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A Mean-Reverting SDE on Correlation Matrices

Abdelkoddousse Ahdida and Aurélien Alfonsi∗
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Abstract

We introduce a mean-reverting SDE whose solution is naturally defined on the space of correlation
matrices. This SDE can be seen as an extension of the well-known Wright-Fisher diffusion. We provide
conditions that ensure weak and strong uniqueness of the SDE, and describe its ergodic limit. We also
shed light on a useful connection with Wishart processes that makes understand how we get the full
SDE. Then, we focus on the simulation of this diffusion and present discretization schemes that achieve a
second-order weak convergence. Last, we explain how these correlation processes could be used to model
the dependence between financial assets.
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Introduction

The scope of this paper is to introduce an SDE that is well defined on the set of correlation matrices. Our
main motivation comes from an application to finance, where the correlation is commonly used to describe
the dependence between assets. More precisely, a diffusion on correlation matrices can be used to model
the instantaneous correlation between the log-prices of different stocks. Thus, it is also very important for
practical purpose to be able to sample paths of this SDE in order to compute expectations (for prices or
greeks). This is why an entire part of this paper is devoted to get an efficient simulation scheme. More
generally, processes on correlation matrices can naturally be used to model the dynamics of the dependence
between some quantities and can be applied to a much wider range of applications. In this paper, we mainly
focus on the definition, the mathematical properties and the sampling of this SDE. However, we discuss in
Section 4 a possible implementation of these processes in finance to model a basket of risky assets.

There are works on particular Stochastic Differential Equations that are defined on positive semidefinite
matrices such as Wishart processes (Bru [5]) or their Affine extensions (Cuchiero et al. [8]). On the contrary,
there is to the best of our knowledge very few literature dedicated to some stochastic differential equations
that are valued on correlation matrices. Of course, general results are known for stochastic differential
equations on manifolds. However, no particular SDE defined on correlation matrices has been studied in
detail. In dimension d = 2, correlation matrices are naturally described by a single real ρ ∈ [−1, 1]. The
probably most famous SDE on [−1, 1] is the following Wright-Fisher diffusion:

dXt = κ(ρ̄−Xt)dt+ σ
√

1−X2
t dBt, (1)
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where κ ≥ 0, ρ̄ ∈ [−1, 1], σ ≥ 0, and (Bt)t≥0 is a real Brownian motion. Here, we make a slight abuse
of language. Strictly speaking, Wright-Fisher diffusions are defined on [0, 1] and this is in fact the process
(1+Xt

2 , t ≥ 0) that is a Wright-Fisher one. They have originally been used to model gene frequencies (see
Karlin and Taylor [20]). The marginal law of Xt is known explicitly with its moments, and its density can
be written as an expansion with respect to the Jacobi orthogonal polynomial basis (see Mazet [23]). This
is why the process (Xt, t ≥ 0) is sometimes also called Jacobi process in the literature. In higher dimension
(d ≥ 3), no similar SDE has been yet considered. To get processes on correlation matrices, it is instead used
parametrization of subsets of correlation matrices. For example, one can consider Xt defined by (Xt)i,j = ρt
for 1 ≤ i 6= j ≤ d, where ρt is a Wright-Fisher diffusion on [−1/(d − 1), 1]. More sophisticated examples
can be found in [21]. The main purpose of this paper is to propose a natural extension of the Wright-Fisher
process (1) that is defined on the whole set of correlation matrices.

Let us now introduce the process. We first advise the reader to have a look at our notations for matrices
located at the end if this introduction, even though they are rather standard. We consider (Wt, t ≥ 0), a
d-by-d square matrix process whose elements are independent real standard Brownian motions, and focus
on the following SDE on the correlation matrices Cd(R):

Xt = x+

∫ t

0

(κ(c−Xs) + (c−Xs)κ) ds+
d∑

n=1

an

∫ t

0

(√

Xs −XsendXsdWse
n
d + enddW

T
s

√

Xs −XsendXs

)

,

(2)
where x, c ∈ Cd(R) and κ = diag(κ1, . . . , κd) and a = diag(a1, . . . , ad) are nonnegative diagonal matrices
such that

κc+ cκ− (d− 2)a2 ∈ S+
d (R) or d = 2. (3)

Under these assumptions, we will show in Section 2 that this SDE has a unique weak solution which is
well-defined on correlation matrices, i.e. ∀t ≥ 0, Xt ∈ Cd(R). We will also show that strong uniqueness holds
if we assume moreover that x ∈ C

∗
d(R) and

κc+ cκ− da2 ∈ S+
d (R). (4)

Looking at the diagonal coefficients, conditions (3) and (4) imply respectively κi ≥ (d − 2)a2i /2 and κi ≥
da2i /2. This heuristically means that the speed of the mean-reversion has to be high enough with respect to
the noise in order to stay in Cd(R). Throughout the paper, we will denote MRCd(x, κ, c, a) the law of the
process (Xt)t≥0 and MRCd(x, κ, c, a; t) the law of Xt. Here, MRC stands for Mean-Reverting Correlation
process. When using these notations, we implicitly assume that (3) holds.

In dimension d = 2, the only non trivial component is (Xt)1,2. We can show easily that there is a real
Brownian motion (Bt, t ≥ 0) such that

d(Xt)1,2 = (κ1 + κ2)(c1,2 − (Xt)1,2)dt+
√

a21 + a22

√

1− (Xt)21,2dBt.

Thus, the process (2) is simply a Wright-Fisher diffusion. Our parametrization is however redundant in
dimension 2, and we can assume without loss of generality that κ1 = κ2 and a1 = a2. Then, the condition
κc + cκ ∈ S+

d (R) is always satisfied, while assumption (4) is the condition that ensures ∀t ≥ 0, (Xt)1,2 ∈
(−1, 1). In larger dimensions d ≥ 3, we can also show that each non-diagonal element of (2) follows a
Wright-Fisher diffusion (1).

The paper is structured as follows. In the first section, we present first properties of Mean-Reverting
Correlation processes. We calculate the infinitesimal generator and give explicitly their moments. In partic-
ular, this enables us to describe the ergodic limit. We also present a connection with Wishart processes that
clarifies how we get the SDE (2). It is also useful later in the paper to construct discretization schemes. Last,
we show a link between some MRC processes and the multi-allele Wright-Fisher model. Then, Section 2 is
devoted to the study of the weak existence and strong uniqueness of the SDE (2). We discuss the extension
of these results to time and space dependent coefficients κ, c, a. Also, we exhibit a change of probability
that preserves the family of MRC processes. The third section is devoted to obtain discretization schemes
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for (2). This is a crucial issue if one wants to use MRC processes effectively. To do so, we use a remark-
able splitting of the infinitesimal generator as well as standard composition technique. Thus, we construct
discretization schemes with a weak error of order 2. This can be done either by reusing the second order
schemes for Wishart processes obtained in [2] or by an ad-hoc splitting (see Appendix D). All these schemes
are tested numerically and compared with a (corrected) Euler-Maruyama scheme. In the last section, we
explain how Mean-Reverting Correlation processes and possible extensions could be used for the modeling
of d risky assets. First, we recall the main advantages of modeling the instantaneous correlation instead of
the instantaneous covariance of the assets. Then, we discuss our model and its relevance on index option
market data.

Notations for real matrices :

• For d ∈ N∗, Md(R) denotes the real d square matrices; Sd(R), S+
d (R),S

+,∗
d (R), and Gd(R) denote

respectively the set of symmetric, symmetric positive semidefinite, symmetric positive definite and non
singular matrices.

• The set of correlation matrices is denoted by Cd(R):

Cd(R) =
{
x ∈ S+

d (R), ∀1 ≤ i ≤ d, xi,i = 1
}

We also define C
∗
d(R) = Cd(R) ∩ Gd(R), the set of the invertible correlation matrices.

• For x ∈ Md(R), x
T , adj(x), det(x), Tr(x) and Rk(x) are respectively the transpose, the adjugate, the

determinant, the trace and the rank of x.

• For x ∈ S+
d (R),

√
x denotes the unique symmetric positive semidefinite matrix such that (

√
x)2 = x

• The identity matrix is denoted by Id. We set for 1 ≤ i, j ≤ d, ei,jd = (1k=i,l=j)1≤k,l≤d and eid = ei,id .

Last, we define e
{i,j}
d = ei,jd + 1i6=jej,id .

• For x ∈ Sd(R), we denote by x{i,j} the value of xi,j , so that x =
∑

1≤i≤j≤d x{i,j}e
{i,j}
d . We use both

notations in the paper: notation (xi,j)1≤i,j≤d is of course more convenient for matrix calculations
while (x{i,j})1≤i≤j≤d is preferred to emphasize that we work on symmetric matrices and that we have
xi,j = xj,i.

• For λ1, . . . , λd ∈ R, diag(λ1, . . . , λd) ∈ Sd(R) denotes the diagonal matrix such that diag(λ1, . . . , λd)i,i =
λi.

• For x ∈ S+
d (R) such that xi,i > 0 for all 1 ≤ i ≤ d, we define p(x) ∈ Cd(R) by

(p(x))i,j =
xi,j√
xi,ixj,j

, 1 ≤ i, j ≤ d. (5)

• For x ∈ Sd(R) and 1 ≤ i ≤ d, we denote by x[i] ∈ Sd−1(R) the matrix defined by x
[i]
k,l = xk+1k≥i,l+1l≥i

and xi ∈ Rd−1 the vector defined by xik = xi,k for 1 ≤ k < i and xik = xi,k+1 for i ≤ k ≤ d − 1. For

x ∈ Cd(R), we have (x− xeidx)
[i]

= x[i] − xi(xi)T .
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1 Some properties of MRC processes

1.1 The infinitesimal generator

We first calculate the quadratic covariation of MRCd(x, κ, c, a). By Lemma 27, we get:

〈d(Xt)i,j , d(Xt)k,l〉 =
[

a2i (1i=k(Xt −Xte
i
dXt)j,l + 1i=l(Xt −Xte

i
dXt)j,k)

+a2j(1j=k(Xt −Xte
j
dXt)i,l + 1j=l(Xt −Xte

j
dXt)i,k)

]

dt

=
[

a2i (1i=k((Xt)j,l − (Xt)i,j(Xt)i,l) + 1i=l((Xt)j,k − (Xt)i,j(Xt)i,k)) (6)

+a2j(1j=k((Xt)i,l − (Xt)j,i(Xt)j,l) + 1j=l((Xt)i,k − (Xt)j,i(Xt)j,k))
]

dt.

We remark in particular that d〈(Xt)i,j , d(Xt)k,l〉 = 0 when i, j, k, l are distinct.
We are now in position to calculate the infinitesimal generator of MRCd(x, κ, c, a). The infinitesimal

generator on Md(R) is defined by:

x ∈ Cd(R), L
Mf(x) = lim

t→0+

E[f(Xx
t )]− f(x)

t
for f ∈ C2(Md(R),R) with bounded derivatives.

By straightforward calculations, we get from (6) that:

LM =
∑

1≤i,j≤d
j 6=i

(κi + κj)(ci,j − xi,j)∂i,j +
1

2

∑

1≤i,j,k≤d
j 6=i,k 6=i

a2i (xj,k − xi,jxi,k)[∂i,j∂i,k + ∂i,j∂k,i + ∂j,i∂i,k + ∂j,i∂k,i].

Here, ∂i,j denotes the derivative with respect to the element at the ith line and jth column. We know
however that the process that we consider is valued in Cd(R) ⊂ Sd(R). Though it is equivalent, it is often
more convenient to work with the infinitesimal generator on Sd(R), which is defined by:

x ∈ Cd(R), Lf(x) = lim
t→0+

E[f(Xx
t )]− f(x)

t
for f ∈ C2(Sd(R),R) with bounded derivatives,

since it eliminates redundant coordinates. For x ∈ Sd(R), we denote by x{i,j} = xi,j = xj,i the value of

the coordinates (i, j) and (j, i), so that x =
∑

1≤i≤j≤d x{i,j}(e
i,j
d + 1i6=jej,id ). For f ∈ C2(Sd(R),R), ∂{i,j}f

denotes its derivative with respect to x{i,j}. For x ∈ Md(R), we set π(x) = (x + xT )/2. It is such that
π(x) = x for x ∈ Sd(R), and we have Lf(x) = LMf ◦ π(x). By the chain rule, we have for x ∈ Sd(R),
∂i,jf ◦ π(x) = (1i=j + 1

21i6=j)∂{i,j}f(x) and we get:

L =

d∑

i=1







∑

1≤j≤d
j 6=i

κi(c{i,j} − x{i,j})∂{i,j} +
1

2

∑

1≤j,k≤d
j 6=i,k 6=i

a2i (x{j,k} − x{i,j}x{i,k})∂{i,j}∂{i,k}






. (7)

Then, we will say that a process (Xt, t ≥ 0) valued in Cd(R) solves the martingale problem ofMRCd(x, κ, c, a)
if for any n ∈ N∗, 0 ≤ t1 ≤ · · · ≤ tn ≤ s ≤ t, g1, . . . , gn ∈ C(Sd(R),R), f ∈ C2(Sd(R),R) we have:

E

[
n∏

i=1

gi(Xti)

(

f(Xt)− f(Xs)−
∫ t

s

Lf(Xu)du

)]

= 0, and X0 = x (8)

Now, we state simple but interesting properties of mean-reverting correlation processes. Each non-diagonal
coefficient follows a Wright-Fisher type diffusion and any principal submatrix is also a mean-reverting cor-
relation process. This result is a direct consequence of the calculus above and the weak uniqueness of the
SDE (2) obtained in Corollary 3.
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Proposition 1 — Let (Xt)t≥0 ∼MRCd(x, κ, c, a). For 1 ≤ i 6= j ≤ d, there is Brownian motion (βi,jt , t ≥
0) such that

d(Xt)i,j = (κi + κj)(ci,j − (Xt)i,j)dt+
√

a2i + a2j

√

1− (Xt)2i,jdβ
i,j
t . (9)

Let I = {k1 < · · · < kd′} ⊂ {1, . . . , d} such that 1 < d′ < d. For x ∈ Md(R), we define xI ∈ Md′(R) by
(xI)i,j = xki,kj for 1 ≤ i, j ≤ d′. We have:

(XI
t )t≥0

law
= MRCd′(x

I , κI , cI , aI).

1.2 Calculation of moments and the ergodic law

We first introduce some notations that are useful to characterise the general form for moments. For every
x ∈ Sd(R),m ∈ Sd(N), we set:

xm =
∏

1≤i≤j≤d
x
m{i,j}
{i,j} and |m| =

∑

1≤i≤j≤d
m{i,j}.

A function f : Sd(R) → R is a polynomial function of degree smaller than n ∈ N if there are real numbers
am such that f(x) =

∑

|m|≤n amx
m, and we define the norm of f by ‖f‖P =

∑

|m|≤n |am|.
We want to calculate the moments E[Xm

t ] of (Xt, t ≥ 0) ∼MRCd(x, κ, c, a). Since the diagonal elements
are equal to 1, we will take m{i,i} = 0. Let us also remark that for i 6= j such that κi = κj = 0, we have
from (3) that ai = aj = 0. Therefore we get (Xt)i,j = xi,j by (9).

Proposition 2 — Let m ∈ Sd(N) such that mi,i = 0 for 1 ≤ i ≤ d. Let (Xt)t≥0 ∼ MRCd(x, κ, c, a). For
m ∈ Sd(N), Lxm = −Kmx

m + fm(x), with

Km =

d∑

i=1

d∑

j=1

κim{i,j} +
1

2

d∑

i=1

a2i

d∑

j,k=1

m{i,j}m{i,k}

and

fm(x) =
d∑

i=1

d∑

j=1

κic{i,j}m{i,j}x
m−e{i,j}d +

1

2

d∑

i=1

a2i

d∑

j,k=1

m{i,j}m{i,k}x
m−e{i,j}d −e{i,k}

d +e
{j,k}
d

is a polynomial function of degree smaller than |m| − 1. We have

E [Xm
t ] = xm exp(−tKm) + exp(−tKm)

∫ t

0

exp(sKm)E[fm(Xs)]ds. (10)

Proof : The calculation of Lxm is straightforward from (7). By using Itô’s formula, we get easily that
dE[Xm

t ]
dt = −KmE[Xm

t ] + E[fm(Xt)], which gives (10). 2

Equation (10) allows us to calculate explicitly any moment by induction on |m|. Here are the formula
for moments of order 1 and 2:

∀1 ≤ i 6= j ≤ d, E [(Xt)i,j ] = xi,je
−t(κi+κj) + ci,j(1− e−t(κi+κj)),

and for given 1 ≤ i 6= j ≤ d and 1 ≤ k 6= l ≤ d such that κi + κj > 0 and κk + κl > 0,

E [(Xt)i,j(Xt)k,l] = xi,jxk,le
−tKi,j,k,l + (κi + κj)ci,jγk,l(t) + (κk + κl)ck,lγi,j(t)

+a2i (1i=kγj,l(t) + 1i=lγj,k(t)) + a2j (1j=kγi,l(t) + 1j=lγi,k(t)) ,
5



where Ki,j,k,l = κi + κj + κk + κl + a2i (1i=k + 1i=l) + a2j (1j=k + 1j=l) and
∀m,n ∈ {i, j, k, l} , γm,n(t) = cm,n

1− e−tKi,j,k,l

Ki,j,k,l
+ (xm,n − cm,n)

e−t(κm+κn) − etKi,j,k,l

Ki,j,k,l − κm − κn
.

Let f be a polynomial function of degree smaller than n ∈ N. From Proposition 2, L is a linear mapping
on the polynomial functions of degree smaller than n, and there is a constant Cn > 0 such that ‖Lf‖P ≤
Cn‖f‖P. On the other hand, we have by Itô’s formula E[f(Xt)] = f(x) +

∫ t

0
E[Lf(Xs)]ds, and by iterating

E[f(Xt)] =
∑k

i=0
ti

i!L
if(x) +

∫ t

0
(t−s)k
k! E[Lk+1f(Xs)]ds. Since ‖Lif‖P ≤ Cin‖f‖P, the series converges and we

have

E[f(Xt)] =

∞∑

i=0

ti

i!
Lif(x) (11)

for any polynomial function f . We also remark that the same iterated Itô’s formula gives

∀f ∈ C∞(Sd(R),R), ∀k ∈ N∗, ∃C > 0, ∀x ∈ Cd(R), |E[f(Xt)]−
k∑

i=0

ti

i!
Lif(x)| ≤ Ctk+1, (12)

since Lk+1f is a bounded function on Cd(R).
Let us discuss some interesting consequences of Proposition 2. Obviously, we can calculate explicitly in

the same manner E[Xm1
t1 . . . Xmn

tn ] for 0 ≤ t1 ≤ · · · ≤ tn and m1, . . . ,mn ∈ Sd(N). Therefore, the law of
(Xt1 , . . . , Xtn) is entirely determined and we get the weak uniqueness for the SDE (2).

Corollary 3 — Every solution (Xt, t ≥ 0) to the martingale problem (8) have the same law.

Proposition 2 allows us to compute the limit limt→+∞ E[Xm
t ] that we note E[Xm

∞] by a slight abuse of
notation. Let us observe that Km > 0 if and only if there is i, j such that κi+κj > 0 and mi,j > 0. We have

E[Xm
∞] = xm if m ∈ Sd(N) is such that m{i,j} > 0 ⇐⇒ κi = κj = 0, (13)

E[Xm
∞] = E[fm(X∞)]/Km otherwise.

