
Fast and efficient FPGA implementation of connected

operators

Nicolas Ngan, Eva Dokladalova, Mohamed Akil, Fançois Contou-Carrère

To cite this version:

Nicolas Ngan, Eva Dokladalova, Mohamed Akil, Fançois Contou-Carrère. Fast and efficient
FPGA implementation of connected operators. Journal of Systems Architecture, Elsevier,
2011, 57 (8), pp.778-789. <10.1016/j.sysarc.2011.06.002>. <hal-00682942>

HAL Id: hal-00682942

https://hal-upec-upem.archives-ouvertes.fr/hal-00682942

Submitted on 21 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Ecole des Ponts ParisTech

https://core.ac.uk/display/48341675?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal-upec-upem.archives-ouvertes.fr/hal-00682942

Fast and efficient FPGA implementation of

connected operators

N. Ngan a,∗ , E. Dokladalova b , M. Akil b , F. Contou-Carrère a

aSagem, Massy-Palaiseau, France

bUniversité Paris-Est, Unité mixte CNRS UMR-8049, Computer Science

department, ESIEE Paris, France

Abstract

The Connected Component Tree (CCT)-based operators play a central role in the
development of new algorithms related to image processing applications such as
pattern recognition, video-surveillance or motion extraction. The CCT construc-
tion, being a time consuming task (about 80% of the application time), these ap-
plications remain far-off mobile embedded systems. This paper presents its efficient
FPGA implementation suited for embedded systems. Three main contributions are
discussed: an efficient data structure proposal adapted to representing the CCT
in embedded systems, a memory organization suitable for FPGA implementation
by using on-chip memory and a customizable hardware accelerator architecture for
CCT-based applications.

Key words: Image processing, connected component tree, connected filters, graph,
hardware implementation, FPGA, embedded architecture.

1 Introduction

Nowadays, speaking about the design of modern architectures for computer
vision systems automatically means addressing the performance and the reuse
problem. Algorithms in computer vision systems are asked to furnish a high
performance and be capable of supporting the entire processing chain: from
low-level to high-level processing in various applications. This is a never-ending
problem in hardware design. If the performance is achieved by an optimization
effort which means high system specialization, it will (by definition) limit its
flexibility.

∗ Corresponding authors: Nicolas Ngan, nicolas.ngan@sagem.com

Preprint submitted to Elsevier 3 May 2011

Obviously, the source of the problem is computational disparity: an application
needs a variety of mathematical and algorithmic domains. It involves respect-
ing different computing models. To overcome this problem, many researchers
investigate the domain of reconfigurable/adaptable computing in order to find
the alternative to the performance/flexibility trade-off [15]. Nevertheless, they
remain optimized, in the majority of cases, for low level image processing
[29, 14]. Several generalized coarse-grained systems can be adapted to high
level processing [16, 24].

In our research, we study if the unified formalism which uses the tools from
computational geometry (connectivity, data adjacency and proximity, graph
transformation, etc.) allows the algorithm disparity problem to be overcome.
We focus on the applications using graph theory as they could allow to
bridge the gap between low-level [38, 43] and high-level [8, 39] processing im-
plementations. In addition, many useful application domains are organized
around graphs: image processing, data and knowledge bases, CAD optimiza-
tion, digital problems, simulations.

In this paper, we focus on image processing operators using the Connected
Components Tree (CCT). CCT plays a central role in the development of new
algorithms related to image processing problems [35]. From the practical point
of view, the advantage of these methods is that once the CCT is constructed,
the processing is performed on the tree by graph transformation(s), and only
one data structure is used from low-level to high-level processing (Fig.1). In
addition, the graph transformations are applicable to any dimension (1D, 2D,
3D, ...).

Note that these algorithms have been successively used for filtering [20, 38],
motion extraction [38] and watershed segmentation [31]. Besides, numerous
practical applications exploit CCT data representation: pattern recognition of
astronomical images [17, 4], microscopic image analysis [10], video-surveillance
applications [34], image registration [23], data visualisation [6].

Connected
Filtering / Image

component tree

building

Filtering /

Segmentation

Image

restitution

Fig. 1. Three main phases of connected component tree-based application

On the other hand, time efficient CCT construction is a challenging prob-
lem. It consumes about 80% of the application execution time 1 , which is
penalizing for a lot of the mentioned practical applications. This is because
the graph structures can be very large and, for each operation, the applica-
tions need to access a large, data-dependent portion of the graph. Several

1 It is a mean estimation obtained by profiling of two CCT construction methods
published by P. Salembier [38] and L. Najman and M. Couprie [32]

2

algorithms have been proposed in order to solve the problem. In the major-
ity of cases, they remain sequential and algorithm improvement relies on fast
data structures (fifo-like) [38] or on optimization of computational complexity
[22, 6, 8, 5, 42].

The problem of efficient connected component labelling have attracted the
attention of hardware designers for many past decades [1, 30, 18, 19, 13].
However, to our knowledge, no efficient hardware implementation has been
proposed so far (up to recently in [33]) for connected component tree al-
gorithms due to its complexity. If any parallelization effort has been made
on shared-memory computers by [25, 43, 21], there are few studies targeting
hardware acceleration of computing CCT. Among them, we should mention
Associative nets [27] allowing direct CCT computation or multi-FPGA Step-
Based Architecture [11] where the authors present a distributed computing
system based on a general graph. Nevertheless, these solutions are not ready
yet for mobile embedded applications.

This paper presents an efficient FPGA implementation of CCT based comput-
ing suited for embedded systems. The three main contributions of the proposed
concept have been validated on an FPGA platform:

• Adaptation of the CCT data structure allowing efficient data mapping
in memory
• Proposal of an on-chip memory organization suited for CCT processing
• Proposal of a hardware accelerator architecture for an embedded
system for CCT based applications

The paper is organized as follows: Section 2 Connected Component tree algo-
rithms presents the algorithmical issues of the CCT-based applications. Here,
we also discuss the data structures used to represent CCT and the adaptation
of CCT allowing efficient data mapping in the FPGA memory. We focus on
Computing tasks dependency analysis in Section 3 followed by a proposal of
an efficient Hardware implementation in Section 4. Finally, the Experimental
results are summarized in Section 5.

2 Connected Component Tree algorithms

CCT operators work on flat zones (connected components) of images, rather
than on individual pixels. We call a connected operator an operator merging
only flat zones. Hence, it cannot introduce any new contour. It simplifies and
preserves the contour information [36, 9]. In the context of segmentation tech-
niques, such as region growing or watershed, they rely on iterative merging
strategies [28]. The CCT construction requires a global image analysis in order

3

to respect the relationship of the adjacent flat zones.

2.1 Basic mathematical notions

Let us consider a 2D greyscale image f : D → Z, D = Z
2 and suppose that

D is equipped with the neighbourhood mapping N : D →P(D). P denotes
the power set (the set of subsets). Then, ∀x, y ∈ D, we say that x and y are
connected if x ∈ N(y). Hereafter, let us assume that N is the 4-neighbourhood
N4, i.e. the set of the north, south, east and west neighbours. The associated
connectivity is therefore the 4-connectivity.

