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Abstract

This paper considers the problem of a fluid-driven fracture propagating in
a permeable poroelastic medium. We develop a zero-thickness finite element
to model the fracture. The fracture propagation is governed by a cohesive
zone model and the flow within the fracture by the lubrication equation.
The hydro-mechanical equations are solved with a fully coupled approach,
using the developed zero-thickness element for the propagating fracture and
conventional bulk finite elements for the surrounding medium. The numerical
results are compared to analytical asymptotic solutions under zero fluid lag
assumption in the four following limiting propagation regimes: toughness-
fracture storage, toughness-leak-off, viscosity-fracture storage and viscosity-
leak-off dominated. We demonstrate the ability of our cohesive zone model
in simulating the hydraulic fracture in all these propagation regimes.

Keywords: Hydraulic fracture, Cohesive zone model, Finite element
analysis, Hydro-mechanical coupling

1. Introduction

The propagation of fluid-driven fractures in a porous medium is an im-
portant problem in rock mechanics. Because these discontinuities affect the
hydro-mechanical properties of rock formations, they are of special interest
in many engineering fields. Hydraulic fracturing is a commonly used tech-
nique in petroleum engineering to enhance reservoirs permeability and wells
efficiency. Other applications of fluid-driven crack problem include under-
ground storage of carbon dioxide, toxic or radioactive waste [30], geothermal
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energy production stimulation [48] and geophysics, for example water-driven
propagation of fracture along glacier beds [44].

Fluid-driven fractures were studied by many contributors during the last
decades from an analytical perspective [3, 7, 14, 21, 35, 34, 41, 25, 27, 22, 38,
36] as well as from a numerical point of view [10, 23, 29, 31, 42, 43]. However,
because of the strongly non-linear, non-local and history-dependent response
and because of the tip singularity, modeling hydraulic fractures is a chal-
lenging problem. Hydraulic fracturing involves several coupled phenomena
[3]:

❼ the preferential fluid flow in the fracture depends on the fracture aper-
ture;

❼ mechanical deformation of the surrounding porous medium is induced
by the fluid pressure on fracture lips;

❼ the fracture and the porous medium exchange fluid;

❼ the fracture propagates, and therefore, hydraulic fracture is a moving
boundary problem.

A system of non-linear partial differential equations can be associated to
this list of coupled processes. During the last sixty years, numerous papers
[3, 7, 14, 21, 35, 34, 41, 25, 27, 22, 38, 36, 1] addressed the mathematical
formulation of the hydraulic fracture problem and the search for analytical
solutions. These works focused on the injection of an incompressible Newto-
nian fluid in an elastic impermeable or permeable medium for simple fracture
geometries: plane strain KGD [27, 22] or PKN [38, 36] models and axisym-
metric penny-shaped model [1]. Asymptotic solutions were derived for these
idealized models. The analysis tool they constitute can be used as a bench-
mark for numerical simulations. In the recent years, a scaling and asymptotic
framework was built to determine the influence of the physical processes
involved in the fracture propagation [14, 35]. Two competing asymptotic
dissipation mechanisms and two competing storage mechanisms were high-
lighted. Energy is dissipated by fracture propagation and by fluid viscous
flow in the fracture. Fluid storage processes are fluid leak-off in the porous
solid and fluid storage in the crack. To these two sets of mechanisms are as-
sociated the four following combined asymptotic regimes: storage-toughness
[21], storage-viscosity [41], leak-off-toughness [7] and leak-off-viscosity [3].

To deal with more complex fracture geometries, numerical tools were de-
veloped to simulate the hydraulic fracture problem [2]. For instance, various

2



finite element-based methods were applied to the simulation of discrete fluid-
driven fracture. Simoni and Secchi [43] used a re-meshing algorithm and a
staggered solving algorithm to model cohesive fracture propagation under
fluid pressure. They considered fluid exchanges between the fracture and
the porous medium. Lecampion [29] investigated the extended finite element
method to model hydraulic fracture in an impermeable medium. He pro-
posed the use of special enrichment functions at the fracture tip to capture
the aperture and pressure singularities. However, neither did he considered
the longitudinal fluid flow nor the fracture propagation. Another set of meth-
ods is based on zero-thickness interface elements. In their pioneering work,
Boone and Ingraffea [6] used the cohesive zone model to model fracture prop-
agation in a poroelastic medium. The problem was solved by finite element
method for the poroelastic medium, along with a finite difference method
for the fluid flow in the fracture. Segura and Carol [42] and Guiducci et al.
[23] developed respectively a double-noded and a triple-noded zero-thickness
finite element. They modeled longitudinal and transversal flow in preexisting
discontinuities. Chen et al. [10] adopted an interface element governed by a
cohesive law to model fracture propagation in an impermeable medium. The
agreement of their numerical results with the toughness-dominated solution
was very good. Lobao et al. [31] modeled both fluid leak-off and propagation
with a zero-thickness element. They investigated the effect of rock plasticity,
as Papanastasiou [37] did for impermeable medium. In some recent contribu-
tions, Sarris [40, 39] examined the influence of the fracture process zone and
of the permeability of the surrounding medium. However, building a robust
and accurate three-dimensional numerical method taking into account all the
phenomena listed above still remains a challenging task.