Thus, Xt converges in law when t → +∞, and the moments E[Xm
∞] are uniquely determined by (13) with

an induction on |m|. In addition, if κi + κj > 0 for any 1 ≤ i, j ≤ d (which means that at most only one
coefficient of κ is equal to 0), the law of X∞ does not depend on the initial condition and is the unique
invariant law. In this case the ergodic moments of order 1 and 2 are given by:

E [(X∞)i,j ] = ci,j ,

E [(X∞)i,j(X∞)k,l] =
(κi + κj + κk + κl)ci,jck,l + a2i (1i=kcj,l + 1i=lcj,k) + a2j(1j=kci,l + 1j=lci,k)

Ki,j,k,l
.

1.3 The connection with Wishart processes

Wishart processes are affine processes on positive semidefinite matrices. They have been introduced by
Bru [5] and solves the following SDE:

Y yt = y +

∫ t

0

(
(α + 1)aTa+ bY ys + Y ys b

T
)
ds+

∫ t

0

(√

Y ys dWsa+ aT dWT
s

√

Y ys
)

, (14)

where a, b ∈ Md(R) and y ∈ S+
d (R). Strong uniqueness holds when α ≥ d and y ∈ S+,∗

d (R). Weak existence
and uniqueness holds when α ≥ d − 2. This is in fact very similar to the results that we obtain for mean-
reverting correlation processes. The parameter α + 1 is called the number of degrees of freedom, and we
denote by WISd(y, α+ 1, b, a) the law of (Y yt , t ≥ 0).
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Once we have a positive semidefinite matrix y ∈ S+
d (R) such that yi,i > 0 for 1 ≤ i ≤ d, a trivial way to

construct a correlation matrix is to consider p(y), where p is defined by (5). Thus, it is somehow natural
then to look at the dynamics of p(Y yt ), provided that the diagonal elements of the Wishart process do not
vanish. In general, this does not lead to an autonomous SDE. However, the particular case where the Wishart
parameters are a = e1d and b = 0 is interesting since it leads to the SDE satisfied by the mean-reverting
correlation processes, up to a change of time. Obviously, we have a similar property for a = eid and b = 0 by
a permutation of the ith and the first coordinates.

Proposition 4 — Let α ≥ max(1, d − 2) and y ∈ S+
d (R) such that yi,i > 0 for 1 ≤ i ≤ d. Let (Y yt )t≥0 ∼

WISd(y, α + 1, 0, e1d). Then, (Y yt )i,i = yi,i for 2 ≤ i ≤ d and (Y yt )1,1 follows a squared Bessel process of
dimension α+ 1 and a.s. never vanishes. We set

Xt = p(Y yt ), φ(t) =

∫ t

0

1

(Y ys )1,1
ds.

The function φ is a.s. one-to-one on R+ and defines a time-change such that:

(Xφ−1(t), t ≥ 0)
law
= MRCd(p(y),

α

2
e1d, Id, e

1
d).

In particular, there is a weak solution to MRCd(p(y),
α
2 e

1
d, Id, e

1
d). Besides, the processes (Xφ−1(t), t ≥ 0)

and ((Y yt )1,1, t ≥ 0) are independent.

Proof : From (14), a = e1d and b = 0, we get d(Y yt )i,j = 0 for 2 ≤ i, j ≤ d and

d(Y yt )1,1 = (α+ 1)dt+ 2

d∑

k=1

(
√

Y yt )1,k(dWt)k,1, d(Y
y
t )1,i =

d∑

k=1

(
√

Y yt )i,k(dWt)k,1. (15)

In particular, d〈(Y yt )1,1〉 = 4(Y yt )1,1dt and (Y yt )1,1 is a squared Bessel process of dimension α + 1. Since
α+ 1 ≥ 2 it almost surely never vanishes. Thus, (Xt, t ≥ 0) is well defined, and we get:

d(Xt)1,i = −α
2
(Xt)1,i

dt

(Y yt )1,1
+

d∑

k=1

(

(
√

Y yt )i,k
√

(Y yt )1,1yi,i
− (Xt)1,i

(
√

Y yt )1,k
(Y yt )1,1

)

(dWt)k,1 (16)

By Lemma 30, φ(t) is a.s. one-to-one on R+, and we consider the Brownian motion (W̃t, t ≥ 0) defined by

(W̃φ(t))i,j =
∫ t

0
(dWs)i,j√
(Y y

s )1,1
ds. We have by straightforward calculus

d(Xφ−1(t))1,i = −α
2
(Xφ−1(t))1,idt+

d∑

k=1





(
√

Y yφ−1(t))i,k
√
yi,i

− (Xφ−1(t))1,i

(
√

Y yφ−1(t))1,k
√

(Y yφ−1(t))1,1



 (dW̃t)k,1 (17)

d〈(Xφ−1(t))1,i, (Xφ−1(t))1,j〉 = [(Xφ−1(t))i,j − (Xφ−1(t))1,i(Xφ−1(t))1,j ]dt,

which shows by uniqueness of the solution of the martingale problem (Corollary 3) that (Xφ−1(t), t ≥ 0)
law
=

MRCd(p(y),
α
2 e

1
d, Id, e

1
d).

Let us now show the independence. We can check easily that

d〈(Xt)1,i, (Xt)1,j〉 =
1

(Y yt )1,1
[(Xt)i,j − (Xt)1,i(Xt)1,j ] and d〈(Xt)1,i, (Y

y
t )1,1〉 = 0. (18)

We define Ψ(y) ∈ Sd(R) for y ∈ S+
d (R) such that yi,i > 0 by Ψ(y)1,i = Ψ(y)i,1 = y1,i/

√
y1,1yi,i and

Ψ(y)i,j = yi,j otherwise. By (15) and (16), (Ψ(Yt), t ≥ 0) solves an SDE on Sd(R). This SDE has a unique
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weak solution. Indeed, we can check that for any solution (Ỹt, t ≥ 0) starting from Ψ(y), (Ψ−1(Ỹt), t ≥
0) ∼ WISd(y, α + 1, 0, e1d), which gives our claim since Ψ is one-to-one and weak uniqueness holds for
WISd(y, α + 1, 0, e1d) (see [5]). Let (Bt, t ≥ 0) denote a real Brownian motion independent of (Wt, t ≥ 0).
We consider a weak solution to the SDE

d(Ȳt)1,1 = (α + 1)dt+ 2
√

(Ȳt)1,1dBt, d(Ȳt)i,j = 0 for 2 ≤ i, j ≤ d,

d(Ȳt)1,i = −α
2
(Ȳt)1,i

dt

(Ȳt)1,1
+

d∑

k=1

(

(
√

Ȳt)i,k
√

(Ȳt)1,1yi,i
− (Ȳt)1,i

(
√

Ȳt)1,k

(Ȳt)1,1

)

(dWt)k,1, i = 2, . . . , d

that starts from Ȳ0 = Ψ(y). It solves the same martingale problem as Ψ(Yt), and therefore (Ψ(Yt), t ≥
0)

law
= (Ȳt, t ≥ 0). We set φ̄(t) =

∫ t

0
1

(Ȳs)1,1
ds. As above, ((Ȳφ̄−1(t))1,i, i = 2 . . . , d) solves an SDE driven by

(Wt, t ≥ 0) and is therefore independent of ((Ȳt)1,1, t ≥ 0), which gives the desired independence. 2

Remark 5 — There is a connection between squared-Bessel processes and one-dimensional Wright-Fisher
diffusions that is similar to Proposition 4. Let us consider Zit = zi + βit+

∫ t

0 σ
√

ZisdB
i
s, i = 1, 2 two squared

Bessel processes driven by independent Brownian motions. We assume that β1, β2, σ ≥ 0 and σ2 ≤ 2(β1+β2)
so that Yt = Z1

t +Z2
t is a squared Bessel processes that never reaches 0. By using Itô calculus, there is a real

Brownian (Bt, t ≥ 0) motion such that Xt = Z1
t /Yt satisfies

dXt = (β1 + β2)(
β1

β1 + β2
−Xt)

dt

Yt
+ σ

√

Xt(1−Xt)
dBt√
Yt
,

and we have 〈dXt, dYt〉 = 0. Thus, we can use the same argument as in the proof above: we set φ(t) =
∫ t

0
1/(Ys)ds and get that (Xφ−1(t), t ≥ 0) is a one-dimensional Wright-Fisher diffusion that is independent

of (Yt, t ≥ 0). This property obviously extends the well known identity between Gamma and Beta laws. This
kind of change of time have also been considered in the literature by [12] or [15] for similar but different
multi-dimensional settings.

1.4 A remarkable splitting of the infinitesimal generator

In this section, we present a remarkable splitting for the mean-reverting correlation matrices. This result
will play a key role in the simulation part. In fact, we have already obtained in [2] very similar properties
for Wishart processes. Of course, these properties are related through Proposition 4, which is illustrated in
the proof below.

Theorem 6 — Let α ≥ d− 2. Let L be the generator associated to the MRCd(x,
α
2 a

2, Id, a) on Cd(R) and
Li be the generator associated to MRCd(x,

α
2 e
i
d, Id, e

i
d), for i ∈ {1, . . . , d}. Then, we have

L =

d∑

i=1

a2iLi and ∀i, j ∈ {1, . . . , d}, LiLj = LjLi. (19)

Proof : The formula L =
∑d

i=1 a
2
iLi is obvious from (7). The commutativity property can be obtained

directly by a tedious but simple calculus, which is made in Appendix C. Here, we give another proof that
uses the link between Wishart and Mean-Reverting Correlation processes given by Proposition 4.

Let LWi denotes the generator of WISd(x, α+1, 0, eid). From [2], we have LWi L
W
j = LWj L

W
i for 1 ≤ i, j ≤

d. Let us consider α ≥ max(5, d− 2) and x ∈ Cd(R). We set for i = 1, 2 (Y i,xt , t ≥ 0) ∼WISd(x, α+1, 0, eid),
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and we assume that the Brownian motions of their associated SDEs are independent. Since LW1 LW2 = LW2 LW1 ,

we know from [2] that Y
1,Y 2,x

t
t

law
= Y

2,Y 1,x
t

t and thus

E[f(p(Y
1,Y 2,x

t
t ))] = E[f(p(Y

2,Y 1,x
t

t ))],

for any polynomial function f . By Proposition 4, p(Y
1,Y 2,x

t
t )

law
= X

1,p(Y 2,x
t )

(φ1)−1(φ1(t)), where (X
1,p(Y 2,x

t )

(φ1)−1(u), u ≥ 0) is a

mean-reverting correlation process independent of φ1(t) =
∫ t

0
1

(Y
1,Y

2,x
t

s )1,1

ds. Since (Y 2,x
t )1,1 = 1, (Y

1,Y 2,x
t

s )1,1

follows a squared Bessel of dimension α+ 1 starting from 1. Using the independence, we get by (12)

E[f(p(Y
1,Y 2,x

t
t ))|Y 2,x

t , φ1(t)] = f(p(Y 2,x
t )) + φ1(t)L1f(p(Y

2,x
t )) +

φ1(t)2

2
L2
1f(p(Y

2,x
t )) +O(φ1(t)3).

By Lemma 31, we have E[φ1(t)] = t+ 3−α
2 t2 +O(t3), E[φ1(t)2] = t+O(t3), E[φ1(t)3] = O(t3). Thus, we get:

E[f(p(Y
2,Y 1,x

t
t ))|Y 2,x

t ] = f(p(Y 2,x
t )) + tL1f(p(Y

2,x
t )) +

t2

2
[L2

1f(p(Y
2,x
t )) + (3− α)L1f(p(Y

2,x
t ))] +O(t3).

Once again, we use Proposition 4 and (12) to get similarly that E[f(p(Y 2,x
t ))] = f(x)+tL2f(x)+

t2

2 [L
2
2f(x)+

(3− α)L2f(x)] +O(t3) for any polynomial function f . We finally get:

E[f(p(Y
1,Y 2,x

t
t ))] = f(x)+ t(L1+L2)f(x)+

t2

2
[L2

1f(x)+2L2L1f(x)+L
2
2f(x)+(3−α)(L1+L2)f(x)]+O(t

3).

Similarly, we also have

E[f(p(Y
2,Y 1,x

t
t ))] = f(x)+t(L1+L2)f(x)+

t2

2
[L2

1f(x)+2L1L2f(x)+L
2
2f(x)+(3−α)(L1+L2)f(x)]t

2+O(t3),

(20)
and since both expectations are equal, we get L1L2f(x) = L2L1f(x) for any α ≥ max(5, d − 2). However,
we can write Li =

1
2 (αL

D
i + LMi ), with

LDi =
∑

1≤j≤d
j 6=i

x{i,j}∂{i,j} and LMi =
∑

1≤j,k≤d
j 6=i,k 6=i

(x{j,k} − x{i,j}x{i,k})∂{i,j}∂{i,k}.

Thus, we have α2LD1 L
D
2 +α(LD1 L

M
2 +LM1 L

D
2 ) +LM1 L

M
2 = α2LD2 L

D
1 +α(LD2 L

M
1 +LM2 L

D
1 ) +LM2 L

M
1 for any

α ≥ max(5, d− 2). This gives LD1 L
D
2 = LD2 L

D
1 , LD1 L

M
2 + LM1 L

D
2 = LD2 L

M
1 + LM2 L

D
1 , LM1 L

M
2 = LM2 L

M
1 , and

therefore L1L2 = L2L1 holds without restriction on α. 2

Remark 7 — Let x ∈ Cd(R), (Y 1,x
t , t ≥ 0) ∼ WISd(x, α + 1, 0, e1d) and LW1 its infinitesimal generator.

Equation (20) and the formula E[f(p(Y 1,x
t ))] = f(x) + tL1f(x) +

t2

2 [L
2
1f(x) + (3 − α)L1f(x)] +O(t3) used

in the proof above lead formally to the following identities for x ∈ Cd(R) and f ∈ C∞(Sd(R),R),

LW1 (f ◦ p)(x) = L1f(x), (LW1 )2(f ◦ p)(x) = L2
1f(x) + (3− α)L1f(x), L

W
1 LW2 (f ◦ p)(x) = L1L2f(x),

that can be checked by basic calculations.

The property given by Theorem 6 will help us to prove the weak existence of mean-reverting correlation
processes. It plays also a key role to construct discretization scheme for these diffusions. In fact, it gives a
simple way to sample the law MRCd(x,

α
2 a

2, Id, a; t). Let x ∈ Cd(R). We construct iteratively:

• X1,x
t ∼MRCd(x,

α
2 a

2
1e

1
d, Id, a1e

1
d; t),

9



• For 2 ≤ i ≤ d, conditionally to X i−1,...X
1,x
t

t , X i,...X
1,x
t

t ∼ MRCd(X
i−1,...X

1,x
t

t , α2 a
2
i e
i
d, Id, aie

i
d; t) is sam-

pled independently according to the distribution of a mean-reverting correlation process at time t with

parameters (α2 a
2
i e
i
d, Id, aie

i
d) starting from X i−1,...X

1,x
t

t .

Proposition 8 — Let Xd,...X
1,x
t

t be defined as above. Then, Xd,...X
1,x
t

t ∼MRCd(x,
α
2 a

2, Id, a; t).

Let us notice thatMRCd(x,
α
2 a

2
i e
i
d, Id, aie

i
d; t)

law
= MRCd(x,

α
2 e
i
d, Id, e

i
d; a

2
i t) and thatMRCd(x,

α
2 e
i
d, Id, e

i
d; t)

andMRCd(x,
α
2 e

1
d, Id, e

1
d; t) are the same law up to the permutation of the first and the i-th coordinate. Thus,

it is sufficient to be able to sample this latter law in order to sampleMRCd(x,
α
2 a

2, Id, a; t) by Proposition 8.
Proof : Let f be a polynomial function and Xx

t ∼ MRCd(x,
α
2 a

2, Id, a; t). By (11), E[f(Xx
t )] =

∑∞
j=0

tj

j!L
jf(x). Using once again (11), E[f(Xd,...X

1,x
t

t )] = E[E[f(Xd,...X
1,x
t

t )|Xd−1,...X
1,x
t

t ]]

=
∑∞
j=0

tj

j!E[L
j
df(X

d−1,...X
1,x
t

t )], and we finally obtain by iterating

E[f(Xd,...X
1,x
t

t )] =

∞∑

j1,...,jd=0

tj1+···+jd

j1! . . . jd!
Lj11 . . . Ljdd f(x) =

d∑

j=0

tj

j!
(L1 + · · ·+ Ld)

jf(x) = E[f(Xx
t )],

since the operators commute. 2

We can also extend Proposition 8 to the limit laws. More precisely, let us denote by MRCd(x, κ, c, a;∞)
the law characterized by (13). We define similarly for x ∈ Cd(R), X

1,x
∞ ∼MRCd(x,

α
2 a

2
1e

1
d, Id, a1e

1
d;∞) and,

conditionally to X i−1,...X
1,x
∞

∞ , X i,...X
1,x
∞

∞ ∼MRCd(X
i−1,...X

1,x
∞

∞ , α2 a
2
i e
i
d, Id, aie

i
d;∞) for 2 ≤ i ≤ d. We have:

Xd,...X
1,x
∞

∞ ∼MRCd(x,
α

2
a2, Id, a;∞). (21)

To check this we consider (Xt, t ≥ 0) ∼ MRCd(x,
α
2 a

2, Id, a) and m ∈ Sd(N) such that mi,i = 0. By

Proposition 2, E[Xm
t ] is a polynomial function of x that we write E[Xm

t ] =
∑

m′∈Sd(N),|m′|≤|m| γm,m′(t)xm
′
.

From the convergence in law (13), we get that the coefficients γm,m′(t) go to a limit γm,m′(∞) when t→ +∞,

and E[Xm
∞] =

∑

|m′|≤|m| γm,m′(∞)xm
′
. Similarly, the moment m of MRCd(x,

α
2 a

2
i e
i
d, Id, aie

i
d; t) can be

written as
∑

|m′|≤|m| γ
i
m,m′(t)xm

′
. We get from Proposition 8:

E[Xm
t ] =

∑

|m1|≤···≤|md|≤|m|
γdm,md

(t)γd−1
md,md−1

(t) . . . γ1m2,m1
(t)xm1 ,

which gives (21) by letting t→ +∞.

1.5 A link with the multi-allele Wright-Fisher model

Theorem 6 and Proposition 8 have shown that any lawMRCd(x,
α
2 a

2, Id, a; t) can be obtained by compo-
sition with the elementary law MRCd(x,

α
2 , Id, e

1
d; t). By the next proposition, we can go further and focus

on the case where (xi,j)2≤i,j≤d = Id−1.

Proposition 9 — Let x ∈ Cd(R). Let u ∈ Md−1(R) and x̌ ∈ Cd(R) such that x =

(
1 0
0 u

)

x̌

(
1 0
0 uT

)

and (x̌)2≤i,j≤d = Id−1 (Lemma 26 gives a construction of such matrices). Then, for α ≥ 2,

MRCd(x,
α

2
e1d, Id, e

1
d)

law
=

(
1 0
0 u

)

MRCd(x̌,
α

2
e1d, Id, e

1
d)

(
1 0
0 uT

)

.
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Proof : Let (X̌t, t ≥ 0) ∼ MRCd(x̌,
α
2 e

1
d, Id, e

1
d). We set Xt =

(
1 0
0 u

)

X̌t

(
1 0
0 uT

)

. Clearly,

((X̌t)i,j)2≤i,j≤d = Id−1 and the matrix ((Xt)i,j)2≤i,j≤d is constant and equal to uuT = (xi,j)2≤i,j≤d. We have

for 2 ≤ i ≤ d, (Xt)1,i =
∑d
k=2 ui−1,k−1(X̌t)1,k. By (6), we get 〈d(X̌t)1,k, d(X̌t)1,l〉 = [1k=l−(X̌t)1,k(X̌t)1,l]dt.

