
Real Time Rendering of Atmospheric Scattering and

Volumetric Shadows

Venceslas Biri, Didier Arquès, Sylvain Michelin

To cite this version:

Venceslas Biri, Didier Arquès, Sylvain Michelin. Real Time Rendering of Atmospheric Scatter-
ing and Volumetric Shadows. Journal of WSCG, University of West Bohemia, Czech Republic,
2006, 14 (1), pp.65-72. <hal-00681568>

HAL Id: hal-00681568

https://hal-upec-upem.archives-ouvertes.fr/hal-00681568

Submitted on 21 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Ecole des Ponts ParisTech

https://core.ac.uk/display/48341698?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal-upec-upem.archives-ouvertes.fr/hal-00681568

Real Time Rendering of Atmospheric Scattering and
Volumetric Shadows

Biri Venceslas

Charles Cros Institute
6 bd du Danube

F-77700 SERRIS
FRANCE

biri@univ-mlv.fr

Arquès Didier
Charles Cros Institute

6 bd du Danube
F-77700 SERRIS

FRANCE

arques@univ-mlv.fr

Michelin Sylvain
Charles Cros Institute

6 bd du Danube
F-77700 SERRIS

FRANCE

michelin@univ-mlv.fr

ABSTRACT
Real time rendering of atmospheric light scattering is one of the most difficult lighting effect to achieve in
computer graphics. This paper presents a new real time method which renders these effects including volumetric
shadows, which provides a great performance improvement over previous methods. Using an analytical
expression of the light transport equation we are able to render directly the contribution of the participating
medium on any surface. The rendering of shadow planes, sorted with a spatial coherence technique, and in the
same philosophy than the shadow volume algorithm will add the volumetric shadows. Realistic images can be
produced in real time for usual graphic scenes and at a high level framerate for complex scenes, allowing
animation of lights, objects or even participating media. The method proposed in this paper use neither
precomputation depending on light positions, nor texture memory.

Keywords : Real time rendering / Volumetric shadows / Single scattering / Participating media

Figure 1: The same scene lit a. (left) classically, b. (center) with single scattering and

c. (right) with single scattering and volumetric shadows (right) .

1. INTRODUCTION
The growing capacities of graphic cards enable

the rendering of more and more complex physical
models in real time, like anisotropic reflection or

environment mapping.. Therefore, it is not a surprise
if a current challenge in computer graphics is the
accurate rendering of atmospheric effects, and
especially the light scattering. Atmospheric light
scattering is due to little particles -like dust or water -
that lay in the air, scattering and absorbing the light
they receive. They creates effects such light beams,
shafts of light and visibility loss. These phenomena
often occur under foggy or smoky conditions but are
also visible by clear or cloudy weather in the
presence of sunlight.

Unfortunately, rendering such lighting effects in
real time remains quite complex since they depend
on camera and light positions and since they occur
everywhere in the space. Introducing such effect in
traditional graphic engine will greatly enhance the

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Conference proceedings ISBN 80-86943-03-8
WSCG’2006, January 30-February 3, 2006
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

realism of the virtual scene and have many
applications [Ru94]. Considering the particular
situation of figure 1, it is clear that rendering the
participating medium is not enough. Here, the
representation of shadow volumes is necessary to
obtain a realistic image. Thus there is a need for a
simple algorithm, easily integrated in traditional
algorithms, able to render those effects.

In this paper, we present an algorithm that
fulfills this goal. It can render accurately
participating media, including effects like light
beams in foggy or smoky scenes, or any other
atmospheric scattering effects. The participating
media can be isotropic or anisotropic and are lit by
one or several, static or moving, point light sources
since no precomputation are done involving either
lights or camera. Our technique produces high
resolution images and takes into account volumetric
shadows, cast by occluders contained in the media.
Without any texture memory cost, but using
intensively graphics hardware, our method can
render images at a high frame rate, and is real time
for classical graphic scene. The method is also easy
to implement in traditional graphic engines since it
follows the same strategy than the shadow volume
algorithm. Therefore, it is straightforward to obtain
animations where objects, sources and even
participating media can move.

