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Abstract: The rock mass erosion of dam spillways, a phenomenon involving the interaction between 
the hydraulic load of water and the capability of the rock mass to resist its destruction, remains a 
critical safety issue. The erosion resistance of a rock mass can be estimated through several erodi-
bility indices, including those of Kirsten, Pells or Bollaert. Several indices have been developed to 
link rock resistance to the hydraulic parameters of water, i.e., the hydraulic load applied on a rock 
mass. The developed indices use the average flow velocity, the average shear stress on the bottom 
of the flow channel, the stress applied to the internal joints of fractured rock mass, the dynamic 
impulse force, and the power dissipation of water to represent the erosive force of water. From these 
indices, several methods of assessing hydraulic erosion have been developed, and all use the thresh-
old line concept. Nonetheless, several uncertainties are associated with these methods. This paper 
presents and discusses the various means of calculating the erosive force of water as a hazard pa-
rameter for predicting potential rock erosion. The representativeness of these approaches is also 
discussed, and we clarify nuances associated with each method. We then provide guidelines for 
future research aimed at improving estimates of the erosive force of the water within spillway flow 
channels. 

Keywords: hydraulic erodibility; hydraulic jump; hydraulic load; plunging flow; power dissipation; 
rock mass 
 

1. Introduction 
The notion of the hydraulic erodibility of a rock mass emerged around 1900 after 

observations of the degradation of rock masses under bridges [1]. Several cases of erosion 
downstream of dam spillways have since been observed, for example, the Tarbela dam in 
Pakistan in 1976 [2] and the Kariba dam in Zambia in 1962 [3]. Much research has focused 
on understanding this phenomenon, and several methods have been developed for eval-
uating the hydraulic erodibility of a rock mass using semi-empirical and semi-analytical 
methods. These methods have applied the concept of the “threshold line,” [4,5] a correla-
tion between a hydraulic hazard parameter (e.g., shear stress, hydraulic power, and hy-
draulic energy) and the capacity of the rock to resist destruction. This concept is based on 
three erosion mechanisms in particular: dynamic block removal, brittle fracturing, and 
the continuous fragile fracturing of the rock mass [6–8]. Turbulent flow is the flow mode 
that can produce these different erosion mechanisms. 

Erosion by the removal of blocks is a process that depends on the water pressure 
within the joints of the fractured rock mass. The amplitude of the fluctuating pressure 
changes with time during a turbulent flow, and the pressure applied inside the rock joints 
can increase pressure directly below the blocks. Moreover, the rock mass is eroded by the 
dynamic expulsion of the blocks when the lifting pressure under the block exceeds the 

Citation: Koulibaly, A.S.; Saeidi, A.; 

Rouleau, A.; Quirion, M.  

Identification of Hydraulic  

Parameters Influencing the  

Hydraulic Erodibility of Spillway 

Flow Channels. Water 2021, 13, 2950. 

https://doi.org/10.3390/w13212950 

Academic Editor: Chiara Biscarini 

Received: 16 September 2021 

Accepted: 15 October 2021 

Published: 20 October 2021 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 



Water 2021, 13, 2950 2 of 25 
 

 

resistance force of the block in the rock mass (Figure 1). The parameters affecting the re-
sistance of the block are the submerged weight of the block (𝐺௕), the pressure on top of 
the block (𝐹௢), and the shear resistance along the sides of the block (𝐹௦௛). 

 
Figure 1. Erosion by block removal (Bollaert [6,7] named this process dynamic block impulse). 

The second mechanism enabling the erosion of a rock mass is brittle fracturing or 
instant hydrofracturing. This mechanism occurs when the intensity of the fluctuating 
pressure-induced stress in the joints is greater than the resistance of the rock, and, hence, 
the rock mass breaks into small pieces owing to fragile failure (Figure 2). 

 
Figure 2. Erosion by brittle fracture or instant hydrofracturing [7]. 