In this work, we describe a numerical method to model the hydro-mechanical
evolution both of the fracture and of the surrounding rock in the finite el-
ement analysis framework. For this purpose, a zero-thickness element is
developed to model the discontinuity. We consider both the propagation and
the exchanges of fluid with the permeable porous medium. Fracture prop-
agation is governed by a cohesive law. The fluid pressure in the fracture
acts as a mechanical and hydraulic boundary condition on the poroelastic
surrounding medium. We compare the results of our model with analytical
solutions and check the validity of our model in all asymptotic propaga-
tion regimes. We especially investigate the ability of cohesive elements to
model fluid-driven crack propagation in the viscosity-dominated regime. In-
deed, hydraulic fractures for reservoir stimulation typically propagate in the
viscosity-dominated regime [17]. Therefore, this propagation regime is the
focus of numerous works [3, 41]. We also analyze the influence of the per-
meability of the surrounding medium on the fluid diffusion pattern in the
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rock and the associated poroelastic response on fluid-driven fracture propa-
gation. The classic assumption of one-dimensional diffusion (Carter model
[8]) around the fracture is no longer valid in the case of water flooding tech-
nique for instance [28] and three-dimensional diffusion have to be considered
[33]. Moreover, the pore pressure increases around the fracture and induces
a back-stress which tends to shut the fracture [15, 45, 28]. We investigate
the extent of this poroelastic effect.

In section 2, we focus on the governing equations of the coupled problem:
lubrication equation, pressure continuity and cohesive zone model. Section 3
is devoted to a detailed description of the zero-thickness finite element and
of the FEM formulation of the problem. In section 4, our model is applied to
the KGD plane-strain model and its results are presented in the light of the
relevant asymptotic framework. Finally, some concluding remarks are given
in section 5.

2. Governing equations of the hydraulic fracture in a permeable
medium

2.1. Fluid flow in the fracture and in the porous medium

The longitudinal fluid flow in the fracture (figure 1-a) is described by the
fluid mass conservation equation

∂ρw

∂t
+

∂W

∂s
= 0 (1)

where w is the local fracture width, ρ is the fluid density, W is the mass flow
rate and s is the longitudinal coordinate along the fracture Γ.

The seepage from the fracture to the surrounding porous medium is gov-
erned by the continuity of the pressure across the discontinuity (figure 1-b)

p+|Γ = pf = p−|Γ (2)

where pf is the pressure in the fracture and p+ and p− are the pressures in
the upper (+) and lower (−) surrounding medium, respectively.

The longitudinal flow is assumed to be coupled to the fracture aperture
according to the local cubic law [46]

W (s, t) = −ρw(s, t)3

12µ

(
∂pf

∂s
− ρg

∂z

∂s

)
. (3)

where µ is the fluid viscosity, g the gravity acceleration and z the local
altitude.
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The cubic law is derived from Poiseuille equation between two smooth
parallel plates. It was confirmed experimentally [46] and can be corrected to
take into account surface roughness [32].

Neglecting gravity, we obtain the following lubrication equation

∂ρw

∂t
− ∂

∂s

(
ρw3

12µ

∂pf

∂s

)
= 0. (4)

At the crack tip, under the assumption of zero fluid-lag, the flow rate is
equal to zero

W (s = l, t) = 0. (5)

where l is the fracture length.

a

W (s+ ds)
W (s) w

Ω+

Ω−

p+

p−
pf

A

A’

b

p

A A’w

p−p+

Figure 1: Fluid flow modeling in the broken part of the fracture (a) and pressure around
the fracture (b).

The behavior of the surrounding saturated porous medium is governed
by the hydro-mechanical equations of poromechanics [12]:

Div (σ′ − bId) = 0, (6)

∂

∂t
ρΦ = ρ0

κ

µ
∆p (7)

and

Φ− Φ0 = bεV −
(

1

M
− Φ0

Kf

)
p (8)

where σ′ is the Biot effective stress (σ′ = σ+bId), b is the Biot coefficient,
Φ and Φ0 are the Lagrangian porosity in the actual configuration and in the
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reference configuration, respectively, κ is the intrinsic permeability, εV is the
volumetric strain, M the Biot modulus and Kf the pore fluid compressibility.

The conditions of continuity across the discontinuity are the equation of
continuity of fluid pressure (equation (2)), the continuity of stress

σ.n = pf , (9)

and the equality of fracture aperture and normal displacement jump

dw = dJu.nK (10)

where n is the local normal, and u the displacement field in the porous
medium.