2. PREVIOUS WORK
The representation of participating media has

been a real challenge for years and the literature
about it is abundant. We can easily divide all these
studies between the single scattering methods and the
multiple scattering ones. Multiple scattering methods
try to compute all light reflections and inter-
reflections inside a medium, whatever the number of
these ones. This complex situation is difficult to
handle but is essential in the rendering of clouds for
example. Multiple scattering illumination can be
obtained by determinist methods [RT87, Ma94,
ND96] or by stochastic methods [PM93, LW96,
JC98] and sometimes involve a resolution of the flow
equations like in [FM97, St99, DK00, FS01]. Despite
their realism, they suffer from excessive computation
times due to the complexity of light exchanges
occurred in these cases. Therefore it is not suitable
for our goal and we will focus on single scattering
methods.

These techniques [NM87, Ma94, DY00, HP02,
DY02] approximate the multiple reflections of light
as a constant ambient term and consider only the first
scattering of light ray in the direction of camera. This
assumption allows a direct rendering of the
illumination of the medium which is more suitable
for interactive rendering. Visualization is often done

by ray tracing or ray marching. View rays are
followed to gather the participating media
contributions. Unfortunately, these methods [FM97,
JC98], are far from being real time on a classical
computer. With the growing capacities of graphics
hardware, the real time problem has been
investigated.

Two approaches can be used to achieve this
goal: volume rendering or direct representation. To
add the volumetric shadows the first approach will
use naturally shadow maps techniques when the
second one is oriented to shadow volumes algorithm
[He91]. Volume rendering is a classic solution to
render participating medium which is a volume de
facto. Methods like [BR98, WE98, St99, FS01,
NM01] represent densities or illumination in voxels
encoded into 2D or 3D textures. Accumulation
techniques using textured slices or virtual planes are
then used to display the result. That kind of methods
could produce nice images of clouds or gas. But
apart from requiring a lot of texture memory, they are
not suitable for shafts of light where sharp edges
exist. Special methods are defined to render beams
and shafts of light precisely and most of them
[DK00, DY00, Ev02, LG02] use volume rendering
techniques along with sampling shadows in shadow
maps. But they suffer from artifacts due to the
sampling. Dobashi et al. [DY02] presents a very
elegant solution to solve this problem using
specialized adaptive sampling for shadows. They
obtain an interactive rendering of participating media
without aliasing or artifacts. However the image
resolution remains small since the method is
expensive in terms of fillrate. Moreover, the method
works only with static lights due to the
precomputation of shadow maps.

The algorithms belonging to the second
approach computes directly, on every point in the
scene, the contribution of the participating medium.
This is well adapted to classical graphic engines
since it consists in one more rendering of the scene.
In this case, methods like [Me01, HP02] use
participating medium boundaries, or special virtual
planes, combined with vertex and fragments shaders.
Another method of this group is proposed by Sun et
al. [SR05] and is the only one to consider the effect
of light scattering on the illumination of objects.
Despite it is real time, it does not take into account
shadows. Our work belongs also to this group and is
the only one of them to integrate realistic lighting
effect with volumetric shadows.

3. OVERVIEW OF OUR METHOD
To obtain real time performances, we consider

only one scattering of light in the medium. Multiple
scattering is approximated by a constant ambient
term in the scene and each participating medium is
homogeneous.

The algorithm exploits an analytical expression
of the total contribution of scattered light along a
view ray. This allows the direct computation of this
contribution between the camera and any point of the
scene. Therefore, we compute the previous
expression:

• on scene vertices or on boundaries of
participating media.

• on any point of the shadow planes.

As stated before, our method is close to shadow
volume techniques [He91] or other algorithms using
shadow planes [AA03]. Indeed, after having compute
and render light scattering contribution of lit areas,
we do the same for the shadow planes of any object
that is set to cast shadows.

These shadow planes are classically obtained by
using the object silhouettes regarding to the point
light position and meshed. After a back to front
sorting of the shadow planes, we render them. The
participating medium contribution will be added if
the shadow plane is frontfacing and subtracted if
backfacing to take into account the volumetric
shadows.