Therefore, the quadratic variations

〈d(Xt)1,i, d(Xt)1,j〉 =





d∑

k=2

ui−1,k−1uj−1,k−1 −
d∑

k,l=2

ui−1,k−1(X̌t)1,kui−1,l−1(X̌t)1,l



 dt

= ((Xt)i,j − (Xt)1,i(Xt)1,j) dt,

are by (6) the one ofMRCd(x,
α
2 e

1
d, Id, e

1
d). This gives the claim by using the weak uniqueness (Corollary 3).

2

For x ∈ Sd(R) such that (xi,j)2≤i,j≤d = Id−1 and x1,1 = 1, we have det(x) = 1−∑d
i=2 x

2
1,i and therefore

x ∈ Cd(R) ⇐⇒
d∑

i=2

x21,i ≤ 1. (22)

The process (Xt)t≥0 ∼MRCd(x,
α
2 , Id, e

1
d; t) is such that ((Xt)i,j)2≤i,j≤d = Id−1. In this case, the only non

constant elements are on the first row (or column). More precisely, ((Xt)1,i)i=2,...,d is a vector process on
the unit ball in dimension d− 1 such that

d〈(Xt)1,i, (Xt)1,j〉 = (1i=j − (Xt)1,i(Xt)1,j)dt.

For i = 1, . . . , d − 1, we set ζit = (Xt)
2
1,i+1. We have 〈dζit , dζjt 〉 = 4ζit(1i=j − ζjt )dt and the drift of ζit is

(1− (1 + 2α)ζit)dt . Thus, (ζ
i
t )1≤i≤d−1 satisfies

∑d−1
i=1 ζ

i
t ≤ 1 and has the following infinitesimal generator

d−1∑

i=1

[1− (1 + 2α)zi]∂zi + 2
∑

1≤i,j≤d−1

zi(1i=j − zj)∂zi∂zj

This is a particular case of the multi-allele Wright-Fisher diffusion (see for example Etheridge [11]), where

(ζ1t , . . . , ζ
d−1
t , 1 −∑d−1

i=1 ζ
i
t) describes population ratios along the time. Similar diffusions have also been

considered by Gourieroux and Jasiak [14] in a different context. Roughly speaking, ((Xt)1,i)2≤i≤d can be
seen as a square-root of a multi-allele Wright-Fisher diffusion that is such that its drift coefficient remains
linear.

Also, the identity in law given by Proposition 9 allows us to compute more explicitly the ergodic limit law.
Let x ∈ Cd(R) such that (xi,j)2≤i,j≤d = Id−1, (X

x
t )t≥0 ∼MRCd(x,

α
2 e

1
d, Id, e

1
d) and (Y xt )t≥0 ∼WISd(x, α+

1, 0, e1d). We know by [2] that ((Y xt )i,j)1≤i,j≤d = Id−1 and

((Y xt )1,i)1≤i≤d
law
= (Z

x1,1

t +

d∑

i=2

(x1,i +
√
tNi)

2, x1,2 +
√
tN2, . . . , x1,d +

√
tNd),

where Ni ∼ N (0, 1) are independent standard Gaussian variables and Z
x1,1

t = x1,1 + (α + 2 − d)t +

2
∫ t

0

√

Z
x1,1
u dβu is a Bessel process independent of the Gaussian variables starting from x1,1. By a time

scaling, we have Z
x1,1

t
law
= tZ

x1,1/t
1 , and thus:

(p(Y xt )1,i)2≤i≤d
law
=

(
x1,2√
t
+N2, . . . ,

x1,d√
t
+Nd

)

√

Z
x1,1/t
1 +

∑d
i=2(

x1,i√
t
+Ni)2

→
t→+∞

(N2, . . . , Nd)
√

Z0
1 +

∑d
i=2N

2
i

.
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On the other hand, we know that Xx
t converges in law when t → +∞, and Proposition 4 immediately gives,

with the help of Lemma 30 that ((Xx
∞)1,i)2≤i≤d

law
= (N2,...,Nd)√

Z0
1+
∑d

i=2 N
2
i

. By simple calculations, we get that

((Xx
∞)1,i)2≤i≤d has the following density:1∑d

i=2 z
2
i≤1

Γ
(
α+1
2

)

(
√
π)d−1Γ

(
α+2−d

2

)

(

1−
d∑

i=2

z2i

)

. (23)

In particular, we can check that ((Xx
∞)21,i)2≤i≤d follows a Dirichlet law, which is known as the ergodic limit

of multi-allele Wright-Fisher models. Last, let us mention that we can get an explicit but cumbersome
expression of the density of the law MRCd(x,

α
2 a

2, Id, a;∞) by combining (21), Proposition 9 and (23).

2 Existence and uniqueness results for MRC processes

In this section we show weak and strong existence results for the SDE (2), respectively under assump-
tions (3) and (4). These assumptions are of the same nature as the one known for Wishart processes. To
prove the strong existence and uniqueness, we make assumptions on the coefficients that ensures that Xt

remains in the set of the invertible correlation matrices where the coefficients are locally Lipschitz. This is
similar to the proof given by Bru [5] for Wishart processes. Then, we prove the weak existence by introducing
a sequence of processes defined on Cd(R), which is tight such that any subsequence limit solves the martingale
problem (8). Next, we extend our existence results when the parameters are no longer constant. Last, we
exhibit some change of probability that preserves the global dynamics of our Mean-Reverting Correlation
processes.

2.1 Strong existence and uniqueness

Theorem 10 — Let x ∈ C
∗
d(R). We assume that (4) holds. Then, there is a unique strong solution of the

SDE (2) that is such that ∀t ≥ 0, Xt ∈ C
∗
d(R).

Proof : By Lemma 23, we have (
√
x− xendx)

[n]
=
√

x[n] − xn(xn)T and x[n] − xn(xn)T ∈ S+,∗
d−1(R) when

x ∈ C
∗
d(R). For x ∈ S+,∗

d (R) such that x[n]−xn(xn)T ∈ S+,∗
d−1(R), we define f

n(x) ∈ S+
d (R) by (fn(x))n,j = 0

for 1 ≤ j ≤ d and (fn(x))
[n]

=
√

x[n] − xn(xn)T . The function fn is well defined on an open set of Sd(R)
that includes C∗

d(R), and is such that fn(x) =
√
x− xendx for x ∈ C

∗
d(R). Since the square-root of a positive

semi-definite matrix is locally Lipschitz on the positive definite matrix set, we get that the SDE

Xt = x+

∫ t

0

(κ(c−Xs) + (c−Xs)κ) ds+

d∑

n=1

an

∫ t

0

(
fn(Xs)dWse

n
d + enddW

T
s f

n(Xs)
)
,

has a unique strong solution for 0 ≤ t < τ , where

τ = inf{t ≥ 0, Xt 6∈ S+,∗
d (R) or ∃i ∈ {1, . . . , d}, Xt

[i] −X i
t(X

i
t)
T 6∈ S+,∗

d−1(R)}, inf ∅ = +∞.

For 1 ≤ i ≤ d, we have (fn(Xs)dWse
n
d )i,i = 1i=n∑d

j=1 f
n(Xs)n,j(dWs)j,n = 0 and then:

d(Xt)i,i = 2κi,i(1− (Xt)i,i)dt,

which immediately gives (Xt)i,i = 1 for 0 ≤ t < τ . Thus, Xt ∈ C
∗
d(R) for 0 ≤ t < τ and τ = inf{t ≥ 0, Xt 6∈

C
∗
d(R)} by Lemma 23, and the process Xt is solution of (2) up to time τ . We set Yt = log(det(Xt))+Tr(2κ−
a2)t. By Lemma 28, we have

Yt = Y0 +

∫ t

0

Tr[X−1
s (κc+ cκ− da2)]ds+ 2

∫ t

0

√

Tr[a2(X−1
t − Id)]dβs

≥ Y0 + 2

∫ t

0

√

Tr[a2(X−1
t − Id)]dβs,

12



since κc+ cκ− da2 ∈ S+
d (R) by Assumption (4). Now, we use the McKean argument exactly like Bru [5] did

for Wishart processes: on {τ <∞}, Yt →
t→τ

−∞, and the local martingale
∫ t

0

√

Tr[a2(X−1
t − Id)]dβs →

t→τ
−∞,

which is almost surely not possible. We deduce that τ = +∞, a.s. 2

2.2 Weak existence and uniqueness

The weak uniqueness has already been obtained in Proposition 2, and we provide in this section a
constructive proof of a weak solution to the SDE (2). In the case d = 2, this result is already well-known.
In fact, by Proposition 1, the associated martingale problem is the one of a one-dimensional Wright-Fisher
process. For this SDE, strong (and therefore weak) existence and uniqueness holds since the diffusion
coefficient is 1/2-Hölderian.

Thus, we can assume without loss of generality that d ≥ 3. The first step is to focus on the existence
when a = diag(a1, . . . , ad) ∈ S+

d (R), α ≥ d− 2, κ = α
2 a

2 and c = Id. By Proposition 4, we know that weak
existence holds for MRCd(x,

α
2 e

1
d, Id, e

1
d), and thus for MRCd(x,

α
2 a

2
i e
i
d, Id, aie

i
d) for i = 1, . . . , d and ai ≥ 0,

by using a permutation of the coordinates and a linear time-scaling. Therefore, by using Proposition 8, the
distribution MRCd(x,

α
2 a

2, Id, a; t) is also well-defined on Cd(R) for any t ≥ 0. Let T > 0 be a time-horizon,

N ∈ N∗, and tNi = iT/N . We define (X̂N
t , t ∈ [0, T ]) as follows.

• We set X̂N
0 = x.

• For i = 0, . . . , N−1, X̂N
tNi+1

is sampled according to the lawMRCd(X̂
N
tNi
, α2 a

2, Id, a;T/N), conditionally

to X̂N
tNi
.

• For t ∈ [tNi , t
N
i+1], X̂

N
t =

t−tNi
T/N X̂N

tNi
+

tNi+1−t
T/N X̂N

tNi+1
= X̂N

tNi
+

t−tNi
T/N (X̂N

tNi+1
− X̂N

tNi
).

The process (X̂N
t , t ∈ [0, T ]) is continuous and such that almost surely, ∀t ∈ [0, T ], X̂N

t ∈ Cd(R). We endow

the set of matrices with the norm ‖x‖ =
(
∑d

i,j=1 x
4
i,j

)1/4

. The sequence of processes (X̂N
t , t ∈ [0, T ])N≥1

satisfies the following Kolmogorov tightness criterion.

Lemma 11 — Under the assumptions above, there is a constant K > 0 such that:

∀0 ≤ s ≤ t ≤ T, E[‖X̂N
t − X̂N

s ‖4] ≤ K(t− s)2. (24)

Proof : We first consider the case s = tNk and t = tNl for some 0 ≤ k ≤ l ≤ N . Then, by Proposition 8,

we know that conditionally on X̂N
tN
k

, X̂N
tN
l

follows the law of MRCd(X̂
N
tN
k

, α2 a
2, Id, a). In particular, each

element (X̂N
tNl
)i,j follows the marginal law of a one-dimensional Wright-Fisher process with parameters given

by equation (9). Thus, by Proposition 29 there is a constant still denoted by K > 0 such that for any
1 ≤ i, j ≤ d, E[((X̂N

tNl
)i,j − (X̂N

tNk
)i,j)

4] ≤ K(tNl − tNk )2, and therefore

E[‖X̂N
tNl

− X̂N
tNk
‖4] ≤ Kd2(tNl − tNk )2.

Let us consider now 0 ≤ s ≤ t ≤ T . If there exists 0 ≤ k ≤ N − 1, such that s, t ∈ [tNk , t
N
k+1], then

E[‖X̂N
t − X̂N

s ‖4] =
(
s−t
T/N

)4

E[‖X̂N
tNk+1

− X̂N
tNk
‖4] ≤ Kd2(s − t)2. Otherwise, there are k ≤ l such that

tNk −T/N < s ≤ tNk ≤ tNl ≤ t < tNl +T/N , and E[‖X̂N
t − X̂N

s ‖4] ≤ Kd2[(tNk − s)2+(t− tNl )2+(tNl − tNk )2] ≤
K ′(t− s)2 for some constant K ′ > 0. 2

13



The sequence (X̂N
t , t ∈ [0, T ])N≥1 is tight, and we will show that any limit of subsequence solves the

martingale problem (8). More precisely, we will show that for any n ∈ N∗, 0 ≤ t1 ≤ · · · ≤ tn ≤ s ≤ t ≤ T ,
g1, . . . , gn ∈ C(Sd(R),R), f ∈ C∞(Sd(R),R) we have:

lim
N→+∞

E

[
n∏

i=1

gi(X̂
N
ti )

(

f(X̂N
t )− f(X̂N

s )−
∫ t

s

Lf(X̂N
u )du

)]

= 0. (25)

We set kN (s) and lN (t) the indices such that tNkN (s) − T/N < s ≤ tNkN (s) and tNlN (t) ≤ t < tNlN (t) + T/N .

Clearly, f is Lipschitz and Lf is bounded on Cd(R). It is therefore sufficient to show that

lim
N→+∞

E





n∏

i=1

gi(X̂
N
ti )



f(X̂N
tN
lN (t)

)− f(X̂N
tN
kN (s)

)−
∫ tN

lN (t)

tN
kN (s)

Lf(X̂N
u )du







 = 0. (26)

We decompose the expectation as the sum of

E





n∏

i=1

gi(X̂
N
ti )

∫ tN
lN (t)

tN
kN (s)

(Lf(X̂N
tN
lN (u)

)− Lf(X̂N
u ))du



+E





n∏

i=1

gi(X̂
N
ti )





lN (t)−1
∑

j=kN (s)

f(X̂N
tNj+1

)− f(X̂N
tNj
)− T

N
Lf(X̂N

tNj
)









(27)
To get that the first expectation goes to 0, we claim that:

E





∫ tN
lN (t)

tN
kN (s)

|β(u, X̂N
u )− β(tNlN (u), X̂

N
tN
lN (u)

)|du



→ 0 (28)

when β : (t, x) ∈ [0, T ]× Cd(R) → R is continuous. This formulation will be reused later on. By Lemma 11,
(28) holds when β is Lipschitz with respect to (t, x). If β is not Lipschitz, we can still approximate it
uniformly on the compact set [0, T ] × Cd(R) by using for example the Stone-Weierstrass theorem, which
gives (28).

On the other hand, we know by (12) that the second expectation goes to 0. To be precise, (12) has been
obtained by using Itô’s formula while we do not know yet at this stage that the process MRCd(x,

α
2 a

2, Id, a)
exists. It is nevertheless true: (12) holds for MRCd(x,

α
2 a

2
i e
i
d, Id, e

i
d) since this process is already known to

be well defined, and we get by using Proposition 8 and Proposition 18 that ∃K > 0, |f(X̂N
tNj+1

) − f(X̂N
tNj
) −

(T/N)Lf(X̂N
tNj
)| ≤ K/N2. Thus, (X̂N

t , t ∈ [0, T ])N≥1 converges in law to a solution of the martingale

problem (8). This concludes the existence of MRCd(x,
α
2 a

2, Id, a).
Now, we are in position to show the existence of MRCd(x, κ, c, a) under Assumption (3). We denote by

ξ(t, x) the solution to the linear ODE:

ξ′(t, x) = κ(c− x) + (c− x)κ− d− 2

2
[a2(Id − x) + (Id − x)a2], ξ(0, x) = x ∈ Cd(R). (29)

By Lemma 22, we know that ∀t ≥ 0, ξ′(t, x) ∈ Cd(R). It is also easy to check that:

∃K > 0, ∀x ∈ Cd(R), ‖ξ(t, x)− x‖ ≤ Kt.

Now, we define (X̂N
t , t ∈ [0, T ]) as follows.

• We set X̂N
0 = x ∈ Cd(R).

• For i = 0, . . . , N−1, X̂N
tNi+1

is sampled according toMRCd(ξ(T/N, X̂
N
tNi
), d−2

2 a2, Id, a;T/N), condition-
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ally to X̂N
tNi
. More precisely, we denote by (X̄N

t , t ∈ [tNi , t
N
i+1]) a solution to

X̄N
t = ξ(T/N, X̂N

tNi
) +

d− 2

2

∫ t

tNi

[
a2(Id − X̄N

u ) + (Id − X̄N
u )a2

]
du

+

d∑

n=1

an

∫ t

tNi

(√

X̄N
u − X̄N

u e
n
d X̄

N
u dWue

n
d + enddW

T
u

√

X̄N
u − X̄N

u e
n
d X̄

N
u

)

,

and we set X̂N
tNi+1

= X̄N
tNi+1

.

• For t ∈ [tNi , t
N
i+1], X̂

N
t = X̂N

tNi
+

t−tNi
T/N (X̂N

tNi+1
− X̂N

tNi
).

We proceed similarly and show that the Kolmogorov criterion (24) holds for (X̂N
t , t ∈ [0, T ])N≥1. As already

shown in Lemma 11, it is sufficient to check that this criterion holds for s = tNk ≤ t = tNl . We have

‖X̂N
tN
l
− X̂N

tN
k
‖4 = ‖

l−1∑

j=k

X̂N
tNj+1

− ξ(T/N, X̂N
tNj
) + ξ(T/N, X̂N

tNj
)− X̂N

tNj
‖4

≤ 23



‖
l−1∑

j=k

X̄N
tNj+1

− X̄N
tNj
‖4 + (l − k)4

(
KT

N

)4


 .

Since (X̄N
t , t ∈ [0, T ]) is valued in the compact set Cd(R), we get easily by using Burkholder-Davis-Gundy

inequality that E[‖∑l−1
j=k X̄

N
tNj+1

− X̄N
tNj
‖4] ≤ K(tl − tk)

2 and then E[‖X̂N
tN
l

− X̂N
tN
k

‖4] ≤ K(tl − tk)
2 for some

constant K > 0 that does not depend on N .
Thus, (X̂N

t , t ∈ [0, T ])N≥1 satisfies the Kolmogorov criterion and is tight. It remains to show that any
subsequence converges in law to the solution of the martingale problem (8). We proceed as before and reuse
the same notations. From (27), it is sufficient to show that

∃K > 0, |f(X̂N
tNj+1

)− f(X̂N
tNj
)− (T/N)Lf(X̂N

tNj
)| ≤ K/N2.

Once again, we cannot directly use (12) since we do not know at this stage that MRCd(x, κ, c, a) exists.
We have L = Lξ + L̃, where Lξ is the operator associated to ξ(t, x) and L̃ is the infinitesimal generator of
MRCd(x,

d−2
2 a2, Id, a). We have: ∃K > 0, ∀x ∈ Cd(R), |f(ξ(t, x)) − f(x) − tLξf(x)| ≤ Kt2, and (12) holds

for L̃. By Proposition 18, we get: ∃K > 0, ∀x ∈ Cd(R), |f(ξ(t, x)) − f(x) − tf(x)| ≤ Kt2, which gives (25)
and concludes the proof of the weak existence.

Theorem 12 — Under assumption (3), there is a unique weak solution (Xt, t ≥ 0) to SDE (2) such that
P(∀t ≥ 0, Xt ∈ Cd(R)) = 1.