2.2. Fracture Propagation

In this work, we assume that fracture propagation is governed by a cohe-
sive zone model. This model was proposed by Dugdale [16] and Barenblatt
[4] to overcome the Griffith brittle fracture theory defects. In particular, it
avoids the stress singularity at the fracture tip. It is based on Khristianovitch
hypothesis [47]: the loading on fracture lips always has to ensure the finiteness
of stress at the fracture tip. The existence of a cohesive zone is postulated at
the fracture tip, where forces are exerted on the emergent fracture lips. These
cohesive forces act against the opening forces and compensate the stress sin-
gularity at the tip. We only consider the class of solutions correspoding to
the case of a zero stress intensity factor. The process zone undergoes plas-
tic deformation and micro-cracking under the tension forces and acts as a
transition zone between the open fracture and the undamaged material. The
cohesive zone framework has been successfully applied to model fracture in
ductile metals and polymers [19], cement-based materials [24] and geoma-
terials. In the case of hydraulic fracture, the pressure can also be singular
at the fracture tip in the Griffith theory framework [13]. With the cohesive
zone model, the fracture tip is not sharp and the pressure singularity can be
removed.

The behavior of the cohesive fracture is given by a cohesive law, which
relates the tension across the interface τ to the displacement jump δ and to
the cohesive energy density Ψ:

τ =
∂Ψ

∂δ
. (11)

Since our fracture is invaded by a liquid at pressure pf , the lips of the
broken part of the fracture are not stress-free. To take into account the effect
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of the pressure, and considering the matrix is plastically incompressible [12],
we introduce the effective stress τ ′. The relationship between total stress
and effective stress across the discontinuity is

τ = τ
′ − pfn. (12)

Thus, similarly to bulk poromechanics, the cohesive law actually relates
τ ′ to δ.

This cohesive energy density must take into account perfect adhesion
before fracturation, zero cohesive force when the fracture is open, fracturation
irreversibility and non-interpenetration of fracture lips. Here, we use a linear
cohesive law, displayed in figure 2. Since the fluid pressure in the crack
induces only normal forces, we focus on mode-I propagation.

a

δn

Ψ
Gc

δc

τ ′c

b

δn

τ ′n
τ ′c

δc

Figure 2: Quadratic cohesive energy density (a) and corresponding linear cohesive law in
the direction normal to the fracture (b).

There is a perfect bonding until the tension reaches the critical stress
τ ′c [9]. Then, the interface begins to be damaged. When the total fracture
energy Gc is dissipated, the fracture lips are stress-free.

Instead of the fracture toughness in mode-I KIc in Griffith theory, this
cohesive law requires two independent material parameters: the cohesive
energy Gc and the critical stress τ ′c. The total separation width δc is given
by the following relationship:

Gc =
1

2
τ ′cδc. (13)

Figure 5 shows a representation of the cohesive zone.
If the cohesive zone is small compared to the fracture length, the fracture

toughness and the cohesive energy are related by Irwin’s formula [26]:
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KIc =

√
Gc

E

1− ν2
(14)

where E is the Young’s modulus and ν the Poisson’s ratio.

2.3. Regimes of propagation and available solutions

The hypotheses of the analytical framework [3, 7] are similar to the ones of
our model (lubrication equation, matrix elasticity). However, in the analyt-
ical model the propagation is governed by linear elastic fracture mechanics.
Instead, we use a cohesive model. In the analytical model fluid leak-off is
given by Carter’s law [8] while our model solves the full equation of pressure
diffusion.

Carter’s model gives an expression for the leak-off from the fracture
glo(x, t)

glo(x, t) =
2CL√
t− t0(x)

(15)

where t0(x) is the time at which the crack arrives at x and CL is the leak-off
coefficient. Carter’s law can be derived from the pressure diffusion equation
in an semi-infinite medium, assuming that the leak-off is unidimensional and
that the hydraulic head ∆p = pf − p0 is constant in time, where p0 is the
pore pressure. For hydraulic fractures, the constant hydraulic head assump-
tion can be justified for high confinements [34]. In that case pf ≈ σ0 and
∆p ≈ σ0−p0 ≫ pf −σ0, where σ0 denotes the confining stress. The relation-
ship between the leak-off coefficient and the parameters of the surrounding
medium is given by

CL ≈ κ

µ

σ0√
πc

(16)

where c denotes the poroelastic intrinsic diffusion coefficient [12].
The hydraulic fracture propagation is governed by two competing energy

dissipation mechanisms (viscous flow and fracturation) and two competing
storage mechanisms (in the fracture or in the porous matrix). The relative
magnitude of the dissipation processes on one hand and of the storage pro-
cesses on the other hand can be described by a dimensionless toughness K
and a dimensionless leak-off coefficient C [3], respectively:

K =
4KIc√

π

(
1

3Q0E ′3µ

)1/4

C = 2CL

(
E ′t

12µQ3
0

)1/6

(17)

where E ′ is the plane strain elastic modulus, Q0 is the injection rate.
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Figure 3 shows the two-dimensional (K, C) parameter space. Each edge
of this space represents an asymptotic regime. During the injection of a fluid
in a plane-strain fracture, the propagation regime evolves from the storage-
dominated edge (C ≪ 1) to the leak-off-dominated edge (C ≫ 1) with time.

