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Abstract Linear morphological openings and closings are
important non-linear operators from mathematical morphol-
ogy. In practical applications, many different orientations of
digital line segments must typically be considered. In this
paper, we (1) review efficient sequential as well as paral-
lel algorithms for the computation of linear openings and
closings, (2) compare the performance of CPU implemen-
tations of four state-of-the-art algorithms, (3) describe GPU
implementations of two recent efficient algorithms allowing
arbitrary orientation of the line segments, (4) propose, as the
main contribution, an efficient and optimized GPU imple-
mentation of linear openings, and (5) compare the perfor-
mance of all implementations on real images from various
applications. From our experimental results, it turned out
that the proposed GPU implementation is suitable for appli-
cations with large, industrial images, running under severe
timing constraints.

Keywords morphology, opening, closing, linear, 1-D SE,
parallel, efficient, algorithm, implementation, GPU

1 Introduction

Openings and closings are non-linear image operators of
mathematical morphology [1]. They are at the basis of sta-
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tistical measures called granulometries [2–5] and of a class
of non-linear morphological filters called Alternate Sequen-
tial Filters (ASF) [6, 7].

In practical applications, the granulometries allow esti-
mation of a priori unknown geometrical characteristics of
objects in the image. For illustration, we can cite (1) medical
imaging applications e.g., blood cell classification [8], (2)
automated document analysis [9], or (3) industrial control
[10]. The role of the ASF filters is to reduce the noise while
preserving the principal features in the image. They rep-
resent the principal element of numerous applications e.g.,
texture analysis [11] or remote sensing [12]. Even the mor-
phological openings themselves are useful for their filtering
properties in some industrial applications such as [13].

Generally speaking, to obtain the desired result–size
distribution or filtering effect–we have to use a sequence
of openings and/or closings with varying parameters of the
applied computing window, so-called structuring element
(SE). For a given shape of the SE, these variable parameters
are the progressively increasing size of SE and rotation
angle. In order to ensure the exhaustivity of the result,
applications often require computing of an enormous
number of iterations with greater SE, often approaching
hundreds of pixels. Considering continually increasing
image resolution used in industrial applications, one can
intuitively feel that it results in overwhelming requirements
on the computing power. This is true even despite recent
efficient algorithms [14, 15].

In this context, we study how to efficiently implement
the above mentioned operators on graphics cards with
the objective to reduce these computing requirements on
the system. Initially, graphics cards were designed for
graphics purposes only and were not programmable. Based
on numerous parallel processors they were very powerful
compared to their price. Current GPUs have passed the one
Tera FLOPS barrier, and there is no need to use dedicated
graphics languages any more since several frameworks
have been developed for GPGPU1 purposes: CUDA [16] by
nVidia and OpenCL [17] by the Khronos Group are today

1 General-purpose computing on graphics processing units
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the most popular in the GPGPU community. Both are based
on C language extensions. Notice that in this paper, we use
the CUDA language for all presented implementations on
GPU. Nevertheless, the principles remain the same when
moving to a different language.

In our study, we focus on the morphological openings us-
ing linear SE under arbitrary angle, essential in a wide range
of practical applications dealing with linear image structures
such as fingerprint analysis, geosciences [18], and vessel
segmentation [19].

The main novelty of this paper consists of an efficient
and optimized GPU implementation of the algorithm by
Bartovsky et al. [15], which turned out to be the most suit-
able for a parallel implementation on GPU. We also present
performance comparisons and experimental results of all
implementations on real data. It turned out that the proposed
GPU implementation can compute linear openings for
180 directions of an image of size 640×640 pixels within
60 ms.We also show that the proposed implementation is
significantly faster than the state-of-the-art implementation
in the OpenCV_GPU library [20], especially for larger SEs.

In the remainder of this paper we start by the introduc-
tion of the mathematical background in Section 2. Section 3
reviews and compares the state of the art of efficient imple-
mentations for computing linear morphological openings of
different orientations. Section 4 presents the first GPU im-
plementation of two candidate algorithms by Bartovsky [15]
and Morard [14]. Afterwards, the Section 5 describes the op-
timized implementation of Bartovsky algorithm, including
the parallelism enhancement discussion. Section 6 illustrates
the use of this efficient implementation in practical applica-
tions. It includes also the discussion of overall experimental
results. Finally, the conclusions recall the main contributions
of our work and briefly introduces its perspectives.

2 Basic Notions

Before defining morphological openings and closings, we
define erosions and dilations for gray-scale images. Let a
mapping f : Z

2 → R be a gray-scale discrete image, and
F be the collection of all such images. The support used
throughout this paper shall be a rectangular subset domain
of Z2.

The erosion and dilation are mappings εB, δB : F →
F , parameterized by the so-called structuring element (SE)
B, B ⊂ Z

2. Here, we restrict the family of SE to flat and
translation-invariant. Hence, the dilation and erosion are, as
usually, defined by

δB( f ) =
∨

b∈B

fb ; εB( f ) =
∧

b∈B̂

fb (1)

where the hat ̂ denotes the transposition of the structuring
element, i.e., B̂= {x | −x∈B}, and fb denotes the translation
of the function f by some vector b, and

∨
and

∧
denote the

supremum and infimum on a collection of functions.

