city and Chicago suburbs are all higher 

than the state-average late-stage percentage, while the percentage in the other area is lower (Table 5). 

Similar geographic differences exist in the period of 1998 to 2002. Although the number of CRC cases 

increases from 1988-92 to 1998-2002 in each study region, the percentage of late-stage cases decreases, 

indicating that the risk of late-stage CRC has improved as a result of enhanced cancer detection 

technology, wider coverage of CRC screening by health insurance plans, and increased public awareness 

of the importance of regular screening. However, the decreases are small, revealing that prevention of 

late-stage CRC and early detection still have a long way to go.    

Table 4. Descriptive Statistics for Colorectal Cancer in Illinois, 1988-1992, and 1998-2002 

Time 

Period 

Total 

Cases 

Stage (No. of Cases 

and Percentage) 

Age (No. of Cases 

and Percentage) 

Race (No. of Cases 

and Percentage) 

Gender (No. of Cases 

and Percentage) 

 

 

 

88 to 

92 

 

 

 

 

32,843 

Early 10711 

(32.61%) 

<50 1918 

(5.84%) 

Black 3381 

(10.29%) 

Male 16299 

(48.63%) 

Late  

20095 

(61.19%) 

50 ~ 70 12063 

(36.73%) 

Non-

Black 

 

29352 

(89.37%) 

Female  

16544 

(51.37%) >70 18862 

(57.43%) 

Unknown 2037 

(6.20%) 

Unknown 0 

(0.00%) 

Unknown 110 

(0.33%) 

Unknown 0 

(0.00%) 

Time 

Period 

Total 

Cases 

Stage (No. of Cases 

and Percentage) 

Age (No. of Cases 

and Percentage) 

Race (No. of Cases 

and Percentage) 

Gender (No. of Cases 

and Percentage) 

 

 

 

98 to 

02 

 

 

 

 

36,053 

Early 12195 

(33.83%) 

<50 

 

2490 

(6.90%) 

Black 4000 

(11.09%) 

Male 16546 

(45.89%) 

Late  

20672 

(57.34%) 

50 ~ 70 11787 

(32.69%) 

Non-

Black 

 

28669 

(79.52%) 

Female  

16321 

(45.27%) >70 18590 

(51.56%) 

Unknown 3186 

(8.84%) 

Unknown 3186 

(8.84%) 

Unknown 3384 

(9.39%) 

Unknown 3186 

(8.84%) 

 

Table 5. Percentages of Late-Stage Colorectal Cancer in the Three Study Areas 

Time Period Study Regions Total CRC Cases Late-Stage CRC 

Cases and Percentage (% of  

Total Cases in Each Region) 

 

88 to 92 

Chicago City 4868 3067 (63.00%) 

Chicago Suburbs 12032 7821 (65.00%) 

Other Areas 15943 9207 (57.75%) 

Time Period Study Regions  Late-Stage CRC 

Cases and Percentage (% of Total Cases) 

 

98 to 02 

Chicago City 3256 2019 (62.00%) 

Chicago Suburbs 13721 7958 (58.00%) 

Other Areas 19076  10695 (56.07%) 
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4.2. Spatial Clustering of Late-Stage Colorectal Cancer 

The spatial scan statistic analysis shows two primary clusters with high late-to-early ratios for 

each time period (Figures 4 and 5). Specifically, in the early time period, the first cluster (p-value = 0.037) 

is located in the southern part of Illinois, and only two hospitals are located within that cluster (Figure 4). 

The secondary cluster, with a 0.094 p-value, occurs inside the Chicago metropolitan area, covering the 

eastern part of DuPage County and a small tip of Cook County (Figure 5). In the later period, the first 

cluster moves into Cook County, potentially indicating growing urban disadvantage. The secondary 

cluster is located on the western edge of Illinois. However, these clusters are not statistically significant as 

indicated by their non-significant p-values. This finding indicates that in 1998-2002, late-stage CRC cases 

were more evenly distributed than they were in the early time period. The potential reasons are: over time, 

the disparity of seeking professional help for CRC in different Illinois regions may have gradually 

decreased, and there may be much more equitable access to health facilities across the state. Thus the 

spatial inequality of late-to-early ratios across Illinois has diminished over time.           

   

  

 

Figure 4. Spatial Clusters of High Ratios of Late- 

to Early-Stage Colorectal Cancer from 1988 to 

1992 in Illinois 

In the   

in 

Figure 5. Spatial Clusters of High Ratios of Late- 

to Early-Stage Colorectal Cancer from 1998 to 

2002 in Illinois 
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SaTScan was separately applied within Chicago metropolitan area, and only the first cluster in 

each period was illustrated, given that other secondary clusters had very large p-values. The locations of 

clusters are overlaid with the ones for the whole state. In the earlier period, the primary cluster mainly 

appears in the eastern section of DuPage County and a small portion of neighboring Cook County. In the 

later period, the cluster covers the northwestern tip of Chicago city and its surrounding areas (Figures 6 

and 7). The size of the cluster diminished over time with the p-value increasing from 0.031 to 0.0916, 

indicating a more even geographic distribution of late-to-early ratios in the latter period. Hospitals are 

plentiful within and around these two clusters. Immigrant concentration may account for the spatial 

clustering. Specifically, the west and north sides of Chicago contain large concentrations of Polish and 

Hispanic immigrants. Chicago is the largest Polish city outside of Poland, with the Polish community 

concentrating in the northwest side (The Polish American Association, 2004). Previous studies (Newman 

and Spengler, 1984, Staszewski and Haenszel, 1965) observed that Polish immigrants have a higher CRC 

incidence and mortality, compared to their native counterparts. The northwestern cluster may reflect 

barriers to early diagnosis in the Polish community, a topic that requires more study in the future.           

      

 

  

 

Figure 6. Spatial Clusters of High Ratios of Late- 

to Early-Stage Colorectal Cancer from 1988 to 

1992 in the Chicago Metropolitan Area 

Figure 7. Spatial Clusters of High Ratios of Late- 

to Early-Stage Colorectal Cancer from 1998 to 

2002 in the Chicago Metropolitan Area 
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Similar to the clusters in Chicago metropolitan area, the primary clusters in the non-Chicago 

metropolitan area are similar to the ones for the whole state (Figures 8 and 9). The cluster in 1988-1992 is 

highly statistically significant (p=0.01) whereas that for 1998-2002 is not significant (p=0.365). This 

indicates that geographical inequality of late-stage CRC decreased substantially during the 1990s. The 

southern region, where the primary cluster appears between 1988 and 1992, is mainly composed of rural 

areas, indicating localized rural disadvantage during that period. The disappearance of this cluster in later 

period suggests that the rural conditions have improved a lot in terms of CRC late-stage prevention, 

which may be a result of improvements in access to CRC screening.  

       

 

 

 

4.3. Measures of Socio-Economic Status  

To construct variables representing SES, factor analysis was performed on the original SES 

variables, and 11 and 12 variables were respectively selected out of the original 14 variables in 1990 and 

2000 (Table 6). In 1990, the three factors explain 51.86% of total variance, and in 2000 the factors 

account for 62.20% of the total variance. Based on the characteristics of variables contained in each factor, 

Figure 8. Spatial Clusters of High Ratios of Late-

to Early-Stage Colorectal Cancer from 1988 to 

1992 in the Non-Chicago Metropolitan Area 

Figure 9. Spatial Clusters of High Ratios of Late- 

to Early-Stage Colorectal Cancer from 1998 to 

2002 in the Non-Chicago Metropolitan Area 



 

31 
 

the three factors are named: ‗Socio-Economic Disadvantage‘, ‗Minority Disparity‘, and ‗Cultural-

Language Barriers‘. The component-structures of factors in 1990 and 2000 are quite similar: Factor 3 

contains the same variables in the two years. Most variables in Factor 1 in each year are the same except 

for ‗% unemployed in 1990, and % household without plumbing in 2000. Factor 2 in 2000 has one more 

variable than in 1990, adding % unemployed. The high similarity makes the factors generally comparable 

between the two years.  

Table 6. ZIP-Code Level Factor Structure of Socio-Economic Status Variables  

Variables  1990 Variables  2000 
Factor 1:  

SES 

Disadvantage 

Factor 2: 

Minority 

Disparity 

Factor 3: 

Cultural-

Language 

Barriers 

Factor 1:  

SES 

Disadvantage 

Factor 2: 

Minority 

Disparity 

Factor 3: 

Cultural-

Language 

Barriers 

Median 

household 

income ($) 

 

-0.512 

 

-0.0920 

 

0.103 

Median 

household 

income ($) 

 

-0.737 

 

-0.0944 

 

0.224 

Population 

≥25 without 

high school 

diploma (%)  

 

0.819 0.170 0.0793 
Population 

 ≥25 without 

high school 

diploma (%) 

 

0.795 

 

0.118 

 

0.222 

Population 

below 

poverty level 

(%) 

 

0.631 

 

0.540 

 

-0.0508 

Population 

below 

poverty level 

(%) 

 

0.710 

 

0.637 

 

-0.0292 

People with 

high care 

needs (%) 

 

0.603 

 

0.385 

 

0.0495 

People with 

high care 

needs (%) 

 

0.762 

 

0.235 

 

-0.0241 

% working 

class (%)  

 

0.713 

 

-0.240 

 

-0.165 

% working 

class (%) 

 

0.684 

 

-0.264 

 

-0.120 

% workers 

unemployed 

(%) 

 

0.535 

 

0.498 

 

-0.0282 

Household 

w/o plumbing 

(%) 

 

0.496 

 

0.173 

 

0.0366 

Black (%) 0.128 0.777 0.0601 Black (%) 0.148 0.739 0.0696 

Households 

w/o a vehicle 

(%) 

 

0.216 

 

0.765 

 

0.283 

Households 

w/o a vehicle 

(%) 

 

0.249 

 

0.815 

 

0.308 

People ≥15 

years old are 

single (%) 

 

-0.197 

 

0.683 

 

0.326 

People ≥15 

years old are 

single (%) 

 

0.00596 

 

0.780 

 

0.376 

Population 

born overseas 

(%) 

 

-0.207 

 

0.176 

  

0.868 

% workers 

unemployed 

(%) 

 

0.578 

 

0.641 

 

0.0262 

Linguistically 

isolated 

households  

(%) 

 

0.0281 

 

0.109 

 

0.875 

Population 

born overseas 

(%) 

 

-0.102 

 

0.160 

 

0.945 

 Linguistically 

isolated 

households 

(%) 

 

0.117 

 

0.117 

 

0.958 
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 Figures 10 and 11 illustrate the spatial distribution of SES disadvantage in the two years. In 1990, 

the most disadvantaged areas are dispersed in the urbanized areas across the state, with the highest 

disadvantage scores occurring in ZIP codes within Cook County and in other metropolitan areas which 

mainly spot in the middle and southern sections of Illinois. The majority of rural areas have a moderate 

level of the SES disadvantage. Areas with the lowest SES disadvantage scatter within Chicago 

metropolitan area and other urbanized regions across the state. In 2000, the Chicago suburbs, display a 

low level of SES disadvantage. Other urbanized areas, located in central Illinois, also experience a low 

level of SES disadvantages. Regions located in the western and southeastern sections of Illinois suffer a 

moderate level of disadvantage. Within the Cook County, areas with the highest SES disadvantage scatter 

in the middle and southeastern sections in 1990, while the highest scores show up in the northwestern tip 

and middle parts in 2000.  

        

  

 

The minority disparities factor shows concentrations of minority population and associated 

variables mainly in and around Chicago in both years (Figures 12 and 13). In 1990, areas featured by the 

highest minority disparities are mainly focused in the southern part of Chicago city, and a small area in 

northwestern St. Clair County. The urbanized areas near Chicago city and other metropolitan areas also 

Figure 10. The Distribution of Socio-Economic 

Disadvantages in Illinois from 1988 to 1992 

Figure 11. The Distribution of Socio-Economic 

Disadvantages in Illinois from 1998 to 2002 
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have relatively high scores on minority disparities. The majority of rural areas present a low level of 

minority disparities in 1990. In 2000, minority disparities continue to be concentrated in the southern 

section of Chicago city, but also expand into the northern part of neighboring Will County. Other parts of 

the state show higher levels of minority disparities in 2000 than in 1990.  

      

    

 

Factor 3, representing cultural-language barriers, has similar patterns in Illinois during the two 

time periods (Figures 14 and 15). Particularly, areas in the first and second highest cultural-language 

barriers categories mainly are located in the Chicago metropolitan area, including Cook, McHenry, Lake, 

DuPage, some portions of Kane and Will in 1990. A few urbanized areas, scattered in central Illinois, also 

present a moderate level of cultural-language barriers. In 2000, the areas in the first two highest categories 

of Factor 3 still focus on the Chicago metropolitan area. The middle category shows up in other urbanized 

areas outside the Chicago region, mainly in the north and central regions, indicating dispersal of 

immigrant populations to other parts of the state.  

Figure 12. The Distribution of Minority 

Disparities in Illinois from 1988 to 1992 

Figure 13. The Distribution of Minority 

Disparities in Illinois from 1998 to 2002 
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4.4. Healthcare Accessibility 

 Figures 16 and 17 show geographic variation in spatial accessibility to primary health care in 

1990 and 2000. Comparing the maps indicates that accessibility generally improved over time. In 1990, 

most regions with high primary healthcare accessibility are in the Chicago metropolitan area, especially in 

Cook and DuPage Counties. Specifically, most of Cook County has high accessibility, except the south 

and western areas of Chicago city and neighboring areas in Cook County. Other ZIP codes falling into the 

highest category are located in metropolitan areas across the state. In 2000, more sections in the Chicago 

metropolitan area fall into the highest category of primary healthcare accessibility, including the eastern 

part of McHenry, eastern and southern parts of Lake, and neighboring parts of Kane, DuPage and Will 

counties. Improvements in spatial access also occur in other metropolitan areas. Primary healthcare 

accessibility increased because the number of primary care physicians more than doubled between 1990 

and 2000. However, the improvement seems to be concentrated in metropolitan areas, while rural areas in 

Illinois still suffer from low primary healthcare accessibility. The disparity between urban and rural 

Figure 14. The Distribution of Cultural-

Language Barriers in Illinois from 1988 

to 1992 

Figure 15. The Distribution of Cultural-

Language Barriers in Illinois from 1998 

to 2002 
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reveals spatial barriers for people living in rural areas that can prevent them from receiving timely 

diagnosis and treatment for CRC.      

      

  

 

Table 7 contains the descriptive statistics for network distance and travel time to the nearest 

hospitals with colonoscopy screening services in 1990 and 2000. Given the high correlation between 

travel distance and travel time, only the shortest travel time, which is more relevant for travel decisions, is 

selected for the multilevel logistic analysis to avoid multicollinearity. The difference between the 

minimum and maximum values of travel time decreased substantially from 1990 to 2000, falling from 

94.89 minutes in 1990 to 41.01 in 2000. The average travel time also improved over time: in 1990, ZIP 

codes in Illinois were 25 minutes on average from the nearest hospital with colonoscopy services, while 

that travel time decreased to 14 minutes in 2000.   

Table 7. Descriptive Statistics of Shortest Travel Distance/Time to Colonoscopy Screening in Illinois  

Variable Minimum Maximum 

 

Mean Std. Error 

Shortest Travel Distance in 1990 (Meters) 164.13 128063.49 3.08×10
4
 624.66 

Shortest Travel Time in 1990 (Minute) 0.20 95.09 25.48 0.46 

Figure 16. The Distribution of Primary 

Healthcare Accessibility in 1990 

Figure 17. The Distribution of Primary 

Healthcare Accessibility in 2000 
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  Table 7. (cont.) 