M
storage dominated

K

toughness
dominated

K̃

leak-off dominated

M̃

viscosity
dominated

t

K0 ∞

C
∞

Figure 3: Hydraulic fracture parametric space (after [7]).

Chen et al. [10] showed the ability of a cohesive zero-thickness finite ele-
ment to model the hydraulic fracture propagation in an impermeable medium
in the toughness-dominated regime (K regime). In this work, we extend

the use of a cohesive element to both the toughness-dominated (K and K̃

regimes) and the viscosity-dominated (M and M̃ regimes) propagations in
a permeable medium. The fluid lag is always assumed to be equal to zero.
This zero-lag assumption is valid if the confining stress is large enough [3].

We use the near-K [7] and the near-M [3] solutions, the small time solu-

tions in the toughness and viscosity regimes respectively, and the the near-K̃
[7] and the near-M̃ [3] solutions, the large time solutions in the toughness
and viscosity regimes respectively.

3. Finite element modeling of hydraulic fractures

3.1. Zero-thickness element

The cohesive zone model can be easily implemented into classic finite-
element framework. Specific cohesive elements mesh the predicted fracture
path Γ, while usual bulk elements mesh the neighboring medium Ω. How-
ever, the fracture path must be postulated a priori. To model the frac-
ture, we developed a specific zero-thickness cohesive element. This element
is very similar to the zero-thickness elements previously used in mechanics
[11]. However, it has additional degrees of freedom to take into account the
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hydro-mechanical coupling (see figure 4). This element is a degenerated 8-
node quadrangle. The fluid flow within the fracture is discretized on the
mid-plane nodes (nodes 6 and 8 in figure 4). The outer segments are linked
to the bulk hydro-mechanical elements. The fracture aperture is given by
the displacement difference between the upper and the lower segments.

{pf} {pf}
{u, p} {u, p}

{u, p} {u, p}

{u, q}

{u, q}

8 6

4 3

1 2

7

5

Figure 4: Zero-thickness interface element with hydro-mechanical coupling.

The quadratic cohesive energy Ψ (figure 2) is not derivable in 0 with
respect to δn and the cohesive traction - separation law has an infinite slope
in 0. Therefore, the cohesive energy is regularized near 0 and we give to the
traction - separation a finite rigidity in 0. We define the displacement jump
κ0 below which the cohesive law is elastic. When δn ≥ κ0 the cohesive law
has the softening behavior displayed in figure 2. In all the simulations, we
took κ0 = 5.10−4 × δc and checked that this value had no influence on the
results.

Consistently with the bulk hydro-mechanical elements we used, we choose
bilinear interpolation functions for the displacement u and linear interpola-
tion functions for the pressures p and pf . The choice of P2/P1 interpolation
for u−p formulations was shown by [20] to guarantee an optimal convergence
of the error estimators in poroelasticity and to reduce the oscillations of the
numerical solution when sudden boundary conditions are applied.

The discrete displacement field is approximated by

u(x) ≈ [N(x)].{U} (18)

where [N(x)] is the matrix of quadratic interpolation functions and {U} is
the displacement nodal vector. The discrete displacement on the upper and
lower fracture lips Γ+ and Γ− are interpolated by

u+(s) ≈ [N+(s)].{U} and u−(s) ≈ [N−(s)].{U} (19)

where [N+(s)] and [N+(s)] are the traces of [N(s)] on Γ+ and Γ−, respectively.
A rotation matrix [R(s)] is incorporated to the interpolation matrix to get
the displacement discontinuity Ju(s)K in the local coordinates system:
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Ju(s)K =

[
JunK
JutK

]
= [R(s)]. ([N+(s)]− [N−(s)]) .{U} = [D(s)].{U} (20)

The discrete pressure fields are given by

p(x) ≈ [L(x)].{P}, (21)

p+(s) ≈ [L+(s)].{P} and p−(s) ≈ [L−(s)].{P} (22)

and

pf (s) ≈ [Lf (s)].{Pf} (23)

where {P} and {Pf} are the pressure nodal vectors in the porous medium
and in the fracture pressure, respectively. [L(x)] and [Lf (s)] are the matrices
of the interpolation functions on Ω and Γ, respectively. [L+(s)] and [L−(s)]
are the traces of [L(x)] on Γ+ and Γ−, respectively.

To enforce the constraint of equality of the pressure across the inter-
face (equation 2), we introduce the hydraulic Lagrange multipliers q+ and
q−. These new degrees of freedom are located on nodes 5 and 7 of the
zero-thickness element. In order to satisfy the LBB (Ladyzenskaia-Babus̆ka-
Brezzi) condition [5], we choose hydraulic Lagrange multipliers that are con-
stant per element:

q± = [B(s)].{Q±}. (24)

where {Q+} and {Q−} are the Lagrange multipliers nodal vectors and [B(s)]
is the interpolation matrix constant per element.