(a) Input (b) γ70
λ (c) ∨γλ (d) ζλ

Fig. 1 Example application of linear openings. (a) input image, (b)
linear opening with a digital line segment of length λ = 41 pixels and
orientation 70 degrees, (c) enhancement of linear structures, and (d)
color coded local orientation of linear structures calculated using def-
initions in Eq. (3). In (a) and (c), two zoomed regions are shown for
a better comparison.

Similarly, the morphological openings and closings are
mappings γB, ϕB: F → F , also parameterized by B. The
transposition B̂ used in the definition of erosion ensures that
the dilation and erosion form a so-called adjunction pair.
This allows us to obtain the morphological opening and clos-
ing by concatenation of the dilation and erosion:

γB( f ) = δB[εB( f )] ; ϕB( f ) = εB[δB( f )]. (2)

Erosions and dilations are dual under complementation, i.e.
for functions δB = −εB(− f ), see e.g. [21]. Consequently,
γB and ϕB are also dual and all algorithms developed for
openings can easily be used also for closings.

In the sequel, we focus on linear morphological openings
and closings obtained with SE in a form of a 1-D digital line
segment of the length λ and orientation α , denoted by γα

λ
and ϕα

λ
, respectively.

Further operators can be built based on linear openings.
The first operator, ∨γλ ( f ), is computed by taking the supre-
mum of the openings by digital line segments in all orienta-
tions; the second operator, ζλ ( f ), can extract the local ori-
entation of linear structures:

∨γλ ( f ) =
∨

α∈[0,180]

γα
λ ( f ) ; ζλ ( f ) = arg

∨

α∈[0,180]

γα
λ ( f ).

(3)

As an example, the effect of these operators on a real image
is presented in Fig. 1.

3 Opening Algorithms

Opening algorithms can be divided into three classes: ero-
sion and dilation chaining (a two-stage algorithm), direct
computation, and algorithms based on connected component
tree building.

Two-stage algorithm: computed by using Eq. (2), it is
the simplest and historically earlier approach used to com-
pute openings. Noting N the number of pixels of the image
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(a) Horizontal SE (b) Vertical SE

Fig. 2 Comparison of CPU implementations for horizontal and vertical SEs of size approx. 5% of the image width.

and L the size of the SE, the complexity of the naïve ap-
proach is O(N×L). The computational complexity was im-
proved throughout the years to make the algorithm feasible
for practical applications. In 1985, Pecht [22] defined a loga-
rithmic decomposition of the SE. This decomposition, which
removes most of the redundancy, was further extended by
Coltuc [23], reducing the complexity to O(N× logL). Later,
the complexity was further reduced to linear O(N), hence
independent of the size of the structuring element, by Van
Herk, and Gil and Werman [24, 25]. The linear algorithm
will be referred to as the HGW algorithm hereafter. In [26],
Soille et al. extended this work to arbitrary-oriented open-
ings. In [27], Clienti et al. improved the HGW algorithm by
removing the image backward scanning to reduce latency.

Direct Computation: for the family of openings with
1-D SE, new algorithms were introduced recently to
directly compute openings in only one scan of the entire
image, preserving the complexity of O(N). In [28], Van
Droogenbroeck and Buckley introduced an algorithm
based on anchors, allowing very fast computation of the
linear openings. The anchors are points, which are not
affected by the opening. Nevertheless, the algorithm uses
a histogram. The main drawback of using a histogram is
the increasing memory consumption for finely quantized
data. Even though the memory is no longer an issue for
PC architectures, it becomes a penalizing factor for paral-
lelized implementations on other architectures with limited
memory like GPU. Secondly, search over a long histogram
becomes costly and finely, for floating point accuracy, the
histogram can not be used at all.

Later, Morard et al. [14] introduced a very simple al-
gorithm based on an ordered stack of cords where a cord
refers to a continuous set of pixels of intensity greater than
or equal to a certain value I. With the inclusion relation be-
tween cords and by analyzing the length of each cord, the
computation of linear openings and of linear granulometries

is straightforward. Finally, Bartovsky et al. [15] also devel-
oped an algorithm to build linear openings. It sequentially
scans the signal and erases every peak narrower than SE.
Further explanations on these algorithms are given in sec-
tion 4.

Connected component tree: such approach was de-
scribed in [29]. The approach is based on building
connected components, hence it can be adopted for more
complex tasks such as watershed segmentation [30]. The
drawback of the algorithm is that the complexity depends on
the number of gray levels in the image and requires random
access data, consequently it is not adapted for applications
running under strict time constraints.

