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Abstract: It is often too complex to use, and sometimes impossible to obtain, an actual model
in simulation or command field . To handle a system in practice, a simplification of the real model
is then necessary. This simplification goes through some hypotheses made on the system or the
modeling approach. In this paper, we deal with all models that can be expressed by real-valued
variables involved in analytical relations and depending on parameters. We propose a method that
qualifies the simplification validity by verifying a quality threshold on the hypothesis relevance.
This method, based on interval analysis, can check the acceptance of the hypothesis in a full
range of the whole model space, and can give bounds to the quality threshold and to the model
parameters.Our approach is experimentally validated on a robotic application.

Key-words: Modelling, Simplification, Interval analysis, Cable-driven Robot

* Inria
 Inria,I3S
f Inria

RESEARCH CENTRE
SOPHIA ANTIPOLIS - MEDITERRANEE

2004 route des Lucioles - BP 93
06902 Sophia Antipolis Cedex



Méthodes intervalles pour la qualification de
modéles simplifiés
rapport de recherche
Inria
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1 Introduction

The level of realism of a model representing a (mechanical, financial, chemi-
cal or whatever) system must be generally adjusted to be enough accurate and
realistic but also sufficiently simplified to be evaluated, manipulated, or used
in a simulation/control application. Some methods can be exploited to reduce
the modeling complexity as statistical procedures, mathematical analysis, sys-
temic analysis, etc. These simplifications are always based on assumptions,
e.g., setting some parameters to zero. The necessity of model simplification is
well-known but the validation of the simplified model is rarely achieved. Few
researches have been achieved on checking the validity of model simplification.
Let us mention Pacut and Kolodziej who consider a simplified model acceptable
if the discrepancy between this model and the reference model could be identi-
fied as a random error. They check it with a statistical test in [12]. Moreover,
an hypothesis used to simplify a model should be acceptable for all the possible
model cases of use. In other words, the simplified model needs to be “close” to
reality for all feasible values of model entries.

Interval analysis, because of its set-oriented approach, allows us to evaluate a
function for all feasible values (generally bounded) of a variable [10, 11]. Indeed,
interval analysis (TA) [5, 10, 11, 2] can handle the whole continuous space,
contrarily to approaches based on discretization that ignore some values. In
robotics, interval analysis is used to manipulate bounded uncertainties, or to
consider the whole workspace of a robot.

For this capability, we first propose in this paper a method using IA to verify
the validity of an hypothesis for simplifying a model. A second TA-based method
can improve the knowledge, and thus the limits, of the model through a global
optimization process. We finally demonstrate the feasibility of our method on a
real complex robotic problem. This experimentation concerns the simplification
of the cable model in the kinematics of parallel cable driven robots through the
mass-less and non-elasticity hypothesis.

Overall, we present in this paper a quasi-generic approach to qualify a rele-
vance hypothesis in a model expressed by constraints.

2 Quality of model simplification

There exist several types of models requiring a simplification, including;:
e model handling that is too time-consuming, e.g. in a real-time command;
e models with a critical sub-part;
e non-linear models which need to be linearized...

In the paper, the model, or a sub-part of the model, is defined as follows:
A model M gives n values v, function of m entries e and p parameters p:

M(e,p) = v (1)

The entries e can take every values in the set X", denoted by X below, which
defines the possible area of model use. Eq. (1) must have an analytical form,
such as a polynomial system, a trigonometric equation, or a constraint system.
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2.1 A model under hypothesis

If handling a model M is too time-consuming, it should be useful to simplify
it. As said before, some methods exist in this aim. However, the most used
and easy to obtain simplification method is the system analysis. For example, if
the model contains a hard to compute part which helps to express a negligible
phenomenon in comparison to the main system, this part can be reduced to a
small constant or zero.

The reduced model obtained by simplification of M could be written M),
and we have: M(e,p) # My(ep, pr). (In the simplified model, the entries ey,
and the parameters pj, are sub-sets of e and p, so that the sets of entries e — e,
and of parameters p — py, are not used anymore in the simplified model.)

2.2 Validity of hypothesis

The hypothesis is often considered "acceptable” if M is close to M}, in the sense
of a distance derived from v for all possible entries.

