
 

 

 

 

 

 

Copyright 2011 Lei Zhang 



SENSOR DEVELOPMENT FOR ESTIMATION OF BIOMASS YIELD APPLIED TO 

MISCANTHUS GIGANTEUS 

BY 

 

LEI ZHANG 

 

  

  

 

 

 

 

DISSERTATION 
 

Submitted in partial fulfillment of the requirements 

for the degree of Doctor of Philosophy in Agricultural and Biological Engineering 

in the Graduate College of the 

University of Illinois at Urbana-Champaign, 2011 
 

 

 

 

 

Urbana, Illinois 

 

 

Doctoral Committee: 

 

Associate Professor Tony E. Grift, Chair 

Professor Alan C. Hansen 

Associate Professor Yuguo Chen 

Assistant Professor Luis F. Rodríguez 

James Lenz, John Deere® 

  



ii 

 

SENSOR DEVELOPMENT FOR ESTIMATION OF 

BIOMASS YIELD APPLIED TO MISCANTHUS 

GIGANTEUS 

Lei Zhang 

Department of Agricultural and Biological Engineering 

University of Illinois at Urbana-Champaign, 2011 

Dr. Tony E. Grift, Advisor 

 

ABSTRACT 

Precision Agriculture technologies such as yield monitoring have been available for 

traditional field crops for decades. However, there are currently none available for energy crops 

such as Miscanthus Giganteus (MxG), switch grass, and sugar cane. The availability of yield 

monitors would allow better organization and scheduling of harvesting operations. In addition, 

the real-time yield data would allow adaptive speed control of a harvester to optimize 

performance.  

A yield monitor estimates a total amount of biomass per coverage area in kg/m
2
 as a function 

of location. However, for herbaceous type crops such as MxG and switchgrass, directly 

measuring the biomass entering a harvester in the field is complicated and impractical. Therefore, 

a novel yield monitoring system was proposed. The approach taken was to employ an indirect 

measure by determining a volume of biomass entering the harvester as a function of time. The 
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volume can be obtained by multiplying the diameter related cross-sectional area, the height and 

the crop density of MxG. Subsequently, this volume is multiplied by an assumed constant, 

material density of the crop, which results in a mass flow per unit of time. To determine the 

coverage area, typically the width of the cutting device is multiplied by the machine speed to 

give the coverage area per unit of time. The ratio between the mass flow and coverage area is 

now the yield per area, and adding GPS geo-references the yield.  

To measure the height of MxG stems, a light detection and ranging (LIDAR) sensor based 

height measurement approach was developed. The LIDAR was applied to scan to the MxG 

vertically. Two measurement modes: static and dynamic, were designed and tested. A 

geometrical MxG height measurement model was developed and analyzed to obtain the 

resolution of the height measurement. An inclination correction method was proposed to correct 

errors caused by the uneven ground surface. The relationship between yield and stem height was 

discussed and analyzed, resulting in a linear relationship.  

To estimate the MxG stem diameter, two types of sensors were developed and evaluated. 

Firstly, a LIDAR based diameter sensor was designed and tested. The LIDAR was applied to 

scan MxG stems horizontally. A measurement geometry model of the LIDAR was developed to 

determine the region of interest. An angle continuity based pre-grouping algorithm was applied 

to group the raw data from the LIDAR. Based on the analysis of the presentation of MxG stems 

in the LIDAR data, a fuzzy clustering technique was developed to identify the MxG stems within 

the clusters. The diameter was estimated based on the clustering result. Four types of clustering 

techniques were compared. Based on their performances, the Gustafson - Kessel Clustering 

algorithm was selected. A drawback of the LIDAR based diameter sensor was that it could only 
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be used for static diameter measurement. An alternative system based on a machine vision based 

diameter sensor, which supported the dynamic measurement, was applied. A binocular stereo 

vision based diameter sensor and a structured lighting-based monocular vision diameter 

estimation system were developed and evaluated in sequence. Both systems worked with 

structured lighting provided by a downward slanted laser sheet to provide detectable features in 

the images. An image segmentation based algorithm was developed to detect these features.  

These features were used to identify the MxG stems in both the binocular and monocular based 

systems. A horizontally covered length per pixel model was built and validated to extract the 

diameter information from images. The key difference between the binocular and monocular 

stereo vision systems was the approach to estimate the depth. For the binocular system, the depth 

information was obtained based on disparities of matched features in image pairs. The features 

were matched based on a pixel similarity in both one dimensional and two dimensional based 

image matching algorithm. In the monocular system, the depth was obtained by a geometry 

perspective model of the diameter sensor unit. The relationship between yield and stem diameter 

was discussed and analyzed. The result showed that the yield was more strongly dependent upon 

the stem height than diameter, and the relationship between yield and stem volume was linear.  

The crop density estimation was also based on the monocular stereo vision system. To predict 

the crop density, the geometry perspective model of the sensor unit was further analyzed to 

calculate the coverage area of the sensor. A Monte Carlo model based method was designed to 

predict the number of occluded MxG stems based on the number of visible MxG stems in images. 

The results indicated that the yield has a linear relationship with the number of stems with a zero 

intercept and the average individual mass as the coefficient.  
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All sensors were evaluated in the field during the growing seasons of 2009, 2010 and 2011 

using manually measured parameters (height, diameter and crop density) as references. The 

results showed that the LIDAR based height sensor achieved an accuracy of 92% (0.3m error) to 

98.2% (0.06m error) in static height measurements and accuracy of 93.5% (0.22m error) to 98.5% 

(0.05m error) in dynamic height measurements. For the diameter measurements, the machine 

vision based sensors showed a more accurate result than the LIDAR based sensor. The binocular 

stereo vision based and monocular vision based diameter measurement achieved an accuracy of 

93.1% and 93.5% for individual stem diameter estimation, and 99.8% and  99.9% for average 

stem diameter estimation, while the achieved accuracy of LIDAR based sensor for average stem 

diameter estimation was 92.5%. Among three stem diameter sensors, the monocular vision based 

sensor was recommended due to its higher accuracy and lower cost in both device and 

computation. The achieved accuracy of machine vision based crop density measurement was 

92.2%. 
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CHAPTER 1     

INTRODUCTION 

The increased concerns regarding the sustainability of non-renewable fossil energy sources, 

such as oil, natural gas, and coal, have sparked intensified interest in renewable energy sources, 

such as sunlight, wind, and bioenergy (Chu et al., 2010). The use of large perennial grasses as 

feedstocks for biofuel development has received considerable attention because of their wide 

availability and relatively small impact on the food supply (Arthur et al., 2006; Tilman et al., 

2006; Orts et al., 2008; Schmer et al., 2008).  

Miscanthus Giganteus(MxG) (Fig. 1.1) is considered a valuable candidate energy crop due to 

its high yield, the absence of known diseases, low water use and nutritional requirements, its 

non-invasive nature and its ability to recycle carbon into the soil (Lewandowski et al., 2000, 

Naidu et al., 2003, Clifton-Brown et al., 2007). Moreover, MxG is a rhizomatous C4 grass 

species with a high carbon dioxide fixation rate. It is an interesting raw material for industrial 

bioconversion processes given that it is rich in carbohydrates, which constitute approximately 75% 

of the dry matter content (Brosse et al., 2009). Among the 15 cultivars of Miscanthus, MxG is 

the most widely cultivated Miscanthus cultivar for commercial production of lignocellulosic 

biomass. It is currently used in the European Union and United Kingdom as a commercial 
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energy crop. MxG produces more biomass overall than comparable crops, as well as more 

biofuel products. For example, a 435.6 square meters (one acre) of corn yields around 7,600 kg 

of grain and 2,862 liters of ethanol. MxG is capable of producing up to 20,000 kg of biomass and 

12,303 liters of ethanol fuel. Another major benefit of MxG is that it is not a food crop. Corn-

based ethanol in contrast is based on creating fuel from a product that could be used to feed 

people and animals. When market forces change the demand for food related crops like corn, 

prices can fluctuate heavily, affecting the ability of many to purchase food. Since MxG is not a 

food crop, changes in demand will not have a direct effect on the price of food (Paine et al. 1996) 

especially since it can be grown on marginal lands.  

 

Figure 1.1. MxG in the field showing the stem structure and an absence of leaves during the 

harvesting season. 

Currently, a yield monitoring is non-existent for MxG. If it were available, processes such as 

transportation could be better organized and scheduled, and the variability within or among 

fields could be measured. Especially in large farms, a yield monitor may remove the manager 



3 

 

from the everyday harvesting operations (Price et al., 2007). In addition, the real-time yield data 

would allow adaptive speed control of a harvester to optimize performance. 

1.1 Yield Monitoring Systems 

Various approaches based on field measurement and as well as remote sensing have been 

applied in yield monitoring systems (Lu, 2006). Among these, field measurements are most 

accurate, but they are limited to a single measurement per season at harvesting time. Remote 

sensing can provide the spatial distribution of biomass, with a relatively high temporal resolution, 

synoptic representation where the data is compressed into yield levels, and digital format.  

However, its accuracy is relatively low compared to direct field measurements. Thus, the 

combination of field measurement and remote sensing system can provide large-area biomass 

yield information with high accuracy. 

Existing field measurement based yield monitoring systems are mostly indirect. For example, 

combine harvesters use an impact plate measurement to monitor the yield of grains. The material 

collides with an impact plate that is fixed on a spring and the deflection of the spring is used as a 

measure of the mass flow. Other types of combine harvesters use a radiation interruption 

mechanism to measure the flow of grain. A constant level of radiation is received in the absence 

of a mass flow, and an intensity decrease is measured which is proportional to the mass flow 

density. The elevator method is also a solution to measure the biomass yield. This method is 

based on the volume of grain, which is measured on the paddles of a combine elevator during 

transportation of grain to the grain tank. However, most of the methods mentioned above are 

based on analog sensor outputs, which makes them susceptible to vibration, contamination, 

alignment and temperature drift problems, as well as requiring frequent calibration (Grift, 2003).  
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For cotton, researchers developed and tested several yield monitors (Durrence et al., 1998; 

Sassenrath-Cole et al., 1999; Thomasson et al., 1999; Wolak et al., 1999; Vellidis et al., 2003). 

Some have been commercialized under brand names such as AgLeader (Ames, Iowa), FarmScan 

(Perth, Western Australia), Micro-Trak (Eagle Lake, Minn.), and Zycom/AGRIplan (Stow, 

Mass.). Most of these yield monitors use the principle of photo interruption where light 

attenuation caused by passing cotton particles is measured to estimate the cotton mass flow 

(Thomasson et al., 2006). Thomasson and Sui (2004) and Sui et al. (2004) designed an optical 

reflectance based mass flow sensor, which was comprised of a unilaterally mounted light source 

and optical sensors. This design eliminated the requirement for alignment of the sensors.  

Yield monitors for other crops like sugar cane and peanuts were also researched. Benjamin et 

al. (2001) discussed a yield monitoring system, which could be fixed on a Cameco sugar cane 

combine, and a mass scale was applied as a yield sensor. Price et al. (2007) developed an optical 

yield monitor for sugar cane using three optical sensors that were located in the floor of a 

conveyer. Vellidis et al. (2003) developed a peanut yield monitoring system based on load cells 

to measure the mass. A similar method can also be found in the research of Domingos et al. 

(2005). Their system consisted of a load-cell based scale, which was mounted in the floor of the 

elevator of a CASE sugarcane combine.  In fruit harvesting, a machine vision approach was used 

to estimate the yield of citrus per tree (Schueller et al., 1999; Whitney et al., 2001; Annamalai et 

al., 2004). Grift et al. (2006) also applied optical sensors to estimate the fruit yield. Their 

approach was based on a statistical model.  

An alternative to field based yield monitoring is remote sensing based yield monitoring. 

Remote sensing based systems are focused on the above ground biomass (AGB). Liu et al. (2010) 
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developed an approach to integrate crop stressors and crop descriptors derived from optical 

remote sensing data with a radiation efficiency model. Becker et al. (2010) combined a daily 

surface reflectance dataset developed from NASA's MODerate resolution Imaging Spectro-

radiometer (MODIS) with detailed crop statistics to develop an empirical, generalized approach 

to forecast wheat yields.  

1.2 Research Objectives and Overview 

Based on the morphological properties (stalk diameter, height and stalk density) of MxG, 

which include stalk diameter, crop height and the stalk density, the yield was estimated using the 

equation: 

2

* *
2

D
Y d H 

 
   

 
                                              ( 1.1 ) 

Where Y is the estimated yield in the unit of 
2

kg

m
, d is the density in number of stems per area 

(
2

#

m
), D is the estimated average stem diameter in m  and H is the estimated average height in

m of the crop and   is the material density of the crop in 
3

kg

m
 .  

The purpose of this research was to develop sensors for a yield monitoring system applied to 

MxG. The developed sensors measured morphological properties of MxG (stalk diameter, crop 

height and the stalk density). Redundant measurements (sensors) were developed and evaluated 

in a field environment and they were compared based on performances and costs of sensors. All 

measurements were automatic and fully digital. In addition, relationships between measured 
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morphological parameters and yield were discussed and analyzed. The developed sensors will be 

suitable to estimate the yield and to monitor the instantaneous growth stage of MxG.  

Chapter 1. Introduction 

The purpose and motivation of this research is introduced in this chapter. The concept of 

yield monitoring technique is discussed, and an overview of the research is given.    

Chapter 2. Light detection and ranging (LIDAR) based plant height measurement 

This chapter describes the development of a real-time measurement sensor to estimate the 

height of MxG under field conditions. A SICK® LMS 291 laser scanner was applied to 

vertically scan to the MxG to collect data. Two measurement modes, static and dynamic height 

measurement were described in sequence. 

 The LIDAR measured the height at a fixed location in the static height measurement mode. 

The height estimation was based on the detected ground level, which was obtained by a 

developed ground level generation algorithm. The static height measurement approach was 

evaluated under various crop densities. To further evaluate the static height measurement, it was 

also employed to estimate the crop height in a 5m x 10m field.   

The LIDAR traveled along the crop at a constant velocity in the dynamic height measurement. 

The measurement provided a three dimensional structure of the MxG field with the integration of 

velocity information. An Ordinary Least Squares based surface fitting algorithm was applied to 

generate both the top and ground surfaces of the coverage area resulting in an average crop 

height. To reduce the error caused the uneven ground surface, an inclination correction 
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algorithm was developed and shown to improve the accuracy for both static and dynamic height 

measurements. A height-based yield model of MxG was introduced and analyzed.  

Chapter 3. A real-time LIDAR based plant stem diameter sensor 

The objective in this chapter is to develop a real- time LIDAR based sensor to measure stem 

diameters in a certain area.  A LIDAR was used to scan to MxG horizontally. The principle of 

the laser scanner was based on projecting a laser sheet from a commercial LIDAR unit that was 

intercepted by the MxG stems. The angles and distances from the sensor to the stems were 

obtained as real-time data sets. Each stem caused multiple reflections, and the challenge was to 

separate the stems in the signals. 

To solve this problem, a region of interest (ROI) was firstly defined based on a stem diameter 

measurement model. The data in the ROI was grouped into sets that contained single stems and 

sets that contained multiple stems based on their angle continuity. The presentation of MxG 

stems in LIDAR data was discussed and analyzed, based on which a clustering algorithm was 

applied to separate the multiple stem data sets into single stem data sets. Subsequently, the 

diameter information was extracted based on a geometric model of MxG stems. Four classic 

clustering algorithms were tested, among which the Gustafson - Kessel Clustering algorithm 

showed the best performance. The developed method was tested and evaluated in the field.  

Chapter 4. A stereo vision based stem diameter sensor  

The LIDAR based stem diameter measurement in chapter two was limited by a small 

coverage area, lower accuracy and absence of dynamic measurement support. To better estimate 

the stem diameters, a binocular stereo vision based high-accuracy diameter sensor for MxG was 

developed and described in this chapter.  



8 

 

Two Unibrain® Fire-i 701c industrial real-time cameras were employed in combination with 

a downward slanted laser sheet that provided structured lighting. The observed locations where 

the laser sheet intercepted the MxG stalks were used as features in stereo images. Subsequently, 

the features present in dual images were paired to identify MxG stems. Two models were 

analyzed and tested in experiments: Firstly, a disparity-depth model was used to predict the 

depth between the cameras and targets (MxG stems). Secondly, to estimate the stalk diameter 

from images, the horizontal covered length per pixel, which varies depending on depth, is 

required. A depth - horizontally covered length per pixel model, which calculated the 

horizontally covered length of a pixel based on depth information, was analyzed and validated 

by experiments. The captured images were white balanced and converted to an RGB color space. 

A segmentation-based feature detection algorithm was developed to select the features in images. 

An image matching algorithm, which compared the pixel similarity between image pairs in both 

one dimensions and two dimensions, was developed to match the same features in the image 

pairs. The stem diameters were estimated based on the size of detected features, estimated depth 

and horizontal covered length per pixel. Both depth and diameter estimation were evaluated in 

the field. 

Chapter 5. A monocular vision based stem diameter sensor  

A novel stereo vision based diameter sensor was introduced in this chapter. Instead of 

applying binocular stereo vision as described in chapter four, which were relative expensive in 

both computation and hardware, a monocular vision based 3D diameter measurement system 

was developed. The principle is similar to the sensor applied in chapter four, but here only one 

camera was applied. The sensor was composed of an industrial CCD camera and a laser source. 
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The camera captured real-time images in the YCrCb space, while the laser source provided 

structured lighting, imposing features for depth estimation and MxG stem identification. The 

captured images were white balanced and converted to the RGB space. A segmentation based 

method was proposed to detect the features in the images. The depth information of each 

identified MxG stem was extracted based on a perspective model of the diameter sensor unit. 

Based on the depth - horizontal covered length per pixel model the diameter of MxG stems were 

estimated. Both the sensor unit geometry perspective and the depth – horizontal covered length 

per pixel model were validated using experiments and mathematical analysis. The proposed 

method was evaluated in the field.  

The relationship between yield and stem diameter was introduced and discussed. The result 

showed that this relationship is not trivial, mainly because the yield is more strongly dependent 

upon stem height than diameter. Subsequently, the relationship between a combination of stem 

height and diameter (stem volum) was further discussed. The result indicated that yield and stem 

volume followed a linear relationship.  

Chapter 6. A machine vision based crop density sensor  

The objective in this chapter was to develop a crop density sensor for MxG to predict the stem 

density in a certain area. A novel machine vision based crop density sensor for MxG is described, 

where the same sensor module as in chapter four and five was applied.  