Shortest Travel Distance in 2000 (Meters) 98.06 55219.43 1.64×10
4
 300.59 

Shortest Travel Time in 2000 (Minute) 0.15 41.16 14.18 0.23 

 

Figures 18 and 19 illustrate HPSA locations in 1990 and 2000. Compared with HPSAs in 1990, 

HPSAs cover more areas in 2000. Residents living in HPSAs generally suffer low primary healthcare 

accessibility. Because of the discontinuous boundaries between ZIP code areas and HPSAs units, an 

arbitrary decision was made to determine whether a ZIP code area belongs to HPSA category or not. 

Specifically, if a HPSA covers 50% or more area within a ZIP code, that ZIP code is classified as HPSA, 

and vice versa. In 1990, 50 ZIP code areas are totally classified to HPSAs, and 65 ZIP code areas are 

categorized as HPSAs in 2000. The HPSA variable was excluded from the final hierarchical logistic 

regression models, because of its non-significant effect in the many statistical models.    

        

 

 

 

 

Figure 18. The Distribution of Primary 

Healthcare Accessibility in HPSAs in 

1990 

 

 

Figure 19. The Distribution of Primary 

Healthcare Accessibility in HPSAs in 

2000 
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4.5. Hierarchical Logistic Regression Outcomes in Illinois and the Three Sub-Regions 

Results from separate ‗block-input‘ models and the complete, fully-specified multilevel models 

are consistent in each study region. Therefore, only results from the complete multilevel logistic models 

are discussed in these sections. Also, a high correlation (coefficient >0.5, p-value <0.0001) was detected 

between shortest travel time and primary healthcare accessibility, so to avoid multicollinearity, only the 

former variable was retained in the analysis, given its statistically significant influence in the model for 

the non-Chicago metropolitan region (the ―other areas‖). Using the whole state as the study region, the 

predictors in the hierarchical logistic models do not show any statistically significant influence in the risk 

of late-stage CRC diagnosis within the two study periods. Thus the corresponding analytical outcomes are 

not discussed in this paper. The subsequent sections mainly focus on describing and interpreting the 

analytical results in the three regions during the two periods. In all models, the ratio of the generalized 

chi-square statistic and its degrees of freedom is close to 1, indicating that the predicators are properly 

modeled and overdispersion only mildly exists (Schabenberger, 2007). The predictors that have a 

statistically significant influence on late-stage CRC diagnosis are highlighted in gray in each table below.  

4.5.1. Hierarchical Logistic Model Results for Places outside the Chicago Region (Non-Chicago 

Metropolitan Area) 

 In the model for areas outside the Chicago Metropolitan region in 1988 to 1992, factor 2 

(Minority Disparities) has a positive and statistically significant influence on late-stage CRC at diagnosis 

(Table 8). As mentioned earlier, the highest level of this factor is seen in urbanized areas (Figure 12). 

Thus the positive influence reveals the vulnerability of people living in metropolitan areas with high 

percentages of black population and households without vehicles, consistent with previous studies 

(Krieger et al., 1999, VanEenwyk et al., 2002). The finding can be treated as a specific form of ‗urban 

disadvantage‘ for people living in racially segregated and low SES areas in cities outside of Chicago 

metropolitan area. Beyond this, none of the other predictors, whether at the individual or ZIP code level, 

has a statistically significant effect.    

The impacts of independent variables on late-stage CRC diagnosis differ for the 1998- 2002 time 

period (Table 9). Specifically, people in young- and mid-age groups are more likely to be diagnosed with 

late-stage CRC, compared to people in the oldest group, consistent with previous studies (Palmer and 

Schneider, 2004, Schneider, 2009). People in the two younger age groups may not receive regular cancer 

screening services. In addition, shortest travel time shows a positive and statistically significant 

relationship with the risk of CRC late-stage diagnosis. Rushton et al. (2004) suggested that areas with 

high rates of late-stage CRC are often characterized by lack of local cancer screening providers. Given 
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that this study region covers areas outside of the Chicago metropolitan region, the significant impact of 

the travel-time reveals that hospitals with colonoscopy screening services in these areas are unevenly 

distributed; and long distances to care are associated with higher late-stage risk. More specialized services 

for CRC screening need to be established outside of Chicago metropolitan area. Taking cost and profit 

into consideration, mobile colonoscopy screening services can be implemented in the remote rural areas 

in Illinois.  

Table 8. Coefficient Estimates for ZIP-Code level and Individual Predictors in Hierarchical 

Logistic Regression: Non-Chicago Metropolitan Area, 1988 to 1992 

Variables Estimates Std. Error t-value p-value Alpha 90% CI  

Lower  

90% CI 

Upper 

Intercept 0.36 0.054 6.79 2.63E-11 0.1 0.27 0.45 

Race (Black) -0.031 0.22 -0.14 0.89 0.1 -0.40 0.33 

Age (<50) 0.22 0.17 1.30 0.19 0.1 -0.058 0.50 

Age  

(50 ~ 70) 0.075 0.071 1.07 0.29 0.1 -0.041 0.19 

Gender (Male) 0.058 0.066 0.87 0.38 0.1 -0.052 0.17 

Factor 1 (SES Disadvantages) -0.043 0.048 -0.91 0.36 0.1 -0.12 0.035 

Factor 2 (Minority Disparities) 0.083 0.048 1.74 0.082 0.1 0.0044 0.16 

Factor 3 (Cultural-Language Barriers) 0.049 0.047 1.05 0.29 0.1 -0.028 0.13 

Shortest Travel Time -0.011 0.040 -0.26 0.80 0.1 -0.078 0.056 

 

Table 9. Coefficient Estimates for ZIP-Code level and Individual Predictors in Hierarchical 

Logistic Regression: Non-Chicago Metropolitan Area, 1998 to 2002 

Variables Estimates Std. Error t-value p-value Alpha 90% CI  

Lower  

90% CI 

Upper 

Intercept 0.30 0.060 4.93 1.09E-06 0.1 0.20 0.39 

Race (Black) -0.021 0.11 -0.19 0.85 0.1 -0.20 0.16 

Age (<50) 0.59 0.16 3.73 0.00020 0.1 0.33 0.85 

Age  

(50 ~ 70) 0.25 0.078 3.17 0.0015 0.1 0.12 0.38 

Gender (Male) -0.075 0.073 -1.02 0.31 0.1 -0.20 0.046 

Factor 1 (SES Disadvantages) -0.066 0.043 -1.53 0.13 0.1 -0.14 0.0050 

Factor 2 (Minority Disparities) -0.016 0.044 -0.37 0.71 0.1 -0.090 0.057 

Factor 3 (Cultural-Language Barriers) 0.028 0.042 0.65 0.52 0.1 -0.042 0.097 

Shortest Travel Time 0.10 0.040 2.47 0.013 0.1 0.033 0.17 

 

4.5.2. Hierarchical Logistic Model Results for Chicago Suburbs 

 Within the Chicago suburbs, in the earlier period, the youngest age group, has a positive and 

significant association with late-stage CRC risk at diagnosis (Table 10). This is the only statistically 

significant variable in the model. This finding that younger patients have a higher late-stage risk is 
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consistent with previous research (Fairley et al., 2006, Pine et al., 2007), and it suggests low use of 

screening in this age group. The possible reasons include lack of coverage of screening services by health 

insurance plans and lack of awareness of colonoscopy screening services among young people. Most 

health insurance plans, including Medicaid, start covering the colonoscopy screening services when 

people reach 50 years old. Young people may be unable to afford costly colonoscopy screening services.  

Beyond age, no other variables have statistically significant associations with late-stage diagnosis in the 

early time period. 

In the period 1998 to 2002, male patients have a higher risk of late-stage CRC (Table 11), and 

this finding is consistent with some research (Wu et al., 2001) and contradictive with others (Mandelblatt 

et al., 1996). The gender disparity in late-stage CRC at diagnosis may relate to differences in screening 

rates between men and women. Additionally, Factor 3 is also positively and significantly associated with 

the late-stage risk of CRC diagnosis, indicating that people living in Chicago suburban areas with higher 

cultural-linguistic disparity have a higher possibility to be diagnosed with late-stage CRC.     

Table 10. Coefficient Estimates for ZIP-Code level and Individual Predictors in Hierarchical 

Logistic Regression: Chicago Suburbs, 1988 to 1992 

Variables Estimates Std. Error t-value p-value Alpha 90% CI  

Lower  

90% CI 

Upper 

Intercept 0.48 0.066 7.27 9.33E-12 0.1 0.37 0.59 

Race (Black) 0.14 0.22 0.64 0.52 0.1 -0.22 0.49 

Age (<50) 0.47 0.18 2.62 0.0087 0.1 0.18 0.76 

Age  

(50 ~ 70) 0.11 0.081 1.33 0.19 0.1 -0.026 0.24 

Gender (Male) -0.050 0.077 -0.64 0.52 0.1 -0.18 0.077 

Factor 1 (SES Disadvantages) -0.061 0.066 -0.92 0.36 0.1 -0.17 0.048 

Factor 2 (Minority Disparities) -0.014 0.069 -0.200 0.84 0.1 -0.13 0.10 

Factor 3 (Cultural-Language Barriers) -0.066 0.047 -1.42 0.16 0.1 -0.14 0.010 

Shortest Travel Time 0.061 0.048 1.27 0.013 0.1 -0.018 0.14 

 

Table 11. Coefficient Estimates for ZIP-Code level and Individual Predictors in Hierarchical 

Logistic Regression: Chicago Suburbs, 1998 to 2002 

Variables Estimates Std. Error t-value p-value Alpha 90% CI  

Lower  

90% CI 

Upper 

Intercept 0.31 0.059 5.26 3.31E-07 0.1 0.21 0.41 

Race (Black) 0.015 0.11 0.13 0.89 0.1 -0.17 0.20 

Age (<50) 0.22 0.15 1.48 0.14 0.1 -0.025 0.47 

Age  

(50 ~ 70) 0.042 0.075 0.56 0.57 0.1 -0.081 0.17 

Gender (Male) 0.13 0.070 1.83 0.067 0.1 0.013 0.24 

Factor 1 (SES Disadvantages) -0.00079 0.044 -0.018 0.99 0.1 -0.072 0.071 
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Table 11. (cont.) 

Factor 2 (Minority Disparities) 0.042 0.044 0.95 0.35 0.1 -0.031 0.11 

Factor 3 (Cultural-Language Barriers) 0.072 0.043 1.68 0.093 0.1 0.0015 0.14 

Shortest Travel Time 0.0060 0.044 0.14 0.89 0.1 -0.067 0.079 

 

4.5.3. Hierarchical Logistic Model Results for Chicago City 

 In the context of Chicago city, both young- and middle-age groups demonstrate a significantly 

higher risk of being diagnosed with late-stage CRC in the time span of 1988 to 1992 (Table 12). Since  

late-stage CRC at diagnosis is a direct consequence of underutilization or inadequate cancer screening, 

people in these two age groups apparently received or accessed colonoscopy screening services less 

frequently than those in the old age group (>70 years old) in Chicago city. Another demographic factor, 

gender shows a clear disparity between men and women: men have a lower risk of late-stage CRC 

diagnosis than women in this inner-city setting. This finding is totally contradictory with the one in the 

Chicago suburb region from 1998 to 2002. None of the area-level SES or spatial factors is significantly 

associated with late-stage risk, suggesting that contextual factors had little influence in Chicago during 

the early time period. 

The effects of individual-level variables in the 1998 to 2002 model are similar. Age and gender 

are statistically significant, with younger patients having a higher risk of late-stage CRC and men a lower 

risk (Table 13). The conflicting findings for gender between two neighboring areas (Chicago city and 

suburbs) demonstrate that results are very case-sensitive. Factor 3 shows a significantly negative 

association with late-stage CRC at diagnosis, representing that people residing in Chicago ZIP codes 

characterized by a high level of cultural-language barriers are less likely than others to be diagnosed with 

late-stage CRC. This is an unexpected finding that contradicts results from the Chicago suburbs. Chicago 

city has a very large immigrant population. First-generation immigrants sometimes display the ‗healthy 

immigrant‘ effect (Schneider, 2009). Also, Chicago city contains a large concentration of economically 

disadvantaged population, and compared to that population, immigrants may be healthier. Several factors 

can possibly explain why living in immigrant areas has the opposite outcomes between Chicago city and 

suburbs. Immigrants living in inner-city areas are mainly first generation with strong healthy immigrant 

effect, while immigrants living in Chicago suburban areas may consist of second generation, acculturated 

populations whose health may have deteriorated (Blesh et al., 1999, Flood et al., 2000, Le Marchand et al., 

1997). Also, the majority population in the suburbs consists of people of moderate to high SES who are 

likely to have better access to cancer screening than immigrants in the suburbs. Furthermore, in the 

suburbs, the areas with high cultural-language barriers could be the same areas associated with 
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impoverishment and racial segregation, which needs more detailed research. It is interesting, however, 

that living in economically disadvantaged area did not emerge as a statistically significant predictor of 

late-stage risk in either the Chicago suburbs or city in either period. 

Table 12. Coefficient Estimates for ZIP-Code level and Individual Predictors in Hierarchical 

Logistic Regression: Chicago City, 1988 to 1992 

Variables Estimates Std. Error t-value p-value Alpha 90% CI  

Lower  

90% CI 

Upper 

Intercept 0.54 0.083 6.50 5.17E-08 0.1 0.40 0.68 

Race (Black) -0.076 0.15 -0.52 0.60 0.1 -0.32 0.16 

Age (<50) 0.39 0.19 2.01 0.045 0.1 0.070 0.71 

Age  

(50 ~ 70) 0.20 0.094 2.14 0.032 0.1 0.047 0.36 

Gender (Male) -0.28 0.087 -3.22 0.0010 0.1 -0.42 -0.14 

Factor 1 (SES Disadvantages) 0.063 0.080 0.79 0.43 0.1 -0.068 0.20 

Factor 2 (Minority Disparities) -0.0037 0.11 -0.030 0.97 0.1 -0.18 0.18 

Factor 3 (Cultural-Language Barriers) 0.034 0.062 0.55 0.58 0.1 -0.068 0.14 

Shortest Travel Time 0.021 0.054 0.39 0.70 0.1 -0.068 0.11 

 

Table 13. Coefficient Estimates for ZIP-Code level and Individual Predictors in Hierarchical 

Logistic Regression: Chicago City, 1998 to 2002 

Variables Estimates Std. Error t-value p-value Alpha 90% CI  

Lower  

90% CI 

Upper 

Intercept 0.49 0.081 6.01 2.40E-07 0.1 0.35 0.63 

Race (Black) 0.12 0.15 0.85 0.40 0.1 -0.12 0.37 

Age (<50) 0.34 0.190 1.80 0.072 0.1 0.029 0.65 

Age  

(50 ~ 70) 0.056 0.11 0.53 0.60 0.1 -0.12 0.23 

Gender (Male) -0.19 0.098 -1.91 0.056 0.1 -0.35 -0.026 

Factor 1 (SES Disadvantages) 0.052 0.10 0.51 0.61 0.1 -0.11 0.22 

Factor 2 (Minority Disparities) -0.21 0.14 -1.43 0.15 0.1 -0.44 0.031 

Factor 3 (Cultural-Language Barriers) -0.24 0.11 -2.27 0.023 0.1 -0.41 -0.066 

Shortest Travel Time -0.042 0.056 -0.74 0.46 0.1 -0.13 0.051 

  

5. Conclusion 

 In this study, the spatial patterns of late-stage CRC at diagnosis in Illinois were examined during 

the two periods, 1988 to 1992, and 1998 to 2002. The presence of significant spatial clusters of late-to-

early ratios in the early period represents geographical inequality of late-stage CRC diagnosis, suggesting 

inequalities in access to cancer screening services in the Chicago metropolitan area and southern Illinois. 

In the later time period, the absence of statistically significant clusters shows that spatial inequality in 

late-stage CRC diagnosis has dramatically declined across the state. This may reflect improvements in the 
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availability of CRC screening services, expansion of insurance coverage for screening, and improvements 

in education about the need for screening.   

