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Abstract 

Background:  Wild populations of Anopheles mosquitoes are generally thought to mate outdoors in swarms, 
although once colonized, they also mate readily inside laboratory cages. This study investigated whether the malaria 
vectors Anopheles funestus and Anopheles arabiensis can also naturally mate inside human dwellings.

Method:  Mosquitoes were sampled from three volunteer-occupied experimental huts in a rural Tanzanian village at 
6:00 p.m.  each evening, after which the huts were completely sealed and sampling was repeated at 11:00 p.m and 
6 a.m. the next morning to compare the proportions of inseminated females. Similarly timed collections were done 
inside local unsealed village houses. Lastly, wild-caught larvae and pupae were introduced inside or outside experi-
mental huts constructed inside two semi-field screened chambers. The huts were then sealed and fitted with exit 
traps, allowing mosquito egress but not entry. Mating was assessed in subsequent days by sampling and dissecting 
emergent adults caught indoors, outdoors and in exit traps.

Results:  Proportions of inseminated females inside the experimental huts in the village increased from approxi-
mately  60% at 6 p.m. to approximately 90% the following morning despite no new mosquitoes entering the huts after 
6 p.m. Insemination in the local homes increased from approximately 78% to approximately 93% over the same time 
points. In the semi-field observations of wild-caught captive mosquitoes, the proportions of inseminated An. funestus 
were 20.9% (95% confidence interval [CI]: ± 2.8) outdoors, 25.2% (95% CI: ± 3.4) indoors and 16.8% (± 8.3) in exit traps, 
while the proportions of inseminated An. arabiensis were 42.3% (95% CI: ± 5.5) outdoors, 47.4% (95% CI: ± 4.7) indoors 
and 37.1% (CI: ± 6.8) in exit traps.

Conclusion:  Wild populations of An. funestus and An. arabiensis in these study villages can mate both inside and 
outside human dwellings. Most of the mating clearly happens before the mosquitoes enter houses, but additional 
mating happens indoors. The ecological significance of such indoor mating remains to be determined. The observed 
insemination inside the experimental huts fitted with exit traps and in the unsealed village houses suggests that the 
indoor mating happens voluntarily even under unrestricted egress. These findings may inspire improved vector con-
trol, such as by targeting males indoors, and potentially inform alternative methods for colonizing strongly eurygamic 
Anopheles species (e.g. An. funestus) inside laboratories or semi-field chambers.
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Background
Members of the Anopheles gambiae complex and Anoph-
eles funestus group mediate the majority of malaria 
parasite infections in many parts of sub-Saharan Africa 
[1–4], where 94% of all malaria deaths and 93% of all 
cases occurred in 2019 [5]. Countries in this region rely 
mostly on the use of insecticide-treated nets (ITNs), 
indoor residual spraying (IRS), as well as effective case 
management and behavior change communication strat-
egies to control malaria [6, 7]. These interventions have 
played a major role in reducing the burden of malaria in 
the past decades, with vector control interventions con-
tributing to the majority of the success [8–11]. Unfor-
tunately, recent evidence indicates that progress against 
malaria is plateauing and that gains may be lost [6].

While the major vector control tools, ITNs and IRS, 
primarily target mosquitoes that bite and rest indoors 
[12–15], it is widely accepted that additional tools target-
ing other aspects of the mosquito life-cycle will be impor-
tant to further drive progress against malaria [16–18]. 
One of the opportunities for designing new approaches 
or optimizing current ones is through an improved 
understanding of the reproductive behaviors of mosqui-
toes. For example, a greater understanding of mosquito 
swarming and mating can enable improved targeting of 
male mosquitoes [19]. Technologies such as sterile insect 
techniques (SIT) [20], genetic modification of mosqui-
toes (GMM) [21] and space spraying of mosquito swarms 
[19, 22] are some of the interventions that exploit the 
mating behavior of mosquitoes. In Burkina Faso, space 
spraying of mosquito swarms reduced mosquito popula-
tions by up to 80% in the intervention village [19].

Both GMM and SIT have been explored to varying 
degrees for impact on different insect and pest popula-
tions [23–25]. Their successes can be greatly improved if 
the behaviors of both male and female insects are inves-
tigated and exploited. In addition, some of the com-
plementary tools currently being evaluated, notably 
attractive targeted sugar baits (ATSBs) [26–28], could 
also be improved by possibly targeting both male and 
female mosquitoes inside and outside houses.

Like many other diptera, mosquito mating occurs 
mostly in swarms outside homes [29], where groups of 
male mosquitoes, usually of the same species, aggregate 
at specific times and places [30]. Several minutes after 
mosquito swarming begins, females join the swarm to 
seek a mate and leave in copula [22]. Mosquito swarm-
ing is thought to be mediated by the circadian rhythm 
of male mosquitoes [31, 32] and the presence of specific 

environmental markers in a particular locality [33, 34]. 
Recent evidence shows that this behavior might also be 
mediated by specific aggregation pheromones produced 
by male mosquitoes [35].

