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émanant des établissements d’enseignement et de
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Abstract. The paper deals with the robustness of uncertain computational elastoacoustic
models in low- and medium-frequency ranges. The elastoacoustic system is made up of a het-
erogeneous viscoelastic structure coupled with an internal acoustic cavity filled with a dissi-
pative acoustic fluid. A reduced mean elastoacoustic model is deduced from the mean finite
element model by using the modal approach with the structural modes of the structure and the
acoustic modes of the acoustic cavity. Data uncertainties and model uncertainties are taken
into account by using a nonparametric probabilistic approach for the structure, for the acoustic
cavity and for the vibroacoustic coupling interface. The main objectives of this paper are (1) to
present experimental validation of the nonparametric probabilistic approach of model uncer-
tainties and to propose methods to perform the experimental identification of the probabilistic
model parameters, (2) to analyze the robustness of computational elastoacoustic models with
respect to model and data uncertainties, (3) to study uncertainty propagation through complex
elastoacoustic systems. Two experimental configurations are analyzed with the stochastic com-
putational elastoacoustic model. The first experimental configuration is made up of a composite
sandwich panel coupled with an acoustic cavity constituted of a simple rigid box. Experimental
measurements have been performed for 8 manufactured composite panels. The second exper-
imental configuration is a car made up of a complex heterogeneous structure coupled with a
complex acoustic cavity. Experimental measurements have been performed for 22 manufac-
tured cars of the same type with optional extra.
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1 INTRODUCTION

The paper is devoted to computational elastoacoustics in low- and medium-frequency ranges
of uncertain complex systems made up of a viscoelastic heterogeneous structure coupled with
an internal acoustic cavity filled with a dissipative acoustic fluid. Usually, data uncertainties are
taken into account by using a parametric probabilistic approach allowing uncertain parameters
of the computational model to be modeled by random variables. The mathematical-mechanical
modeling process of the designed elastoacoustic system used to construct the computational
model introduces model uncertainties which cannot be taken into account by the parametric
probabilistic approach. Consequently, we propose to use the nonparametric probabilistic ap-
proach of data and model uncertainties recently introduced (see [9,10]). The main objectives of
this paper are (1) to present experimental validation of the nonparametric probabilistic approach
of model uncertainties and to propose methods to perform the experimental identification of the
probabilistic model parameters, (2) to analyze the robustness of computational elastoacous-
tic models with respect to model and data uncertainties, (3) to study uncertainty propagation
through complex elastoacoustic systems. Two experimental configurations are presented and
analyzed. The first experimental configuration is made up of a composite sandwich panel (the
structure) coupled with an acoustic cavity constituted of a simple rigid box. We are interested
in the internal noise produced by the vibration of the structure induced by a point force applied
to the structure. Experimental measurements have been performed for 8 manufactured com-
posite panels (see [1,2]). The second experimental configuration is a car made up of a very
complex viscoelastic heterogeneous structure coupled with a complex acoustic cavity. We are
interested in the booming noise which is the internal noise produced by the vibration of the
structure induced by engine vibrations. Experimental measurements have been performed for
22 manufactured cars of the same type with optional extra (see [3,4]).

2 UNCERTAINTIES IN THE PREDICTIVE MODEL OF A REAL ELASTOACOUS-
TIC SYSTEM

The designed elastoacoustic system is the system conceived by the designers and analysts. A
designed elastoacoustic system, made up of a structure coupled with an internal acoustic cavity,
is defined by geometrical parameters, by the choice of materials and by many other parameters.
A designed elastoacoustic system such as a car is a very complex elastoacoustic system. The
real elastoacoustic system is a manufactured version of the system realized from the designed
elastoacoustic system. Consequently, the real elastoacoustic system is a man-made-physical
system which is never exactly known due to the variability induced for instance by the process.
The objective of a predictive model is to predict the output (vexp, pexp) of the real elastoacoustic
system to a given input f exp, in which vexp is the response in displacement of the structure and
where pexp is the acoustic pressure inside the acoustic cavity. Such predictive models are con-
structed by developing mathematical-mechanical model of the designed elastoacoustic system
for a given input (see Figure 1). Consequently, the mean model has an input f modeling f exp,
an output (v, p) modeling (vexp, pexp) and exhibits a vector-valued parameter s for which data
has to be given. The errors are related to the construction of an approximation (vn, pn) of the
output (v, p) of the mean model for given input f and parameter s and have to be reduced and
controled using adapted methods developed in applied mathematics and in numerical analysis.
The mathematical-mechanical modeling process of the designed elastoacoustic system intro-
duces two fundamental types of uncertainties: data uncertainties and model uncertainties. Data
uncertainties are input f and parameter s of the mean model. The best approach to take into