Vee X: M(e, /J) = Mhypothesis (eha ph) (2)

The notion of acceptance or validity is intrinsically expressed by a threshold. In
fact, the last equation could be written more formally as:

Ve € 3 : Dist(M(e, p) — Mpypothesis(€ns pn)) < € (3)

Where Dist() represents a distance form such as, for example, an Euclidean
norm, an infinite norm or an absolute value.
Rewritten as a constraint system, the equations (1) and (3) become: Ve € 3 :

M(e,p)=v
{ Dist(v — Mp(en,pr)) <€ S

Quality threshold

A difficulty in this representation is the value of the threshold. It could be
linked to the model use or domain of application. For instance, the accuracy
expected for the model could constitute a good threshold because it is useless
to provide information under this accuracy. The computation precision could
also be chosen to obtain a threshold. The accuracy of instruments used in a
measurement process provides a threshold as well.

2.3 Model analysis

In the previous section, a constraint system has been defined to express a hy-
pothesis validity. In addition to this yes-or-no approach, we can compute bounds
of parameters for better evaluating the simplified model. One way is to find the
bounds of some parameters which guarantee the validity of the model simpli-
fication for all considered entries. It is mathematically equivalent to find the
domain of parameters ® such that

Vp € ®,Ve € 3 : Dist(M (e, p) — Mp(en,pn)) <€ (5)

Also, during an analysis of the model, finding a subset S cx may add a
powerful information for reducing the space of model use. This information is
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described by: Find 3 such that
Ve € 3 : Dist(M(e, p) — My (en, pr)) < € (6)

Finally, a dual analysis can be to compute, and not check, the guaranteed
bounds € of Dist(M(e,p) — Mp(en,pn)),Ve € 3. Given a value set X, this
analysis computes a guaranteed bound €,,,, such that:

Dist(M (e, p) — Mp(en, pn)) < €maz (7
Two bounds could also be computed:

€min S M(&P) - Mh(eha Ph) S €mazx (8)

The equation (8) provides an additional information. If €,,;, > 0, then the
simplified model is never equal to the initial model (same if €,,4, < 0).

3 Development in terms of sets

Our problematics is firstly to verify this hypothesis for all entries in 3 to bring
the guarantee that the simplification is valid.
For this purpose, we express the errors:

o = Dist(M(e,p) — Mp(en, pr))
= Dist(v—p)

made between the most realistic model and the simplified model.

We will have to verify that, for all e € 3, this error lies under an acceptable
threshold e: o < e. Therefore, we can first define the subset S, of acceptable
entries:

Se={ee€X:0 <€}

3.1 Checking the hypothesis validity

The proposed verification consists in checking the hypothesis for all the entries
»..We want thus to prove that S, = Y. Since it is difficult to characterize this
infinite set, we resort to the dual set S, = {e € ¥ : 0 > €¢}. We remark that
Se U S, = .

Proving that S, is empty (i.e the dual system has no solution) implies indeed
that the hypothesis o < € is verified for every model entries.

3.2 Qualifying the simplified model

The sets S, and S, give an answer about the validity of the hypothesis. How-
ever, we could expect additional quantified information, defined through the
computation of bounds, such as:

e The minimal (and/or maximal) parameters p,,i, (and/or p,q.) value sat-
isfying the hypothesis, expressed by ifp < pmin: Sie # 0

e The maximal error committed in 3, defined by S, = Maz(Dist(M (e, p) —
Mhypothesis(eh7ph)))7 Ve € X
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4 Background about intervals

The problematics demands a robust solver which could consider a whole 3 made
of an infinity of points and give a reliable result. In addition, the system to be
solved may be non-linear and difficult.

Interval analysis meets these requirements by using algorithmic principles
exploiting constraints and sub-spaces containing an infinity of points, without
risk of solution loss.

4.1 Basics of interval arithmetic

An interval [z;] = [z;,T;] defines the set of reals x; s.t. z; < z; < T;. IR denotes

the set of all intervals. The size or width of [z;] is w([z;]) = T7; — z;. A box
[z] is the Cartesian product of intervals [z1] X ... X [#;] X ... X [z,]. Its width is
defined by max; w([z;]).