The sensor coverage area was calculated based on the geometry perspective model of the 

sensor module, which was introduced in chapter five. The visible MxG stems in images were 

detected using a segmentation based algorithm. A Monte Carlo model was used to predict the 

number of invisible stems in the image based on the number of detected visible stems. The 
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model was validated using lab and field experiments. The result showed that sensor provides 

more accurate estimations for lower crop densities compared to higher crop densities. A crop 

density based yield model was analyzed based on Eqn. 1.1 to uncover the relationship between 

yield and number of stems. The model was based on manually collected field data. The result 

showed that the relationship between the yield and the number of stems is linear with zero 

intercept and the average mass of individual stems as the coefficient.  

Chapter 8. Summary of conclusions and future research direction 

The conclusion of this research and the recommended research direction of the future work is 

described in this chapter.   
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CHAPTER 2     

LIGHT DETECTION AND RANGING (LIDAR) 

BASED PLANT HEIGHT MEASUREMENT 

2.1 Introduction 

The average crop height is considered an important morphological parameter of Miscanthus 

Giganteus (MxG), since it is directly related to biomass yield (Zub et al., 2011). In addition, it 

can be used to identify the genotype of MxG (Clifton-Brown and Lewandowski, 2002).  

Historically, this height information was captured primarily using manual measurements.  

This research focused on the development of a laser scanner (LIDAR) based real-time height 

sensor for MxG. With the availability of real-time height sensors, a yield monitoring system for 

MxG, which estimates a total amount of biomass per coverage area as a function of location, 

becomes possible. Direct measurement of the biomass entering a harvester in the field for 

herbaceous crops such MxG is impractical. A real-time height sensor provides an indirect 

measure of biomass by relating the biomass yield to the average crop height, individual stem 

diameter and crop density being the number of stems per coverage area. A GPS can geo-

reference the yield to produce a yield map. The stem diameter and crop density sensor will be 

reported on in subsequent chapters.  
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 Height measurement techniques are widely researched in forestry. Ulander et al. (1995), 

Dammert and Askne (1998) and Shimada et al. (2001) applied Synthetic Aperture Radar (SAR) 

to estimate the height of trees. In their methods, the phase difference among the trees and tree 

models was used to estimate the height of trees. However, these methods were environment 

dependent and the devices (SAR) were relatively expensive. Alternatively, image processing and 

machine vision based methods were employed to measure the height of trees. Cai and Walker 

(2010) presented a monocular vision based tree height measurement method. A camera was 

mounted on an unmanned aerial vehicle to capture top view images of trees. The depth 

information was reconstructed by dynamic programming with an explicit occlusion modeling 

algorithm. The reported achieved error was within 1.1-1.8 m. In addition, research was 

conducted on tree height estimation using a LIDAR system. Magnussen et al. (1999) estimated 

tree heights based on a recovery model using an airborne LIDAR. Persson et al. (2002) 

described a tree height measurement method using an airborne LIDAR system as well. The 

height of trees was estimated by creating a digital terrain model and a digital canopy model. The 

measurements from this method had a root mean square error of 0.63 m. Kwak et al. (2007) 

developed a tree height estimation method based on an airborne LIDAR system. A 

morphological image analysis method was applied to a digital canopy model to detect treetops, 

and a watershed segmentation method was applied to delineate individual trees. The reported 

root mean square error was in the range of 1.13-1.32m. Yamamoto et al. (2010) used a small 

footprint airborne LIDAR based estimation method of mean tree height. The error of this method 

was within 1m. Methods combining a LIDAR system with a machine vision system to measure 

the height of trees were also reported on (St.-Onge 2004, 2008).   

http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bUlander%2C+L.M.H.%7d&section1=AU&database=57351&yearselect=yearrange&sort=yr
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Dammert,%20P.B.G..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.%20Askne,%20J..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Shimada,%20M..QT.&newsearch=partialPref


13 

 

One of the complications of this research compared to the references mentioned was that the 

plant height, such as that of MxG is not as high as trees, which demanded higher accuracy.  In 

addition, the coverage area was much smaller than those found in forestry were. These 

differences showed that the referenced methods did not meet the needs of MxG height 

measurement in terms of technology, costs and accuracy. Therefore, a ground based 2D laser 

scanner was applied to estimate the height of MxG. The applied device was similar to the 

approach used by Jaakkola et al. (2010) who applied a laser scanner to develop a mapping 

system for tree measurement and Van der Zande et al. (2006), who reconstructed the tree 

structure using a laser scanner as well. The objective of this research was to develop a low-cost 

and high-accuracy height measurement system for MxG in the field as part of a yield monitoring 

system. 

2.2 Materials  

A SICK® Laser scanner (LMS 291) was applied to scan vertically to estimate the height of 

the MxG plants. The laser scanner (Fig. 2.1(a)) consisted of a 905nm infrared radiation source, a 

scanner, which carries a plane mirror and provides 180 or 100 degrees view, and receiver 

electronics, which capture the reflected signals sent from the infrared source to obtain distance 

information. The applied laser scanner features a 180/100 degree view, up to 80 meters operating 

range, and 0.25 or 0.5 degrees of angular resolution. Its systematic error was ±35 mm, and the 

statistical error was 10 mm. In this research, the laser scanner was configured for a 180 degree 

view, eight meters operating range, and an angular resolution of 0.5 degrees.  

A computer (Panasonic TOUGHBOOK CF-30, Intel® CoreTM 1.6GHz, with 1.0GB of 

RAM, 80GB hard disk) was applied to configure the laser scanner and capture data. A 
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Matlab/C++ application (Fig. 2.1(b)) was developed for data acquisition. A serial port facilitated 

the communication between the laser scanner and the computer. Experiments were conducted in 

MxG fields (Fig. 2.1 (c)) Champaign, Illinois (lat/lon: 40.042455,-88.237943) during the spring 

of 2010.  

     

         (a)                                              (b)                                                       (c) 

Figure 2.1. Materials applied in this research. (a) SICK® LMS 291 laser scanner, which 

was applied to measure the height of MxG. (b) Height measurement methods were 

evaluated in this experiment field. (c) User interface of the Matlab/C++ application 

developed to collect data. 

2.3 Methodology  

To estimate the height of the MxG plants, two experimental arrangements being static and 

dynamic height measurement, were used. The laser scanner was placed statically to measure the 

height in static height measurement, while the laser scanner moved with a constant velocity 

during data capture in dynamic height measurement mode. The static mode was designed for 

pre-harvest height measurement while the dynamic height measurement was used to measure the 

height during harvesting.  
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2.3.1 Data acquisition 

The SICK® LMS291 laser scanner used a telegram to communicate with a computer. The 

computer sent commands to the laser scanner, and the laser scanner responded using messages. 

Figure 2.2. (a) shows the data output syntax of the laser scanner.  
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(a)                                     (b)                                                 (c) 

Figure 2.2. Output data syntax of laser scanner, and procedures of test and data acquisition 

under continuous model. (a) Data output syntax of the laser scanner. (b) Configuration and 

test procedures. (c) Procedures to capture data with a continuous sweep model. 

STX represented the start byte, which was 8 bits length. The value of STX was 02 in 

hexadecimal notation and ADR was the 8-bit address of the computer. Len denoted the 16-bit 

length of the LMS output data string. CMD was the command byte, which indicated the laser 

scanner working in individual sweep mode (single scan per time unit) or continuous sweep mode 

(multiple scans per time unit). DataLen represented the number of measurement data bytes 

depending on the measurement mode, in this case 361. STX, ADR, Len, CMD, and DataLen 
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assembled the header of the laser scanner output data. Data X (ranging from 1 to 361) 

represented the number of data bytes (2 bytes per measurement). The status byte indicated 

system errors, and CRC represented the result of the cyclic redundancy check.  

The laser scanner was configured and tested using the following procedures: (1) Set up the 

hardware devices including cables, power supply and serial interface. (2) Test with status request. 

(3) Select the communication baud rate (9600bit/s). (4) Select angular range and resolution (180 

degrees range with a resolution of 0.5 degrees). (5) Select cm/mm model (mm model was 

selected). Figure 2.2. (b) shows the settings applied. Subsequently, the data request command 

was sent, and data collection commenced.  

The data collection in individual sweep mode was straightforward: the data were sent out 

after receiving the data request command. For the continuous sweep model, because there were 

multiple frames, their header needed to be identified. Figure 2.2. (c) shows the procedures of 

data acquisition in the continuous sweep mode. The static height measurements were executed in 

individual sweep mode, and the dynamic height measurements were executed in continuous 

sweep mode.  

2.3.2 Static height measurement  

For static height measurement, the laser scanner was used vertically to scan the MxG plants. 

The data consisted of sampling points in polar coordinates with the laser scanner as the origin. 

While the operating range of the laser scanner can achieve 80 meters (8 meters in this 

application), the scan angles are not continuous. Therefore, increasing the operating range will 

lead to reduced tangential resolution. In addition, the tangential resolution is related to the scan 
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angle. Figure 2.3.  shows a geometric representation of the MxG height measurement. Eqn. 2.1 

shows the relationship between the tangential resolution, elevation angle, and operating range.  

α 
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Figure 2.3. Geometric model of MxG height measurement. The tangential resolution of 

height measurements was a function of the measured distance, measurement angle and the 

angle resolution. 
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                    ( 2.1 ) 

Where TR  is the tangential resolution in m,  is the measured distance in m, and a  is the 

elevation between a horizontal datum and the corresponding scan line in degrees. 

The laser scanner will represent objects exceeding the operating range as the maximum 

distance in the operating range (eight meters). A distance filter was applied to remove objects 

measured at a distance greater than eight meters. The remaining points were considered valid as 

shown in Eqn. 2.2 . 

{ ( , )} { ( , ) }filtered originalS P S P Thres                                        ( 2.2 ) 



18 

 

Where   (in m) and   (in degree) are the radius and polar angle of a sample point P  in 

polar coordinates. filteredS and originalS  represent the filtered data set and the original data set. 

Subsequently, the coordinates of the filtered sample points were converted from polar 

coordinates to Cartesian coordinates using the following equation: 

cos

sin

x

y

 

 





                                                                 ( 2.3 ) 

Where ( , )x y  are the coordinates of a sampling point in Cartesian coordinates. Under ideal 

measurement conditions, the central scanning line was perfectly horizontal (Fig. 2.4(a)). In this 

case, the sum of the measured height 1H  and the installation height of the device devh  is equal to 

the true height H . However, if the laser scanner is placed at a downward slope (Fig. 2.4(b)), 1H
 

will become 2H , which is larger than 1H . This will lead to an estimated height 2 devH h  which is 

larger than the true height H . Similarly, if the laser scanner is placed upward sloping (Fig. 

2.4(c)), this will lead to an estimated height 3 devH h , which is smaller than the true height. 
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(a)                                        (b)                                           (c) 

Figure 2.4. Inclination influence of the device installation. A downward sloping placed laser 

scanner will cause a larger measured height, and an upward sloping placed laser scanner 

will result in a smaller measured height.  

To reduce the error caused by the inclination mentioned above, a correction algorithm was 

developed. The lower half of the data set that contained ground information was selected from 

the original sample points. 

{ ( , )} { ( , ) 90}LH filteredS P S P                                             ( 2.4 ) 

Where, LHS  is the lower half of the filtered data set. The points in LHS  were divided into 

subgroups, which contained 10 samples each, as shown in Eqn. 2.4  

{ ( , ) 10( 1) 1 10( 1) 10}LH i LHS S P i i                                       ( 2.5 ) 

Where LH iS denotes the thi subgroup of LHS , and 1,2,3...9i  .  

app:ds:influence
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 The difference iD  between the maximum ordinate ( maxy ) and the minimum ordinate ( miny ), 

was calculated in each LH iS . 

max( ) min( ), ( , )i i i i i LHiD y y P x y S                                           ( 2.6 ) 

If iD is smaller than a threshold (150mm), the corresponding subgroup was considered the 

ground referenced data set. Then, the mean value iE  of all sampling points in the selected 

ground related data sets was calculated. 

, ( , )
10

i

i i i GR

y
E P x y S 


                                                    ( 2.7 ) 

Where GRS  is the selected ground related sample sets. 

If the difference between iy  and iE  was larger than the threshold (150 mm) this point was 

removed from GRS . Subsequently, the mean value of the remaining points was calculated again 

using Eqn. 2.6 and the process was repeated until the difference between every iy  and iE was 

smaller than the threshold (150mm). The remaining sampling points were considered ground 

reference points. An ordinary least squares based line-fitting algorithm was applied to these 

points to generate a fitted line. The angle between the fitted line, GNDL , and the horizontal level 

was considered the inclination (β, deg.). The error caused by this inclination was corrected by 

rotating all sample points through β degrees. Figure 2.52.5shows two examples of the sample 

points before and after inclination correction.  



21 

 

 

(a)                                                                (b) 

Figure 2.5. Sample sets of laser scanner with and without inclination correction. (a) Sample 

set without inclination correction. (b) Same sample set with inclination correction.  

The maximum ordinate ( y ) was selected from the coordinates of the filtered data set, filteredS , 

to estimate the height of MxG as follows: 

max( ), ( , )max i i i filteredh y P x y S                                             ( 2.8 ) 

Where iy  is the ordinate value of sample points within filteredS in Cartesian coordinates. 

The estimated height of MxG, H , was defined as:  

max devH h h                                                             ( 2.9 ) 

The installation height devh in m, was defined as the distance between the laser scanner and 

the ground, which was calculated using the following equation: 

2 2
dev

b
h

k b



                                                        ( 2.10 ) 

Where k and b are the slope and vertical intercept of GNDL . ( :GNDL y kx b  ) 
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2.3.3 Dynamic height measurement 

      In dynamic height measurement, the laser scanner moved at a constant velocity and operated 

in continuous sweep mode. The captured data were separated into frames based on the output 

format syntax of the laser scanner. Each individual frame was processed following the same 

procedure as in static height measurement. All the captured points were presented in three-

dimensional coordinates corresponding to the velocity information.  

      Assume that in time T , n  frames were captured, and the velocity of the laser scanner was v . 

Thus, there were 361*n  sample points in a distance of *T v  since there were 361 sample points 

in each frame. The distance between each sample point was therefore 
*

361*

T v

n
. The Nth sample 

point could be represented as 
*

( , , * )
361*

N N

T v
x y N

n
in three-dimensional coordinates with the 

initial point of the laser scanner as the origin: ,N Nx y  are Cartesian coordinates of this sample 

point in each frame that were calculated using Eqn. 2.2 .  

      As in the static height measurement, the highest point in each frame was considered the 

estimated height measurement. Among n  frames, n  estimated height measurements were 

extracted. Based on these points, a cubic interpolation was used to fit a height related surface. 

The ground-referenced points, obtained using the method described in the static height 

measurement, were used to fit a surface representing the ground surface. The average distance 

between the two fitted surfaces was considered the average height in the coverage area. The 

coverage area was calculated using the following equation: 

(max( ) min( ))*(max( ) min( ))M i i i iS x x y y                                    ( 2.11 ) 
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     Where MS  is the measured area, and ( , , )i i ix y z  are the coordinates of the height related 

sample points in 3D.  

      Figure 2.6, shows how the crop height in the coverage area was estimated using the average 

distances between the height related surface and the ground related surface. Distances of 

estimated height sample points to the laser scanner were obtained using their y  coordinates, and 

the tangential resolution was obtained using Eqn. 2.1  

 

Figure 2.6. Example of dynamic height measurement result. Upper left: 3D view of the 

measurement: The upper surface is the height related surface (red), and the lower surface 

is the ground related surface (green). Upper right, lower left and lower right: Side view, 

front view and the top view of the measurement. 
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2.4 Results and Discussion 

The methods employed were tested and evaluated in a MxG field (Fig. 2.1(b)) at Champaign, 

Illinois (lat/lon: 40.042455,-88.237943), in the spring and fall 2010. The static and dynamic 

height measurements are described in sequence, and a MxG stem height based yield model is 

discussed in this section as well.  

2.4.1 Results of static height measurement 

To evaluate the static height measurement approach, experiments were conducted using MxG 

fields of varying crop density ranging from 42 stems/m
2
 to 85 stems/m

2
. The measurement was 

repeated five times for each crop density, and the average of these measurements was considered 

the estimated height. 10 stems were randomly chosen in each field, and the average of their 

manually measured heights was used as a reference to evaluate the measurement results.  

Table 2.1. Static height measurement results on different crop densities. 

Crop 

Density 

(stems/m
2
) 

Manually 

Measured 

Height (m) 

Estimated 

Height 

(m) 

Average 

Tangential 

Resolution (m) 

Error 

(m) (%) 

Standard 

Deviation 

(m) 

42 3.06 2.94 0.05 0.12 (4%) 0.08 

58 3.68 3.51 0.06 0.17 (4.6%) 0.19 

62 3.66 3.36 0.06 0.30 (8%) 0.08 

74 2.75 2.57 0.04 0.18 (7%) 0.20 

85 3.31 3.25 0.06 0.06 (1.8%) 0.10 

 

The results as shown in Tab. 2.1 indicate that the method is independent of the crop density in 

the range of experimental crop densities (42 stems/m
2 

to 85 stems/m
2
). The approach used can 

achieve an estimated accuracy of 94.92% on average with the lowest accuracy of 92% and the 

highest of 98.2% compared to manually measured heights. The standard deviation of each 

measurements shows that the difference between each measurement and their mean value is 

smaller than 0.2m. 
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To verify the performance of the inclination correction algorithm, results with and without 

inclination correction were compared. The inclination correction approach improved the 

estimated accuracy across all crop densities by an average of 4.5% (0.15m) and a maximum of 

11.6% (0.34m) (Tab. 2.2). The improvement is mainly related to the flatness of the ground: 

Based on the observation, the improvement by the inclination correction algorithm is less 

obvious when the ground is relatively flat, such as the experiment conducted at a crop density of 

74 stems/m
2
 in contrast to the experiment conducted at a crop density of 42 stems/m

2
. In 

addition, the system installation error was rectified by the inclination correction algorithm 

improving the results further, as shown in Fig. 2.4.  

Table 2.2. Height estimation results with and without inclination correction (IC). 