2



C. Soize et al.

system

Mathematical−mechanicalManufacturing
process

as the 
manufactured

system

f(vexp, pexp
) (v , )

Uncertain system s

modeling process

system
elastoacoustic

model of the real
as the predictive

pexp
f

elastoacoustic
Designed

  system

Mean modelReal elastoacoustic

Figure 1: Designed elastoacoustic system, real elastoacoustic system and mean model as the predictive model of
the real elastoacoustic system.

account data uncertainties is the parametric probabilistic approach consisting in modeling the
data of the mean model by random quantities. The mathematical-mechanical modeling pro-
cess induces model uncertainties with respect to the designed elastoacoustic system. This type
of uncertainties is mainly due to the introduction of simplifications in order to decrease the
complexity of the mean model which is constructed. For instance, a slender cylindrical elastic
structural element will be modeled by using the beam theory, a thick rectangular plate elastic
structural element will be modeled by a thick plate theory, a sound proofing scheme between the
structure and the acoustic cavity will be modeled by a wall coustic impedance, the geometry of
the acoustic cavity will be simplified, etc. It is clear that the introduction of such simplifications
yields a mean model for which all the possible variations of its parameter s do not allow the
model uncertainties to be reduced. Model uncertainties have then to be taken into account to
improve the predictability of the mean model. As explained above, the parametric probabilistic
approach cannot be used. This is the reason why a nonparametric probabilistic approach is pro-
posed. The error between prediction (vn, pn) calculated with the mean model and the response
(vexp, pexp) of the real elastoacoustic system can be measured by (‖vexp−vn‖2+‖pexp−pn‖2)1/2

in which ‖ . ‖ denotes appropriate norms. Clearly, the mean model can be considered as a pre-
dictive model if this error is sufficiently small. In general, due to data uncertainties and model
uncertainties, this error is not sufficiently small and has to be reduced by taking into account
data uncertainties and model uncertainties.

3 NONPARAMETRIC PROBABILISTIC APPROACH OF MODEL UNCERTAINTIES

The concept of the nonparametric probabilistic approach of model uncertainties introduced
in [9] is the following (see [10]). Let s �→ A(s) be a linear mapping from a space S into a
space A of linear operators. The space S represents the set of all possible values of the vector-
valued parameter s of the boundary value problem (for instance, geometric parameters, elastic
properties, boundary conditions, etc). For s fixed in S, operator A(s) represents one operator
of the boundary value problem (for instance, the stiffness operator of the structure which is
assumed to be symmetric and positive, and in this case, any operator in A will be symmetric
and positive). Let Rpar ⊂ A be the range of the mapping s �→ A(s), i.e. the subset of A spanned
by A(s) when s runs through S. The corresponding operator of the real elastoacoustic system
system is Aexp belonging to A. If s = s is the nominal value, then � = A(s) ∈ Rpar is the
operator of the mean model.
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Figure 2: Parametric and nonparametric probabilistic approaches of random uncertainties.

Parametric probabilistic model of the operator. The parametric probabilistic approach for
the operator consists in modeling the parameter s by a vector-valued random variable S whose
probability distribution PS(ds) has a support which is S. Then the operator � of the mean
model is replaced in the the BVP by the random operator Apar such that Apar = A(S). The
probability distribution PApar of the random operator Apar is PApar = A(PS) and its support is
the set Rpar ⊂ A (see Figure 2). Clearly, the probability PApar on Rpar allows data uncertainties
to be taken into account, but Aexp may not be in Rpar due to model uncertainties.

Nonparametric probabilistic model of the operator. The nonparametric probabilistic ap-
proach for the operator consists in replacing the operator � of the mean model by a random
operator Anonpar whose probability distribution PAnonpar has a support which is Rnonpar = A.
Since Aexp belongs to A and since the support of PAnonpar is also A, model uncertainties can be
taken into account by the nonparametric approach (see Figure 2). Of course, PAnonpar cannot be
arbitrary chosen with support Rnonpar, but has to be constructed using the available information.
Such a methodology has been developed in [9,10] using the information theory.