Interval arithmetic [10] extends to IR elementary functions over R. For
instance, the interval sum (i.e., [x1]+[z2] = [x1 + 2, T1+T2]) encloses the image
of the sum function over its arguments, and this enclosing property basically
defines what we call an interval extension.

Definition 1 (Extension of a function to IR)
Consider a function f : R™ — R.
[f]:IR" — IR is said to be an extension of f to intervals if:

V[z] e IR"  [fI([z]) 2 {f(2), = € [z]}
Ve eR"  f(z) = [f](x)

In our context, the expression of a function f is always a composition of ele-
mentary functions. The natural extension [f]x is then simply a composition
of the corresponding interval operators. The Taylor extension uses the first
or second order Taylor development of the function and computes its natural
extension.

Example Consider f(zxi,x2) = 323 + 23 + 21 * 22 in the box [z] = [~1,3] x
[~1,5]. The natural evaluation provides: [f]n([z1],[z2]) = 3 * [-1,3]> 4+ [-1,5]* +
[-1,3] * [-1,5] = [0,27] + [0,25] + [—5,15] = [—5,67]. The partial derivatives are:
(@1, 2) = 621 + @2, [SL]N([-1,3],[1,5]) = [=7,23], 2L (21,22) = @1 + 2a2,
[%}N([ML [z2]) = [-3,13]. The interval first-order Taylor evaluation with z = (1,2)
yields: [f]r([z1], [z2]) =9+ [-7,23] * [-2,2] + [—3,13] x [-3, 3] = [-76, 94].

Definition 2 (Overestimation of a set)
Consider the set F = {f(z), = € [z]}, the interval extension [f]([z]) is an
overestimation of F denoted by:

OF = [f]([z]).

4.2 Interval methods for constraint satisfaction and opti-
mization

4.2.1 Interval methods for solving a constraint system

Interval methods can accurately approximate by boxes the set of solutions of a
constraint system. The solving process starts from an initial box representing
the search space and builds a search tree, following a Branch & Contract scheme:

RR n° 7880



Interval Methods for Model Qualification: Methodology and Advanced Application8

e Branch: the current box is bisected on one dimension (variable), gener-
ating two sub-boxes.

e Contract: filtering (also called contraction) algorithms reduce the bounds
of the box with no loss of solution.

The process terminates with atomic boxes of size at most € on every dimen-
sion. Contraction algorithms comprise interval Newton-like algorithms issued
from the numerical interval analysis community [10] along with algorithms from
constraint programming.

4.2.2 Constrained optimization

Interval methods can also deal with a more difficult problem, constrained opti-
mization, in which a solution must be found that minimizes an objective function
while satisfying the set of constraints. To do so, the strategy follows a branch
and bound schema [3]. At each iteration, the algorithm selects in the list a box
[z]. It chooses a branching variable z; € x heuristically, bisects [x;] and applies
the main Contract&Bound procedure on the two sub-boxes. In addition to the
contraction phase mentioned above, the procedure Contract & Bound resorts to
a lower bounding phase and an upper bounding phase.

The lower bounding consists in finding a point whose cost is worse (although
generally non feasible, leaving some constraints unsatisfied) than that of all the
points in the studied box. To do so, linearization techniques approximates the
solution set and a Simplex algorithm finds the best point in the over-estimated
polytope. We call [b the minimum value of the lower bounds of the different
boxes managed by the optimization strategy.

Also, ub (for upper bound) is the cost of the current best feasible point (i.e.,
a point satisfying the constraints) ever found during the search. This upper
bounding phase is achieved by local search techniques or more sophisticated
methods [13].

The search terminates when ub — [b reaches a precision €gp;.

4.3 Add-ons

For improving the contraction, our tool uses two recent algorithms. The first one
is a sophisticated constraint propagation algorithm called Mohc [1]. The core of
constraint propagation is to contract a box by considering a single constraint at a
time, then propagating the reduction to the others. The main procedure of Mohc
improves the state-of-the-art by better contracting the box when the handled
function is monotonic w.r.t. some variables in the box. The contraction is even
optimal (modulo the floating-point round-offs) when the function is monotonic
w.r.t. every variable (occurring several times in the function).