Remark 13 — Assumption (3) has only be used in the proof of Theorem 12 to ensure that ξ defined by (29)
satisfies

∀t ≥ 0, x ∈ Cd(R), ξ(t, x) ∈ Cd(R). (30)

As pointed by Remark 21, this is a sufficient but not necessary condition. In fact, a weak solution of (2)
exists under (30), which is more general but less tractable condition than (3).
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2.3 Extension to non-constant coefficients

In this paragraph, we consider the SDE (2) with time and space dependent coefficients:

Xt = x+

∫ t

0

[κ(s,Xs)(c(s,Xs)−Xs) + (c(s,Xs)−Xs)κ(s,Xs)] ds (31)

+

d∑

n=1

an(s,Xs)

∫ t

0

(√

Xs −XsendXsdWse
n
d + enddW

T
s

√

Xs −XsendXs

)

,

where κ(t, x), c(t, x) and a(t, x) are measurable functions such that for any t ≥ 0 and x ∈ Cd(R), κ(t, x) and
a(t, x) are nonnegative diagonal matrices and c(t, x) ∈ Cd(R). Then, under the following assumption

∀T > 0, sup
t∈[0,T ]

|κ(t, Id)| <∞, ∀t ∈ [0, T ], ∃K > 0, ‖f(t, x)− f(t, y)‖ ≤ K‖x− y‖ for f ∈ {κ, c, a},

∀t ≥ 0, x ∈ Cd(R), κ(t, x)c(t, x) + c(t, x)κ(t, x) − da2(t, x) ∈ S+
d (R) and X0 ∈ C

∗
d(R), (32)

strong existence and uniqueness holds for (31). To get this result, we observe that p(x) is Lipschitz on

{x ∈ S+
d (R) s.t. ∀1 ≤ i ≤ d, 1/2 ≤ xi,i ≤ 2}. Therefore, the SDE Xt = x+

∫ t

0

(
κ(s,p(Xs))[c(s,p(Xs))−Xs]

+[c(s,p(Xs)) − Xs]κ(s,p(Xs))
)
ds +

∑d
n=1

∫ t

0 an(s,p(Xs))
(
fn(Xs)dWse

n
d + enddW

T
s f

n(Xs)
)
has a unique

solution up to time τ = inf{t ≥ 0, Xt 6∈ S+,∗
d (R) or ∃i ∈ {1, . . . , d}, Xt

[i] −X i
t(X

i
t)
T 6∈ S+,∗

d−1(R) or (Xt)i,i 6∈
[1/2, 2]}, and we proceed then exactly as for the proof of Theorem 10.

Also, weak existence holds for (31) if we assume that:

κ(t, x), c(t, x), a(t, x) are continuous on R+ × Cd(R)

∀t ≥ 0, x ∈ Cd(R), κ(t, x)c(t, x) + c(t, x)κ(t, x) − (d− 2)a2(t, x) ∈ S+
d (R). (33)

To get this result, we proceed as in Section 2.2 and define (X̂N
t , t ∈ [0, T ]) as follows.

• We set X̂N
0 = x.

• For i = 0, . . . , N − 1, we denote by (X̄N
t , t ∈ [tNi , t

N
i+1]) a solution to

X̄N
t = X̂N

tNi
+

∫ t

tNi

[

κ(tNi , X̂
N
tNi
)(c(tNi , X̂

N
tNi
)− X̄N

u ) + (c(tNi , X̂
N
tNi
)− X̄N

u )κ(tNi , X̂
N
tNi
)
]

du

+

d∑

n=1

an(t
N
i , X̂

N
tNi
)

∫ t

tNi

(√

X̄N
u − X̄N

u e
n
d X̄

N
u dWue

n
d + enddW

T
u

√

X̄N
u − X̄N

u e
n
d X̄

N
u

)

,

and we set X̂N
tNi+1

= X̄N
tNi+1

.

• For t ∈ [tNi , t
N
i+1], X̂

N
t = X̂N

tNi
+

t−tNi
T/N (X̂N

tNi+1
− X̂N

tNi
).

We can check that (X̂N
t , t ∈ [0, T ]) satisfies the Kolmogorov criterion and is tight. To obtain (25), we proceed

as in Section 2.2. More precisely, let us denote for u ∈ [0, T ] Lu the infinitesimal generator of (31), and L̂u
the infinitesimal generator with frozen coefficient at (ti, X̂

N
tNi
) when u ∈ [tNi , t

N
i+1). In (27), the first term

E

[
∏n
i=1 gi(X̂

N
ti )
∫ tN

lN (t)

tN
kN (s)

(L̂uf(X̂
N
tN
lN (u)

)− Luf(X̂
N
u ))du

]

→ 0 thanks to (28), and the second term goes to 0 as

before.
To sum up, it is rather easy to extend our results of strong existence and uniqueness, and weak existence

when the coefficients are not constant. However, we can no longer get explicit formulas for the moments in
this case. Thus, if the coefficients satisfy (33) but not (32), the weak uniqueness remains an open question,
which is beyond the scope of this paper.
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2.4 A Girsanov Theorem

In this section, we will use an alternative writing of the SDE (2). In fact, by Lemma (27), the SDE

Xt = x+

∫ t

0

(κ(c−Xs) + (c−Xs)κ) ds+

d∑

n=1

an

∫ t

0

(
hn(Xs)dWse

n
d + enddW

T
s hn(Xs)

T
)
, (34)

is associated to the same martingale problem as MRCd(x, κ, c, a) for any functions hn : Sd(R) → Md(R)
such that hn(x)hn(x)

T = x − xendx for x ∈ Cd(R). In this paper, we have arbitrarily decided to take the
symmetric version hn(x) =

√
x− xendx. Obviously, other choices are possible. An interesting choice is the

following one:

x ∈ S+
d (R), hn(x) =

√
x
√

Id −
√
xend

√
x =

√
x(Id −

√
xend

√
x), (35)

where the second equality comes from Lemma 24. Obviously, our weak existence and uniqueness results (The-
orem 12) applies to (34) since (2) and (34) solve the same martingale problem. However, we have to show
again that strong uniqueness holds for (34) under Assumption (4) and x ∈ C

∗
d(R). The proof is in fact very

similar to Theorem 10. We know that there is one strong solution to Xt = x+
∫ t

0
(κ(c−Xs) + (c−Xs)κ) ds

+
∑d
n=1 an

∫ t

0

(√
Xs(Id −

√
Xse

n
d

√
Xs)dWse

n
d + end (Id −

√
Xse

n
d

√
Xs)

√
XsdW

T
s

)
up to time τ = inf{t ≥

0, Xt 6∈ S+
d (R)}. On t ∈ [0, τ), there are real Brownian motions βit such that

d(Xt)i,i = 2κi(1 − (Xt)i,i)dt+ 2ai(1− (Xt)i,i)
√

(Xt)i,idβ
i
t ,

which gives (Xt)i,i = 1 by strong uniqueness of this SDE. We then conclude as in the proof of Theorem 10
and get in particular that Xt ∈ C

∗
d(R) for t ≥ 0.

We consider now a solution to (34), and a progressively measurable process (Hs)s≥0, valued in Md(R),
such that

EHt = exp

(∫ t

0

Tr(HT
s dWs)−

1

2

∫ t

0

Tr(HT
s Hs)ds

)

(36)

is a martingale. For a given time horizon T > 0, we denote by Q the probability measure, if it exists, defined
as

dQ

dP

∣
∣
∣
FT

= EHT , (37)

where (Ft)t≥0 is the natural filtration of the process (Xt)t≥0. Then, W
Q
t =Wt−

∫ t

0 Hsds is a d×d Brownian
matrix under Q, and the process (Xt)t≥0 satisfies

Xt = x+

∫ t

0

(κ(c−Xs) + (c−Xs)κ) ds (38)

+

∫ t

0

(
d∑

i=1

ai

{√

Xs

[

Id −
√

Xse
i
d

√

Xs

]

Hse
i
d + eidH

T
s

[

Id −
√

Xse
i
d

√

Xs

]√

Xs

}
)

ds

+

d∑

i=1

ai

∫ t

0

(√

Xs

[

Id −
√

Xse
i
d

√

Xs

]

dWQ
s e

i
d + eidd(W

Q
s )

T
[

Id −
√

Xse
i
d

√

Xs

]√

Xs

)

.

We present now changes of probability such that (Xt, t ≥ 0) is also a mean-reverting correlation process
under Q.

Proposition 14 — We assume (3). We consider (Xt, t ≥ 0) ∼ MRCd(x, κ, c, a) and take Ht =
√
Xtλ,

with λ = diag(λ1, . . . , λd) ∈ Sd(R). Then, (36) is a martingale and (Xt, t ≥ 0) ∼MRCd(x, κ, c, a) under Q.

Proof : Since the process (Xt, t ≥ 0) is bounded, (36) is clearly a martingale. For y ∈ Cd(R), e
i
dye

i
d = eid

and we have
(√
y(Id −√

yeid
√
y)
)√

yλeid = λi(y − yeidy)e
i
d = 0, which gives the result by (38). 2
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Proposition 15 — Let x ∈ C
∗
d(R). We consider (Xt, t ≥ 0) ∼MRCd(x, κ

1, c1, a) and assume that κ1, c1, a
satisfy (4). Let c2 ∈ Cd(R) and κ

2 be a real diagonal matrix such that ai = 0 =⇒ κ2i = 0 and κ1c1 + c1κ1 +
κ2c2 + c2κ2 − da2 ∈ S+

d (R). We set:

λ = diag(λ1, . . . , λd) with λi =

{

κ2i /ai if ai > 0

0 otherwise
and Ht = (

√

Xt)
−1c2λ

This defines with (36) and (37) a change of probability such that

(Xt, t ≥ 0) ∼MRCd(x, κ, c, a) under Q,

where κ = diag(κ1, . . . , κd) ∈ S+
d (R) and c ∈ Cd(R) are defined as in Lemma 22.

Proof : We have a1i
√
y(Id−√

yeid
√
y)
√
y−1c2λeid = κ2i (c

2eid−yeidc2eid) = κ2i (c
2−y)eid, which gives the claim

by (38), provided that E[EHT ] = 1 for any T > 0. We prove now this martingale property with an argument
already used in Rydberg [26] and Cheridito, Filipovic, and Yor ([29], Theorem 2.4).

Let (Xt, t ≥ 0) (resp. (X̄t, t ≥ 0)) be a strong solution to (34) with parameters κ1, c1, a (resp. κ, c, a)
and Brownian motion (Wt, t ≥ 0). For ε > 0, we define:

τε = inf{t ≥ 0, det(Xt) ≤ ε}, Hε
t = 1τε≥t(

√

Xt)
−1c2λ.

We have limε→0+ τ
ε = +∞, a.s. and therefore

E[EHT ] = lim
ε→0

E[EHT 1τε≥T ].

On the other hand, we have E[EHT 1τε≥T ] = E[EHε

T 1τε≥T ]. We clearly have E[EHε

T ] = 1 and W ε
t =

Wt −
∫ t

0
Hε
sds is a Brownian motion under dQε

dP = EHε

T . Let (X̄ε
t , t ∈ [0, T ]) be the strong solution to (34)

with the Brownian motion W ε
t and parameters κ, c, a. By construction, X̄ε

t = Xt for 0 ≤ t ≤ T ∧ τε

and thus 1τε≥T = 1τ̄ε≥T , where τ̄ε = inf{t ≥ 0, det(X̄ε
t ) ≤ ε}. We deduce that E[EHε

T 1τε≥T ] = Qε(τ̄ε ≥
T ) = P(inf{t ≥ 0, det(X̄t) ≤ ε} ≥ T ) →

ε→0+
1, since κc+cκ−da2 = κ1c1+c1κ1+κ2c2+c2κ2−da2 ∈ S+

d (R). 2

Let us assume now that ai > 0 for any 1 ≤ i ≤ d. A consequence of Proposition 15 is that the probability
measures induced by MRCd(x, κ, c, a) and MRCd(x, κ

′, c′, a) are equivalent as soon as (4) holds for κ, c, a
and κ′, c′, a. By transitivity, it is in fact sufficient to check this for κ′ = d

2a
2 and c′ = Id. By Lemma 22,

there is a diagonal nonnegative matrix κ̃ and c̃ ∈ Cd(R) such that κ̃c̃+ c̃κ̃ = κc+ cκ− da2. We get then the
probability equivalence by using twice Proposition 15 with κ1 = d

2a
2, c1 = Id, κ

2 = κ̃, c2 = c̃ and κ1 = κ,
c1 = c, κ2 = −κ̃, c2 = c̃.

3 Second order discretization schemes for MRC processes

In the previous sections, we focused on the existence of Mean-Reverting Correlation processes (2) and
some of their mathematical properties. From a practical perspective, it is also very important to be able
to sample such processes. By sampling, we mean here that we have an algorithm to generate the process
on a given time-grid. Through this section, we will consider for sake of simplicity a regular time grid
tNi = iT/N, i = 0, . . . , N for a given time horizon T > 0. Despite our investigations, the sampling of the
exact distribution does not seem trivial, and we will focus on discretization schemes. Anyway, discretization
schemes are in practice equally or more efficient than exact sampling, at least in the case of square-root
diffusions such as Cox-Ingersoll-Ross process and Wishart process (see respectively [4] and [2]). First, let us
say that usual schemes such as Euler-Maruyama fail to be defined for (2) as well as for other square-root
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diffusions. Indeed, this scheme is given by

X̂N
tNi+1

= X̂N
tNi

+
(

κ(c− X̂N
tNi
) + (c− X̂N

tNi
)κ
) T

N
(39)

+

d∑

n=1

an

(√

X̂N
tNi

− X̂N
tNi
end X̂

N
tNi
(WtNi+1

−WtNi
)end + end (WtNi+1

−WtNi
)T
√

X̂N
tNi

− X̂N
tNi
end X̂

N
tNi

)

.

Thus, even if X̂N
tNi

∈ Cd(R), X̂
N
tNi+1

can no longer be in Cd(R) and the matrix square-root can no longer be

defined at the next time-step. A possible correction is to consider the following modification of the Euler
scheme:

X̂N
tNi+1

= p((X̃tNi+1
)+), (40)

where X̃N
tNi+1

denotes the right hand side of (39). Here, x+ ∈ S+
d (R) is defined for x ∈ Sd(R) as the unique

symmetric semidefinite matrix that shares the same eigenvectors as x, but the eigenvalues are the positive
part of the one of x. Namely, x+ = odiag(λ+1 , . . . , λ

+
d )o for x ∈ Sd(R) such that x = odiag(λ1, . . . , λd)o

where o is an orthogonal matrix. Let us check that this scheme is well defined if we start from X̂N
tN0

∈ Cd(R).

By Lemma 23, the square-roots are well defined, we have (X̃tN1
)i,i = 1 and thus (X̃tN1

)+i,i ≥ 1 and p((X̃tN1
)+)

is well defined. By induction, this modified Euler scheme is always defined and takes values in the set
of correlation matrices. However, as we will see in the numerical experiments, it is time-consuming and
converges rather slowly.

In this section, we present discretization schemes that are obtained by composition, thanks to a splitting
of the infinitesimal generator. This technique has already been used for square-root type diffusions such as
the Cox-Ingersoll-Ross model [4] and Wishart processes [2], leading to accurate schemes. The strength of
this approach is that we can, by an ad-hoc splitting of the operator, decompose the sampling of the whole
diffusion into pieces that are more tractable and that we can simulate by preserving the domain (here, the
set of correlation matrices). Besides, it is really easy to analyze the weak error of these schemes.

3.1 Some results on the weak error of discretization schemes

We present now the main results on the splitting technique that can be found in [4] and [2] for the
framework of Affine diffusions. Here, we have in addition further simplifications that comes from the fact
that the domain that we consider D ⊂ Rζ is compact (typically Cd(R) or D = {x ∈ Rd−1,

∑d−1
i=1 x

2
i } in

Appendix D). For γ ∈ Nζ , we set ∂γf = ∂1γ1 . . . ∂
ζ
γζ and |γ| = ∑ζ

i=1 γi. We denote by C∞(D) the set of

infinitely differentiable functions on D and say that that (Cγ)γ∈Nζ is a good sequence for f ∈ C∞(D) if we
have maxx∈D |∂γf(x)| ≤ Cγ . A differential operator Lf(x) =

∑

0<|γ|≤2 aγ(x)∂γf(x) satisfies the required

assumption if we have aγ ∈ C∞(D) for any γ. This property if of course satisfied by the infinitesimal
generator (7) of MRCd(x, κ, c, a) since the functions aγ are either affine or polynomial functions of second
degree. Since we are considering Markovian processes on D, we will by a slight abuse of notation represent a
discretization scheme by a probability measure p̂x(t)(dz) on D that describes the law of the scheme starting
from x ∈ D with a time step t > 0. Also, we denote by X̂x

t a random variable that follows this law. Then,
the discretization scheme on the full time grid (tNi , i = 0, . . . , N) will be obtained by:

• X̂N
tN0

= x ∈ D,

• conditionally to X̂N
tNi
, X̂N

tNi+1
is sampled according to the probability law p̂X̂N

tN
i

(T/N)(dz), and we write

with a slight abuse of notation X̂N
tNi+1

= X̂
X̂N

tN
i

T/N .

A discretization scheme X̂x
t is said to be a potential ν-th order scheme for the operator L if for a sequence

(Cγ)γ∈Nζ ∈ (R+)
Nζ

, there are constants C, η > 0 such that for any function f ∈ C∞(D) that admits (Cγ)γ∈Nζ

19



as a good sequence, we have:

∀t ∈ (0, η), x ∈ D

∣
∣
∣
∣
∣
E[f(X̂x

t )]−
[

f(x) +

ν∑

k=1

1

k!
tkLkf(x)

]∣
∣
∣
∣
∣
≤ Ctν+1. (41)

This is the main assumption that a discretization scheme should satisfy to get a weak error of order ν. This
is precised by the following theorem given in [4] that relies on the idea developed by Talay and Tubaro [28]
for the Euler-Maruyama scheme.

Theorem 16 — Let L be an operator satisfying the required assumptions on a compact domain D. We
assume that:

1. X̂x
t is a potential weak νth-order scheme for L,

2. f : D → R is a function such that u(t, x) = E[f(Xx
T−t)] is defined and C∞ on [0, T ] × D, and solves

∀t ∈ [0, T ], ∀x ∈ D, ∂tu(t, x) = −Lu(t, x).

Then, there is K > 0, N0 ∈ N, such that |E[f(X̂N
tNN
)]− E[f(Xx

T )]| ≤ K/Nν for N ≥ N0.

The mathematical analysis of the Cauchy problem for Mean-Reverting Correlation processes is beyond
the scope of this paper. This issue has recently been addressed for the case of one-dimensional Wright-Fisher
processes by Epstein and Mazzeo [10], and Chen and Stroock [7] for the absorbing boundary case. In this
setting, Epstein and Mazzeo have shown that u(t, x) is smooth for f ∈ C∞([0, 1]). However, since we have
an explicit formula for the moments (10), we obtain easily that for any polynomial function f , the second
point of Theorem 16 is satisfied. By the Stone-Weierstrass theorem, we can approximate for the supremum
norm any continuous function by a polynomial function and get the following interesting corollary.

Corollary 17 —Let X̂x
t be potential weak νth-order scheme for MRCd(x, κ, c, a). Let f be a continuous

function on Cd(R). Then,

∀ε > 0, ∃K > 0, |E[f(X̂N
tNN
)]− E[f(Xx

T )]| ≤ ε+K/Nν .