For some A ⊂ D, we say that A is a connected set if ∀a, b ∈ A there is
a sequence of points (a = x1, ..., xn = b) ⊂ A, such that xi+1 ∈ N4(xi),
1 < i < n. For some A, CC(A) ⊂ P(A) shall denote the set of connected
subsets of A.

For some k ∈ Z, the set C k = {x | f (x) ≥ k} is the set of points above the
threshold k. The set {cki } = CC(C k) denotes the set of connected components
above k. For some k, l ∈ Z, and k > l, it holds that C k ⊆ C l . The set of all
connected components is called C = ∪kC

k.

Let us consider a graph G = G(V,E) where V , such as V → C, is the set of
nodes and E ⊂ V × V the set of edges. The nodes are tied by the relation
child-parent. For some vi, vj ∈ V , there is an edge eij ∈ E if ci ⊂ cj and there
is no ck that ci ⊂ ck ⊂ cj. We say that vj is the parent of vi and vi the child
of vj. Notice that the graph is oriented, i.e. eij 6= eji.

Note that such a graph is an acyclic, oriented graph called connected com-
ponent tree. There are special nodes called leaves and roots. The leaves do
not have any children and the root does not have any parents.

Due to the inclusion relation on the connected components, the graph nodes
are organized in a tree structure suitable for filtering or segmentation [40].

2.2 CCT representations

To represent the CCT structure in memory, different data organization leading
to different memory requirements, have been proposed : i) ”Native” CCT
(Figure 2(b)) [38] or ii) its ”compressed” version Canonical CCT (Figure
2(c)) where one node point represents a component and each pixel belonging
to a component points toward its representative node [32]; or Point Tree
(Figure 2(d)), the burst version of the CCT where each node of a point-tree

4

represents a pixel in the picture [5]. 1-D tree computation is a special case
[26], where intermediate results have to be gradually merged as described in
[43].

According to the definition of cki , some set of connected components are shown
in Figure 2 for different tree structures. In this figure, connected components
from level two to five are shown (encircled) as an example picture with six
grey levels.

0

0

1 2

0

1

2

(a) Input image

���

���

������

���

���

��
�

��
�

���

���

���

��
�

��
�

��
�

(b) Native CCT

���

���

���

���

���

������

���

���

��
�

��
�

��
�

��
�

��
�

(c) Canonical CCT

���

���

���

���

���

���

���

���

���

��
�

��
�

��
�

��
�

��
�

(d) Point Tree

Fig. 2. Illustration of different data structures

The reader can refer to Table 1 for evaluation of memory requirements. Based
on the algorithm definitions, the memory requirements are roughly estimated
as the sum of memory allocated for input/output and the overall working
memory needed for intermediate results. Those estimations have been dis-
cussed in [21, 4]. Table 1 also contains the estimation of algorithm complexity.
For the sake of clarity, we consider the classical O notation, where the worst-
case scenario is given for a considered algorithm. Data type column means the
data type for an input image pixel coding allowed by the algorithm.

Table 1
Comparison of algorithms: n is the total number of pixels in the image, G is number
of grey levels of the image, α is a very slow-growing diagonal inverse of Ackermanns
function [8].

Tree type Complexity Data type Memory requirements

Native CCT [38] O(nG) int 4n

Canonical CCT [32] O(nα(n)) int, float 6n

Point tree [5] O(n log(n)) int, float 4n

1-D [26] O(n) int, float n

5

2.3 Data structure adaptation: Parent Point-Tree

The data structures proposed in the above mentioned theoretical papers has
not been designed for an efficient FPGA implementation. Neither is the num-
ber of nodes nor the size of each node, known beforehand and one has to
manage complex memory allocations. This difficulty is evident in the case of
native CCT structure or canonical CCT since the number and the size of the
nodes depend on the image content.

From this point of view, the Point Tree (PT) presented in [5] seems to be an
appropriate structure due to a fixed number of nodes. Originally, PT is an
oriented graph where the parent node points toward the child node (Figure
2(d)), note that this is a common orientation of the discussed structures (Fig-
ure 2). In such a case, the issue is that the number of child nodes for each
parent node can only be known at the end of the tree construction. Thus, the
number of link memory allocations for each node is not predictable. As shown
in Figure 3, we propose to reverse the PT orientation and we call it Parent
Point Tree (PPT). Thus, each node has at most, a unique parent node.
Consequently, we only need to store the parent address for each child node
to create tree connections and the number of nodes is equal to the number of
pixels in the image.

����

����

����

����

��������		 ����	�����	A �A�	�����������		 ����	�����	A

����

Fig. 3. Parent Point Tree orientation

The next section presents the PPT construction algorithm followed by its
FPGA implementation.

2.3.1 Parent Point Tree construction algorithm

The proposed Parent Point Tree construction algorithm (Alg. 1) is a combina-
tion of Tarjan’s Union-Find [40] as used in [5] with an acceleration technique
inspired by the Najman-Couprie algorithm [8].

We define a branch as a subset representing a group of nodes that are con-
nected to each other in the complete tree. A branch can then be composed of
only one node or several nodes. A node which represents the extremity of a

6

branch (i.e. a node without any child nodes in the tree) is called a leaf. As the
tree is gradually built with leaves, we call local root, the temporary root node
for each branch that is not yet connected to the main tree.

We recall that in a Point Tree or a Parent Point Tree, a node is associated to
only one pixel in the picture. Then, let us consider p a pixel of the image f ,
and q an adjacent pixel of p according to the considered neighbourhood N4(p)
such as q ∈ N4(p).

In this algorithm, the tree is gradually built with leaves to the root. Conse-
quently, it starts by building several branches that are not necessarily con-
nected to each other. They become a partial tree which then contains several
local roots.

The tree construction is divided into two parts: the first part involves the sort-
ing of all the pixels in the image in increasing or decreasing order, depending
on the type of tree. In order to build a Max-Tree, pixels are sorted in decreas-
ing order and the leaves then represent the highest pixel values. The second
part is building the tree by processing those pixels sequentially in this order.
The algorithm presented in Alg. 1 corresponds to that second part, assuming
a correct sorting of pixels p in a queue memory. The most costly part of the
algorithm is to find the local root in order to link the components. At each
neighbour node, it needs to explore the tree until it finds the root.

As described in Alg. 1, each pixel q from the neighbourhood N4 of a pixel p is
processed. The first step is to check its processed status. If it has already been
processed from the pixel queue, it means that this pixel already belongs to a
branch from partial tree (tree links parent). The aim is to find the local root
of the branch where the neighbour pixel q belongs, to link the current pixel p
to it (function Link). The following procedure is to jump from node to node
in the branch (function Jump), starting from pixel q, and check successively
if the node is the local root of the branch. As a consequence, this loop is very
time consuming and depends on the branch length.