Mohc is used in our tool as a sub-contractor of the 3BCID algorithm [14], a
variant of 3B [7]. 3B uses a refutation principle that splits an interval into slices.
A slice at the bounds of an interval is discarded, thus contracting the box, if
calling the sub-contractor (here, Mohc) on the resulting sub-problem leads to no
solution. This process leaves generally left-side and right-side boxes that are not
eliminated by the sub-contractor, and thus a “central” remaining interval. An
additional role of 3BCID is to achieve a final call to the sub-contractor on this
central interval, and the (hulled) union of the three boxes is returned. Therefore
a contraction may be achieved in several dimensions.

The order in which the variables are selected for the branching is also crucial.
We have used with success a variant of the smear-based heuristic [6] described
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in [13]. Without detailing, a variable = will be more likely /often selected and
split if its current interval [z] is large and if the functions involving z in the
constraints have significant partial derivatives w.r.t.  in the current box.

5 Hypothesis verification using interval approach

The set-based development described in Section 3 is directly translatable in in-
terval analysis approach. The TA methods presented in the interval background
permit to handle the constraint system (4), to verify the model simplification
and to analyze the quality of the hypothesis.

5.1 Checking the hypothesis with TA

The interval methods introduced in Section 4.2.1 allow us to compute a superset
0S)e of Sie (due to interval overestimation) by using the dual of the constraint
system (4) yielded by:

Dist(v — Mp(en, pn)) > € ®)

{ M(e,p) =v

Interval analysis provides the yes-or-no answer useful to validate the hypoth-
esis made for simplifying the model M. Because the set S is overestimated,
finding [0S\, = 0 proves that S, has no solution and implies, with guarantee,
that the hypothesis o < € is verified for every model entries.

On the contrary, finding a solution in (1S, does not prove that S, # 0, due
to the overestimation. In practice, it suggests that the hypothesis is probably
false for one or more entries, but there is no theoretical guarantee. That is why
this approach is used by a practitioner in the hope of obtaining that S). = ) for
given entries.

5.2 Quantifying the error with TA

The interval methods introduced in Section 4.2.2, which deal with constrained
optimization, can be used to provide bounds of variables appearing in the def-
inition of S.. In practice, it consists in adding to the constraint system (4) a
goal to be optimized. Consider a given parameter p € ® (several ones can be
handled one by one) The minimal parameter value satisfying the hypothesis,
expressed by S, = Min(p),p € ® such that S. = X is therefore obtained with
the constrained optimization system:

Minimize p s.t. :
M(e,p) = v (10)
Dist(v — Mp(en,pr)) <€
The algorithm used permits to find the minimal p which certifies that S, =
0,Ve € 3.

In the same manner, it is possible to find the maximal error o by modifying
the constraint defining the sub-set S.:

Maximize o s.t.:
M(e,p) = v (11)
o = Dist(v — My(ep, pn))
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6 Application in robotics

In order to illustrate our approach, we apply it to our problem. We are interested
in cable-driven robots within the context of a national granted project named
CoGiRo. The final goal of this project involving researchers, engineers and PhD
students, is to build a giant crane based on a parallel cable-driven robot. This
raises numerous issues: design, mechanical conception, modeling, vision-based
control, etc.

In this section, we introduce cable-driven robots, the cable model and finally
highlight considerations that are specific to the control by cables (different from
classical rigid actuators). We will focus on the inverse kinematics, a static is
only used for the cable model (not for the robot equilibrium). We do not deal
with dynamic model.

6.1 Cable-driven robots

A parallel cable-driven robot is made of a mobile platform (end-effector) con-
nected to a fixed base by m cables. These cables can vary in length by the
actuation of m pulleys linked to m rotary engines. The variation in length and
tension of cables generates a movement in n degrees of freedom (position and/or
orientation).

Figure 1: A cable-driven robot example

In the example presented in Fig. 1, the mobile platform or end-effector (mo-
bile reference frame ) is connected to the base (fixed reference frame p)
by m = 8 cables (m > n to be fully controllable [9]). The ‘" cable connects
the point A; of the base (coordinate a; in Qo) to the point B; on the mobile
platform (coordinate b; in Q¢). The pose of the mobile X = (P, R) (defined
by the position P and the orientation matrix R of Q¢ w.r.t. Qo) is directly
controlled by the length and the tension in each cable.