Figure 2 : Single scattering case and notations.

4. THEORETICAL BACKGROUND
As light is progressing through a participating
medium, it have four interactions with it : absorption,
emission, scattering and in-scattering [SH92]. If we
consider only single scattering, the luminance of a
point P seen from a point O can be written [SH92]:

∫
−−

− Ω
+=

d rkxk
stdk dxp

r
eeIkePLOL

tt
t

0
2)()(

4
)()(αω

π

r
 (1)

The first term takes into account the scattering and
the absorption while the second one is the in-
scattering which is responsible for the subtle effects
of atmospheric scattering. This equation is called the
integral transfer equation.

4.1 Angular formulation of the integral
transfer equation
The integral transfer equation can be written [LM00]
using the angle between the view ray and the
direction toward point light. This formulation will be
used to obtain an analytical solution of the previous
equation. Indeed, instead of integrating the integral
transfer equation regarding to the distance x along
the ray, we choose to use the variation of the angle θ
between the vector ω

r
 and the vector ST defined by

the orthogonal projection of the point light source on
the view ray. Using this variable change :

22)(txhr −+=

we can obtain (see [LM00]) :
)()()(PLePLOL m

dkt += −

where :

∫ ++
Ω

=
+

−− d
tt

dpeI
h

ekPL
hk

s

tk
t

m

θ

θ

θ
θ

θπθβθ
π

0

)
2

()(
4

)()cos(
1)sin(

Further on, Lm(P) will be called the medium
contribution of the point P.
The kernel Λ of the previous integral is complicated
enough to prevent any analytic integration. But we
can approximate this kernel to obtain a much more
simple expression. The function in the kernel without
considering the light intensity, depends only on the
angle θ, considering that the extinction coefficient is
constant, i.e. that the participating medium is
homogeneous. Therefore, we can develop its
expression in a polynomial base (we use 4 degree) :

...),(),()
2

(10
)cos(
1)sin(

++≈+
+

−

θπθθ
θ

hkchkcpe tt

hkt

For traditional phase functions -- isotropic, hazy,
murky... -- the formal expressions of coefficients c
can be obtained in the annex.
We introduce this equation in the expression of Lm(P)
to obtain :

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++++

Ω
= ∫∫

−

...)(),()(),(
4

)(
00

10

ddt

dIhkcdIhkc
h

ekPL stst

tk
t

m

ς

θ

ς

θ

θθβθθβθ
π

Finally, for non directional point light source, these
integrals are easily computed :

[]
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
+

Ω
=

−

...
2

),(),(
4

)(
0

0

2

10

d

d
t

hkchkc
h

ek
PL tt

tk
t

m

θ

θ

θ
θ

θ
θ

π
(2)

and so we can obtain the single scattering
contribution created by a point light source along any
view ray in constant time.
A study on the quality of these approximations can
be found in [Le01]. In general, they are quite good
except when the ray passes close to the source, or
when the observer is far from the source. In the first
case, the contribution is so high, and in the second
case, so small, that these errors remain unnoticeable.
Thanks to expression (2), we are now able to
compute in “constant time” -- i.e. without any
numerical integration -- the contribution of in-
scattering light along a ray contained in a
participating medium.

Figure 3 : A view ray partially in shadows.

4.2 Considering shadow volumes
Previous equations describe the particular case where
the view ray remains totally lit and lays in the
participating medium. To integrate shadow volumes
and bounded participating medium, we need to
consider more general cases, illustrated in figure 3.
Indeed, due to shadows, the part of the ray laying in
the medium could be split into lit and shadowed
parts. In this example, the medium contribution along
the ray is split into three parts on AB, CD and EF.
The contribution of the single scattering of the ray
OP is then:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
Λ+Λ+Λ

Ω
= ∫∫∫

− F

E

D

C

B

A

t

ddd
h

ekPL
tk

t
m

θ

θ

θ

θ

θ

θ

θθθθθθ
π

)()()(
4

)(

The key idea of our approach is to rewrite this
equation into a sum of differences. Indeed the light
contribution of segment EF for example can be seen
as the contribution of segment OF minus the one
from segment OE. If we denote Гm(P) the expression
(2) for a lit ray between the camera center O and any
point P, then the previous equation can be written :