Thus, we propose to accelerate this process by gradually linking the current
local root during the construction for each node in a fake and temporary tree
so that the next access would point directly to it. We then create a compression
of the tree. However, this technique is costly in terms of memory because we
need to allocate a “mirror copy” of the original tree links parent tree. This
copy called tree links root is stored in a memory only dedicated to the tree
construction and it can be modified at will for accelerating the construction.

This shortcut technique works mainly in the tree links root memory by first
checking the last registered local root node associated to the pixel q (function
Check). If this registered node is not a real root node, then we have to jump
from node to node starting from this last registered node in the compressed

7

tree to find the root. During that searching process, encountered nodes are
stored in a temporary buffer (function Store) to be all updated by linking them
to the last root node found (function Update). This update then accelerates
the searching process for future node access.

When any pixel is linked to its local root, we mark it as processed.

The following operations are necessary to build the PPT:
Check(x,T) returns the local root of the node associated with pixel x in the
tree T ,
Jump(x,T) returns the parent node of the node associated with pixel x in
the tree T ,
Store(x) stores the current parent node associated with pixel x to be updated
in buffer,
Link(x,y,T) links the current node associated with pixel x to the local root
node for pixel y in the tree T ,
Update(x,T) updates the local root node x for all the parent nodes in buffer
for the tree T .

Algorithm 1 Parent Point Tree construction

Require: queue: pixels ordered in decreasing order
Ensure: Root-Stored PPT

while (queue not empty) do
for all (q ∈ N4(p)) do
if (q == processed) then
root ← Check(q, tree links root)
while (root not found) do
parent node ← Jump(q, tree links root)
q ← parent node
Store(parent node)
root ← Check(q, tree links root)

end while
Link(p, root, tree links parent)
Update(root, tree links root)

end if
end for
p <= processed

end while

Note that the construction algorithm is sequential and its execution is data-
dependent. The more complex in terms of components the image is, the longer
the algorithm execution will be. A noisy picture for example, produced directly
from an image sensor is represented by a more complex Point Tree in terms
of number of leaves because of numerous un-representative high pixel values
caused by the noise. Then, one possible solution is to pre-process the picture
(low-pass filters such as denoising, smoothing filters) to remove those unuseful

8

small high values.

2.4 CCT filtering

In the Introduction, we have presented the general scheme of the CCT-based
application (Fig. 1). Once a tree construction is completed, the filtering step
is performed. In practice, the filtering step analysis each node and it evalu-
ates some criteria [38]. It makes a decision whether the node is preserved or
removed.

In this paper, an attribute denotes supplementary information associated with
each node allowing to measure a given criterion. We can quote for instance
some classical criteria: area, height [12], opening by reconstruction or λ-max
operators [41] and other examples can be found in [36].

When the complete CCT is available, with associated node attributes, the
filtering can begin. This step is also called CCT pruning [37], the branches of
the tree structure are removed or preserved according to the decision rule. In
this paper, we use the direct decision rule as defined in [38].

Let us consider the maxima of the image represented by the leaves of the CCT
and some parameter λ. Starting from the leaves, we scan all the sequence of
their ancestors going down to the root. The examined node is only preserved
when the associated attribute value is higher than λ. Otherwise, the node is
removed. When one node is removed, its content is merged with its nearest
preserved ancestor.

3 Computing task dependency

As illustrated in Figure 4, we can see that there are four steps to complete an
application. It starts with pixel sorting. The tree construction can only begin
when all image pixels are sorted. In general, attribute computation can be
done parallel (AC1) to the tree construction. Hence, the pixel values accessed
for tree construction can be immediately reused for attribute computation. It
allows to minimize memory accesses and to parallelize the computing tasks.
If it cannot be done in parallel, it has to be executed after the complete tree
construction (AC2). Only after that, the tree filtering can be done.

We might want to start the tree filtering process parallel to the tree construc-
tion by using attributes (i.e. height) that can be computed along with the
construction. It is actually feasible when a pixel node has been identified as a
leaf of the tree. The partial branch is read and could be processed step by step

9

Fig. 4. Execution steps of a complete tree-based application

during its construction. However, it requires switching between branches dur-
ing the tree construction as they are built gradually starting with the leaves. It
obviously results in higher memory requirements to stand by the filtering pro-
cess because branches are not always complete. As a consequence, it is more
efficient to start the filtering process after the complete tree construction and
the attributes computation as depicted in Figure 4.

4 Architecture proposal for embedded system

The global architecture (see Figure 5) of the system reflects the four presented
execution steps. Hence, it consists of four main computing blocks: pixel sorting
block, tree construction block, attribute computing block and filtering block.

For readability reasons, we indicate the address datapath by the symbol @ in
Figure 5.

The main controller supervises an application execution and it manages the
data flow between the computing blocks and the memory system. Finally, the
computing blocks are interconnected by the switch fabric allowing the memory
address and data paths to be redirected dynamically.

As shown in Figure 5, the global control is provided by the main controller
which is composed of three command units : a block selector (which can ac-
tivate or deactivate a computing block reporting its status -busy or not), a
multi-switch controller (which can dynamically modify the Switch Fabric con-
taining several mutiplexers) and a sequencer (which orders computing block
activations and datapath modifications).

Thus, each computing block receives commands from the main controller. It
contains an intelligent core: a controller that sequences local computing block
operations.

10

SWITCH FABRIC

C
T

R
LPIXEL

SORTING

BLOCK

TREE

CONSTRUCTION

BLOCK

ATTRIBUTES

COMPUTING

BLOCK

FILTERING

BLOCK

C
T

R
L

C
T

R
L

C
T

R
L

PIXEL

QUEUE

@ @ @ @data data data data

ORIGINAL

IMAGE

TREE

LINKS

(PARENTS)

data data@ @

ATTRIBUTE

data @

TREE

STATUS

data @

FILTERED

IMAGE

data

datadata

MAIN

CONTROLLER

status report

(SR0) (SR1) (SR2) (SR3)

activation

PIXEL IN

@

PIXEL OUT

SHARED MEMORY BLOCKS

BLOCK

SELECTOR

SEQUENCER

MULTI-SWITCH

CONTROLLER

FIFO

RAM

data @

TREE

LINKS

(ROOT)

Fig. 5. Global architecture

4.1 Switch Fabric

In order to allow the memory address and data paths to be redirected dynam-
ically, all the blocks share the memory and are plugged into the backbone of
this architecture. The switch fabric is composed of selectors like multiplexer
and demultiplexer basic components which are controlled by a multi-switch
controller inside the main controller. It is therefore configurable before imple-
mentation and programmable after synthesis. The Switch Fabric is configured
to the correct data path dynamically. Figure 6 shows one configuration exam-
ple at runtime. The dashed lines represent data paths that are disabled at a
specific time in the application.

