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Abstract
This paper concerns uncertainties in structural dynamics for composite sandwich panels constituted of two thin

carbon-resin skins and one high stiffness closed-cell foam core. Each skin is constituted of two unidirectional

plies [60/-60]. Such light composite sandwich panels, manufactured with a same process, generally present a

significant dispersion for their Frequency Response Functions (FRF) in the Low-Frequency (LF) and Medium-

Frequency (MF) ranges. The objectives of this paper are (1) to study the dispersion due to the process by using

experiments (2) to develop a predictive mean mechanical model based on the use of the laminated composite thin

plate theory in dynamics and (3) to use a nonparametric probabilistic approach for data and model uncertainties

to improve the predictability of the mean model in the MF dynamics.

1. Introduction

It is known that the dynamical responses of the light composite sandwich panels in the medium-frequency range

are sensitive to the process used for their manufacturing. In addition, such sandwich panels constitute complex

dynamical systems (dynamical behavior of the materials consituting the different layers; interface conditions

between two adjacent layers; boundary conditions, etc) and consequently, model uncertainties are induced by the

mathematical-mechanical modeling process in which simplifications are introduced. Finally, the parameters of

the mathematical-mechanical modeling are not known with a great precision which means that data parameters

are uncertain. Consequently, the robustness of the predictive model in the medium-frequency range of such a

dynamical system has to be improved.

This paper concerns structural dynamics of composite sandwich panels constituted of two thin carbon-resin skins

and one high stiffness closed-cell foam core. Each skin is constituted of 2 unidirectional plies [60/-60]. As

written above, it is known that such sandwich panels, manufactured with a same process, generally present a

significant dispersion for their Frequency Response Functions (FRF) in the low-requency (LF) range and above

all in the medium-frequency (MF) range. The objectives of this paper are (1) to perform an experimental analysis

of the frequency-response-functions dispersion due to the process used for manufacturing the sandwich panels,

(2) to develop a predictive mean mechanical model based on the use of the laminated composite thin plate theory

in dynamics and to compare the numerical simulations with the experiments, and (3) to use a nonparametric

probabilistic approach allowing data and model uncertainties to be modeled in order to improve the predictability

of the mean model in the LF and MF dynamics.

The nonparametric probabilistic approach used in this paper, has been introduced in Refs. [1,2] and is based on

the use of the random matrix theory. In such a probabilistic model, the probability distribution of each random

generalized matrix of the dynamical system (generalized mass, damping and stiffness matrices) depends on a

dispersion parameter allowing the level of the random fluctuations of each random matrix to be controlled. An

experimental estimation of each dispersion parameter for the random generalized mass, damping and stiffness

matrices is proposed. The confidence regions of the random frequency response functions are predicted by using

the random dynamical system constructed with the nonparametric probabilistic approach of random uncertainties

and are compared with the experimental frequency response functions measured for the 8 sandwich panels.
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2. Description of the designed panel

The designed panel is a sandwich panel constituted of five layers made of four thin carbon-resin unidirectional

plies and one high stiffness closed-cell foam core. This panel is defined with respect to a Cartesian coordinate

system Oxyz and is 0.40 m length (Ox axis), 0.30 m width (Oy axis) and 0.01068 m total thickness (Oz axis). The

middle plane of the sandwich panel is Oxy et the origine O is located in corner. Each carbon layer is made

of a thin carbon-resin ply with a thickness of 0.00017 m, a mass density ρ = 1600 Kg/m3 and whose elasticity

constants are: Ex = 101GPa,Ey = 6.2GPa, νxy = 0.32,Gxy = Gxz = Gyz = 2.4GPa. The first two layers are two

carbon-resin unidirectional plies in a [-60/60] layup. The third layer is a closed-cell foam core with a thichness of

0.01 m, a mass density of 80 Kg/m3 and elasticity constants: Ex = Ey = 60MPa, νxy = 0,Gxy = Gxz = Gyz = 30

MPa . The fourth and fifth layers are two carbon-resin unidirectional plies in a [60/-60] layup.

3. Manufacturing the sandwich panels

Eight sandwich panels have been manufactured from the designed panel using the same process and the same

materials. All the sandwich panels have been baked in the same batch for suppressing the influences of the

different baking conditions concerning time and temperature. The different steps for the manufacturing of the

sandwich panels are the following. Step 1: cut out the carbon-resine tissue and cut out the foam plate with the

dimension of the designed panel. Step 2: for each plate, paste the carbon-resine tissues with the foam plate. Step

3: bake the eight sandwich panels pasted in the previous step in the vacuum oven for solidify the oxygen resin

existing in the sandwich. Figure 1 shows step 2 of the manufacturing process for a sandwich panel.