Crop 

Density 

(stems/m
2
) 

Manually 

Measured 

Height (m) 

Estimated 

Height with 

IC (m) 

Error with 

IC (m) (%) 

Estimated 

Height 

without IC 

(m) 

Error 

without IC 

(m) (%) 

Improvement 

(m) (%) 

42 3.06 2.94 0.12 (4%) 3.40 0.46(15.6%) 0.34(11.6%) 

58 3.68 3.51 0.17 (4.6%) 3.93 0.25(6.8%) 0.08(2.2%) 

62 3.66 3.36 0.30 (8%) 4.15 0.49(13.4%) 0.19(5.4%) 

74 2.75 2.57 0.18 (6.9%) 2.94 0.19(7.0%) 0.01(0.1%) 

85 3.31 3.25 0.06 (1.8%) 3.50 0.19(5.7%) 0.13(3.9%) 

 

The results in Tab. 2.1 and Tab. 2.2 show that the estimated heights were always smaller than 

the manually measured heights. There were two reasons for this: One was the misdetection of 

the highest points of MxG stems. Since the LIDAR scanned MxG stems vertically, there is no 

guarantee that the highest point of stems is captured by the LIDAR every time. Another reason is 

that the manually measured stems may not be the same stems as measured by the LIDAR.  

To evaluate the performance of the static height measurement method further, the method 

was applied to estimate the average height of a 10m x 5m MxG field (Fig. 2.1(b)). Seven 

locations in the field were randomly chosen as shown in Fig. 2.7. 140 randomly selected stems 
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were manually measured as a reference. The result showed that the estimated average height of 

the field using the LIDAR was 3.49m, while the average of manually measured stems was 3.35m. 

The error between the estimation value and the reference was 0.14m (4.2%).  

 

Figure 2.7. Sampling locations in an experimental field (top view). The arrow in the figure 

shows the direction in which the laser scanner is facing. 

2.4.2 Results of dynamic height measurement 

The dynamic height measurement method was tested using varying travel velocities. The 

coverage area was calculated using Eqn. 2.5 . Five stems per square meter were randomly 

selected and manually measured as references. As shown in Tab. 2.3, while the velocity ranged 

from 0.2m/s to 0.41m/s, the dynamic height measurement approach achieved an error between 

1.5% (0.05m) and 6.5% (0.22m). 
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Table 2.3. Height estimation results of dynamic height measurement. 

Velocity (m/s) Covered Area (m
2
) Manually 

Measured 

Height (m) 

Estimated 

Height (m) 

Error (m) (%) 

0.31 19.99 3.39 3.48 0.09(2.7%) 

0.32 20.25 3.66 3.53 0.13(3.6%) 

0.25 21.4 3.32 3.19 0.13(3.9%) 

0.28 24.16 3.66 3.52 0.14(3.8%) 

0.24 26.22 3.45 3.27 0.18(5.2%) 

0.31 17.12 3.41 3.25 0.16(4.7%) 

0.40 29.1 3.67 3.51 0.16(4.4%) 

0.22 32.21 3.36 3.41 0.05(1.5%) 

0.26 26.16 3.64 3.54 0.1(2.7%) 

0.41 29.32 3.40 3.18 0.22(6.5%) 

0.33 25.23 3.51 3.37 0.14(4%) 

0.20 21.18 3.48 3.61 0.13(3.7%) 

0.28 16.83 3.55 3.43 0.12(3.4%) 

0.24 17.66 3.56 3.68 0.12(3.4%) 

 

The dynamic height measurement followed the same procedure per frame as the static height 

measurement where the inclination correction approach improved the results in similar fashion. 

The estimations with and without inclination correction were compared as shown in Tab. 2.4. 

The results showed that the inclination correction approach improved the dynamic height 

measurement. The error was reduced by 4.1% (0.14m) on average with a maximum of 9.8% 

(0.31m). 

The error of measurement may be caused mainly by erroneous measurements, since the laser 

scanner might not always capture the highest points of the plants. By taking the mean of multiple 

measurements this error was reduced. The dynamic height measurement method was repeated in 

a single MxG field 10 times at the same velocity. The means of measurements are listed in Tab. 

2.5. . 100 MxG stems were randomly selected from the coverage area to be manually measured 

as references (3.45 m). It is clear that with an increasing number of measurements, the 

estimation error was reduced to 0.02m from 0.08m.  



28 

 

Table 2.4. Dynamic height measurement comparison with and without inclination 

correction. 

Velocity 

(m/s) 

Manually 

Measured 

Height (m) 

Estimate

d Height 

with IC 

(m) 

Error with 

IC (m) (%) 

Estimated 

Height 

without 

IC (m) 

Error 

without IC 

(m) (%) 

Improvement 

(m) (%) 

0.31 3.39 3.48 0.09(2.7%) 3.24 0.15(4.4%) 0.06(1.8%) 

0.32 3.66 3.53 0.13(3.6%) 3.48 0.18(4.9%) 0.05(1.4%) 

0.25 3.32 3.19 0.13(3.9%) 3.18 0.14(4.2%) 0.01(0.3%) 

0.28 3.66 3.52 0.14(3.8%) 3.24 0.42(11.5%) 0.28(7.7%) 

0.24 3.45 3.27 0.18(5.2%) 3.12 0.33(9.6%) 0.15(4.3%) 

0.31 3.41 3.25 0.16(4.7%) 3.17 0.24(7%) 0.08(2.3%) 

0.40 3.67 3.51 0.16(4.4%) 3.15 0.52(14%) 0.36(9.8%) 

0.22 3.36 3.41 0.05(1.5%) 3.21 0.15(4.4%) 0.10(3%) 

0.26 3.64 3.54 0.1(2.7%) 3.53 0.11(3%) 0.01(0.3%) 

0.41 3.40 3.18 0.22(6.5%) 3.08 0.32(9.4%) 0.1(3%) 

0.33 3.51 3.37 0.14(4%) 3.30 0.21(6%) 0.07(2%) 

0.20 3.48 3.61 0.13(3.7%) 3.60 0.12(3.4%) 0.25(7.2%) 

0.28 3.55 3.43 0.12(3.4%) 3.66 0.11(3.1%) 0.23(6.5%) 

0.24 3.56 3.68 0.12(3.4%) 3.75 0.19(5.3%) 0.31(8.7%) 

 

Table 2.5. Height estimation from multiple measurements. 

Measurement 

Times 

1 2 3 4 5 6 7 8 9 10 

Means of 

Measurements (m) 

3.53 3.50 3.49 3.48 3.49 3.48 3.46 3.48 3.48 3.47 

Error (m) (%) 0.08 

2.3% 

0.05 

1.5% 

0.04 

1.2% 

0.003 

0.9% 

0.04 

1.2% 

0.03 

0.9% 

0.01 

0.3% 

0.03 

0.9% 

0.03 

0.9% 

0.02 

0.6% 

 

2.4.3 Height Based Yield Model 

The relationship between height and mass of an individual stems can be obtained based on 

Eqn. 1.1: 

 

2

* *
2

D
Y d H 

 
   

 
                                                          (1.1) 

The yield in a certain area is the product of the average mass of individual MxG stems and the 

total number of stems in the coverage area: 



29 

 

2Y ( )
2

indi

D
W Num H Num                                               ( 2.12 ) 

Where Y is the yield in
2

kg

m
, indiW  is the average mass of MxG stems, Num is the number of 

stems in a certain area, D is the diameter of MxG stems (in m), H  is the height of MxG stems 

(in m), and   is the material density of MxG stems in 
3

kg

m
 . Based on Eqn. 2.12, with the 

assumption of constant density, the relationship between individual mass and MxG stem height is 

linear.  

To validate the relationship shown in Eqn. 2.12, the heights and mass of 130 MxG stems were 

measured manually, and a linear function (Eqn. 2.13) was applied to fit the collected sample 

points.  

1 2( )indiW f H c H c                                                  ( 2.13 ) 

An ordinary least squares based method was applied to generate a regression curve. The result 

is shown in Fig. 2.8. The fitted curve found was: 

( ) 45.23 38indiW f H H                                             ( 2.14 ) 

The R-Square value of this estimation is 0.86. Thus, the yield and the stem height of MxG 

exhibit a linear relationship.  
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Figure 2.8. Relationship between individual mass and MxG stem height.  

2.5 Summary and Conclusions 

Height is considered an important yield related parameter of MxG since it can be used to 

estimate yield. An automatic laser scanner-based MxG height measurement method was 

described. The laser scanner was employed to scan plants vertically to capture the data, which 

contained the distance from objects to the laser scanner and the corresponding angle with the 

laser scanner as the origin. Both static and dynamic height estimation approaches were described.  

With the static height measurement approach, the laser scanner was placed in an arbitrary 

location to capture the data. A distance filter was applied based on the system’s operating range. 

The tangential resolution was analyzed based on a geometric model of the height measurement. 

The remaining data after filtering was processed by an inclination correction algorithm to 

increase the accuracy. In the dynamic height measurement approach, the laser scanner traveled 
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along the crop at a constant velocity, and the captured data were separated into individual frames. 

The same process as employed in the static height measurement approach was used on these 

single frames. All the sampling points were placed into a 3D space, using the velocity 

information. An ordinary least squares based surface fitting algorithm was applied to generate 

the top surface of the MxG using the detected highest points in each individual frame. Similarly, 

the ground related surface was generated using ground-related points. The coverage area was 

calculated by the coordinates of the highest detected points in each frame. The average height of 

the coverage area was obtained by calculating the average distance between crop height and 

ground surface.  

Both static and dynamic height measurement approaches proved practicable in estimating the 

height of MxG in a field. The static height measurement was robust within crop densities ranging 

from 42 to 85 stems/m
2
. The method achieved an accuracy in the range of 92% (0.3m error) to 

98.2% (0.06m error).  

The method was also used to estimate the average height of a 5m x 10m field, compared with 

randomly chosen, manually measured stems. This resulted in an accuracy of 95.8% (0.14m 

error). The dynamic height measurement method was tested under various velocities ranging 

from 0.2m/s to 0.41m/s, with an achieved accuracy ranging from 93.5% (0.22m error) to 98.5% 

(0.05m error). The inclination correction algorithm was shown to increase the estimation 

accuracy for both static and dynamic height measurements: The accuracy of static height 

measurements were improved by 0.01m (0.1%) to 0.34m (11.6%), while the dynamic height 

measurements were improved by 0.3% (0.01m) to 9.8% (0.31m). The main limitation of the 
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method was erroneous measurements of the laser scanner, which can be dealt with by combining 

multiple measurements and calculating the mean value.  
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CHAPTER 3     

A REAL-TIME LIDAR BASED PLANT STEM 

DIAMETER SENSOR 

3.1 Introduction 

The objective of the research reported in this chapter was to measure the diameter of 

Miscanthus Giganteus (MxG) stems in real-time.  

Diameter measurement of stems and stalks has been attempted by many researchers. 

McDonald et al. (2003) developed a photo-interruption based time-of-fight sensor to measure 

the diameter of trees. Grift and Oberti (2006) developed a method to measure the root collar 

diameter of pine seedlings in a laboratory. It was reported that the method achieved an accuracy 

of 0.1-0.3mm based on various conditions and configurations. Delwiche and Vorhees (2003) 

designed an optoelectronic system to measure the diameter of deciduous trees. Unlike the 

interruption method, in their research, an infrared laser was employed, and the sensors were 

mounted unilaterally. The error of their method was reported up to +1.9mm.  

One of the complications of this research compared to the references mentioned above is that 

with MxG, it is not possible to measure diameters of single stems directly, since they grow in 

clumps. Therefore a laser scanning (LIDAR) method was applied, similar to Lefsky et al. (1999) 
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who used a laser scanner to estimate temperate mixed deciduous forest biomass. Also in forestry, 

Nilsson (1996) used a laser scanner to measure the tree height and stand volume, and Popescu et 

al. (2003) measured the crown diameter using a laser scanner as well. In contrast to the research 

in forestry, here the diameters of smaller clumped objects (5-20mm) need to be measured.  

The objective of this research was to measure the diameters of clumped MxG stems in the 

field as part of a yield monitoring system. The approach was to measure the reflection of laser 

light from clumped MxG stems and to use an algorithm to separate the clumps into measurable 

individual stem diameters.  

3.2 Materials 

To estimate the diameter of MxG stems, a SICK® Laser scanner was applied to scan 

horizontally. The data were collected using a SICK ® LMS 291 laser scanner in an experiment 

field at Urbana-Champaign Illinois (lat/lon: 40.042455,-88.237943) in the Spring of 2010. The 

laser scanner featured a 905nm wavelength infrared light source, up to 180 degrees field of view, 

0 to 80 meters operating range (the maximum range with 10% reflectivity was 30 meters), and a 

75Hz scanning frequency. The angle resolution was 0.25 or 0.5 degrees and the radial resolution 

was 1mm. The laser scanner had a systematic error of +35mm, and a statistical error of 10mm 

(SICK® Technical Description, 2006). The laser scanner was configured to a range of 100 

degrees with an angle resolution of 0.25 degrees.  

The laser scanner communicated with a computer (Panasonic TOUGHBOOK CF-30, Intel® 

CoreTM 1.6GHz, 1.0GB of RAM, 80GB hardware) through a serial port with a baud rate of 

9600bits/s. A MATLAB®/C++ data acquisition application was developed to collect data in the 
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field. The laser scanner was mounted at a height of 87cm above the ground. The sampling 

locations were randomly selected in a MxG field.  

3.3 Methodology 

MxG stems presented themselves as a set of points in the raw data of the laser scanner. A 

fuzzy cluster based algorithm was developed to estimate the diameters of MxG stems from the 

laser scanner data. The algorithm consisted of region of interest (ROI) definition, pre-processing, 

clustering and post-processing.  

3.3.1 Definition of the region of interest (ROI) 

Even though the operating range of the laser scanner can reach 80 meters, the limitation 

posed by the angle resolution led to a poor tangential resolution with an increase of the operating 

range. Eqn. 3.1 shows the relationship between the operating distance and the tangential 

resolution.  

T

0.25
2* *sin

2
R d

 
  

 
                                                         ( 3.1 ) 

Where TR  is the tangential resolution in mm, d  is the operating distance in mm and 0.25 is 

the angle resolution of the laser scanner.  

Eqn. 3.1 shows that the operating distance is inversely proportional to the tangential 

resolution. Thus, before estimating the diameters of MxG stems, a region of interest needed to be 

determined. To achieve this, the MxG stems were modeled as vertical cylinders (Fig. 3.1). 
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Figure 3.1. Geometric model of MxG stem. Crossing sectional area of MxG was modeled as 

a circle. 

Assuming that the diameter of MxG stem was D, the starting point and the end point of the 

interception of the MxG stem with the laser sheet define two lines with an angle of α degrees 

between them. The length from the intersection points to the laser scanner was d in m. Based on 

this geometric relationship, the diameter of MxG can be estimated as: 

2* *tan
2

e

a
D d

 
  

 
                                                        ( 3.2 ) 

Since the MxG stem was modeled as shown in Eqn. 3.2, the tangential resolution is presented 

in Eqn. 3.3. 

 
0.25

2* *tan
2

TR d
 

  
 

                                                     ( 3.3 ) 

The diameter of MxG stems varied from 5mm to 20mm. The tangential resolution of the laser 

scanner was set to 2mm . Thus the ROI  was: 

458.37
0.25

2*tan
2

TR
ROI mm 

 
 
 

                                           ( 3.4 ) 
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Where TR was 2mm in Eqn. 3.4. When TR
 
is 2mm, the difference between Eqn. 3.1 and Eqn. 

3.4 was smaller than 0.001mm. The ROI was chosen as 400mm, the corresponding tangential 

resolution which was 1.745mm. The coverage area S  within the ROI was computed as: 

2 2 2100
*(400) * 139626.34 0.13

360
S mm m                             ( 3.5 ) 

3.3.2 Pre-grouping 

  Noise samples may occur in the ROI data, several of which were caused by the limitation of 

the operating angle range (100 degrees), and others were caused by the ROI definition (e.g. 

incomplete stems). These noisy points would affect the subsequent clustering approach. To filter 

these noisy points and to simplify the clustering approach, the laser scanner data within the ROI 

was pre-grouped based on angle continuity, meaning that the difference between two 

neighboring sample points, in the angle domain, was smaller than one degree. 

To pre-group the data, an angle histogram was obtained. The angle range was separated into 

intervals with an angle of one degree, which were denoted as ( 1,2,...,100)iB i  . The numbers of 

the sample points in each interval were calculated as follows: 

1

{ }
N

i j i

j

n P B


                                                            ( 3.6 ) 

Where each jP  is a sample point in the ROI and N  is the total number of sample points in 

the ROI. The empty intervals were considered borders among each group. The raw data from the 

laser scanner is shown in Fig. 3.2 (a), and the pre-grouped data within the ROI is shown in Fig. 

3.2 (b). 
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In the pre-grouped data sets, if the object presented by the sample groups was smaller than 

5mm (The diameter of MxG ranges from 5mm to 20mm in common), the corresponding sample 

groups were considered noise groups. These noise groups were filtered based on their size. If the 

number of sample points in a pre-grouped group was smaller than a threshold, which was a 

function of the distance from the intersection points to the laser scanner (Eqn. 3.7), this group 

was removed from the ROI data set. The threshold was computed as follows: 

2.5
8 arctan( )nTh

d
                                                         ( 3.7 ) 

Where nTh  is the threshold, d is the average length of the group from the intersection points 

to the laser scanner. The number 2.5 in Eqn. 3.7 represented 2.5 mm, which was considered a 

radius threshold of MxG stems.  

In the remaining pre-grouped groups, if the number of the sample points fell into a specified 

range (Eqn. 3.8), the sample groups were considered representatives of MxG stems (Fig. 3.2). 

The geometric model described previously (Eqn. 3.2) was applied to extract the diameter 

information of MxG stems in groups that where assumed to originate from single MxG stems. In 

Eqn. 3.2, d, the distance between the laser scanner and MxG stem was regarded the average 

distance of the grouped sample points, and α, the angle between two interception points was 

obtained from the angle range of the sample group.  

2.5 10
8 arctan( ) 8 arctan( )Num

d d
                                           ( 3.8 ) 

Where Num  is the number of sample points in a group, and d  as defined in Eqn. 3.1. The 

number 2.5 and 10 presented the radius thresholds of MxG stems, which were 2.5mm and 10mm 

respectively.  
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3.3.3 Clustering 

After pre-grouping, there were several groups that contained more than one MxG stem 

according to the size of the groups (Fig. 3.2(d)). The sample points in these groups were angle 

continuous, which means that the angle difference between two adjacent sample points was 

smaller than 0.25 degrees. To separate MxG stems within the groups, a clustering method was 

applied.  