3.1 Parallel Implementations

There are several implementations of HGW algorithm in the
literature since it can be easily parallelized. Brambor [31]
described a parallel implementation of the HGW algorithm
on SIMD architectures. Their implementation was tested
on an Intel CPU with the SIMD-SSE2 instruction set. Cli-
enti [27] improved the HGW algorithm and implemented2

it on a SIMD architecture as well. Domanski et al. [33]
used CUDA to implement the HGW algorithm on GPU,
achieving 13–33× speedup. There are several drawbacks
of the algorithm as it computes openings and closings by
dilation-erosion chaining, which requires more computa-
tions than direct approaches. It also has larger memory
requirements [34].

On the contrary, there are few parallel implementations
of the component tree algorithms, among which we can
cite Wilkinson [35], Menotti-Gomes [36] on multicore, and
also Matas [30] on ccNUMA 4-core. They are effectively

2 available in Fulguro image processing library [32]



4

so complex that it is difficult to exhibit some parallelism in
these complex algorithms.

Finally, in order to improve the computing efficiency
by parallel implementation, direct computation algorithms
seem to be the best candidates compared to HGW and
component-tree algorithms. This is why we focus on this
class of algorithms in the remainder of this paper.

3.2 Selection of a Direct Linear Opening Algorithm

We need to select the best sequential algorithm candidate
for a parallel implementation leading to the most efficient
execution on a GPU platform. As explained above, such an
algorithm has to allow arbitrary angles computing using di-
rect linear opening for lower computation and complexity
requirements. Hence, there are three algorithms available
to benchmark and compare: (1) Van Droogenbroeck [28]
referred to as VanD, (2) Morard et al. [14] referred to as
Morard and (3) Bartovsky et al. [15] referred to as Bar-

tovsky. To this list, we will add Clienti algorithm [27] al-
though it is not a direct computation based algorithm. Effec-
tively, this is one of the fastest HGW implementation that
can consequently give a useful comparative point. It will be
referred to as Clienti.

For a fair comparison, all these algorithms were imple-
mented using the same image-processing library with the
same interface and with all the optimization flags turned on.
We used only one core of an Intel Core i7-870 2.93 GHz
CPU for this benchmark. These algorithms have been ap-
plied on the texture images shown in Fig. 12(a), (b).

Execution performances of the four algorithms for both
horizontal and vertical openings are presented in Fig. 2. The
performance P is computed as P = N/t, where N is the im-
age size and t is the computation time. This measure is con-
sequently independent of the image size. Note, however, that
the performance actually does depend on the image size (see
e.g. Fig. 2(b)). Each marked value in the plots represents the
performance computed from the mean computation of 100
openings. For each image the length of a structuring element
was chosen to be equal to 5 % of the image width/height be-
cause, in most applications, the length of SE is considerably
smaller than the image size.

From the benchmarks we see that for vertical SEs and for
large images, the performances significantly decreases for
all algorithms, except for the Bartovsky. This is explained
by the fact that this algorithm accesses the data sequentially
even for vertical structuring elements. It is clear that VanD
algorithm is the fastest, followed by Morard, Bartovsky, and
Clienti, for both vertical and horizontal orientation. While
VanD achieves the best performance, it is nevertheless un-
suitable for parallelization on a GPU because of its high
memory requirements especially for higher bit depths and
arbitrary oriented SEs. In contrast, Morard and Bartovsky
algorithms are able to compute openings and closings effi-
ciently regardless the orientation of the SE or the data type

Algorithm 1: Morard algorithm: G ←
Open1D(F,λ ,S)

Input: F – input 1-D signal, λ – size of SE, S – pointer to
LIFO stack

Result: G – output 1-D signal
Data: S – a stack of triplets (value, position, flag)
initialize S;
for rp← 0 to |F |−1 do

if S.empty() or F [rp]> S.top(value) then
S.push({F [rp],rp, f alse});

else
while F [rp]< S.top(value) do

f z← S.pop();
if f z(passed) or rp− f z(position)≥ λ then

WriteFlatZones(F,G,rp,S, f z);
process S;

process all zones remaining in S;

precision with minimum memory requirements. Therefore,
we selected these two algorithms for parallelization and im-
plementation onto the targeted GPU architecture.

4 Basic Implementation on GPU

4.1 Morard and Bartovsky Algorithms

In this section, we briefly introduce the Morard and Bar-
tovsky algorithms for computation of morphological open-
ings and closings with a linear SE. The detailed description
can be found in [14,15]. Both algorithms are able to compute
the operation in O(N) time with respect to the image size and
O(1) with respect to the size of SE. The Bartovsky algorithm
was originally designed for streaming architectures such as
FPGA and hence performs scanning of the input data in se-
quential order. Nevertheless, it can be simply modified to
perform scanning along lines according to the orientation of
SE, much like the Morard algorithm. During the scan, in-
tensity and position of each pixel is stored in an auxiliary
data structure if necessary. Whereas the Morard algorithm
uses the LIFO stack, the Bartovsky algorithm uses the FIFO
queue. For arbitrary directions, both algorithms use the Bre-
senham’s lines, as described in [26].