Fig.1: Step 2 of the manufacturing process of a sandwich panel

4. Dynamical identification of the eight sandwich panels

4.1. Description of dynamical testing

The dynamical testing of the eight sandwich panels are realized in the free-free condition. The middle plane of

the sandwich panel is vertical and the panel is suspended with a very low eigenfrequency.

The measurements have been performed on the frequency band [10 , 6000] Hz. Nevertheless, the mean finite

element model developed allows only the low- and the medium-frequency bands to be analyzed. Therefore,

the frequency band of analysis considered in this paper is the band B = [10 , 4500] Hz corresponding to the

model validity of the mean finite element model. The input z-force is a point load applied to point N0

of coordinates (0.187, 0.103, 0)m. An electrodynamic shaker delivers a broad band signal. The output z-

accelerations are measured at 25 points by accelerometers. For the sake of briefness, the presentation is limited

to the 3 following points: N1 of coordinates (0.337, 0.103, 0)m, N2 of coordinates (0.112, 0.159, 0)m and N3 of

coordinates (0.337, 0.216, 0)m. The cross-frequency response functions are identified on frequency band B by

using the usual spectral analysis method and signal processing [3,4].
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4.2. Experimental cross frequency response functions

Figures 2, 3 and 4 display the graphs of the modulus of the experimental cross frequency response functions in

log scale for an input at point N0 (driven point) and a transversal acceleration output at points N1, N2 and N3,

respectively. There are 8 graphs on each figure corresponding to the 8 sandwich panels. The analysis of the 25

experimental cross frequency response functions on frequency band B = [10 , 4500] Hz (in which there are 60

elastic modes) shows a small dispersion in the frequency band [10 , 1550] Hz (in which there are 11 elastic modes)

and a significant dispersion, increasing with the frequencies, in the frequency band [1550 , 4500] Hz (in which

there are about 59 elastic modes). This can clearly be seen in figures 2, 3 and 4 relative to points N1, N2 and N3.
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Figure 2: Graphs of the 8 experimental cross FRF between point N0 and point N1 corresponding to the 8 sandwich

panels. Horizontal axis: frequency in Hertz. Vertical axis: log
10
of the modulus of the acceleration in m/s2.
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Figure 3: Graphs of the 8 experimental cross FRF between point N0 and point N2 corresponding to the 8 sandwich

panels. Horizontal axis: frequency in Hertz. Vertical axis: log
10
of the modulus of the acceleration in m/s2.
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Figure 4: Graphs of the 8 experimental cross FRF between point N0 and point N3 corresponding to the 8 sandwich

panels. Horizontal axis: frequency in Hertz. Vertical axis: log
10
of the modulus of the acceleration in m/s2.

4.3. Experimental modal analysis

For each sandwich panel, an experimental modal analysis [5,6] has been performed in the frequency band

[10 , 1550] Hz using the identified experimental frequency response functions (see Section 4.2). For each sandwich

panel r = 1, . . . , 8, eleven elastic modes have been identified in this frequency band. For sandwich panel r, the

following usualmodal parameters of each experimental elastic mode α has been identified: (1) the eigenfrequency

ω
exp
α (θr), (2) the damping rate ξ

exp
α (θr), (3) the elastic mode shape ψ

exp
α (θr) and the corresponding generalized

mass µ
exp
α (θr). Let ω

exp
α = (1/8)

∑8

r=1
ω
exp
α (θr) be the average experimental eigenfrequency α. Introducing

fexp
α

= ω
exp
α /(2 π), the results are

fexp
1

= 191.0 Hz , fexp
2

= 329.5 Hz , fexp
3

= 532.0 Hz , fexp
4

= 635.1 Hz .

For α = 1, . . . , 11, let ξexp
α

= (1/8)
∑

8

r=1
ξ
exp
α (θr) be the average experimental damping rate α and let ξexp =

(1/11)
∑

11

α=1
ξexp

α

be the global average experimental damping rate. The result is

ξexp = 0.01 .