 

Figure 3.2. Data obtained by the laser scanner. (a) Raw data from the laser scanner. (b) 

Pre-grouped data within the ROI. (c) Single stem groups in the pre-grouped ROI data. (d) 

Multiple stem groups in the pre-grouped ROI data. 
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The features of the sample points fed to the cluster were the location information of the MxG 

stems in the laser scanner image. In Cartesian coordinates, there were two parameters x and y, 

the position of the laser scanner which was defined as the origin in the coordinate frame. The 

data were normalized before feeding them to the clustering algorithm. Assuming there were N 

valid sample points, ( , )i i ip x y 1,2,...i N , within the ROI, the normalized features, 
iX  and 

iY  

were calculated using the following equations:  

min{ }

max{ } min{ }

min{ }

max{ } min{ }

i i
i

i i

i i
i

i i

x x
X

x x

y y
Y

y y


 


 

 

                                                     ( 3.9 ) 

The sample points were mapped onto the interval [0,1] after normalization. Figure 3.3 shows 

an example of a normalized data group.  

Assuming that the data set 1 2 3[ , , ,..., ]NP p p p p , ip  denotes sample points of the laser 

scanner, the data dimension is N n . N is the number of sample points within the ROI, and n is 

the number of the features fed to the cluster (n = 2). The cluster prototypes are described as

{ 1 }iV v i c   . iv  which refers to the center of the clusters in the features domain, and c  

denotes the total number of clusters. A partition matrix: 

1,1 1,2 ,1

2,1 2,2 ,2

,1 ,2 ,

N

N

N N N c

U

  

  

  

 
 
 
 
 
 

                                                  ( 3.10 ) 
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,i k  denotes the probability that the thk sample point belonged to the thi  cluster, and it 

satisfied the following criteria: The probability ,i k  is between 0 and 1. The sum of the 

probability of the thk sample point belonging to each cluster is 1. Within a cluster, the sum of the 

probability of all the points is larger than 0 and smaller than the number of the sample points.
 
 

,

,

1

,

1

[0,1],1 ,1 ;

1,1 ;

0 ,1 ;

k i

c

k i

i
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k i

k

k N i c

k N

N i c
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








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
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  


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




                                         

( 3.11 ) 

The principle behind the GK Clustering algorithm is to minimize an object function 

(Gustafson and Kessel, 1979):  

 
2

2

1 1

( ; , , )
i

c N

ik ikA

i k

J X U V A D
 

                                          ( 3.12 )  

Where  

   
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ikA k i k i i k iA
D p v p v A p v                                         ( 3.13 ) 

1
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i i i iA F F  , 
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( 3.14 ) 
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( 3.15 ) 
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The minimization approach of Eqn. 3.12 used was based on previous research (Babuška et al., 

2002). The method updated the cluster centers interactively based on the cluster covariance and 

distance between sample points and cluster centers. The detailed procedures are shown follows: 

Step 1: Compute the cluster center: 

 

 

2
( 1)

( ) 1

2
( 1)

1

N
l

ik k
l k

i N
l

ik

k

p

v

















, 1 i c                                         ( 3.16 ) 

Where, l  is the iteration number.  

Step 2: Calculate the cluster covariance: 

    
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, 1 i c                        ( 3.17 ) 

Step 3: Calculate the distances between sample points and cluster centers: 

   2 ( ) ( )

i

T
l l

ikA k i i k iD p v A p v  
                                     ( 3.18 ) 

Where iA  is as described in Eqn. 3.14.  

Step 4: Update the partition matrix 

 
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 
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,1 i c  , 1 k N                          ( 3.19 ) 

Repeat all the steps above, until
( ) ( 1)l lU U   . 

http://www.scopus.com/authid/detail.url?origin=resultslist&authorId=24723543100&zone=
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Fig. 3.3(b) shows the clustering result of the GK clustering algorithm for the data group 

shown in Fig. 3.3(a). The circles in the figure show ik  values varying from 0.5 to 0.9 of each 

cluster.  

 

Figure 3.3. Normalized data set and corresponding clustering result based on GK 

clustering algorithm. (a) Example of normalized multiple stems group. (b) Clustering result 

of the data group in Fig. 3.3(a) based on the GK clustering algorithm, with a cluster 

number of three. 

Based on the result shown in Fig. 3.3(b), the GK cluster separated the MxG stems in multiple 

stem groups well. However, this result was obtained based on the assumption that the total 

cluster number was known before applying the GK clustering algorithm. To predict the total 

number of clusters, seven validity measures were chosen to optimize the choice of the number of 

cluster in the data set. They were partition coefficient (PC), classification entropy (CE) (Bezdek, 

1981), partition index (SC), Separation index (S) (Bensaid et al., 1996), Xie and Beni’s index 

(XB) (Xie and Beni, 1991), Dunn’s index (DI) (Dunn, 1973) and alternative Dunn index (ADI) 

(Bezdek and Dunn, 1975). The data sets were clustered into two to seven clusters, and the 
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corresponding validity measures were computed by Eqn. 3.20 to Eqn. 3.26 for each cluster 

number. The optimal cluster number was obtained by using four of them, being SC, S, XB and 

ADI. Figure 3.4 shows the clustering results of various cluster numbers, and Fig. 3.5 shows the 

corresponding validity measures of each cluster number. The optimal cluster number was 

obtained when the SC and C decreased sharply and XBI and DI reached a local maximum.         
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Figure 3.4. Clustering results (GK clustering) of various cluster numbers from two to seven. 

If the probability of a sample point falling into a certain cluster was above 70%, this sampling 

point was considered to belong to this cluster. The reason to choose 70% as a threshold was 

because within this range the distance between the sample point in a cluster and the cluster 

center was close to 35mm, which was the systematic error of the laser scanner. There were still 

several sampling points, which did not belong to any cluster. These points were considered as 

uncertain points and discarded.  
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Figure 3.5. Validity measures for varying cluster numbers (in Fig. 3.4). The x-axes 

represent the number of clusters, the y-axes represent the value of each validity measure. 

An angle-continuity check was applied to the clustered multiple stem groups to confirm that 

all sample points in a cluster were angle continuous. If they were not, the cluster was considered 

an invalid set. If the number of sample points in a cluster was smaller than a threshold (Eqn. 3.7), 

this cluster was considered an invalid set as well. The diameter information of MxG stems was 

only extracted from valid clusters, and all invalid sets were removed from the samples. In 10 

randomly chosen test data sets, all clusters were valid. Eqn. 3.2 was applied to extract the 

diameter information from the MxG stems from each valid cluster. Figure 3.6 shows an example 

of a of laser scanner data set within the ROI (Fig. 3.2(b)). Different colored points groups 

presented different MxG stems in the figure. 
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Figure 3.6. Clustering result of data shown in Fig. 3.2. Different combination of colors and 

symbols present different MxG stems. 

3.4 Results and Discussion 

The method applied consisted of four stages being, 1) presentation of MxG stems in the laser 

scanner data, 2) clustering algorithm comparison, 3) feature extraction and 4) field test 

evaluation, which are described in sequence.  

3.4.1 Presentation of MxG stems in the laser scanner data 

To evaluate the clustering based MxG stem diameter extraction method, the representations of 

the MxG stems in the laser scanner data needed to be identified. Laser scanner data were 

captured with 1 stem, 4 stems and 8 stems in the lab to identify the shapes of the MxG stems in 

the data (Fig. 3.7). The MxG stems presented themselves as vertically distributed sample sets in 
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these figures. There were several reasons why the MxG stems presented themselves as the 

shapes shown in Fig. 3.6 and Fig. 3.7.  

 

Figure 3.7. Presentation of MxG stems in the laser scanner data, from left to right: One 

stem, two stems and four stems. 

Firstly, the accuracy of the laser scanner is limited. As mentioned, the systematic error of the 

laser scanner was +35mm, and the statistical error was 10mm in the radial direction. Ideally, the 

sample points belonging to one MxG stem should be in a small circle being the shape of the MxG 

stem. However, because of the resolution limitation of the laser scanner, there were sample 

points, which belonged to the same MxG stem falling outside the circle along the radial direction. 

In addition, the reflection rate of the light source of the laser scanner (wavelength: 905nm) was 

relatively low, which caused a measurement error. Furthermore, the presentation of MxG stems 

was also affected by its color and by the relatively small size of the MxG stems.    

To test the influence of the color of the scanned object on the laser scanner data, five flat 

objects with various colors and identical size (270mm x 300mm) and material (plastic) were 

scanned by the laser scanner at the same location. The distance between the objects and the laser 

scanner was 340mm. The results are shown in Fig. 3.8(a) and Tab. 3.1.  
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 Figure 3.8. Color and size effects on the laser scanner. (a) Color effect on the laser scanner, 

from left to right: white, yellow, blue and black. (b) Size effect on the laser scanner, 

diameters of objects from left to right: 10.75mm, 21.36mm, 34.01mm and 41.50mm. The 

unit in these figures is mm in both x and y axis. 

There were 182 sample points detected in the range of 370mm of a white object. The 

measured length was 376.8mm and the measured distance between the object and the laser 

scanner was 335.6mm with a standard deviation of 5.43mm
2
.  However, for a black object, the 

number of detected sample points in the same range was 97. The measured length was 148.6mm, 

and the measured distance was 307mm with a standard deviation of 11.91 mm
2
. It was evident 

that the dark object had the least accurate scanning result. This was because the dark object 

absorbed the radiation from the laser scanner, which was reflected by the brighter objects. Figure 

3.8(b) shows the scanning results of objects with the same color (white) and material (paper), but 

varying diameter (size). The objects were located at 170mm distance from the laser scanner. The 

number of sample points between 135 - r mm and 205 + r mm (where 35 is the systematic error 

of the laser scanner, and r is the radius of the object in mm) from the laser scanner was 
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calculated. The diameters were estimated based on these sample points. The result is shown in 

Tab. 3.2. The error was inversely proportional to the diameter, implying that larger objects 

presented themselves better in the scanning data.  

Table 3.1. Color effect on the laser scanner: brighter objects have a better detection. 

Color white yellow blue black 

Sample points (Number) 182 180 172 97 

Length (mm) 276.8 283.5 260.3 148.6 

Distance (mm) 335.6 330.9 325 307.8 

STD (mm
2
) 5.43 4.74 7.24 11.91 

 

To test the effect of ambient light on the laser scanning, the same flat white object used in the 

color testing was scanned several times under varying lighting conditions being 1) no light, 2) 

light from the left side, 3) right side, 4) center, and 5) all directions, as shown in Fig. 3.9. The 

result indicated that the lighting condition did not affect the scanner result significantly.  
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Figure 3.9. 3D graphic of testing the effect of ambient light on the laser scanning. 

The reasons above explain why the MxG stems presented themselves as point sets along the 

radial direction as shown in Fig. 3.7. The same results were obtained by the diameter extraction 

method (Fig. 3.6). 

Table 3.2. Size effect on the laser scanner: larger objects are detected better.  

Objects Object1 Object2 Object3 Object4 

Real Diameter (mm) 13 17.86 27.02 33.62 

Sample points (Number) 16 23 37 46 

Estimated Diameter (mm) 11.1 16.3 26.8 33.5 

Error (mm) 1.9 1.56 0.22 0.12 

  

3.4.2 Clustering algorithm comparison 

Three classical clustering techniques were compared with the GK clustering algorithm. They 

were the K-mean (KM) clustering algorithm, fuzzy C-Mean (FCM) clustering algorithm and the 
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Gath-Gave (GG) clustering algorithm. Tab. 3.3 shows the successful clustering result rate of 

these four clustering algorithms on a 30 data sets.     

Table 3.3. Clustering results among four algorithms on 30 data sets. 

Clustering method GG KM FCM GK 

Successfully clustered number 5 9 23 29 

Successfully clustered rate (%) 16.7 30 76.7 96.7 

 

      Figure 3.10 shows the result of these clustering algorithms for the data set shown in Fig. 

3.3(a).  

 

Figure 3.10. Results of various clustering algorithms for the data set in Fig. 3.3(a). (a) 

Clustering results of KM clustering algorithm based different initial cluster centers. Left: 

inappropriately selected initial cluster centers. Right: well selected initial cluster centers. (b) 
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Clustering result of FCM clustering algorithm. (c) Clustering result of GG clustering 

algorithm. 

Fig. 3.10(a) shows the result of the KM clustering algorithm. The KM clustering algorithm 

was strongly dependent upon the positions of the initial cluster centers. If the initial cluster 

centers were well chosen, the clustering algorithm provided the correct clustering result (Right 

figure in Fig. 3.10(a)). However, if the initial cluster centers were selected incorrectly, erroneous 

clustering results were obtained by the KM clustering algorithms (Left graph in Fig. 3.10(b)). 

However, the centers of clusters cannot be accurately determined before clustering and need to 

be assigned at random. Among 30 data sets, only nine were successfully clustered (30%) based 

on randomly selected initial cluster centers. In contrast, for the GK clustering algorithm, 29 of 

the same 30 data sets (96.7%) were successfully clustered.  

The principle of the FCM algorithm was similar to the GK clustering algorithm. Both 

algorithms attempt to minimize the object function in Eqn. 3.12. Unlike the GK clustering 

algorithm, the FCM algorithm uses the same norm inducing matrix A , which described the 

shape of the cluster, for every cluster in Eqn. 3.13. Thus, the clusters detected by the FCM 

clustering algorithm were all in the same shape and orientation (determined by the norm 

inducing matrix A ). As shown in Fig. 3.10(b), all three clusters have a similar shape. Since the 

MxG stems presented themselves in different shapes and orientations, the GK clustering was 

shown to yield superior results. Figure 3.11. (a) shows an example of the results comparison 

between the GK clustering algorithm based method and FCM clustering algorithm based method. 

Seven stems were detected by the FCM clustering algorithm with an estimated diameter of 

10.9mm, and nine stems were detected by the GK clustering algorithm with an estimated 

diameter of 12.1mm. The manually measured average diameter of the stems was 11.6mm among 
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the seven stems, and 11.5 mm among nine stems. In the 30 data sets, 23 (76.7%) data sets were 

successfully clustered by the FCM clustering algorithm.  Thus, the GK clustering algorithm 

based method had a higher accuracy and detection rate than the FCM clustering based method.  

 Unlike the FCM and GK clustering algorithms, which are based on the inner-product norm, 

the GG clustering algorithm is based on a distance norm (Eqn. 3.27) and fuzzy maximum 

likelihood estimations (Bezdek and Dunn, 1975).  
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Thus, the GG clustering algorithm can provide better defined clustering boundaries than the 

FCM and GK clustering algorithms, as shown in Fig. 3.10(c). However, if the number of data 

samples in a cluster was relatively small (or the number of clusters was relatively large) the 

matrix F  in Eqn. 3.15 became singular, which caused the GG clustering algorithm to fail. This 

problem occurred when predicting the total cluster number. Among 30 data sets, only 5 (16.7%) 

were successfully clustered by the GG clustering algorithms. Based on the analysis above, the 

GK clustering algorithm was applied due to its higher successful clustering rate and accuracy.   
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3.4.3 Feature extraction 

As mentioned above, the location information was the only known parameter in the data set. 

The laser scanner provided the angle and the distance for each sample point in polar coordinates, 

and the position of the device was regarded the origin. Thus there were four parameters, which 

were the polar angle in the polar coordinates, the radius in polar coordinates, the X axis and Y 

axis in Cartesian coordinates. To select the features to be fed to the clustering algorithm, they 

were grouped into pairs based on their measured coordinates. The first group of features was the 

position information in polar coordinates. An example of the clustering results based on these 

two features is shown in Fig. 3.11. (b). Nine stems were detected based on these features. The 

number of detected MxG stems was 11, after applying the features in Cartesian coordinates (Fig. 

3.6) on the same data set.        

 

Figure 3.11. Clustering result of Cartesian coordinates feature based FCM clustering 

algorithm and Polar coordinates feature based GK clustering algorithm. (a) Clustering 

result of the same data set in Fig. 3.6 based on the FCM clustering algorithm. (b) 

Clustering result using features from Polar coordinates based on the GK clustering 

algorithm. Different combination of colors and symbols present different MxG stems. 
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Ten data sets were tested using these two groups of features. 63 MxG stems with an average 

estimated diameter of 10.57mm were detected based on polar coordinates features, and 70 MxG 

stems with an average estimated diameter of 11.40mm were detected based on Cartesian 

coordinate features. Cartesian coordinate features provided a higher detection rate. This was 

because in the data sets, which contained multiple MxG stems that needed to be clustered, the 

polar angle differences between two neighboring sampling points were always 0.25 degree, 

which was the angle resolution of the laser scanner. This influenced the process of choosing the 

optimal cluster number, which led a lower number of detected MxG stems in the algorithm. 

When using the features in the Cartesian coordinates, the differences between neighboring 

sample points were all different. In the 30 data sets, 29 (96.7%) were successfully clustered 

using the features in Cartesian coordinates, while 24 (80%) were successfully clustered using the 

features in Polar coordinates. Thus, the appropriate features fed to the clustering algorithm were 

the position information in the Cartesian coordinates.  

3.4.4 Field test evaluation 

To evaluate the performance of the method described, five locations were randomly chosen in 

a 10 by 10 m MxG plots, at the University of Illinois SoyFACE location in Champaign County, 

Illinois (lat/lon: 40.042455,-88.237943). At each location, five scans were performed, and 10 out 

of 25 scans were randomly chosen among all data sets. Within these 10 scans, 70 valid MxG 

stems were detected, and diameters of 70 MxG stems within the ROI (400mm) were manually 

measured at each location. Figure 3.11 shows the measurement results and the manually 

measured counterparts. The average of the manually measured MxG stems was 12.33mm, and 

the average of estimated diameters from laser scanner data using the method was 11.4mm. The 
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error was 0.93mm on average, or 7.5% of the average manually measured diameter. The 

tangential resolutions for each estimated stems were calculated based on Eqn. 3.1. The average 

tangential resolution of all 70 estimated MxG stem diameters was 1.13mm. Thus, if there was 

one sample point grouped into a wrong cluster, it would cause 1.13mm difference in the 

estimated result. Based on the results shown in Fig. 3.11, the average error between estimated 

diameter and manually measured diameter was one sampling point.  

The reasons for this error are listed below. The accuracy limitation of the laser scanner 

limited the estimated results. In addition, the targets, MxG stems, were small, and it decreased 

their reflection rate. Both of these two reasons increased the clustering difficulty. Noise in the 

field caused by wind or leaves probably contributed to the error as well. In addition, incorrectly 

clustered sample points lowered the accuracy.   