The workspace W is the set of all possible couples (P, R) for the robot.

6.2 Cable model

Cable-driven robots take advantage of the use of cables, allowing large workspace,
light actuators in comparison to the possible load mass, and low cost. However,
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cable-driven robots suffer from the complex kinematics and dynamics of cables.

A well-known realistic model that is often used for the kinematics of cables
is proposed by Irvine in [4]. In the Irvine model, the length of a cable depends
on its tension. It is given for one cable and the equations are expressed in a
plane made of the points A and B and the gravitational force:

Figure 2: A cable in a plane {Z,E,?}

The Irvine model considers the geometric and static parameters of the con-
figuration and the cable properties:

e Attachment points A (on base) and B (on platform)
e Cable: linear mass m, tightness (stiffness) k& and length L
e Applied Tensions: T} in B and T, in A

The system of three equations to be solved in order to obtain the actual
length of cable and the tension distribution on point A = [0, 0] is:

_ TTL | TT| Tz T? — mgL
Bo = Za” oy Taliginh T N (22 ) — sinn T (22 Ty
k mg T T
_ mgL?  TZ 1 1 — 5 — 5 (12)
B. = ( — )+ —[JTE2 4+ TE2 — \[TE2 1 (T — mgL)2]
k mglL 2 mg
T, = \TE2 +(TZ — mgL)?

This non-linear system is often solved numerically in 77, T? and L in function
of the other parameters.

6.3 Consequences

The fact that a robot is controlled with cables, which have complex kinematics,
leads to some problems in the classical fields of robotics:

e complex control;
e unworkable existing methods for the workspace determination;
e complex design;

e unsolvable modeling;
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e unfeasible self-calibration, although a rough calibration using external
measurement remains possible.

The hypothesis of non-elastic and mass-less cables is very useful to simplify
control, modeling, calibration, etc. Moreover, this hypothesis is often realistic
and generate a negligible error in robot accuracy.

The majority of papers dealing with these subjects use the hypothesis of
mass-less and non-elasticity of cables, and replace the real length of cables L;
(depending on tensions) by the distances D; = A;B;, i = 1l.m. Under this
assumption, the model is highly simplified with L; = D;.

The error between the real length and the distance AB needs to be quantified
in order to check whether it remains below the accuracy of the actuators. This
is the main purpose of the work described in this paper.

6.4 Problematics

We have seen above that the hypothesis of non-elasticity and mass-less done on
cables properties is required (and often implicitly done) to hope to succeed in
one of the major robotic fields applied to cable-driven robots. In our research,
we have done this hypothesis in order to study the inverse kinematics of a robot
similar to the one presented in Section 6.1. The hypothesis has to be checked
on one cable before any static or dynamic modeling which are currently not
mastered by the community. Nevertheless, note that our approach can be used
for a more complex model with static or dynamic consideration.

6.5 Checking of non-elasticity and mass-less hypothesis

Our problematics is therefore to verify this hypothesis in the whole workspace
of the robot Wx to bring the guarantee that the simplification is valid.

For this purpose, we compute the errors o; = |L; — D;| made between the
length L; given by Irvine’s model -function of B;, Ts, and the cable parameters-
and the distance D;, only function of B;. B; itself function of X € Wx.

We then verify that these errors all lie under an acceptable threshold e (which
could be selected in function of the expected articular accuracy): o; <€, i =
1..m.

The position of the m points B; are function of the pose X = (P, R): the
coordinates of B; in Qo are e, = P + R.b;, b; being the coordinates of B;
expressed in the platform reference Q¢ (defined by the platform geometry).

The hypothesis is verified on a pose X € Wy, if for the every m points e;:
o; < €.

Therefore, we can define the subset Sx of acceptable poses as follows:

Sx ={X eWx,Vicl.m:o; <e€}.

The proposed verification consists in checking the hypothesis in all the poses
of the workspace. A sufficient condition is based on the dual set Six = {X €
Wx,3i € 1.m : 0; > €}. Interval methods can determine if S)x = ), which
implies the hypothesis holds on Wx. We remark that Sx U Six = Wx.