3.2. Variational equations and discrete formulation

The variational form of equations (6), (10) and (8) is

∫

Ω

(σ′ − bpId) : ε(û)dΩ +

∫

Γ

(τ ′ − pfn) JûKdΓ =
∫

∂ΩM

fM.ûdΓ ∀û ∈ Uad. (25)

where Uad is the set of the kinematically admissible displacement fields and
fM the force boundary condition.

The variational forms of equations (7), (4) and (2), respectively , are
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∫

Ω

∂

∂t
(ρΦ) p̂dΩ +

∫

Ω

ρ0
κ

µ
∇p.∇p̂dΩ =

−
∫

∂ΩH

fH p̂dΓ +

∫

Γ+

q+p̂dΓ +

∫

Γ−

q−p̂dΓ ∀p̂ ∈ Pad (26)

∫

Γ

∂

∂t
(ρJunK) p̂fdΓ +

∫

Γ

ρJunK
3

12µ

∂pf

∂s

∂p̂f

∂s
dΓ =

∫

∂ΓH

ff,H p̂fds−
∫

Γ

(
p+ + p−

)
p̂fdΓ ∀p̂f ∈ Pf,ad (27)

∫

Γ

(
p+ − pf

)
q̂+dΓ =

∫

Γ

(
p− − pf

)
q̂−dΓ = 0 ∀q̂+, q̂− (28)

where Pad and Pf,ad are the sets of the kinematically admissible pressure
fields and fH and ff,H the flux boundary conditions, respectively on ∂ΩH ⊂
∂Ω and on ∂ΓH ⊂ ∂Γ.

An explicit finite-difference scheme is used for the time discretization of
(26) and (27). t denotes the current time-step and t− the last time-step
t − ∆t. At each time-step the following non-linear matrix system is solved
using a fully-coupled Newton-Raphson method to compute {U}, {P}, {Pf}
and {Q±}.

The discrete equation governing the mechanical behavior of the system
is the following approximation of the variational form (25)

∫

Ω

[∇N]T.σ′dΩ− [C].{P}+
∫

Γ

[D]T (τ ′ − {Pf}n) dΓ = {Fext
M

}. (29)

Noting [Id] the identity matrix and [∇N] the matrix of the derivatives
of the quadratic interpolation functions,

[C] =

∫

Ω

b[∇N]T[Id][L]dΩ (30)

is the coupling matrix and {Fext
M

} is the nodal vector of external forces.
The hydraulic behavior of the system is governed by the following set of

equations

[C]T. ({U} − {Ut−}) + [M]. ({P} − {Pt−}) =

∆t
(
[G].{P} − {Fext

H
}+ [E+].{Q+}+ [E−].{Q−}

)
(31)
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∫

Γ

[Lf ]
T

1

Kf

([D].{U})n [Lf ]. ({Pf} − {P}) dΓ +

∫

Γ

[Lf ]
T ([D].{U})n dΓ

= ∆t

(∫

Γ

[
∂Lf

∂s

]T
([D].{U})3n

12µ

[
∂Lf

∂s

]T
.{Pf}dΓ

)

−∆t
(
{Fext

Hf
} − [Ef ].

(
{Q+}+ {Q−}

))
(32)

(
[E+]T.{P} − [Ef ]

T.{Pf}
)
+
(
[E−]T.{P} − [Ef ]

T.{Pf}
)
. = 0 (33)

which are the approximations of the variational forms (26), (27) and (28),
respectively.

[M] and [G] are the compressibility and the permeability matrix of the
porous medium discontinuity, respectively,

[M] =

∫

Ω

[L]T
(
Φ0

Kf

− 1

M

)
[L]dΩ (34)

[G] =

∫

Ω

[∇L]T
κ

µ
[∇L]dΩ. (35)

{Fext
H

} and {Fext
Hf

} are the nodal vectors of external flow.
[E+], [E−] and [Ef ] are the exchange matrices

[E±] =

∫

Γ

[L±]T.[B]dΓ (36)

and

[Ef ] =

∫

Γ

[Lf ]
T.[B]dΓ. (37)

4. Results and benchmarks

4.1. Problem definition

In this section, we apply our model to the KGD fracture problem (figure
5). We consider the injection of an incompressible fluid in a fracture in plane
strain conditions in an infinite permeable medium. The injection rate per
unit of length Q0 in the well is assumed to be constant. The symmetry of
the problem allows us to model only half of the space. The x-axis coincides
with the fracture path; the origin of the x-axis is at the injection point.
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l(t)

w(x, t) pf(x, t)x

y

Q0

2

p(x, y, t)

u(x, y, t)

σ0

σ0

a

δc

cohesive interactions

τ ′c

cohesive zone

visible fracture tip

real fracture tip

pf pf

b

Figure 5: KGD fracture problem (a) and representation of the cohesive zone (b).

Young’s modulus E 17 GPa
Poisson ratio ν 0.2

Fracturing energy Gc 120 Pa.m
Critical stress τc 1.25 MPa
Biot coefficient b 0.75
Biot Modulus M 68.7 MPa

Porosity Φ 0.2
Injection rate Q0 0.001 m3.s−1

Far-field stress σ0 3.7 MPa

Table 1: Input parameters

A compressive far-field stress σ0 acts perpendicularly to the fracture. l(t)
denotes the fracture length.