While Anopheles swarms often occur outdoors in open 
spaces at dusk [36–38], during recent collections of rest-
ing mosquitoes in south-eastern Tanzania, large numbers 
of male Anopheles were observed resting inside houses at 
dusk, at a time the males are supposedly in swarms (BJ 
Msugupakulya, unpublished). In a separate study, swarms 
of An. funestus were observed very close to human 
houses (often at the level of eaves) [36], unlike those of 
An. arabiensis which tended to occur mostly at the edge 
of the villages [33]. An experimental hut observation in 
west Africa found that the daily insemination rates were 
approximately 5% higher in exit traps than entry traps, 
implying that some limited mating could occur indoors 
independent of outdoor swarms [39].

In addition to advancing vector control, a greater 
understanding of Anopheles mating could also improve 
capabilities for colonizing some of the species that are 
otherwise difficult to rear inside laboratories. One par-
ticular example is An. funestus, which dominates malaria 
transmission in several east and southern Africa zones [3, 
40–43], yet there have been only two successful labora-
tory colonies using field-collected material from Mozam-
bique and Angola [44]. Recent evidence from attempted 
colonization has highlighted mating as one of the bot-
tlenecks to colonization [45]. Studying the conditions of 
successful mating both outdoors in the wild and in cap-
tivity could improve rearing of these and other eurygamic 
mosquito species.

In the present study, we therefore, investigated indoor 
and outdoor insemination rates in major malaria vec-
tors (An. funestus and An. arabiensis) under both field 
and semi-field conditions, to inform new opportunities 
for improving their control and also to improve efforts to 
colonize various Anopheles species for laboratory studies.

Methods
Study sites
This study was implemented in four phases in the field 
and semi-field environments. The field studies were 
conducted in south-eastern Tanzania, in five villages 
located in Ulanga district, namely Kivukoni (– 8.2021°S, 
36.6961°E), Minepa (– 8.1455°S, 36.4244°E), Tulizamoyo 
(− 8.3669°S, 36.7336°E), Kilisa (– 8.3721°S, 36.5584°E) and 
Ruaha (– 8.9068°S, 36.7185°E), and in two villages located 
in Kilombero district, Sululu (– 7.9973°S, 36.8317°E) and 
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Ikwambi (– 7.9833°S, 36.8184°E) (Fig.  1). The principal 
malaria vectors in the area are An. arabiensis, and An. 
funestus [40, 41, 46, 47]. Several other anophelines and 
some culicine mosquito species are also present in the 
study area. The semi-field experiments were conducted 
inside large screen house compartments at the Mosquito 
City facility maintained by Ifakara Health Institute in 
Kining’ina village (– 8.1080°S, 36.6668°E) in Kilombero 
district. These semi-field systems were designed to mimic 
the natural environment, and have built-in experimental 
huts for controlled mosquito studies [48].

Study procedures
The four study phases included: (i) assessment of indoor 
resting densities of male Anopheles mosquitoes relative 

to females in different house types; (ii) observations of 
insemination status of wild-caught female mosquitoes at 
different times of night inside volunteer-occupied experi-
mental huts in the village; (iii) field observations to assess 
whether wild mosquitoes’ mate before or after entering 
local houses occupied by residents; and (iv) semi-field 
observations of wild-caught mosquitoes inside large 
screen house chambers to verify and quantify the insemi-
nation rates inside and outside experimental huts under 
controlled settings.

Observations of male mosquitoes resting inside different 
types of houses
Mosquito collections were conducted in 80 houses in the 
four study villages (Fig. 1), targeting four common house 

Fig. 1  Map of Kilombero and Ulanga districts showing the locations where experiments were conducted
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types, namely: (i) 20 houses with thatched roofs and mud 
walls; (ii) 20 houses with thatched roofs and unplastered 
brick walls; (iii) 20 houses with metal roofs and unplas-
tered brick walls; and (iv) 20 houses with metal roofs 
and plastered brick walls. Inside the houses, mosquitoes 
were collected from all potential resting surfaces using 
Prokopack aspirators (John W. Hock Company, Gaines-
ville, FL, USA) to obtain total numbers of mosquitoes 
resting inside each house. Initially, mosquito collections 
were conducted only in the morning, separated into early 
morning (7–9 a.m.) and late morning (9–12 a.m.) collec-
tions, but additional collections  were subsequently per-
formed in the early evening (6–20 p.m.) and late at night 
(12 midnight–2 a.m.), as previously described by Msugu-
pakulya et al.[49].

Observations of insemination in wild mosquitoes caught 
inside volunteer‑occupied experimental huts
This experiment was conducted in Tulizamoyo vil-
lage using three volunteer-occupied experimental huts 
constructed for the study, as shown in Fig. 2. The same 
volunteers were used throughout the study, and each 
volunteer was allocated his own sleeping room (always 
the same room) for the duration of the study. These 
tent-styled huts consisted of easy-to-seal eave spaces 
and screened windows, and were located near other vil-
lage houses used by residents (Fig. 2). During the study, 
the eave spaces remained open during the daytime 
(7 a.m. to 6 p.m.) to allow mosquito entry, and  were 
closed at 6 p.m. Trained volunteers entered each exper-
imental hut just before the huts were closed at 6 p.m. 
and collected mosquitoes using a Prokopack aspirator 
from multiple indoor surfaces for a total of 5 min each 
time. Without re-opening the huts after their closure at 

6 p.m., follow-up collections were done at 11 p.m. and 
again at 6 a.m. the following morning, after which the 
huts were then re-opened. At each of these time points, 
the sampling was done at multiple locations inside the 
huts. In between collections, the volunteers slept under 
untreated nets inside the huts.