 

Figure 3.12. Results comparison between clustering algorithm measurements and manual 

measurements. x axis is the stem number, y axis is the value of diameter in mm. The results 

were sorted in ascending order. 
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3.5 Summary and Conclusions 

A laser scanner based method was developed to automatically measure the diameters of MxG 

stems. The stem diameter was considered an important parameter to estimate yield in real-time. 

The laser scanner data contained the position information of MxG stems with the laser scanner as 

the origin. Based on the presentation of MxG stems, a clustering based method was developed to 

extract the diameter information.  

A Region of Interest (ROI) was defined based on the tangential resolution of the laser scanner. 

The sample points within the ROI were pre-grouped using angle continuity. All samples were 

grouped into either single stem groups or multiple stem groups. A clustering algorithm was 

applied on the multiple stem groups to separate the data into data containing only a single stem. 

The diameter information of MxG stems was extracted based on a geometric model of MxG 

stems for the data groups containing single stem and clustered data sets.  

Four clustering algorithms (K-mean (KM) clustering algorithm, fuzzy C-Mean (FCM) 

clustering algorithm, Gath-Gave (GG) clustering algorithm and (GK) clustering algorithm) were 

tested. Based on their performances, the GK clustering algorithm was regarded superior. Various 

combinations of features fed to the cluster were tested to evaluate the clustering result, and stems 

represented in Cartesian coordinates were used as features and fed to the clustering algorithm.  

The method was shown feasible to extract diameter information of MxG stems in the field. 

Based on 10 randomly chosen scanning data sets, 70 MxG stems were detected, and the average 

of the estimated diameters was 11.4mm. 70 MxG stems around the scanning points were 

randomly selected as references. The manually measured average diameter of these MxG stems 

was 12.3mm. The error was 0.93 mm, which was 7.5% of the manually measured MxG stem 
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diameters. The possible sources of error were interference in the field, such as wind and leaf 

residuals, incorrectly clustered samples and the limited resolution of the laser scanner.  
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CHAPTER 4     

A STEREO VISION BASED STEM DIAMETER 

SENSOR  

4.1 Introduction 

The LIDAR based stem diameter measurement introduced in chapter three was limited by the 

coverage area, dynamic measurement support and device cost. To improve the performance of 

stem diameter sensor and to aid researchers in determining the diameters of Miscanthus 

Giganteus (MxG) stems in an automated, high-throughput fashion, a high-accuracy stereo vision 

based diameter sensing system was developed. In addition, the developed system could be an 

integral part of a yield monitoring system for MxG, as well as being useful for validation of crop 

models.  

The majority of previously developed diameter sensors in agriculture and forestry are based 

on photo-interruption and optical time-of-flight methods. Some examples were listed in section 

3.1. However, neither of the sensor principles in the literature is suitable for measuring diameters 

of MxG stems in a field environment, due to the crop density and the fact that MxG grows in 

clumps rather than rows.  
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A stereo machine vision system is well suited to capture images of populations of stems, but, 

in order to measure the diameters of individual stems, they need to be separated. Ivanov et al., 

(1995) used stereo vision to build a three-dimensional model of a maize canopy. Zhao and 

Aggarwal (2000) developed a method to reconstruct urban scenes by combining stereo vision 

and GPS. Lin et al. (2001) reported a method to reconstruct three-dimensional vegetable 

seedlings using stereo vision based three-dimensional graphical modeling. Takahash et al. (2002) 

developed a stereo vision based method for apple harvesting, which achieved a percentage 

accuracy of depth estimation of 95%. Bulanon et al. (2004) estimated the distance between 

apples and cameras using stereo vision. The reported accuracy percentage was 86% compared 

with manually measured results. Smit et al. (2004) developed a stereo vision module to calculate 

a real-time depth map for an agricultural vehicle. Rovira-Más et al. (2008) applied stereo vision 

to construct three-dimensional terrain maps. Finally, Jin and Tang (2009) developed a corn plant 

sensing system based on stereo vision. 

The main limitations of the methods reported in the literature with regard to MxG diameter 

estimation were 1) the complicated background of MxG images in the field, 2) the absence of 

significant features for image matching and 3) the higher accuracy requirement, since the size of 

the MxG diameter is small (5-20mm) and the crop density is high (Fig. 1.1).  

 To accommodate the unique requirements, a novel stereo vision based method was 

developed. Stereo vision has the advantage of being able to capture images of groups of MxG 

stems. The MxG stems were detected and identified based on features provided by a laser sheet. 

This method simplified the image matching process of a traditional stereo vision method. Based 

on experiments, using manually measured MxG stem diameters as references, the method 
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achieved an accuracy of 99.8% (0.02mm) for average diameter estimation, and an average 

accuracy of 93.1% (0.60mm) for individual MxG stem diameter estimation. 

The objective of this research was to 1) Identify MxG stems in images 2) extract the depth 

information of each identified MxG stems 3) estimate the stem diameters of identified stems.  

4.2 Materials 

To obtain high-quality images of MxG stems, a stereo imaging system was developed. This 

system (Fig. 4.1(b) and (b)) consisted of two Unibrain® Fire-i 701c color cameras and a slanted 

laser sheet generator. The cameras featured a 1/2" progressive scan CCD solid-state image 

sensor (ICX205AK, Sony Co. LTD) allowing resolutions ranging from 320 x 240 to 1280 x 960 

pixels. Both gray scale and YCrCb color images can be captured with a capture speed ranging 

from 1.875 to 20 frames per second. Each camera was fitted with a C-mount 6mm F1.2 lens 

(Pentax Co.). The aperture and focal distance of the lens can be manually adjusted by a 

diaphragm ring and a focal ring. Two cameras were placed side by side and mounted on a frame 

at a mutual distance of 75 mm.  

To generate the laser sheet for structured lighting, a 50 mW laser pointer with a wavelength 

of 532nm (visible green) was fitted with a Fresnel lens. The angle between the laser sheet and 

the cameras optical axis plane was 15 degrees. The camera module was connected to a portable 

computer (Dell®, Studio 1555) through an IEEE1394 (FireWire®) bus. Two 12 Volt batteries 

were provided as an external power supply for the cameras.  

A Matlab®/C++ application was developed to configure the camera module and acquire 

images. The images were collected in an experimental field in Urbana-Champaign, Illinois 
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(lat/lon: 40.040963,-88.224565) in the spring and fall of 2010 and the spring of 2011. All images 

were captured in the YCrCb color space, at a resolution of 640x480 pixels, and formatted as 

Bitmap Image Files.   

    

(a)                                         (b)                                          (c)    

Figure 4.1. Sensor module and captured image. (a) Side view of sensor module (b) Front 

view of the sensor module, consisting of two cameras combined with a laser sheet (c) Laser 

interception marks provided by the laser sheet. 

4.3 Methodology 

To extract the diameters of MxG stems from images, several procedures were designed (Fig. 

4.2): Two cameras captured images of an identical scene simultaneously. These images were 

white balanced and converted into the RGB color space, and the white balanced images were 

rectified based on the cameras’ intrinsic and extrinsic parameters, which were obtained through 

calibration.  

The depth information can be extracted based on laser marks in the images, which will be 

discussed in chapter 5. The features (laser marks, Fig.4.1(c)) were detected based on a color 

based image segmentation algorithm applied to the image pair. They were matched between the 

image pair in both one-dimensional epipolar geometry based matching constraints and two-

dimensional pixel similarity based matching. The depth information was obtained based on the 
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matching disparities. Subsequently, MxG stems were identified based on the features (laser 

marks). Combining the identified targets, the horizontal covered length per pixel (obtained by 

calibration), and depth information, the diameter of MxG stems were obtained. The procedure 

flow chart of the developed sensor in this charpter was shown in Fig. 4.2.  

Rectification
Feature

Detection
Matching

Calibration

Images
Target

Identification
Diameter

White

Balance

Color Space

Conversion

 

Figure 4.2. Procedure flow chart of the stereo vision based diameter sensor for MxG. 

4.3.1 White balance and color space conversion 

For a digital camera, each recorded pixel value is dependent upon the color temperature of the 

light source. For example, a white object will appear reddish under a low color temperature, and 

will appear bluish under a higher color temperature (Liu et al., 1995). To correct the image to its 

canonical light source lit equivalent, an automatic white balance method was applied (Weng et 

al., 2005). The chosen method has the advantage of operating in the YCrCb color space, which 

is the original color space of the captured images, reducing the computational cost.  

To select the candidate reference white points, the near white region was first defined as a set 

of pixels that satisfy the following equations: 
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Where ( , )bC i j  and ( , )rC i j are chromaticity values of pixel ( , )i j . bM and rM are respective 

mean values of  ( , )bC i j  and ( , )rC i j . bD  and rD are the average absolute differences, which 

were calculated as follows: 
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Subsequently, the image was converted into the RGB color space by the following equation 

(Poynton, 1996):  
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For each pixel, R, G and B are values of the red, green and blue components in the RGB color 

space, and Y is the luminance value in the YCrCb color space. In the near white region that was 

obtained using Eqn. 4.1, the top 10% pixels were selected as reference white. Subsequently, the 

channel gains in the RGB color space were calculated by: 
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Where, gainR , gainG and gainB are the red, green and blue channel gains in the RGB color space. 

R , G and B are the means of the reference white pixels in the RGB color space for three 
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channels. maxY  is the maximum luminance value of all pixels in the YCrCb color space. The 

white balanced pixels in RGB color space were presented as: 

gain

gain

gain

R R R

G G G

B B B

  


 


 

                                                        ( 4.5 ) 

4.3.2 Calibration and image rectification 

The calibration process includes four sections: 1) camera calibration 2) distortion-correction 

and rectification 3) disparity-depth model and 4) depth-coverage area per pixel model.   

4.3.2.1 Camera Calibration 

To reconstruct three-dimensional information, a camera calibration process is required (Tsai, 

1987). For a stereo vision system, the poses and positions of cameras in the system can be 

determined, and the radial and tangential distortions can be corrected by camera calibration. 

Both intrinsic parameters, presenting camera geometric and optical characteristics, and the 

extrinsic parameters, presenting the three-dimensional position and orientation of the camera 

frame relative to a certain world coordinate system are obtained by camera calibration. A camera 

model (Heikkilä and Silven, 1997) and a maximum-likelihood estimation based camera 

calibration algorithm (Zhang, 1999) were applied. Each camera was calibrated individually 

based on a series of calibration plane images (20 images), which were captured from various 

view angles (Fig. 4.3). In each image, the corner related pixels were extracted, then, the 

coordinates of these pixels were obtained in both world coordinates and image coordinates. The 

ordinary least squares method was applied to calculate the relationship between the two 

coordinate systems. The intrinsic parameters including focal length, principal point, skew angle 
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and distortion coefficients and the extrinsic parameters including rotation matrix and translation 

matrix were obtained by camera calibration.   

After calibrating the two cameras, the relationships between each camera coordinates and 

world coordinates were set up, as shown in Eqn. 4.6: 

1 1 1

2 2 2

world cam

world cam

C R C T

C R C T

  


  
                                                           ( 4.6 ) 

Where worldC are the world coordinates, 1camC and 2camC are the camera coordinates. 1R , 2R  are 

the rotation matrices of two cameras. 1T , 2T  are the translation matrices of the two cameras. Then, 

the relative position of two cameras can be denoted by: 

1 1

1 1 2 2 2 1 2 1 2( )cam cam camC R R T C R T T RC T                                       ( 4.7 ) 

 

Figure 4.3. Calibration plane images used for camera calibration. 
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4.3.2.2 Distortion correction and rectification 

To obtain stereo-based high accuracy measurements, the tangential and radial distortion needs 

to be corrected. Based on the camera distortion model (Brown, 1966), the relationship between 

distorted image and undistorted image is described as below: 

2 4 6

1 2 5 1

2 4 6

1 2 5 2

ˆ(1 )

ˆ(1 )

kc r kc r kc r x dxx

y kc r kc r kc r y dx

      
   

        

                                          ( 4.8 ) 

Where, 

2 2
1 3 4

2 2
2 3 4

ˆˆ ˆ2 ( 2 )

ˆ ˆˆ( 2 ) 2

dx k xy k r x

dx k r y k xy

    
   

     
 and 

2 2ˆ ˆr x y                             ( 4.9 ) 

    [ , ]Tx y are the normalized coordinates in image plane with distortion, and ˆ ˆ[ , ]Tx y are the 

normalized coordinates without distortion. 
1 2 3 4 5[ , , , , ]kc kc kc kc kc

 
are the distortion coefficients 

obtained by camera calibration. The distortion correction of the image was applied using Eqns. 

4.8 and 4.9.  

To simplify the process of detecting matching points between image pairs, image rectification 

is required. Based on epipolar geometry, if the two cameras are aligned to be coplanar, the 

matching points in the image pairs will lie on a horizontal line parallel to the baseline between 

the cameras. The image rectification process reduces the searching of matching points from two-

dimensional to a one-dimensional problem. An existing image pair rectification algorithm 

(Fusiello et al., 2000) was applied in this chapter.  

4.3.2.3 Disparity-depth model 

To measure the diameter of the MxG stems using the stereo vision system, the distance (depth) 

between the stems and the cameras is needed, since the pixel coverage area depends on the depth 

http://en.wikipedia.org/wiki/Coplanar
http://en.wikipedia.org/wiki/Baseline
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information. Figure 4.4 shows the geometry of a stereo vision system. RO
 
and TO

 
represent the 

optical centers of the two cameras, f  is the focal length, P is a point in world coordinates, 'P

and ''P are the projected points of P in an undistorted rectified image pair, RX and TX are the 

horizontal coordinate in image coordinates, Z is distance between P  and the baseline between 

the cameras, and B is the distance between the focal centers of the two cameras. The disparity 

( )R TX X  and the depth Z have the following relationship. 

( )T R

R T

B X XB B f
Z

Z Z f X X

  
  

 
                                     ( 4.10 ) 

Therefore, the depth can be estimated using the disparity between images captured by the two 

cameras.  

B (Baseline)

P

P’ P’’

OR OT

Z

f

XR
XT

 

Figure 4.4. Geometry of a stereo vision system. 

http://en.wikipedia.org/wiki/Baseline
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4.3.2.4 Depth-horizontally covered length per pixel model 

The pixel coverage area depends on the depth. The further the object is the smaller the 

coverage area per pixel is. As shown in Fig. 4.5, the depth is Z, the vertical angle of view is a 

and the horizontal angle of view is b, then coverage area per pixel and depth follow the 

following relationship. 

a
2(tan tan )

2 2
pixel

b

S Z
M N



 


                                            ( 4.11 ) 

Where pixelS  is the coverage area per pixel, and M N is the size of images (640x480 pixels ). 

Similarly, the horizontally covered length per pixel ( _h pixelL ) is:  

_

b
2 tan

2
h pixelL Z

M
 

                                                      
( 4.12 ) 

 

Figure 4.5. Geometric model of the relationship between depth and coverage area. 
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4.3.3 Feature detection 

The features in the images are bright spots caused by the laser sheet interception on the MxG 

stems. These spots represent the diameters of MxG stems. To detect the features, a segmentation-

based algorithm was developed. To decrease the ambient lighting influence, the mean values of 

the image pairs were adjusted to an experimentally determined value (43 in this case). The RGB 

color image was converted to a gray scale image using the following equation: 

0.2989 0.5870 0.1140GrayI R G B                                       ( 4.13 ) 

Where GrayI  is the luminance of the grayscale image. The coefficients in Eqn. 4.13 were 

selected based on the rule of conversion between RGB color space to YIQ color space, which is 

used in NTSC color TV systems (Buchsbaum and Walter, 1975). The gray scale image was 

further converted to a binary image: 

1

1

1

0

Gray

WB

Gray

if I T
I

if I T


 



                                                ( 4.14 ) 

Where, WBI is the binary image converted from GrayI , and 1T  is a threshold, which was equal 

to 70 in this case. A filter was applied to the images to remove connected areas (noisy points) 

with a size smaller than a threshold 2T  and larger than a threshold 3T , as shown in Eqn. 4.15. 

2 31 ( )

0

i

i

if T area S T
S

else

 
 


                                      ( 4.15 ) 

Where iS is the thi connected area in the binary image. 2T is 50, and 3T is 450 .  

 For a connected area, orientation is defined as the angle between the x-axis and major axis of 

the ellipse that has the same second moments (area moment of inertia) as the region itself. As 
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shown in Fig. 4.6, the angle r is the orientation of the connected area (white areas in Fig. 4.6). 

Because the valid features (the laser spots on the MxG stems) are horizontally oriented, the 

connected areas, whose orientations are larger than a threshold 4T  were removed, as shown in 

Eqn. 4.16. 

41

0

i

i

if r T
S

else


 


                                                 ( 4.16 ) 

r

 

Figure 4.6. Definition of orientation of a connected area in a binary image. 

Fig. 4.7(a) shows an example of a distortion-corrected, rectified image pair, and Fig. 4.7(b) 

shows the detected features in the images. 
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(a) 

 

(b) 

Figure 4.7. Distortion coorected rectified image pair and detected features. (a) Example of 

a distortion corrected rectified image. (b) Detected features in (a). 

4.3.4 Image matching 

Because the objects of interest in the image pair are only related to MxG stems, it is 

unnecessary to match the entire images. Instead, the only objects that need to be matched are the 

features in the image pairs. To match the features in the image pairs, the center of each 

remaining connected area was calculated by taking an average of all the coordinates of the points 

belonging to the area, as shown in the following equation: 
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
 





 




                                      ( 4.17 ) 

Where, ( iXc , iYc ) are the coordinates in the image plane of the center of the thi connected area. 

( kX , kY ), 1,2,....k  are the coordinates of all the pixels in the thi  connected area. 

Since the image pair is rectified, due to the epipolar geometry, the centers of the matched 

features appear in a line parallel to the baseline of the cameras. To search for the matched 

features, two similarity matrices were generated. One matrix ( 1DM ) represented the one-

dimensional similarity between features in the image pair (Eqn. 4.18).  The element of the one 

dimensional similarity matrix 1 ( , )DM i j is the absolute value of the vertical difference between 

the thi  feature in the left image and the 
thj feature in the right image.  

1 1 2 1 1

1 2 2 2 2

1

1 1

n

n

D

m m n m

YLc YRc YLc YRc YLc YRc

YLc YRc YLc YRc YLc YRc
M

YLc YRc YLc YRc YLc YRc

    
 

   
 
 

    

                            ( 4.18 ) 

Where iYLc
 
is the vertical coordinate of the thi feature in the left image, and jYRc  is the 

vertical coordinate of the
thj feature in the right image, assuming n features in the left image and 

m features in the right image.  