The final mechanism of erosion is continuous fragile fracturing or fatigue erosion. 
This mechanism occurs when the instantaneous brittle fracture of rock mass is not possi-
ble, as the intensity of the stress in the joints does not exceed the resistance of the rock 
mass. The rock mass is eroded, however, by fatigue pressure loads that exist in the joints. 
This type of erosion is highly dependent on time (Figure 3). 
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Figure 3. Erosion by the continuous fragile fracturing of a rock mass or hydrofracturing by fatigue 
[7]. 

From these three erosion mechanisms, various indices have been developed to rep-
resent the resistance of a rock mass. These indices include the Kirsten index (𝐾௛), Bol-
laert’s in situ resistance of a rock mass (𝐾ூ,௜௡), and the indices of Pells, which are the geo-
logical strength index for erodibility (𝑒𝐺𝑆𝐼) and the rock mass erodibility index (𝑅𝑀𝐸𝐼). 
The hydraulic hazard parameter of water has been mainly represented by the dissipation 
of energy rate (Π௎஽ 𝑖𝑛 kW mିଶ), although other parameters have been used. For example, 
Bollaert et al. [6] estimated the hydraulic hazard parameter of water in terms of the stress 
applied in a joint present within a rock mass (𝐾ூ 𝑖𝑛 MPa mଵ ଶ⁄ ) and in the form of force 
dynamic impulse or block lifting force (𝐼௜௠௣௨௟௦ 𝑖𝑛 Kg m sିଵ). Pells et al. [9] illustrated that 
the average flow velocity (𝑢ത 𝑖𝑛 m sିଵ) and the average shear stress on the bottom surface 
of flow channel (𝜏̅௕ 𝑖𝑛 Pa) are suitable indicators for representing the hydraulic erosion 
hazard for a fractured rock mass. Among these above-listed parameters, energy dissipa-
tion was selected by Bieniawski [10], Moore [11], Annandale [4,12], Kirsten [13], and Pells 
[5] (among others) to estimate the hydraulic hazard parameter of different possible flow 
conditions in spillways. Annandale [4] maintained that the dissipation of hydraulic power (Π௎஽) provides a good approximation of turbulent fluctuations. Moreover, a large com-
bination of spillway geometry and flow types can be associated with a given measure of Π௎஽. Because the determination of Π௎஽ is relatively easy to perform, this also greatly fa-
vors the use of Π௎஽. 

Although the resistance indices of the rock mass and the hydraulic power indices 
have been commonly used to evaluate the hydraulic erodibility, these methods have pro-
duced inconsistencies in some cases. These inconsistencies likely stem from two sources: 
the estimation of erosive force and the uncertainty linked to the indices for defining the 
resistance of a fractured rock mass. Previously, Boumaiza et al. [14] evaluated the weak-
nesses of the resistance of rock mass indices for the hydraulic erosion process. Here, we 
review the indices of the erosive force to determine whether erodibility assessment meth-
ods are also influenced by these hydraulic power indices and therefore represent (or not) 
a source of the produced inconsistencies in assessments of the hydraulic erodibility of a 
rock mass. Because of the large number of proposed indices, we review the various esti-
mation methods of indices developed to represent the erosive force of water (waterpower) 
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for various spillway flow modes. We highlight the advantages and disadvantages of each 
index and discuss the representativeness of each. We suggest that these indices do not 
effectively represent the erosive force of the water; we therefore offer potential research 
avenues to develop a better characterization of the erosive force of water. 

In the following sections, we summarize the types of spillways and their operating 
mode. The different methods for estimating the hydraulic hazard parameters for rock 
mass erosion are then presented, including the estimation of the average shear stress at 
the bottom surface of a flow channel, the average flow velocity in open channels, the ap-
plied stresses inside joints, the block lifting force, and the dissipation of power or energy 
from a flow channel. We also discuss the limitations of these methods. 