We hypothesized that the proportions of inseminated 
females would stay either similar (if no additional mat-
ing happened indoors after hut closures at 6 p.m.) or 
increase (if there was additional mating after 6 p.m.). 
Collected mosquitoes were kept in labeled cups and 
transferred to the laboratory for morphological identi-
fication and assessment of their insemination status.

The sampled female mosquitoes were initially identi-
fied using morphological keys for Afrotropical Anoph-
eles mosquitoes [50, 51]. Anopheles funestus and An. 
arabiensis were dissected under a stereomicroscope. 
The seventh segment of immobilized mosquitoes was 
dissected to extract spermathecae, which were exam-
ined under a light microscope with a 10× magnification 
lens for insemination status. Female mosquitoes with 
filled long threads of coiled brown spermatheca were 
considered to be inseminated while those with clear 
and non-striated spermathecae were considered to be 
non-inseminated [52]. This study was conducted for 14 
consecutive nights in the first round.

After the first round, the experiment was repeated 
for another 10 consecutive nights using the same pro-
cedures as described above, with the exception that all 
mosquitoes were immobilized by freezing in portable 
cooler boxes immediately after collection to avoid any 
possible mating that could happen inside the holding 
cups.

Fig. 2  Experimental huts where mosquitoes were collected for assessment of insemination status of mosquitoes at different times points during 
the evening, night and following morning. a Eave spaces open to allow mosquito entry, b eave spaces closed for collection
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Observation of insemination in wild female mosquitoes 
caught from local houses in the study village
An additional experiment to assess the insemination of 
malaria vectors was performed for 5 nights using natu-
ral houses where people live in the study village. Three 
thatched-roof and three iron roof houses, all of which 
were occupied by residents of the villages, were used for 
this experiment. During this phase of the experiment, the 
eaves were left open to allow mosquitos to freely enter 
and exit the dwellings. At  6 p.m. and 11 p.m. on the same 
evening and at 6 a.m. the following morning, mosquitoes 
were collected using Prokopack aspirators and immobi-
lized immediately in the cooler box with ice packs to pre-
vent any potential mating activity inside the holding cups 
and during transportation. These wild-caught mosqui-
toes were then transported to the insectary, and females 
were assessed for their insemination status as described 
above.

Observations of insemination in wild‑caught mosquitoes 
maintained under semi‑field conditions
The semi-field system consisted of large multi-cham-
bered screen houses with netting walls, enclosing village-
like ecosystems of vegetation and water puddles [48]. 
Each chamber (9.6 × 9.6 m) had an experimental hut con-
structed to mimic the design of typical local houses used 
in rural Tanzania (Fig. 3). Three chambers were used for 
this study. The experimental huts in the selected cham-
bers were completely sealed with mosquito netting on 
the eave spaces, but the windows were fitted with win-
dow exit traps to catch any mosquitoes attempting to exit 
the huts. With this design, mosquitoes inside the huts 
could attempt to exit (and be trapped in the window exit 
traps) but those outside could not enter the huts (since 
all eave openings were screened, doors were closed and 
windows were covered with the exit traps). For additional 

control, the doors were fitted with overlapping net cur-
tains to prevent mosquitoes from flying in or out when-
ever someone entered.

Field collections of third and fourth instar Anopheles 
larvae were performed using a combination of standard 
350-ml dippers (for small habitats) and 10-L buckets 
(for large habitats) to maximize densities, as previously 
described by Nambunga et  al. [53]. The larvae were 
sorted, and only Anopheles larvae were used for further 
observations. The larvae were maintained in rearing 
basins and fed daily on TetraMin® fish food (Tetra, Melle, 
Germany) until they reached the pupae stage.

For each batch of field-collected mosquitoes, the pupae 
were divided into two approximately equal-sized groups, 
one of which was put inside the experimental hut in the 
semi-field chamber, and the second group placed outside 
the hut. No sex separation of the mosquitoes was done, 
so each group of pupae yielded both male and female vir-
gins. This experimental set-up was replicated in three dif-
ferent semi-field chambers, each with a similar-sized hut. 
The field collections were repeated weekly for 12 months, 
each time adding approximately half of the pupae inside 
and half outside the huts in each of the three chambers. 
Inside the experimental chambers, a 10% glucose solution 
soaked in cotton wool was provided as a source of energy 
for the emerging mosquitos. Emerged adult mosquitoes 
were recaptured twice weekly from inside and outside the 
huts (using human landing catches) as well as in the exit 
traps fitted to the hut windows. The recaptured female 
mosquitoes were kept in labeled cups and immediately 
assessed for insemination by dissecting and observing the 
spermatheca as described above. The observations were 
done immediately after collections in order to minimize 
the likelihood of mosquitoes mating inside the collection 
cups.