The corresponding matrix 2DM  represents the two-dimensional similarity between features in 

the image pair. Using each ( iXc , iYc ) as the center created a 64x64 pixel window for each feature 

(the size of windows might change depending on the distance to the cameras). The element in 
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this two dimensional similarity matrix 2 ( , )DM i j  is the mean value of the absolute differences 

between pixels in thi  window in left image and pixels in 
thj window in right image.  

1 1 2 1 1

1 2 2 2 2

2

1 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

n

n

D

m m n m

mean WL WR mean WL WR mean WL WR

mean WL WR mean WL WR mean WL WR
M

mean WL WR mean WL WR mean WL WR

    
 

   
 
 

    

     ( 4.19 ) 

Where iWL is the thi window in the left image, and jWR  is the 
thj window in the right image. 

The matching algorithm started by finding the minimum value ( 1D

iMin ) in each column of

1DM , where the row index ( j ) (the 
thj  feature in right image) of this detected minimum value in 

1DM  was considered as the candidate matched feature of the thi feature in left image. This 

process followed the steps below: 

Step 1: If 5T 1D

iMin ( 5 5T  ), it was assumed that there is no matched feature in the right 

image. This feature was discarded. Go to Step 2.  

Step 2: If 1D 1D

i jMin Min k   (conflicted match), check the 2DM , if 2 2( , ) ( , )D DM i k M j k , 

1D

iMin k and 1D

jMin = next smallest value in 
thj column of 1DM . Go to step 1. If there is no 

conflicted match, go to step 3.  

Step 3:  Check all the remaining matched pairs ( , )i j . If 2 6( , )DM i j T ( 6 200T  ), this pair 

was discarded.  
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The value of 5T (5) and 6T (200) was selected based on experimental results. The remaining 

feature pairs were considered matched pairs. Figure 4.8 shows an example result of image 

matching. The matched pairs are labeled by boxes with the same color in the image pair.  

 

Figure 4.8. Example result of image matching. Features denoted by identical line colors are 

matched pairs. 

4.3.5 Diameter information extraction 

The disparity of each target (feature) was obtained by the matched feature pairs.  

( , )i j i jD XLc XRc                                                ( 4.20 ) 

Where ( , )i jD  denotes the disparity of thi object in the left image (
thj object in right image). 

iXLc is the horizontal coordinate of  the center of thi object in the left image, and jXRc  is the 

horizontal coordinate of the center of 
thj  object in the right image. Both iXLc  and jXRc are in 

image coordinates.  

Subsequently, based on the disparity - depth model, which predict the depth based on 

disparity, the depth information ( ( , )i jZ ) of the thi object in left image (the 
thj object in right image) 

was obtained by applying Eqn. 4.10. 
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i j

i j

B f
Z

D


                             ( 4.21 ) 

After obtaining the disparity information, the horizontal length of each target was calculated 

as follows: 

, , , ,

( , )

(max( ) min( )) (max( ) min( ))

2

i k i k j l j l

i j

X X X X
L

  
      , 1,2,...k l             ( 4.22 ) 

Where ( , )i jL  is the length of the thi  object in the left image (the 
thj  object in right image) in 

pixels. ,i kX is the horizontal coordinate of the thk  pixel in the thi  object in the left image, and 

,j lX  is the horizontal coordinate of the thl  pixel in the 
thj  object in the right image.  

Based on Eqn. 4.12, the diameter ( ( , )i jdia ) of  thi  object in the left image (the 
thj  object in the 

right image) was calculated as: 

( , ) ( , ) ( , )

b
2 tan

2
i j i j i jdia Z L

M
                                       ( 4.23 ) 

4.4 Results and Discussion 

This section consists of four parts, 1) camera calibration results, 2) disparity-depth model, 3) 

depth-horizontally covered length model and 4) field tests results, which are described in 

sequence.  

4.4.1 Camera calibration 

The intrinsic parameters of two cameras obtained by camera calibration are shown in Tab. 4.1. 

The extrinsic parameters are shown in Eqn. 4.24. 
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Table 4.1. Intrinsic parameters of two cameras. 

 Left camera Right camera 

Focal Length (pixel) [1327.87, 1323.87] [1334.82, 1334.28] 

Principal point (pixel) [238.83, 147.21] [265.75, 102.25] 

Skew angle (degree) 90 90 

Distortion coefficients [ -3.36, 4.11, 0.04,  0.07, 0 ] 
110  [-2.95, 0.63, 0.03, 0.03, 0] 

110  

 

0.9999 0.0043 0.0096

0.0043 0.9998 0.0202

0.0097 0.0202 0.9997

[ 58.6100 0.0265 9.3362]T

R

T

  
  

  
   

  

                                    ( 4.24 ) 

Where R  and T  are the rotation matrix and the translation matrix in Eqn. 4.7. The rotation 

matrix ( R ) is close to the unit matrix. This implies that the relative position of the two cameras 

were close to the ideal parallel placement. However, there was still an installation error. The 

translation matrix (T ) had shown that the optical center of the two cameras virtually lied in the 

same plane (the relative small second component in T ), while one camera was mounted higher 

(around 1 mm) than the other (the third component in T ). The image rectification process 

compensated for this installation error.  

4.4.2 Disparity-depth model 

To set up the disparity-depth model (section 4.3.2.3), 11 image pairs of a calibration plane 

(Fig. 4.3) (30mm per square) with depths ranging from 200mm to 500mm were taken. Tab. 4.2 

shows the measurements of disparities of square corners related pixels and the depths at which 

the images were taken. 
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Table 4.2. Measurements of disparities and depths. 

Disparity 

(pixel) 

 

440.3 378.4 325.5 289.5 258.5 247.2 226.8 202.2 186.4 181.3 171.5 

Depth (mm) 200 230 260 290 320 350 380 410 440 470 500 

 
A power function (Based on Eqn. 4.21) was applied to fit the points in Tab. 4.2 with the 

disparity as the x axis and depth as the y axis. Figure 4.9 (a) shows the curve fitting result. The 

points were fitted by the function:  

1( ) bf x ax                                                       ( 4.25 ) 

Where 47.49 10a    and 0.98b   , and the regression coefficient was 0.99.  

Eqn. 4.24 has the same structure as Eqn. 4.10. It indicates that the experimental value of B f

in Eqn. 4.10 is 47.49 10 . The measured length of the baseline was 60mm and the focal length of 

the camera was 1337.8 pixels based on camera calibration, therefore, the calculated value of 

B f  is 48.03 10 . Since the experimental and the calculated result are similar, Eqn. 4.25 was 

applied as the disparity-depth model.  

4.4.3 Depth-horizontally covered length per pixel model 

Similar to the determination process of the disparity-depth model, to establish the relationship 

between depth and horizontally covered length per pixel, the numbers of pixels of a 30mm 

length edge in the same 11 image pairs used to set up the disparity-depth model were counted. 

Subsequently, the horizontally covered length per pixel was calculated by dividing 30mm by the 

number of pixels. The result is shown in Tab. 4.2.  



80 

 

Linear functions were applied to fit the points shown in Tab. 4.2 (depth as x axis, covered 

length per pixel as y axis) as shown in Fig. 4.9(b). The estimated function for the horizontally 

covered length per pixel in average is as follows: 

2( )f x cx d                                                        ( 4.26 ) 

Where 47.544 10c    and 24.140 10d    , where the regression coefficient was 0.99.  

Eqn. 4.26 has the same structure as Eqn. 4.12. It shows that the experimental value of 

2 tan
2

b

M
 in Eqn. 4.12 is 47.544 10 . In reality, the field of view ( b ) of the cameras is 26 degrees, 

the length of an image ( M ) was 640 pixels and the calculated value of 

2 tan
2

b

M
 is 47.215 10 . 

Again, the experimental result and the theoretical result were similar. Thus, Eqn. 4.26 was 

adopted as the relationship between depth and horizontally covered length per pixel.  

Table 4.3. Measurements of the depth and covered length per pixel for stereo vision 

cameras 

 

 

Depth (mm) 200 230 260 290 320 350 380 410 440 470 500 

Covered length per pixel of 

left camera(mm/pixel) 

0.11 0.13 0.16 0.18 0.20 0.22 0.25 0.27 0.29 0.32 0.34 

Covered length per pixel of 

right camera(mm/pixel) 

0.11 0.13 0.16 0.18 0.20 0.22 0.24 0.27 0.29 0.31 0.34 

Covered length per pixel in 

average(mm/pixel) 

0.11 0.13 0.16 0.18 0.20 0.22 0.25 0.27 0.29 0.32 0.34 



81 

 

           

(a)                                                                (b) 

Figure 4.9. Relations among disparity, depth and horizontally covered length per pixel. (a) 

Relationship between disparity and depth. (b) Relationship between depth and horizontally 

covered length per pixel. 

4.4.4 Field evaluation 

To evaluate the method described, tests were conducted in MxG fields in Urbana, Illinois 

(lat/lon: 40.040963,-88.224565), in the Fall of 2010 and the Spring of 2011. The sampling 

locations within the field were randomly selected.  

100 MxG stems in 100 image pairs were randomly selected to evaluate the method. The 

estimated depths and diameters of MxG stems were compared with manually-measured depths 

and diameters. Figure  4.10 shows the depth estimation result.     
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Figure 4.10. Depth estimation result: the x-axis indicates the sample number of MxG stems, 

the y-axis indicates the depth in mm. 

The maximum depth of the selected MxG stems was 1005, while the minimum depth was 

298mm and the mean depth was 590mm. The error between the estimated depth and the 

manually measured depth ranged from 0mm to 27mm with an average of 6.45mm and a standard 

deviation of 5.49. Thus, the depth estimation method achieved an accuracy of 98.90% (6.45mm) 

on average.  

The diameter estimation result is shown in Fig. 4.11.  
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Figure 4.11. Diameter estimation result: the x-axis indicates the sample number of MxG 

stems, and the y-axis indicates the diameter in mm. 

The manually measured diameters of selected MxG stems ranged from 5.31mm to 11.29mm 

with an average of 8.65mm. The estimated diameters ranged from 6.07mm to 12.18mm with an 

average of 8.63mm. The error of the average diameter was 0.02mm, achieving an accuracy of 

99.80%. The error of manually measured diameters and the estimated diameters based on this 

research ranged from 0.03mm to 3.22mm with a mean of 0.60mm and a standard deviation of 

0.63. Thus, the developed method achieved an accuracy of 93.10% (0.60mm).  

In 100 image pairs, 471 diameters of MxG stems were estimated. 10 mismatching features 

were detected, leading to a valid estimation ratio of 97.8%.  
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4.5 Summary and Conclusions 

Diameter is considered as an important yield related parameter of MxG. A vision-based MxG 

diameter sensor was developed. The sensor contained dual color CCD cameras and a green laser 

sheet generator. The cameras were employed to collected images in the YCrCb color space. The 

laser source illuminated the MxG stems, yielding features to match captured image pairs and 

identify MxG stems.   

The captured image pairs were white balanced and converted to the RGB color space. Based 

on the cameras intrinsic and extrinsic parameters, which were obtained during camera 

calibration, the image pairs were rectified. The image rectification adjusted the image pairs as if 

they were acquired by two perfectly aligned cameras, and reduced the complexity of the 

following image matching process from two-dimensional matching to one-dimensional matching. 

The features (laser spots) in image pairs were detected by a segmentation algorithm, and they 

were matched by two similarity matrices based on epipolar geometry. The depth information of 

each matched feature pair was obtained by a disparity - depth model. The diameter information 

was extracted based on its depth information and a depth - horizontally coverage area per pixel 

model.  

The relationship between the disparity and depth, and the relationship between the depth and 

horizontally covered length per pixel were obtained by both analysis and experiments and the 

experimental results corroborated the theoretical results. The diameter sensor and corresponding 

method were evaluated in a series of field tests. The results showed that the depth-disparity 

model achieved an accuracy of 98.9% (6.45mm) on average for depth estimation. The vision 

system based sensor achieved an accuracy of 99.8% (0.02mm) while estimating the average 
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diameter in field, and achieved an accuracy of 93.1% (0.60mm) on average for estimation of 

individual MxG stem diameters. The valid estimation rate ratio was shown to be 97.88%. 
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CHAPTER 5     

A MONOCULAR VISION BASED STEM 

DIAMETER SENSOR  

5.1 Introduction  

Unlike traditional stereo vision systems, which employ dual cameras, a stereo vision system 

using a single camera is described in this chapter. Compared to the binocular vision system, a 

monocular system is of lower cost from both a commercial and computational point of view. The 

main difficulty in monocular stereo vision is to recover the depth information. Attempts of 

monocular vision systems are covered in the literature: Teoh and Zhang (1984) developed a 

monocular stereo vision system using a camera with two mirrors, which were fixed at a 45 

degree angle with respect to the optical axis of the camera, and a third mirror mounted on a shaft, 

that rotated through 90 degrees. The depth information was recovered by using two sequential 

image acquisitions. Nishimoto and Shirai (1987) improved Teoh and Zhang’s method. They 

placed a glass plate in front of the camera instead of using mirrors and two different views were 

provided by rotating the glass plate. The depth information was also obtained by two sequential 

image acquisitions. A similar method was described by Pachidis and Lygouras (2007). Their 

method also applied a rotating glass plate and two images to obtain depth information. 
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Matsumoto et al. (1997) reported on a monocular stereo vision system, which was based on 

image sequences. Criminisi et al. (2000) described a monocular prior-knowledge based vision 

system, where the depth information was obtained by comparing the height with an object of 

known height in the image. The depth information was sensed based on motion parallax. 

Multiple shots and iterative calculation were required for this method. Wang and Ishii (2009) 

developed a system to reconstruct depth information based on optical flow analysis. A speed 

sensor was required to estimate the acceleration in their method.  

Either multiple sequential image acquisition, additional sensors or prior knowledge are 

required for the existing monocular stereo vision systems. In addition, the computational cost is 

relatively high for these methods, and their accuracy is relatively low. These disadvantages limit 

the potential of using the existing monocular vision system to measure the diameter of MxG 

stems.   

Therefore, a novel monocular stereo vision based MxG diameter sensor was developed. The 

method applied a slanted laser sheet to provide features in images, and the depth information 

was obtained by geometry perspective analysis using a single image. The results showed that the 

proposed method achieved high accuracies in both depth and diameter estimation.    

5.2 Materials  

The same sensor arrangement as described in section 4.2 was applied in this chapter.   A 

combination of an industrial color CCD camera (Unibrain® Fire-i 701 c) and a laser sheet 

generator were applied as the diameter sensor module. The accessible image size of the camera 

ranged from 320x240 to 1280x960 pixels with an image acquisition rate ranging from 1.875 to 

20 frames per second. A C-mount 6mm F-1.2 lens (Pentax Co.) was fitted to the camera. The 
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camera required a 12 Volt external power supply, and an IEEE 1394 (FireWire®) cable to 

connect to a computer (Dell   Studio 1555). The laser sheet provided identifiable features in the 

images. It was composed of a 50mW laser pointer and a Fresnel lens, which transformed the 

laser beam into a diverging laser sheet. The wavelength of the laser source was 532nm. Figure 

4.1 shows the sensor module. A Matlab®/C++ based image acquisition application was 

developed to configure the sensor module and collect images. The images were captured in the 

Fall and Spring of 2011 in an experiment field in Champaign- Urbana. The captured images 

were in the YCrCb color space with a resolution of 640x480 pixels in BitMap format.  

5.3 Methodology 

The camera was calibrated before the image processing. The captured images were first 

preprocessed to achieve proper white balance, and converted into the RGB color space. Then, a 

geometrical analysis based method was used to obtain the depth information from a single image.  

The diameter information was obtained using the depth information and an image segmentation 

based target identification method.   

5.3.1 Preprocessing 

The preprocessing included camera calibration, image distortion correction, white balance 

and color space conversion. These processes were the same as described in section 4.3.2.1 

(camera calibration), 4.3.2.2 (distortion correction and rectification) and section 4.3.1 (white 

balance and color space conversion).   
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5.3.2 Geometry perspective analysis based depth estimation 
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Figure 5.1. Geometry perspective model of the diameter sensor unit. 

    The distance between the objects in the image and the camera is required for three-

dimensional reconstruction. Since a laser sheet was projected onto the MxG stems, the depth 

information was estimated using geometrical analysis.  

    Figure 5.1 shows a geometry perspective model of the sensor unit, assuming a pinhole camera 

model.  The distance between the pinhole (O) and the image plane is f. Assume the distances 

between the pinhole and two objects (object 1 and object 2) are d1 and d2. The angle between the 

laser sheet and the optical axis of the camera is c, and the camera vertical field of view is the 

angle AOD . The laser sheet intersects object 1 and object 2 at point P1 and P2. AD denotes the 

vertical edges of the image plane (A is the lower boundary and D is the upper boundary of the 

image), then, the visible area of object 1 is GH, while the visible area of object 2 is IJ, and the 

visible area of the laser sheet is EF. This means that point G on object 1, point I on object 2 and 
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point E on the laser sheet have the same vertical location in the image plane. Similarly, point H 

on object 1, point J on object 2, and point F on the laser sheet have the same vertical location as 

well. The projected point in image of point P1 is C, and its vertical level is x1. The projected 

point in the image of point P2 is B, and its vertical location in the image is x2. The horizontal 

distance between point E and the pinhole is D.  

    For object 1, the triangle 1GOP  is equal to triangle DOC  ( 1GOP DOC ). Thus, 

1

1

GPCD

f d
                                                               ( 5.1 ) 

    Since, 

1

1 1

CD=x

GP (d )(tan c tan )
2

a
D





  


                                            ( 5.2 ) 

   This transforms Eqn. 5.1 to: 

1
1

1

(d )(tan tan )
x 2

f d

a
D c 

                                           ( 5.3 ) 

    Then, the relationship between d1 and x1 is: 

1

1

D f (tan tan )
2d

f (tan tan ) x
2

a
c

a
c

  



  

                                              ( 5.4 ) 

    Similarly, the triangle 2IOP  is similar to triangle BOD  ( 2IOP BOD  ).  
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2
2

2

2
2

(d )(tan tan ) D f (tan tan )
x 2 2d
f d

f (tan tan ) x
2

a a
D c c

a
c

    

  

                   

( 5.5 ) 

    Based on Eqn. 5.4 and Eqn. 5.5 (they have the same form), the depth (d) and the vertical 

location in the image have the following relationship: 

2

p
d

q x



                                                             ( 5.6 ) 

Where q=f (tan tan )
2

a
c  and p=D q=D f (tan tan )

2

a
c    . 