Methodology. The methodology of the nonparametric probabilistic approach of uncertainties
is as follows. (1) Developement of a finite element model of the designed elastoacoustic system.
Such a model will be called the mean model (or the nominal model). (2) Construction of a
reduced mean model from the mean model. (3) Construction of a stochastic reduced model
from the reduced mean model using the nonparametric probabilistic approach which allows the
probability distribution of each random generalized matrix to be constructed. (4) Construction
and convergence analysis of the stochastic solution.

Experimental identification. The level of uncertainties is controlled by the dispersion pa-
rameter of each random matrix introduced in the nonparametric probabilistic approach. In this
paper, we present methods for an experimental identification of the dispersions parameters.

4 STOCHASTIC MODEL OF UNCERTAIN ELASTOACOUSTIC SYSTEMS

4.1 Reduced mean model of the elastoacoustic system

The elastoacoustic system is made up of a viscoelastic structure coupled with an internal
acoustic cavity filled with a dissipative acoustic fluid. The usual formulation in ”structural
displacement” - ”acoustic pressure” is used to construct the mean finite element method of the
elastoacoustic system (see for instance [6]). Let u(ω) be the �ns-vector of the ns DOF of the
structure and let p(ω) be the �nf -vector corresponding to the the nf DOF of the acoustic cavity.
Let {�

1
, . . . ,�

Ns
} be the Ns first structural modes of the structure in vacuo and calculated at
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zero frequency (not including rigid body modes if there exist). Let {�
1
, . . . ,�

Nf
} be the Nf first

acoustic modes of the acoustic cavity with rigid fluid-structure coupling interface (including the
constant pressure mode if the acoustic cavity is closed). The reduced mean model is obtained
by projection of the mean finite element model on the subspace VNs × VNf

of �ns × �
nf in

which VNs is spanned by {�
1
, . . . ,�

Ns
} and VNf

is spanned by {�
1
, . . . ,�

Nf
}. The reduced

mean model can then be written as

u(ω) =
Ns∑

α=1

qs
α
(ω)�

α
, p(ω) =

Nf∑
β=1

qf
β
(ω)�

β
. (1)

The �Ns-vector qs(ω) = (qs
1(ω), . . . , qs

Ns
(ω)) and the �Nf -vector qf (ω) = (qf

1 (ω), . . . , qf
Nf

(ω))
are the solution of the following matrix equation

[−ω2[M s] + iω[Ds(ω)] + [Ks(ω)] [C]
ω2[C]T −ω2[M f ] + iω[Df ] + [Kf ]

] [
qs(ω)
qf (ω)

]
=

[
fs(ω)
ff(ω)

]
, (2)

in which the (Ns × Ns) real matrices [M s], [Ds(ω)] and [Ks(ω)] are the generalized mass,
damping and stiffness matrices of the structure, where the (Nf × Nf ) real matrices [M f , [Df ]
and [Kf ] are the generalized mass, damping and stiffness matrices of the acoustic and where
the rectangular (Ns × Nf ) real matrix [C] is the generalized vibroacoustic coupling matrix. In
Eq. (2) the �Ns-vector fs(ω) and the �Nf -vector ff(ω) are the generalized force vector of the
structure and the generalized acoustic source vector of the acoustic cavity respectively.

4.2 Stochastic reduced model using the nonparametric probabilistic approach

The principle of construction of the nonparametric probabilistic approach (see [9,10]) of
model uncertainties and data uncertainties in the structure, in the acoustic cavity and for the
vibroacoustic coupling consists (1) in modeling the generalized mass [M s], damping [Ds(ω)]
and stiffness [Ks(ω)] matrices of the structure by random matrices [Ms], [Ds(ω)] and [Ks(ω)]
whose dispersion parameters are δMs , δDs and δKs respectively; (2) in modeling the generalized
mass [M f ], damping [Df ] and stiffness [Kf ] matrices of the acoustic cavity by random matri-
ces [Mf ], [Df ] and [Kf ] whose dispersion parameters are δMf