() ()[
()])()(

)()()()(
)(

AB
CDEF

PL
mm

mmmm
m Γ−Γ+

Γ−Γ+Γ−Γ
=

It is also obvious that points B, C, D and E are
located on shadow planes, and that the points A and
F belong to the boundary of the participating
medium. Of course point F and P can merge for

object contained in the medium, and if it covers the
entire scene, points A and O will also merge.
Finally, when considering a bounded medium, the
equations are slightly different. The coefficient r and
x in the exponentials of equation (1) must be the
distance between the point X and the border of the
medium boundary. In our method, we approximate r
to the average distance R between a point located in
the boundary and a point in the medium. So R is a
constant along the ray. The new value xn of x is
computed on the fly and is also a constant along the
ray. In this case, Lm(P) becomes :

∫ ++
Ω

=
+

−−+− d
tt

dpeI
h

ekPL
hk

s

xnRrk
t

m

ς

θ

θ
θ

θπθβθ
π

0

)
2

()(
4

)()cos(
1)sin()(

what only involves a change of coefficients c.

5. RENDERING ALGORITHM

5.1 Scenes Recovered by a Participating
Medium
In this case, every view ray is contained entirely in
the participating medium. The method is easy to
implement and works as follows:

1. The silhouettes of every moving shadow caster
are computed. If light is moving, every silhouette
needs to be recomputed.

2. Scene is rendered classically. Surface shadows
can be obtained using simple and traditional
shadow planes algorithms [He01, EK02]. The
stencil buffer now contains lit areas of the scene.
An ambient fog is added to take into account both
absorption and multiple scattering.

3. Scene is rendered once more and medium
contribution is computed for each vertex of the
scene. Depth test is set to the equality. Only lit
parts of the scene are rendered thanks to the
stencil buffer.

4. Shadow planes, determined by the object's
silhouettes, are sorted in a back to front order.

5. Shadow planes are rendered in that precise order.
The depth test function accepts only planes that
are closer to the camera. Front facing planes add
their contribution when back facing planes
subtract them. Stencil function is set to allow
fragments if the stencil is equal to 1 for front
facing planes and 0 for back facing ones. Front
facing planes always increment the stencil buffer
and back facing ones always decrement it.

All stages have to be done for each light source.
Each stage is detailed in the following sections.

5.1.1 Computation of silhouettes
In our algorithm, we select some objects to be
shadow caster. Their silhouettes are easily computed
in determining all edges of their mesh common to a
front-facing triangle regarding the light position and
one back facing it. Then all these edges are linked
together if possible, and stored in a loop list. To
obtain correct silhouettes, we need closed triangular
meshes (2-manifold) for which connectivity
information are available. These conditions for the
shadow casters are the same ones that are indicated
in [EK02].
Shadow planes are infinite quads formed by a
silhouette edge and the light position. They are
constituted by the two edge's vertices and two other
points, projection of the previous vertices to infinity
toward direction : light position - vertex (cf. [He91]).
They are oriented toward the unshadowed area of the
scene. As we need to compute the medium
contribution on all shadow planes, it is necessary to
use shadow plane silhouettes rather than the shadow
planes of all little triangles. Of course, if the light
does not move, only moving shadow caster
silhouettes have to be computed. Finally, in case the
input geometry is modified by graphics hardware,
using displacement mapping for example, a solution
to obtain silhouettes of all objects quickly and
accurately can be found in [BS03].

5.1.2 Rendering the scene
The scene is rendered classically except for the light
attenuation due to absorption and scattering induced
by the participating medium. Thus, the luminance of
any point P of the scene is :

Pt rk

P

PP
P e

r
IPL −= 2

)cos()()(
π

θωρ

where ρP is the reflectivity coefficient of the surface,
θP the angle between the normal of the surface , I the
intensity of the light in the direction ω toward P and
rP simply the distance to the light point. A simple
vertex program can render this equation which
differs from the traditional one only in the
exponential attenuation.
In this stage we also add a fog effect to take into
account both absorption and multiple scattering. We
also compute the hard shadows and use the stencil
algorithm and its improvements [He91, BS03] to do
so. Indeed, they fit perfectly with our application
since, we already have the silhouettes. In the end of
this stage, the stencil buffer contains the lit areas of
the image. Until the end of the image rendering, the
lighting is disabled.