Let us now focus on the first assumption of Theorem 16. The property of being a potential weak order
scheme is easy to handle by using scheme composition. This technique is well known in the literature and
dates back to Strang [27] the field of ODEs. In our framework, we recall results that are stated in [4].

Proposition 18 — Let L1, L2 be the generators of SDEs defined on D that satisfies the required assumption
on D. Let X̂1,x

t and X̂2,x
t denote respectively two potential weak νth-order schemes on D for L1 and L2.

1. The scheme X̂
2,X̂1,x

t
t is a potential weak first order discretization scheme for L1 + L2. Besides, if

L1L2 = L2L1, this is a potential weak νth-order scheme for L1 + L2.

2. Let B be an independent Bernoulli variable of parameter 1/2. If ν ≥ 2,

(a) BX̂
2,X̂1,x

t
t + (1−B)X̂

1,X̂2,x
t

t and (b) X̂
2,X̂

1,X̂
2,x
t/2

t

t/2

are potential weak second order schemes for L1 + L2.

Here, the composition X̂
2,X̂1,x

t1
t2 means that we first use the scheme 1 with time step t1 and then, conditionally

to X̂1,x
t1 , we sample the scheme 2 with initial value X̂1,x

t1 and time step t2.
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3.2 A second-order scheme for MRC processes

First, we split the infinitesimal generator of MRCd(x, κ, c, a) as the sum

L = Lξ + L̃,

where L̃ is the infinitesimal generator of MRCd(x,
d−2
2 a2, Id, a) and L

ξ is the operator associated to ξ(t, x)
given by (29). Obviously, the ODE (29) can be solved explicitly and we have to focus on the sampling of
MRCd(x,

d−2
2 a2, Id, a). We use now Theorem 6 and consider the splitting

L̃ =

d∑

i=1

a2i L̃i,

where L̃i is the infinitesimal generator of MRCd(x,
d−2
2 eid, Id, e

i
d). We claim now that it is sufficient to have

a potential second order scheme for MRCd(x,
d−2
2 e1d, Id, e

1
d) in order to get a potential second order scheme

for MRCd(x, κ, c, a). Indeed, if we have such a scheme, we also get by a permutation of the coordinates a
potential second order scheme X̂ i,x

t for MRCd(x,
d−2
2 eid, Id, e

i
d). Then, by time-scaling, X̂ i,x

a2i t
is a potential

second order scheme forMRCd(x,
d−2
2 a2i e

i
d, Id, aie

i
d). Thanks to the commutativity, we get by Proposition 18

that X̂d,...
X̂

1,x

a2
1t

a2dt
is a potential second order scheme for L̃. Last, still by using Proposition 18 we obtain that

ξ(t/2, X̂d,...
X̂

1,ξ(t/2,x)

a2
1t

a2dt
) is a potential second order scheme for MRCd(x, κ, c, a). (42)

Now, we focus on getting a second order scheme for MRCd(x,
d−2
2 e1d, Id, e

1
d). It is possible to construct

such a scheme by using an ad-hoc splitting of the infinitesimal generator. This is made in Appendix D. Here,
we achieve this task by using the connection between Wishart and MRC process and the existing scheme
for Wishart processes. In Ahdida and Alfonsi [2], we have obtained a potential second order scheme Ŷ 1,x

t

for WISd(x, d − 1, 0, e1d). Besides, this scheme is constructed with discrete random variables, and we can

check that there is a constant K > 0 such that for any 1 ≤ i ≤ d, |(Ŷ 1,x
t )i,i − 1| ≤ K

√
t holds almost surely

(we even have (Ŷ 1,x
t )i,i = 1 for 2 ≤ i ≤ d). Therefore, we have 1/2 ≤ (Ŷ 1,x

t )i,i ≤ 3/2 for t ≤ 1/(4K2). Let
f ∈ C∞(Cd(R)). Then f(p(y)) is C∞ with bounded derivatives on {y ∈ S+

d (R), 1/2 ≤ yi,i ≤ 3/2}. Since

Ŷ 1,x
t is a potential second order scheme, it comes that there are constants C, η > 0 that only depend on a

good sequence of f such that

∀t ∈ (0, η),

∣
∣
∣
∣
E[f(p(Ŷ 1,x

t ))]− f(x)− tL̃W1 (f ◦ p)(x)− t2

2
(L̃W1 )2(f ◦ p)(x)

∣
∣
∣
∣
≤ Ct3, (43)

where L̃W1 is the generator of WISd(x, d − 1, 0, e1d). Thanks to Remark 7, we get that there are constants
C, η depending only on a good sequence of f such that

∀t ∈ (0, η),

∣
∣
∣
∣
E[f(p(Ŷ 1,x

t ))]− f(x)−
(

t+ (5− d)
t2

2

)

L̃1f(x)−
t2

2
(L̃1)

2f(x)

∣
∣
∣
∣
≤ Ct3. (44)

In particular, p(Ŷ 1,x
t ) is a potential first order scheme for L1 and even a second order scheme when d = 5.

We can improve this by taking a simple time-change. We set:

φ(t) =

{

t− (5− d) t
2

2 if d ≥ 5
−1+

√
1+2(5−d)t
5−d otherwise,

so that in both cases, φ(t) = t−(5−d) t22 +O(t3). Then, we have that there are constants C, η still depending

only on a good sequence of f such that ∀t ∈ (0, η),
∣
∣
∣E[f(p(Ŷ

1,x
φ(t)))]− f(x)− tL̃1f(x)− t2

2 (L̃1)
2f(x)

∣
∣
∣ ≤ Ct3,

and therefore

p(Ŷ 1,x
φ(t)) is a potential second order scheme for MRCd(x,

d− 2

2
e1d, Id, e

1
d). (45)
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3.3 A faster second-order scheme for MRC processes under Assumption (46)

We would like to discuss on the time complexity of the scheme given by (42) and (45) with respect to the
dimension d. The second order scheme given in Ahdida and Alfonsi [2] forWISd(x, d−1, 0, e1d) requires O(d

3)
operations. Since it is used d times in (42) to generate a sample, the overall complexity is in O(d4). In the
same manner, the second order given in Appendix D requires O(d4) operations. However, it is possible to
get a faster second order scheme with complexity O(d3) if we make the following assumption:

a1 = · · · = ad (i.e. a = a1Id) and κc+ cκ− (d− 1)a2 ∈ S+
d (R). (46)

This latter assumption is stronger than (3) but weaker than (4), which respectively ensures weak and strong
solutions to the SDE. Under (46), we can check by Lemma 22 that

ζ′(t, x) = κ(c− x) + (c− x)κ− d− 1

2
[a2(Id − x) + (Id − x)a2], ζ(0, x) = x ∈ Cd(R) (47)

takes values in Cd(R). Then, we split the infinitesimal generator of MRCd(x, κ, c, a) as the sum

L = Lζ + a21L̄,

where Lζ is the operator associated to the ODE ζ, and L̄ is the infinitesimal generator ofMRCd(x,
d−1
2 Id, Id, Id).

In [2], it is given a second order scheme Ŷ xt for WISd(x, d, 0, Id) that has a time-complexity in O(d3). We
then consider f ∈ C∞(Cd(R)) and get by using the same arguments as before that there are constants
C, η > 0 depending only on a good sequence of f such that

∀t ∈ (0, η),

∣
∣
∣
∣
E[f(p(Ŷ xt ))]− f(x)− tL̄W (f ◦ p)(x) − t2

2
(L̄W )2(f ◦ p)(x)

∣
∣
∣
∣
≤ Ct3,

where L̄W is the infinitesimal generator of WISd(x, d, 0, Id). Thanks to Remark 7, we get that

∀t ∈ (0, η),

∣
∣
∣
∣
E[f(p(Ŷ xt ))]− f(x)−

(

t+ (4− d)
t2

2

)

L̄f(x)− t2

2
L̄2f(x)

∣
∣
∣
∣
≤ Ct3.

In particular, p(Ŷ xt ) is a first order scheme for MRCd(x,
d−1
2 Id, Id, Id) and by Proposition 18,

ζ(t,p(Ŷ xa21t
)) is a potential first order scheme for MRCd(x, κ, c, a). (48)

As before, we can improve this by using the following time-change: ψ(t) = t − (4 − d) t
2

2 if d ≥ 4 and

ψ(t) =
−1+

√
1+2(4−d)t
4−d otherwise, so that ψ(t) = t− (4− d) t

2

2 +O(t3) in both cases. We get that p(Ŷ xψ(t)) is

a potential second order scheme for MRCd(x,
d−1
2 Id, Id, Id). Then, we obtain that

ζ(t/2,p(Ŷ
ζ(x,t/2)

a21ψ(t)
)) is a potential second order scheme for MRCd(x, κ, c, a) (49)

by using Proposition 18. Its time complexity is in O(d3).

3.4 Numerical experiments on the discretization schemes

In this part, we discuss briefly the time needed by the different schemes presented in the paper. We
also illustrate the weak convergence of the schemes to check that it is in accordance with Corollary 17. In
Table 1, we have indicated the time required to sample 106 scenarios for different time-grids in dimension
d = 3 and d = 10. These times have been obtained with a 2.50 GHz CPU computer. As expected, the
modified Euler scheme given by (40) is the most time consuming. This is mainly due to the computation
of the matrix square-roots that require several diagonalizations. Between the second order schemes that are
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d = 3 d = 10

2nd order “fast” 19 224
2nd order 65 1677
2nd order “direct” 90 3105
1st order “fast” 19 224
Corrected Euler 400 14322

Table 1: Computation time in seconds to generate 106 paths up to T = 1 with N = 10 time-steps of the
following MRC process: κ = 1.25Id, c = Id, a = Id, and xi,j = 0.7 for i 6= j.

defined for any parameters satisfying (3), the second order scheme given by (42) and (45) is rather faster
than the “direct” one presented in Appendix D. However, it has a larger bias on our example in Figure (1),
and their overall efficiency is similar. Nonetheless, both are as expected overtaken by the fast second order
scheme (49). Let us recall that it is only defined under Assumption (46) which is satisfied by our set of
parameters. Also, the fast first order scheme given by (48) requires roughly the same computation time.

Let us switch now to Figure 1 that illustrates the weak convergence of the different schemes. To be more
precise, we have plotted the following combinations the moments of order 3 and 1 (i.e. respectively

E







∑

1≤i6=j≤3
1≤k 6=l≤3

[

(X̂N
T )i,j(X̂

N
T )2k,l

]

+ (X̂N
T )1,2(X̂

N
T )2,3(X̂

N
T )1,3






, (50)

and E

[
∑

1≤i6=j≤d(X̂
N
T )i,j

]

) in function of the time-step T/N . These expectations can be calculated exactly

for the MRC process thanks to Proposition 2, and the exact value is reported in both graphics. As expected,
we observe a quadratic convergence for the second order schemes, and a linear convergence for the first
order scheme. In particular, this demonstrates numerically the gain that we get by considering the simple
change of time ψ between the schemes (48) and (49). Last, the modified Euler scheme shows a roughly linear
convergence. It has however a much larger bias and is clearly not competitive.

4 Financial application of correlation processes

In this section, we focus on the modeling of the dependence between d risky assets. We will denote by
S1
t , . . . , S

d
t their value at time t, and we set log(St) = (log(S1

t ), . . . , log(S
d
t ))

T . Basically if we exclude jumps,
we can assume that the assets follow under a risk neutral probability space (Ω,F ,P) the following dynamics:

d log(Sit) =

(

r − 1

2
(Σt)i,i

)

dt+ (
√

ΣtdBt)i, 1 ≤ i ≤ d (51)

where r is the interest rate, (Bt, t ≥ 0) is a d-dimensional standard Brownian motion and (Σt, t ≥ 0) is an
adapted S+

d (R)-valued process. This process describes the instantaneous covariance of the stocks

〈d log(Sit), d log(Sjt )〉 = (Σt)i,jdt, (52)

and
√
(Σt)i,i is usually called the volatility of the asset Sit .

Modelling directly the whole covariance process (Σt, t ≥ 0) is not an easy task. This path has recently
been explored by Gourieroux and Sufana [15]. Their model has been enhanced by Da Fonseca et al. [9].
They assume that (Σt, t ≥ 0) is a Wishart process and consider a dynamics that is a natural extension of
the famous Heston model [16] to d stocks. Since Wishart processes are closely connected to MRC processes,
we will discuss in detail their model in Section 4.1. In particular, we explain why, in our opinion, it can be
hardly used in practice when the number of assets is large (say d ≥ 5).
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Figure 1: d = 3, same parameters as for Table 1. In the left (resp. right) side is plotted (50) (resp.

E

[
∑

1≤i6=j≤d(X̂
N
T )i,j

]

) in function of the time step 1/N . The width of each point represents the 95%

confidence interval (107 scenarios for the modified Euler scheme and 108 for the others).

Instead, the common practice of the market is to start with modeling the volatility σit of each stock Sit .
Then, the dependence is modeled by a correlation process (Ct, t ≥ 0), so that the covariance process is
defined by

Σt = diag(σ1
t , . . . , σ

d
t )Ctdiag(σ

1
t , . . . , σ

d
t ).

Thus, if we consider the following dynamics for the assets

d log(Sit) =

(

r − 1

2
(σit)

2

)

dt+ σit(
√

CtdBt)i, 1 ≤ i ≤ d, (53)

we get back the same instantaneous covariance given as (52). This bottom-up approach has many advantages.
Indeed, the modelling of individual stocks is well documented and handled every day by the financial desks.
Besides, the choice of the volatility model is free and can be chosen at one’s convenience. For example, we can
take a local volatility model (σit = σ(t, Sit)) or a stochastic volatility model such as Heston model, or a local
stochastic volatility model [3]. The calibration of the single stocks can be thus performed separately, before
the calibration of the correlation process. There is still few literature that brings on fitting the correlation
to market data. Today, the only liquid and quoted derivatives that bring on the dependence between assets
are index options. Recently, Langnau [22] and Reghai [25] focused on the calibration of some particular local
correlation models (i.e. Ct = C(t, S1

t , . . . , S
d
t )) to index option prices. Under a slightly different setting,

Jourdain and Sbai [18] have also considered this issue. However, there is still up to our knowledge very few
studies on stochastic correlation modelling. We will discuss in Section 4.2 how MRC processes and possible
extensions could be used for that purpose.

4.1 The Wishart stochastic covariance model

Da Fonseca et al. [9] assume that (Σt, t ≥ 0) follows a Wishart process

dΣt =
(
αaaT + bΣt +Σtb

T
)
dt+

√

ΣtdWta+ aT dWT
t

√

Σt (54)
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with α ≥ d− 1, a, b ∈ Md(R). The vector Brownian motion B and the matrix Brownian motion W may be
correlated as follows:

dBt = dWtρ+
√

1− ‖ρ‖22dB̃t, ρ ∈ Rd s.t. ‖ρ‖2 ≤ 1,

where (B̃t, t ≥ 0) is a d-dimensional Brownian motion independent from W . With this choice, the couple
(log(St),Σt) is an affine process, and its characteristic function can be obtained by solving Riccati equations
(see Da Fonseca et al. [9]).

From (54), we get that there are Brownian motions βit , i = 1, . . . , d such that the volatility square of Sit
follows:

d(Σt)i,i = (α(aaT )i,i + 2

d∑

j=1

bi,j(Σt)i,jdt+ 2
√

(aaT )i,i

√

(Σt)i,idβ
i
t .

The non diagonal elements (Σt)i,j for i 6= j can be seen as factors that drive the volatility of each stock. In
its full form, the dynamics of one stock and its volatility is not autonomous. This means in practice that
it is not possible to calibrate this model separately to single stock market (mainly, European options on
single stocks). This calibration has to be done at the same time for all the stocks, which is a priori a very
challenging task: many parameters and a lot of data are involved when the number of assets d gets large.

Then, one may want to recover autonomous dynamics for each stock in order to calibrate them separately.
Within this model, the only possible choice is to assume that b is a diagonal matrix. In this case, (Σt)i,i
follows a CIR diffusion and the couple ((Σt)i,i, S

i
t) follows an Heston model [16]: there are independent

Brownian motions βi, γi such that

d log(Sit) = (r − (Σt)i,i
2

)dt+
√

(Σt)i,i

(

ρ̃idβit +
√

1− (ρ̃i)2dγit

)

d(Σt)i,i =
(
α(aT a)i,i + 2bi,i(Σt)i,i

)
dt+ 2

√

(aT a)i,i

√

(Σt)i,idβ
i
t ,

ρ̃i =
(aTρ)i
√

(aT a)i,i
=

∑d
k=1 ak,iρ

i

√
∑d

k=1 a
2
k,i

.

In practice, each individual stock could be then calibrated like in the Heston model. Unfortunately, there are
further restrictions implied by this model and especially that α ≥ d− 1, which is the condition that ensures
the existence of the Wishart process. This is unlikely because when calibrating Heston to market data, it is
typical to get values of α around or below 1. When modelling many stocks together (say d ≥ 5), it is then
not possible to fit conveniently market data because of this restriction on α.

Last, one of the main feature of the model (54) is the Affine property. It allows to obtain the characteristic
function of the stocks by solving Riccati differential equations. Then, the pricing of European style options
can be made by using Fourier inversion. This approach is known to be very efficient in a one-dimensional
framework (see Carr and Madan [6]) and has been used successfully by Da Fonseca et al.[9] to price Best-of
options with d = 2 assets. However, when the number of assets d is much larger, the Fourier inversion
requires an integration in dimension d and can no longer be computed quickly. Unless the payoff has a very
particular structure to reduce the dimension, the pricing by Fourier inversion is no longer competitive with
respect to Monte-Carlo methods and the Affine property does not really give a crucial advantage in terms
of computational methods.

For all these reasons, we believe that this model can be used successfully in practice for a small number
of stocks (d = 2, 3) but is instead inadequate to model a large basket.

4.2 Towards a stochastic correlation model

Now, we would like to discuss the application of the MRC processes under the framework (53). The first
natural idea would be simply to take (Ct)t≥0 ∼MRCd(C0, κ, c, a). With this choice, we would get analytical

25



formulas for correlation swaps. Indeed, a correlation swap between assets Sit and S
j
t (i 6= j) with maturity T

has, up to a discount factor, the following price:

E

[

1

T

∫ T

0

(Ct)i,jdt

]

=
1

(κi + κj)T

[

(C0)i,j(1− e−(κi+κj)T )− ci,j(1− e−(κi+κj)T − (κi + κj)T )
]

. (55)

To be precise, the payoff of a correlation swap is defined as the average over the period [0, T ] of the daily

correlation of log-returns
log

(

Si
t+∆

Si
t

)

log

(

S
j
t+∆

S
j
t

)

√

log

(

Si
t+∆

Si
t

)2

√

√

√

√log

(

S
j
t+∆

S
j
t

)2
and is here approximated by 1

T

∫ T

0 (Ct)i,jdt. Unfortu-

nately, up to now, correlation swaps are not quoted on the markets and are only dealt over the counter. It
is then not possible to get data on their prices in order to calibrate κ, c and C0, which would have been very
tractable thanks to formula (55).

The only quoted options that bring on the dependence between assets are index options. We have
been kindly given by Julien Guyon at Société Générale market data on the DAX index at the 4th October
2010. He provides us with data on European index option prices as well as parametrized local volatility
functions σi(t, x) that are already calibrated to options price on each asset. We thus assume in the sequel
the dynamics (53) for the stocks with σit = σi(t, Sit). We will also denote

It =

d∑

i=1

αiS
i
t

the index value and will assume constant weights αi such that
∑d

i=1 αi = 1. These weights are given in
Table 2 for the DAX.