2. Types of Spillways and Their Operating Mode 
The overflow structures in dams can be divided into two categories on the basis of 

their frequency of use: spillways (fuse-plug or emergency spillways) and regulation struc-
tures (service or auxiliary spillways). A spillway returns the excess water arriving at the 
dam during periods of flooding to the river. The return period of flooding determines the 
frequency of this occasional use. In contrast, regulation structures manage the flow rate, 
ensuring a relatively continuous transfer of water to the river. Despite the significant op-
erational differences between the two structures, their designs and configurations are sim-
ilar. Structures in each category vary in their specific configurations depending on site 
topography and geology. These on-site properties determine the types of spillway that are 
installed, for example [15]: 
• ogee spillway, 
• chute spillway, 
• side-channel spillway, 
• shaft or tunnel spillway, 
• siphon spillway, 
• and free over-fall spillway. 

The energy of the discharging water must be dissipated before returning to the river; 
therefore and depending on the operational mode of the specific spillway, these structures 
are equipped with a flow channel or a transition zone between the end of the profiled 
threshold and the final dissipation zone of an evacuation structure (Figure 4a). In other 
cases, a simple basin, constituting a plunge pool, dissipates the energy immediately at the 
foot of the spillway (Figure 4b,c). The flow channels dissipate and direct the torrential 
regime flow toward the final dissipation zone. In this latter case, the observed flow modes 
differ depending on the nature of the channel, i.e., flows on an inclined slope, hydraulic 
jumps, flows at knickpoints, and plunging flows into the receiving pool. 
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Figure 4. Types of spillways. (a) Typical longitudinal section through an unlined spillway of a large 
embankment dam; (b) schematic representation of a free jet, and (c) schematic representation of 
discharge over a drop structure. 

Several spillways around the world have been designed and built involving a com-
bination of a discharge channel and a dissipation or stabilization zone. Examples of these 
combined spillways include the Robert-Bourassa dam spillway (Quebec, Canada) and the 
Hell Hole dam spillway (California, USA) [15]. Moreover, in most cases, the dissipation 
structures are excavated into the rock mass, including the plunge pool or the combination 
of an evacuation channel and dissipation zone. An important aspect of these unlined spill-
ways is the phenomenon of hydraulic erosion of rock mass. For these spillways, the proper 
estimation of the erosive force of water is critical. 

3. Methods for Estimating the Erosive Force of Water in Spillways 
Various methods have been applied to estimate the erosive force of water in erosion 

processes, and different indices of erosive force have been obtained, including the average 
shear stress at the bottom surface of a flow channel, the average flow velocity in open 
channels, the applied stresses inside joints, the block lifting force, and the dissipation of 
energy from a flow channel. 

3.1. Average Shear Stress at the Surface of the Flow Channel 
The velocity profile of a fluid is proportional to the applied shear force, and the linear 

proportionality factor is the dynamic viscosity (𝜏 =  𝜇. 𝑑𝑢/𝑑𝑦) [5,16]. Given that the vis-
cosity of water is well known, the average shear stress at the bottom surface of a flow 
channel therefore mainly depends on the variation of flow velocity, which is a function of 
the nature of the flow. The calculation of shear stress varies, however, depending on the 
type of flow. The shear stresses for a uniform flow depend on the slope of the flow chan-
nel. In the case of non-uniform flow, the total energy gradient is used to estimate the shear 
stresses in the channel. Figure 5 illustrates possible cases of the distribution and variation 
of flow velocity. The cases depend on the nature of flow; in the first case, the velocity of a 
flow is uniform (Figure 5a), whereas the second case has a variable velocity for a non-
uniform flow (Figure 5b). Depending on the nature of the flow, shear stress on the bottom 
of the channel can be estimated using either Equation (1) or Equation (2): 𝜏௕̅ = 𝜌. g. 𝑅ு. 𝑆 cos 𝜃  (Uniform flow), (1)𝜏௕̅ = 𝜌. g. 𝑅ு. 𝑆௙ cos 𝜃  (non-uniform flow), (2)