, δDf
and δKf

respectively; (3)
in modeling the generalized vibroacoustic coupling matrix [C ] by a random matrix [C] whose
dispersion parameter is δC . The explicit construction of the probability distribution of these
random matrices were performed by using the maximum entropy principle and is given in [9]
for random matrices [Ms], [Ds(ω)], [Ks(ω)], [Mf ], [Df ] and [Kf ], and is given in [10] for ran-
dom matrix [C]. Let [A] be anyone of these random matrices. In this theory, the probability
distribution of such a random matrix [A] depends only on its mean value [A] = E{[A]} in
which E is the mathematical expectation and on its dispersion parameter δA which is inde-
pendent of the matrix dimension. In addition, an algebraic representation of random matrix
[A] has been developed and allows independent realizations to be constructed for a stochastic
solver based on the Monte Carlo numerical simulation. It should be noted that when [A(ω)] is
a symmetric positive real-valued matrix depending on ω, then random matrix [A(ω)] is written
as [A(ω)] = [LA(ω)]T [G] [LA(ω)] in which [A(ω)] = [LA(ω)]T [LA(ω)] and where the random
matrix germ [G] is independent of ω and dispersion parameter δA must be taken independent
of ω. Using such an approach, the stochastic reduced model of the uncertain elastoacoustic
system for which the reduced mean model is defined by Eq. (2) is written, for all ω fixed in the

5



C. Soize et al.

frequency band of analysis B = [ω0, ω1] with 0 < ω0 < ω1, as

U(ω) =
Ns∑

α=1

Qs
α
(ω)�

α
, P(ω) =

Nf∑
β=1

Qf
β
(ω)�

β
, (3)

in which, for ω fixed in B, the �Ns-valued random variable Qs(ω) = (Qs
1(ω), . . . , Qs

Ns
(ω))

and the �Nf -valued random variable Qf(ω) = (Qf
1(ω), . . . , Qf

Nf
(ω)) are the solution of the

following random matrix equation[−ω2[Ms] + iω[Ds(ω)] + [Ks(ω)] [C]
ω2[C]T −ω2[Mf ] + iω[Df ] + [Kf ]

] [
Qs(ω)
Qf(ω)

]
=

[
fs(ω)
ff(ω)

]
.

(4)

4.3 Construction and convergence of the stochastic solution

For all ω fixed in B, it can be proven that the probability model constructed for the random
matrices is such that Eq. (4) has a unique second-order solution (see the methodology presented
in [9]), i.e., E{‖Qs(ω)‖2}≤ c1 <+∞ and E{‖Qf(ω)‖2}≤c2 < +∞. Concerning the stochas-
tic solver, for all ω fixed in B, the stochastic solution of Eq. (4) is constructed by using the
Monte Carlo numerical simulation with m independent realizations. Using the usual statistical
estimator of the mathematical expectation E, the convergence of the stochastic solution with
respect to Ns, Nf and m, is studied in constructing the functions (Ns, m) �→ convs(Ns, m) and
(Nf , m) �→ convf(Nf , m) such that

convs(Ns, m) = { 1

m

m∑
k=1

∫
B
‖U(ω, θk)‖2 dω}1/2 , (5)

convf(Nf , m) = { 1

m

m∑
k=1

∫
B
‖P(ω, θk)‖2 dω}1/2 , (6)

in which U(ω, θ1), . . . , U(ω, θm) and P(ω, θ1), . . . , P(ω, θm) are m independent realizations of
U(ω) and P(ω) respectively.

5 IDENTIFICATION OF THE PROBABILISTIC MODEL PARAMETERS FROM EX-
PERIMENTS

The problem to be solved is related to the experimental identification of the vector-valued
dispersion parameter � = (δMs, δDs , δKs, δMf

, . . .) introduced in the nonparametric probabilis-
tic approach of data and model uncertainties. Let Y(ω, �) = (Y1(ω, �), . . . , Yμ(ω, �)) be the
�μ-valued random variable corresponding to μ observations of the stochastic reduced model
which will be measured for all ω belonging to frequency band B. This vector-valued random
variable depends on the vector-valued dispersion parameter � which has to be identified using
measurements. Since the manufactured systems have a variability induced by the manufactur-
ing process, the corresponding observations of the real system must be modeled by a �μ-valued
random variable Yexp(ω) = (Y exp