Once the sensor unit is set up, the relative positions of the camera and laser source are fixed 

and the parameters in Eqn. 5.6 (D, f, α and c) are constants. Thus, the depth information of each 

feature (laser spot) can be obtained using a single image, based on its vertical level in the image.  

5.3.3 Target identification and diameter estimation 

The MxG stems were identified by detecting the features in images. The same method 

introduced in section 4.3.3 (feature detection) was applied to detect the features (laser spots). 

Figure 5.2 shows an example of a distortion corrected image and the corresponding detected 

features in the image. 
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(a)                                                                     (b) 

Figure 5.2. Distortion corrected image example and detected features. (a) Example of 

distortion corrected image. (b) Detected features in (a). 

The depth information of each connected area (MxG stem) ( iZ ) was computed by 

p

q
i

i

Z
Yc


                                                            ( 5.7 ) 

Where iYc is the vertical coordinate of the center of the thi connecting area in the image. iYc was 

obtained by Eqn. 4.17.  where p and q have the same definition as in Eqn. 5.6.  

To estimate the diameter of MxG stems, the relationship between depth and horizontal covered 

length per pixel is needed.  This relationship was discussed in section 4.3.2.4 (Depth –horizontal 

covered length per pixel model).  

The diameter of each MxG stem in pixel was estimated as:  

_ max( ) min( ) 1,2,...i k kdia pix X X k                            ( 5.8 ) 
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Where _ idia pix is the MxG stem diameter in pixels. kX , 1,2,....k  is the horizontal 

coordinates of all the pixels in the thi  connected area (MxG stem). 

Thus, based on Eqn. 4.12, Eqn. 5.7 and Eqn. 5.8, the estimation of MxG stem diameter ( idia ) 

can be calculated as: 

2 tan
2_i i i

b

dia dia pix Z
M

  
                                           

( 5.9 ) 

Where M is the width of the image, and b is the horizontal field of view of the camera (as 

shown in Fig. 4.5)  

5.4 Results and Discussion 

The proposed method was evaluated in three sections: 1) Sensor unit geometry perspective 

model validation 2) Resolution analysis 3) Field evaluation, which are discussed below in 

sequence.  

5.4.1 Sensor unit geometry perspective model validation 

The sensor unit geometry model is the foundation of the method. To validate the model, 35 

images of a flat surface board were taken at distance ranging from 30cm to 200cm with a 

increment of 5 cm. Examples of the images are shown in Fig. 5.3.   
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Figure  5.3. The vertical location of the laser mark changes with the distance to the camera. 

The object is closer to the camera on the right side image. 

The vertical position of the laser sheet in each image was obtained based on the method 

mentioned in section 4.3.3 (Feature detection). The laser marks were detected using Eqn. 4.13, 

Eqn. 4.14 and Eqn. 4.15. One of the thresholds in Eqn. 4.16, T3, was set to infinity here. The 

average vertical position of largest connected area in the binary image was considered the 

vertical position of the laser sheet. Tab. 5.1 shows the relationship between the depth and the 

vertical position of the laser sheet. 

Table 5.1. Relationship between the depth and the vertical level of the laser mark. 

Depth (cm) 35 40 45 50 55 60 65 70 75 

Vertical 

Level (pixel) 

24.4 85.1 126 160 188.5 214.5 230.5 246.5 256 

Depth (cm) 80 85 90 95 100 105 110 115 120 

Vertical 

Level (pixel) 

269 275.5 287 293 298.5 306 311.5 318 322.5 

Depth (cm) 125 130 135 140 145 150 155 160 165 

Vertical 

Level (pixel) 

327 328.5 334 336.5 338 341 344 346.5 349.5 

Depth (cm) 170 175 180 185 190 295 200   

Vertical 

Level (pixel) 

353.5 355 356 358 360 361.5 360.5   

 

Based on the analysis in section 5.3.2, the relationship between depth and the vertical position 

of the laser sheet in the image should have the format shown in Eqn. 5.6. As shown in Fig. 5.4(a), 
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linear regression was applied to fit the points in Tab. 5.1 with a function, which has the form 

shown in Eqn. 5.6 with vertical level as X axis and depth as the Y axis.  The fitted curve is: 

12720

426.6 x
Z 

                                                      ( 5.10 ) 

The regression coefficient of this estimation was 0.99. 

Compared Eqn. 5.6  with Eqn.5.10, the following relationship exists.  

f (tan tan ) 426.6
2

D f (tan tan ) 12720
2

a
c

a
c


  


    


                                           ( 5.11 ) 

Then, D=29.82 cm, while the manually measured D was 29.48 cm. The similarity of 

geometry analysis and experimental result indicates that the geometry perspective model of the 

sensor unit is valid.  

5.4.2 Resolution analysis 

Since the horizontal covered length per pixel varies depending on depth, the estimated length 

resolution in the image also relied on depth. Based on the analysis in section 4.3.2.4 (Depth –

horizontal covered length per pixel model). (Fig. 4.5), the depth and horizontal covered length 

per pixel follows a linear relationship. To validate this, the number of pixels of a 30mm length 

edge in 11 images (depth ranging from 20cm to 50 cm with an increment of 3cm) were counted. 

Subsequently, the horizontally covered length per pixel was calculated by dividing 30mm by the 

number of pixels. The result is shown in Tab. 5.2.  
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Linear regression was applied to fit the points shown in Tab. 5.2 (depth as x axis, covered 

length per pixel as y axis) as shown in Fig. 5.4(b). The estimated function for the horizontally 

covered length per pixel in average was shown as follows: 

4

_ 7.536 10 0.040h pixelL Z                                           ( 5.12 ) 

The regression coefficient of this estimation was 0.99.  

Comparing Eqn. 5.12 with Eqn. 4.12, an experimental value was obtained of 

2 tan
2

b

M
 in Eqn. 

4.12 being 47.536 10 . The field of view (angle b) of the cameras was 26 degrees, and since the 

width of an image ( M ) was 640 pixels, the calculated value of 

2 tan
2

b

M
 is 47.215 10 . The 

experimental result and the theoretical result are similar, and therefore Eqn. 5.12 was applied as 

the relationship between depth and horizontally covered length per pixel. Thus, the resolution of 

the sensor unit follows Eqn. 5.12. 

Table 5.2. Measurements of covered length per pixel and the depth for the camera. 

Depth (mm) 200 230 260 290 320 350 380 410 440 470 500 

Covered 

length per 

pixel of left 

camera 

(mm/pixel) 

0.108 0.134 0.156 0.184 0.200 0.224 0.246 0.268 0.291 0.315 0.337 
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(a)                                                                                 (b)  

Figure 5.4. Relationships between depth, vertical position of the laser sheet and 

horizontally covered length per pixel. (a) Relationship between depth and the vertical 

position of the laser sheet in the image. (b) Relationship between depth and horizontally 

covered length per pixel. 

5.4.3 Field evaluation 

To evaluate the performance of the developed diameter sensor, it was tested in a MxG field in 

Urbana, Illinois (lat/lon: 40.040963,-88.224565), during the fall of 2010 and spring of 2011. In 

100 randomly selected images, diameters of 1,364 MxG stems were estimated. 150 MxG stems 

were randomly chosen from these 1,364 MxG stem diameter estimations, and the depths and 

diameters of the chosen MxG stems were manually measured as references. Figure 5.4 shows the 

depth estimation results.  
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Figure 5.5. Depth estimation result: the x-axis indicates the sample number of MxG stems, 

and the y-axis indicates the length in mm. 

The depths of the selected MxG stems ranged from 359mm to 1,486mm with an average of 

822mm (based on manually measured depths). The errors between the estimated depth and the 

manually measured depth ranged from 1mm to 32mm with an average of 8.86mm and a standard 

deviation of 5.39mm. The geometry based depth estimation method achieved an accuracy of 

98.92% (8.86mm as an average error) on average.  

Similarly, Fig. 5.5 shows the results of the diameter estimation process. The diameters of 

selected MxG stems were in a range from 4.35mm to 13.57mm with an average of 8.57mm 

(based on manually measured diameters). The diameter estimation error ranged from 0.01 mm to 

2.28mm with an average of 0.55mm and a standard deviation of 0.45mm. Thus, the individual 

diameter estimation of the proposed method achieved an accuracy of 93.5% (0.55mm average 

error). In addition, the average diameter of all selected MxG steam was 8.57mm, while the 

0

200

400

600

800

1000

1200

1400

1600

1 6
1

1
1

6
2

1
2

6
3

1
3

6
4

1
4

6
5

1
5

6
6

1
6

6
7

1
7

6
8

1
8

6
9

1
9

6
1

0
1

1
0

6
1

1
1

1
1

6
1

2
1

1
2

6
1

3
1

1
3

6
1

4
1

1
4

6

Estimated Depth (mm) Manually Measured depth (mm) Error (mm)



99 

 

average of the estimated MxG stem diameters was 8.51mm. Thus, the proposed method achieved 

an accuracy of 99.9% for average diameter estimation.  

 

Figure 5.6. Diameter estimation result: the x-axis indicates the sample number of MxG 

stems, and the y-axis indicates the length in mm. 

5.4.4 Diameter based yield model 

Eqn. 1.1 shows that the total yield in a certain area is the production of average mass of 

individual MxG stems and the total number of stems in the area (as shown in Eqn. 2.12: 

2Y ( )
2

indi

D
W Num H Num       ). In Eqn. 2.12 Y is the yield unit in

2

kg

m
, indiW  is the 

average mass of MxG stems, Num is the number of stems in a certain area, D is the diameter of 

MxG stems, H  is the height of MxG stems, and   is the material density of MxG stems. Then, 

the relationship between the individual mass and the stem diameter ( D ) is quadratic. Diameters 

and masss of 130 MxG stems were measured manually to validate the relationship between 
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individual mass and stem diameter, and a quadratic function (Eqn.5.13) was applied to fit the 

collected sample points.  

2

3( )indiW f D c D                                                 ( 5.13 ) 

Where 3c is an unknown coefficient.  

A quadratic curve was generated using linear regression: 

2( ) 0.8763indiW f H D                                          ( 5.14 ) 

The regression coefficient of this estimation was 0.313, which means that it is not a good fit 

(Fig. 5.7(a)). The main reason is that the mass is more strongly dependent upon height than 

diameter. The diameters ranged from 5mm to 13mm, while the height ranged from 1m to 4m. 

Based on Eqn. 2.12, the yield and the stem volume (
2

4
A D H


 ) (the product of diameter 

squared, height and 
4


) constitutes a linear relationship. Thus a linear function (Eqn. 5.15) was 

applied to model the relationship between yield and the stem volume.  

4 5( )indiW f A c A c                                                   ( 5.15 ) 

Linear regression yielded: 

4( ) 5.194 10 0.5215indiW f A A                                          ( 5.16 ) 

The regression coefficient of this estimation was 0.72, which indicates a better fit (Fig. 5.7(b)) 

compared with the estimation shown in Eqn. 5.14. Thus, the yield and the stem volume of MxG 

exhibit a linear relationship.  
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                                          (a)                                                             (b) 

Figure 5.7. Relationships between individual mass and stem diameter and the stem volume. 

(a) Relationship between individual mass and MxG stem diameter. (b) Relationship 

between the individual mass and stem volume. 

5.5 Summary and Conclusions 

A novel monocular stereo vision based MxG stem diameter sensor was developed. The sensor 

unit was composed of a Unibrain® Fire-i 701c color CCD camera and a 50mW laser sheet 

generator. A single camera was used to capture images, and the laser sheet was used to create 

identifiable features in the images. The sensor unit was configured and controlled by a laptop 

computer through a FireWire® interface.  

The collected images were white balanced and converted into a RGB color space. Camera 

calibration was applied to correct for distortion in the images. A color segmentation method was 

developed to detect the features (laser spots). To extract the depth information of each feature, a 

geometrical perspective based method was developed and analyzed. Subsequently, a depth – 

horizontal covered length per pixel model was built to obtain the horizontal covered length per 

pixel based on the estimated depth. The diameter information was estimated based on the 

product of the size of each feature in pixels and the covered length per pixel.  
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The sensor unit geometry perspective model was validated by a series of experiments. The 

results showed that the models well represented the sensor unit geometry perspective. The 

proposed method was tested in the field as well. 150 MxG stems were randomly chosen from 

100 images (1364 MxG stems), and their depths and diameters were measured manually as 

references. The results showed that the depth estimation method achieved an average accuracy 

of 98.9% (8.86mm average error). The diameter estimation sensor achieved an average accuracy 

of 93.5% (0.55mm average error) for individual MxG stem diameter estimation, while for 

average diameter estimation the achieved accuracy of the proposed method was 99.9%.  
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CHAPTER 6     

A MACHINE VISION BASED CROP DENSITY 

SENSOR  

6.1 Introduction 

Crop density (stem/m
2
) is considered a key factor to reflect the crop condition during the 

growing season, and to affect the yield of crops (Maertens et al., 2003). Crop density sensors for 

MxG are currently not available. The objective of this research was to develop a high accuracy 

crop density sensor for MxG. The availability of a crop density sensor enables the development 

of a yield monitoring system, which is based on morphological information of MxG being stem 

diameter and height.  

Crop density sensors for other crops are covered in the literature. Taylor et al (1986) reported 

a crop density measurement approach for a combine harvester. A laser beam was installed in 

front of the combine header, and the crop density was estimated by counting the interruptions of 

the beam. Similar research was done by Missotten (1998), where instead of a laser beam, an 

infrared light was applied. The sensor coverage area was calculated based on the width between 

the transmitter and receiver and the velocity. Similarly, Maertens et al. (2003) reported on an 

ultrasonic crop density sensor, where the sensor was placed on a wagon traveling on parallel 
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rails with plants between them. All the existing crop density sensors were designed for row crops, 

where the height of the crop was relative small. However, for MxG, neither a row structure nor a 

low height is present. Other crop density sensors measured crop density in indirect ways. Ehlert 

and Smith (1996) and Ehlert et al. (2004) applied a pendulum meter to measure the crop density. 

The pendulum will be pushed backwards by the plants and the proxy crop biomass density was 

obtained by measuring the push back angle. Saeys et al. (2009) developed a crop density sensor 

for small grains using a LIDAR sensor. The LIDAR scanned downwards towards the plants with 

a certain angle to measure the height of the plants based on detected ground level. The crop 

density was estimated based on height measurements. These methods provided only an 

approximate crop density estimation, because they measured the crop density indirectly, and are 

dependent upon the physical properties of the crop (Maertens et al., 2003).  

In this research, a machine vision based crop density sensor was developed. The main 

difficulty in applying machine vision system to predict the crop density of MxG is the occlusion 

of stems. A Monte Carlo model was applied to predict the number of invisible stems based on 

the number of detected visible stems in the image captured by the machine vision system. A 

Monte Carlo model is a numerical method to simulate a system with random inputs (Brown and 

Barnwell, 1987). Simulations were repeated using values of randomly selected parameters to 

determine the properties of a phenomenon (Fishman, 1995). The Monte Carlo method is widely 

used in agriculture: Hoff and Janni (1989) applied the Monte Carlo technique to determine the 

thermal radiation shape factors of six geometry configurations, and their result was within 2.2% 

of theoretically known shape factors. Hession et al. (1996) presented a two-phase Monte Carlo 

method to evaluate and propagate the natural stochastic variability and knowledge uncertainty 
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separately in hydrologic and water quality modeling. Similarly, Wei et al. (2008) developed a 

dual Monte Carlo method to analyze the predictive uncertainty, and further applied the method 

to a Rangeland hydrology and Erosion Model. Garg et al. (2009) proposed a physical hyper-

spectral optical Monte Carlo model to compute the reflectance of water.  Fraser et al. (2003) and 

Qin and Lu (2007) applied a Monte Carlo method to quantify light propagation of fruit.  

The field distribution of MxG stems in the field can be considered a random distribution, and 

the diameters of the stems are also random variables. Then, a random variables (the locations of 

MxG stems and its diameters) involved system and the good performance of the Monte Carlo 

model output for systems with random components (Brown and Barnwell, 1987) justifies this 

technique to predict the crop density of MxG.  

The developed sensor contains a machine vision system to detect the visible MxG stems, and 

a Monte Carlo model to predict the crop density in field. Field evaluation of the sensor showed 

an average accuracy of 92.2%. 

6.2 Materials  

The density sensor module applied in this chapter is the same as described in section 4.2 and 

section 5.2. It was composed of a commercial color CCD camera (Unibrain® Fire-i 701 c) and a 

laser sheet generator. The sensor module was configured and controlled by a host computer (A 

DellTM Studio 1555 laptop) through a FireWire® interface. The laser sheet was applied to 

provide features allowing identification of the MxG stems. It was composed of a 50mW 532nm 

laser source and a Fresnel lens, which produced a diverging laser sheet. Figure 4.1 shows the 

sensor module applied in this chapter. A Matlab®/C++ based image acquisition application was 
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developed to configure the sensor module and collect images. The captured images were in 

YCrCb color space with a resolution of 640x480 pixels in BitMap format.  

6.3 Methodology 

The difficulty of the MxG crop density estimation is the occurrence of occlusions, meaning 

that some MxG stems may be blocked by others. A method to predict the crop density based on 

the number of visible MxG stems in images is described in this chapter. The coverage area of the 

sensor was estimated using the geometry perspective of the sensor module (section 5.3.2, 

Geometry perspective analysis based depth estimation). MxG stems were detected and identified 

based on the methods described in section 4.3.1 (White balance and color space conversion) and 

section 4.3.3 (Feature detection). Based on the information obtained by the sensor, a Monte 

Carlo model was developed to predict the crop density, expressed in the number of stems per 

area.  

6.3.1 Sensor coverage area calculation 

Based on the analysis in section 5.3.2 (geometry perspective analysis based depth estimation), 

an image size of 640x480 pixels featured the coverage area (S ) with: 

2

b p p
S tan( )

2 q 480 q 1

 
  

  
                                              ( 6.1 ) 

Where b is the horizontal field of view of the camera (as shown in Fig. 4.5). p and q are the 

same as in Eqn. 5.6.  

Similarly, the visible area of the laser spots is: 
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L

D D+R D D+R

b p p p p
S tan( ) +

2 q x q x q x q x

  
   

                                  

( 6.2 ) 

Where Dx and D+Rx are the corresponding vertical locations in images, such as points E and F 

in Fig. 5.1. 