�����

���	�AB
C��	���AB

	���D��AE�

���	

	���D��AE�

�F��A	

	���

�	F	��
F		����	��

��� ��� ��� ��� ���

	���

�����	�AB

F	����	�

�����	�AB

���B�AF�

���	���

���	��

��A	������

�F�A

��A	������

F�����D��������

�� �!"��D��������

Fig. 6. Switch Fabric

11

4.2 Memory system

A CCT application works with six main types of data: original and filtered
image, pixel queue, CCT, attributes and construction buffers needed during
the processing (the tree status for instance). The designed memory system is
based on the principle of shared memory constituted by several small inde-
pendent memory blocks that can be accessed in parallel due to the Switch
Fabric. By combinating those memory blocks to the Switch Fabric, we are
able to reuse the memory blocks dynamically. However, we have added a ded-
icated memory for the pixel queue and the output image to buffer pixels more
efficiently. We recall that the tree construction time is not deterministic and
depends on the image content (Section 2.3.1).

At the beginning of the processing, the filtered image memory section is the
exact copy of the original. The filtering is based on the built component tree.
Depending on the given application (a segmentation, for instance with pixel
extractions or deletions), we only modify the filtered image memory in the
desired pixel position. A pixel queue memory (or pixel address queue) is a
simple FIFO structure storing the output of the pixel sorting block. In fact, this
memory has to store the different pixel positions in increasing or decreasing
order.

The input image, CCT, attribute and construction buffers are placed in the
shared memory. The original picture memory has to be shared with the other
blocks because it contains the greyscale pixel value information contrary to
the filtered image memory which is reserved to the filtering block. CCT is con-
structed in the link memory storing only the child/parent node relationships
and the original picture is necessary for navigating between different compo-
nents in the tree. Then, we have a part of memory dedicated to storing the
different attributes (the height, the volume, etc.) as the output of the attribute
computing block. During all the processing, some information might need to
be buffered like the pixel positions for pruning the tree (the filtering process)
by modifying the value or additional buffered addresses to eventually accel-
erate the processing. Finally, we need to temporarily store the status of each
pixel node during the tree construction. We can call it “Tree status memory”
and it contains bit flags which are detailed in Section 4.4.

4.2.1 Memory size

Let us consider an image with a width ofM and a height of N . The pixel size is
fixed to k bits. ADDR SIZE is defined as equal to ceil(log2(M) + log2(N))
(ceil() function rounds to the next largest integer). The memory sizing is
presented in Table 2.

12

Table 2
Memory size (qSIF = 160x120 test image format); H=15 (height attribute); k=8

Storage element Memory space (bits) qSIF Application (bits)

Original image (2ADDR SIZE)× k 262144

Filtered image (2ADDR SIZE)× k 262144

Pixel queue ADDR SIZE ×M ×N 288000

Tree links 1st part (parents) 2ADDR SIZE ×ADDR SIZE 491520

Tree links 2nd part (roots) 2ADDR SIZE ×ADDR SIZE 491520

Tree status (2ADDR SIZE)× 3 98304

Attributes (2ADDR SIZE)×H 491520

4.3 Pixel sorting block

The pixel sorting block operates on the original picture and fills a pixel queue
for the tree construction block. This queue can be considered as a FIFO. The
tree construction block computes the different links of the tree and stores
them in a memory (tree link memory) which is shared with the other blocks
(attribute computing block and filtering block in particular).

Let us take a simple example like a 3x3 picture with five levels of grey. For
readability reasons in the following figures, each pixel is designated by a letter
instead of its coordinates as shown in Figure 7(a).The corresponding parent
point-tree of this example is presented in Figure 7(b).

A B C 2 4 4

0 1 2

0

X

D E F

G H I

2 4 4

3 0 1

0 2 2

0

1

2

Y

(a)

B

C

A

D

I

H

A

F

I

E

GG

(b)

Fig. 7. 3x3 picture example

As mentioned in the previous section, pixel sorting is not the ”time consumer”
procedure compared to the creation of the connections between nodes (pixels
in the parent point-tree). However, it can create high memory requirements.
To avoid high consumption of memory blocks, we choose to use a counting sort
method [7]. This technique is divided into two passes: the queue partitioning
pass and the queue filling pass. In the first pass, we want to partition the queue
memory by level sector and each size of the sector can easily be determined

13

by building a histogram (Figure 8(a)).

Number of pixels

43210

=

0 1 2 3 4 Levels

gninoititraP yromeMmargotsiH

=

(a) First pass

G E F I H A D C B

Reading Start

G E F I H A D C B

Memory Filling

(b) Second pass

Fig. 8. Counting sort method

In our example, we can see that the number of pixels in each value is equal to
the number of slots reserved in the queue memory. This pass can be done “on
the fly” during the picture storage in the image memory. In the following pass,
the picture is read from the image memory and the pixels are distributed in
the queue memory according to their value.

In each level, the pixels are ordered according to the direction of reading.
This order has an impact on the final parent point tree connections between
the pixel nodes but it does not change the structure of the corresponding
component tree when the pixels are grouped by component (See set cki in
Figure 2). In our example (Figure 8(b)), the reading of the queue starts with
pixel B when we want to build a Max-Tree (decreasing pixel value order) or
with pixel G for a Min-Tree (increasing pixel value order).

4.4 Tree construction block

The tree construction block implements the algorithm 1 presented in Section
2. As illustrated in Figure 9, this computing block contains five main process-
ing units that can be associated to specific functions in the algorithm. The
functions Check(x,T) and Jump(x,T) can be associated to the Root Finder
unit returning the parent or root nodes. This unit works with the Bit checking
unit by testing the status bits, corresponding to the if and while conditions
in the algorithm. The function Link(x,y,T) is associated to the Linker unit by
writing the origin pixel considered as the new local root in the tree link par-
ent memory. The Store(x) and Update(x,T) functions corresponds to the Root
Updater unit storing nodes in a temporary buffer to update them in the tree
links root memory. Finally, the Neighbour Addresses Generator unit computes
the adjacent pixels q ∈ N4(p) memory addresses.

The pixel sorting block provides the input data queue through the pixel queue
containing all the pixel addresses ordered with respect to the decreasing pixel
value. As shown in Figure 9, the neighbour address is verified with the Bit

14

Checking and the Root Finder units to get the status of the pixel node and
to eventually get any parent address. If the bit status for the current pixel
neighbour is processed , the Bit Checking unit notifies the Root Finder unit
to loop. The parent address is then loaded to the current neighbour address
register in order to get its parent pixel. This parent adress is also stored in the
FIFO Buffer of the Root Updater unit (= Store(x) function). The checking
loop ends when the bit status for the parent presence is un-processed . It means
that we reach the current root in our tree under construction. Consequently,
the Linker unit can update the identified current root by the origin pixel
address (= Link(x,y,T) function). The origin pixel node becomes the new
pixel parent node and its status bits are updated. All buffered pixel addresses
that have been met, are updated to be linked to the origin pixel node (=
Update(x,T) function). Thus, that node becomes the latest local root and the
tree construction block can request the following origin address from the pixel
queue (queue).