In the Morard algorithm, the image line is scanned for
pixels where the intensity changes. Whenever the current
pixel intensity is higher than the preceding, the current pixel
is pushed to the stack. In the opposite case, the stack is be-
ing emptied while necessary. The algorithm needs to store
an extra bit for a boolean flag indicating the status of a pixel.
The size of the stack is limited only by the size and the bit
depth of the image. After processing the stack, the output is
written. The outputs are irregular. A pseudo-code is shown
in Alg. 1.

In the Bartovsky algorithm, the image line is scanned for
so-called peaks. According to a peak configuration, either a
pixel is pushed to the queue or the queue is being emptied.
The size of the queue is limited by the size of SE. After
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Algorithm 2: Bartovsky algorithm: G ←
Open1D(F,λ ,Q)

Input: F – input 1-D signal, λ – size of SE, Q – pointer to
FIFO queue

Result: G – output 1-D signal
Data: Q – a double-end queue of pairs (value, position)
initialize Q;
for rp← 0 to |F |−1 do

while F [rp]≤ Q.back(value) do
process Q;

Q.push({F [rp],rp});
if rp = Q.front(position)+λ then

Q.pop();

if rp≥ λ then
G[rp−λ ]← Q.front(value);

processing the queue, the output is written. The writes are
regular and follow the reads with the well-defined latency
corresponding to the size of SE. A pseudo-code is shown in
Alg. 2.

4.2 GPU Parallel Architecture

Before we describe basic GPU implementations of the algo-
rithms, we briefly review some properties of the GPU archi-
tecture, as shown in Fig. 3.

From the hardware point of view, a GPU consists of hun-
dreds of so-called streaming multiprocessors (SM). Each in-
cludes a number of shader processor (SP) cores, a number of
registers, a small shared memory providing communication
between SPs, and fast ALU units for hardware acceleration
of transcendental functions. One global memory is shared
by all SMs and provides a capacity in order of GB and the
memory bandwidth in order of 100 GB/s. There are also two
additional read-only cached memory spaces accessible by
all threads: the constant and texture memory spaces. They
can help programmers to improve the performance of their
implementations [37,38]. In some recent GPU architectures,
such as FERMI by nVidia [39], the global memory is cached
as well.

From the programmer’s point of view, every program
consists of two parts, a host code for CPU, and a kernel code

for GPU. Before executing a kernel, the host program al-
locates a memory on GPU and transfers data if necessary.
Then a kernel is configured and executed. The configura-
tion defines the number of threads allocated for kernel ex-
ecution. Generally, the number of threads should be much
higher than number of processing units of GPU. This ap-
proach allows (1) the proper scaling on various hardware
configurations, and (2) hiding the memory latencies. The
threads form groups called blocks (as in CUDA [37]) or
work-groups (as in OpenCL [40]), following the hierarchy of
SMs and SPs. Synchronization of threads and data sharing
is possible within the group only. The threads are executed
concurrently in warps, usually of 32 threads each.

Fig. 3 Thread mapping and memory hierarchy in the GPU architec-
ture.

4.3 GPU Implementation of Morard and Bartovsky
Algorithms

Regarding the design of both algorithms, the input image
is scanned in the sequential manner. However, all lines
of the image can be scanned concurrently, as shown in
Fig. 4. Thus, the parallelism can be introduced by bind-
ing individual threads to individual lines of the image.
Each image line is processed independently using its own
algorithm-dependent stack or queue, respectively. This
requires the GPU memory to be large enough to contain all
auxiliary data structures. Here, the Bartovsky algorithm is
favorable, since the sizes of the queues used are limited to
the size of SE whereas the stacks used by Morard algorithm
are generally limited by the size of the image.

The mapping of threads for all SE orientations is de-
scribed in Fig. 4. For an arbitrary angle α , the overall num-
ber of threads can be simply computed as follows:

T = w+ ⌈h|cotα|⌉, α ∈ [45◦,135◦)∪ [225◦,315◦), (4a)

T = h+ ⌈w| tanα|⌉, α ∈ [−45◦,45◦)∪ [135◦,225◦), (4b)

where w and h are the width and the height of the input im-
age, respectively. Thus, generally T > w or T > h, respec-
tively. Some of threads spend a part of the computation time
outside the image domain where they do not compute any-
thing. Thanks to thread locality, this brings little overhead
only because in the GPU thread scheduler, thread warps that
fall outside the image domain are quickly replaced by those
that fall inside.

It should be noted that the processing of both the stack
and the queue is data-dependent, thus data accesses are irreg-
ular. Therefore, during this part of the computation, threads
are divergent. This limits the overall performance of the par-
allel implementation. In the Bartovsky algorithm, the data
accesses to both input and output images are regular.



6

(a) Vertical SE (b) SE of angle α ∈ [45◦,135◦)∪ [225◦,315◦)

(c) Horizontal SE (d) SE of angle α ∈ [−45◦,45◦)∪ [135◦,225◦)

Fig. 4 The mapping of threads to the 2-D image grid in the GPU implementation of the algorithm for computing 1-D morphological open-
ings/closings. Each thread, denoted by its ID, is mapped to an individual image column or row, respectively.