1 (ω), . . . , Y exp
μ (ω)). It is assumed that the measurements are

performed for ν manufactured real systems. Let yexp,k(ω) = (yexp,k
1 (ω), . . . , yexp,k

μ (ω)) be the
�μ-vector of the μ measured obervations for manufactured system number k. The mean value
Y(ω, �) of random vector Y(ω, �) and the mean value E{Yexp(ω)} of random vector Yexp(ω)
are such that

Y(ω, �) = E{Y(ω, �)} , E{Yexp(ω)} = yexp(ω) , yexp(ω) =
1

ν

ν∑
k=1

yexp,k(ω) , (7)
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in which yexp(ω) is the experimental mean value. Note that random vector Yexp(ω) is constructed
such that its mean value is equal to yexp(ω). Below, we present two methods which can be
used to identify the vector-valued dispersion parameter � from experiments. The first one will
be called the mean-square identification method and can be used for a vector-valued random
variable without any difficulties. This method consists in minimizing, in the mean-square sense,
the distance between the computed random response and the experimental response. The second
one consists in using the maximum likelihood method and can also be used for a vector-valued
random variable. Nevertheless, the computational time required by such a method is prohibitive
if the vector-valued random variable has a high dimension. Consequently, we will present this
method for a real-valued random variable.

5.1 Mean-square identification method

Let ω �→ X(ω) = (X1(ω), . . . , Xμ(ω)) be a �μ-valued second-order stochastic process
indexed by frequency band B. We introduce the norm |||X||| of X such that

|||X|||2 = E{||X||2B} , ||X||2B =
∫

B
||X(ω)||2 dω , (8)

in which ||X(ω)||2 = X1(ω)2 + . . . + Xμ(ω)2. The mean square identification of parameter �
consists in minimizing the cost function J0(�) = |||Y(., �)−Yexp|||2 with respect to �. In order
to compute this cost function, we can write |||Y(., �)−Yexp|||2 = |||Y(., �)−Y(., �)− (Yexp −
yexp)+Y(., �)−yexp|||2. Since Y(., �)−yexp is a deterministic vector and since Y(., �)−Y(., �)
and Yexp − yexp are independent and centered vector-valued random variables, we can write

J0(�) = |||Y(., �)− Y(., �)|||2 + |||Yexp − yexp|||2 + ||Y(., �) − yexp||2B . (9)

In the right-hand side of Eq. (9), the first, the second and the third terms represent the variance
of the random response of the stochastic model, the variance of the real system induced by its
variability and the bias between the model and the real system, respectively. It should be noted
that the second term is independent of �. Consequently, the cost function J0(�) can be replaced
by a cost function J1(�) obtained by removing this second term. Consequently, the mean square
identification of parameter � consists in solving the following optimization problem

�opt = arg min
�

J1(�) , (10)

in which the cost function J1(�) is written as

J1(�) = |||Y(., �)− Y(., �)|||2 + ||Y(., �) − yexp||2B . (11)

5.2 Maximum likelihood method

For the maximum likelihood method, we introduce the real-valued random variable Z(�)
for which the ν independent realizations zexp,1, . . . , zexp,ν correspond to the ν manufactured
real systems. Let pZ(z, �) dz be the probability distribution on � of Z(�) represented by a
probability density function pZ(z, �) which depends on dispersion parameter �. This random
variable is defined by

Z(�) =
∫

B
dB(ω, �) dω , dB(ω, �) = 10 log10

⎛
⎝w2

ref
1

μ

μ∑
j=1

|Yj(ω, �)|2
⎞
⎠ , (12)
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in which wref is a constant of normalization. It should be noted that, for all z fixed in �, prob-
ability density function pZ(z, �) can easily be estimated with Eqs. (3) and (4) using the Monte
Carlo method and mathematical statistics. For k = 1, . . . , ν, the corresponding realization z exp,k

is written as

zexp,k =
∫

B
dBexp,k(ω) dω , dBexp,k(ω) = 10 log10

⎛
⎝w2

ref
1

μ

μ∑
j=1

|yexp,k
j (ω)|2

⎞
⎠ . (13)

The use of the maximum likelihood method (see [8]) leads us to the following optimization
problem