5. Mean mechanical model of the dynamical system and experimental
comparisons

5.1. Mean finite element model

The designed panel is considered as a laminated composite thin plate forwhich each layer ismade of an orthotropic

elastic material in plane stress [7,8,9]. The elasticity constants of each layer are given in Section 2. Since we

are interested in the z-dispacement of the middle plane of the sandwich panel in the bending mode and since the

panel is a free structure, there are 3 rigid body modes. We are interested in the construction of the responses in

the frequency domain over the frequency band of analysis B. The designed panel is modeled by using a regular

finite element meshes constituted of 64×64 four-nodes finite elements for laminated plate bending. The damping

of the structure is introduced by an arbitrary usual model controlled by the modal damping rates (see section 5.2)

In frequency band B, the mean finite element model of linear vibrations of the free designed panel around a

position of static equilibrium taken as reference configuration without prestresses is written as

(

−ω2 [ ] + iω [!] + ["]
)

y(ω) = f(ω) , ω ∈ B , (1)

in which y(ω) = (y
1
(ω), . . . , y

m

(ω)) is the #m-vector of the m DOFs (displacements and rotations) and f(ω) =

(f
1
(ω), . . . , f

m

(ω)) is the #m-vector of the m inputs (forces and moments). The mean mass matrix [ ] is a
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positive-definite symmetric (m × m) real matrix. The mean damping and stiffness matrices [ ] and [!] are

positive-semidefinite symmetric (m × m) real matrices (free structure). Matrices [ ] and [!] have the same

null space having a dimension mrig = 3 and spanned by the rigid body modes { 
−2

, 
−1

, 
0
}. It is assumed

that the given deterministic load vector f(ω) is in equilibrium, i.e. is such that < f(ω) , 
1−β

>= 0 for all β in

{1, 2, 3}, in which, for all u and v in "m, < u , v>= u1 v1 + . . . + um vm. For all ω in B, Eq. (1) has a unique

solution y(ω) = [#(ω)] f(ω) in which [#(ω)] is the matrix-valued FRF (frequency response function) defined by

[#(ω)] = [$(ω)]−1 where [$(ω)] is the dynamic stiffness matrix such that

[$(ω)] = −ω2 [% ] + iω [ ] + [!] . (2)

5.2. Mean reduced matrix model

The mean reduced matrix model adapted to frequency band B is constructed by using the usual modal analysis

with the elastic modes of the associated conservative system. The generalized eigenvalue problem associated

with the mean mass and stiffness matrices of the mean finite element model is written as [! ] = λ [% ] .
Since [! ] is a positive-semidefinite matrix, we have λ

−2
= λ

−1
= λ

0
= 0 < λ

1
≤ λ

2
≤ . . . ≤ λm and the

associated elastic modes { 
1
, 

2
, . . .} corresponding to the strictly positive eigenvalues λ

1
, λ

2
, . . ., are such that

< [% ] 
β
, 

β′
>= µ

β
δββ′ and < [! ] 

β
, 

β′
>= µ

β
ω2

β δββ′ in which ωβ =
√

λβ is the eigenfrequency of elastic

mode  
β
whose normalization is defined by the generalized mass µ

β
. The mean reduced matrix model of the

dynamic system whose mean finite element model is defined by Eq. (1) is obtained by constructing the projection

of the mean finite element model on the subspace Vn of &m spanned by { 
1
, . . . , 

n
} with n ≪ m. Let [ Φn] be

the (m × n) real matrix whose columns are vectors { 
1
, . . . , 

n
}. The generalized force Fn(ω) is an "n-vector

such that Fn(ω) = [ Φn]T f(ω). The generalized mass, damping and stiffness matrices [ Mn], [ Dn] and [ Kn] are

positive-definite symmetric (n× n) real matrices such that [ Mn]ββ′ = µ
β

δββ′ , [ Dn]ββ′ =< [ ] 
β′

, 
β

> and

[ Kn]ββ′ = µ
β

ω2

β δββ′. In general, [ Dn] is a full matrix. Nevertheless, as explained in section 5.1, the damping

model is introduced in writing that [ Dn]ββ′ = 2 ξ
β

µ
β

ωβ δββ′ in which ξ
1
, . . . , ξ

n
are the mean modal damping

rates. The mean damping model is then chosen (see Section 4.3) such that

ξ
1

= . . . = ξ
n

= ξexp = 0.01 .

For frequency band B, the mean reduced matrix model of the dynamic system is written as the approximation

yn(ω) of y(ω) such that

yn(ω) = [Φn] qn(ω) , ω ∈ B , (3)

in which the "n-vector qn(ω) of the generalized coordinates is the unique solution of the mean reduced matrix

equation,
(

−ω2 [ Mn ] + iω [Dn] + [Kn]
)

qn(ω) = Fn(ω) , ω ∈ B , (4)

with Fn(ω) = [Φn]T f(ω) ∈ "n and where the mean generalized mass, damping and stiffness matrices are the

positive-definite symmetric (n × n) real diagonal matrices defined above.