Molecular identification of An. funestus sibling species
A subsample of An. funestus collected from the field and 
those emerged adults in the semi-field experiments were 
packed individually in microcentrifuge tubes containing 
silica gel. The samples were transported to the molecu-
lar laboratory at Ifakara Health Institute for sibling spe-
cies identification using PCR as described by Koekemoer 
et al. [54].

Statistical analyses
Data were analyzed using the open-source statistical soft-
ware R version 3.6.0 [55]. Proportions and means were 
used for initial descriptive statistics of mosquitoes in dif-
ferent categories, and mean outcomes were calculated for 
each explanatory variable. In the first field survey, gener-
alized linear mixed effect models (glmer), with a negative 
binomial distribution to account for overdispersion with 

Fig. 3  Experimental hut constructed inside the semi-field chambers 
and fitted with window exit traps
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interaction terms (house types and collection time), were 
used to assess mean number and variations of male mos-
quitoes collected inside different house types and at dif-
ferent collection times, i.e. early morning (7–9 a.m.), late 
morning (9 a.m. to 12 noon), evening (6–8 p.m.) and late 
evening/early nighttime (12 midnight to 2 a.m.). Random 
variables included in these models were the experimen-
tal round (one round involved collecting mosquitoes in 
each study house until collections had been performed 
in all study houses in each village) and household nested 
within villages. Additionally, pairwise comparisons were 
performed using Tukey’s Honestly Significant Difference 
test with functions provided in the multcomp packages in 
R software.

To compare the proportion of inseminated and non-
inseminated mosquitoes per time, glmer models with 
binomial distribution and logit functions were used. For 
the observations of wild mosquitoes in the village, the 
proportion of inseminated and non-inseminated females 
was modeled as a function of time of mosquito sampling, 
i.e. evening (6 p.m.), nighttime (11 p.m.) and early morn-
ing (6 a.m.). The sampling date and hut identifier were 
included as random variables in the model. For observa-
tions of wild-caught mosquitoes observed in semi-field 
captivity, the number of inseminated and non-insem-
inated females was modeled as a function of the loca-
tion of mosquito recapture, i.e. inside hut, outside hut or 
in the window exit traps. Again, the sampling date and 
semi-field chamber identifiers were included as random 
variables. Results of the models were presented as odds 
ratios (OR) with 95% confidence intervals (CI) and their 
associated P-values.

Results
Observations of male mosquitoes resting inside different 
types of houses
High densities of male mosquitoes were collected by the 
Prokopack trap while resting inside all house types. A 
total of 27,807 mosquitoes were collected indoors, com-
prising An. funestus, An. arabiensis, Anopheles coustani 
and Culex mosquitoes. Of these, 5841 were  An. funestus 
(22.4% of which were males [n = 1306]), 1269 were An. 
arabiensis (23.0% of which were males [n = 292]) and  49 
were An. coustani 49 (only 1 of which was a male mos-
quito); there were 20,476 Culex mosquitoes collected (of 
which 40.5% were males [n = 8289]). House type signifi-
cantly influenced indoor densities of male mosquitoes, 
with thatched-roof houses having slightly higher densi-
ties of male Anopheles (but not Culex) mosquitoes than 
metal roof houses (Fig.  4a;  Additional file  1:  Table  S1). 
The indoor densities of Anopheles male mosquitoes were 
also higher in the early- and late-morning  collections 

than in the evening and nighttime collections (Fig.  4B; 
Additional file 1: Table S1).

Overall, the mean number of male An. funestus 
indoors varied from 0.14 (95% CI: 0.03–0.68) to 0.72 
(95% CI: 0.16–3.26) per house per night, while the 
mean number of male An. arabiensis varied from 0.02 
(95% CI: 0.01–0.13) to 0.21 (95% CI: 0.05–0.56) per 
house per night (Additional file 1: Table S2). The results 
of the analysis indicate that, although the number of 
mosquitoes varied with house type, the interaction 
between house types and time of collection showed the 
same trend (Additional file 1: Table S2).

Observations of insemination in wild mosquitoes caught 
inside volunteer‑occupied tented huts in rural Tanzania
The proportion of inseminated females increased sig-
nificantly after the collections at 6 p.m. and was high-
est in the morning collections conducted at 6 a.m., 
even though the huts remained completely sealed from 
6 p.m. to early the following morning. A total of 594 
An. funestus (489 females and 105 males) and 795 An. 
arabiensis (647 female and 148 male) mosquitoes were 
collected over the first 14 nights. The mean propor-
tion of inseminated An. funestus mosquitoes increased 
from 60.7% (95% CI: ± 7.2%) at the 6 p.m. collections 
to 79.6% (95% CI: ± 5.1%) at 11 p.m. and 92.8% (95% 
CI: ± 3.8%) the following morning at 6 a.m. Similarly, 
the mean proportion of inseminated An. arabiensis 
females increased from 60.6% (95% CI: ± 4.8%) at 6 p.m. 
to 80.4% (95% CI: ± 4.1%) at 11 p.m. and 88.1% (95% 
CI: ± 4.4%) the following morning at 6 a.m. (Fig.  5a; 
Table 1). The glmer analysis showed that the increases 
were statistically significant (P < 0.001) (Table 1).