Moreover, the m points B; depending on X all belong to the same paral-
lelepiped, whatever can be X € Wx. Thus, we are satisfied with testing the
hypothesis for only one cable. In addition, the parallelepiped built with the e;
is entirely covered by the diagonal plane with a simple rotation around the z
axis.
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Overall, the study of the workspace Wx can be reduced to the one of the
diagonal plane W, as shown in Fig. 3. The point B € Wp could be expressed
in the plane reference frame like in Irvine’s model definition: B = [B,, B.].

S

Figure 3: Robot space frame in dashed lines, workspace Wx and diagonal plane
Wg

With this simplification, we define the sub-space of point B where the hy-
pothesis is valid: Sp ={Be€ Wg:0 <€}

And we will introduce the complementary: Sip = {B € Wg : 0 > €}.

By construction of the simplification, if a solution is found in Sip, a solution
exists in Sjx and the hypothesis is not valid in the whole workspace.

In the same manner, we remark that Sg U S\g = Wp

It’s also easier to find zero solution in Sy g that prove that Sg = Wg. Proving
that S)p has no solution implies indeed that the hypothesis ¢ < € is verified for
every point in the workspace.

6.6 Quantifying the error

The sets Sp and S)p give an answer about the validity of the hypothesis. How-
ever, we could expect additional quantified information such as:

e The minimal tension satisfying the hypothesis, expressed by S, = Ming,,
VB € S

e The maximal error committed in the workspace, defined by S, = Mazx,,
VB € WB,VTb S [TminaTmaw}

6.7 Interval strategy and problem adaptation

The constraint system is based on Irvine’s model. We do not use directly the
system of three equations presented in Section 12; we prefer a system with 5
additional variables and equations that allows a faster solving process. This
system manipulation is performed in order to eliminate the division and to
replace sinh~1 by its logarithmic expression sinh=!(z) = In(z + /(22 + 1)).
The constraint system to compute a superset of Sip (every real-valued element
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being approximated by interval) is:

mgB, — eT; + Ty In((h—c)(c—d+j))= 0
2

— k
mng—T(fh—T;e—i—%-ka:

T, —-Tij=

Ty —T: =

- V(@ 1=
i=V(e=d?)+1=
dTy — mgL =

ek —mgL =

o O O O o o o
—
—
w
=

IL-\/B.”+B." >

™

This model is not a simplification of 12, but a rewriting. These models are

absolutely equivalent. A solution of this constraint system is provided by an
11-dimension box defined by: [B,] x [B.] x [T*] x [T?] x [Ty] x [L] x [¢] x [d] x
[e] x [h] x [§]. Only the projection onto [B,] x [B.,] is interesting for us to find
a point B in IS\ p.

7 Experimental results

7.1 Our robot

The prototype, shown in Fig. 4, was built by the TECNALIA company (www.tecnalia.com)
in collaboration with the LIRMM laboratory (www.lirmm.fr).

Figure 4: Partial view of the prototype ReelAx8
ReelAz8 is a reconfigurable cable driven robot. Eight cables, wound on

winches, are attached by spherical joints to the eight corners of a cube shaped
platform of about 40 centimeters large. Four pairs of winches are fixed on posts
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up to three meters arranged at the four corners of a 3 meters by 4 meters
rectangle.
The prototype is given with a rectangular workspace of 2 meters (from 1 to
3 meters on x axis) by 1 meter (from 1 to 2 meters on y axis) on floor, 1 meter
high (from 1 to 2 meters on z axis) and £ 5 degrees of rotation on each axis.
We can use the notation: Wx = {X =[P,R],P € [1,3] x [1,2] x [1,2],R €
[_5a5] X [_5a5] X [_5a5]}

7.2 Experiments

The solving is performed by adapting an interval tool developed in the CO-
PRIN team and briefly described in Sections 4.2 and 4.3. It is made with a
contractor using monotonicity and shaving, and a bisector using the derivative
of constraints.

In our process, we uncorrelate the lower tensions case which leads to the
supremacy of the cable curvature over the elasticity (o > 0) and the higher
tensions case which results in the inverse preponderance (o < 0).