Fig. 9. Tree construction block

Tree construction example: Each pixel node has three bit flags: “Is
Processed” (IP) bit to check if the pixel node has been processed, the Parent
Checking (PC) bit, meaning that the pixel node has a parent node and the
Child Checking (CC) bit, meaning that the pixel node has at least one child
node. Let us begin with the pixel B whose coordinates are (1, 0) in Figure 7(a).

15

This pixel is located on the edge of the picture and its neighbours N4(B) are
C, E and A. According to the pixel coordinates, nonexistent pixel neighbours
(represented by XXXX in Figure 10) are just skipped from analysis in the
Root Finder knowing the image dimension.

X YN3
N0 : 1 0 0 0 (C)

B (1,0) = 0 1 0 0B N0

N1

N2

N3
N1 : 0 1 0 1

N2 : 0 0 0 0

N3 : X X X X

(E)

(A)

Fig. 10. Pixel B neighbours

At the beginning, none of the pixels are processed and all the ”processed” - IP
bit flags in the tree status table are down. Consequently, all pixel B neighbours
are not processed yet. Pixel B becomes a leaf of the tree and is temporarily
linked to itself meaning that it is a current root of the tree in construction.
Then, the IP bit flag for pixel B is up (Figure 12(a)) and the tree construction
block can request the following origin pixel in the queue which is pixel C in
our example.

When pixel F is reached (Figure 11), some pixels have already been processed
(B, C, D, A, H, and I - See pixel queue in Figure 8(b)) and they might be
linked to this pixel. Thus, we are only interested in processing the neighbour
N1 (I) and N3 (C) (Figure 11)

N0 X X X X

F (2,1) = 1 0 0 1

X Y

F N0

N1

N2

N3
N0 :

N1 : 1 0 1 0

N2 : 0 1 0 1

3 (C)

(I)

(E)

1 0 0 0

X X X X

N3 : (C)1 0 0 0

Fig. 11. Pixel F neighbours

Pixel I is already a current root and it is directly linked to pixel F by updating
the tree status table (the CC bit to 1) and the tree link table (F address for
pixel I).

Pixel C is not a current root because its PC bit flag is up. The Root Finder
unit in the tree construction block replaces the current address (pixel C) by
its direct parent address (pixel A). Pixel A is a current root because its PC
bit flag is down (Figure 12(b)). After linking it to pixel F, its tree status bits
will be updated from [1 0 1] to [1 1 1].

Shortcut technique example: Let us illustrate the shortcut technique by
a simple example. From the Figure 13(a), let us assume that we want to link
the G node in the tree beginning with its neighbour D node. The current root
E is therefore linked to itself for the time being.

16

A

IP PC CC

A0 0 0

E

D

C

B B

E

D

C

B

B

1 0 0

0 0 0

0 0 0

0 0 0

I

H

G

F

I

H

G

F0 0 0

0 0 0

0 0 0

0 0 0

Tree status Tree links Tree Construction state

(a) Pixel B

B1 0 1A

IP PC CC

AA

C

A

D

I

H
1 1 0

1 1 1

1 1 0

E

D

C

B C

A

A

E

D

C

B

F
1 1 0

1 1 1I

H

G

F

I

FI

H

G

F

Tree status Tree links Tree Construction state

(b) Pixel F

Fig. 12. Tree tables

B

C

A

D

I

H F

C

AC

B

A F

C

A

AD

C

B

A

F

E

A

G

F

E

D

E

A

I

G

F

E

D

E

E
E

E

G Tree links

I

FI

H

Root

I

FI

H

(a) Before linking

B

C DH C

A

D

F

I

H F

C

A

AD

C

B

A G

C

A

GD

C

B

A

F

E IH

G

F

E G

E

G

IH

G

F

E G

G

G

G Tree links

FI

Root

FI

(b) After linking

Fig. 13. Shortcut technique example

The tree is explored starting with the D node and the nodes A, F and E
are met before linking. When the “finding root process” is triggered, all the
nodes that have been met during the exploration, are linked to the pixel point
to be attached. In other words, the origin pixel will be the current root of
the tree branch. If we consider that this root becomes the parent of all the
pixel nodes that have been met, the following accesses would be faster by
making large node jumps. In our example, we can store the nodes A, F and
E in a temporary memory and update their “virtual” parent node G in the
root memory as shown in Figure 13(b). Note that the exploring accesses are
consequently made on the root memory.

4.5 Attribute computing block

As mentioned in section 2.4, attributes are additional node characteristics
that can be used for filtering an image depending on user criteria (conditions
on height, area, depth or volume of a component for example). Some of them
can be computed during the tree construction and others have to be computed
when the tree is complete. The depth of a node can be computed, for instance,
on-the-fly with a counter and additional logics (min-max) during the tree
construction.

17

Depending on the complexity of required attributes, the computing block
might be time consuming. The study of attributes is beyond the scope of
this paper and one can find some attribute computations in [25, 32].

Note that an attribute computing block is not mandatory to complete an ap-
plication. In order to save memory and time, the simplest implementation can
be done without attributes but the criteria have to be chosen so that they
are merely based on components and pixel values. Some basic criteria could
amount to conditions on the contrast between two components by subtract-
ing consecutive component levels. Nevertheless, computing attributes allows
to apply more complex criteria on the tree for better results in the filtering
process.

4.6 Filtering block

The component tree can be used as a new working base for filtering the asso-
ciated picture. Thus, pixels or components of the picture can be manipulated
by changing the value or the node positions in the tree. The component tree
is particularly interesting compared to the classic 2-D matrix picture repre-
sentation because it gives the hierarchical layer disposition, in addition to the
spatial pixel position. Traditionally, a greyscale picture can be viewed as a set
of hills (highest values) and valleys (lowest values) with a layer organisation.
Flattening hills means removing the highest layers and leaving the last implied
underlayer apparent.

In a tree-based application, a picture is usually simplified by pruning the
corresponding component tree. Back in Figure 2, pruning the tree at C3

0 is re-
moving the upper nodes (2,0) and (2,1) to leave the underlayer value apparent
(level 3). Thus, pruning the component tree can be understood as flattening
hills. Note that a tree pruning application can be found in [4] and [5] for an
astronomical context where the aim is to clean the sky from stars in greyscale
pictures.

In our context, we propose an original tree-based filtering application based
on the component tree pruning. Instead of merging components (i.e. flattening
hills) with a traditional tree pruning process, we propose to give an arbitrary
value for all the identified nodes to be removed from the tree. Thus, it results in
an original local thresholding by using the component tree. It can be efficient
for simplifying pictures from an infrared camera because the most interesting
parts are the highest local values in the image. Those local parts can have
different levels of grey and using an arbitrary global level threshold would be
obviously inefficient.