SIEMENS BASF BAYER E-ON DAIMLER ALLIANZ SAP D. TELEKOM D. BANK RWE

9.91 8.03 7.97 7.67 7.35 6.97 6.01 5.6 5.06 3.86
M-RUECK LINDE BMW VW D. POST ADIDAS D. BOERSE FRESENIUS-MC THYSS. KRUPP MAN

3.23 3.06 2.92 2.26 2.05 1.76 1.65 1.63 1.52 1.47
HENKEL SDF LUFTHANSA METRO INFINEON HEIDEL. FRESENIUS BEIERSDORF COMMERZBANK MERCK

1.29 1.17 1.16 1.12 1.02 0.94 0.9 0.86 0.84 0.74

Table 2: DAX index composition, in percentage (4 October 2010)

To calibrate MRC processes to index options, it is desirable to reduce the number of parameters. We will
assume in the sequel with a slight abuse of notation that κ = κId, a = aId with κ, a ∈ R∗

+, ci,j = 1i=j+ρ1i6=j
for ρ ∈ [−1/(d− 1), 1] and C0 = c. Condition (3) is then simply equivalent to 2κ(1− ρ) ≥ (d− 2)a2, but we
will assume in addition that

2κ(1− ρ) ≥ (d− 1)a2

in order to take advantage of the O(d3) discretization scheme given by (49). Thus, Ct follows the following
dynamics

Ct = c+ 2κ

∫ t

0

(Cs − c)ds+ a

d∑

n=1

∫ t

0

(√

Cs − CsendCsdWse
n
d + enddW

T
s

√

Cs − CsendCs

)

, (56)

and we assume that the Brownian motion W is independent from the Brownian motion B that drives the
stocks (53). We would like to calibrate such a process to European index option prices. To do so, we first
calculate the value ρ such that the constant correlation model 1i=j + ρ1i6=j fits the at the money implied
volatility. Then, we use this value and look at the impact of κ and a. Figure 2 illustrates these results. As
one could expected, this model gives a smile which is not enough sloping and is unable to fit the volatility
skew. The parameters κ and a have no impact on the slope of the smile.

26



εεε

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
0.20

0.25

0.30

κκκκκκ

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
0.20

0.25

0.30

Figure 2: In both graphics, the line with diamonds indicate the market 1 year implied volatility. We plot the implied

given by model (56) with ρ = 0.67968 and use the parametrization a =
√

2κε

d−1
(1− ρ), with ε ∈ [0, 1]. Left: κ = 100

and ε ∈ {0, 0.6, 1}. Right: ε = 0.5 and κ ∈ {1, 20, 100} . These curves are obtained with 106 Monte-Carlo samples
and discretization time step 0.025.

The reason of this too flat smile is that the correlation is not related to the index price, while the market
would expect that the correlation is high (resp. low) when the index is low (resp. high). There are at least
two ways to correct this. First, one may assume some dependence between the Brownian motions W and
B, which would be very analogous to what is made for stochastic volatility models. This requires to find
an adequate way to correlate these Brownian motion from a financial point of view that is also tractable for
simulation purposes. We have left this for further research.

The second way to make depend the correlation in function of the index value is simply to assume a local
correlation model C(t, It) with C : R+ × R∗

+ → Cd(R) and keep W and B independent. This approach has
been considered by Reghai [25]. In Ahdida [1], it is shown that the following parametric form

C(t, It)i,j = 1i=j + ρ(t, It)1i6=j , with ρ(t, It) = max

(
1

1 + η (It/I0)
γ , ρmin

)

, (57)

with η, γ, ρmin ≥ 0 is very tractable to calibrate the index smile at a given maturity. Indeed, it is shown
that η tunes the implied volatility at the money, γ tunes the skew (i.e. the slope at the money of the implied
volatility), and ρmin tunes the right tail of the smile. The left hand side of Figure 3 shows the index smile
data and the implied volatility given by this model. Also, an extension of this model with time-dependent
parameters can be used to fit the index smile for different maturities.

We want to illustrate now how dynamics such as MRC processes could be used to extend local correlation
models and add a new source of randomness. Namely, we consider the following dynamics

Ct = C0+2κ

∫ t

0

(Cs−C(s, Is))ds+
∫ t

0

a(s, Is)
d∑

n=1

(√

Cs − CsendCsdWse
n
d + enddW

T
s

√

Cs − CsendCs

)

, (58)

where κ > 0, a : R+ × R∗
+ → R+ and C(t, I) is defined by (57). The limit case a(t, x) ≡ 0, κ = +∞

corresponds to the local correlation model. Following the same lines as in the proof of Theorem 12, we could
show under some rather mild assumptions on ρ(t, x) and σi(t, x) that the whole SDE on (Ct, S

1
t , . . . , S

d
t )

has a weak solution if 2κ(1 − ρ(t, x)) ≥ (d − 2)a2(t, x) for all t ≥ 0, x > 0, and a unique strong solution if
2κ(1 − ρ(t, x)) ≥ da2(t, x). To simulate such an SDE, we will simply use the Euler-Maruyama scheme for
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Figure 3: Left: diamonds indicate market 1 year implied volatility for the DAX. The curve fitting this data is the
implied volatility given by the local correlation model (57) with γ = 8.672568, η = 0.500714 and ρmin = 0.1. The
other curve is the implied volatility given by a constant correlation model (Ct)i,j = 1i=j + ρ1i6=j that fits the at the
money implied volatility: ρ = 0.67968. Right: With the same values for γ, η and ρmin, we have plotted for κ = 100
and ε ∈ {0, 0.3, 0.9} the implied volatility given by model (58). These curves are obtained with 106 Monte-Carlo
samples and discretization time step 0.025.

the stocks and use our scheme for the MRC process with coefficients κ, C(tNi , ItNi ) and a(tNi , ItNi ) on the

time-step [tNi , t
N
i+1]. More precisely, we will assume moreover that 2κ(1− ρ(t, x)) ≥ (d− 1)a2(t, x) and even

set

a(t, x) =

√

2κε

d− 1
(1− ρ(t, x)),

where ε ∈ [0, 1] is a free parameter. This choice allows to use the O(d3) discretization scheme (49) for the
MRC process. Starting from the calibrated local correlation model, we have plotted in the right-hand side
of Figure 3 the effect of the volatility on the index smile. We have chosen a large value for κ so that the
model (58) fits the data for ε = 0. We see that the volatility of the correlation tends to reduce prices of
call option on the index. The same monotonicity was already observed in Figure 2. This indicates some
concavity of the index option prices with respect to the correlation.

Last, a natural question is to wonder if this is really necessary to sample a whole correlation process. For
example, we could consider the following one-dimensional model

Ct = 1i=j + ρt1i6=j , with ρt = ρ0 + κ

∫ t

0

(ρs − ρ(s, Is))ds+ a

∫ t

0

√

ρs(1− ρs)dWs, (59)

with ρ0 ∈ [0, 1], κ > 0, a ≥ 0. This dynamics would have rather close qualitative features to (58) and is
much less demanding in terms of computational effort. To be fair, as far as index modeling is concerned it
may be sufficient to parametrize the correlation matrix by a single parameter ρt. The heuristic reason is
that index options do not really depend on the individual pairwise correlations (Ct)i,j but rather depend
on an average correlation in the basket. Instead, if the aim is then to price and hedge exotic products on
the dependence, it may be relevant to model all the pairwise correlations. To give a caricatural example, an

option on the difference of two correlation swaps that pays ( 1
T

∫ T

0 (Ct)i,jdt− 1
T

∫ T

0 (Ct)k,ldt)
+ is almost surely

equal to zero in model (59) or (57), which may basically give an arbitrage. It has instead a non trivial price
if (Ct)t≥0 ∼MRCd(C0, κ, c, a) or in model (58).
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We have tested MRC type dynamics on index options because they are the only liquid quoted options
that bring on dependence. The tractability offered by these processes is not really exploited for such options.
Unfortunately today, there is no quoted options that could give the market view on pairwise correlations.
However, if an investor has some personal views on correlations between some companies or some industry
sectors, processes such as MRC can be a relevant tool to take into account these views and price exotic
products. Generally speaking, modelling precisely the dependence between the stocks in order to get a
model that prices consistently single-name and basket products is an important challenge in finance, and we
hope that processes such as MRC may be tool to achieve it.
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A Some results on correlation matrices

A.1 Linear ODEs on correlation matrices

Let b ∈ Sd(R) and κ ∈ Md(R). In this section, we consider the following linear ODE

x′(t) = b− (κx(t) + x(t)κT ), x(0) = x ∈ Cd(R), (60)

and we are interested in necessary and sufficient conditions on κ and b such that

∀x ∈ Cd(R), ∀t ≥ 0, x(t) ∈ Cd(R). (61)

Let us first look at necessary conditions. We have for 1 ≤ i, j ≤ d:

x′i,j(t) = bi,j −
d∑

k=1

κi,kxk,j(t) + xi,k(t)κj,k.

In particular, we necessarily have x′i,i(t) = 0. This gives for t = 0, l 6= i and x(0) = Id + ρ(ei,ld + el,id ) that
bi,i − 2κi,i − 2ρκi,l = 0 for any ρ ∈ [−1, 1]. It comes out that:

κi,l = 0 if l 6= i, bi,i = 2κi,i.

Thus, the matrix κ is diagonal and we denote κi = κi,i. We get x′i,j(t) = bi,j − (κi + κj)xi,j(t) for i 6= j. If
κi + κj = 0, we have xi,j(t) = xi,j + bi,jt, which implies that bi,j = 0. Otherwise, κi + κj 6= 0 and we get:

xi,j(t) = xi,j exp (−(κi + κj)t) +
bi,j

κi + κj
[1− exp (−(κi + κj)t)] .

Once again, this implies that κi+κj > 0 since the initial value x ∈ Cd(R) is arbitrary. We set for 1 ≤ i, j ≤ d,

ci,i = 1, and for i 6= j, ci,j =

{
bi,j
κi+κj

if κi + κj > 0

0 if κi + κj = 0.
(62)

We have b = κc+ cκ and for x = Id, c = limt→+∞ x(t) ∈ Cd(R), and deduce the following result.

Proposition 19 — Let b ∈ Sd(R) and κ ∈ Md(R). If the linear ODE (60) satisfies (61), then we have
necessarily:

∃c ∈ Cd(R), ∃κ1, . . . , κd ∈ R, ∀i 6= j, κi + κj ≥ 0, κ = diag(κ1, . . . , κd) and b = κc+ cκ. (63)

Conversely, let us assume that (63) holds and b ∈ S+
d (R). We get that κi = bi,i/2 ≥ 0 and for t ≥ 0,

exp(κt)x(t) exp(κt) = x +
∫ t

0 exp(κs)b exp(κs)ds is clearly positive semidefinite. Therefore, (61) holds. We
get the following result.

Proposition 20 — Let κ1, . . . , κd ≥ 0, κ = diag(κ1, . . . , κd) and c ∈ Cd(R). If κc+ cκ ∈ S+
d (R) or d = 2,

the ODE
x′(t) = κ(c− x) + (c− x)κ, x(0) = x ∈ Cd(R) (64)

satisfies (61).

Let us note here that the parametrization of the ODE (64) is redundant when d = 2, and we can assume
without loss of generality that κ1 = κ2 for which κc+ cκ ∈ S+

d (R) is clearly satisfied.
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Remark 21 — The condition given by Proposition 19 is necessary but not sufficient, and the condition
given by Proposition 20 is sufficient but not necessary. Let d = 3 and c = I3. We can check that for
κ = (1, 12 ,− 1

2 ), (63) holds but (61) is not true. Also, we can check that for κ = (1, 1,− 1
2 ), (61) holds.

Lemma 22 — Let κ1, κ2 be diagonal matrices and c1, c2 ∈ Cd(R) such that κ1c1+c1κ1+κ2c2+c2κ2 ∈ S+
d (R).

Then, the ODE
x′ = κ1(c1 − x) + (c1 − x)κ1 + κ2(c2 − x) + (c2 − x)κ2

satisfies (61). Besides, x′ = κ(c− x) + (c− x)κ with κ = κ1 + κ2 ∈ S+
d (R) and c ∈ Cd(R) defined by:

ci,i = 1, and for i 6= j, ci,j =

{
(κ1

i+κ
1
j)c

1
i,j+(κ2

i+κ
2
j)c

2
i,j

κi+κj
if κi + κj > 0

0 if κi + κj = 0.

Proof : Since b = κ1c1 + c1κ1 + κ2c2 + c2κ2 ∈ S+
d (R), (61) holds for x′ = b − κx + xκ. Then, we know

by (62) that c is a correlation matrix. 2

A.2 Some algebraic results on correlation matrices

Lemma 23 — Let c ∈ Cd(R) and 1 ≤ i ≤ d. Then we have: c − ceidc ∈ S+
d (R), (c − ceidc)i,j = 0 for

1 ≤ j ≤ d,
(
c− ceidc

)[i]
= c[i] − ci(ci)T and:

(√

c− ceidc

)[i]

=
√

c[i] − ci(ci)T and

(√

c− ceidc

)

i,j

= 0.

Besides, if c ∈ C
∗
d(R), c

[i] − ci(ci)T ∈ S+,∗
d−1(R).

Proof : Up to a permutation, it is sufficient to prove the result for i = 1. We have

c− ce1dc =

(
0 0Td−1

0d−1 c[1] − c1(c1)T

)

= acaT , with a =

(
0 0d−1

−c1 Id−1

)

∈ S+
d (R).

Besides, we have Rk(acaT ) = Rk(a
√
c) = d− 1 when c ∈ C

∗
d(R), which gives c[i] − ci(ci)T ∈ S+,∗

d−1(R). 2

Lemma 24 — Let c ∈ Cd(R) and 1 ≤ n ≤ d. Then Id −
√
cend

√
c ∈ S+

d (R) and is such that
√

Id −
√
cend

√
c = Id −

√
cend

√
c.

Proof : The matrix (
√
cend

√
c)i,j = (

√
c)i,n(

√
c)j,n is of rank 1 and

∑d
j=1(

√
cend

√
c)i,j(

√
c)j,n = (

√
c)i,n since

∑d
j=1(

√
c)2j,n = cj,j = 1. Therefore ((

√
c)i,n)1≤i≤d is an eigenvector, and the eigenvalues of Id −

√
cend

√
c are

0 and 1 (with multiplicity d− 1). 2

Lemma 25 — Let q ∈ S+
d (R) be a matrix with rank r. Then there is a permutation matrix p, an invertible

lower triangular matrix mr ∈ Gr(R) and kr ∈ Md−r×r(R) such that:

pqpT = mmT , m =

(
mr 0
kr 0

)

.

The triplet (mr, kr, p) is called an extended Cholesky decomposition of q.

32



The proof of this result and a numerical procedure to get such a decomposition can be found in Golub
and Van Loan ([13], Algorithm 4.2.4). When r = d, we can take p = Id, and mr is the usual Cholesky
decomposition.

Lemma 26 — Let c ∈ Cd(R), r = Rk((ci,j)2≤i,j≤d) and (mr, kr, p̃) an extended Cholesky decomposition

of (ci,j)2≤i,j≤d. We set p =

(
1 0
0 p̃T

)

, m =





1 0 0
0 mr 0
0 kr 0



 and č =





1 (m−1
r cr1)

T 0
m−1
r cr1 Ir 0
0 0 Id−r−1



,

where cr1 ∈ Rr, with (cr1)i = (pT cp)1,i+1 for 1 ≤ i ≤ r. We have:

c = pmčmT pT and č ∈ Cd(R).

Proof : By straightforward block-matrix calculations, on has to check that the vector cr,d1 ∈ Rd−(r+1)

defined by (cr,d1 )i = (pT cp)1,i for r + 1 ≤ i ≤ d is equal to krm
−1
r cr1. To get this, we introduce the matrix

q =





1 0 0
0 mr 0
0 kr Id−r−1



 and have q−1 =





1 0 0
0 m−1

r 0
0 −krm−1

r Id−r−1



. Since the matrix

q−1pT cp(q−1)T =





1 (m−1
r cr1)

T (cr,d1 − krm
−1
r cr1)

T

m−1
r cr1 Ir 0

cr,d1 − krm
−1
r cr1 0 0





is positive semidefinite, we have cr,d1 = krm
−1
r cr1,

(
1 (m−1

r cr1)
T

m−1
r cr1 Ir

)

∈ S+
r+1(R) and thus č ∈ Cd(R). 2

B Some auxiliary results

B.1 Calculation of quadratic variations

Lemma 27 — Let (Ft)t≥0 denote the filtration generated by (Wt, t ≥ 0). We consider a process (Yt)t≥0

valued in Sd(R) such that

dYt = Btdt+
d∑

n=1

(Ant dWte
n
d + enddW

T
t (Ant )

T ),

where (Ant )t≥0, (Bt)t≥0 are continuous (Ft)-adapted processes respectively valued in Md(R), and Sd(R).
Then, we have for 1 ≤ i, j, k, l ≤ d:

d〈Yi,j , Yk,l〉t =
[1i=k(Ait(Ait)T )j,l + 1i=l(Ait(Ait)T )j,k + 1j=k(Ajt (Ajt )T )i,l + 1j=l(Ajt (Ajt )T )i,k] dt (65)

Proof : Since (Ant dWte
n
d )i,j = 1j=n(AjtdWt)i,j and (enddW

T
t (Ant )

T )i,j = 1i=n(AitdWt)j,i, we get:

d(Yt)i,j = (Bt)i,jdt+

d∑

n=1

(Ajt )i,n(dWt)n,j + (Ait)j,n(dWt)n,i.

Then, d〈Yi,j , Yk,l〉t =
[1j=l∑d

n=1(A
j
t )i,n(A

j
t )k,n + 1j=k∑d

n=1(A
j
t )i,n(A

j
t )l,n + 1i=l∑d

n=1(A
i
t)j,n(A

i
t)k,n

+1i=k∑d
n=1(A

i
t)j,n(A

i
t)l,n

]

dt, which precisely gives (65). 2
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Lemma 28 — Let us consider x ∈ C
∗
d(R), and (Xt)t≥0 a solution of the SDE (2). Let τ denote the stopping

time defined as τ = {t ≥ 0, Xt 6∈ C
∗
d(R)}. Then, there exists a real Brownian motion (βt)t≥0 such that for

0 ≤ t < τ ,

d(det(Xt))

det(Xt)
= Tr[X−1

t (κc+ cκ− (d− 2)a2)]dt− Tr(2κ+ a2)dt+ 2
√

Tr
[
a2(X−1

t − Id)
]
dβt, (66)

d log(det(Xt)) = Tr[X−1
t (κc+ cκ− da2)]dt− Tr(2κ− a2)dt+ 2

√

Tr
[
a2(X−1

t − Id)
]
dβt. (67)

Proof : First, let us recall that ∀i, j, k, l ∈ {1, . . . , d}, ∀x ∈ S+,∗
d (R) ∂i,j det(x) = (adj(x))i,j = det(x)x−1

i,j ,

∂k,l∂i,j(det(x)) = det(x)(x−1
l,k x

−1
i,j −x−1

l,j x
−1
i,k ). Since x is symmetric, we have in particular that ∂k,l∂i,j(det(x)) =

0 if i = l or j = k. Itô’s Formula gives for t < τ :

d(det(Xt))

det(Xt)
=

∑

1≤i,j≤d
(X−1

t )i,jd(Xt)i,j +
1

2

∑

1≤i,j≤d
1≤k,l≤d

(
(X−1

t )i,j(X
−1
t )k,l − (X−1

t )i,k(X
−1
t )j,l

)
〈d(Xt)i,j , d(Xt)k,l〉.