(a) Image D15 (b) Image D47

Fig. 5 Comparison of basic GPU implementations of Morard and Bartovsky algorithms. Opening was computed with SE of both horizontal and
vertical direction and size approx. 5 % of image width.
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4.4 Experimental Results

The basic GPU implementations, described in the previous
section, were compared on nVidia Tesla C2050 GPU with
14 MPs at 1.15 GHz and 3 GB RAM. Again, all experiments
were made with the texture images shown in Fig. 12(a), (b).
Results are shown in Fig. 5. The presented performance does
not include the times needed for the data transfer between
CPU and GPU.

Contrarily to the performance on CPU, the Bartovsky al-
gorithm achieves better performance than the Morard algo-
rithm. However, its performance is highly sensitive to the
SE orientation, as shown in Fig. 5. For a horizontal SE, the
performance is significantly lower due to extensive L1 cache
misses, as detected by Nsight Visual Profiler [41]. As the L1
cache is stored in memory banks and memory accesses are
synchronized, most of cache queries are directed to the same
memory bank leaving other memory banks unused. This is
not the case of the Morard algorithm since it generally keeps
the memory accesses irregular.

5 Efficient Implementation of the Bartovsky Algorithm

The choice of the algorithm to optimize is guided by
the analysis of the Bartovsky and Morard algorithms in
sections 4.3 and 4.4. Despite higher performances of the
Morard algorithm on CPU, the Bartovsky algorithm has
several advantages:

(1) Both the data accesses to the input and output image
are regular. This helps to make the thread execution syn-
chronous and reduces the thread divergence.

(2) The maximum length of the FIFO queue is limited
by the length of SE. This strongly limits the memory re-
quirements. Recall that we are to bind one thread per im-
age line (Fig. 4). For large images, with potentionally many
threads, it is important to have a small memory footprint of
each thread.

In the basic implementation on GPU (contrarily to
CPU), the Bartovsky algorithm is sensitive to the SE
orientation. Hence, we shall introduce several optimization
steps not only to increase the overall performance but, par-
ticularly, to keep the performance stable for all orientations.
These steps are described in the following sections.

To prove the choice of the Bartovsky algorithm, we ap-
plied the optimization steps also on the Morard algorithm
and performed tests to compare both optimized GPU imple-
mentations. The results are shown in Section 6.

5.1 Parallelism Enhancement

In the basic implementation, the parallelism was introduced
by mapping GPU threads to individual image rows or
columns, creating the grid of h or w threads, respectively
(where h and w are height and width of a 2-D input image,
respectively). However, if an input image is not large

Fig. 6 Image split applied for opening/closing with vertical SE of size
2. Image is split into 2 zones, introducing twice more threads. The
threads are denoted by vertical arrows, analogously to Fig. 4.

enough, the GPU’s MPs are not fully occupied. Therefore,
we introduce more parallelism by splitting the image
into two or more parts. In the following text, we refer to
them as zones. As each pixel can be affected by (2λ − 2)
neighboring pixels (where λ is the length of SE), the zones
need to overlap by 2(λ − 1) pixels. An example of the
image split for a vertical SE is shown in Fig. 6.

It is evident that the theoretical speed-up s that can be
achieved depends on the SE length λ , the image size and the
number of zones Z. For vertical SE we get the following:

s = Z

[
1−

(Z−1)(2λ −1)
h

]
, (5)

where h is the image height. For small λ we get s ≈ Z,
while for λ ≈ h/(2Z) we get s ≈ 1. It should be noted that
for large input images it is not necessary to introduce more
parallelism by splitting the image, it can even decrease the
performance. The optimal choice of the parameter Z is dis-
cussed in section 5.4.

5.2 Optimization of Data Accesses

To reduce the memory latency, the usage of the global mem-
ory should be avoided where possible. Alternative memory
spaces can be used for both the input image and the FIFO
queues. The input image can beneficially be stored in the
read-only cached texture memory. This is true also for the
recent FERMI architecture, which introduced L1 cache [39,
42], because the texture memory helps significantly improve
the performance for horizontal SEs where L1 cache fails due
to bank conflicts. The FIFOs can be stored in the shared
memory. As the amount of the available shared memory is
limited, the maximum length lmax of the FIFO is limited to
lmax = S/(Sb×d), where S is the amount of the shared mem-
ory available, Sb is the number of threads per block (work-
group) sharing the memory, and d is the size of the data type.
Hence, the most recent values of the FIFO are stored in the
shared memory in a circular buffer so the position of the first
element varies during the computation. The rest of the FIFO
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Fig. 7 FIFO storage in the shared and the global memory. The numbers
indicate the order of pushing the element into the FIFO. The marked
elements (the first one and the last two) are also cached in registers.

is stored in the global memory. The FIFO storage is shown
in Fig. 7.