Analysis of data from the second round of the experi-
ment (conducted over 10 nights, during which the 
captured mosquitoes were immediately immobilized) 
revealed a similar trend of increasing proportion of 
insemination from 6 p.m. to 6 a.m. The mean propor-
tion of inseminated An. funestus females increased 
from 25% (95% CI: ± 19.8%) at 6 p.m. to 71.4% (95% 
CI: ± 29.1%) at 11 p.m. and 83.3% (95% CI: ± 16.3%) at 
6 a.m. On the other hand, the mean proportion of An. 
arabiensis increased from 46.1% (95% CI: ± 8%) at 6 
p.m. to 72.4% (95% CI: ± 17.2%) at 11 p.m. and finally 
74.6% (95% CI: ± 12.5%) at 6 a.m. (Fig. 5b; Table 1).

The male to female ratio for An. funestus and An. ara-
biensis caught in the experimental huts at the different 
collection times are also shown (Fig.  6). PCR analysis 
showed that of all the 50 subsamples of An. funestus 
collected from the field experiment, 94% (n = 47) were 
An. funestus s.s. with the other 6% (n = 3) unamplified, 
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while An. arabiensis was the only member of An. gam-
biae complex in the area.

Observation of insemination in the wild mosquitoes 
caught from local houses occupied by natives in the study 
village
Similar to wild mosquitoes caught inside volunteer-
occupied experimental huts, the proportion of insemi-
nated females caught from houses in the study villages 
increased significantly after the 6 p.m. collections and 
was highest in the morning collections. In total, 350 
female and 64 male An. funestus and 369 female and 74 
male An. arabiensis were collected over 5 nights of this 
experiment.

Regardless of house type, the mean proportion of 
inseminated An. funestus and An. arabiensis females 
increased overnight (Fig.  7). The mean proportion of 
An. funestus increased from 76.4% (95% CI: ± 9.9%) at 6 
p.m. to 88.8% (95% CI: ± 9.9%) at 11 p.m. to 93.3% (95% 
CI: ± 6.2%) at 6 a.m. in metal roof houses, and from 74.7% 
(95% CI: ± 12.1%) at 6 p.m. to 82.7% (95% CI: ± 10.3%) at 
11 p.m. to 96.1% (95% CI: ± 5.3%) at 6 a.m. in thatched-
roof houses. For An. arabiensis, the mean proportion of 
insemination increased from 81.8% (95% CI: ± 10.9%) at 

6 p.m. to 89.2% (95% CI: ± 6.0%) at 11 p.m. to 90.8% (95% 
CI: ± 6.2%) at 6 a.m. in metal roof houses, and  from 80% 
(95% CI: ± 12.5%) at 6 p.m. to 89.4% (95% CI: ± 9.2%) at 
11 p.m. to 91.5% (95% CI: ± 7.4%) at 6 a.m. in thatched-
roof houses (Fig. 7).

In a combined analysis of the house types, a significant 
increase in the proportion of inseminated female Anoph-
eles mosquitoes was observed from evening to morning. 
However, with An. arabiensis, the difference in the pro-
portion of inseminated mosquitoes collected between 6 
p.m. and 11 p.m. was marginal (Table 1).

Observations of insemination in wild‑caught Anopheles 
mosquitoes maintained under semi‑field conditions
In the semi-field compartments where wild-caught mos-
quitoes were held captive either inside or outside experi-
mental huts (Fig.  3), a total of 3241 female Anopheles 
mosquitoes were recaptured following multiple collec-
tions over the 12 months of the experiment. Of these, 
56.6% (n = 1833) were An. funestus and 43.4% (n = 1408) 
were An. arabiensis. Overall, 25.5% of An. funestus and 
45.5% of An. arabiensis female mosquitoes that were 
caught were inseminated.

Fig. 4  Mean differences in the densities of male mosquitoes collected from different house types (a) and at the different collection time points (b)
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The mean proportions of inseminated An. funestus 
females were 16.8% (95% CI: ± 8.3%) in the exit traps, 
25.2% (95% CI: ± 3.4%) inside the huts and 20.9% (95% 
CI: ± 2.8%) outside the huts; in comparison, the mean 
proportions of inseminated An. arabiensis females 
were 37.1% (95% CI: ± 6.8%) in the window exit traps, 
47.4% (95% CI: ± 4.7%) inside the huts and 42.3% (95% 
CI: ± 5.5%) outside the huts (Table  2). Further analysis 
of the An. funestus data showed that the insemination 
rates were significantly higher indoors and lower in the 
exit traps compared to the outdoors (P ≤ 0.03). There 
was also a difference in insemination rates in An. arabi-
ensis caught indoors versus outdoors although this differ-
ence was not statistically significant (P = 0.11). The same 
trend was observed for this species in samples collected 
from exit traps and outdoors, with the difference being 
marginal (P = 0.13) (Table 2). The proportions of insemi-
nated An. arabiensis were consistently higher than those 
of inseminated An. funestus across all collection loca-
tions (outdoors, indoors and in the window exit traps) 
(P < 0.001) (Table 2).