Consequently, a specific tree pruning block has been designed for this purpose.

18

Flattening the hills of a greyscale picture can be done technically by replacing
the removed pixel value nodes with the pixel value of their parent nodes. In
our case, we replace any removed pixel value nodes with an arbitrary value.

A tree pruning process consists in exploring the tree from each leaf to the
root in order to cut down branches when proposed criteria are not respected
as explained in section 2.4. Those criteria are based on previously computed
attributes (height, volume, depth, etc.) and by combining them, we can obtain
original results. One can find some examples in [25].

The leaves of the tree are the starting points for the filtering process. They
can be identified with the Child Checking (CC) bit from the tree status table.
We recall that a CC bit flag down means that the pixel node does not have
a child node. Notice that the reading direction of the tree, from its tops to
its root, is well suited considering the proposed tree link structure (a parent-
tree where child nodes point at its parent node) and the targeted application
(local thresholding). Since we know that we need the leaves, they can be
stored during the tree construction in a buffer (i.e. a FIFO for instance) to
feed the tree pruning block. In particular, we can note that, during the tree
construction, a current processed origin pixel node, which is not linked to any
other nodes, becomes a leaf node.

The tree pruning block architecture is presented in Figure 14 with two criteria
in input. It contains three main processing units: a Tree explorer unit, an
Attribute collector unit and an Image updater unit.

Notice that, in addition to the tree links parent table, the block has to refer
to the original image to identify the component values.

As illustrated in Figure 14, each leaf node address is loaded in the Tree explorer
unit. This unit works parallel to the Attribute collector unit which reads suc-
cessively the associated attributes for each processed node. The Tree explorer
unit explores each tree branch by several reading loops in the tree links parent
table until one of the criteria is not valid according the comparison units.

When the criteria are respected, the pixel node is stored in a temporary “Zone
FIFO” buffer located in the Image Updater unit, until the end of a tree branch
exploration. When one of the criteria is not respected, the branch is modified
by overwriting the pixel value of the nodes stored in “Zone FIFO” with a
specific value. Note that the use of this FIFO is optional in our case because
we impose a value. Thus, the overwriting can be done gradually. The FIFO is
only necessary for a tree pruning block that requires to merge components.

19

Fig. 14. Tree pruning block

5 Experimental results

The proposed generic system architecture has been implemented and vali-
dated on ALTERA Stratix II 2S60 Development board [2]. To the best of our
knowledge, there is no other FPGA implementation of a complete application
based on tree construction. For our hardware implementation, we propose a
simple infrared (IR) hot spot image filtering application based on pruning
the tree. To maximize the memory bandwidth, we choose to use the on-chip
memory directly available on the FPGA chip. These RAM Memory blocks
are very limited resources and in our case, we had a budget of 2,544,192 On-
chip RAM bits for the 2S60 version. Moreover, Stratix II devices features a
particular memory system called TriMatrix based on three sizes of embedded
RAM blocks (M512, M4K and M-RAM) which can be configured in different
addressing structures. Further information can be found in [3].

In particular, we used M4K (4 Kbits) and M-RAM (512 Kbits) memory blocks
to fit our memory system and we used an input image resolution of 160x120
coded with 8 bits pixels. Thus, the different tables (Tree Links and Tree Roots)
must have 15-bit-wide data words and the Tree Status table has 3-bit-wide
data words (IP, PC and CC bits). Additional memory is needed for the pixel
address queue, the two images (one for keeping the original picture and the
other for storing the filtered picture) and several buffers (Root, Zone and Leaf

20

FIFOs).

The FIFOs (Root, Leaf and Zone) size is defined according to the free memory
space left. Smaller FIFOs decrease the overall performance. Note that it is
possible to share the same FIFO for the Root FIFO and the Zone FIFO
because they are not used at the same time. It is also possible to decrease the
number of level counters by only taking the four most significant bits of the
input pixel value.

One can notice that the Attribute Table is not really necessary for our first
implementation. The pruning can simply be tested on the basis of pixel values
and specified by an arbitrary threshold. Our focus is on the tree processing
time and we want to validate our architecture conception.

Four types of pictures have been selected for the test (Fig. 15 and 16): a
gradient picture with smooth grey level transitions (Fig. 15(a)) and three
infrared (IR) image camera outputs.

(a) Gradient
test

(b) Gradient
test result

(c) Man IR test (d) Man IR test
result

Fig. 15. Test images

(a) Cars IR test (b) Cars IR test
result

(c) Rooftop IR
test

(d) Rooftop IR
test result

Fig. 16. Test images 2

Those IR pictures represent real scenes (man, cars, rooftop) with the different
heat levels detected by the sensor. The man IR picture (Fig. 15(c)) represents
the direct output from the image sensor and is a very noisy picture. The two
others (Fig. 16(a) and 16(c)) represent pre-processed pictures. Those last two
pictures, showing cars and rooftops, have been denoised by a median filter and
the contrast has been enhanced by a histogram equalization. As a consequence,
those conditions have a direct impact on the number of connected components
to process and the tree structure complexity as shown in Table 3. In this table,
the man IR picture is the most complex scene to process because of the number
of connected components resulting from the high noise in the image sensor.

21

The results (Fig. 15(b), 15(d), 16(b) and 16(d)) represent the detection of
the highest local components in the test pictures by combining attributes.
In this case, we use an arbitrary max pixel value threshold λ applied to two
attributes : contrast (component intensity difference) and height (number of
pixel value component layers). It then creates a satisfying local thresholding
for our prototype.

Table 3
Characteristics of test images

Image Size Number of connected components

Man 160× 120 3068

Gradient 160× 120 353

Cars 160× 120 84

Rooftop 160× 120 362

As shown in the pie (Figure 17), the architecture uses 78 % of memory space
available and only 30 % represents the tree information (Original image and
Tree Links). The remaining memory is dedicated to compute the tree, to
accelerate the construction and to buffer intermediate data. Table 4 contains
the results in terms of resource utilization obtained after the synthesis on the
Stratix II FPGA. The logic utilization is very small as all the work is based
on memory management, extremely important for the FPGA implementation.
Note that our implementation has a maximum frequency of about 100 MHz
for an Altera Stratix II FPGA EP2S60F484C4 target [2]. That maximum
frequency is limited by the logic elements required to make the Switch Fabric.
For the FPGA prototype, the system runs at 50 MHz as shown in Table 5 for
measuring timing performance.

The 160 × 120 images are low resolution and come from a 320 × 240 IR image
input downscaled by 2. That resolution is acceptable as it aims at low reso-
lution display screens embedded in portable systems. The global architecture
in Figure 5 shows that the memory, required for computing a picture, scales
linearly according to its resolution. Thus, by keeping the same algorithm and
the same architecture, there are only two options for a higher image resolution
implementation. Firstly, to keep the memory performance, the simplest way
is to upgrade the FPGA target for a higher on-chip memory capacity (such
as Altera Stratix III or IV). Secondly, in order to keep the same FPGA target
(for area constraint), the memory tables have to be stored in external mem-
ories. That second option greatly impact the timing performance because of
the external memory access time and it also needs additional logics such as
memory controllers. However, it remains relevant for applications without any
critical real-time constraint such as photo applications which require image
quality and higher resolution.