The material parameters used for all the numerical simulations are given
in table 1. The influence of the hydraulic properties is investigated. As
the mesh density is essentially governed by the cohesive zone parameters to
ensure numerical convergence, the same mesh (figure 6) was used in all the
simulations. The initial configuration was obtained by breaking the very first
interface element near the injection point. The length of this element is 5
cm. Its aperture and its cohesive energy were set to zero in order to allow
the free opening and the fluid injection.

In all simulations, we monitor the flow rate leaving the fracture. We check
whether this flow rate is proportional to t−1/2 and back-calculate CL by linear
regression. Table 2 gives the leak-off coefficients used for comparison with
the simulations.

All the simulations presented in this section are run with the finite element
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Figure 6: Mesh used in the simulations.

software Code Aster [18].

4.2. Storage-toughness dominated regime

To investigate the influence of intrinsic permeability of the surrounding
porous medium, we use a viscosity µ = 0.0001 Pa.s, the cohesive parameters
given in table 2 and a far-field stress σ0 = 3.7 MPa. With these param-
eters the fracture propagation evolves in the toughness-dominated regime
(dimensionless viscosity M = K−4 = 1.42× 10−2).

We perform numerical simulations for two permeabilities κ = 1.10−16 m2

and κ = 1.10−15 m2. For these permeabilities, the characteristic times of
leak-off are ∼ 107 s and ∼ 103 s, respectively. We simulate injections of 14
s and 20 s, respectively, thus ensuring that the fracture propagation stays
in the storage regime. The results obtained by simulation are displayed in
figures 7 and 8 together with the analytical solution for the toughness-storage
regime [7, 25] (near-K solution). The agreement between the numerical and
the analytical solutions is very good. Figure 7 also shows the extent of
the fracture process zone. The cohesive zone length is constant during the
simulations and is approximately 0.8 m long.
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κ (m2) µ (Pa.s) σ0 (MPa) CL (m.s−1/2) Regime Figures
1.10−16 1.10−4 3.7 1.47× 10−5 near-K 7-8-10-9
1.10−15 1.10−4 3.7 6.28× 10−5 near-K 7-8-10-9

5.10−15 1.10−4 5.0 2.0× 10−4 near-K̃ 11-12-13
1.10−12 0.1 3.7 0 M 17-18-19-20

5.10−12 0.1 7.2 1.6× 10−4 M̃ 21-22-23

Table 2: Leak-off coefficients corresponding to the permeabilities and viscosities used in
the simulations and asymptotic propagation regimes reached with these leak-off coeffi-
cients. The fifth column reports the figures in which we display the associated asymptotic
solutions.
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Figure 7: Fracture length (a) and relative error (b) for µ = 1.10−4 Pa.s. The analytical
solutions are the asymptotic solutions in the storage-toughness dominated regime [7].
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Figure 8: Fracture aperture (a) and relative error (b) for µ = 1.10−4 Pa.s. The analytical
solutions are the asymptotic solutions in the storage-toughness dominated regime [7].

Figure 9 shows the fracture profile for the two considered permeabilities
at t = 10 s. Far from the tip we have a perfect match between numerical and
analytical computations. Because the two models use different propagation
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criteria, the profiles have different shapes at the fracture tip. Figure 9 also
displays the normal effective stress across the fracture. It shows the extent
of the process zone, where the cohesive forces are positive. As expected, the
normal effective stress is equal to zero in the broken part of the fracture and
is equal to the far-field stress ahead of the fracture tip.
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Figure 9: Fracture profile (a) and normal effective stress across the fracture (b) for µ =
1.10−4 Pa.s at t = 10s. The analytical solutions are the asymptotic solutions in the
storage-toughness dominated regime [7].

Figure 10 shows the net fluid injection pressure (pf − σ0) versus time.
The pressure obtained from numerical simulations is always greater than
the pressure obtained analytically. While the analytical model neglects the
hydro-mechanical coupled behavior of the surrounding porous medium, our
model takes this coupling into account. The fluid leak-off induces an increase
of pore pressure in the porous medium and therefore stiffens the surround-
ing medium and generates an additional compressive stress: the so-called
back-stress [45, 28]. Indeed, if we remove the hydro-mechanical coupling by
artificially imposing a Biot coefficient equal to zero in the mechanical equi-
librium equation of the medium, the analytical and numerical solutions are
in very good agreement (circles in figure 10). As Detournay et al. [15], we
observe that poroelastic effects induce a significant increase of the injection
pressure but have no effect on the length and the aperture of the fracture.