5.3. Updating the conservative part of the mean model with the first experimental
eigeinfrequencies

The calculation of the first eigenfrequencies of the designed panel has been performed with the mean finite

element model (see Section 5.1) whose finite element mesh is made of 128 × 64 four-nodes finite elements and

for which all the mechanical parameters are defined in Section 2, in particular, for which, for each carbon-resine

ply,

ρ = 1600 Kg/m3 , Ex = 101 GPa , Ey = 6.2 GPa ,

For the designed panel, the first four computed eigenfrequencies are

f
1

= 176.4 Hz , f
2

= 344.8 Hz , f
3

= 499.7 Hz , f
4

= 651.2 Hz .

The mass and the stiffness matrices of the mean finite element model have been updated in order to minimize the

cost function

J(ρ, Ex, Ey) =
4

∑

β=1

|f
β
− fexp

β
| ,
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with respect to mass density ρ and to Young moduli Ex and Ey of each carbon-resin ply, where

fexp
1

= 191.0 Hz , fexp
2

= 329.5 Hz , fexp
3

= 532.0 Hz , fexp
4

= 635.1 Hz ,

are the average experimental eigenfrequencies defined in Section 4.3, and where all the other mechanical

parameters (except for ρ, Ex, Ey) take the values defined in Section 2. The updated values are:

ρupd = 1904 Kg/m3 , Eupd
x

= 103 GPa , Eupd
y

= 6.0 GPa ,

and yields for the first four updated eigenfrequencies,

fupd
1

= 191.7 Hz , fupd
2

= 332.8 Hz , fupd
3

= 529.5 Hz , fupd
4

= 630.8 Hz .

Below, the updated mechanical parameters are used instead of the values defined for the designed panel. The

designed panel with the updated mechanical constants will be named the updated designed panel associated with

the updated mean finite element model and the updated mean reduced matrix model.

5.4. Convergence with respect to the mesh size for the updated designed panel

A convergence of the cross frequency response functions of the updated designed panel has been performed with

respect to the size mesh of the finite element mesh. Figure 5 displays the graphs of the cross FRF between point

N0 and point N1 for the three finite element meshes: 32× 32 four-nodes finite elements, 64× 64 four-nodes finite

elements and 128× 64 four-nodes finite elements. All the results obtained, and in particular Figure 5, show that

the convergence with respect to the finite element mesh size is reasonable for 64× 64 four-nodes finite elements.
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Figure 5: Convergence of the cross frequency response function between point N0 and point N1 for three finite

element meshes: 32× 32 (thin solid line), 64× 64 ( thick solid line), 128× 64 (thin dashed line). Horizontal axis:

frequency in Hertz. Vertical axis: log10 of the modulus of the acceleration in m/s2.

5.5. Convergence of the updatedmean reducedmatrixmodel with respect to the number
of elastic modes

The convergence with respect to the dimension of the updated mean reduced matrix model is analyzed in studing

the graph of the L2-norm in space (over all the middle plane of the sandwich panel) and in frequency (over all

the frequency band of analysis B) of the z-acceleration response for a unit input applied to point N0. Figure 6

displays the graph of this norm versus the dimension of the updated mean reduced matrix model, that is to say,

versus the number of elastic modes. Tha convergence is reached for n = 120.
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Figure 6: Convergence of the L2-norm in space and in frequency of z-acceleration response (vertical axis) versus

the dimension of the updated mean reduced matrix model (horizontal axis).

5.6. FRF calculation with the updated mean reduced matrix model and experimental
comparisons

The cross frequency response functions are calculated by using Eqs. (3) and (4) (updated mean reduced matrix

model) with n = 200. Figures 7, 8 and 9 display the graphs of the modulus of the experimental and numerical

cross frequency response functions in log scale for an input at point N0 (driven point) and a z-acceleration

output at points N1,N2 and N3, respectively. There are 9 graphs on each figure: 8 graphs correspond to the

experimental cross-frequency response functions associated with the 8 sandwich panels and 1 graph corresponds

to the numerical cross-frequency response function computed with the updated mean reduced matrix model.

The comparisons of the experimental cross frequency response functions with those constructed with the updated

mean finite element model are reasonably good in the frequency band [0, 1500] Hz and are relatively bad in

[1500 , 4500] Hz. In the frequency band [1500, 4500] Hz, the lack of predictability is increasing with the frequency

and is mainly due to data uncertainties (mechanical parameters) and to model uncertainties (modeling the

sandwich panel by using the laminated composite thin plate theory).
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Figure 7: Graphs of the cross FRF between pointN0 and pointN1. Horizontal axis: frequency in Hertz. Vertical

axis: log
10
of the modulus of the acceleration in m/s2. Experimental cross FRF corresponding to the 8 panels (8

thin solid lines). Numerical cross FRF calulated with the updated mean reduced matrix model (thick solid line)