The constraint on the FIFO length mentioned above
can be considered as a hard limit. However, using as much
shared memory as possible can lead to a performance de-
crease because in that case, the shared memory is allocated
for one thread block per MP only. Since the MPs are capable
of execution of more thread blocks, the optimal FIFO length
needs to be chosen carefully, as discussed further.

To conclude our choice of memory spaces, using L1 and
L2 caches for input data turned out to be inefficient for some
SE orientations, as explained in Section 4.4. The texture
memory is read-only, cached, and can be allocated up to
the size of the device memory. Therefore, it is suitable for
the input image. The size of the texture cache is relatively
small (8 kB per multiprocessor) but sufficient, thanks to the
spatial locality. The shared memory is rewritable, relatively
small (up to 48 kB per MP), and fast. In terms of latency, it is
comparable with registers, provided that block conflicts are
avoided—which is guaranteed in our implementation. Thus,
it is suitable for FIFO caching.

5.3 Consideration of Arbitrary Orientations

As noted in section 4.4, the performance of Bartovsky algo-
rithm on GPU is sensitive to SE orientation. Thus, a careful
attention should be paid to this issue when computing open-
ings in arbitrary directions. By using the texture memory, the
input image is cached and the latency of memory reads is re-
duced. The final step is to optimize the memory writes to the
output image. Experiments proved that openings with SEs
of orientation α ∈ (−45◦,45◦) are computed faster when
writing the output image transposed. The output image is
subsequently corrected using the modified transpose kernel
from [43].

5.4 Configuration of Performance Parameters

In the optimized GPU implementation, we have introduced
several parameters that influence the performance: the block
size (work-group size) Sb, the number of zones Z, and the
optimal length l of the FIFO buffer allocated in the shared
memory. They all depend on these properties: the image di-
mensions (w or h), the SE length λ , the number of the MPs
NMP available on the used device, the shared memory size

per MP S, the warp size W and the number of blocks (work-
groups) Nb that can be executed on a single MP. For optimal
configuration, the following set of rules should be satisfied:

1. Sb should be multiple of W ,
2. Z ≥ (Sb×Nb×NMP)/T where T is defined in Eq. (4),
3. Z ≤ h/(2λ ) or Z ≤ w/(2λ ) following Eq. (5),
4. l ≤ S/(Sb×d×Nb),
5. l should be a power of two allowing the bitwise operator

"&" to be used instead of the costly modulo operator for
addressing the FIFO queue items.

It should be noted that some of the rules cannot be sat-
isfied in some cases. In particular, rules (2) and (3) can be
conflicting for small input images. Performances for some
parameter configurations are presented in the following sec-
tion. CUDA programmers are advised to use a tool called
"CUDA Occupancy Calculator" which can help to compute
the optimal kernel configuration [43].

6 Experimental Results

We made the performance analysis of the optimized GPU
implementations, based on images with clear linear struc-
tures (see Fig. 12), and the results of our comparisons are
shown in Fig. 8, 9, and 10.

In the first experiment (Fig. 8), the comparison of opti-
mized GPU implementations of Bartovsky and Morard algo-
rithms is shown, in analogy to Fig. 5. We assumed that the
former is more suitable for the GPU architecture than the
latter. This assumption was confirmed by the experiments.
Thus, in the following experiments, we used the more suc-
cessful implementation.

In the second experiment (Fig. 9 and 10), we compared
the performance of our GPU implementation, referred to as
"GPU (Bartovsky)", to the corresponding CPU implementa-
tion, referred to as "CPU (Bartovsky)", and also to the state-
of-the-art implementation in the OpenCV library with the
GPU support (so-called OpenCV_GPU) [20], referred to as
"GPU (OpenCV)". It turns out that our GPU implementa-
tion is approximately 10–50× faster than the CPU imple-
mentation, depending on the input data size and the length
of the SE. Despite the fact that the Bartovsky algorithm it-
self is sequential so the parallelism introduced in its GPU
implementation is limited, our implementation is faster than
the OpenCV_GPU in every case. Whereas for small SEs the
difference between the two GPU implementations is negligi-
ble, for larger horizontal and vertical SEs the speedup is up
to 50×. For diagonal (and arbitrarily oriented) SEs, the per-
formance of the OpenCV_GPU implementation falls down
very quickly. This is because this implementation uses the
NVIDIA Parallel Primitives (NPP) library [44] which sup-
ports only simple SE shapes, therefore the line SE has to be
represented by a corresponding 2-D rectangle, i.e. a matrix
with elements correctly set to 0 or 1.

The most important performance limit of our implemen-
tation is the number of threads that can be executed. If the
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(a) Image D15 (b) Image D47

Fig. 8 Comparison of optimized GPU implementations of Morard and Bartovsky algorithms. For comparison with the basic GPU implementa-
tion, refer to Fig. 5.

(a) Image D15, SE size = 2 (b) Image D15, SE size = 5 % of image width

Fig. 9 Comparison of CPU and GPU implementations for various image sizes, various SE orientations, and fixed SE sizes.