22

���������	AB�

CCD

��AEA�F����FE��

��D

�A���������FE��

��D

�A������������

������������CD

������A����

�F ���C�D

�����!""���

�F ����#D

�����$�F����

�F ���%D

!""��$�"�FE��

������D

��F&�$�"�FE��

������D

!�EA"��

$�"�FE��

������D

Fig. 17. On-chip memory block occupation in Stratix II 2s60

Table 4
Synthesis report STRATIX II 2S60

Resources Quantity Occupation 2S60

Combinational ALUTs 2680 6%

Logic Registers 3564 7%

Total RAM bits 1984470 78%

Table 5
Measured execution time (clock: 50 MHz)

Image Size (pixels) Tree construction (ms) Filtering (ms)

Man 160× 120 8.25 0.12

Gradient 160× 120 7.41 0.22

Cars 160× 120 7.75 0.55

Rooftop 160× 120 7.93 6.55

Since the tree construction depends on the image content, the execution time
is not known beforehand. This complexity is not only based on the num-
ber of grey levels and the connected components but also on their mutual
relations (adjacency). The proposed algorithm is inspired from by already
discussed quasi-linear algorithm [32], hence the execution times do not vary
significantly even if the number of connected components is very different; see
the Table 5 for the execution time for the tree construction. Note that in the
test pictures (Fig. 15), even if the number of connected components for the
Man test picture is nine times higher than the others, the tree construction

23

time overhead is just about 10 %. That performance results from the short-
cut technique which allows to reduce the construction time dependency from
the picture complexity. Note that even if the Gradient test picture has the
lowest tree construction time, the shortcut technique is less efficient because
the pixels are already spatially ordered and the Tree Root table is therefore
less requested. Table 5 gives the execution time for the filtering. Note that
the filtering time is longer for the Rooftop picture because more pixels are de-
tected. Those timings depends on the tree complexity (number of leaves), the
attributes used (contrast and height for this case) and the number of modified
pixels (thresholding). Considering those variable parameters in practice, the
complete application can run from 50 to 120 frames per second.

Finally, the proposed implementation allows to obtain an acceleration up to 3
on the Stratix II at 50 MHz for the tree construction compared to a standard
desktop PC with Intel Pentium IV HT (3GHz) processor running under Linux.
We obtain, for instance, respectively 16 ms and 21 ms for the Gradient and
Man IR test images with Najman-Couprie algorithm on Pentium IV. Note
that we use the C-implementation of the Salembier [38] and Najman-Couprie
[32] algorithms for this comparison.

6 Conclusion

This paper presents an efficient FPGA implementation of CCT algorithms
suited for embedded systems. The main contributions are: the adaptation of
the CCT data structure allowing efficient data mapping in the memory, the
proposal of an on-chip memory organization suited for CCT processing and a
proposal of an overall embedded system for CCT-based application. After the
introduction of state-of-the-art CCT algorithms and implementation, the de-
sign issues in terms of data structure and memory are discussed. The proposed
architecture is then presented in detail. Assuming that this study is motivated
by the search for a new approach to the flexibility of embedded systems, it
demonstrates the FPGA implementation feasibility of relatively complex al-
gorithms. In future, we will concentrate on the tree merging methods and
implementation of the data parallelization by merging several 1D trees. Con-
cerning the design challenges, the main objective is to explore and improve
the interconnections between computing and memory resources.

References

[1] H.M. Alnuweiri and V.K. Prasanna. Parallel architectures and algorithms
for image component labeling. IEEE Transactions on Pattern Analysis

24

and Machine Intelligence, 14(10):1014–1034, 1992.
[2] ALTERA. Stratix ii ep2s60 dsp development board data sheet. 2006.
[3] ALTERA. Trimatrix memory in stratix ii devices. 2006.
[4] C. Berger, T. Geraud, R. Levillain, N. Widynski, A. Baillard, and

E. Bertin. Effective component tree computation with application to pat-
tern recognition in astronomical imaging. In ICIP07, volume IV, pages
41–44, 2007.

[5] C. Berger and N. Widynski. Using connected operators to manipulate.
Technical report, LRDE Seminar, July 2005.

[6] Yi-Jen Chiang, Tobias Lenz, Xiang Lu, and Günter Rote. Simple and
optimal output-sensitive construction of contour trees using monotone
paths. Comput. Geom. Theory Appl., 30(2):165–195, 2005.

[7] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. The MIT Press, 2nd edition, 2001.

[8] M. Couprie, L. Najman, and G. Bertrand. Quasi-linear algorithms for
the topological watershed. J. Math. Imaging Vis., 22(2-3):231–249, 2005.

[9] José Crespo, Jean Serra, and Ronald W. Schafer. Theoretical aspects of
morphological filters by reconstruction. Signal Process., 47(2):201–225,
1995.

[10] O. Cuisenaire and E. Romero. Automatic segmentation and measurement
of axones in microscopic images. In SPIE Medical Imaging, volume 3661
of Lecture Notes in Computer Science, pages 920–929. IEEE, 1999.

[11] Michael deLorimier, Nachiket Kapre, Nikil Mehta, Dominic Rizzo, Ian Es-
lick, Raphael Rubin, Tomas E. Uribe, Thomas F. Jr. Knight, and Andre
DeHon. Graphstep: A system architecture for sparse-graph algorithms. In
FCCM ’06: Proceedings of the 14th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, pages 143–151, Washing-
ton, DC, USA, 2006. IEEE Computer Society.

[12] Jonathan Fabrizio and Beatriz Marcotegui. Fast implementation of the
ultimate opening. In Proceedings of the 9th International Symposium
on Mathematical Morphology and Its Application to Signal and Image
Processing, ISMM ’09, pages 272–281, Berlin, Heidelberg, 2009. Springer-
Verlag.

[13] Holger Flatt, Steffen Blume, Sebastian Hesselbarth, Torsten Schunemann,
and Peter Pirsch. A parallel hardware architecture for connected compo-
nent labeling based on fast label merging. In ASAP ’08: Proceedings of
the 2008 International Conference on Application-Specific Systems, Ar-
chitectures and Processors, pages 144–149, Washington, DC, USA, 2008.
IEEE Computer Society.

[14] Seth Copen Goldstein, Herman Schmit, Mihai Budiu, Srihari Cadambi,
Matt Moe, R. Reed Taylor, and R. Reed. Piperench: A reconfigurable
architecture and compiler. Computer, 33:70–77, 2000.