On the one hand we have

∑

1≤i,j≤d
(X−1

t )i,jd(Xt)i,j = Tr[X−1
t (κc+ cκ)]dt− Tr(2κ)dt+ 2

d∑

i=1

aiTr

[

X−1
t eiddW

T
s

√

Xt −XteidXt

]

.

On the other hand we get by (6):

∑

1≤i,j≤d
1≤k,l≤d

(
(X−1

t )i,j(X
−1
t )k,l − (X−1

t )i,k(X
−1
t )j,l

)
〈d(Xt)i,j , d(Xt)k,l〉

=
∑

1≤i,j≤d
1≤k,l≤d

(
(X−1

t )i,j(X
−1
t )k,l − (X−1

t )i,k(X
−1
t )j,l

)
×
{

a2j1j=k(Xt −Xte
j
dXt)i,l

+a2j1j=l(Xt −Xte
j
dXt)i,k + a2i1i=l(Xt −Xte

i
dXt)j,k +a2i1i=k(Xt −Xte

i
dXt)j,l

}

=

d∑

j=1




∑

1≤i,k≤d
a2j(Xt −Xte

j
dXt)i,k

(
(X−1

t )i,j(X
−1
t )k,j − (X−1

t )i,k(X
−1
t )j,j

)





+

d∑

i=1




∑

1≤j,l≤d
a2i (Xt −Xte

i
dXt)j,l

(
(X−1

t )i,j(X
−1
t )i,l − (X−1

t )i,i(X
−1
t )j,l

)





= 2

d∑

i=1

a2i
(
Tr
[
(Xt −Xte

i
dXt)X

−1
t eidX

−1
t

]
− (X−1

t )i,iTr
[
(Xt −Xte

i
dXt)X

−1
t

])
.

SinceXt ∈ C
∗
d(R), we obtain that Tr

[
(Xt −Xte

i
dXt)X

−1
t eidX

−1
t

]
= (X−1

t )i,i−1 and Tr
[
X−1
t (Xt −Xte

i
dXt)

]
=

d− (Xt)i,i = d− 1. We finally get:

d(det(Xt))

det(Xt)
= Tr[X−1

t (κc+cκ−(d−2)a2)]dt−Tr(2κ+a2)dt+2

d∑

i=1

aiTr

[

X−1
t eiddW

T
s

√

Xt −XteidXt

]

. (68)
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Now, we compute the quadratic variation of det(Xt) by using (6):

d〈det(X)〉t
det(Xt)2

=
∑

1≤i,j≤d
1≤k,l≤d

(X−1
t )i,j(X

−1
t )k,l

{

a2j1j=k(Xt −Xte
j
dXt)i,l + a2j1j=l(Xt −Xte

j
dXt)i,k

+a2i1i=l(Xt −Xte
i
dXt)j,k + a2i1i=k(Xt −Xte

i
dXt)j,l

}
dt

= 4

d∑

i=1

a2iTr
[
X−1
t eidX

−1
t (Xt −Xte

i
dXt)

]
dt

= 4

d∑

i=1

a2i ((X
−1
t )i,i − 1)dt = 4[Tr(a2X−1

t )− Tr(a2)]dt.

It is indeed nonnegative: we can show by diagonalizing and using the convexity of x 7→ 1/x that x−1
i,i ≥

1/xi,i = 1. Then, there is a Brownian motion (βt, t ≥ 0) such that (66) holds (see Theorem 3.4.2 in [19]). 2

Proposition 29 — Let k, θ, η ≥ 0. For a given x ∈ [−1.1], let us consider a process (Xx
t )t≥0, starting from

x, and defined as the solution of the following SDE

dXx
t = k(θ −Xx

t )dt+ η
√

1− (Xx
t )

2dBt, (69)

where (Bt)t≥0 is a real Brownian motion. Then there exists a positive constant K > 0, such that

∀t ≥ 0, ∀x ∈ [−1, 1], E
[
(Xx

t − x)4
]
≤ Kt2

Proof : For a given x ∈ [−1, 1], we set fx(y) = (y − x)4. If we denote L the infinitesimal operator of the
process Xx

t , then we notice that fx(x) = Lfx(x) = 0. Besides, (x, y) ∈ [−1, 1]2 7→ L2fx(y) is continuous
and therefore bounded: ∃K > 0, ∀x, y ∈ [−1, 1], |L2fx(y)| ≤ 2K. (70)

Since the process (Xx
t )t≥0 is defined on [−1, 1], we get by applying twice Itô’s formula:

E [fx(Xx
t )] =

∫ t

0

∫ s

0

E
[
L2fx(Xx

u )
]
duds.

From (70), one can deduce that
∣
∣
∣

∫ t

0

∫ s

0
E
[
L2fx(Xx

u)
]
duds

∣
∣
∣ ≤ Kt2, and obtain the final result.

2

B.2 Some basic results on squared Bessel processes

Lemma 30 — Let β ≥ 2 and Zt = z+βt+2
∫ t

0

√
ZsdBs be a squared Bessel process of dimension β starting

from z > 0. Then we have

P(∀t ≥ 0,

∫ t

0

ds

Zs
<∞) = 1 and

∫ +∞

0

ds

Zs
= +∞ a.s.

Proof : The first claim is obvious, since the square Bessel process does never touch zero under the con-
dition of β ≥ 2. (see for instance [17], part 6.1.3). By using a comparison theorem (∀t ≥ 0, Zt ≤ Z ′

t

a.s. if β ≤ β′), it is sufficient to prove the second claim for β ∈ N. In this case, it is well known that
(W 1

t +
√
z)2 +

∑n
k=2(W

k
t )

2 follows a square Bessel process of dimension n, where (W k
t , t ≥ 0) are indepen-

dent Brownian motion. By the law of the iterated logarithm, lim supt→+∞
(Wk

t )2

2t log(log(t)) = 1, which gives the
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desired result since
∫∞
1

dt
t log(log(t)) = +∞. 2

Lemma 31 — Let β ≥ 6. Let Zt = 1+βt+2
∫ t

0

√
ZsdBs be a squared Bessel process of dimension β starting

from 1 and φ(t) =
∫ t

0
1
Zs
ds. Then we have

E[φ(t)] = t+
4− β

2
t2 +O(t3), E[φ(t)2] = t2 +O(t3), E[φ(t)3] = O(t3).

Proof : For a fixed time t > 0, the density of Zt is given by:

z > 0, p(t, z) =

+∞∑

k=0

e−
1
2t ( 1

2t )
k

k!

1

2tΓ(k + β
2 )

(
z

2t
)k−1+ β

2 e−
z
2t .

Let us consider that γ ∈ {1, 2, 3} , then all negative moments can be written as

E

[
1

Zγt

]

=

+∞∑

k=0

e−
1
2t ( 1

2t )
k+γ

k!

Γ(k + β
2 − γ)

Γ(k + β
2 )

=

+∞∑

k=0

e−
1
2t ( 1

2t )
k+γ

k!

1

(k + β
2 − 1)× · · · × (k + β

2 − γ)
.

We have 1

(k+ β
2 −1)

= 1
k+1 − β−4

2(k+2)(k+1) +O( 1
k3 ), which yields to the following expansion:

E

[
1

Zt

]

=
+∞∑

k=0

e−
1
2t ( 1

2t )
k+1

(k + 1)!
− (β − 4)t

+∞∑

k=0

e−
1
2t ( 1

2t )
k+2

(k + 2)!
+O

(

t2

2

+∞∑

k=0

e−
1
2t ( 1

2t )
k+3

(k + 3)!

)

= 1− (β − 4)t+O(t2) (71)

The first equality is thus obtained. We use the same argument to get:

E

[
1

Z2
t

]

=
+∞∑

k=0

e−
1
2t ( 1

2t )
k+2

(k + 2)!
+O

(

t
+∞∑

k=0

e−
1
2t ( 1

2t )
k+3

(k + 3)!

)

= 1 +O(t)

E

[
1

Z3
t

]

= O

(
+∞∑

k=0

e−
1
2t ( 1

2t )
k+3

(k + 3)!

)

= O(1). (72)

By Jensen’s inequality, one can deduce that E

[(∫ t

0
ds
Zs

)3
]

≤ t2E
[∫ t

0
ds

(Zs)3

]

. Thanks to the moment expansion

in (72), we find the third equality. Finally, by Jensen’s equality, we obtain that

E

[(∫ t

0

[
1

Zs
− 1

]

ds

)2
]

≤ tE

[
∫ t

0

(
1

Zs
− 1

)2

ds

]

= tE

[∫ t

0

ds

(Zs)2

]

− 2tE

[∫ t

0

ds

(Zs)

]

+ t2

= t2 − 2t2 + t2 +O(t3) = O(t3).

It yields that

E

[(∫ t

0

[
1

Zs

]

ds

)2
]

= E

[(∫ t

0

[
1

Zs
− 1

]

ds

)2
]

− t2 + 2t

∫ t

0

E

[
1

Zs

]

ds = t2 +O(t3).

2
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C A direct proof of Theorem 6

Proof : From (7) we have 2Li = −αLDi + LMi , with:

LDi =
∑

1≤j≤d
j 6=i

x{i,j}∂{i,j}, LMi =
∑

1≤j,k≤d
j 6=i,k 6=i

(x{j,k} − x{i,j}x{i,k})∂{i,j}∂{i,k}.

We want to show that LiLj = LjLi for i 6= j. Up to a permutation of the coordinates, Li and Lj are
the same operators as L1 and L2. It is therefore sufficient to check that L1L2 = L2L1. Since L1L2 =
LM1 L

M
2 − α(LD1 L

M
2 + LM1 L

D
2 ) + α2LD1 L

D
2 , it is sufficient to check that the three terms remain unchanged

when we exchange indices 1 and 2. To do so we write:

LM1 =
∑

3≤i,j≤d
(x{i,j} − x{1,i}x{1,j})∂{1,i}∂{1,j} + 2

∑

3≤i≤d
(x{2,i} − x{1,2}x{1,i})∂{1,2}∂{1,i} + (1− x2{1,2})∂

2
{1,2}

LM2 =
∑

3≤k,l≤d
(x{k,l} − x{2,k}x{2,l})∂{2,k}∂{2,l} + 2

∑

3≤l≤d
(x{1,l} − x{1,2}x{2,l})∂{1,2}∂{2,l} + (1− x2{1,2})∂

2
{1,2}

LD1 = x{1,2}∂{1,2} +
∑

3≤i≤d
x{1,i}∂{1,i}, LD2 = x{1,2}∂{1,2} +

∑

3≤l≤d
x{2,l}∂{2,l}.

By a straightforward but tedious calculation, we get :

LM1 L
M
2 =

∑

3≤i,j,k,l≤d
(x{i,j} − x{1,i}x{1,j})(x{k,l} − x{2,k}x{2,l})∂{1,i}∂{1,j}∂{2,k}∂{2,l}

︸ ︷︷ ︸

1

+
∑

3≤i,j≤d
(x{i,j} − x{1,i}x{1,j})

(
2∂{1,2}∂{2,i}∂{1,j} + 2∂{1,2}∂{2,j}∂{1,i}

)

︸ ︷︷ ︸

2̃

+2
∑

3≤i,j,l≤d
(x{i,j} − x{1,i}x{1,j})(x{1,l} − x{1,2}x{1,l})∂{1,2}∂{2,l}∂{1,i}∂{1,j}

︸ ︷︷ ︸

3

+
∑

3≤i,j≤d
(x{i,j} − x{1,i}x{1,j})(1− x2{1,2})∂{1,i}∂{1,j}∂

2
{1,2}

︸ ︷︷ ︸

4

+2
∑

3≤i,k,l≤d
(x{2,i} − x{1,2}x{1,i})(x{k,l} − x{2,k}x{2,l})∂{2,k}∂{2,l}∂{1,2}∂{1,i}

︸ ︷︷ ︸

3

+4
∑

3≤i≤d
(x{2,i}−x{1,2}x{1,i})










∂2{1,2}∂{2,i}
︸ ︷︷ ︸

5̃

−
∑

3≤l≤d
x{2,l}∂{1,2}∂{2,l}∂{1,i}

︸ ︷︷ ︸

6̃

+
∑

3≤l≤d
(x{1,l} − x{1,2}x{2,l})∂

2
{1,2}∂{2,l}∂{1,i}

︸ ︷︷ ︸

7










+2
∑

3≤i≤d
(x{2,i} − x{1,2}x{1,i})




−2x{1,2}∂

2
{1,2}∂{1,i}

︸ ︷︷ ︸

8̃

+ (1− x2{1,2})∂
3
{1,2}∂{1,i}

︸ ︷︷ ︸

9






+
∑

3≤k,l≤d
(x{k,l} − x{2,k}x{2,m})(1 − x2{1,2})∂{2,k}∂{2,m}∂

2
{1,2}

︸ ︷︷ ︸

4
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+(1− x2{1,2})










∑

3≤l≤d
2(x{1,l} − x{1,2}x{2,l})∂

3
{1,2}∂{2,l}

︸ ︷︷ ︸

9

− 4
∑

3≤l≤d
x{2,l}∂

2
{1,2}∂{2,l}

︸ ︷︷ ︸

1̃0










+(1− x2{1,2})∂
2
{1,2}((1− x2{1,2})∂

2
{1,2})

︸ ︷︷ ︸

11

In this formula, the terms n̄ are already symmetric by exchanging 1 and 2. The terms n are paired with
the corresponding symmetric term. To analyse the terms ñ, we have to do further calculations. On the one
hand,

1̃0 + 5̃ =
∑

3≤l≤d
4x{1,2}(x{1,2}x{2,l} − x{1,l})∂

2
{1,2}∂{2,l}

8̃ =
∑

3≤l≤d
4x{1,2}(x{1,2}x{1,l} − x{2,l})∂

2
{1,2}∂{1,l},

are symmetric together. On the other hand we have

2̃ + 6̃ =
∑

1≤i,j≤d
i6=1,2,j 6=1,2

{
4x{i,j} − 4x{1,i}x{1,j} − 4x{2,i}x{2,j} + 4x{1,i}x{2,j}x{1,2}

}
∂{1,2}∂{1,i}∂{2,j},

which is symmetric.
Now we focus on LD1 L

M
2 + LM1 L

D
2 . We number the terms with the same rule as above, and get:

LD1 L
M
2 + LM1 L

D
2 =

∑

3≤k,l≤d
(x{k,l} − x{2,l}x{2,k})x{1,2}∂{2,l}∂{2,k}∂{1,2}

︸ ︷︷ ︸

1

+ 2
∑

3≤l≤d
x{1,2}(x{1,l} − x{1,2}x{2,l})∂

2
{1,2}∂{2,l}

︸ ︷︷ ︸

2

− 2
∑

3≤l≤d
x{1,2}x{2,l}∂{2,l}∂{1,2}

︸ ︷︷ ︸

3

+ x{1,2}∂{1,2}
{

(1− x2{1,2})∂
2
{1,2}

}

︸ ︷︷ ︸

4

+
∑

3≤i,k,l≤d
x{1,i}(x{l,k} − x{2,k}x{2,l})∂{2,k}∂{2,l}∂{1,i}

︸ ︷︷ ︸

5

+ 2
∑

3≤i,l≤d
x{1,i}(x{1,l} − x{1,2}x{2,l})∂{1,2}∂{2,l}∂{1,i}

︸ ︷︷ ︸

6

+ 2
∑

3≤i≤d
x{1,i}∂{1,2}∂{2,i}

︸ ︷︷ ︸

7

+
∑

3≤i≤d
x{1,i}(1− x2{1,2})∂

2
{1,2}∂{1,i}

︸ ︷︷ ︸

8

+
∑

3≤i,j≤d
(x{i,j} − x{1,i}x{1,j})x{1,2}∂{1,2}∂{1,i}∂{1,j}

︸ ︷︷ ︸

1

+
∑

3≤i,j,l≤d
x{2,l}(x{i,j} − x{1,i}x{1,j})∂{1,i}∂{1,j}∂{2,l}

︸ ︷︷ ︸

5

+ 2
∑

3≤i≤d
x{1,2}(x{2,i} − x{1,2}x{1,i})∂

2
{1,2}∂{1,i}

︸ ︷︷ ︸

2

+ 2
∑

3≤i≤d
(x{2,i}
︸ ︷︷ ︸

7

− x{1,i}x{1,2}
︸ ︷︷ ︸

3

)∂{1,i}∂{1,2} + 2
∑

3≤i,l≤d
x{2,l}(x{2,i} − x{1,2}x{1,i})∂{1,i}∂{1,2}∂{2,l}

︸ ︷︷ ︸

6

+ (1 − x2{1,2})∂
2
{1,2}{x{1,2}∂{1,2}}

︸ ︷︷ ︸

9

+
∑

3≤l≤d
(1− x2{1,2})x{2,l}∂

2
{1,2}∂{2,l}

︸ ︷︷ ︸

8

.

Therefore, LD1 L
M
2 + LM1 L

D
2 is symmetric when we exchange 1 and 2. Last, it is easy to check that

LD1 L
D
2 = LD2 L

D
1 , which concludes the proof. 2
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D A direct construction of a second order scheme for MRC pro-

cesses

In Section 3, we have presented a second order scheme for Mean-Reverting Correlation processes that
is obtained from a second order scheme for Wishart processes. In this section, we propose a second order
scheme that is constructed directly by a splitting of the generator of Mean-Reverting Correlation processes.
As pointed in (42), it is sufficient to construct a potential second order scheme for MRCd(x,

d−2
2 e1d, Id, e

1
d; t).

Thanks to the transformation given by Proposition 9, it is even sufficient to construct such a scheme when
(x)2≤i,j≤d = Id−1.

Consequently, in the rest of this section, we focus on getting a potential second order scheme for
MRCd(x,

d−2
2 e1d, Id, e

1
d; t), where (x)2≤i,j≤d = Id−1. By (22), the matrix x is a correlation matrix if

∑d
i=2 x

2
1,i ≤ 1. Besides, the only non constant elements are on the first row (or the first column) and

the vector ((Xt)1,i)2...d is thus defined on the unit ball D:

D =

{

x ∈ Rd−1,

d−1∑

i=1

x2i ≤ 1

}

. (73)

With a slight abuse of notation, the process ((Xt)i)1...d−1 will denote the vector ((Xt)1,i+1)1...d−1. Its
quadratic covariance is given by d〈(Xt)i, d(Xt)j〉 = (1i=j − (Xt)i(Xt)j) dt, and the infinitesimal generator
L1 of MRCd(x,

d−2
2 e1d, Id, e

1
d) can be rewritten on D, as

L1 = −d− 2

2

d−1∑

i=1

xi∂i +
1

2

∑

1≤i,j≤d−1

(1i=j − xixj)∂i∂j . (74)

One can prove that the following stochastic differential equation

∀1 ≤ i ≤ d− 1, dM i
t = −d− 2

2
M i
t +M i

t

√
√
√
√1−

d−1∑

j=1

(M j
t )

2dB1
t + (1− (M i

t )
2)dBi+1

t −M i
t

∑

1≤j≤d−1
j 6=i

M j
t dB

j+1
t

is associated to the martingale problem of L1, where (Bt)t≥0 denotes a standard Brownian motion in dimen-
sion d. By Theorem (12), there is a unique weak solution (Mt)t≥0 that is defined on D.