where 𝜇 is the dynamic viscosity of water, 𝑢 is the flow velocity, 𝑅ு is the hydraulic 
radius, 𝑆 is the slope of the channel equal to 𝑑𝑧 𝑑𝑥⁄ , 𝑥 is the distance along the channel, 
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𝑧 is the elevation above a datum, g is the gravitational acceleration, 𝜃 is the angle of 
inclination of the channel, and 𝑆௙  is the total energy gradient equal to 𝑑𝐻 𝑑𝑥⁄ = 𝐻௙ 𝐿. cos 𝜃⁄ , and 𝐻௙ is the energy loss by friction (in m) over distance L, which can be 
determine using Equation (19) (Section 3.2). 

 
Figure 5. Schema of (a) uniform and (b) non-uniform flow (modified from Graf and Altinakar 
[17]). 

It should be noted that 𝜏௕̅ represents the mean hydraulic shear stress on the surface 
of the channel. The actual shear stress at each point along the channel can always vary 
because of the presence of relatively rougher parts of the channel. Given this variability, 
the shear stress term (𝜏̅௕) is generally replaced by the shear velocity (𝑢∗), which is cal-
culated using Equation (3): 𝑢∗ = ටఘ.୥.ோಹ ୱ୧୬ ఏఘ =  ඥg. 𝑅ு sin 𝜃   & 𝜏̅௕ = 𝜌𝑢∗ଶ. (3)

According to Streeter [18], estimating the shear stress in a flow channel is quite com-
plex for turbulent flow because of the variable internal shear stress, which depends on the 
velocity over the entire depth of the flow profile and the substantial changes along a chan-
nel. A simple solution, for this case, is to substitute the dynamic viscosity (𝜇) with the 
eddy viscosity (𝜂) to calculate the shear stress for turbulent flow (Equation (4)) [18]. For 
this to be possible, the eddy viscosity must be estimated for each flow type, as this param-
eter is not a constant characteristic of the fluid and varies throughout the profile of the 
fluid over time. This parameter depends upon the density of the fluid, the velocity gradi-
ent, and the mixing length, and it generally varies from point to point in the flow field: 𝜏௧ =  𝜂. ௗ௨ௗ௬   (4)

In addition to Equations (1)–(4), expressions exist for estimating the shear stress at 
the surface of a flow channel. Table 1 summarizes some existing methods used to calculate 
this surficial shear stress. Most of these methods are adapted for calculating the local av-
erage shear stresses of straight and prismatic flow channels of rectangular, trapezoidal, 
and circular sections, either with or without a flat or compound bed. Moreover, these 
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methods differ in their assumptions, which can lead to divergent shear stress estimates. 
We detail some of the methods presented in Table 1 below. 

Table 1. General characteristics of methods for calculating the shear stress at the surface of a flow 
channel. 

Method Cross-Sectional Shape Boundary Roughness 
Distribution 

Lundgren and Jonsson (1964) General Homogeneous and rough 
Flintham and Carling (1988) Rectangular, trapezoidal Homogeneous 
Pizzuto (1991) General Homogeneous 
Christensen and Fredsoe (1998) General Homogeneous 
Khodashenas and Paquier (1999) General Homogeneous 
Ramana Prasad and Russell Manson 
(2002) 

Rectangular, trapezoidal Homogeneous 

Berlamont et al. (2003) 
Rectangular, circular (with or with-
out a flat bed) 

Homogeneous 

Yang and Lim (2005) and Yang et al. 
2004 

Rectangular, trapezoidal, circular, 
V-notch, compounded 

Homogeneous 

Guo and Julien (2005) Rectangular 
Homogeneous and 
smooth 

Seckin et al. (2006) Rectangular 
Homogeneous and 
smooth 

Severy and Felder (2017) Rectangular 
Homogeneous and 
smooth 

3.1.1. Merged Perpendicular Method 
The merged perpendicular method (MPM) is a geometric method for calculating the 

local shear stress in an irregular cross section of a channel. This method is derived from 
the normal area method, which relies on the concept of hydraulic radius separation based 
on the subdivision of a cross-sectional region delimited by walls into three subareas that 
correspond to the lateral walls and channel bed [19]. The wetted area is then divided into 
small subareas using the lines normal to the wetted perimeter (Figure 6). 