5.1.3 Medium contribution of the scene
Still using stencil test, the scene is rendered once
more to add, with additive blending, the medium
contribution of every surface. This is simply done by
computing equation (2) for each vertex. The depth
test is set to the equality.

5.1.4 Sorting the shadow planes
Before rendering all shadow planes, we have to make
sure that we will not render shadow planes, or part of
them, that are themselves in shadow. If we do not
care about this problem, it will create artifacts we call
shadow in shadows, illustrated in figure 4. In the left
image, we can see that the shadow of the top plane is
propagated in the shadow of the bottom plane.

Figure 4: Shadow in shadows artifacts.

To prevent these artifacts we render the shadow
planes, back- or front-facing, in a “back to front”'
order and use the stencil buffer to avoid the
rendering of shadowed shadow planes. The distance
we defined for the back to front order depends on
both camera and light positions. In two dimension,
we can see in figure 5 that the plan (a line in 2D)
created by the edge A (a point in 2D) must be
rendered before the one created by B. And this one
must be rendered before the shadow plane of edge C.
This is true whatever the distance between the edge
and the camera or between the edge and the light
position. A simple realization of such a distance is to
compute, for an edge P, the cosine between vectors

SO and SP where O is the camera center, S the
light position, and P a point belonging to the
silhouette.

A
C

B
camera

light
S

O

Figure 5: Ordering of shadow planes (in 2D)

We use the same ordering in 3D. In this case, the
silhouette edges are segments. Since silhouettes are
accurately meshed, these segments can be considered
as points (only for ordering). Therefore, we compute
the same cosine using as point P the center of the
silhouette edge.

5.1.5 Rendering the shadow planes
We always keep the stencil we have obtained in the
stage 2. Shadow planes are rendered in the order
defined in the previous stage with the depth test
function admitting only fragments that are closer to
the camera.
The color attributed to the shadow planes -- i.e. their
contribution -- are computed with exactly the same
expression than for lit point of the scene in stage 3,
i.e. using equation (2) for homogeneous point light.
Front facing planes add their contribution and back
facing planes subtract them.
We have to mesh the shadow planes to obtain
accurate values of the medium contribution. They
will be computed in each vertex of the mesh and the
GPU will make the interpolation between them.
According to the radial distribution of a point light, it
is wise to mesh the shadow planes finely when close
to the light and coarsely when far away. It is not
necessary to subdivide the silhouette edge which has
to be small.

0

0

1 2 1 0

a

b c

d
+1

+1 +1

+1

-1

-1
-1

-1

-1

-1
-1

-1

0 initial stencil value
+1 add one to the stencil
-1 subtract one to the stencil
* contribution added
^ contribution subtracted

^

^ *

*
*

*

*

Figure 6: Use of the stencil buffer in the rendering

of shadow planes
To take into account correctly the shadow in shadow
problem, we use the stencil intensively. Front facing
planes pass the stencil test if its value is one
(representing shadowed area), and back facing ones
passes if it equals 0 (value representing lit area).
Ideally the back (resp. front) facing quads should
always add (resp. subtract) one to the stencil buffer if
it passes depth test. But unfortunately it is not
possible to specify two different stencil functions
when a fragment fails the stencil test depending of
the result of the depth test. It imposes us to render the
simple quad of the shadow plane with the stencil
function set to always. Such problem will disappear
when programmability of graphics card will involve
the stencil test. Nevertheless this strategy works in all
the case as illustrated in figure 6. The strategy
indicated works if the camera is in the light. A
slightly different strategy can be used when the
camera is in shadow but the philosophy remains the
same.