PCR analysis of the 905 emerged adult An. funestus 
in the semi-field study revealed that 84.9% (n = 769) 
were An. funestus s.s., 6.5% (n = 59) were Anopheles 
rivulorum, 0.9% (n = 8) were Anopheles leesoni and the 
remaining 7.6% (n = 69) were unamplified. While most 
of the mosquitoes mating indoors and outdoors were 
An. funestuss.s. or An. arabiensis, there were also An. 

rivulorum mosquitoes that mated both indoors and 
outdoors.

Discussion
Mating in mosquitoes is considered to occur as in many 
other dipterans,  mostly in swarms in different arenas 
[30], but it is recognized that mating can also occur inde-
pendently of swarms [39]. The focus of this study was to 
investigate the indoor and outdoor mating successes of 
the main malaria vectors in rural Tanzania, An. funestus 
and An. arabiensis. The study used a four-phase approach 
consisting of: (i) assessment of indoor resting densities 
of male mosquitoes inside human dwellings in rural vil-
lages; (ii) field observations of wild mosquitoes entering 
huts occupied by volunteers that had been constructed in 
the same villages; (iii) field observation of insemination 
status of wild mosquitoes trapped from natural houses 
in the village; and (iv) semi-field observations of wild-
caught mosquitoes to verify and quantify insemination 
indoors and outdoors.

The three main findings were as follows: (i) a signifi-
cant number of male mosquitoes rest indoors in different 
house types and the densities of these male mosquitoes 
are highest during the  morning; (ii) approximately 60% 
of female Anopheles mosquitoes collected indoors 
were already inseminated at 6 p.m., but this proportion 
increased to 90% by the following morning even when 
the huts remained closed after the 6.p.m collection, 

Table 1  Mean proportion of insemination of Anopheles funestus and An. arabiensis collected at different time points

OR Odds ratio
a Confidence interval of the mean

Experiments Collection time 
point

Anopheles funestus Anopheles arabiensis

No.  
females 
collected

Proportion 
inseminated (95% 
CI)a

OR (95%CI) for 
insemination

P-value No. females 
collected

Proportion 
inseminated (95% 
CI)a

OR (95% CI) for 
insemination

P-value

Round 1 of studies 
in experimental huts 
in rural Tanzania (14 
nights)

Evening (6:00 
p.m.)

191 60.7% (53.5 - 67.9) Reference 228 60.6% (55.8 - 65.4) Reference

Night (11:00 
p.m.)

175 79.6% (74.5 - 84.7) 2.39 (1.50–3.79)  < 0.001 240 80.4% (76.3 - 84.5) 2.54 (1.69–3.83)  < 0.001

Morning (6:00 
a.m.)

123 92.8% (89.0 - 96.6) 6.10 (3.14–11.85)  < 0.001 179 88.1% (83.7 - 92.5) 4.91 (2.90–8.31)  < 0.001

Round 2 of studies in 
experimental  huts 
in rural Tanzania (10 
nights)

Evening (6:00 
p.m.)

17 25% (5.2 - 44.8) Reference 37 46.1% (38.1 - 54.1) Reference

Night (11:00 
p.m.)

12 71.4% (42.3 - 100) 2.28 (1.14–3.51) 0.071 36 72.4% (55.2 - 89.6) 2.46 (1.36–4.58) 0.046

Morning (6:00 
a.m.)

16 83.3% (67.0 - 99.6) 3.12 (1.26–5.42)  < 0.001 36 74.6% (62.1 - 87.1) 4.42 (2.02–6.21)  < 0.001

Studies in village 
houses in rural Tanza-
nia occupied by local 
villagers

Evening (6:00 
p.m.)

130 75.5% (67.8 - 83.2) Reference 115 80.9% (72.8 - 89.0) Reference

Night (11:00 
p.m.)

107 85.9% (78.8 - 93.0) 2.09 (1.06–4.14) 0.03 128 87.6% (81.7 - 93.5) 1.63 (0.83–3.19) 0.15

Morning (6:00 
a.m.)

113 94.7% (90.7 - 98.7) 6.14 (2.56–14.74)  < 0.001 126 91.2% (86.5 - 95.9) 2.79 (1.30–6.02) 0.01
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implying additional mating indoors despite no additional 
mosquito entry; and (iii) under semi-field settings, wild-
caught Anopheles mosquitoes held inside huts mated as 
frequently as those outdoors.

These observations confirm that while most mating in 
the wild may be happening outdoors, there is substantial 
additional mating that can occur after the mosquitoes 
are already indoors. Both An. funestus and An. arabiensis 
show this flexibility in behaviour although indoor insemi-
nation appeared to be more prominent in An. funestus for 
which indoor insemination exceeded that outdoors. The 
experimental hut studies conducted by Dao et al. [39] in 
West Africa found that mating in mosquitoes exiting huts 
was 5% higher than that in those entering, thus provid-
ing the first indications of this phenomenon in malaria 
mosquitoes. Our study supports that original hypoth-
esis but also demonstrates that indoor mating can be 
far more substantial. Moreover, unlike the outdoor mat-
ing in swarms, which typically happens at dusk [33, 36, 
56, 57], the present study shows that indoor mating can 
happen far later in the evening and also during the night. 
Our field study showed a gradual increase in insemina-
tion from approximately 60% at 6 p.m. to 80% at 11 p.m. 
and finally to 90% at 6 a.m. the following morning, sug-
gesting continued mating events throughout the night. 
Since no observations were made of any swarms indoors, 
it is unclear whether the indoor mating is a function of 
swarms or otherwise.