This paper also applied hierarchical logistic regression to detect the varying impacts of social-

demographic-spatial risk determinants on the risk of late-stage CRC diagnosis in three study regions 

(Chicago city, Chicago suburb, and non-Chicago metropolitan area) during the two time spans. Among 

the individual risk factors, age was confirmed as a critical indicator of late-stage CRC diagnosis. Young-

and middle-aged groups showed a consistent trend from the analytical results in the two time periods: 

people who were in the two age categories were more likely to present with late-stage CRC diagnosis in 

the three regions during both periods, consistent with previous studies (Brawarsky et al., 2003, CDC, 

1999, CDC, 2001, Cokkinides et al., Cooper et al., 1995, 2003, Nelson et al., 1999, Wingo et al., 1998). 

The striking divergence in late-stage CRC diagnosis with age has also been observed by Mandelblatt et al., 

(1996) and they concluded that the trend is more pronounced in low SES areas. Their conclusion can 

explain the consistent disparity in risk among the young-aged group for the two periods, within Chicago 

city which has a high concentration of low SES neighborhoods. However, interaction variables of SES 

indicators at the ZIP code level and age did not show a statistically significant influence on late-stage 

diagnosis. This failure may indicate that ZIP code areas are not fine enough to show neighborhood-scale 

variation in SES. Smaller neighborhood areas that more closely represent the spaces people experience on 

a daily basis need to be applied to more accurately measure area-based SES.  

The effects of gender have been found to be highly case-sensitive in previous studies (Chen et al., 

2007, Mandelblatt et al., 1996, Ries et al., 1999). This research presents similar results with the 

contrasting impacts on late-stage CRC diagnosis in two neighboring areas, the Chicago suburbs and 

Chicago city. Some research suggests that different screening rates by age may cause the gender disparity 

(Callcut et al., 2006). However, incorporating interactions of age groups and gender in the multilevel 

logistic regressions did not provide any significant results, indicating that other unknown variables affect   

gender variation. These variables could include area-based SES at a finer scale, individual health 

insurance status, or more complicated combined effects of patients‘ individual and social behaviors. More 

detailed and localized research is a must to find the reasons for observed gender disparities. 

Although many studies have found that black race has a significant and positive relationship with 

late-stage CRC (Alexander et al., 2007, Amey et al., 1997, Doubeni et al., 2007, Du et al., 2007, Henry et 

al., 2009, Huang et al., 2007, Krieger et al., 1999, Mayberry et al., 1995, Marcella and Miller 2001; Le et 

al., 2009, Lengerich et al., 2005, Pagano et al., 2003, Palmer and Schneider, 2005), the black variable did 

not show any statistically significant relationship with late-stage CRC in this study. There are many 
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potential reasons. One traces back into the colorectal cancer dataset obtained from ISCR: Error may exist 

in the coding of racial information, and this kind of error can vary among the different regions given that 

it is highly dependent on the experiences and perceptions of doctors and the varying qualities of data 

administration in different health facilities. Since Factor 2 (Minority Disparities) which includes the 

percent of black population at the ZIP code level shows a statistically significant relationship with late-

stage CRC outside the Chicago region, the black variable may be influential at an aggregated level rather 

than individual level. Other possible reasons need to be studied in future research.           

In terms of the ZIP code level spatial risk factors, shortest travel time to the nearest hospital with 

colonoscopy screening services, exhibited a significant and positive association with late-stage CRC 

diagnosis risk in areas outside the Chicago metropolitan region for 1998 to 2002. Even though potential 

accessibility to screening has improved over time, its significant impact in the later period demonstrates 

the increasing disparity of spatial accessibility to specialized providers between the Chicago-metropolitan 

area and other parts of the state. These other areas report some of the longest travel times to colonoscopy 

services, suggesting that long travel times may present a barrier to early CRC diagnosis in rural areas.  

Many factors may confound the influence of potential accessibility, such as individual health insurance 

plans, access to transportation, and specific hospital policies. However, limited by data availability, this 

paper can only emphasize that spatial accessibility to screening services is important.  

 ZIP code level SES factors have been shown to have varying impacts on the risk of late-stage 

CRC diagnosis in the three geographic contexts. Surprisingly, Factor 1(SES Disadvantage) was not 

associated with the dependent variable in any context or time period. Factor 2 (Minority Disparities) was 

mainly related to late diagnosis outside the Chicago metropolitan area, and Factor 3 (Cultural-Language 

Barriers) had varying impacts between Chicago city and suburbs. The lack of significance for SES may 

relate to the coarse, ZIP code scale of analysis, as discussed above, or to other inadequacies in measuring 

SES variables. Furthermore, bias was introduced by interpolating from the census-tract level to ZIP-code 

scale for SES variables in 2000, and this bias may have distorted the influence of SES on the risk of late-

stage CRC diagnosis. Nonetheless, the availability of reliable SES variables for large population-based 

studies is very limited, and it is quite difficult to collect and measure SES indicators at a finer scale than 

census tract.      

In addition to demographic, SES, and healthcare accessibility factors, the risk of developing CRC 

has also been found to be highly correlated with personal behaviors, such as dietary habits (high fat intake 

and high levels of red meat consumption), physical inactivity, and the consumption of alcohol and 

tobacco (Almendingen et al., 2000, Chen et al., 1997, Giovannucci et al., 1995, Inoue et al., 2001, Terry 
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et al., 2001, Thun et al., 1992). Personal vital characteristics, such as family history of CRC, obesity, and 

diabetes also increase the risk of CRC (Ekbom et al., 1990, Fuchs et al., 1994, Gatof and Ahnen 2002, 

Winawer et al., 1996). These personal risk factors may also be correlated with the risk of being diagnosed 

with late-stage CRC (Greenwald et al., 1996, Kern et al., 1989). Without detailed, individual-level data, it 

is unclear which of these well-established variables are correlated with the risk of late-stage CRC 

diagnosis and whether they can explain the disparities related to demographic factors, SES, and healthcare 

accessibility observed in this study. Additionally, personal health insurance status directly influences the 

accessibility of primary healthcare and CRC cancer screening services (Ayanian et al., 1993, Chen et al., 

2007, Halpern et al., 2007, Halpern et al., 2008, Roetzheim et al., 1999, Palmer and Schneider, 2005). 

Inadequate transportation to primary care doctors‘ offices or colonoscopy screening facilities can also 

delay diagnosis (O‘Malley et al., 2004, Paskett et al., 2004, Rushton et al., 2004, Zenk et al., 2006). Other 

barriers such as the confusing characteristics of many modern oncology centers and poor communication 

between oncologist and patients may inhibit patients from accessing needed cancer screening services in 

time (Christie et al., 2008, Dohan and Schrag, 2005, Fowler et al., 2006). Lack of data for these and other 

relevant variables limited the statistical analysis. These omitted variables may partly explain the 

inconsistent impacts of SES and gender in neighboring areas. Collecting data for these individual- and 

areal-level variables and incorporating them in statistical models of late-stage CRC is an important 

objective for future research. Additionally, Illinois has limitations as a study area, because the Chicago 

metropolitan area includes a large number of CRC cases compared to other areas of the state. Potential 

risk factors cannot be fully investigated in the non-Chicago metropolitan area because of the small sample 

size of cancer cases. It would be useful to study other places, such as a state with a more evenly-

distributed pattern of cancer cases, to accurately investigate the risk factors of late-stage CRC in areas 

with low population density.   
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Chapter II
1
 

Analyzing Spatial Aggregation Error in Statistical Models of Late-Stage Cancer Risk: 

A Monte Carlo Simulation Approach 

 

 

1. Introduction  

Detecting and analyzing spatial aggregation error in large spatial data sets is an increasingly 

important topic in GIS and public health research (Gregorio et al., 2005, Hewko et al., 2002, Hillsman 

and Rhoda, 1978, Hodgson et al., 1997, Shi 2007). Spatial aggregation error arises because of the 

agglomeration of individual, georeferenced observations into larger spatial zones. The spatial aggregation 

process smoothes local variation, leading to errors in measurement of geographical variables. This error in 

turn affects the estimation of statistical models that incorporate spatially-aggregated variables. Spatial 

aggregation error is particularly important in cancer research, given that cancer data sets are often only 

released publicly at the ZIP code level due to privacy and confidentiality issues (Rushton et al., 2006). 

Thus, studies that use ZIP code-level data to examine the associations between geographical and 

environmental variables and cancer incidence may be adversely affected by spatial aggregation error. 

Although spatial aggregation error has been widely investigated, few studies have examined how spatial 

aggregation error affects the statistical analysis of cancer data at the ZIP code level. This study estimates 

the potential impact of spatial aggregation error on the parameter values of multilevel statistical models 

which analyze the association between spatial accessibility to mammography facilities and late-stage 

breast cancer risk. This study focuses on breast cancer based on the fact that it is the most common cancer 

among women and an important cause of cancer mortality in Illinois (Wang et al., 2010).    

This study develops a Monte Carlo simulation procedure for disaggregating cancer cases from 

larger to smaller study units in empirical simulations, and uses that procedure to examine the implications 

of spatial aggregation error for multilevel model coefficients. The context sensitivity of spatial 

                                                           
1 This paper was already published in International Journal of Health Geographics, 2010, 9:51.  

Luo L., McLafferty S., and Wang F.H. Analyzing Spatial Aggregation Error in Statistical Models of Late-Stage 

Cancer Risk: A Monte Carlo Simulation Approach. International Journal of Health Geographics, 2010, 9:51. 
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aggregation error is also examined by comparing two study areas. This paper is divided into the following 

sections: literature background; data pre-processing and analytical methodology; description and analysis 

of results; and conclusion.    

2. Background 

In many scientific disciplines, data are collected at a spatial scale appropriate to the research 

question of interest. However, in geography and public health, much data is publicly available to 

researchers for analysis in predefined areas (zones) with an arbitrary and modifiable boundary. These 

zones were not optimally designed to answer the research question, thus introducing geographical bias 

which affects subsequent statistical analyses based on such data. This is the well-known Modifiable Area 

Unit Problem (MAUP). One of the most common consequences of this problem is the ecological fallacy.  

The ecological fallacy arises when making inferences from higher to lower levels of analysis 

(Johnston, 2000). The model coefficients estimated based on aggregated data differ from those at the 

individual level, leading to errors of interpretation (Gehlke and Biehl, 1934, Openshaw and Taylor, 1979, 

Robinson, 1950, Yule and Kendall, 1950). Gehlke and Biehl (1934) found that the magnitude of the 

correlation coefficient increased with aggregation. Openshaw and Taylor (1979) demonstrated the impact 

on correlation coefficients of spatial aggregation of data from smaller to larger geographic zones. As in 

earlier work on the ecological fallacy, they found that spatial aggregation tends to increase the magnitude 

of correlation coefficients, confirming that spatial aggregation error has an impact on statistical analysis. 

Spatial aggregation error is an example of biased inference caused by the mismatch between spatial units 

and the research question of interest. It particularly occurs when a large area or a single point is employed 

to represent spatially distributed individuals (Hodgson et al., 1997).  Hillsman and Rhoda (1978) 

identified three types of the spatial aggregation error that arise when estimating a population‘s average 

distance to the nearest service facility. The three types of error are based on different geographical 

characteristics of origins and destinations and can result in under- or over-estimation of individuals‘ 

actual travel distances.   

Recently, with the rapid expansion of computational resources and GIS, spatial aggregation error 

has been studied more thoroughly. Researchers have adopted different approaches to evaluate the 

influence of spatial aggregation error in large study areas. Hewko et al., (2002) analyzed the spatial 

aggregation error associated with the measurement of neighborhood spatial accessibility (NSA). 

Neighborhood spatial accessibility describes the ease with which residents can travel to service facilities, 

and it can be approximated by the network distance from home to the closest facility. Because population 

data are typically aggregated to zones (census tracts, zip codes), distance is calculated from zonal 
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centroids to facilities resulting in spatial aggregation error. Hewko et al. (2002) compared three methods 

for estimating distance: one involves the use of unweighted (geographic centroids) while the others 

incorporate finer-scale, block-level population data thus reducing spatial aggregation error. Comparing 

the NSA values based on these three methods, the authors concluded that spatial aggregation error does 

create bias, but the impact varies with the type of centroids and the number and locations of service 

destinations. Spatial autocorrelation tests were also affected. Fortney, Rost & Warren (2000) studied the 

impact of spatial aggregation error on measures of spatial accessibility to physicians. Their results showed 

substantial differences between area centroid-based estimates of distance to physicians and distances 

calculated from individual residences, confirming that spatial aggregation error leads to significant ―errors 

in variables‖ in measuring spatial accessibility.  

Gregorio et al., (2005) studied the impact of spatial aggregation on tests of spatial clustering. 

They compared the analysis of spatial clustering of late-stage cancer in Connecticut using cancer data at 

different geographic scales – block group, census tract and town. Results showed little difference in the 

outcomes of spatial clustering tests using data at different scales. In this example, the impacts of spatial 

aggregation error were minimal, contradicting the aforementioned literature and suggesting the need for 

further analysis of the issue.    

Examining spatial aggregation error requires the use of high resolution data; however, such high 

resolution data is often not available due to privacy and confidentiality restrictions (Rushton et al., 2006). 

Although with proper approvals, some health departments do provide access to high resolution data; in 

many cases it is only possible to obtain cancer data at a low spatial resolution such as county or ZIP code. 

ZIP codes are devised by the U.S. Postal Service to facilitate mail delivery, and each ZIP code comprises 

a set of mail distribution points which can be joined to create ZIP code areas. ZIP codes vary greatly in 

geographic and population size, with an average population size of 30,000 in 2000 (Krieger et al., 2002).  

The large and variable sizes of ZIP codes, and the fact that they are not well-defined geographic zones, 

pose challenges for spatial analysis of health data. 

Using large-area data increases the risk of spatial aggregation error. Recently, some authors have 

used Monte Carlo methods to analyze spatial aggregation error by assigning data from larger to smaller 

zones based on the demographic characteristics of individual cancer cases (Henry and Boscoe, 2001, Shi, 

2007). To obtain cancer data with a high resolution and reduce spatial aggregation error, Henry and 

Boscoe (2008) used demographically-based geo-imputation to assign cancer cases from ZIP codes to 

census tracts. Cases were assigned to tracts based on their age, gender and racial characteristics, and cases 

were more likely to be assigned to tracts whose populations have similar demographic characteristics. To 
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test the geographic accuracy of the assignment, the authors obtained data on the actual residential 

locations of cancer cases. The actual census tract of residence was compared to the tract assigned via geo-

imputation. They found that the validity and reliability of the geo-imputation outcomes were dependent 

on demographic variables; that is, using race/ethnicity in geo-imputation provided a more accurate 

disaggregation than the one utilizing population only. The authors also detected that the geo-imputation 

performed differently within different census tracts. Homogeneous census tracts were more likely to have 

a low match rate than more heterogeneous ones.  

Spatial aggregation error can also arise when using hybrid data with point- and polygon-levels 

(Bonner et al., 2003, Krieger et al., 2001, McElroy et al., 2003). Some methods of analysis require a 

consistent set of geographic units, so that hybrid data require conversion of data from either point to 

polygon or vice versa. If points are aggregated to corresponding polygons, however, localized information 

from point-level data is lost (Jacquez and Waller, 1999). An alternative approach is to convert polygon 

data to point data. For example, one can assign random locations to observations within polygons, and 

repeat the process many times using Monte Carlo simulation to estimate uncertainty (Jacquez and Jacquez, 

1999). Shi (2009) devised a restricted Monte Carlo method to assign polygon-level addresses into suitable 

random point locations in investigating spatial variation in lung cancer incidence in New Hampshire. The 

method was employed to detect spatial clusters of high cancer incidence while incorporating spatial 

uncertainty associated with imprecise address locations. By quantifying uncertainty, this approach 

provides an indication of the error associated with spatial aggregation. 