5.2 Rendering Several Bounded
Participating Media
Several modifications have to be made to the
previous algorithm to take into account boundaries of
participating media and to avoid the rendering of
each object and each shadow planes for every
medium. Indeed, when several participating media
exist, stages 3 to 5 need to be computed for each one
of them. For simplicity we consider only convex
participating media, and that we have a mesh
representation of it.
First of all we will compute bounding boxes for each
object and each participating medium. This is to
avoid the rendering of objects that do not lay in the
area of a participating medium in stage 3. We also
check for each shadow plane if it is able to cut the
participating medium.
In stage 3, we use the equivalent of a shadow volume
algorithm to determine shadowed and lit area of the
boundary of the participating medium. Then we
render the lit areas of objects and of the medium
boundary. Objects are rendered only if they belong to
the medium bounding box. The front facing triangles
of the medium boundary are rendered using the
expression seen in section 4.
In stage 4, back-facing triangles of the medium
boundary are also sorted and integrated in the order
list. Since we use their center for the reference point
P in the ordering, these triangles must be small. For
each shadow plane, we determine if it is able to cut
the medium bounding box. If not, it is removed from
the sorted list to avoid unnecessary computation.
Finally the stage 5 remains the same, except that
when a back facing triangle of the medium boundary
is rendered, we set the stencil to 255 to avoid any
further rendering in this area.

6. RESULTS
The previous algorithm has been implemented on a
standard computer using a 2.6 GHz processor and a
ATI 9800 graphic card. All images that we will
present have a 800x600 resolution. We first compare
our method with the work of Dobashi et al. [DY02]
using their simple scene, a sphere beyond a spot
light. In our case, the spot light is obtained by adding
a cone above our point light. The silhouette has 32
edges which involves 32 shadow planes. Our
rendering time is about 120 frames per second at
resolution 800x600. In our case, resolution is not
really a problem. For example, the same scene using
a 1024*768 resolution is rendered at 107 FPS. For
the same test scene, Dobashi's algorithm achieves
12.5 FPS for a 450x300 resolution. This is mainly
due to the accumulation of texture rendering
inducing a high fill rate.

A drawback exists in our method which is only due
to the clamping of the framebuffer. Indeed, when we
render the contribution of the medium, it is possible
that the final value added to the one present in the
framebuffer exceeds 1. In that case, the value is
clamped to 1 and if we subtract a medium
contribution after that, the final result will be darker
than it should be. However, this problem can be
avoided in choosing reasonable intensity for the light
source, or in the future, using a float texture.
Unfortunately, it is impossible for the moment to use
blending when rendering in a float buffer.
We also present in table 1 the ratio of work loads for
each stage. As expected, we can see that the
computations of the shadow plane contributions
represent the main cost of the whole process.

Stage 1 2 3 4 5

Fig 7 left 1% 8.7% 21.7% 9.6% 59%

Fig 7 right 1.7% 14% 33.6% 16% 34.7%

Table 1. Work loads for each stage.
We also present some snapshots of our animations.
The first image in figure 7.a. is a simple scene, where
two pens are bumping in front of a light. It illustrates
a classical situation where well design 3D objects are
moving and casting shadow. This scene is rendered
at more than 35 fps. The image in figure 7.b.
represents a simple scene with a box contained into
three different participating media, one red, one blue
and one green, moving before the light. Here we can
clearly see the volumetric shadows of each
participating media and how they blend together. As
we use exact shadow planes no aliasing occurs. This
case illustrates the ability of our algorithm to handle
all the position between shadow planes and the
boundary of a participating medium. Figure 7.c. is a
snapshot from a animation where the light is moving,
and its color is also changing. We have chosen this
scene because it contains a lot of shadow planes.
Finally figure 1.c., in the first page of this paper, is
also a snapshot to illustrate the use of our algorithm
when light is moving in a complex scene, containing
around 100 000 triangles. Table 2 presents the FPS
and the number of triangles of those scenes.

Scene Fig 7a Fig 7b Fig 7c Fig 1

FPS 23 35 25 12

Nb. triangles 34 549 14 785 20 747 107 514

Table 2. FPS and number of triangles of scenes.