This study also highlights the influence of different 
house types on indoor resting densities of male mos-
quitoes. Males of both An. funestus and An. arabiensis 
showed a preference for less improved houses, such as 
those with thatched roofs, compared to more improved 
houses, such as those with metal roofs. Similar prefer-
ences have been demonstrated in Anopheles females in 
several studies [49, 58, 59]. One clear implication of this 
observation is that indoor interventions that typically 
target host-seeking female mosquitoes, such as indoor 
residual spraying (IRS) [15], may also impact males, 
possibly explaining why IRS campaigns have been par-
ticularly effective against An. funestus populations, for 
which substantial densities of males rest indoors [60, 61]. 
Fortunately, insecticide resistance surveys in rural Tan-
zania have shown that Anopheles males have a similar 
phenotypic expression of resistance as their conspecific 
females, and would therefore respond similarly to non-
pyrethroid IRS treatments [62]. Similarly, some of the 
new vector control tools being evaluated to complement 
ITNs and IRS, notably attractive toxic sugar baits [26, 28, 
63], could be optimized to target male and female mos-
quitoes indoors.

An important question is whether the experimental 
set-up used in this study induced the observed indoor 

insemination or whether this was entirely a natural phe-
nomenon. While it is impossible to rule out an impact of 
the experimental set-up, the actual findings suggest that 
indoor mating is a natural phenomenon, albeit occur-
ring at a lower frequency than outdoor mating. The natu-
ral observation of males indoors suggests that there are 
several opportunities for the female and male mosqui-
toes to copulate. Moreover, the experimental huts used 
in the semi-field observations were unnatural and fitted 
with window exit traps so that flying mosquitoes could 
exit but not enter the huts. Yet there was still substan-
tial insemination indoors, with the mean proportions 
being equal to or higher than those observed outdoors 
or in exit traps. It can be inferred, therefore, that both 
An. funestus and An. arabiensis adults could voluntarily 
mate indoors despite the unrestricted egress routes. This 
inference was confirmed by the observed indoor insemi-
nation in local village houses, which remained unsealed 
during the experiment. Future studies should examine 
the proportions of virgin females at different time points 
during the night, and the potential effect of egressing vir-
gins on the proportion of residual female indoors that are 
inseminated.

All of the field studies were completed on a nightly 
basis and the huts cleaned thoroughly each day. The 
field observations cannot therefore be used to infer the 
true quantities of indoor mating in nature but are merely 
an indication that this phenomenon does indeed hap-
pen. Interestingly, however, most of the mosquitoes that 
entered the huts had already mated. As can be seen in 
the field data, approximately two thirds of the Anopheles 
females were already inseminated when they entered the 
huts. Most likely these females had already left the swarm 
stations. We found a small but consistent additional mat-
ing of about 30% in the first round in the experimental 
huts and approximately 19% in the local dwellings. It 
would appear that when confined, and in the absence of 
any additional recruitment of males or females, the actual 
proportions of inseminated mosquitoes will be high 
even if any additional insemination indoors is minimal. 
Another question is whether swarming was actually nec-
essary for such indoor mating. We did not observe any 
evidence of swarming indoors; thus, the indoor mating 
observed in our study appeared to be happening without 
any apparent swarming. However, our findings must be 
considered to be preliminary, and it is important that this 
specific question be evaluated in future research.

Another limitation of this study was that neither the 
gonotrophic state of the females nor the status of the gen-
italia of the males were observed. Direct observations of 
the rotation of the male genitalia to assess sexual matu-
rity or their antennas to assess readiness for mating could 
improve the degree of certainty for the indoor mating 
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phenomena. It will be interesting to assess changes in 
gonotrophic state of the female, how this changes over-
night and whether there are any correlations between 
this and the insemination rates. It is also possible that the 
trapping methods used, in particular the human land-
ing catches, may have introduced some biases, although 
these do not invalidate the overall findings.

To accelerate efforts towards malaria elimination, the 
deployment of novel approaches to complement cur-
rent vector control (ITNs and IRS) are essential [16]. 
Such tools should particularly mitigate current chal-
lenges, such as insecticide resistance to the commonly 
used pyrethroids [64–67] and outdoor biting by malaria 
vectors [68–73]. The findings of this study on mating 
behavior, among other aspects of the Anopheles life-cycle 
processes, may provide insights towards the development 
or improvement of malaria vector control. The results 
may be used to design or improve indoor insecticidal 

methods targeting males, females or both, as well as 
niche products such as ATSBs to also target male and 
female mosquitoes indoors and outdoors.