Although previous studies have emphasized the importance of spatial aggregation error and 

developed methods to reduce its effects, less is known about the impacts of spatial aggregation error on 

statistical estimates of model coefficients. Two recent studies investigate this issue with respect to 

positional error – a form of geographic error-in-variables that is similar to spatial aggregation error. 

Positional error occurs when residences are placed at incorrect locations due to errors in geocoding and 

inaccuracies in street network information. Griffith et al., (2007) studied the impacts of positional error on 

spatial regression analysis by comparing analytical results using datasets with different geocoding 

accuracies. They found that positional error had a noticeable influence on parameter estimates obtained 

through spatial statistical analysis. Mazumdar et al., (2008) examined a similar question using somewhat 

different methods. They found that the observed strength of association between environmental exposure 

and disease incidence decreased as positional error increased. The implication is that it is more difficult to 

uncover the true association between environmental exposures and disease using less accurate spatial data. 

These studies suggest that geographic error-in-variables can lead to errors in statistical estimates of model 

coefficients. Spatial aggregation error results in a similar kind of error-in-variables and is likely to have 
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similar kinds of impacts on model coefficients. The only difference is that spatial aggregation error has an 

explicit spatial structure rooted in the zones to which data are aggregated. In contrast, positional error 

does not have an explicit spatial structure and can be associated with very large displacements of points 

from their true locations.   

In this paper, we examine the impact of spatial aggregation error on the coefficients of multilevel 

statistical models which analyze the associations between late-stage breast cancer, demographic variables 

and distance to mammography facilities. Using Monte Carlo simulation methods similar to those adopted 

by Henry and Boscoe (2008) and Shi (2007), we generate a large number of ‗disaggregations‘ of breast 

cancer cases from the ZIP code to the census block level. The assignment of individual breast cancer 

cases from ZIP codes to blocks is proportional to the age/racial composition of block populations as in 

Henry and Boscoe (2008). We estimate a multilevel statistical model of late-stage breast cancer risk that 

includes a spatial variable, distance to the nearest mammography facility, as a predictor of late-stage risk. 

Models are estimated at the ZIP code and census block levels, and differences between model coefficients 

at the two levels reveal the impacts of spatial aggregation error. 

3. Methods 

Two geographically and demographically diverse study areas are chosen for analysis:  Kane and 

Peoria counties in Illinois. Kane County is located in the southwest section of the Chicago Metropolitan 

area. The eastern part of this county is highly populated, while the western part is mainly farmland with a 

few residential areas. The population is predominantly Caucasian, with concentrations in the young and 

middle age groups. African-Americans make up around 6 percent of the county‘s population. Peoria 

County is located in central Illinois. Its population characteristics are similar to those of Kane County, 

except for a higher representation in the elderly age group (>65 years). Because ZIP code boundaries 

sometimes cut across county borders, all contiguous ZIP codes are included in the study areas as long as 

the ZIP code centroids fall within county boundaries. The two study areas are illustrated in Figures 20 and 

21.  
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Breast cancer cases in Illinois were obtained from the Illinois State Cancer Registry (ISCR). The 

dataset contains demographic and epidemiologic records at the individual level and each record is 

geocoded to the residential ZIP code. Variables include age group, sex, race, diagnosis stage and year. 

ISCR utilized a classification scheme parallel with SEER summary stage to measure cancer stage at 

diagnosis (Young et al., 2001). Cancer cases at stages 0 and 1 were considered as early stage, and cases 

staged from 2 to 7 were regarded as late stage (Wang et al., 2010). Cases with unknown stage were 

excluded from this study. For both study areas, female breast cancer cases from 1998 to 2002 were 

selected. The percent of cases at different stages for the two study areas is shown in Table 14.  

Table 14. Breast Cancer Cases by Stage in Kane and Peoria, 1998-2002 

Study Area # Cases Unstaged Late-Stage 

# Cases Percent 

(%) 

# Cases Percent 

(%) 

Kane 1102 65 5.90 406 39.2 

Peoria 804 38 4.73 245 32.0 

 

Figure 20. Census Blocks and ZIP 

Codes in Kane Study Area  

Figure 21. Census Blocks and ZIP 

Codes in Peoria Study Area  
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The Monte Carlo Simulation procedure involves assigning cancer cases from a ZIP code area to 

the census blocks within that ZIP code. The probability of assignment is proportional to the age-race 

composition of the block population; so, for example, a cancer case in a black woman aged 50-69 has a 

higher probability of assignment to a census block that has a large population in the same demographic 

group. To facilitate this assignment procedure, we divided cancer cases into 6 categories based on age-

race combinations. To differentiate the age categories, three age groups were used: less than 50-years old, 

between 50-and 70-years old, and more than 70-years old. Research shows that the risk of late-stage 

diagnosis varies according to age, and young patients have a higher risk of late diagnosis (Joslyn et al., 

2005). Cases also were divided into ‗black‘ and ‗non-black‘ racial categories, given that late-stage breast 

cancer risk is high among blacks (Eley et al., 1994, Hunter et al., 1993, Lannin et al., 2002, McCarthy et 

al., 1998, Yost et al., 2001). The numbers of breast cancer cases in each county in the six categories are 

listed in Table 15.  

Table 15.  Summary of Breast Cancer Cases by Demographic Subgroup, Kane and Peoria 

Kane Peoria 

Population Subset Cases Population Subset Cases 

Total Population 1037 Total Population 766 

Non-Black Non-Black 

Female <50 years  243 Female <50 years  131 

Female 50~70 years  420 Female 50~70 years  294 

Female >70 years 334 Female >70 years 276 

Black Black 

Female <50 years 17 Female <50 years  24 

Female 50~70 years 14 Female 50~70 years 30 

Female >70 years 9 Female >70 years 11 

 

 Demographic information for the year 2000 at the census-block level was obtained from the U.S. 

Census for all the census blocks in the two study areas. There were a total of 7,619 census blocks in the 

Kane study area and 5,689 in Peoria. The census block female populations were divided into the six 

subgroups described above to match the breast cancer data.    

3.1. Shortest Travel Distance Calculation  

 The spatial variable examined in this study is travel distance to the nearest mammography facility. 

Some research suggests that poor spatial accessibility to mammography screening facilities is associated 

with late-stage diagnosis. There are many ways to measure spatial accessibility, including provider-to-

population ratio, and travel impedance to nearest provider (Guagliardo, 2004). We estimated spatial 
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accessibility based on shortest travel distance --the road network distance from the ZIP code or block 

centroid to the nearest provider. Many studies have used shortest travel distance to evaluate spatial 

accessibility at neighborhood level (Athas, 2000, Chen et al., 2008, Hyndman et al., 2000, Maheswaren et 

al., 2006, Nattinger et al., 2001). Within each ZIP code, population-weighted centroids were used to better 

reflect the uneven distribution of population (SAS, 2007). Geographic centroids were used for the block-

level analysis. Data on registered mammography screening facilities in Illinois were obtained for 2000, 

and facilities were geocoded using street address information. Mobile mammography facilities do not 

operate in either county and thus were not included in the analysis. The shortest travel distance was 

computed from each centroid to its nearest mammography screening facility through the road network. 

The block-level shortest distances in the Kane and Peoria study areas are mapped in Figures 22 and 23. In 

both counties, the shortest distances do not exceed 46 kilometers, suggesting that spatial access to 

mammography is reasonably good overall.  

             

  

 

 

Figure 22. Block-level Shortest Travel 

Distance Distribution in the Kane 

County Study Area  

Figure 23. Block-level Shortest Travel 

Distance Distribution in the Peoria 

County Study Area  
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Figures 22 and 23 show that within some ZIP codes, block-level travel distances vary 

significantly which indicates the potential for spatial aggregation error. Summary statistics for the 

distance variable at the ZIP code and block levels also reveal substantial disparities, particularly for 

Peoria County (Table 16).  In Peoria County, the average and median travel distances differ by 4 and 9 

kilometers respectively for ZIP codes and blocks, whereas in Kane County, the mean and median values 

are quite similar. This suggests that the impact of spatial aggregation error will be greater in Peoria 

County where the distance measurements at the two levels are very different. 

Table 16. Summary Statistics for Travel Distance to Mammography at Block ZIP Code Levels  

 Variables(Km) Kane Study Area 

Min Max Mean Median 

Block-level Distance 0.0315 22.601 5.951 4.995 

ZIP-level Distance 0.670 13.149 5.621 4.564 

Variables(Km) Peoria Study Area 

Min Max Mean Median 

Block-level Distance 0.0527 43.255    11.902 8.027 

ZIP-level Distance 1.373 36.262 15.569 17.110 

 

3.2. Disaggregation of Breast Cancer Data Using Monte Carlo Simulation  

 The purpose of the Monte Carlo simulation is to investigate the impact of the spatial aggregation 

error by comparing ZIP code-level model coefficient estimates with a reference distribution of values 

based on small-area (block level) data. Ideally, one would want to compare the ZIP-code values with 

those based on actual patient residential locations. However, because of privacy and confidentiality issues, 

we were unable to obtain breast cancer data below the ZIP code level. Therefore, simulation was used to 

create ‗reasonably‘ distributed cancer cases at the census block level, building upon the work of Shi (2007) 

and Henry and Boscoe (2008). Each case was randomly assigned to a block within its ZIP code, and the 

likelihood of assignment depended on the age-race composition of the block population defined according 

to the six subgroups mentioned earlier.  
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To implement the Monte Carlo simulation, the block-level population in each demographic 

subgroup was accumulated and summed. The output was then normalized so that each subgroup‘s 

population ranged from 0 to 1, with intermediate values representing the cumulative share of that 

subgroup‘s population located in each block. This process was repeated for each ZIP code and each 

subgroup. Based on this data, the Monte Carlo simulation was implemented.  

The Monte Carlo simulation involved several steps. First, for each cancer case, an array of 1,000 

uniform random numbers was generated. A nested-structure of generating seeds was used to ensure the 

independence of each random number. Specifically, a series of random numbers was generated using 

system time as the generating seed. Then this series was employed as the secondary generating seed to 

produce final numbers. The end result was an ‗n‘ by 1000 matrix in which n is the number of cancer cases. 

Rows represent individual cancer cases and columns represent random numbers. Second, we used the 

random numbers to assign a case from ZIP code to a block, with each random number representing a 

simulated block assignment. Each block assignment was based on the following principle: a case was 

assigned to a census block if the block-level normalized range of values contained that specific random 

number. Hence, the assignment was not based on a uniform distribution, but was proportional to the block 

population falling in the same demographic category as the cancer case. Assignments were made 

sequentially within each column of the matrix. Third, within a specific column, once a block received a 

cancer case, the block population in that demographic category was reduced by 1, because one person 

cannot be diagnosed with cancer twice simultaneously. If a population subgroup within a block went 

down to zero, the block was taken out from the remaining candidates for subsequent assignments in the 

same demographic category. We iterated the second and third steps, disaggregating cases from ZIP codes 

to blocks, and thus generated 1,000 disaggregated patterns of cases. As a result, a final matrix was 

produced in which rows represented cancer cases and columns denoted different assignments of census 

blocks for each cancer case. The matrix was diagramed as 1,037 rows by 1,000 columns for cases in Kane, 

and 766 rows by 1,000 columns for cases in Peoria. We wrote the Monte Carlo simulation procedure 

using Javascript1.5 and used Eclipse 3.4.0 as the software interface.           

3.3. Analysis of Spatial Aggregation Error Using Hierarchical Logistic Regression  

Hierarchical (multilevel) logistic regression was utilized to evaluate the impact of spatial 

aggregation error on statistical models of late-stage breast cancer risk. We used a two-level hierarchical 

modeling approach in which individual cancer patients (level 1) are nested within either ZIP codes or 

blocks (level 2).  First, hierarchical models were estimated with the ZIP code as level 2; then, after Monte 

Carlo simulation, models were estimated at the block scale, with blocks representing level 2. The 
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dependent variable in the hierarchical regression models is late-stage diagnosis. Only a limited set of 

independent variables is included in the models so that the effects of spatial aggregation error can easily 

be observed. Individual variables include the patient‘s age and race categories, defined according to the 

categories used earlier. Race is represented by a dummy variable (BLACK) in which ‗non-black‘ is the 

reference category. Age is represented by two dummy variables (AGE<50, AGE 50-70), and the 

reference category is the oldest age group (>=70). The level 2 independent variable is shortest travel 

distance (in meters) to the closest mammography facility, measured based on ZIP code centroid for the 

ZIP code model and block centroid for the block-level disaggregations. The formulations of the 

hierarchical logistic regression are shown below: 

The micro specification (level 1) is:  

ijijjijjjij RAgeRacelatestageYobLogit  )()())((Pr 210 
                                    

 

where the βs denote the constant (intercept) and regression coefficients of the independent variables, 

i=1,…, nj denotes individuals within different ZIP code or census block areas, and j=1,…, J denotes ZIP 

code or census block areas. The Rij are micro errors with independent normal distributions, Rij ~N(0, σ
2
).  

The macro stage (level 2) model is: 

202

101

001000 )tan(













j

j

jjj UceavelDisShortestTr

                                                                            

where Us are macro errors, Uoj ~N(0, 
2

0 ) and they are independent over j and with Rij. Equations (1.1) 

and (1.2) define a hierarchical logistic model that can be written equivalently as a combined single-

equation model by substituting (1.1) – (1.2) into (2): 

jij ceavelDisShortestTrlatestageYobLogit )tan())((Pr 0100     

ijjijij RUAgeRace  02010 )()(                                                                                                                                                       

The variable most likely to be affected by spatial aggregation error is shortest travel distance, so any 

change in model coefficients between the ZIP code and block levels is mainly due to changes in 

measurement of this variable resulting from spatial aggregation. 

(1.1) 

(1.2) 

(2) 
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All models were estimated using ‗proc glimmix‘ in SAS 9.1 (SAS, 2007). Given that there are 

1,000 randomized patterns of cases at the block level, macro-level SAS syntax was used to automatically 

estimate the block-level hierarchical regression analyses. The coefficient estimates for the block level 

models were displayed as histograms and compared with the respective values for the ZIP code level 

coefficients.     

4. Results and Discussion 

The comparison of model coefficients at the ZIP code and block levels for Kane County is shown 

in Table 17 and Figure 24. The results for Kane show only a small impact of spatial aggregation error on 

model coefficients. The means of the block coefficients are very close to the corresponding ZIP code 

values except in the case of shortest travel distance. In addition, the ranges of block-level coefficients 

include the corresponding ZIP code parameters for all independent variables. The similarity of ZIP code 

and block level coefficients is also evident in Figure 5 which shows, for each independent variable, a 

histogram of the block-level coefficients and a dotted line representing the ZIP code coefficient. All of the 

ZIP code coefficients are located near the peak of their corresponding block-level histograms. Moreover, 

at both levels, the coefficient for distance indicates no statistically significant association between shortest 

travel distance to mammography and late-stage diagnosis, so the overall findings are consistent. Therefore, 

for the Kane study area, the closeness of the means and the fact that the ZIP code values fall within their 

respective block-level ranges show that spatial aggregation error does not have much influence on 

inferences made based on statistical analysis at the ZIP code level.  

Table 17.  Model Coefficients at the Block and ZIP Code Levels for Kane County 

Variables Census Block Level ZIP Code Level 

Mean 

Coefficient 

Min Max Coefficient Std 

Error 

p-value 95% Confidence 

Interval 

Age < 50  0.536 0.503 0.575 0.537 0.171 0.00175 (0.201, 0.873) 

Age 50~70 0.326 0.273 0.365 0.328 0.152 0.0307 (0.0305, 0.626) 

Black  0.396 0.332 0.468 0.391 0.326 0.230 (-0.248, 1.031) 

Shortest Travel 

Distance (m) 

5.270E-6 -4.155E-

5 

5.394E-

5 

2.620E-6 2.489E-

5 

0.916 (-4.623E-5, 

5.147E-5) 
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Figure 24. ZIP code-level Coefficient (Red, Bold line) and Histogram of Block-level Coefficients for 

Each Independent Variable, Kane County   

The findings are very different for the Peoria study area. Large differences are evident between 

ZIP code- and block- coefficients. As shown in Tables 18, each of the ZIP code-level coefficients falls 

outside the range of the respective block-level coefficients. Also, the ZIP code coefficients differ much 

more from their respective block means than was the case in the Kane study area. This is especially true 

for shortest travel distance, in which the coefficient signs for models at the two levels are different. 