(a) Image D15, 1280× 1280 px (b) Image D15, 5120× 5120 px

Fig. 10 Comparison of CPU and GPU implementations for fixed image sizes, various SE orientations, and various SE sizes.
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(a) Image D15, 640× 640 px (b) Image D15, 10240× 10240 px

Fig. 11 The contribution of the image split into performance for various image sizes: Z = 1 means no split, Z = 2, Z = 4 means split into 2 and
4 zones, respectively, as described in 5.1; Zp = 2, Zp = 4 means theoretical speedup, as predicted in Eq. (5).

Table 1 Optimal kernel configuration for nVidia graphics cards and
for a vertical SE. Choice of the optimal block size Sb, the Z parameter,
and the size of the shared memory l depend on many parameters, as
described in section 5.4. The Z parameter should be decreased if the
SE size is too large. Compute capability refers to a core architecture of
nVidia graphics cards [45].

Compute capability 1.x Compute capability 2.x

Sb Image width w Z l Sb Image width w Z l

32 < 64NMP 4 16 32 < 64NMP 4 32

64 < 128NMP 4 8 96 < 192NMP 4 16

64 < 256NMP 2 8 96 < 384NMP 2 16

64 ≥ 256NMP 1 8 96 ≥ 384NMP 1 16

input image is too small, there is not enough threads and the
GPU’s is underused. This can be avoided by splitting the im-
age in zones (refer to Fig. 6). Adjacent zones need to over-
lap to avoid border effects. For large SE sizes, the overlap
becomes large, with the consequence that the performances
decrease, see Fig. 10(a). For larger image sizes, the decrease
is proportionally lesser, see Fig. 10(b).

Thanks to the optimizations described in section 5.3 we
achieved stable performance for all SE orientations. The per-
formance was tested for all α ∈ [0◦,180◦), although for the
sake of simplicity, the graphs show only three orientations.
To conclude, our GPU implementation can be used for an ar-
bitrary SE length and direction, achieving the performance
more than 1000 Mpx/s. This allows computing one opening
on a 40 Mpx image with any 1-D SE in any orientation.

The contribution of splitting the image into zones is
shown in Fig. 11 and compared with a theoretical speedup,
as computed by Eq. (5). For smaller images, the opti-
mization increases the performance as expected. Note that

for large SE sizes, the performance does not decrease as
quickly as theoretically predicted. It is because the further
parallelism introduced by the split not only occupies more
MPs but it also helps to hide memory latencies. For larger
images, the number of threads is large enough to occupy
MPs, hence the image split does not introduce a further
speedup.

The optimal choice of parameters for nVidia graphics
cards and for a vertical SE is shown in Table 1. For AMD
Radeon graphics cards, the optimum values may differ. For
other orientations, the optimal parameters are analogous.

The performance values do not include the data transfers
between CPU and GPU. According to our measurements,
the time needed to transfer data is comparable with the time
needed for the computation of a single opening, hence the
overall speedup is half. Here, the GPU implementation is fa-
vorable for images larger than 6 Mpx. In the computation
of multiple openings, the data transfer overhead is negligi-
ble. The performance values for our GPU implementation
were obtained on top-class Tesla C2050 GPU (current price
1500 EUR), but we did several test also on 10× cheaper
GeForce GTX 470 GPU, and the results were comparable.

6.1 Practical Applications

In practice, linear openings and closings can be used for the
detection of either local or global orientations of linear struc-
tures. Hence, we tested and compared two CPU implemen-
tations (Bartovsky, Morard) and our GPU implementation
of linear openings and closings based on images from three
different application domains, namely fingerprint analysis,
texture characterization, and document analysis. In all cases,
we computed a set of linear openings allowing massive par-
allelism on GPU simply by computing linear openings in all
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Table 2 Comparison of CPU and GPU implementations for computation of an angular spectrum. The speedup is computed by comparing the
GPU implementation with the best CPU (Morard) implementation.

Image Image size No. of Time [ms] Speedup

angles CPU (Bart) CPU (Mor) GPU (Bart) GPU/CPU

Fingerprint 784× 1133 180 3768.7 3129.2 115.9 27.0

D15 640× 640 180 2425.8 2014.0 58.0 34.7

D47 640× 640 180 2397.7 2014.0 55.1 36.6

Music1 1000× 1411 81 5830.0 4840.7 129.3 37.4

Music2 1000× 1301 81 7297.1 4958.8 136.5 36.3

directions concurrently avoiding the problem with insuffi-
cient MPs occupancy. We will show that this leads to a sig-
nificant speed-up even for small input images. The bench-
mark results for all applications are shown in Table 2.

6.1.1 Local Orientation of Linear Structures in Fingerprint

Images

The first application was the computation of local orientation
of linear structures in a fingerprint image (Fig. 1). The oper-
ator ζλ ( f ) was computed according to Eq. (3). The GPU im-
plementation achieves a significant speedup (approximately
27×) even for small input images (0.9 megapixels).