UNCERTAINTIES IN STRUCTURAL DYNAMICS AND ACOUSTICS 3001



500 1000 1500 2000 2500 3000 3500 4000 4500
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Figure 8: Graphs of the cross FRF between pointN0 and pointN2. Horizontal axis: frequency in Hertz. Vertical

axis: log
10
of the modulus of the acceleration in m/s2. Experimental cross FRF corresponding to the 8 panels (8

thin solid lines). Numerical cross FRF calulated with the updated mean reduced matrix model (thick solid line)

500 1000 1500 2000 2500 3000 3500 4000 4500
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Figure 9: Graphs of the cross FRF between pointN0 and pointN3. Horizontal axis: frequency in Hertz. Vertical

axis: log
10
of the modulus of the acceleration in m/s2. Experimental cross FRF corresponding to the 8 panels (8

thin solid lines). Numerical cross FRF calulated with the updated mean reduced matrix model (thick solid line)

6. Nonparametric Model of Random Uncertainties

The nonparametric model of random uncertainties has been introduced in Ref. [1]. The construction of the

nonparametric model of random uncertainties in the frequency bandB consists in modeling the generalizedmass,

damping and stiffness matrices of the mean reduced matrix model defined by Eqs. (3) and (4) by randommatrices

[Mn], [Dn] and [Kn]. Consequently, the nonparametric model of random uncertainties in frequency band B is

written as

Yn(ω) = [Φ
n
]Qn(ω) , (5)

in which, for all ω fixed in B, the  n-valued random variable Qn(ω) of the random generalized coordinates is the

unique solution of the random reduced matrix equation,

(

−ω2 [Mn] + iω [Dn] + [Kn]
)

Qn(ω) = Fn(ω) , ω ∈ B . (6)
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From Refs. [1,2], these random matrices are written as

[Mn] = [LMn
]T [GMn

] [LMn
] , (7)

[Dn] = [LDn
]T [GDn

] [LDn
] , (8)

[Kn] = [LKn
]T [GKn

] [LKn
] , (9)

in which the positive-definite (n×n) real diagonal matrices [LMn
], [LDn

] and [LKn
] are such that [ Mn ] = [LMn

]2,

[Dn] = [LDn
]2 and [Kn] = [LKn

]2. The full random matrices [GMn
], [GDn

] or [GKn
] are mutually independent

and the dispersion of random matrices [GMn
], [GDn

] and [GKn
] are controlled by the positive real parameters δM ,

δD and δK which are independent of dimension n and do not depend on frequency ω. If An denotes Mn, Dn or

Kn, then the dispersion parameter δA of random matrix [An] is defined by

δA =

{

1

n
‖ [GAn

] − [In] ‖2
F

}1/2

, (10)

in which ‖[ H ]‖F is the Frobenius norm of real matrix [ H ] such that ‖[ H ]‖2
F = tr{[ H ]T [ H ]} and then, the

random matrix [GAn
], with dispersion parameter δA, is defined by

[GAn
] = [LAn

]T [LAn
] , (11)

in which [LAn
] is an upper triangular random (n×n) real matrix such that the random variables {[LAn

]jj′ , j ≤ j′}

are mutually independent and such that

(1) for j < j′, real-valued random variable [LAn
]jj′ is written as [LAn

]jj′ = σnUjj′ in which σn = δA(n + 1)−1/2

and where Ujj′ is a real-valued Gaussian random variable with zero mean and variance equal to 1;

(2) for j = j′, positive-valued random variable [LAn
]jj is written as [LAn

]jj = σn

√

2Vj in which σn is defined

above and where Vj is a positive-valued gamma random variable whose probability density function pVj
(v) with

respect to dv is written as pVj
(v) =   +(v){Γ(n+1

2δ2
A

+ 1−j
2

)}−1 v
n+1

2δ2
A

−
1+j
2

e−v.

7. Experimental estimation of the dispersion parameters for the
nonparametric probabilistic model

Let δM , δD and δK be the dispersion parameters of the random generalized mass, damping and stiffness matrices.

Since the dispersion parameters have to be independent of n (see Section 6), the dispersion parameters can be

estimated by using the experimentalmatrices [ M
exp
ν (θr)], [ D

exp
ν (θr)] and [ K

exp
ν (θr)] for r = 1, . . . , 8 corresponding

to the 8 experimental sandwich panels, and for a dimension ν < n. Here, a very simple procedure is proposed

for estimating δM , δD and δK (this procedure corresponds to the first step of the procedure based on the

maximum likelihood principle and developed in Ref. [10]. The first step of this procedure consists in associating

the ν first elastic modes computed with the updated mean finite element model, with the corresponding ν

experimental elastic modes obtained by performing the experimental modal analysis [5,6] of each sanswich

panel. Let 0 < ω
exp
j1

(θr) ≤ . . . ≤ ω
exp
jν

(θr) be the set of the ν experimental eigenfrequencies of sandwich panel r,

corresponding to the set of the ν first eigenfrequencies 0 < ω1 ≤ . . . ≤ ων computed with the updated mean finite

element model. The same set of degrees of freedom for the mean finite element model and for the experimental

sandwich panels is considered (25 observations).