[15] R. Hartenstein. A decade of reconfigurable computing: a visionary retro-
spective. In DATE01: Proceedings of the conference on Design, automa-
tion and test in Europe, pages 642–649, Munich, Germany, 2001. IEEE

25

Press.
[16] Reiner W. Hartenstein, Michael Herz, Thomas Hoffmann, and Ulrich

Nageldinger. Mapping applications onto reconfigurable kress arrays.
In FPL ’99: Proceedings of the 9th International Workshop on Field-
Programmable Logic and Applications, pages 385–390, London, UK, 1999.
Springer-Verlag.

[17] A.C. Jalba, M.H.F. Wilkinson, and J.B.T.M. Roerdink. Morphological
hat-transform scale spaces and their use in pattern classification. Pattern
Recognition, 37(5):901–915, May 2004.

[18] Shuenn-Der Jean, Chi-Min Liu, Chih-Chi Chang, and Zen Chen. A new
algorithm and its vlsi architecture design for connected component la-
belling. In International Symposium on Circuits and Systems (ISCAS),
pages 565–568, 1994.

[19] Christopher T. Johnston and Donald G. Bailey. Fpga implementation of
a single pass connected components algorithm. Electronic Design, Test
and Applications, IEEE International Workshop on, pages 228–231, 2008.

[20] R. Jones. Component trees for image filtering and segmentation. In
E. Coyle, editor, Proceedings of the 1997 IEEE Workshop on Nonlinear
Signal and Image Processing, Mackinac Island, September 1997.

[21] P. Matas, Eva Dokladalova, Mohamed Akil, Thierry Grandpierre, L. Naj-
man, M. Poupa, and V. Georgiev. Parallel algorithm for concurrent com-
putation of connected component tree. In Jacques Blanc-Talon, Salah
Bourennane, Wilfried Philips, Dan C. Popescu, and Paul Scheunders, ed-
itors, ACIVS, volume 5259 of Lecture Notes in Computer Science, pages
230–241. Springer, 2008.

[22] Julian Mattes and Jacques Demongeot. Efficient algorithms to implement
the confinement tree. In DGCI ’00: Proceedings of the 9th International
Conference on Discrete Geometry for Computer Imagery, pages 392–405,
London, UK, 2000. Springer-Verlag.

[23] Julian Mattes, Mathieu Richard, and Jacques Demongeot. Tree repre-
sentation for image matching and object recognition. In DCGI ’99: Pro-
ceedings of the 8th International Conference on Discrete Geometry for
Computer Imagery, pages 298–312, London, UK, 1999. Springer-Verlag.

[24] B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R. Lauwereins. Adres:
An architecture with tightly coupled vliw processor and coarse-grained
reconfigurable matrix. In G. A. Constantinides P. Y. K. Cheung and J. T.
de Sousa, editors, Field-Programmable Logic and Applications, pages 61–
70. Springer, 2003.

[25] A. Meijster. Efficient Sequential and Parallel Algorithms for Morpholog-
ical Image Processing. PhD thesis, University of Groningen, 2004.

[26] D. Menotti-Gomes, L. Najman, and A. de Albuquerque Araujo. 1d com-
ponent tree in linear time and space and its application to gray-level
image multithresholding. In Gerald Jean Francis Banon, Junior Barrera,
Ulisses de Mendonça Braga-Neto, and Nina Sumiko Tomita Hirata, ed-
itors, International Symposium on Mathematical Morphology, volume 1,

26

pages 437–448. INPE, 2007.
[27] Alain Mérigot. Associative nets: A graph-based parallel computing model.

IEEE Trans. Comput., 46(5):558–571, 1997.
[28] F. Meyer and S. Beucher. Morphological segmentation. Journal of Visual

Communication and Image Representation, 1(1):21–46, september 1990.
[29] Takashi Miyamori and Kunle Olukotun. Remarc: Reconfigurable mul-

timedia array coprocessor. In IEICE Transactions on Information and
Systems E82-D, pages 389–397, 1998.

[30] Alina N. Moga and Moncef Gabbouj. Parallel image component labeling
with watershed transformation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 19(5):441–450, 1997.

[31] L. Najman and M. Couprie. Watershed algorithms and contrast preserva-
tion. In DGCI’03, volume 2886, pages 62–71. Lecture Notes in Computer
Sciences. Springer Verlag, 2003.

[32] L. Najman and M. Couprie. Building the component tree in quasi-linear
time. IEEE Transactions on Image Processing, 15(11):3531–3539, 2006.

[33] Nicolas Ngan, F. Contou-Carrère, B. Marcon, S. Guerin, Eva
Dokládalova, and Mohamed Akil. Efficient Hardware Implementation
of Connected Component Tree Algorithm. In Workshop on Design and
Architectures For Signal and Image Processing, 2007.

[34] Patrick Piscaglia, Andrea Cavallaro, Michel Bonnet, and Damien Doux-
champs. High level description of video surveillance sequences. In EC-
MAST ’99: Proceedings of the 4th European Conference on Multimedia
Applications, Services and Techniques, pages 316–331, London, UK, 1999.
Springer-Verlag.

[35] P. Salembier and L. Garrido. Binary partition tree as an efficient repre-
sentation for image processing, segmentation, and information retrieval.
IEEE Transactions on Image Processing, 9(4):561–576, April 2000.

[36] P. Salembier and J. Serra. Flat zones filtering, connected operators,
and filters by reconstruction. IEEE Transactions on Image Processing,
4(8):1153–1160, August 1995.

[37] Philippe Salembier and Luis Garrido. Connected operators based on
region-tree pruning. In Max Viergever, John Goutsias, Luc Vincent,
and Dan S. Bloomberg, editors, Mathematical Morphology and its Ap-
plications to Image and Signal Processing, volume 18 of Computational
Imaging and Vision, pages 169–178. Springer US, 2002.

[38] Philippe Salembier, A. Oliveras, and Luis Garrido. Anti-extensive con-
nected operators for image and sequence processing. IEEE Transactions
on Image Processing, 7(4):555–570, April 1998.

[39] Pierre Soille. Constrained connectivity for hierarchical image decom-
position and simplification. IEEE Trans. Pattern Anal. Mach. Intell.,
30(7):1132–1145, 2008.

[40] Robert Endre Tarjan. Efficiency of a good but not linear set union algo-
rithm. J. ACM, 22(2):215–225, 1975.

[41] Luc Vincent. Morphological area openings and closings for grey-scale

27

images. In Proc. NATO Shape in Picture Workshop, pages 197–208.
Springer, 1992.

[42] M. Wilkinson and J. Roerdink. Fast morphological attribute operations
using tarjan ’s union-find algorithm. In Mathematical Morphology and
its Applications to Image and Signal Processing, Kluwer, pages 311–320,
2000.

[43] Michael H. F. Wilkinson, Hui Gao, Wim H. Hesselink, Jan-Eppo Jonker,
and Arnold Meijster. Concurrent computation of attribute filters on
shared memory parallel machines. IEEE Trans. Pattern Anal. Mach.
Intell., 30(10):1800–1813, 2008.

28