7. CONCLUSION
We have presented a new real time algorithm that is
able to compute the single scattering of one or
several participating media. Our algorithm is fast
enough to handle more than 25 frames per second for
moderately complex scenes, which is an
improvement over other atmospheric scattering
algorithms, especially when a medium covers the
whole scene. As outlined above, the only
computations that we have done in software are the
participating medium contributions and the ordering
and the computation of shadow planes. Moreover,
we plan to design vertex and fragment shaders to
make the graphic card computes the participating
medium contributions. We also want to point out that
our algorithm does not create any sampling aliasing
artifact, for both surface and volumetric shadows,
thanks to the use of exact shadow planes.
As shadow planes have become more popular
recently, we think that our algorithm fit perfectly
with this kind of approach and is well adapted to the
growing capacities of graphics hardware. For
example, the final improvement of the algorithm
would be to compute soft surface shadows and soft
volumetric shadows. For this goal we can take
inspiration of the algorithm [AM03]. Finally, both
clustering and culling approaches will greatly speed
up this already fast algorithm.

8. REFERENCES
[AM03] Assarson U., Möller T.A., A Geometry-based Soft

Shadow Volume Algorithm using Graphics Hardware, In
proceedings of SIGGRAPH’03, Computer Graphics, vol. 22
(3), pp. 511-520

[BR98] Behrens U., Ratering R. , Adding Shadows to a
Texture-based Volume Renderer. In proceedings of 1998
symposium on Volume Vizualisation , 1998, pp. 39-46

[BS03] Brabec S., Seidel H.P., Shadow Volumes on
Programmable Graphics Hardware. In proceedings of
Eurographics’03, 2003, vol. 22(3)

[DK00] Dobashi Y., Kaneda K., Yamashita H., Okita T.,
Nishita T., A Simple, Efficient Method for Realistic
Animation of Clouds. In proceedings of SIGGRAPH’00,
Computer Graphics, 2000, pp. 19-28

[DY00] Dobashi Y., Yamamoto T., Nishita T., Interactive
Rendering Method for Displaying Shafts of Light. In
proceedings of Pacific Graphics 2000, pp. 31-37.

[DY02] Dobashi Y., Yamamoto T., Nishita T., Interactive
Rendering Method of Atmospheric Scattering Effects Using
Graphics Hardware. In proceedings of Graphics Hardware
2002, 2002, pp. 99-107.

[EK03] Everitt C., Kilgard M., Practical and Robust Shadow
Volumes, Nvidia white paper, 2003
http://developer.nvidia.com/object/robust_shadow_volumes.ht
ml.

[Ev02] Everitt C., A Fast Algorithm for Area Light Source
Using Backprojection. In proceedings of SIGGRAPH’94,
Computer Graphics, 1994, pp. 223-230

[FM97] Foster N., Metaxas D., Modeling the Motion of a Hot,
Turbulent Gas. In proceedings of SIGGRAPH’97, Computer
Graphics, 1997, pp. 181-188

[FS01] Fedwik R., Stam J., Jensen H., Visual Simulation of
Smoke. In proceedings of SIGGRAPH’01, Computer
Graphics, 2001, pp. 15-22.

[He91] Heidman T., Real Shadows Real Time. In IRIS
Universe (1991), vol. 18, pp 28-31

[HP02] Hoffman N., Preetham A., Rendering Outdoor Light
Scattering in Real Time. ATI white paper, 2002.
www.ati.com/developer/dx9/ATI-LightScattering.pdf

[JC98] Jensen H., Christensen P., Efficient Simulation of Light
Transport in Scenes with Participating Media using Photon
Maps. In proceedings of SIGGRAPH’98, Computer Graphics,
pp 311-320

[Le01] Lecocq P., Simulation d’éclairage temps réel par des
sources lumineuses mobiles et statiques : outils pour la
simulation de conduite. PhD Thesis of the University of
Marne-la-Vallée, 2001.

[LG02] Lefebvre S., Guy S., Volumetric Lighting and
Shadowing, NV30 Shader, 2002.
lefebvre.sylvain.free.fr/cgshaders/vshd/vshd.html

[LM00] Lecocq P, Michelin S., Arquès D., Kemeny A.,
Mathematical Approximation for Real Time Rendering of
Participating Media considering the luminous intensity
distribution of light sources. In proceedings of Pacific
Graphics 2000. pp 400-401.