�opt = arg max
�

L(�) , (14)

in which L(�) is written as

L(�) =
ν∑

k=1

log10(pZ(zexp,k, �)) . (15)

6 ANALYZING EXPERIMENTAL CONFIGURATIONS

6.1 First experimental configuration: composite sandwich panel coupled with an acous-
tic cavity [1,2]

The experimental configuration of the elastoacoustic system is defined in Figure 3. The sys-
tem is made up of a composite sandwich panel coupled with a closed acoustic cavity constituted
of an acoustic box with 5 rigid walls. The designed sandwich panel is constituted of five lay-
ers made of four thin carbon-resin unidirectional plies and one high stiffness closed-cell foam
core. The geometrical and mechanical parameters for the composite sandwich panel and the
acoustic box can be found in [1,2]. Eight sandwich panels have been manufactured from the
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cavité acoustique fermée

z

y

x

39
0m

m
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Figure 3: Definition of the composite sandwich panel (left figure). Vibroacoustic system made up of the composite
sandwich panel and an acoustic cavity (right figure)

designed sandwich panel using an identical process and the same materials. All the sandwich
panels have been baked in the same batch for suppressing the influences of the different baking
conditions concerning time and temperature. In addition one acoustic box with 5 rigid walls in
the frequency band of analysis has been manufactured. The frequency band of analysis con-
sidered is the band B = [10 , 4500] Hz corresponding to the model validity of the mean finite
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element model of the vibroacoustic system. The input z-force is a point load applied to the
point of coordinates (0.187, 0.103, 0) m. The output z-acceleration at the observation point on
the panel is the point of coordinates (0.337, 0.272, 0) m. The mean finite element model of the
composite sandwich panel is constituted of 62 × 46 four-nodes finite elements for laminated
plate bending with orthotropic materials. The finite element model of the acoustic cavity is
made up of 60 × 40 × 30 eight-nodes solid acoustic finite elements. Consequently, there are
ns = 8556 structural DOF and nf = 72000 acoustic DOF. The objective is to analyze the effects
of structural uncertainties on the noise produced inside the acoustic cavity by the vibrations of
the panel. Consequently, it is assumed that there are uncertainties in the panel but that there
are no uncertainties neither in the acoustic cavity nor for the vibroacoustic coupling (this means
that δMf

= δDf
= δKf

= δC = 0). Convergence of the stochastic reduced model over fre-
quency band B is obtained for Ns = 117 structural modes, for Nf = 630 acoustic modes and
for m = 1300 realizations. The experimental estimation of the dispersion parameters δMs , δDs

and δKs for the composite panels is performed in [1,2] using the method proposed in [10] and
yields δMs = 0.23, δDs = 0.43 and δKs = 0.25. Figures 4 and 5 are related to the experimental
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Figure 4: Experimental validation of the confidence region prediction for the random cross FRF between the input
force applied to the panel and the transversal acceleration at the observation point on the panel for the vibroacoustic
system. Horizontal axis: frequency in Hertz. Vertical axis: log10 of the modulus of the transverse acceleration
of the panel. Experimental cross FRF corresponding to the 8 panels (8 thin solid lines). Numerical cross FRF
calculated with the mean reduced matrix model (thick solid line). Mean value of the random cross FRF calculated
with the non parametric probabilistic model (thin solid line). Confidence region of the random cross FRF calculated
with the non parametric probabilistic model (grey region).

validation of the confidence region prediction for the random cross frequency response func-
tions (FRF) relative to the panel acceleration and to the acoustic pressure, and corresponding
to a probability level of 0.96 (grey region). Figure 4 shows a good experimental comparison
for the confidence region calculated with the stochastic reduced model. It should be noted that
the confidence region is relatively narrow in the low-frequency (LF) band [10 , 1200] Hz and is
broad in the medium-frequency (MF) band [1200 , 4500] Hz. These results show that the mean
model is robust with respect to data and model uncertainties of the structure in the LF band but
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Figure 5: Experimental validation of the confidence region prediction for the random cross FRF between the
input force applied to the panel and the acoustic pressure at the observation point in the acoustic cavity for the
vibroacoustic system. Horizontal axis: frequency in Hertz. Vertical axis: log 10 of the modulus of the acoustic
pressure inside the acoustic cavity. Experimental cross FRF corresponding to the 8 panels (8 thin solid lines).
Numerical cross FRF calculated with the updated mean reduced matrix model (thick solid line). Mean value of the
random cross FRF calculated with the non parametric probabilistic model (thin solid line). Confidence region of
the random cross FRF calculated with the non parametric probabilistic model (grey region).