Specifically, for shortest travel distance, the ZIP code-level parameter is negative and an order of 

magnitude less (in the negative direction) than the mean of the block-level values which has a positive 

sign.   
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Table 18. Model Coefficients at the Block and ZIP Code Levels for Peoria County 

Variables Census Block Level ZIP Code Level 

Mean 

Coefficient 

Min Max Coefficient Std 

Error 

p-value 95% Confidence 

Interval 

Age < 50  0.673 0.661 0.683 0.714 0.219 0.0012 (0.283, 1.145) 

Age 50~70 0.445 0.434 0.454 0.482 0.184 0.0089 (0.121, 0.842) 

Black  1.082 1.040 1.128 0.943 0.271 0.00054 (0.411, 1.475) 

Shortest  Travel 

Distance (m) 

1.419E-5 5.950E-

6 

2.250E-

5 

-3.51 E-4 2.08 E-

4 

0.091 (-7.596E-4, 

5.678E-5) 

 

 

Figure 25.  ZIP code-level Coefficient (Red, Bold line) and Histogram of Block-level Coefficients for 

Each Independent Variable, Peoria County  
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For the Peoria case, we calculated the impact of these differences in model coefficients on model 

predictions by plugging in values for a ―reference person‖ (non-black, age >70) located at distances of 0 

and 20 km from the closest mammography facility. At zero kilometers, the predicted late-stage risks are 

very similar for the ZIP code and block (average) models – 0.250 and 0.266 respectively. However, at 20 

kilometers, differences are extraordinarily large because the effects of the different distance coefficients 

are magnified. The ZIP code model gives a predicted late-stage risk of less than 1 percent, a nonsensical 

value; whereas the block (average) model yields a predicted risk of 24 percent. Thus, using the ZIP code 

model for predictive purposes does not give meaningful results. 

For Peoria County, impacts of spatial aggregation error are also apparent in the plots comparing 

model coefficients at the ZIP code and block levels (Figure 25). For each independent variable, the ZIP 

code-level coefficient falls substantially outside the range of the block-level values. For the distance 

variable, the ZIP code level parameter estimate is completely isolated from the block-level values, 

differing greatly in magnitude and with the opposite sign as noted above. This suggests that the 

association between distance and late-stage cancer risk is completely different from that observed based 

on ZIP code data. Among the remaining demographic variables, the coefficient for black race changed 

more than those for the two age variables. Coefficients for the two age variables move towards zero when 

we shift from the ZIP code to block scale, whereas the coefficient for black race increases. Block-level 

models indicate that black race is more strongly associated with late-stage breast cancer risk than was 

evident in the ZIP code-level model. Thus, spatial aggregation error affects not only the coefficient for the 

spatial variable in the model, distance to mammography, but also the coefficients for the other socio-

demographic variables, age and race, which were incorporated in the Monte Carlo simulation procedure.   

These results indicate that in some geographic contexts, spatial aggregation error results in 

significant bias in model coefficients, bias that can lead to inaccurate conclusions and inappropriate 

statistical inferences. Results for Peoria County suggest that if cancer data were available at the block 

level, the resulting model coefficients for all independent variables would most likely be quite different 

from the values observed based on ZIP code data. For the distance variable, the impact of spatial 

aggregation error is substantial enough to affect statistical inference. In particular, a significance test (one-

sided, α=0.1) indicates that the ZIP code-level coefficient for the distance variable is significantly 

different from zero, suggesting that distance to mammography is significantly and negatively associated 

with late-stage breast cancer risk. This is an unexpected finding implying that late-stage risk decreases 

with increasing distance. Yet our simulations indicate that this conclusion is most likely a spurious result 

of spatial aggregation error. The block-level coefficients are all close to zero, suggesting a lack of 

statistical association. Without address-level data, we cannot know the true association between distance 
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and late-stage breast cancer risk; however, the simulated block-level values overwhelmingly suggest no 

association. 

Although spatial aggregation error is important, the differences between the two study areas 

reveal that the influence of spatial aggregation error is highly case-sensitive. In Kane County, spatial 

aggregation has a minimal impact on model coefficients; whereas in Peoria County, the impact is 

substantial. We believe that these differences are linked to differences in the underlying spatial 

distributions of socio-demographic groups and differences in the sizes and configurations of ZIP codes 

and blocks which are superimposed on each county‘s demographic landscape. We can only speculate 

about the causes of differences observed between these two counties. Located on the fringe of the 

Chicago metropolitan region, Kane County has a higher population density than Peoria County, and 

Kane‘s population appears to be more uniformly distributed, although with an east-west gradient.  

Mammography facilities are well-distributed throughout the more populated areas of the county. In 

comparison, Peoria County contains a more bifurcated rural-urban pattern, with a single, densely 

populated city (Peoria) surrounded by low density suburban and rural zones. The few mammography 

facilities are concentrated in Peoria city. In this bifurcated landscape, disaggregation of cases to the block 

level via Monte Carlo simulation results in heterogeneous assignments that greatly influence model 

coefficients. 

Another important finding is that the statistical impacts of spatial aggregation error are not 

confined to coefficients for spatial variables. In Peoria County, coefficients for all variables are affected. 

These interconnected impacts most likely reflect the correlations between race, age and residential 

location. Residential segregation by race is a strong feature of both study areas, and it implies that the 

‗black‘ and ‗non-black‘ racial categories have distinct residential geographies at the block scale. 

Disaggregating data from ZIP codes to blocks on the basis of racially- and demographically-based 

probabilities incorporates these localized, segregated geographies. Although we used population-weighted 

centroids in calculating shortest distance to mammography, using race- and age-specific population 

centroids may be more effective in minimizing spatial aggregation error associated with residential 

segregation. Still, these more finely-tuned centroids can be problematic when racial groups are both 

segregated and unevenly distributed within ZIP code boundaries as is often the case. 

5. Conclusion 

The paper analyzed the impact of the spatial aggregation error on ZIP code level statistical 

analysis of the associations between spatial and non-spatial variables and late-stage breast cancer risk in 

two study areas in Illinois. Given the difficulties in obtaining cancer cases below the ZIP code level, we 
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designed a Monte Carlo simulation procedure to disaggregate cancer cases from ZIP codes to census 

blocks on the basis of the demographic characteristics of cancer case and block populations. Spatial 

aggregation error significantly affected the coefficients of statistical models in the Peoria study area, 

leading to inaccurate inference, whereas in Kane County the impact was minimal. The distinctive outputs 

for Kane and Peoria counties illustrate that the impacts of spatial aggregation error are context-dependent. 

Impacts appear to be most pronounced in areas like Peoria County, which have both highly uneven and 

segregated residential geographies. The spatial autocorrelation of age- and racially-categorized population 

groups by block may be important in affecting spatial aggregation error. Error also depends on the 

configuration of zones overlaying those geographies. Many studies have demonstrated that large zones 

are associated with high levels of spatial aggregation error, but clearly the residential geographies within 

the zones are also important. Other factors affecting spatial aggregation error in analyzing distance to 

health services are the number and spatial configuration of service facilities (Hewko et al., 2002). In 

general, the potential for error will be greater in places with fewer facilities and where facilities are 

spatially clustered. Compared to Peoria, Kane County has more mammography facilities, and facilities are 

more spatially dispersed, perhaps reducing the scope for spatial aggregation error. 

Given the range and complexity of factors involved in spatial aggregation error, the specific 

nature of these associations requires further investigation using a much wider range of study areas 

representing varied social and geographical characteristics. The Monte Carlo simulation procedure 

implemented here is very useful in these efforts. Moreover, analyzing how spatial aggregation error 

compares with other kinds of uncertainty such as sampling error in statistical modeling is also critically 

important. 

Our findings highlight the need to develop methods and procedures for minimizing spatial 

aggregation error in statistical models that rely on zonal health data. Monte Carlo simulation provides a 

way to generate the highly likely distribution of block-level coefficients associated with a particular 

dataset, but the method is both data- and computationally-intensive. Much simpler procedures, like using 

age- and race-specific ZIP code centroids offer a feasible, low-tech alternative, but these methods may not 

be effective in areas where the spatial distributions of population groups are highly uneven (Langford and 

Higgs, 2006). Shi and Berke (2009) discuss promising methods which utilize area-based representations 

of population. Another option is explicit modeling of aggregation effects through the use of variograms 

and other indicators of spatial autocorrelation. Promising methods have been developed for use with 

environmental and population data (Kyriakidis, 2004), and the methods have great potential value for 

health studies (Goovaerts, 2009). 
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Although we have demonstrated the importance of spatial aggregation error, our study has several 

limitations. Because we do not have access to data on actual breast cancer cases locations, we do not 

know the real extent and impact of spatial aggregation error in the two case study areas. The simulations 

delineate the likely distribution of possible coefficient values, but do not quantify the true spatial 

aggregation error. Still knowing the likely extent of error is important in signaling the need for more 

advanced methodologies that explicitly address spatial aggregation effects. Another limitation is that by 

relying on actual cancer case data we have no knowledge of, the underlying ‗true‘ risk model for late-

stage breast cancer, and we are unable to control or manipulate that model in the process of Monte Carlo 

simulation. A more experimental approach based on hypothetical data would enable researchers to assess 

the relative magnitude of spatial aggregation error compared to other sources of error in statistical models 

of cancer risk factors. Despite these limitations, this research demonstrates that spatial aggregation error 

has substantial effects in some geographic contexts on the results of statistical modeling of the association 

between cancer and spatial and non-spatial risk factors. Understanding how and why these effects vary 

stands as a key topic for future research investigations.  
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Chapter III 

The Impact of Spatial Aggregation Error on the Spatial Scan Analysis:  

A Case Study of Colorectal Cancer  

 

1. Introduction 

The choice of geographic unit plays a very important role in analyzing the uneven distribution of 

cancer cases and designing appropriate policies for disease control and prevention (Rushton, 1995). To 

protect privacy and confidentiality, cancer data obtained from surveillance systems are usually released 

only for predefined areal units, for example, counties or ZIP codes, which may have arbitrary and 

unstable characteristics. Because these predefined areas were not originally designed for cancer research, 

true patterns of cancer incidence can be distorted, producing misleading results. This problem has been 

well described as the ‗modifiable areal unit problem‘ (MAUP) (Amrhein, 1994, Openshaw and Alvandies, 

1999). One of the important components of the MAUP is spatial aggregation error, error that is caused by 

using data at an aggregated, large-area level, to generate inferences about data at lower (small-area) levels 

(Hodgson et al., 1997). Although the biases brought about by spatial aggregation error have been widely 

analyzed (Fortney et al., 2000, Hewko et al., 2002, Hillsman and Rhoda, 1978, Hodgson et al., 1997, Luo 

et al., 2010), its impacts on detection of spatial clusters of cancer cases has rarely been studied.    

In analyzing spatial clustering of cancer, many researchers have used the spatial scan statistic to 

detect cluster locations (Gregorio et al., 2002, Gregorio and Samociuk, 2003, Gregorio et al., 2004, Jemal 

et al., 2002, Kulldorff et al., 1997, Pollack et al., 2006, Rushton et al., 2004, Roche et al., 2002, Seeff et 

al., 2003, Thomas and Carlin, 2003). The spatial scan statistic is a ―local‖ spatial clustering test that 

identifies the locations and characteristics of statistically significant clusters of cases within a study area 

(Kulldorff, 1997). Studies have utilized spatial scan statistics to examine spatial disparities in cancer 

incidence and mortality (Gregorio et al., 2002, Gregorio et al., 2004, Roche et al., 2002, Kulldorff et al., 

1997, Jemal et al., 2002). Several studies have applied spatial scan statistics to identify areas with high or 

low incidence rates of breast cancer (Gregorio and Samociuk, 2003) and to detect areas with an elevated 

proportion of late-stage breast cancer cases (Roche et al., 2002). Other studies have evaluated 

geographical patterns of colorectal cancer (CRC) in California, Iowa, Minnesota and New York (Pollack 

et al., 2006, Rushton et al., 2004, Seeff et al., 2003, Thomas and Carlin, 2003). Different geographical 

units were used in these studies, such as towns, ZIP code areas, counties, census blocks and census tracts. 

Each of these study units has pros and cons. Small areal units can depict local variations more clearly than 
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larger areal units, while larger units produce more reliable and stable estimates of disease incidence or 

risk across a large region. Lacking a ‗gold standard‘, it is very difficult to select the optimum areal unit, 

and the optimum may vary from one case to another. Given these challenges, an important question is:  

How sensitive are the results of the spatial scan statistic to the choice of areal units?   

This paper aims to evaluate the influence of spatial aggregation error on one of the most widely-

used spatial scan statistics, the Bernoulli-based spatial scan statistic. The paper mainly addresses one 

question: How does spatial aggregation error affect spatial cluster detection using the well-known spatial 

scan statistic method? I examine the impact of spatial aggregation error on the ZIP code-level spatial scan 

statistic which is used to identify significant clusters of late-stage CRC cases based on cancer data at the 

ZIP code level. Following the second paper, Monte Carlo simulation methods are used to disaggregate 

cancer cases from the ZIP code level to the census tract, block group and block levels. Results of the 

spatial scan statistic are compared at each level to evaluate the sensitivity of results to the geographic 

scale of cancer data. This paper is divided into the following sections: literature background; data pre-

processing and methodology; results and discussion and conclusions.  

2. Background 

 A few studies have compared geographic outcomes in spatial analyses of cancer using cancer 

incidence data at different geographic scales (Gregorio et al., 2005, Krieger et al., 2002, Sheehan et al., 

2000). Specifically, Sheehan et al., (2000) utilized the spatial scan statistic to detect significant spatial 

clusters of late-stage breast cancer diagnoses across Massachusetts, using towns, ZIP code areas, and 

census tracts. They observed that differences exist among the three geographic levels, in terms of the 

cluster sizes and the number of cases included in each cluster. However, they found that fluctuations in 

cluster characteristics were caused by geocoding problems, and the fluctuations had little association with 

the sizes and the boundaries of study units. Krieger et al. (2002) examined all-cause and some particular 

cause-specific mortality rates, and all-cause and site-specific cancer incidence rates within block groups, 

census tracts and ZIP code regions, across Massachusetts and Rhode Island. They concluded that analyses 

by block group and census tract performed comparably, but results at the ZIP code level were 

contradictory. Gregorio et al., (2005) applied the spatial scan statistic to compare geographical variation 

in late-stage prostate and breast cancers across Connecticut, using block groups, tracts, and towns. They 

reported that the local clusters identified at each scale were similar in terms of locations, populations at 

risk and other estimated parameters (centroid coordinates, p-values, and the ratios of observed-to-

expected). Only a few differences were found in analytical results across the three study levels. All of 
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these studies began with cancer case data for the smallest areas and then aggregated the cases into larger 

areas for comparative analysis.    

 These aforementioned studies provided good strategies for comparing different spatial cancer 

clusters among areal units. Particularly, Gregorio et al., (2005) summarized all the clustering parameters 

from the spatial scan statistic results in a straightforward table for clear comparison. They used the block-

level clusters as reference points, and compared clusters at the tract and town levels to the block-level 

clusters. One metric used was the average distance between the geographic coordinates of block-level 

centroids and the ones at town and census-tract levels. Clusters comparisons were also illustrated by a 

nested-structure format which displays cluster locations, cluster sizes, and the shared sections (overlap) 

among clusters on the same map.  