4.3. Leak-off-toughness dominated regime

Keeping the other parameters fixed, we now perform a simulation for a
higher permeability κ = 5.10−15 m2 and a higher confining stress σ0 = 5
MPa in order to increase the leak-off coefficient. For this permeability the
characteristic time of leak-off is ∼ 1 s. The total simulation time is 100 s.
Therefore the fracture reaches very quickly the leak-off (near-K̃) propagation
regime. Figures 11 and 12 show the numerical fracture length and aperture.
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Figure 10: Injection net pressure (a) and relative error (b) for µ = 1.10−4 Pa.s. The
analytical solution is the asymptotic solution in the storage-toughness dominated regime
[7]. The uncoupled numerical solution is the result of a simulation in which the hydro-
mechanical coupling in the porous medium is artificially removed.

They display the results of two computations: with a bi-dimensional fluid
diffusion and with an unidimensional fluid diffusion in the porous medium.

In the case of a 2D diffusion, the permeability of the surrounding medium
is isotropic (κx = κy = 5.10−15 m2) while in order to have a 1D diffusion,
we choose a strongly anisotropic permeability (κy = 5.10−15 m2 and κy =
1.10−16 m2 ≪ κy). Monitoring the computed leak-off at a given point in
the fracture shows that the assumption of unidimensional diffusion is no
longer relevant for κ = 5.10−15 m2 if the permeability is kept anisotropic.
Figure 14 shows the fluid pressure distribution at t = 100 s. For an isotropic
permeability, the diffusion pattern is clearly bi-dimensional and the fluid
penetration front goes further than the crack tip. However,the diffusion
pattern shows that the unidimensional diffusion hypothesis is valid in the
case of the anisotropic permeability. Moreover, the leak-off at a given point
in the fracture is proportional to t−1/2 and the Carter’s law proves to be a
good approximation.

Figures 11 and 12 show the near-K̃ fracture length and aperture [7, 25].
The storage-toughness (near-K) solution [7] is also plotted but, as expected,
diverges very quickly from the numerical solution. Figure 13 displays the rel-
ative error between the near-K̃ analytical solution and the numerical solution
in the case of an unidimensional diffusion. The agreement between the leak-
off-toughness solution and the numerical one is very good when we impose
an unidimensional leak-off. However, as in the storage-toughness regime,
poroelastic effects induce a significant increase of the injection pressure.
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Figure 11: Fracture length for µ = 1.10−4 Pa.s, κ = 5.10−15 m2 and σ0 = 5 MPa. The
analytical solutions are the asymptotic solution in the storage-toughness dominated regime
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Figure 12: Fracture aperture for µ = 1.10−4 Pa.s, κ = 5.10−15 m2 and σ0 = 5 MPa.
The analytical solutions are the asymptotic solution in the storage-toughness dominated
regime (dashed line) and the leak-off-toughness dominated regime (solid line) [7].

4.4. Storage-viscosity dominated regime

Figures 15 and 16 show the effect of the fluid viscosity on the fracture.
We use the same hydraulic conductivity k = κµ−1ρg = 1.10−7 m.s−1 in all
numerical simulations. The far-field stress is 3.7 MPa. For a low viscosity, the
pressure is uniform in the fracture (figure 16). As we increase the viscosity,
the pressure profile is no longer uniform. For higher viscosities, the pressure
is much higher at the fracture mouth but lower at the fracture tip, therefore
leading to a fracture which is wider near the injection point (figures 15 and
18) but shorter (figure 17).
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Figure 14: Fluid pressure distributions (in Pa) at t = 100 s in the case of 2D diffusion (a)
and 1D diffusion (b).

In figures 17, 18, 19 and 20 we compare the numerical results for µ = 0.1
Pa.s and κ = 1.10−15 m2 with the corresponding analytical solution in the
storage-toughness regime [3]. In that case the dimensionless viscosity is M =
14.2 and the dimensionless toughness is K = 0.51. According to Adachi et
al. [3], K . 1 is a sufficient validity condition to be in the storage-toughness
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Figure 16: Fluid pressure profile at t = 20 s for the same hydraulic conductivity k = 1.10−7

m.s−1 of the porous medium but for different fluid viscosities.

regime. We display the results of a fully coupled numerical simulation and
of an uncoupled computation. For the uncoupled simulation, the hydro-
mechanical coupling was artificially removed in the mechanical equilibrium
equation. The agreement between the numerical uncoupled simulation and
the asymptotic solution is very good (figure 20) . However, the agreement
is not as good in the fully coupled case. The back-stress induces an increase
of the fluid pressure at the fracture mouth (figure 19) and a decrease of the
fracture aperture (figure 18).
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Figure 17: Fracture length for µ = 0.1 Pa.s and κ = 1.10−15 m2. Both the results of a fully
coupled simulation and an uncoupled simulation are displayed. The analytical solution
(solid line) is the storage-viscosity asymptotic solution [3].
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Figure 18: Fracture aperture for µ = 0.1 Pa.s and κ = 1.10−15 m2. Both the results
of a fully coupled simulation and an uncoupled simulation are displayed. The analytical
solution (solid line) is the storage-viscosity asymptotic solution [3].