For each sandwich panel r = 1, . . . , 8, the association of the first experimental elastic modes ordered with

increasing eigenfrequencies (which means that j1 = 1, . . . , jν = ν), with the first elastic modes computed with

the updated mean finite element model and ordered with increasing eigenfrequencies, has been performed using

the [MAC(θr)] matrix defined by

[MAC(θr)]αβ =
<  

β
,!expα (θr)>

2

<  
β

, 
β

>< !expα (θr) ,!expα (θr) >
,

in which  
β
is the elastic mode of the updated mean finite element model whose eigenfrequency is ωβ and

where !expα (θr) is the experimental elastic mode of sandwich panel r whose eigenfrequeny is ω
exp
α (θr). Figure 10

displays the graph (α, β) '→ [MAC(θr)]αβ for a given r. A similar figure is obtained for any other sandwich panel.

Figure 10 shows that the diagonal terms are dominant which means that there is a good correlation between any

experimental elastic mode and the numerical elastic mode having the same order.

UNCERTAINTIES IN STRUCTURAL DYNAMICS AND ACOUSTICS 3003



0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 4 6 8 10
1

2

3

4

5

6

7

8

9

10

11

Figure 10: Graph of (α, β) !→ [MAC(θr)]αβ . Horizontal axis: α (rank of the experimental elastic modes). Vertical

axis: β (rank of the elastic modes computed with the updated mean reduced matrix model). Dark diagonal terms:

MAC between 0.77 and 0.98. Grey extradiagonal terms: MAC between 0.06 and 0.1. White extradiagonal terms:

MAC less than 0.03.

Thus, for a given set of m degrees of freedom, let [Ψ
exp
ν (θr)] be the (m × ν) real matrix whose columns are

the ν elastic modes of experimental sandwich panel r associated with the first experimental eigenfrequencies

0 < ω
exp
1

(θr) ≤ . . . ≤ ω
exp
ν (θr) and let [Φν ] be the (m× ν) real matrix whose columns are the ν first elastic modes

calculated with the updated mean finite element model and associated with eigenfrequencies 0 < ω1 ≤ . . . ≤ ων .

Let [ M̃
exp
ν (θr)], [ D̃

exp
ν (θr)] and [ K̃

exp
ν (θr)] be the corresponding experimental generalized mass, damping and

stiffness matrices of experimental sandwich panel r directly deduced from the experimental modal analysis

and such that [ M̃
exp
ν (θr)]αα′ = µ

exp
α (θr)δαα′ , [ D̃

exp
ν (θr)]αα′ = 2ξ

exp
α (θr)µ

exp
α (θr)ω

exp
α (θr)δαα′ and [ K̃

exp
ν (θr)]αα′ =

µ
exp
α (θr) (ω

exp
α (θr))

2δαα′ . Let [Mν ], [Dν ] and [Kν ] be the randommatrices associatedwith themean reducedmatrix

model of dimension ν and defined in Section 6. Since the experimental elastic modes differ from the elastic modes

constructed with the updated mean finite element model (due to uncertainties), matrices [ M̃
exp
ν (θr)], [ D̃

exp
ν (θr)]

and [ K̃
exp
ν (θr)] are not represented in the same vector subspace than [Mν ], [Dν ] and [Kν ] (or equivalently than

[ Mν ], [ Dν ] and [ Kν ]). However, it can be written that

[Ψexp
ν (θr)] q̃

exp(θr) = [Φν ] qexp(θr) , (12)

in which q̃exp(θr) is the  m-vector of the experimental generalized coordinates and where qexp(θr) is the

corresponding  m-vector of the generalized coordinates in the mean-model basis. By construction, the matrix

[Ψ
exp
ν (θr)]

T [Ψ
exp
ν (θr)] ∈ !ν(") is invertible. Introducing the left pseudo-inverse

(
[Ψ

exp
ν (θr)]

T [Ψ
exp
ν (θr)]

)
−1

[Ψ
exp
ν (θr)]

T ∈ !ν,m(") of [Ψ
exp
ν (θr)] ∈ !m,ν("), Eq. (12) yields

q̃exp(θr) = [Sexpν (θr)] q
exp(θr) , (13)

in which the matrix [S
exp
ν (θr)] ∈ !ν(") is written as

[Sexpν (θr)] =
(
[Ψexp

ν (θr)]
T [Ψexp

ν (θr)]
)
−1

[Ψexp
ν (θr)]