 These studies have found little difference in cluster results using data at different scales ranging 

from blocks to towns, indicating that the spatial aggregation error has a minimal effect on cluster 

detection. The approach taken in these studies is to begin with data for small areas and aggregate the data 

into larger areas. In this approach, there is only one outcome at each level, and the effect of spatial 

aggregation error is exactly known. In many cases, however, researchers do not have access to data for 

small reference units, so it is important to know how much error might exist as a result of the need to 

work with data that are highly spatially aggregated. For example: how reliable are clusters detected based 

on large-area data?  How likely is it that those clusters would also be detected if small-area data were 

analyzed? According to my previous study (Luo et al., 2010), spatial aggregation error can be highly 

context-dependent. It is expected that spatial aggregation error has a larger impact on cluster detection 

when the distribution of disease cases and at-risk population vary across the study area. Therefore, this 

paper aims to enumerate possible distribution patterns of cases within ZIP code areas using a Monte Carlo 

simulation approach and to examine the effects of spatial aggregation error at different reference levels 

(census tract, block group and block).           

3. Methods 

3.1. Data and Pre-Processing 

To analyze the impact of spatial data aggregation on the results of the spatial scan statistic, data 

on CRC cases in Cook County were used. The health outcome analyzed is the binary variable, late-stage 

CRC at diagnosis. CRC is classified as ‗late-stage‘ if the tumor is large and/or the disease has spread 

beyond the initial site when first diagnosed. People diagnosed with late-stage CRC have a higher risk of 

mortality and morbidity than those whose cancer is diagnosed early. Clusters of late-stage CRC were 



 

84 
 

detected via SaTScan based on data at four geographic scales, from ZIP code to census block, and results 

are compared. 

The data were obtained from Illinois State Cancer Registry (ISCR), and include all CRC cases 

diagnosed in Illinois residents between 1998 and 2002. Records in the data set represent individual cancer 

cases, with variables including age group, sex, race, diagnosis stage, year, and ZIP code of residence. This 

study focuses on advanced-stage (late-stage) cases so that the CRC cases were divided into early-stage 

(stages 0 and 1) and late-stage (stages 2 to 7) groups. Following the second paper, examining the 

influence of spatial aggregation error involved allocating the same CRC cases to smaller geographic units. 

The Monte Carlo simulation method used in the second chapter was applied in this study to accomplish 

this. To prepare the demographic link for the disaggregation, the CRC cases were divided into 12 

categories by combinations of race by age by gender. Specifically, CRC cases were aggregated into black 

and non-black groups based on race information; the original 5-year age groups were classified into 3 

main groups (< 50 years-old, 50-70-years old, and > 70 years-old), and  gender is categorized as male and 

female. Population-level data for census areal units (tracts, block groups and blocks) in 2000 was derived 

from the Summary File 1 (SF1) data from the U.S. Census Bureau (US Census, 2000), and was 

categorized into 12 groups based on the same race-age-sex categories.  

3.2. Areal Units and Study Region  

 For comparison with the ZIP code level, three smaller geographical levels were selected as 

reference units: census tracts, census block groups, and census blocks. These areal units are hierarchically 

structured and defined by the United States Census Bureau. According to the definition from US Census 

Bureau (US Census, 2000), census tracts are ―designated to be relatively homogeneous units with respect 

to population characteristics, economic status, and living conditions‖, and average 4,000 inhabitants in 

each area. Census tracts can be subdivided into block groups and blocks, with blocks being the smallest 

areal units, and block groups intermediate in size between blocks and tracts. The census block is the 

smallest geographic unit designed by the US Census Bureau for tabulating population and housing data 

(the complete data collected from all houses) (US Census, 2000). On average, 39 blocks form a block 

group with some small variations across the country. These three census areal units make appropriate 

choices because of their well-established association with demographic information, their nested structure, 

and their relatively stable boundaries over time.    

 Cook County was chosen as the study region, mainly because the spatial relationships between 

the four geographic levels are well-defined. Cook County is the most populated area in Illinois, and the 

high population density means that the three census areal units are typically smaller than ZIP codes. Thus, 
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the spatial relation between census tracts and ZIP codes can be easily defined as ‗within‘ or ‗outside‘. 

Outside Cook County, most census tracts, and even some block groups, are comparable in size to ZIP 

code areas which mean that there is no spatial aggregation effect when comparing ZIP codes and tracts. 

Outside Cook County, one census tract or block group sometimes comprises several ZIP code areas. 

Without knowing the localized distribution of CRC cases in each ZIP code area, it would have been 

difficult to assign CRC cases from ZIP codes to the overlapping sections of different census tracts, and 

such a process would result in a different kind of spatial error. Consequently, I selected Cook County as 

the only study region, to provide clear hierarchical spatial relationships between the ZIP code level and 

smaller census area units. In addition, Cook County contains a large sample size of CRC cases: 3,608 

total cases and 2,353 falling into the late-stage category. Also, my previous work (Paper 1) shows that 

Cook County contains a spatial cluster of late-stage CRC that is close to statistically significant(α=0.10), 

making it possible to evaluate the sensitivity of cluster detection to the geographic scale of cancer data.      

3.3. Disaggregation of Cancer Cases 

 Because the cancer data is unobtainable at a level below the ZIP code scale, the Monte Carlo 

simulation approach designed in the second paper was applied here to disaggregate cancer data from the 

ZIP code level to each smaller reference unit. The most critical step in the disaggregation process was to 

define which ZIP code contains each census tract, so that tracts were not shared by neighboring ZIP codes. 

In the ISCR cancer dataset, CRC patients lived in 152 out of 161 ZIP code areas, covering most sections 

of Cook County. As the smallest reference unit, census blocks are mostly completely inside of each ZIP 

code area. If a block overlapped a ZIP code boundary, the block was treated as within a ZIP code area if 

the block centroid fell within the ZIP code. As a result, 64,231 blocks were chosen within the 152 ZIP 

code areas. Linking census block groups with ZIP codes was more complicated, because the larger size of 

a block group increases the chances of it overlapping multiple ZIP codes. Several steps were implemented 

to specify the spatial relation between ZIP codes and block groups. First, the population-weighted 

centroid of each block group was generated based on block-level population information; then each block 

group was regarded to be within a ZIP code if its population-weighted centroid was located inside of that 

ZIP code. Seven block groups were deleted on the edge of Cook County, given that each of them only 

shared a small tip with one of the 152 ZIP code areas and their population-weighted centroids were 

outside the study area. Two other block groups were merged with their neighbors, because their small 

sizes were completely within a ZIP code and they shared that ZIP code with their neighboring block 

groups. Finally, 4,260 block group were selected to comprise this reference level. Similar strategies were 

implemented to assign census tracts to ZIP codes. Only 9 of the Cook County census tracts were excluded, 

leaving 1,365 tracts.  
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 After establishing the areal units at the three reference levels, the Monte Carlo simulation 

procedure was applied to disaggregate CRC cases from the ZIP code level to each reference level. The 

demographic link between the ZIP code level and each smaller geographic level was the 12 race-age-

gender categories. Because of the intensive computation time for re-running SaTScan, the number of 

Monte Carlo simulations was set at 100. Consequently, at each reference level, the spatial scan algorithm 

was run 100 times, each time on a separate simulated CRC dataset.          

3.4. Automation of SaTScan 

 The spatial scan statistic was utilized to analyze spatial clustering patterns of high late-to-early 

CRC cancer cases at the ZIP code and the three reference levels. SaTScan was chosen over other spatial 

clustering methods like Local Indicators of Spatial Autocorrelation (LISA) and Getis-Ord G*, because it 

uses a varying scanning window and an appropriate maximum likelihood test to detect clusters accurately.  

Due to these advantages, SaTScan is widely used in cancer research. The specific spatial scan statistic 

applied in this study was the Bernoulli-based model to address the binary characteristic of late-to-early 

cancer data. The Bernoulli model has been explicitly described in Kulldorff (1997). A scanning window 

is passed over the study area. In any scanning window, the number of cases is computed within and 

outside the window. The likelihood ratio test is utilized to compare the null hypothesis of constant risk 

within and outside the window with the alternative hypothesis of non-equal risk. The outcomes of the 

maximum likelihood ratio test provide an indication of the most likely clusters. The formulation of the 

Bernoulli-based spatial scan statistic is provided below. 
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where cz is defined as the total number of late-stage CRC cases and nz the total number of CRC cases 

within a circular area (Z). Let C be the total number of late-stage CRC cases and N be the total number of 

CRC cases in the whole study area G. I denotes the indicator function (this formula only maximizes the 

likelihood function for windows where the observed probability inside the window is larger than the one 

outside the window).   

 To implement this procedure, SaTScan uses a coordinate file (the geocoded addresses) to assign 

each case (a late-stage CRC case) and each control (an early-stage CRC case) into the study area. Then it 

generates numerous (over 100,000) circular windows, whose centroids are the coordinates of cases, across 

the whole study area. The radii of these circular windows vary from the smallest observed distance 

between a pair of cases to a user-defined threshold (Waller and Gotway, 2004). I set the threshold as the 
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radius containing up to 33% of the entire population of the study area. In each circle, the ratio of late-

stage compared to early-stage CRC cases is evaluated and compared with that in the rest of study area. 

The likelihood ratio statistic is applied to test the null hypothesis of constant risk versus the alternative 

hypothesis that the late-stage rate within the scanning window is greater than that outside the window. 

The whole study region is scanned to identify the areas where a significantly higher late-to-early ratio 

exists based on the observed results of the maximum likelihood ratio statistic. The corresponding 

parameters of these clusters are calculated, such as the radius of window, population at risk inside the 

cluster, cases in cluster, the observed-to-expected ratio, and cluster area. The statistical significance of 

clusters was tested by Monte Carlo simulation with 999 replications. The Bernoulli-based spatial scan 

statistic normally generates a number of spatial clusters with different p-values. This study focused on 

primary, statistically significant clusters which had the smallest p-values.           

SaTScan is a widely-used software designed to implement the spatial scan statistic. It is freely-

accessible and has a straightforward graphical user interface (GUI) (Kulldorff and Information 

Management Services Inc., 2005). The main components needed to run spatial scan statistics in SaTScan 

are the input files (containing case file, control file/population file, and coordinate file/grid file), and the 

parameter file which includes the input interface (specifying input files), analysis interface (containing 

options for different spatial scan statistics and related parameter settings) and output interface (consisting 

of options for outputting the results). In this study, the input file section includes the case file (late-stage 

CRC cases), control file (early-stage CRC cases), and coordinate file (the geographical coordinates of all 

CRC cases). The analysis interface sets up the settings for the Bernoulli-based spatial scan statistic model, 

and the output interface specifies two destination files that contain cluster statistics and location 

information. 

For a single run of SaTScan, the procedure is quite simple involving menu-driven data input and 

setting of parameters. However, using SaTScan repeatedly on different data sets is more difficult: input 

files in SaTScan are independent and they require separate importing steps. Moreover, the destination 

files require a non-duplicated name in each run. In comparing geographic clusters of cancer using data for 

different areal units, SaTScan needs to be run multiple times. Normally, when running SaTScan multiple 

times, the majority of options in the parameter files remain the same, and only the input and destination 

files change. Inputting different data sets and specifying unique destination files in every run are 

cumbersome tasks in running SaTScan repeatedly through its GUI. The situation is exacerbated if we 

need to run SaTScan hundreds of times. Thus it is very important to make SaTScan run automatically, 

especially for the steps related to importing input files and naming destination files. However, information 

and literature on auto-running SaTScan is extremely scarce. The developer of SaTScan (Kulldorff and 
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Information Management Services Inc., 2005) only provides ―Batch File‖ mode to implement SaTScan 

automatically, after users manually set up input and parameter files for each run. Abrams and Kleinman 

(2007) designed the SaTScan Macro Accessory for Cartography (SMAC) package, comprising four SAS 

macros, to fully automate SaTScan. Nevertheless, SMAC is only available for the Poisson-based spatial 

scan statistic. Additionally, the macro-syntaxes in SAS are lengthy and complicated, so that it is quite 

challenging for users to customize or apply the SMAC package, especially for those who are not familiar 

with macro-level programming in SAS. Therefore, a need exists to automate the whole SaTScan 

procedure, and it needs to be fulfilled in a cost-effective and efficient way. For this research, a new and 

much simpler strategy was created by the author to automate the generation of input-and parameter-files, 

as described below. 

The three input files (case, control, and coordinate) were all tab-formatted text files with 

respective extensions and formats. Among them, the case file with extension ‗cas‘, contained two 

columns: one was location id that worked as a geographic link between case file and coordinate file; 

another column described individual late-stage cases, with 1 representing late-stage and 0 early-stage. 

Similar to the case file, the control file with extension as ‗ctl‘, included the id column and another column 

for early-stage cases in which an early-stage case was presented as 1 and a late-stage case was coded by 0. 

The coordinate file consisted of three columns: location id, and x- and y-coordinates to provide 

geographic information for each case and control, as well as the extension name ‗geo‘. The simple 

structures of the case, control and coordinate files inspired the author to auto-generate these input files by 

macro-level programming in SAS. In each disaggregation outcome, the location id, late-and early-stage 

cases were stored as separate columns at each reference level. Among these attributes, the location id is 

the key link to obtain the x-y coordinates from the coordinate files. Therefore, the whole process in SAS 

was separated into 4 sequential steps: (1) import the disaggregated files and the coordinate file into SAS; 

(2) merge each imported disaggregated file with the coordinate file, to ensure that every location id in 

each disaggregated file has x-y coordinates; (3) create the four input files from each disaggregated file, 

and re-order the variables in each input file to meet the requirements of SaTScan input files; (4) export 

input files in text format with particular extensions for SaTScan usage. Given that the process in SAS 

only utilizes basic data-step syntaxes, the macro-level program is cost-effective (syntaxes only around 

100 lines), efficient, and has the flexibility to be adjusted for generating input files for different spatial 

scan models. The detailed Macro-level SAS syntaxes are presented in Appendix A.   

As discussed earlier, when SaTScan runs the same spatial scan statistic model repeatedly, the 

parameter settings remain the same, except for importing and exporting different input-and destination-

files. Given the consistency in the parameter file, Java programming was used to automatically produce 
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different parameter files by changing names of input-and output-files at each reference level. To make 

this step efficient, the names of input files were varied by consecutive numbers. The names of each 

parameter file included a constant part plus the consecutive number. Therefore, for every SaTScan run at 

each reference level, the Java program only needed to set a loop to automatically change the number in 

the names of input- and destination-files in each parameter file. Afterwards, each parameter file with 

extension ‗prm‘ was exported for each SaTScan implementation. The programming details in Java are 

listed in Appendix B. After the two automatic steps of generating input-and parameter-files, the Batch-

mode in SaTScan was applied to auto-run the Bernoulli-based spatial scan statistic at the three reference 

levels.  

3.5. Analyzing SaTScan Outcomes   

 To compare SaTScan outcomes at different geographic scales, the locations, sizes and other 

characteristics of statistically significant spatial clusters were compared. SaTScan outcomes included the 

primary cluster at the ZIP code level, and the 100 primary clusters at census tract, census block group and 

census block levels. However, many of the primary clusters did not achieve statistical significance (p-

value<0.1).  Only the statistically significant clusters at each level were compared with the ZIP code-level 

primary cluster. The primary clusters with statistical significance at each reference level were displayed 

on a map with the ZIP code-level cluster to show the geographic similarity or difference between the 

results at the two levels. Additionally, the parameters of the statistically significant clusters at each 

reference level were compared with those at the ZIP code level. The geographical and statistical 

comparisons between ZIP code level and reference levels reveal the impact of spatial aggregation error on 

the Bernoulli-based spatial scan statistic results. 

4. Results and Discussion 

Overall more than half of CRC cases in Cook County in 1998-2002 were diagnosed at a late-stage. 