6.1.2 Angular Spectrum of Texture Images

The second application was the computation of the angu-
lar spectrum of texture images. The spectrum was computed
in order to find the most important orientation(s) of linear
structures in the image. Two test images along with their
spectra are shown in Fig. 12. A spectrum σλ (α) of an image
f is computed as follows:

σλ (α) = ∑
x∈Ω( f )

[
γα

λ ( f )
]
(x). (6)

Again, the GPU implementation achieves a signifi-
cant speedup (approximately 35×) for input images of
0.4 megapixels.

6.1.3 Rotation Detection of Music Sheet Scans

In the third practical application, we detected the rotation
of music sheet scans. The music sheets were scanned and
stored in an electronic archive. In the process of scanning, a
random rotation could occur due to imperfect insertion of the
paper to the scanner. The rotation was detected by comput-
ing linear closings with large SEs (λ = 250) of 81 different
orientations within the angular range from −10◦ to 10◦ with
the step of 0.25◦. The angular spectrum was computed ac-
cording to Eq. (6). Two test images along with their spectra
are shown in Fig. 13. In this case, the achieved speed-up was
approximately 37×.

7 Perspectives - Extention to 2-D

The 2-D opening is not separable into two orthogonal 1-D
openings as is the dilation. Hence, one cannot directly com-
bine two orthogonal 1-D openings to obtain a 2-D opening.

It is known, that efficient GPU accelerations can only be
obtained with simple, regular threads, using as low mem-
ory as possible. Hence, the separability principle is useful.
Following this idea, one can form 2-D openings by concate-
nating 2-D erosion and 2-D dilation which are separable. A
1-D dilation algorithm with alike properties as the Bartovsky
algorithm has been published in [34].

Assume a 2-D rectangular B in Eq. (1). It can be decom-
posed into two (horizontal and vertical) 1-D dilations and
two 1-D erosions. Similarly, for hexagons we need to com-
pute three erosions and three dilations, and for octagons four
erosions and four dilations.

All these orthogonal operators need to be computed
sequentially. One cannot expect to obtain the same perfor-
mances in 2-D as with 1-D openings, since the execution
times of the orthogonal operators are added together.

8 Conclusions

We have reviewed and compared the most efficient linear
morphological opening/closing algorithms. At present,
the fastest approaches (Van Droogenbroeck and Buckley,
Morard et al., and Bartovsky et al.) compute the opening
within a single image scan. The algorithm of Van Droogen-
broeck and Buckley is the fastest one on CPU, however,
it is efficient for 8-bit gray-scale images and for vertical
and horizontal linear openings only. Morard and Bartovsky
algorithms are applicable to any data accuracy (including
floating point).

As described in the paper, both Morard and Bartovsky
algorithms themselves are sequential. Hence, the only pos-
sibility of introducing more parallelism is on the thread ex-
ecution level. We explain the choice of the algorithm (Bar-
tovsky) to implement with regard to the GPU architecture
(little memory, synchronous execution of threads). We have
used various optimization techniques to speed up the code.
Mapping various types of data (input, output and FIFOs) to
various memory spaces is a crucial aspect. The choice of
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(a) Image D15 (b) Image D47

(c) D15 Spectrum σ40(α) (d) D47 Spectrum σ20(α)

Fig. 12 Texture images [46] and their angular spectra.

(a) Image Music1 (b) Image Music2

(c) Music1 Spectrum σ250(α) (d) Music2 Spectrum σ250(α)

Fig. 13 Music sheet scans (courtesy of Josef Pilný, Big Band Lanškroun) and their angular spectra. The real (manually measured) rotation angle
is denoted by αr.
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memory spaces is described in detail in Section 5.2. We also
observed performance limits on small images, hence we try
to introduce more spatial parallelism by splitting small im-
ages. Finally, we give rules of optimal configuration regard-
ing input image size and the features of the available GPU.

We provide comparisons with the fastest implementa-
tions on CPU and on GPU. The current state-of-the-art stan-
dard, OpenCV_GPU, is suitable for GPU architecture but
has time complexity dependent on the SE size. The pro-
posed implementation obtained stable performance over all
orientations and sizes of the structuring element. For a sin-
gle opening of a large image, we have measured up to 50×
speedup compared with CPU. For small images, the gain is
significant (up to 37× speedup) if one computes a set of
openings in multiple directions. For example, within 60 ms,
the GPU implementation is capable of computing a single
opening at arbitrary angle of a 60 Mpx image, or a set of
openings in 180 directions of a 640×640 px image.

To conclude, this solution is suitable for applications
with large, industrial images, running under severe timing
constraints, such as production control in e.g. metallurgy or
textile industry. A typical such application requiring using
high-resolution images, and running under severe time
constraints is the surface control. Thin (often µm) cracks in
large surfaces require using high resolution images, and the
timing is given by the industrial cycle.

Source codes of the CPU and GPU implementations of
the Bartovsky algorithm are publicly accessible under GNU
GPL license [47].
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