is less robust in the MF band. Such a result can also be viewed in comparing the response of
the reduced mean model with the mean value of the random response of the stochastic reduced
model. In the LF band the mean value of the random response is closed to the response of the
mean model while large differences can occur in the MF band. Similarly, Figure 5 shows a good
experimental comparison for the confidence region of the internal noise. It can be seen that the
mean model is robust with respect to data and model uncertainties of the structure not only in
the LF band [10 , 1200] Hz but also in the low part [1200 , 3000] Hz of the MF band while the ro-
bustness decreases in the high part [3000 , 4500] Hz of the MF band. It can be conclude that the
propagation of uncertainties from the structure into the acoustic cavity is weak in the frequency
band [10 , 3000] Hz (LF band and low part of the MF band) and increases in the frequency band
[3000 , 4500] Hz (high part of the MF band).

6.2 Second experimental validation: vibroacoustics of cars [3,4]

We present an experimental validation of the numerical prediction of internal noise in a
car due to engine excitation applied to the engine supports (booming noise). The mean finite
element model is shown in Figure 6. The structure is modeled with ns = 978, 733 DOF of
displacement and the acoustic cavity with nf = 8, 139 DOF of pressure. The frequency band
of analysis B = [33, 200] Hz corresponding to [1000, 6000] rpm (engine rotation per minute).
Convergence of the stochastic reduced model over frequency band B is obtained for Ns = 1722
structural modes, for Nf = 57 acoustic modes and for m = 600 realizations. The experimental
identification of the dispersion parameters are performed in three steps as follows (see [3,4]).
For the first step, acoustic pressure measurements have been performed inside the acoustic
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Figure 6: Finite element mesh of the structure: 978,733 DOF of displacement (left figure). Finite element mesh of
the acoustic cavity: 8,139 DOF of pressure (right figure)
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Figure 7: Experimental validation of the confidence region prediction for the random cross FRF between the
input force applied to engine supports and the acoustic pressure at an observation point in the acoustic cavity for
the vibroacoustic system. Horizontal axis: tr/min. Vertical axis: modulus of the acoustic pressure in dBA. 22
experimental measurements for 22 cars of the same type (22 thin solid lines). Numerical prediction of the mean
reduced matrix model (thick solid line). Confidence region of the internal noise predicted with the non parametric
probabilistic model and for probability level 0.95. (grey region).

cavity for a given acoustic source inside the cavity. Then the maximum likelihood method
described in Section 5.2 has been used taking δMf

= δDf
= δKf

, where Yj(ω, �) = P�j
(ω) in

which P�1(ω), . . . , P�µ(ω) are the observed acoustic pressures which are measured inside the
cavity, with wref = 1/Pref in which Pref is a reference pressure. For the second step, structural
acceleration measurements have been performed in the structure for driven forces applied to
the engine supports. Then the mean-square identification method described in Section 5.1 has
been used with Yj(ω, �) = log10(wj |U�j

(ω)|) in which U�1(ω), . . . , U�µ(ω) are the observed
displacements which are measured and where w1, . . . , wμ are normalization constants such that
0 < wj ≤ 1. In a third step, dispersion parameter δC of the vibroacoustic coupling operator
has been fixed at a given value. Figure 7 displays the experimental validation of the numerical
prediction of internal noise due to engine excitation with structure, vibroacoustic coupling and
acoustic cavity uncertainties. Taking into account the complexity of the vibroacoustic system,
there is a good experimental validation of the stochastic elastoacoustic model with model and
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data uncertainties. The variability of the manufactured real systems is due to the process and
to the extra options. The propagation of uncertainties is significant in the frequency band of
analysis.

7 CONCLUSIONS

Data and model uncertainties can be taken into account in computational elastoacoustics by
using the nonparametric probabilistic approach. Methodologies are proposed to perform an
experimental identification of the dispersion parameters controlling the level of uncertainties.
This approach has been validated for a simple and for a complex elastoacoustic system.
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