6.3.2 Image processing based MxG stem identification 

To predict the crop density, a total number of visible MxG stems in an image is required. The 

captured image was white balanced and converted into RGB color space from YCrCb color 

space based on the methods introduced in 4.3.1 (White balance and color space conversion). 

Then, the MxG stems were detected and identified by applying the method described in section 

4.3.3 (Feature detection). There is a change in the method in this chapter compared to chapter 4. 

The threshold 2T in Eqn. 4.15 was set as 5 instead of 50. This is because for crop density 

estimation both entirely visible stems and partially visible stems need to be detected. By 

decreasing the 2T , partially visible stems could be detected. Figure 6.1 compares the feature 

detection results of the same image (Fig. 5.2(a)) with different values of the threshold 2T , where 

the number of detected features was considered equal to the number of visible MxG stems.  
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(a)                                                                     (b) 

Figure 6.1. The value of 
2T effects the feature detection result. (a) Detected features with 2T

= 50. (b) Detected features with 2T =5. 

6.3.3 Monte Carlo Model based crop density estimation 

Assuming that the positions of MxG stems in the field follow a random distribution, it is 

possible to predict the number of blocked MxG stems based on the number of visible ones. To 

achieve this prediction, a Monte Carlo model based method was developed.  

Based on Eqn. 6.2, the coverage area of the sensor is an isosceles trapezoid with an area of 

D D+R D D+R

b p p p p
tan( ) +

2 q x q x q x q x

  
  

     
. Given a crop density, MxG stems are randomly 

located since the x and y coordinates of the centers of the MxG stems were generated randomly 

in this area with randomly chosen diameters ranging from 5-15mm. Overlap of MxG stems was 

not allowed, and the location and diameter were regenerated if overlap occurred. Then, the 

number of visible MxG stems (including partially visible and entirely visible MxG stems) and the 

number of invisible MxG stems were computed as shown in Fig. 6.2. This process was repeated 

100 times for crop densities ranging from 5 stem/m
2
 to 500 stem/m

2
. The relationship between 
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the number of visible MxG stems and the number of invisible MxG stems was obtained by the 

simulation result of the model.  

( )Uvis f Vis                                                               ( 6.3 ) 

Where Uvis is the number of invisible MxG stems, and Vis is the number of visible MxG 

stems, which can be estimated based on the method described in section 6.3.2. 

Then, the crop density can be estimated as: 

D D+R D D+R

b p p p p
tan( ) +

2 q x q x q x q x

L

Vis Uvis Vis Uvis
Den

S

 
 

  
  

     

              ( 6.4 ) 

 

Figure 6.2. MxG stem location simulation with a crop density of 200 stems/m
2
. (top view) 

The spots in the figure represent MxG stems.  
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6.4 Results and Discussion 

The analysis and validation of the Monte Carlo model and the field evaluation are described in 

sequence in this chapter. The geometry perspective model of the sensor unit was analyzed and 

validated in section 5.4.1. 

6.4.1 Analysis and validation of the Monte Carlo model 

Figure 6.3 shows the Monte Carlo model. Figure 6.3(a) shows all the data points generated by 

the model (crop density ranging from 5 stems/m
2
 to 500 stems/m

2
). The green points denote 

entirely visible stems, yellow points denote partially visible stems, blue points are visible stems 

(the sum of the green and yellow points), and the red points represent invisible stems. For a 

certain crop density, the numbers (number entirely visible stems, partly visible stems, invisible 

stems) were not unique, but varied among subsequent simulation runs. However, they always fell 

into several ranges (around 20), and followed a random distribution overall. Figure 6.3(b) shows 

an example of histogram of the number of visible stems for 100 simulations for a crop density of 

200 stems/m
2
: the number of invisible stems has the same property. Thus, the mean value of the 

numbers for each crop density can be used to predict the crop density. Figure 6.3(c) shows the 

model represented by mean values of 100 simulations for each crop density. Based on the mean 

values, the percentages of visible stems (entirely visible and partly visible) and invisible stems 

are shown in Fig. 6.3(d).  

To validate the model, the numbers of visible and invisible MxG stems in 10 images 

(randomly taken in the field) were manually counted, and compared with model predictions. The 

result is shown in Tab. 6.1.  
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                             (a)                                                                     (b) 

             

                               (c)                                                                     (d) 

Figure 6.3. Results of the Monte Carlo model simulation. (a) Monte Carlo model simulation 

representing all data points. (b) Histogram of visible stems for 100 simulations with a crop 

density of 200 stems/m
2
. (c) Monte Carlo model representing mean values of 100 

simulations for each crop density. (d) The Monte Carlo model representing the percentage 

of numbers (numbers of visible stems, entirely visible stems, partially visible stems and 

invisible stems). Green: entirely visible; Yellow: partially visible; Blue: visible; Red: 

Invisible. 
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Table 6.1. Validation of the Monte Carlo model. 

Density 

(stem/m2) 

53 43 28 62 46 62 51 67 71 65 

Number of 

Visible 

stems 

Manual 

Measurement 

23 17 12 24 20 25 19 23 29 24 

Model 

Estimation 

22.23 18.41 12.35 25.76 19.11 25.05 21.31 26.22 28.27 26.19 

Number of 

Invisible 

stems 

Manual 

Measurement 

3 2 1 4 3 4 4 5 5 6 

Model 

Estimation 

2.84 1.87 1 3.89 2.07 3.89 2.56 4.32 5.32 4.32 

 

The error of the model estimation and manually counted result ranged from 0.05 to 3.22 stems 

for visible MxG, and from 0 to 1.68 stems for invisible MxG. Thus, the Monte Carlo model 

modeled the sensor and the field environment well.  

The model is not robust when crop density is excessively high (above 200 stem/m
2
), because a 

small change in the number of visible stems causes a large change in the number of invisible 

stems. Based on field measurements among 50 locations, the crop density (of three years old 

MxG) is lower than 100 stem/m
2
 (73 stem/m

2
 on average). Thus, the model is adequate among 

ranges found in the real field environment.  

To predict the number of invisible stems, the relationship between the number of visible stems 

and the number of invisible stems is required. For each crop density, the mean value of the 

number of visible stems of 100 trails was used as the argument. Intervals of the 90% confidence 

for the number of invisible stems at each crop density were calculated as dependent variables. 

Since the Monte Carlo model was based on an assumption that the MxG stems were randomly 

distributed in field, the occurrences of MxG stems in the field constituted a Poisson process (Hall, 

1988), which can be represented by exponential functions. Thus, a linear regression was applied 

to fit the points using experimental functions. Since for each crop density, the number of 
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invisible stems falls in an interval (90% confidence interval), the upper and lower boundaries of 

this interval were used as sample points to be fitted. Figure 6.4 shows the curve fitting results, 

where the blue curve fitted the lower boundary of the 90% confidence interval of the number of 

invisible stems, and the red curve fitted the upper boundary of the 90% confidence interval.  

 

Figure 6.4. Relationship between the number of visible stems and the number of invisible 

stems. 

Eqn. 6.5 and Eqn. 6.6 were the fitted functions of the lower boundary and upper boundary.  

0.1054

0.2695e
Vis

LUvis


                                               ( 6.5 ) 

0.1037

0.3012e
Vis

UUvis


                                               ( 6.6 ) 

Where LUvis and UUvis are the lower boundary and the upper boundary of 90% confidence 

intervals of the number of invisible stems. Vis is the number of visible stems.  
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The crop density was predicted in an interval: 

[ , ] [ , ]UL
L U

L L

Uvis VisUvis Vis
Den Den

S S


                                     ( 6.7 ) 

Where LDen  and UDen  are the lower and upper boundary of the estimated crop density. LS is 

the sensor coverage area based on Eqn. 6.2. 

Since, the value calculated by Eqn. 6.5 and Eqn. 6.6  were close, the average ( Den ) of LDen

and UDen is considered as an estimation of the crop density. 

2

L UDen Den
Den


                                                 ( 6.8 ) 

6.4.2 Field evaluation 

To evaluate the performance of the sensor unit, it was tested in a MxG field in Urbana, Illinois 

(lat/lon: 40.040963,-88.224565), during the Spring 2010, Fall 2010, and Spring 2011. 30 images 

were captured at randomly selected locations, and the crop densities at these locations were 

manually measured as references. The result is shown in Fig. 6.5. 

The crop density of the selected locations ranged from 32 stem/m
2
 to 92 stem/m

2
 with an 

average of 57stems/m
2
. The result of the field tests showed that the proposed method achieved an 

average accuracy of 91.20% with a minimum accuracy of 86.04%. To evaluate the impact of the 

crop density on the accuracy, the images were grouped in to three groups (10 images in each 

group) based on manually measured crop densities. The crop densities of the first group ranged 

from 32 stem/m
2
 to 50 stem/m

2
, and the achieved accuracy was 92.4%. The crop densities of the 
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second group ranged from 53 stem/m
2 

to 61 stem/m
2
, and this group achieved an accuracy of 

91.4%. The crop densities of the third group ranged from 61 stem/m
2
 to 92 stem/m

2
, and the 

achieved accuracy of this group was 89.96%. Thus, the accuracy was inversely proportional to 

crop density.  

 

Figure 6.5. Field evaluation result of the developed crop density sensor for MxG. 

6.4.3 Crop density based yield model 

Eqn. 2.12: 
2Y ( )

2
indi

D
W Num H Num        indicates that the relationship between the 

total mass in a certain area and the number of stems is linear. (In Eqn. 2.12 Y is the yield unit in

2

kg

m
, indiW  is the average mass of MxG stems, Num is the number of stems in a certain area, D is 

the diameter of MxG stems, H  is the height of MxG stems, and   is the material density of 

MxG stems). To validate this relationship, the mass of 130 MxG stems was manually measured, 
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and a linear function (Eqn. 6.9) was fitted to the relationship of total mass and the number of 

stems. 

6( )Y f Num c Num                                                 ( 6.9 ) 

Where 6c  is an unknown coefficient. The estimation (Eqn. 6.10) was obtained by linear 

regression: 

35Y Num                                                           ( 6.11 ) 

The regression coefficient of this estimation was 0.99 (Fig. 6.6). The coefficient ( 6c ) indicates 

the average mass of individual MxG stems.  

 

Figure 6.6. Relationship between total mass and the number of stems. 
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6.5 Summary and Conclusions 

A machine vision and Monte Carlo model based crop density sensor was developed. The 

sensor unit was composed of a commercial color CCD camera (Unibrain® Fire-i 701c) and a 

laser sheet generator, consisting of a 50mW green laser beam and a Fresnel lens. The camera 

collected color images in the YCrCb color space, while the laser sheet provided identifiable 

features. A geometry perspective model of the sensor unit was developed and analyzed to 

calculate the sensor coverage area. An image segmentation based algorithm was developed to 

identify the features in images. To predict the crop density, a Monte Carlo model was proposed 

to predict the number of invisible MxG stems based on the number of visible MxG stems in 

images.  

Both the geometry perspective model and the Monte Carlo model were validated using lab 

and field experiments. The field tests showed that the sensor achieved an average accuracy of 

92.20% with a worst case of 86.04%. The results also showed that the accuracy is inversely 

proportional to the crop density. A crop density based yield model was discussed. The result 

showed that the total mass and the number of stems follow a linear function with the average 

mass of individual stems as the coefficient and zero intercept.   
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CHAPTER 7     

SUMMARY AND FUTURE RESEARCH 

7.1 Summary  

Bioenergy is becoming one of the main sources of global sustainable development (Yamamoto 

et al., 1999). It is also considered a solution to the problems of climate change and 

environmental damage from combusting fossil fuels (Michel et al., 2011). Due to its ability to 

adapt to various soils and climates, low nutrition requirement and high yield, Miscanthus 

Giganteus (MxG) is considered one of the major energy crops worldwide (Lewandowski et al., 

2003; Clifton-Brown et al., 2007; Michel et al., 2011). Unfortunately, a yield monitoring system 

is not available for grassy energy crops like MxG. In this work, a yield monitoring system based 

on morphological parameters was developed. With the availability of a yield monitoring system 

detailed yield information can be obtained, the harvesting operation could be better organized 

and scheduled, and the yield data would make adaptive speed control of a harvester possible.   

This research focused on the development of high accuracy morphological parameter sensors 

and corresponding algorithms for biomass yield estimation. The sensors were tested and 

evaluated in a field environment. The relationships between yield and morphological parameters 

(height, diameter and crop density) were discussed and analyzed.  
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The height of MxG was estimated using a LIDAR based measurement system. Two 

measurement modes, static and dynamic measurement, were tested. In static measurement mode, 

the position of the sensor was fixed, and the sensor worked in individual scan mode. In dynamic 

measurement mode, the LIDAR was configured to scan continuously, and the sensor traveled 

along the MxG field at a constant speed. An inclination correction algorithm was developed to 

improve the measurement accuracy of the sensor. The achieved average accuracy of the LIDAR 

base height sensor was 94.02% in static measurement mode, and 96.2% in dynamic height 

measurement mode compared to the manually measured heights. The relationship between 

individual stem mass and stem height was introduced and analyzed. The result showed that the 

yield and the height have a linear relationship.    

The stem diameter was estimated using three approaches: LIDAR based diameter estimation, 

stereo vision system based and monocular vision system based diameter estimation. A LIDAR 

based approach was developed first. The LIDAR was placed to scan MxG stems horizontally. To 

identify the MxG stems in the raw LIDAR data, a region of interest was defined based on a 

measurement geometry model. The data within the ROI was pre-grouped by an angle continuity 

algorithm. Subsequently, a fuzzy clustering based method was applied to identify single stems 

based on the presentation of MxG stems in the LIDAR data. Four types of clusters were tested 

and different groups of cluster inputs were tested as well. The Gustafson-Kessel clustering 

algorithm was finally selected due to its best performance. To improve the measurement 

accuracy and implement the dynamic measurement of stem diameter, a binocular vision based 

diameter sensor was developed. Compared to a traditional binocular vision system, the sensor 

module developed applied a laser sheet to provide features (laser spots) on the stems. These 

features were used to identify the stems in images and match image pairs. The sensor 
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arrangement simplified the stem identification and image matching approach. The stem diameter 

was obtained by a disparity – depth model and a depth- horizontal covered length per pixel 

model. Both models were validated based on experiments. To further simplify the depth 

estimation in binocular stereo vision based diameter estimation approach, a monocular stereo 

vision diameter sensor was developed. It had the same sensor module as the binocular vision 

sensor, but only one image was required to estimate the stem diameters. The depth of each stem 

was estimated based on a geometry perspective model of the sensor. The results showed that the 

LIDAR based diameter sensor achieved an average accuracy of 92.5%, while the achieved 

average accuracy of binocular stereo vision based estimation and monocular stereo vision based 

estimation were 93.1% and 93.5% respectively. The relationship between individual mass and 

stem diameter was discussed. The result showed that the yield and the stem volume exhibit a 

linear relationship.  

The comparison of three techniques applied to measure MxG stem diameter was shown in Tab. 

7.1. The achieved accuracy of the stereo vision based and monocular based sensor were similar 

(stereo vision based sensor: 93.1% for individual stem diameter estimation and 99.8 % for 

average diameter estimation. Monocular vision based sensor: 93.5% for individual stem diameter 

estimation and 99.9% for average diameter estimation). Both of them support dynamic 

measurement. However, the monocular based sensor had a larger coverage area and lower 

computational cost. The achieved accuracy of the LIDAR based stem diameter sensor (92.5% for 

average diameter estimation) was lower than both stereo vision based and monocular based 

sensors. It also had the smallest coverage area of three sensors. The computational cost of the 

LIDAR based sensor was also high, and it did not support dynamic measurement. The device 

cost of LIDAR based sensor was around 5,000 to 6,000 U.S. dollar, while the device costs of 
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stereo vision and monocular based sensors were approximately 900 and 450 U.S. dollar. Thus, 

the monocular vision based stem diameter sensor was recommended in this research due to its 

higher accuracy, larger coverage area and lower cost in both computation and device. 

Table 7.1. Comparison of three sensors applied to measure MxG stem diameter. 

 Accuracy Coverage 

Area 

Computational Cost Device Cost Dynamic  

Measurement 

LIDAR 

 

92.5% Small High High No 

Stereo Vision 

 

93.1% 

(99.8%) 

Medium High Medium Yes 

Monocular 

Vision 

93.5% 

(99.9%) 

Large  Low Low Yes 

 

 

 Crop density was estimated using the same machine vision based diameter sensor. Thus, the 

stem diameter and crop density were obtained based on the same images. The sensor coverage 

area was calculated by the analysis of a perspective model of the sensor. The total number of 

MxG stems were predicted based on a Monte Carlo model. The model predicted the number of 

invisible stems based on the number of visible stems in images. The model was validated by 

comparing simulation and field measurements. The achieved average accuracy of the crop 

density sensor was 92.2%. The relationship between the total mass of MxG and the number of 

stems was discussed and analyzed. The result showed that the yield and the number of stems had 

a linear relation with zero intercept and the average individual mass as the coefficient.  

In conclusion, the proposed yield sensing system achieved high accuracies of height, diameter 

and crop density estimations and provided a feasible solution for yield monitoring of MxG.        
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7.2 Future Research 

Currently, the covered length of the dynamic LIDAR based height measurement was 

calculated by multiplying the operation time and the speed of the carrier. Its accuracy can be 

improved by a more accurate velocity sensor, for example, a gyroscope or a high accuracy 

encoder. Similarly, an accurate velocity sensor will make the dynamic measurement of LIDAR 

based diameter sensor possible.  

Currently, the sensor system is mounted on a tractor using a steel frame (Fig. 7.1). The 

machine vision based sensor (diameter, crop density) suffered from vibrations at a relatively high 

velocity or on uneven surfaces due to the camera’s low frame rate. A high-speed camera could 

reduce the influence of vibrations. In addition, a better designed sensor mount will improve the 

in-field stability and reduce vibrations.  

Particularly for the machine vision based diameter sensor, an optimized algorithm for both 

binocular vision and monocular vision systems will decrease their computational cost, and 

increase the operational speed.  

 

Figure 7.1. The sensor mounted on a tractor by a cross steel frame. 
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To produce yield maps, a GPS is recommended to be integrated with the current sensor system. 

Two sensor modules are applied in the current yield sensing system, LIDAR was applied to 

estimate the height, and a camera was employed to measure stem diameters and crop density. 

The availability of a diameter-height model could change the yield monitoring system to require 

only a machine vision based sensor, which is less expensive.  
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