The late-stage percentage varies among age, gender, and race groups. Generally, the ratio of late-stage to 

early-stage cases is 1.5 and 2 in each demographic category (Table 19). The most dramatic excess of late-

stage CRC cases compared to early-stage happens in the youngest group. Specifically, the number of late-

stage cases is 200% higher than early-stage cases among Black females <50 years old and 225% for 

Black males < 50 years old. In the Non-Black group, for females < 50 years old, the percent of late-stage 

cases is more than double that of early-stage cases – 75.23% compared with 24.77% – and the respective 

percentages are 69.49% and 30.51% in the corresponding male group. The largest numbers of early-and 

late-stage CRC cases are observed in the oldest age group for every race/gender group.  



 

90 
 

Table 19. Demographic and Epidemiological Summary of Colorectal Cancer Cases in Cook County 

from 1998 to 2002 

Early-Staged Black Late-Staged Black Early-Staged Non-Black Late-Staged Non-Black 

Female < 50 6 (25%) Female < 50 18 

(75.00%) 

Female < 50 27 

(24.77%) 

Female < 50 82 

(75.23%) 

Female 50 ~ 

70 

23 

(31.94%) 

Female 50 ~ 

70 

49 

(68.06%) 

Female 50 ~ 

70 

163 

(36.14%) 

Female 50 ~ 

70 

288 

(63.86%) 

Female > 70 45 

(34.09%) 

Female > 70 87 

(65.91%) 

Female > 70 349 

(33.85%) 

Female > 70 682 

(66.15%) 

Male < 50 4 

(23.53%) 

Male < 50 13 

(76.47%) 

Male < 50 36 

(30.51%) 

Male < 50 82 

(69.49%) 

Male 50 ~ 

70 

39 

(38.61%) 

Male 50 ~ 

70 

62 

(61.39%) 

Male 50 ~ 

70 

212 

(36.74%) 

Male 50 ~ 

70 

365 

(63.26%) 

Male > 70 20 

(28.57%) 

Male > 70 50 

(71.43%) 

Male > 70 317 

(36.02%) 

Male > 70 563 

(63.98%) 

 

 Running SaTScan at the ZIP code level identifies one primary cluster. This cluster occurs in the 

northwestern section of Cook County, covering the northwestern edge of Chicago city. The radius of the 

cluster is approximately 6 km, and the cluster covers almost 113 km
2
 area. The number of late-stage cases 

in this cluster is 288, and the relative-risk is 1.141, indicating that CRC patients living in the cluster are 

approximately 14 percent more likely to be diagnosed with late-stage CRC than those residing outside the 

zone. In terms of p-value (0.119), the ZIP code-level cluster is not statistically significant according to 

standard significance levels. However, ZIP codes may be oversized areal units for studying the local 

patterns of late-stage CRC, and one might suspect that the ZIP code analysis will miss some significant 

clusters that would be detected based on small-area data. The ZIP code cluster is used as a benchmark for 

comparison: the clusters with statistically significant p-values at each reference level were selected to 

compare with the ZIP code cluster. This comparison suggests the validity of ZIP code-level cluster, and 

the types of clusters it might miss. These comparisons are discussed in the following sections.   

At the census tract level, 14 of 100 simulations resulted in statistically significant spatial clusters 

containing significantly high ratios of late-to-early stage CRC cases. Table 20 displays characteristics of 

these clusters, including centroid coordinates, the radius and covering area of circular windows, numbers 

of observed late-stage cases within each cluster, the ratio of observed-to-expected cases, p-values, relative 

risks, the distance from the ZIP code-level centroid, and the percent of ZIP code cluster area that overlaps 

with the tract cluster. This table also lists the ZIP code-level parameters in the last row for comparison. 

Compared to the ZIP code cluster, the significant census tract clusters all have higher relative-risks and 

ratios of observed-to-expected cases. This localized clustering indicates that in a highly populated region, 

spatial clusters of CRC cases are more likely to be detected using data for smaller areal units than at the 
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ZIP code scale. Nine census-tract level clusters overlap the ZIP code cluster, and the overlap percentages 

vary from 2.74% to 100.0%.  

 The census tract clusters are shown in Figures 26 and 27. Census tract clusters are illustrated as 

hollow circles with purple borders in Figure 26, and the ZIP code cluster is displayed as a green circle. 

The centroids of each cluster are mapped in Figure 27. In Figure 1, two clusters (12 and 13
 
in Table 20) at 

the census-tract level have very similar covering areas as the one at the ZIP code level, and the 12
th
 cluster 

can almost be treated as a replica of the ZIP code-level one except for a small curved area outside of the 

ZIP code cluster zone. The 13
th
 cluster includes more area than the ZIP code one, including a crescent-

shaped buffer surrounding the ZIP code cluster. The 6
th
 cluster also highly overlaps the ZIP code cluster, 

covering 76.52% of its area. At the southeastern edge of the ZIP code cluster, four census tract clusters 

are completely within the ZIP code cluster, and another cluster mainly falls into the ZIP code cluster 

except for a small tip outside.  

 On the other hand, five clusters at the census-tract level are completely outside the ZIP code-level 

cluster: one is close to the northern border of Cook County, two are southeast of the ZIP code-level 

cluster, and other two are located at the southern border of Chicago city. However, these clusters are 

small and the numbers of observed cases within these clusters are no larger than 35. Figure 27 also shows 

the location of each tract cluster centroid in relation to the one at the ZIP code level. The centroid of the 

12
th
 cluster is almost identical to the ZIP code one. The centroids of eight other clusters also closely 

surround the ZIP code centroid, with distances ranging from 0.92 km to 6.7 km (Table 20). On the other 

hand, four clusters have centroids located more than 10 km from the ZIP code cluster centroid. In 

summary, generally the tract-level clusters correspond quite well geographically to the ZIP code cluster, 

although the ZIP code cluster fails to represent some smaller, distant clusters that are detected with tract-

level data. 

Table 20. Results of Bernoulli-based Spatial Scan Statistic at ZIP Code and Census Tract Levels 

Cluster Centroid 

Coordinates 

Radius 

(km) 

Area(km
2
) Cases 

in 

Cluster 

O/E p-

value  

Relative-

Risk 

Distance

(km) 

Overlap Area 

(% of ZIP code 

level cluster) 

1 39.773; -85.044 1.326 5.523 23 1.530 0.0420 1.535 10.827 0.00 

2 39.734; -84.990 1.223 13.396 26 1.530 0.0170 1.536 4.617 4.89 

3 39.809; -85.252 2.065 5.523 23 1.530 0.0550 1.535 27.681 0.00 

4 39.708; -85.252 0.984 3.041 21 1.530 0.0900 1.535 5.269 2.47 

5 39.697; -85.023 3.719 43.450 126 1.228 0.0949 1.241 3.448 33.12 

6 39.703; -84.955 5.274 87.381 204 1.178 0.0874 1.195 0.922 76.52 

7 39.798; -85.327 1.834 10.566 23 1.530 0.0590 1.535 33.137 0.00 

8 39.781; -85.052 1.012 3.217 35 1.488 0.0116 1.495 11.982 0.00 

9 39.731; -85.028 3.842 46.371 144 1.231 0.0290 1.246 6.706 13.26 
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Table 20. (cont.) 

10 39.586; -84.808 2.009 12.679 21 1.530 0.0900 1.535 18.266 0.00 

11 39.712; -85.008 1.472 6.806 57 1.363 0.0658 1.372 4.193 6.03 

12 39.699; -84.965 6.248 122.637 278 1.150 0.0900 1.170 0.218 100.00 

13 39.703; -84.955 7.249 165.081 336 1.137 0.0648 1.160 0.922 100.00 

14 39.704; -85.002 0.993 3.097 22 1.530 0.0698 1.535 3.455 2.74 

ZIP 

Code 

Level 

39.698; -84.963 5.994 112.878 288 1.124 0.119 1.141   

 

     

  

 

 

The block group-level spatial scan statistic generated 18 clusters with significantly high late-to-

early ratios, more than were found at either of the other two levels (Table 21). Similar to the clusters at 

the census-tract level, these block-group clusters present higher ratios of observed-to-expected cases and 

larger relative risks than the one at the ZIP code level. Block group clusters tend to be smaller than those 

at the tract and ZIP code levels. Only one block group level cluster overlaps greatly (85.24% overlap area) 

with the ZIP code cluster. Nine other clusters overlap with small sections of the ZIP code cluster: overlap 

Figure 26. The Distribution of Clusters at 

Census Tract and ZIP Code Levels in 

Cook County 

Figure 27. The Distribution of Cluster 

Centroids at Census Tract and ZIP Code 

Levels in Cook County 
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percentages range from 2.31% to 14.52% of the ZIP code cluster area. The number of block-group level 

clusters that are completely outside the ZIP code clustering zone is eight, compared with only five at the 

census-tract level. These ‗outside‘ clusters appear to have larger radii and cover more area than the 

‗outside‘ ones at the census tract level. Furthermore, the p-values at block-group level are generally 

smaller than the ones at census-tract level, indicating that this smaller area level is capable of detecting 

more distinctive patterns of late-stage CRC clustering.  

 Figure 28 describes the spatial distribution of block-group level clusters, illustrated by hollow 

circles with yellow boundaries. Similar to the census-tract results, the block-group level clusters that 

overlap with the ZIP code cluster are often located along the southern part of the ZIP code cluster, 

indicating a tendency for clusters to be focused in this area. Among the ten clusters that overlap with the 

ZIP code cluster, only two clusters (highlighted by blue boundary) lie completely inside, respectively 

occupying 14.52% and 6.24% of the ZIP code cluster area. Among ‗outside‘ clusters, several appear 

southeast of the ZIP code cluster, in locations similar to those detected with census tract data. The other 

‗outside‘ clusters are also located in areas similar to clusters at the census-tract level. One appears in the 

northern part of Cook County and two others around the southern border of Chicago city. Furthermore, 

their radii and covering areas are generally larger than those for the corresponding clusters at the census 

tract level. These ‗outside‘ clusters reveal that using data at the block group level enhances the possibility 

of detecting late-stage CRC clusters outside the dominant clustering area compared to using data at the 

tract or ZIP code levels. Examining block group cluster centroid locations in Figure 29, shows a 

concentration of centroids near the ZIP code centroid and along the southeastern edge of the ZIP code 

cluster – a pattern similar to that observed based on tract-level data. Fourteen of the eighteen block group 

cluster centroids lie within the 11km buffering zone of the ZIP code-level centroid, indicating a relatively 

good geographic correspondence between clusters at both levels. However, four cluster centroids fall far 

outside, with centroid distances ranging from 17 to 37 kilometers (Table 21). The maximum value of the 

block group-level distances to the ZIP code centroid is 37 km, compared with 33 km at census tract level.    

Table 21. Results of Bernoulli-based Spatial Scan Statistic at ZIP Code and Block Group Levels 

Cluster Centroid 

Coordinates 

Radius 

(km) 

Area(km
2
) Cases in 

Cluster 

   

O/E 

p-

value  

Relative-

Risk 

Distance 

(km) 

Overlap Area 

(% of ZIP 

code level 

cluster) 

1 39.675; -84.989 2.284 16.388 25 1.530 0.0440 1.536 3.393 14.52 

2 39.717; -85.017 1.151 4.162 25 1.530 0.0480 1.536 5.183 3.32 

3 39.712; -85.008 1.498 7.049 40 1.493 0.00343 1.501 4.193 6.24 

4 39.742; -85.049 2.490 19.477 47 1.410 0.0694 1.419 8.826 0.00 

5 39.811;-85.204 1.368 5.879 24 1.530 0.0634 1.536 23.764 0.00 

6 39.712; -85.017 1.615 8.193 46 1.408 0.0679 1.416 4.864 6.49 
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Table 21. (cont.) 

7 39.713; -85.021 0.949 2.829 25 1.530 0.0530 1.536 5.288 2.31 

8 39.695; -84.973 5.733 103.253 244 1.178 0.0410 1.198 0.976 85.24 

9 39.611; -84.799 3.101 30.209 26 1.530 0.0390 1.536 17.086 0.00 

10 39.723; -85.025 2.034 12.996 59 1.368 0.0513 1.378 6.056 5.12 

11 39.729; -85.040 3.349 7.942 107 1.289 0.0190 1.303 7.451 6.09 

12 39.774; -85.042 1.590 3.684 27 1.530 0.0240 1.536 10.804 0.00 

13 39.782; -85.045 1.082 15.329 31 1.483 0.0714 1.489 11.677 0.00 

14 39.878; -85.291 2.209 18.064 25 1.530 0.0470 1.536 34.514 0.00 

15 39.723; -85.040 2.398 68.895 54 1.378 0.0890 1.386 7.197 2.73 

16 39.721; -85.013 1.448 6.559 32 1.484 0.0543 1.490 4.976 5.21 

17 39.837; -85.358 4.683 14.065 92 1.291 0.0826 1.303 37.271 0.00 

18 39.775; -85.042 2.116 35.234 48 1.412 0.0490 1.421 10.968 0.00 

ZIP 

Code 

Level 

39.698; -84.963 5.994 112.878 288 1.124 0.119 1.141   

 

   

  

 

 

Figure 28. The Distribution of Clusters at 

Census Block Group and ZIP Code Levels 

in Cook County 

Figure 29. The Distribution of Cluster 

Centroid at Census Block Group and ZIP 

Code Levels in Cook County 
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Fifteen clusters have significantly high late-to-early ratios based on block-level data. These 

clusters tend to be smaller in size than those at the tract or block group level (Table 22): their radii and 

covering areas are generally smaller than the ones at census tract and block group levels. As the smallest 

reference unit, blocks provide the most localized detail about the spatial clustering patterns of late-stage 

CRC cases. The majority of block-level clusters present high ratios of observed-to-expected late-stage 

cases and relative risks, indicating that more localized variation in late-stage CRC cases can be detected 

using data for the smallest reference unit. Numbers of observed cases in each block-level cluster are 

generally less than those in clusters at other levels, so the block data uncover small, localized clusters of 

late-stage CRC. The percentages of ZIP code cluster area that overlap with the block-level clusters are 

much less than the ones for clusters at the other two scales, because of the small sizes of block-level 

clusters.  

 Figure 30 displays the clusters with statistically significant p-values at the block level as hollow 

circles with red boundaries. These clusters clearly reveal concentrations of high late-to-early ratios around 

the eastern and southeastern sections of the ZIP code-level cluster. Three clusters (highlighted by blue 

boundary) completely fall inside the ZIP code-level cluster, respectively covering 15.66%, 7.35%, and 

5.22% of the ZIP code-level cluster area. Five clusters at the block level are located completely outside 

the ZIP code-level cluster: four are located southeast of the ZIP code-level cluster, and another one is 

placed in the southern part of Cook County. Clusters in the northern part of Cook County and around the 

southwestern border of Chicago city that emerged in the tract and block group analyses do not appear in 

the block-level analysis. The reason may be that the simulated cancer cases at the block level are more 

evenly distributed than those at the tract and block group levels, resulting in less tendency towards 

clustering. Of course, the Monte Carlo simulation involves a random assignment procedure in which the 

spatial disaggregation of cases within ZIP codes is only based on demographic information and is 

otherwise spatially random. In areas with few CRC cases, disaggregation of cases to the block level may 

result in more dispersed geographic patterns. 