7.2.1 Case 1: existing prototype

The cables used have the following characteristics: k& = 137kN/m , m =
0.007kg/m.
With the workspace Wy introduced in the description of the robot, the plane
W to be tested is the diagonal plane of the rectangular parallelepiped [1, 3] x
[1,2] x [1,2]: W =[1,3.7] x [1,2].
We fix € = 0.005m ~ expected accuracy of robot.

The sensors give, during our tests, a minimal tension of 20N and a maximal
one of 120N. So 20 < T}, < 120.

7.2.2 Case 2: robot under construction

We consider the same architecture robot but with heavier cables and larger
workspace. The cables are in the same steel with a tightness & = 137kN/m, and
a lineic mass m = 0.092kg/m. The workspace is estimated at Wp = [1, 8]*[1, 10]
for the next prototype for which we also expect an accuracy of 1 cm. The tension
should be between 40N (for a just tightened cable) and 1000N (at maximal
load).

7.3 Results in term of performances

In this paragraph, we present the results of our different strategies in term
of performances, time and number of boxes created during the interval-based
solving process. These different tests lead us to adjust our strategy for the
remaining tests. They are performed for the evaluation of S)g = (). Indeed, for
the evaluation of Sig # (), i.e when the hypothesis is non acceptable, a solution
is found quickly, which does not allow to compare the strategies.

The first results in Table 1 are given for different bisectors and for the
model (12) and the modified model (13). They show that the rewritten sys-
tem is greatly better for our solving process both in term of time elapsed and in
term of number of boxes created. It is also more sensitive to the Smear bisector,
when the usual system yield to worst performances with this strategy choice.
This phenomenon comes from the instability of the usual system.
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System (12) System (13)
Bisector |[Time(s) [Boxes(10°)Time(s) [Boxes(10°)
RR 18173 |14 o772 2
Smear 18369 |14 5120 2

Table 1: Choice of system and bisector (with contractor 3B(HC4) and
Wp=[1,4]*[1,3])

[Contractor [Slices  [[Time(s) [Boxes |
3B(HC4) 10 timeout |/
3BCID(HC4) 10 7790 107000
3BCID(HC4) 1000 1439 52157
3BCID(HC4) 10000 720 3729
3BCID(Mohc) {1000 841 15299
3BCID(Mohc) [10000  |[547 2199

Table 2: Choice of contractor (with Smear, system (13) and Wp=[0.5,4]*[0.5,3])

The results presented in Table 2 come from experiments on the choice of
the contractor. They show that the performance increases with the number of
slices. However, contrarily to bisection, the number of slices of 3B or 3BCID are
achieved on only one dimension at a time (although the slices must be small).
The reason for which it is efficient on this problem could be the small number
of variables in the constraints of system (13). Indeed, this tends to increase
the power of constraint propagation (HC4 or Mohc) and thus the chance of
eliminating a given slice.

To conclude on the research of the best strategy, we definitely select the
3BCID(Mohc) with 10000 slices and confirm the rewriting of Irvine’s model
in order to improve the efficiency of our algorithm (particularly for the Smear
add-on). Consequently, in the following experiments, we will use this strategy
to obtain the best efficiency.

To illustrate the contractor and bisector processing, the subpaving is drawn

in Fig. 5.

Figure 5: Rejected boxes during process

This illustration provides information about the regions easy to eliminate or
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contract (large boxes) and the more difficult regions (small boxes) where the
system is very unstable. The difficult region is close to the singularity of the
cable model (i.e., close to the vertical plane/line).

7.4 Hypothesis confirmation

We compute an overestimation of the subset S)p, noted [1S)g, by using the
constraint system (13). Recall that if no solution is found in (0S5, no solution
exists in Sip, and the hypothesis is valid in the considered workspace.

7.4.1 Casel

No solution is found by our tool, therefore the hypothesis is acceptable for the
studied robot. The model using the simplification is thus sufficiently accurate.
The solving process achieved in the whole workspace take about 2 hours. For a
reduced workspace, for example one by one meter, the resolution is performed
in about 10 minutes.

7.4.2 Case 2

A solution for (1S g is immediately found (= 1 second). The hypothesis seems
therefore too strong and a more complex model must be developed for the giant
robot under-construction. Otherwise, the robot model accuracy could be highly
deteriorated.