4.5. Leak-off-viscosity dominated regime

We now perform simulations with the following parameters: κ = 5.10−12

m2, µ = 0.1 Pa.s and σ0 = 7.2 MPa. The total simulation time is 200 s. Fig-
ures 21 and 22 and 23 show the fracture length, mouth aperture and net injec-
tion pressure in three different cases. The first case is the full computation of
fracture propagation in a poroelastic medium. In the second one, the perme-
ability of the surrounding medium is strongly anisotropic (κy = κ = 5.10−12

m2 and κx = 1.10−16) in order to have an unidimensional diffusion and the

22



0

1

2

3

4

5

6

0 5 10 15 20 25 30

In
je
ct
io
n
p
re
ss
u
re

(M
P
a)

t (s)

Uncoupled numerical solution
Coupled numerical solution

M analytical solution

Figure 19: Injection pressure for µ = 0.1 Pa.s and κ = 1.10−15 m2. Both the results
of a fully coupled simulation and an uncoupled simulation are displayed. The analytical
solution (solid line) is the storage-viscosity asymptotic solution [3].
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Figure 20: Relative error of the fracture length, the fracture aperture and the injection
pressure for µ = 0.1 Pa.s and κ = 1.10−15 m2. The numerical solution is the result of
an uncoupled computation and the reference solution is the storage-viscosity asymptotic
solution [3].

porous medium is poroelastic. In the third case, the permeability is strongly
anisotropic (κy = κ = 5.10−12 m2 and κx = 1.10−16 m2) and the hydro-
mechanical coupling is removed in the mechanical equilibrium equation. The
comparison of these three computations shows that both the diffusion pattern
and the back-stress have a strong effect on fracture propagation.

We compare the solution in the unidimensional uncoupled case with the
M̃ analytical solution [3] in figures 21, 22 and 23 and observe a good agree-
ment between the numerical and the analytical solutions. The characteristic
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time of leak-off is ∼ 50 s.
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Figure 21: Fracture length for κ = 5.10−12 m2, µ = 0.1 Pa.s and σ0 = 7.2 MPa. The
analytical solution (solid line) is the leak-off-viscosity asymptotic solution [3].
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Figure 22: Fracture aperture for κ = 5.10−12 m2, µ = 0.1 Pa.s and σ0 = 7.2 MPa. The
analytical solution (solid line) is the leak-off-viscosity asymptotic solution [3].
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Figure 23: Injection net pressure for κ = 5.10−12 m2, µ = 0.1 Pa.s and σ0 = 7.2 MPa.
The analytical solution (solid line) is the leak-off-viscosity asymptotic solution [3].

5. Conclusions

In this paper we presented a finite element-based numerical framework
to model fluid-driven fracture propagation in a poroelastic medium. We de-
veloped a zero thickness interface element to mesh the fracture and its path.
This element can easily be implemented in conjunction with bulk hydro-
mechanical finite elements. The main coupled phenomena are taken into
account: fluid flow in the fracture, 2D fluid diffusion in the porous medium,
hydro-mechanical coupled behavior of the porous medium and fracture prop-
agation. The pressure and the displacement fields can be computed in the
fracture and in the whole porous medium.

The effect of the porous medium permeability and of the fluid viscosity
were investigated. The numerical results were confronted to asymptotic an-
alytical solutions for hydraulic fracture propagation. The four corners of the
dissipation-storage plan were explored. The developed framework captured
very well the asymptotic solution in all the propagation regimes under the
assumptions of unidimensional leak-off and insensitivity of the mechanical
response of the porous medium to the fluid pressure.

In the toughness dominated regime, when the rock stiffening due to fluid
diffusion was taken into account into the numerical model the computed
injection pressure was higher than the analytical one. However, this poroe-
lastic effect has no effect on the fracture length and aperture. In the storage-
viscosity dominated regime, the pressure profile in the fracture is no longer
uniform. Therefore the effect of the back-stress is higher at the mouth of the
fracture: the fracture is longer but the fracture aperture is smaller.

In the analytical model, leak-off is governed by Carter’s law while the 2D
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diffusion equation is fully solved in the surrounding medium by the numerical
model. Carter’s law can be derived from the diffusion equation assuming the
diffusion is unidimensional. For low permeabilities, this hypothesis is con-
firmed and Carter’s law was retrieved numerically. Nevertheless, for higher
permeabilities, the fluid diffusion is no longer unidimensional and the fracture
propagation is slower.

The zero-thickness element method gives access to a finer description of
the fluid diffusion in the porous medium and of its coupled mechanical re-
sponse. Moreover the cohesive zone model proved to be a convenient way
to avoid both stress and pressure singularities at the fracture tip. The mesh
must be dense enough at the fracture tip to guarantee the numerical conver-
gence of the cohesive zone model and to describe finely the pressure profile,
especially when it is not uniform. Although we showed results for a straight
fracture in plane-strain conditions only, the method could be extended to 3D
and to more complex geometries. Another way to deal with this problem
would be to include the tip singularities particular to the hydraulic fracture
problem directly in the extended finite element method (X-FEM) framework.
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