[LW96] Lafortune E., Willems Y., Rendering Participating
Media with Bidirectional Ray Tracing. In proceedings of 6th
Eurographics Workshop on Rendering, june 1996, pp. 92-101.

[Ma94] Max N., Efficient Light Propagation for Multiple
Anisotropic Volume Scattering. In proceedings of 5th
Eurographics Workshop on Rendering, 1994, pp. 87-104

[Me01] Mech R., Hardware-Accelerated Real Time Rendering
of Gaseous Phenomena. In Journal of Graphics Tool, 2001,
vol. 6(3), pp. 1-16

[ND96] Nishita N., Dobashi Y, Nakamae E., Display of Clouds
Taking into Account Multiple Anistropic Scattering and
Skylight. In proceedings of SIGGRAPH’96, june 1996, pp.
379-386

[NM87] Nishita N., Miyawaki Y, Nakamae E., A shading model
for atmospheric scattering considering luminous distribution
of light sources. In proceedings of SIGGRAPH’97, Computer
Graphics, vol. 21(4), pp. 303-310

[NM01] Nulkar M., Mueller K., Splatting with shadows. In
proceedings of Volume Graphics 2001, pp. 35-49

[PM93] Pattanaik S., Mudur S., Computation of global
illumination in a participating medium by monte carlo
simulation. In The journal of Visual and Computer Animation,
1993, vol 4(3), pp. 133-153

[RT87] Rushmeier H., Torrance K., The zonal method for
calculating light intensities in the presence of participating
medium. In proceedings of SIGGRAPH’87, computer
graphics vol 21(4), pp. 293-302.

[Ru94] Rushmeier H., Rendering participating media :
problems and solutions from application areas. In proceedings
of 5th Eurographics Workshop on Rendering, june 1994, pp.
35-56.

[SH92] Siegel R., Howell J., Thermal Radiation Heat Transfer.
3rd ed. Hemisphere Publishing, 1992.

[SR05] Sun B., Ramamoorthi R., Narasimhan S.G., Nayar S.K.,
A practical analytic single scattering model for real time
rendering. In proceedings of SIGGRAPH’05, Computer
Graphics; 2005, vol 24(3), pp. 1040-1049.

[St99] Stam J., Stable fluids. In proceedings of
SIGGRAPH’99, Computer Graphics, 1999, pp. 121-128

[WE98] Westermann R., Ertl T., Efficiently using graphics
hardware in volume rendering applications. In proceedings of
SIGGRAPH’98, Computer Graphics, 1998, pp. 169-177

9. ANNEXES
Expression of coefficients c for classical phase
functions. Isotropic phase function :

()

...
24

5
24

11
4

)(
24

)(

26
)(

2234

4

223

3

22
2

1

0

hktttt

hk
t

tt

hk
tt

hk
t

hk

t

t

t

t

t

ehkhkhkhkc

ehkhkhkc

ehkhkc

ehkc

ec

−

−

−

−

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−=

−=

−=

=

Rayleigh phase function :

...
4
3

8
3

4
3

4
3

22

2

1

0

hkt

hkt

hk

t

t

t

ehkc

ehkc

ec

−

−

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

⎟
⎠
⎞

⎜
⎝
⎛−=

=

Hazzy phase function :

...
64
63

512
121

256
265

36
9

256
265

256
265

22

2

1

0

hktt

hkt

hk

t

t

t

ehkhkc

ehkc

ec

−

−

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

⎟
⎠
⎞

⎜
⎝
⎛ +−=

=

Murky phase function :

...
134217728

775
4294967296

2147482073
4294967296

2147483673

367108864
25

2147483648
2147483673

2147483648
2147483673

22

2

1

0

hktt

hkt

hk

t

t

t

ehkhkc

ehkc

ec

−

−

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

⎟
⎠
⎞

⎜
⎝
⎛ −=

=

Figure 7. a. (left) Two pen moving b. (center) Three participating media moving

c. (right)Light is moving in a complex scene