T [Φν ] . (14)

The matrix transformation defined by Eqs. (13)-(14) allows the experimental matrices [M̃
exp
ν (θr)], [D̃

exp
ν (θr)] and

[K̃
exp
ν (θr)] to be transformed into the matrices [M

exp
ν (θr)], [D

exp
ν (θr)] and [K

exp
ν (θr)], which are defined by

[Mexp
ν (θr)] = [Sexpν (θr)]

T [M̃exp
ν (θr)] [S

exp
ν (θr)] ∈ !+

ν (")

[Dexp
ν (θr)] = [Sexpν (θr)]

T [D̃exp
ν (θr)] [S

exp
ν (θr)] ∈ !+

ν (")

[Kexp
ν (θr)] = [Sexpν (θr)]

T [K̃exp
ν (θr)] [S

exp
ν (θr)] ∈ !+

ν (") . (15)
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Noting A as M , D or K, we can then introduce the matrix [G
exp
ν (θr)] ∈  +

n (!) such that [A
exp
ν (θr)] =

[LAν

]T [G
exp
ν (θr)] [LAν

] in which the invertible upper triangular matrix [LAν

] ∈  ν(!) is such that [Aν ] =

[LAν

]T [LAν

] ∈  +
n (!). Therefore, matrix [G

exp
ν (θr)] is given by the equation,

[Gexp
ν (θr)] = [LAν

]−T [Aexp
ν (θr)] [LAν

]−1 ∈  +
ν (!) . (16)

Consequently, 8 realizations {[G
exp
ν (θr)], r = 1, . . . , 8} of random matrix [Gν ] defined by Eq. (11) have effectively

been constructed. The dispersion parameter δA of randommatrix [An] being defined by Eq. (10), for a fixed value

of ν, we introduce the parameter δA(ν), depending on ν, such that

δA(ν) =

{

1

8ν

8
∑

r=1

‖ [Gexp
ν (θr)] − [Iν ] ‖2

F

}1/2

. (17)

Since δA(ν) is an increasing function of ν for large values of ν due to the inscreasing of random uncertainties

with the frequencies, the dispersion parameter δA of random matrix [An] is then defined by

δA = min
ν≥2

δA(ν) . (18)

Figure 11 displays the graphs of functions ν &→ δM (ν), ν &→ δD(ν) and ν &→ δK(ν). It can be seen that the minima

are obtained for ν = 5 and consequently, Eq. (18) yields δM = 0.23, δD = 0.43 and δK = 0.25 for randommatrices

[Mn], [Dn] and [Kn] (these values are independent of dimension n of the random reduced matrix model).
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Figure 11: Graphs of functions ν &→ δM (ν)(solid line), ν &→ δD(ν) (dashdot line) and ν &→ δK(ν) (dashed line).

Horizontal axis: ν. Vertical axis: δ.

8. Confidence region prediction for the FRF and experimental comparisons

8.1. Confidence region prediction with the nonparametric probabilistic model

We are interested in the construction of the confidence region associated with a probability level Pc = 0.98 for

the modulus of the random cross frequency response functions between point N0 and points N1, N2 and N3.

Let ω &→ W (ω) = | − ω2Yn
k (ω)| in which k is the degree of freedom corresponding to the z-displacement at point

N1, N2 and N3, and where Yn(ω) is the random vector given by Eqs. (5) and (6). This confidence region is

constructed by using the quantiles. For ω fixed inB, let FW (ω) be the cumulative distribution function (continuous

from the right) of random variable W (ω) which is such that FW (ω)(w) = P (W (ω) ≤ w) . For 0 < p < 1, the pth

quantile or fractile of FW (ω) is defined as

ζ(p) = inf{w : FW (ω)(w) ≥ p} . (19)
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Then, the upper envelope w+(ω) and the lower envelope w−(ω) of the confidence region are defined by

w+(ω) = ζ(1 − Pc) , w−(ω) = ζ(Pc) . (20)

The estimation of w+(ω) and w−(ω) is performed by using the sample quantiles [11]. Let w1(ω) = W (ω; θ1), . . . ,

wns
(ω) = W (ω; θns

) be the ns independent realizations of random variableW (ω) associated with the independent

realizations θ1, . . . , θns
. Let w̃1(ω) < . . . < w̃ns

(ω) be the order statistics associated with w1(ω), . . . , wns
(ω).

Therefore, one has the following estimation

w+(ω) ≃ w̃j+(ω) , j+ = fix(ns(1 − Pc)) , (21)

w−(ω) ≃ w̃j−(ω) , j− = fix(nsPc) , (22)

in which fix(z) is the integer part of the real number z.