7.5 Global optimum searching

In addition to the yes/no results obtained about the hypothesis validation, global
optimization gives the opportunity to enrich the knowledge about robots. First,
our method can provide the maximal error committed in the workspace and
defined previously by:
Se = Max,, VB € Wg,VTy, € [Tmin, Tmaz]-

Second, it can also compute the minimal tension, satisfying the hypothesis,
expressed by:
STb = Mz'nTb, VB € Sp.

More generally, we will see that it is possible and often easy to find differ-
ent optima which better define the design of the robot and the quality of the
kinematic model.

7.5.1 Casel

The analysis of the prototype model (for which the hypothesis has been proved
acceptable by our verification method) provides useful information gathered in
Table 3

e Minimal T} to keep |o| < €, see Table3, column 1;
e Maximal |o| for T, = 20N, see Table3, column 2;

e Maximal |o| for T, = 120N, see Table3, column 3;
e Maximal T} to keep |o| < €, see Table3, column 4;

The values found confirm the hypothesis validation.
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1 2 3 4
Error o (m) [/0.005 0.0006 |-0.0037 |-0.005
Tension Tp||1.4 20 120 171.5
(N)
Time (s) 200 3 5 30

Table 3: Results (in bold) obtained by optimization processes on the existing
prototype (case 1)

1 2 3 4
Error o (m) {/0.01009 |0.01 -0.01 -0.093
Tension Ty||40 40.1 121 1000
(N)
Time (s) 72 3 6000 5

Table 4: Results (in bold) obtained by optimization processes on the robot
under construction (case 2)

7.5.2 Case 2

The same model analysis protocol is followed for the cable-driven robot under
construction and the results are presented in Table 4.

e Maximal |o| for T, = 40N, see Table4, column 1;

e Minimal T} to keep |o| < €, see Tabled, column 2;
e Maximal T} to keep |o| < €, see Tabled4, column 3;
e Maximal |o| for T, = 1000N, see Table4, column 4;

The values found confirm the hypothesis rejection, even if the lower tension
bound is close to the minimal tension for which the hypothesis is valid.

7.6 Conclusion on experiments

The application chosen to demonstrate the process is related to the main task
of the author: the calibration of parallel cable-driven robots. In our research,
we have done the hypothesis of mass-less and non-elasticity of cables in or-
der to self-calibrate the robot presented in Section 7. Indeed, to self-calibrate
a cable-driven robot, we must consider it as a redundantly actuated manip-
ulator. This redundancy is conditioned by the independence of cables length
from their tension. This condition is obtained with the simplified model under
non-elasticity and mass-less assumption. This hypothesis is validated with our
method, the simplification is thus acceptable and this robot is self-calibratable.
In the second case, the robot under construction, the hypothesis is rejected. To
self-calibrate this giant crane, we must find a sub-workspace where the hypothe-
sis is acceptable. Other interval methods build so-called inner boxes, i.e., boxes
in which all points are solutions. For the second robot, it could be interesting
to pave the workspace with numerous inner boxes, thus finely defining the zone
of the workspace where the hypothesis is respected. Even further (and more
costly), one could pave the entire workspace with several sets of boxes, each set
containing boxes with the same error range.
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To conclude, we have designed an operational tool for analyzing the differ-
ence between a real cable model and a strong simplification of it. The method
described in this paper has provided interesting and useful results for our study
of cable-driven robots. Its implementation represents a first software version of
a dedicated design tool which could be incorporated in an “Appropriate design”
approach [8].

Finally, this dedicated tool can be useful for modeling, designing and opti-
mizing in a reliable way robots, but also other mechanisms that make use of
cables.

8 Discussion and conclusions

We propose in this paper a quasi-generic method to confirm or reject an hypoth-
esis used to simplify a model. This checking is done by analyzing the difference
between a model and its simplified version. Our approach based on interval
analysis allows to give more information on the simplified model such as the
maximal error done in a whole use model field, or parameter bounds to keep
the simplified model close to the realistic model.

Numerous experiments have been performed to illustrate our approach and
to justify the choice of the strategy and of the constraint system form. Moreover,
the tool developed for these experiments is useful for the design or the kinematic
studies in the cable-driven robot field.

Our approach could therefore provide many tools for qualifying a simplified
model in different fields like mechanics, chemistry, biology.
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