Another potential opportunity from these findings is 
in the area of mosquito colonization inside laboratories, 
which is currently a challenge for some vector species. 
In particular, An. funestus, which mediates significant 
proportions of ongoing malaria transmission, particu-
larly in southern and East Africa, remains one of the 
most difficult mosquito species to rear inside laborato-
ries. Laboratory colonies are an essential requirement 
for experimental studies under controlled conditions, 
such as enabling characterization of insecticide resist-
ance [62, 74, 75] as well as studies on other genetic traits 
[76, 77], immune strategies [78, 79] and key vector demo-
graphic profiles [80–82]. Unlike An. gambiae, An. funes-
tus remains extremely difficult to colonize and maintain 
inside laboratories, partly because it is eurygamic (does 
not mate in captivity) and has poorly understood ecologi-
cal needs. To our knowledge, only two strains have been 
successfully colonized from wild populations despite 
several attempts, both at the Vector Control Reference 
Laboratory (VCRL) in the National Institute for Com-
municable Diseases, South Africa, from populations col-
lected in Angola (FANG) and Mozambique (FUMOZ) 
[44]. The FUMOZ strain is also maintained at other labo-
ratories worldwide, including in Cameroon, UK [75] and 
Tanzania [45].

The field observations by Dao et  al. focused on An. 
coluzzii and demonstrated that under confinement there 
was a breakdown of the cross-species mating barrier 
when other species were added indoors in experimental 
houses [39]. This suggests that indoor conditions are not 
sufficiently representative of actual mating conditions in 
the wild, but that the same conditions could be favora-
ble for breaking the bottlenecks associated with mating 
in some species, such as An. funestus, which have been 
challenging to rear inside laboratories, partly because 
of poor mating. The present study improves upon the 
experiments by Dao et al. [39] by introducing controlled 
observations in both the semi-field and field settings 
and validating the observations underconditions of both 
restricted and unrestricted egress.

Several attempts are being made to colonize new An. 
funestus strains [83] from wild populations, but methods 
used to establish FUMOZ and FANG have not been suc-
cessful elsewhere [84], including those attempted in the 
same wild populations from which FUMOZ was origi-
nally derived (M Coetzee, personal communication). The 
inability to repeatedly colonize and establish An. funes-
tus in laboratories is responsible for the more limited 
understanding of the biology of this species compared to 
other vector species. Recent evidence from colonization 

Fig. 5  Proportions of inseminated female mosquitoes collected 
from the experimental huts at different time points (6 p.m., 11 p.m. 
and 6 a.m. the following morning). a Results of the first round of the 
experiment (14 nights) when mosquitoes were kept without freezing 
before dissection, b results of the second round of the experiment 
(10 nights) when mosquitoes were immobilized by freezing 
immediately after capture while awaiting dissection. Error bars were 
constructed using the 95% confidence interval of the mean
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attempts in Tanzania has highlighted mating as one of 
the bottlenecks to colonization [45]. The findings in the 
present study may therefore enable advancement towards 
alternative colonization processes either inside labora-
tories or by using semi-field chambers and experimental 
huts in which natural mating can happen.

Conclusion
This study demonstrates that wild populations of An. 
funestus and An. arabiensis can mate both inside and 
outside dwellings. Most mating likely happens outdoors 

Fig. 6  The ratio of male to female mosquitoes collected in the 
experimental huts calculated as the sum of males per total females 
collected in each house at different time points

Fig. 7  The proportion of inseminated mosquitoes collected in 
different house types at different time points (6 p.m., 11 p.m. and 6 
a.m. the following morning). Data from village houses occupied by 
residents. Error bars were constructed using 95% confidence interval 
of the mean

Table 2  Mean proportion of inseminated Anopheles funestus and Anopheles arabiensis from the semi-field experiment

OR Odds ratio

Collection 
setting

Anopheles funestus Anopheles arabiensis

No. females 
collected

Proportion 
inseminated (95% 
CI)

OR (95%CI) for 
insemination

P-value No. females 
collected

Proportion 
inseminated (95% 
CI)

OR (95%CI) for 
insemination

P-value

Studies in semi-
field system

Outdoor 908 20.9% (18.1 - 23.7 Ref 568 42.3% (36.8 - 47.8) Ref

Indoor 792 25.2% (21.8 - 28.6) 0.56 (0.51–0.62) 0.03 568 47.4% (42.7 - 52.1) 0.55 (0.49–0.61) 0.11

Exit trap 133 16.8% (8.5 - 25.1) 0.36 (0.26–0.48) 0.026 298 37.1% (30.3 - 43.9) 0.44 (0.37–0.52) 0.13

Anopheles sp. Indoor Outdoor Exit trap

OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value

Interspecies comparison in a 
semi-field experiment

An. funestus Ref Ref Ref

An. arabiensis 1.79 (1.33–2.41)  < 0.001 2.23 (1.62–3.08)  < 0.001 2.94 
(1.77–4.90)

 < 0.001

before the mosquitoes enter houses, but significant addi-
tional mating can happen indoors. The indoor insemi-
nation in huts with exit traps indicates that mosquitoes 
can voluntarily mate indoors despite unrestricted egress. 
These findings may be relevant for improving vector con-
trol by targeting male mosquitoes and may also inform 
improved efforts to colonize Anopheles species inside 
laboratories or semi-field chambers.
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