The confidence region of the random cross frequency response functions are calculated by using Eqs. (5)-

(11) and (21)-(22). Random Eqs. (5) and (6) are solved by using the Monte Carlo numerical simulation with ns

realizations. The realizationQn(ω; aℓ) of the  n-valued random variableQn(ω) is the solution of the deterministic

matrix equation

(
−ω2 [Mn(aℓ)] + iω [Dn(aℓ)] + [Kn(aℓ)]

)
Qn(ω; aℓ) = Fn(ω) , ω ∈ B . (23)

in which [Mn(aℓ)], [Dn(aℓ)] and [Kn(aℓ)] are the realizations of the random matrices [Mn], [Dn] and [Kn] respec-

tively. The convergence of the random solution of Eq. (6) with respect to the number ns of realizations can be

analyzed in studying the mapping

ns $→ conv(ns) =
1

ns

ns∑

ℓ=1

∫

B

‖Qn(ω; aℓ)‖
2 dω , (24)

in which Qn(ω; a1), . . . ,Q
n(ω; ans

) are the ns realizations of the  n-valued random variable Qn(ω). Figure 12

displays the graph of the function ns $→ conv(ns) for n = 200. The convergence is reached for ns = 1200.
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Figure 12: Convergence of the random solution with respect to the number of realizations: Graph of function

ns $→ conv(ns). Horizontal axis: ns. Vertical axis: conv(ns).

8.2. Prediction and experimental comparison

Figures 12, 13 and 14 display the confidence region prediction for the random cross frequency response functions

between point N0 and points N1, N2 and N3 respectively, calculated with ns = 2000 realizations and n = 200.

These figures show how the experimental cross FRF corresponding to the 8 panels are positioned with respect to

this confidence region. In addition, each figure displays the graph of the numerical cross FRF calculated with the
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updated mean reduced matrix model and the graph of the mean value of the random cross FRF calculated with

the nonparametric probabilistic model.
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Figure 12: Confidence region prediction for the random cross FRF between point N0 and point N1. Horizontal

axis: frequency in Hertz. Vertical axis: log
10
of the modulus of the acceleration in m/s2. Experimental cross

FRF corresponding to the 8 panels (8 thin solid lines). Numerical cross FRF calculated with the updated

mean reduced matrix model (thick solid line). Mean value of the random cross FRF calculated with the

nonparametric probabilistic model (thin dashed line). Confidence region of the random cross FRF calculated

with the nonparametric probabilistic model (grey region).
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Figure 13: Confidence region prediction for the random cross FRF between point N0 and point N2. Horizontal

axis: frequency in Hertz. Vertical axis: log
10
of the modulus of the acceleration in m/s2. Experimental cross

FRF corresponding to the 8 panels (8 thin solid lines). Numerical cross FRF calculated with the updated

mean reduced matrix model (thick solid line). Mean value of the random cross FRF calculated with the

nonparametric probabilistic model (thin dashed line). Confidence region of the random cross FRF calculated

with the nonparametric probabilistic model (grey region).
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Figure 14: Confidence region prediction for the random cross FRF between point N0 and point N3. Horizontal

axis: frequency in Hertz. Vertical axis: log
10
of the modulus of the acceleration in m/s2. Experimental cross

FRF corresponding to the 8 panels (8 thin solid lines). Numerical cross FRF calculated with the updated

mean reduced matrix model (thick solid line). Mean value of the random cross FRF calculated with the

nonparametric probabilistic model (thin dashed line). Confidence region of the random cross FRF calculated

with the nonparametric probabilistic model (grey region).

9. Conclusions

The experimental results obtained for a set of 8 light sandwich panels show the sensitivity of the dynamical

response of the panels in the medium-frequency range. Such sandwich panels have to be considered as complex

dynamical systems in themedium-frequency range. The use of the simplified usual laminated composite thin plate

theory, for constructing the predictive dynamical mean model, introduces significant model uncertainties. Since

such dynamical systems are very sensitive to uncertainties and taking into account the presence of data and model

uncertainties in the mean mechanical model, the introduction of a probabilistic model of random uncertainties is

necessary to improve the predictability of the mean model. A nonparametric probabilistic approach for modeling

random uncertainties is used. Amethodology is proposed to indentify the dispersion parameters of the probability

model of the generalized mass, damping and stiffness full random matrices. The confidence regions of the cross

frequency response functions of the stochastic systems are then constructed and are compar(ed to the experimental

cross frequency response functions for the 8 sandwich panels. The prediction compared with the experiments is

good enough.
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