The scope of this section is to derive a potential second order discretization for the operator L1, by using
an ad-hoc splitting and the results of Proposition 18. We consider the following splitting

L1 = L1 +

d−1∑

m=1

Lm+1, (75)

where we have, for 1 ≤ m ≤ d− 1:

L1 =
1

2

(

1−
d−1∑

i=1

x2i

)
∑

1≤l,k≤d−1

xkxl∂k∂l,

Lm+1 =
1

2




−

∑

1≤k 6=m≤d−1

xk∂k + (1− x2m)2∂2m − 2xm(1− x2m)
∑

1≤k 6=m≤d−1

xk∂k∂m +
∑

1≤k 6=m≤d−1

1≤l 6=m≤d−1

xkxlx
2
m∂k∂l




 .

Thanks to Proposition 18, it is sufficient to focus on getting potential second-order schemes for the opera-
tors L1, . . . ,Ld.
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D.1 Potential second order schemes for L2
, . . . ,Ld

All the generators Ll+1, l = 1, . . . , d − 1 have the same solution as L2 up to the permutation of the
first coordinate and the l-th one. It is then sufficient to focus on the first operator L2. By straightforward
calculus, we find that the following SDE

d(Xt)1 = (1 − (Xt)
2
1)dBt , ∀2 ≤ i ≤ d− 1 d(Xt)i = −(Xt)i

(
dt

2
+ (Xt)1dBt

)

, X0 = x ∈ D, (76)

is well a solution of the martingale problem for the generator L2. The SDE that defines (Xt)1 is autonomous.
Since x1 ∈ [−1, 1], it has clearly a unique strong valued in [−1, 1]. It yields that the SDE (76) has a unique

strong solution on Rd. To prove that (Xt)t≥0 takes values in D we consider Vt =
∑d

i=1(Xt)
2
i . By Itô calculus,

it follows that
dVt = (1− Vt)(1− (Xt)

2
1)dt+ 2(Xt)1(1− Vt)dBt.

Thus, 1−Vt can be written as a stochastic exponential starting from 1−V0 ≥ 0 and is therefore nonnegative.
We now introduce the Ninomiya-Victoir scheme for the SDE (76).

Proposition 32 — Let us consider x ∈ D. Let Y be sampled according to P(Y =
√
3) = P(Y = −

√
3) = 1

6 ,

so that it fits the first five moments of a standard Gaussian variable. Then X̂x
t = X0( t2 , X

1(
√
tY,X0( t2 , x)))

is well defined on D and is a potential second order scheme for the infinitesimal operator L2, where:

∀t ≥ 0, ∀x ∈ D, X0
1 (t, x) =

x1e
t

√

e2tx21 + (1− x21)
, ∀2 ≤ l ≤ d− 1, X0

l (t, x) =
xl

√

e2tx21 + (1 − x21)
,

∀y ∈ R, ∀x ∈ D, X1
1 (y, x) =

e2y(1 + x1)− (1− x1)

e2y(1 + x1) + (1− x1)
, ∀2 ≤ l ≤ d− 1, X1

l (y, x) =
2eyxl

e2y(1 + x1) + (1− x1)
.

Proof : The proof is a direct application of the Ninomiya-Victoir’s scheme [24] and we introduce the
following ODEs:

∂tX
0
1 (t, x) = X0

1 (t, x)(1 − (X0
1 (t, x))

2), ∀2 ≤ l ≤ d− 1, ∂tX
0
l (t, x) = −X0

l (t, x)(X
0
1 (t, x))

2

∂yX
1
1 (y, x) = (1− (X1

1 (y, x))
2), ∀2 ≤ l ≤ d− 1, ∂yX

1
l (y, x) = −X1

1 (y, x)X
1
l (y, x).

These ODEs can be solved explicitly as stated above. We have to check that they are well defined on D.
This can be checked with the explicit formulas or by observing that ∂t(

∑d−1
l=1 (X

0
l (t, x))

2) = 2(X0
1 (t, x))

2(1−
∑d−1

l=1 (X
0
l (t, x))

2), ∂t(
∑d−1

l=1 (X
1
l (t, x))

2) = 2X1
1 (t, x)(1−

∑d−1
l=1 (X

1
l (t, x))

2). Last, Theorem 1.18 in Alfonsi [4]

ensures that X̂x
t is a potential second order scheme for L2. 2

D.2 Potential second order scheme for L1

Let (Bt)t≥0 be a real a Brownian motion. We consider the following SDE:

∀1 ≤ i ≤ d− 1, d(Xt)i = (Xt)i

√
√
√
√1−

d−1∑

m=1

(Xt)2mdBt, X0 = x ∈ D (77)

Its infinitesimal generator is L1, and we claim that it has a unique strong solution. To check this, we set

Zt =

√
∑d−1
i=1 (Xt)2i . By Itô calculus, we get that the process (Zt)t≥0 is solution of the following SDE

dZt = Zt

√

1− Z2
t dBt, Z0 =

√
√
√
√

d−1∑

i=1

x2i . (78)
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Since the SDE (78) satisfies the Yamada-Watanabe conditions (Proposition 2.13, Chapter 5 of [19]), it has
a unique strong solution defined on [0, 1]. If Z0 = 0, we necessarily have Zt = 0 and thus (Xt)i = 0 for any
t ≥ 0. Otherwise, we have by Itô calculus d ln((Xt)i) = d ln(Zt), and then

∀1 ≤ i ≤ d− 1, (Xt)i =

{

0, if Z0 = 0
xi

Z0
Zt otherwise.

(79)

Conversely, we check easily that (79) is a strong solution of (78), which proves our claim. The explicit
solution (79) indicates that the SDE (78) is one-dimensional up to a basic transformation. Thanks to the
next proposition, it is sufficient to construct a potential second order scheme for Zt in order to get a potential
second order scheme for (78).

Proposition 33 — Let us consider x ∈ D, and Ẑzt denote the second potential order scheme for (Zt)t≥0,

starting from a given value z ∈ [0, 1]. Then the following scheme X̂x
t

∀1 ≤ i ≤ d− 1, (X̂x
t )i =







0 if
∑d−1

j=1 x
2
j = 0,

xi
√

∑d−1
j=1 x

2
j

Ẑ

√

∑d−1
j=1 x

2
j

t otherwise,

is a second potential order scheme for L1 which is well defined on D.

Proof : For a given x ∈ D and f ∈ C∞(D), let (Xx
t )t≥0 denote a process defined by (79) and starting from

x ∈ D. It is sufficient to prove that
∣
∣
∣E [f(Xx

t )]− E

[

f(X̂x
t )
] ∣
∣
∣ ≤ Kt3.

The case where x = 0 is trivial, and we assume thus that
∑d−1

i=1 x
2
i > 0. Let f ∈ C∞(D). We define gx : [0, 1] →

R by ∀y ∈ [0, 1], gx(y) = f( x1
√

∑d−1
j=1 x

2
j

y, . . . , xi
√

∑d−1
j=1 x

2
j

y). Since for every 1 ≤ i ≤ d − 1,
∣
∣ xi
√

∑d−1
j=1 x

2
j

∣
∣ ≤ 1, it

follows we can construct from a good sequence of f a good sequence for gx that does not depend on x. By
the defintion of the second potential scheme, there exist positive constants K > 0 and η > 0, depending only
on a good sequence of f such that ∀t ∈ [0, η]

∣
∣
∣E

[

gx(Z

√

∑d−1
j=1 x

2
j

t )

]

− E

[

gx(Ẑ

√

∑d−1
j=1 x

2
j

t )

]
∣
∣
∣ ≤ Kt3,

which gives the desired result. 2

We now focus on finding a potential second order scheme for (Zt)t≥0. To do so, we try the Ninomiya-
Victoir’s scheme [24] and consider the following ODEs for z ∈ [0, 1],

∀t ≥ 0, ∂tZ0(t, z) = Z0(t, z)(Z0(t, z)−
1

2
), ∀x ∈ R, ∂xZ1(x, z) = Z1(x, z)

√

1− Z1(x, z)2.

These ODEs can be solved explicitly. On the one hand, it follows that for every t ≥ 0 and z ∈ [0, 1]

Z0(t, z) =
z exp(−t/2)

√

1− 2z2(1 − exp(−t))
.

On the other hand, we get by considering the change of variable
√

1− Z2
1 that for every x ∈ R and z ∈ [0, 1],

Z1(x, z) =

{
2z exp(−x)

1−
√
1−z2+exp(−2x)(1+

√
1−z2) if x ≤ 1

2 ln(
1+

√
1−z2

1−
√
1−z2 ),

1 otherwise.
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Then, the Ninomiya-Victoir scheme is given by Z0(t/2, Z1(
√
tY, Z0(t/2, z))), where Y is a random variable

that matches the five first moments of the standard Gaussian variable. Unfortunately, the composition
Z0(t/2, Z1(

√
tY, Z0(t/2, z))) may not be defined if z is close to 1. To correct this, we proceed like Alfonsi [4]

for the CIR diffusion. First, we consider Y that has a bounded support so that Z0(t/2, Z1(
√
tY, Z0(t/2, z)))

is well defined when z is far enough from 1 (namely when 0 ≤ z ≤ K(t) ≤ 1 with K(t) = 1 +O(t)). When
the initial value z is close to 1, we instead use a moment-matching scheme, and then we prove that the whole
scheme is potentially of order 2 (Propositions 34 and 35).

D.2.1 Ninomiya-Victoir’s scheme for (Zt)t≥0 away from 1

Proposition 34 — Let us consider a discrete random variable Y that follows P(Y =
√
3) = P(Y = −

√
3) =

1
6 , and P(Y = 0) = 2

3 , so that it matches the five first moments of a standard Gaussian.

• For a given z ∈ [0, 1], the map z 7→ Z0(t/2, Z1(
√
tY, Z0(t/2, z)))) is well defined on [0, 1], if and only if

z ∈ [0,K(t)], where the threshold function K(t) is given in (81).

• For a given function f ∈ C∞([0, 1]), there are constants η, C > 0 depending only on a good sequence
of f such that ∀t ∈ [0, η], ∀z ∈ [0,K(t)],

∣
∣
∣
∣
E

[

Z0(t/2, Z1(
√
tY, Z0(t/2, z))))

]

−
(

f(z)− tLZf(z) +
t2

t
L2
Zf(z)

)∣
∣
∣
∣
≤ Ct3, (80)

where LZ is the infinitesimal operator associated to the SDE (78).

For every t ≥ 0 the function K(t) is valued on [0, 1] such that

K(t) =

√

1

2− e−t/2
∧

√

1−D(t,
√
3)2

√

e−t/2 + 2(1−D(t,
√
3)2)(1 − e−t/2)

, lim
t→0

1−K(t)

t
=

√
3

2
(1 +

√
3), (81)

with ∀y ∈ R+D(t, y) =
1−e−2

√
ty+

√

1−e−t/2

2−e−t/2 (1+e−2
√

ty)

e−2
√

ty+1+

√

1−e−t/2

2−e−t/2
(1−e−2

√
ty)

.

Proof : The main technical thing here is to check the first point. Then, (80) is a direct consequence of The-
orem 1.18 in Alfonsi [4]. By construction, we have Z0(t/2, z) ∈ [0, 1] ⇔ z ≤ 1√

2−exp (t/2)
. We conclude that

the whole scheme Z0(t/2, Z1(
√
tY, Z0(t/2, z)))) is well defined on [0, 1], if and only if Z1(

√
tY, Z0(t/2, z))) ≤

1√
2−exp (t/2)

. By slight abuse of notation, we denote in the following Z0(t/2, z) by the shorthand Z0. Let us

assume for a while that we have:
√

1− Z2
0 (1 + e−2

√
tY ) + e−2

√
tY − 1 ≥ 0, a.s. (82)
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It yields then to

Z0(t/2, Z1(
√
tY, Z0(t/2, z)))) ∈ [0, 1] ⇐⇒

√

1−
[

Z1(
√
tY, Z0(t/2, z)))

]2

≥
√

1− e−t/2

2− e−t/2

⇐⇒

√
√
√
√

(

e−2
√
tY (1 +

√

1− Z2
0)− (1−

√

1− Z2
0)

e−2
√
tY (1 +

√

1− Z2
0) + (1−

√

1− Z2
0)

)2

≥
√

1− e−t/2

2− e−t/2

=⇒
By (82)

√

1− Z2
0 (1 + e−2

√
tY ) + e−2

√
tY − 1

√

1− Z2
0 (e

−2
√
tY − 1) + 1 + e−2

√
tY

≥
√

1− e−t/2

2− e−t/2
(83)

⇐⇒
√

1− Z2
0 ≥

1− e−2
√
tY +

√
1−e−t/2

2−e−t/2 (1 + e−2
√
tY )

e−2
√
tY + 1 +

√
1−e−t/2

2−e−t/2 (1− e−2
√
tY )

:= D(t, Y ).

We can check that the mapping D : (t, x) ∈ R+ × R 7→ D(t, x) = −1 +
2(1+

√

1−e−t/2

2−e−t/2 )

e−2
√

tx+1+

√

1−e−t/2

2−e−t/2
(1−e−2

√
tx)

is non

decreasing on x, and D(t, x) ≤ 1. Since Y ∈
{
−
√
3, 0,

√
3
}
, it yields thus that the last condition is equivalent

to:

Z0(t/2, z) ≤
√

1−D(t,
√
3)2 ⇔ z ≤

√

1−D(t,
√
3)2

√

et/2 + 2(1− e−t/2)(1−D(t,
√
3)2)

. (84)

Conversely, if (84) is satisfied, we can check that D(t, Y )(1 + e−2
√
tY ) + e−2

√
tY − 1 ≥ 0. Therefore (82)

holds. To sum up, when z ∈ [0,K(t)], we both have Z0(t/2, z), Z0(t/2, Z1(
√
tY, Z0(t/2, z)))) ∈ [0, 1].

Last, it remains to compute the limit of (1 −K(t))/t. First, it is obvious that limt→0K(t) = 1. We can

check that
√

1−D2(t,
√
3) = 2e−

√
3
√

t√
2−e−t/2+

√
1−e−t/2(1−e−

√
3
√

t)
= 1 + t(14 −

√
3
2 (1 +

√
3)) + o(t), and therefore

1−
√

1−D(t,
√
3)2√

1+2(1−D(t,
√
3)2)(1−e−t/2)

= t(
√
3
2 (1 +

√
3)) + o(t). It yields that limt→0

1−K(t)
t =

√
3
2 (1 +

√
3) ∨ 1

2 .

2

D.2.2 Potential second order scheme for (Zt)t≥0 in a neighbourhood of 1

Let (Zt)t≥0 be solution of the SDE (78). By Itô calculus, its moments satisfy the following induction:

∀k ≥ 2, E
[
Zkt
]
=

(

zk −
∫ t

0

k(k − 1)

2
e−

k(k−1)
2 sE

[
Zk+2
s

]
ds

)

exp(
k(k − 1)

2
t).

We obtain first that E
[
Z6
t

]
= z6 +O(t), then E

[
Z4
t

]
= z4 + 6z4t(1 − z2) +O(t2) and last

E
[
Z2
t

]
= z2 + tz2(1− z2) +

t2

2
z2(1− z2)(1− 6z2) +O(t3). (85)

Moreover, by straightforward calculus, one can check that if t ≤ 2
5 and for every z ∈ [0, 1]

z2 + tz2(1 − z2) +
t2

2
z2(1− z2)(1 − 6z2) ≤ 1 , tz2(1− z2) +

t2

2
z2(1− z2)(1− 6z2) ≥ 0. (86)

Since E(Zt) = z, the right hand side of (86) corresponds to the asymptotic variance of Zt. To approximate
the process (Zt)t≥0 near to one, we use a discrete random variable, denoted by Ẑzt , that fits both the

exact first moment and the asymptotic second given by (85). We assume that Ẑzt takes two possible values
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0 ≤ z+ < z− ≤ 1, with probability p(t, z) and 1 − p(t, z) respectively. We introduce two positive variables
(m+,m−), defined as z+ = z +m+ and z− = z −m−. Since we are looking to match the moment, we get
the following equations:

E

[

Ẑzt

]

= z ⇔ m+p(t, z) = m−(1− p(t, z))

E

[

(Ẑzt )
2
]

= z2 + tz2(1− z2) + t2

2 z
2(1 − z2)(1 − 6z2) ⇔ (m+)2 p

1−p = tz2(1− z2) + t2

2 z
2(1− z2)(1 − 6z2)

(87)
We choose

m+ = z(1− z) and then have p(t, z) = 1− 1

1 +
t(1+z)(1+ t

2 (1−6z2))

1−z

, m− = tz(1 + z)(1 +
t

2
(1− 6z2)).

The random variable Ẑzt is well defined on [0, 1] if and only if z+ ≤ 1 and z− ≥ 0, which is respectively
equivalent to z(1− z) ≤ (1− z) and t(1 + z)(1 + t

2 (1− 6z2)) ≤ 1. By straightforward calculus, we can check
that these conditions are satisfied. Since 1−K(t) =

t→0
O(t) by Proposition 34, we deduce that there is C > 0

such that

∀t ∈ [0,
2

5
], ∀z ∈ [K(t), 1], ∀q ∈ N∗, E

[

(1− Ẑzt )
q
]

≤ Cqtq (88)

Proposition 35 — Let U ∼ U([0, 1]). The scheme Ẑzt = z+1{U≤p(t,z)}+z
−1{U>p(t,z)} is a potential second

order scheme on z ∈ [K(t), 1]: for any function f ∈ C∞([0, 1]), there are positive constants C and µ that
depend on a good sequence of the function f, such that

∀t ∈ [0, η ∧ 2

5
], ∀z ∈ [K(t), 1],

∣
∣
∣E

[

f(Ẑzt )
]

− f(z)− tLZf(z)−
t2

2
(LZ)

2f(z)
∣
∣
∣ ≤ Ct3, (89)

where LZ is the infinitesimal operator associated to the SDE (78).

Proof : Let us consider a function f ∈ C∞([0, 1]). Since the exact scheme is a potential second order
scheme (see Alfonsi [4]), there exist then two positive constants η and C, such that ∀t ∈ [0, µ], ∀z ∈
[0, 1], |E [f(Zzt )] − f(z) − tLZf(z) − t2

2 (LZ)
2f(z)| ≤ Ct3. We conclude that it is sufficient to prove that

∀z ∈ [K(t), 1], |E [f(Zzt )] − E[f(Ẑzt )]| ≤ Ct3, for a constant positive variable C. By a third order Taylor
expansion of f near to one, we obtain that

∀z ∈ [0, 1],
∣
∣
∣f(z)−

(

f(1)− f ′(1)(1− z) +
(1− z)2

2
f ′′(1)

) ∣
∣
∣ ≤ ‖f (3)‖∞(1 − z)3.

Thus, there is a constant C > 0 depending on a good sequence of f such that

|E [f(Zzt )]− E[f(Ẑzt )]| ≤ C
(

E[(1 − Ẑzt )
3] + E[(1 − Zzt )

3] +
∣
∣
∣E
[
(1− Zzt )

2
]
− E

[

(1 − Ẑzt )
2
] ∣
∣
∣

)

By (88), the first term is of order O(t3). The last term is equal to |E[(Zzt )2]− z2 − tz2(1− z2)− t2

2 z
2(1−

z2)(1 − 6z2)| and is also of order O(t3) by (85). Last, we have by Itô calculus that ∀q ≥ 2, E[(1 − Zzt )
q] ≤

(1 − z)q + q(q − 1)
∫ t

0
E[(1 − Zzs )

q−1]ds. By induction, we get that there is a constant Rq > 0, such that
∀z ∈ [K(t), 1], E[(1 − Zzt )

q] ≤ Rqt
q, which finally gives the claimed result. 2
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