  In terms of distances between centroids, only the cluster located in the southern part of Chicago 

city presents a relative long distance, 34 km (Figure 31). Centroids of the three ‗inside‘ clusters are 

located near the ZIP code centroid, with centroid distance of 4.1 km or less. The other clusters have 

distances varying from 3.3 km to 12.4 km. Compared to the clusters at census-tract and block-group 

levels, the block-level clusters reveal more detailed spatial aggregations of late-stage CRC cases in areas 

containing large numbers of late-stage CRC cases. However, in regions with fewer late-stage CRC cases, 

such as the northern part of Cook County and southeastern section of Chicago city, the block level failed 

to identify clusters with significantly high ratios.  
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Table 22. Results of Bernoulli-based Spatial Scan Statistic at ZIP Code and Census Block Levels 

Cluster Centroid 

Coordinates 

Radius 

(km) 

Area(km
2
) Cases in 

Cluster 

O/E p-value  Relative-

Risk 

Distanc

e 

(km) 

Overlap 

Area (% of 

ZIP code 

level 

cluster) 

1 39.722; -85.021  1.646 8.511 42 1.428 0.0898 1.436 5.644 4.57 

2 39.785; -85.053 1.970 12.191 45 1.434 0.0390 1.443 12.382 0.00 

3 39.786; -85.040 1.205 4.561 33 1.530 0.00311 1.538 11.823 0.00 

4 39.733; -84.972 2.378 17.764 71 1.341 0.0524 1.352 3.971 15.08 

5 39.774; -85.046 1.671 8.771 33 1.485 0.0714 1.492 11.080 0.00 

6 39.724; -85.018 1.271 5.075 27 1.530 0.0420 1.536 5.546 3.15 

7 39.872; -85.290 1.854 10.798 24 1.530 0.0849 1.536 34.111 0.00 

8 39.673; -84.981 2.371 17.65 24 1.530 0.0867 1.536 3.160 15.66 

9 39.693; -84.954 1.625 8.295 25 1.530 0.0612 1.536 0.968 7.35 

10 39.721; -85.018 2.435 18.626 81 1.319 0.0669 1.330 5.403 10.07 

11 39.772; -85.050 1.451 6.614 27 1.530 0.0400 1.536 11.155 0.00 

12 39.672; -84.983 2.788 24.418 25 1.530 0.0545 1.536 3.387 21.35 

13 39.662; -84.978 3.284 33.880 28 1.530 0.0220 1.536 4.163 23.76 

14 39.668; -84.966 2.979 27.879 26 1.530 0.0380 1.536 3.324 24.04 

15 39.716; -85.005 1.370 5.896 31 1.530 0.00680 1.537 4.098 5.22 

ZIP 

Code 

Level 

39.698; -84.963 5.994 112.878 288 1.124 0.119 1.141   

 

   

 

Figure 30. The Distribution of Clusters at 

Census Block and ZIP Code Levels in 

Cook County 

Figure 31. The Distribution of Cluster 

Centroids at Census Block and ZIP Code 

Levels in Cook County 
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Comparing the ZIP code-level cluster with the clusters at the three reference levels indicates 

strengths and weaknesses of using the ZIP code level as the study unit. Specifically, the Bernoulli-based 

spatial scan statistic at the ZIP code level can detect clusters in areas with large concentrations of cases. 

However, even in these concentrated settings, the ZIP code cluster is at the global-level, which means it 

gives general clustering information without much local detail. In other areas with fewer CRC cases, the 

ZIP code level is too large to detect ‗local-level‘ clusters. Thus, spatial aggregation error may have more 

influence in areas where the sample size is small, compared to areas with many cases.      

5. Conclusion 

 This study compared the results of the Bernoulli-based spatial scan statistic at the ZIP code level 

with the outcomes at three reference census units (census tract, census block group, and census block) to 

examine if reliable and accurate spatial analysis results can be generated using ZIP code-level data.  

 Lacking actual data on patient locations by census tract, block group and block, a Monte Carlo 

simulation procedure was used to disaggregate cancer cases from the ZIP code level to smaller census 

geographic units. Thus, the research focused on possible geographic patterns of CRC cases that conform 

to the demographic and geographic characteristics of cases at the ZIP code level. The number of 

simulated results was 100 at each reference level, and every result was tested for spatial clustering using 

the Bernoulli-based spatial scan statistic in SaTScan. Because the steps of importing input files and 

providing non-duplicated output names in each SaTScan run were tedious and time-consuming to perform 

manually, I designed a cost-effective procedure to automate the running of SaTScan. This procedure 

mainly consisted of a Macro-level SAS program to automatically generate input files and a Java program 

to automate the parameter file generation. Compared with the SMAC package created by Abrams and 

Kleinman (2007), my procedure is simpler, more efficient and highly adaptive to other spatial scan 

statistics in SaTScan, because it only comprises two small programs and there is no need to build the 

major part of a parameter file.  

Comparing geographic clusters with statistically significant p-values at each reference level with 

the ZIP code cluster yielded several innovative results. One important observation was that only a small 

number (14 – 18) of the simulated data patterns at each reference unit produced statistically significant 

clusters. Thus, the fact that the ZIP code-level cluster had a p-value of 0.12 seems appropriate, given that 

80-85% of the clusters generated based on simulated data at each reference level were not statistically 

significant.  



 

98 
 

The spatial scan statistic at the ZIP code level did well at identifying a primary cluster in an area 

with a high density of cases. However, the spatial scan analysis at this level lost the power to detect more 

localized clusters. In some instances, the simulated datasets contained statistically significant clusters 

located in areas with smaller numbers of late-stage cases. Even in the areas with a large sample size of 

cases, using ZIP code level data fails to detect statistically significant clusters that appear at the census 

tract, block group and block levels. At these levels, clusters often were detected along an axis extending 

southeast of the ZIP code level cluster. Some of these clusters partially overlapped with the ZIP code 

cluster, while others did not.  

In areas containing fewer CRC cases, utilizing ZIP code level data misses statistically significant 

clusters that are detected based on small-area data. Clusters located near the northern border of Cook 

County and southern border of Chicago city could not be detected at the ZIP code level. At the block level, 

simulated data contained significant clusters located in the eastern, western, southeastern parts of the ZIP 

code-level cluster and some surrounding areas. Although some of these clusters overlapped the ZIP code 

cluster, others were more geographically distinct. Thus, the spatial scan statistic at the ZIP code scale can 

produce reliable and stable ‗global-level‘ results, however it has difficulty in identifying clusters at a 

smaller and more localized level. If cancer data for small areas is not available, applying the spatial scan 

statistic at the ZIP code level can detect the dominant cluster(s) in areas where the sample size is large.   

 Additionally, the influence of spatial aggregation error on the spatial scan analysis may vary 

across the study area, depending on the densities of cases within different local areas. The influence is 

typically greater in areas with a low density of cases, where the combination of low statistical power and 

spatial aggregation of cases makes it difficult to detect localized clusters. Although utilizing ZIP code-

level data made it possible to detect a stable and large cluster in Cook County, the ZIP code-level spatial 

scan analysis was less appropriate for detecting clusters in areas with a lower density of CRC cases. Thus, 

to detect spatial clusters using the spatial scan statistic, a trade-off strategy needs to be applied in selecting 

the study unit. In areas with large numbers of cases, using the smallest unit, such as census block, can 

reveal localized clusters in great detail. However, in areas with fewer cases, using a ‗middle-size‘ study 

level which can contain enough sample size of cases without oversized concern, such as census tract or 

census block-group, the clustering patterns can be identified better than using the smallest areal unit. Thus, 

the optimum study size of the spatial scan statistic needs to be varied based on the distribution of cases in 

different regions across the whole study area.       

 Given that the resulting quality of spatial scan statistic highly depends on the spatial displacement 

and density of cases in a specific area, using a uniform policy to release cancer data for research in 



 

99 
 

different study areas is not very appropriate. In areas with high density of cases, cancer data can be 

released at a smaller areal unit without violating the privacy issue. In areas including fewer cases, cancer 

data can be published for medium-sized areal units in order to detect significant clusters as well as 

conform to confidentiality regulations.   

Several limitations and drawbacks need to be pointed out in this study. The distributions of CRC 

cases at the three reference levels were computed by simulation, and they do not represent actual CRC 

case locations. This study also constrained the study unit to Cook County, a highly-populated and 

urbanized area, and the corresponding results may not be applicable to suburban or rural areas. The edge 

effect may add some bias to the results of the spatial scan statistics at all levels of analysis, especially in 

locations along the boundary of the study area. The findings also may be limited by errors in assigning 

tracts, block groups and block to their respective ZIP code areas. Additionally, the number of simulated 

datasets at each reference level was constrained as 100, given the very long processing time of each run in 

SaTScan. The simulated data patterns may not capture all the possible distributions of cancer cases at 

each reference level and bring potential bias with the inadequate possibilities. With the rapid development 

of super computing, speeding up the application of SaTScan in the super computing environment may 

become a reality in the near future. Then the number of simulated datasets can be increased to include 

large numbers of distribution possibilities to provide a much more unbiased analysis.      

The main tasks for future research are to overcome data limitations and design more appropriate 

spatial relationships in the disaggregation method to deal with the problem of multiple ZIP code areas 

overlapping a single census tract/block group area. Introducing ZIP code tabulation areas (ZCTAs) may 

be a good idea in terms of using their internal populations to compute the weights for assigning cancer 

cases from one ZIP code area to its shared multiple census tracts (US Census Bureau, 2001). In future 

research, it is also important to use an enlarged study area – a buffer zone – to deal with the edge effect. 

Similar to the influence of the spatial aggregation error on ZIP code level statistical analysis (Luo et al., 

2010), the impact of this error on spatial scan analysis has also been found to be case-sensitive and to vary 

with the number of cases across the study area. This empirical evaluation of spatial aggregation error was 

limited to an urban setting and may not apply to suburban-and rural-areas. More diverse study areas 

should be studied to obtain detailed information about the impact of spatial aggregation error on ZIP 

code-level spatial scan statistics.   
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Appendix A. Macro-level SAS Syntaxes to Generate Input Files for SaTScan 

*Import the centroids’ x y coordinates at a census unit; 

PROC IMPORT OUT= WORK.xy  

            DATAFILE= “Directory\censusunit_Cook_XYCoord.dbf”  

            DBMS=DBF REPLACE; 

     GETDELETED=NO; 

RUN; 

*Import disaggregated results into SAS, from res_001 to res_100; 

%macro loop; 

%do i=1 %to 100; 

 

PROC IMPORT OUT= WORK.res%sysfunc(putn(&i,z3.)) 

          DATAFILE= “Directory\res_%sysfunc(putn(&i,z3.)).xls” 

          DBMS=EXCEL REPLACE; 

   RANGE=”res$”; 

   GETNAMES=YES; 

   MIXED=NO; 

   SCANTEXT=YES; 

   USEDATE=YES; 

   SCANTIME=YES; 

RUN; 

 

*Merge centroids and each result file (from res_001 to res_100); 

proc sort data=xy; by STFID; run; 

proc sort data=res%sysfunc(putn(&i,z3.)); by STFID; run; 

data res%sysfunc(putn(&i,z3.))_xy; 

 set res%sysfunc(putn(&i,z3.)) xy; 

 merge res%sysfunc(putn(&i,z3.)) xy; 

 by STFID; 

run; 

 

data res%sysfunc(putn(&i,z3.))_xy; 

 set res%sysfunc(putn(&i,z3.))_xy; 

 if ID^=.; 

run; 

 

*Separate into three SAS datasets; 

/* Case File;*/ 

data case_%sysfunc(putn(&i,z3.)); 

 set res%sysfunc(putn(&i,z3.))_xy; 

 keep STFID late; 

run; 

data case_%sysfunc(putn(&i,z3.)); 

 set case_%sysfunc(putn(&i,z3.)); 

 count=late; 

 drop late; 

run; 

 

/*Control File;*/ 

data cont_%sysfunc(putn(&i,z3.)); 

 set res%sysfunc(putn(&i,z3.))_xy; 

 keep STFID early; 

run; 

data cont_%sysfunc(putn(&i,z3.)); 

 set cont_%sysfunc(putn(&i,z3.)); 
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 control=early; 

 drop early; 

run; 

 

/*Geographic File;*/ 

data coor_%sysfunc(putn(&i,z3.)); 

 set res%sysfunc(putn(&i,z3.))_xy; 

 keep STFID x y; 

run; 

 

*Re-order the variables in coordinates files; 

data cnew_%sysfunc(putn(&i,z3.)); 

 retain STFID y x; 

 set coor_%sysfunc(putn(&i,z3.)); 

run; 

 

*Export text files (case, control, and coordinate) for the SaTScan use; 

data _null_; 

 set case_%sysfunc(putn(&i,z3.)); 

 file “Directory\SaTScan_Files\case_%sysfunc(putn(&i,z3.)).cas” 

dlm=”09”X; 

put STFID 

count; 

run; 

 

data _null_; 

set cont_%sysfunc(putn(&i,z3.)); 

file “Directory\SaTScan_Files\cont_%sysfunc(putn(&i,z3.)).ctl” dlm=”09”X; 

put STFID 

   control; 

run; 

 

data _null_; 

set cnew_%sysfunc(putn(&i,z3.)); 

file “Directory\SaTScan_Files\coor_%sysfunc(putn(&i,z3.)).geo” dlm=”09”X; 

put STFID 

y 

x; 

run; 

 

%end; 

%mend; 

 

options mprint mlogic symbolgen; 

%loop 
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Appendix B. The Java Program to Automatically Generate Parameter Files 

import java.io.BufferedReader; 

import java.io.BufferedWriter; 

import java.io.FileNotFoundException; 

import java.io.FileReader; 

import java.io.FileWriter; 

import java.io.IOException; 

 

public class FileGen{ 

 public static void main(String[] args) throws IOException{ 

  String strLine, strLine1 = "", strLine2 = "", strLine3 = "", strLine4 = ""; 

  String newName = ""; 

  String outName = ""; 

  BufferedReader input; 

  BufferedWriter output; 

  for(int i=1;i<=100;i++){ 

   try { 

                                             //Auto-name the parameter files by the consecutive numbers 

    if(i<10) 

     outName = "output/prm_00"+i+".prm"; 

    else if(i<100) 

     outName = "output/prm_0"+i+".prm"; 

     output = new BufferedWriter(new FileWriter(outName)); 

    input = new BufferedReader(new FileReader("input/parameterfile.txt")); 

    int j=0; 

     

   //Auto-change the names of case files to input each case file 



 

106 
 

                              while ((strLine = input.readLine()) != null){ 

     if (j==2){ 

      if(i<10) 

       newName = "case_00"+i+".cas"; 

      else if(i<100) 

       newName = "case_0"+i+".cas"; 

      strLine1 = strLine.replace("case_001.cas", newName); 

     } 

                                        //Auto-change the names of control files to input each control file 

     if (j==4){ 

      if(i<10) 

       newName = "cont_00"+i+".ctl"; 

      else if(i<100) 

       newName = "cont_0"+i+".ctl"; 

      strLine2 = strLine.replace("cont_001.ctl", newName); 

      } 

                                          //Auto-change the names of coordinate files to input each coordiante file 

     if (j==8){ 

      if(i<10) 

       newName = "coor_00"+i+".geo"; 

      else if(i<100) 

       newName = "coor_0"+i+".geo"; 

      strLine3 = strLine.replace("coor_001.geo", newName); 

     } 

                                                //Auto-change the names of output files to generate each destination file 

     if (j==36){ 

      if(i<10) 

       newName = "output"+i; 
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      else if(i<100) 

       newName = "output"+i; 

      strLine4 = strLine.replace("output1", newName); 

      //System.out.println(strLine); 

     } 

     j++; 

    } 

    input.close(); 

    input = new BufferedReader(new FileReader("input/paramterfile.txt")); 

  //Auto-generate each parameter file by changing the input-and output files   

    j=0; 

    while ((strLine = input.readLine()) != null){ 

     if (j==2){ 

      strLine = strLine1; 

     } 

     if (j==4){ 

      strLine = strLine2; 

     } 

     if (j==8){ 

      strLine = strLine3; 

     } 

     if (j==36){ 

      strLine = strLine4; 

     } 

     output.write(strLine + "\n"); 

     j++; 

    } 
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    output.close(); 

    input.close(); 

   } catch (FileNotFoundException e1) { 

    e1.printStackTrace(); 

   } catch (IOException e) { 

    System.err.println("Error: " + e.getMessage()); 

    e.printStackTrace(); 

   }    

  } 

 } 

  

 private static String getFileNumber(int i){ 

  if (i<10) 

   return "00"+i; 

  else if(i<100) 

   return "0" +i; 

  else 

   return String.valueOf(i); 

 }  

} 

                

 