 
Figure 6. Schematic illustration of the areas determined by the merged perpendicular method [19]. 

The local shear stress (𝜏௜) is thus obtained using Equation (5): 
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𝜏௜ = 𝜌. 𝑔. 𝑅. 𝐽௙, (5)

where 𝑅 is the local hydraulic radius, and 𝐽௙ is the average energy slope. Subsequently, 
the average boundary stresses acting on the channel bed and sides are determined by the 
numerical integration of the local values. However, this method neglects secondary flow 
structures and the momentum transfer in an irregularly shaped channel. Moreover, the 
roughness distribution along the wetted perimeter is not considered when the wetted area 
is divided into subzones. 

3.1.2. Ramana Prasad and Russell Manson Method 
This method is based on an analytical approach for calculating the percentage of 

shear force (%𝑆𝐹𝑤) carried by the sidewall in prismatic channels of a trapezoidal cross 
section having a homogeneous roughness [20]. The percentage of shear force is given in 
terms of the width–depth ratio (𝑏 ℎ⁄ ) without accounting for the effect of secondary cur-
rents (Equation (6)): 

%𝑆𝐹𝑤 = 100𝜏̅(௪)𝜏̅(௪) +  𝜏̅(௕) ൬𝑃(௕)𝑃(௪)൰ = ⎩⎪⎨
⎪⎧25 ൬4 − 𝑏ℎ൰  𝑏ℎ ≤ 2100𝑏 ℎൗ   𝑏ℎ ≥ 2   (6)

where 𝑃(௕) and 𝑃(௪) represent the wetted perimeter of the bed and sidewalls, respec-
tively. Knowing %𝑆𝐹𝑤, the following equations are used to determine the shear stress of 
the bed and the walls of a channel ( 𝜏̅(௕) and 𝜏̅(௪)): 

⎩⎪⎨
⎪⎧ 𝜏̅(௕)𝜌𝑔ℎ𝐽௙ = (1 − 0.01%𝑆𝐹𝑤) ቆ1 + 𝑃(௪)𝑃(௕) ቇ𝜏̅(௪)𝜌𝑔ℎ𝐽௙ = 0.01%𝑆𝐹𝑤 ቆ1 + 𝑃(௕)𝑃(௪)ቇ  (7)

3.1.3. Yang and Lim Method 
This method uses an analytical approach for calculating the distribution of shear 

stresses in prismatic channels and is based on the concept of excess energy transport over 
a minimum relative distance within a uniform and fully developed turbulent flow. The 
relative distance is defined as the ratio of the shortest geometric distance to the energy 
dissipation capacity (EDC) of the boundary. For a smooth boundary, the characteristic 
length representing the EDC of the boundary is scaled using the viscous length scale (𝜈 𝑢∗⁄ ) [21], where 𝜈 is the kinematic viscosity of the fluid, and 𝑢∗ is the shear rate. And 
for an approximate limit, the characteristic length is scaled using the roughness height of 
the limit. From this concept, Yang and Lim divide the flow zone into subzones on the basis 
of the shape of the cross section and the roughness of its wetted perimeter; however, sec-
ondary currents are not considered. The distribution of average shear stresses along the 
bed (𝜏̅(௕)) and side wall (𝜏(̅௪)) for a smooth trapezoidal channel are determined using 
Equations (8) through (11): 

⎩⎪⎨
⎪⎧ 𝜏̅(௕)𝜌𝑔ℎ𝐽௙ = 1 + ℎ𝑏 1tan 𝛽 − 𝜓 ℎ𝑏 1sin 𝛽𝜏̅(௪)𝜌𝑔ℎ𝐽௙ = 12 𝜓  (8)

where ℎ is the flow depth, 𝑏 is the width of the channel bed, 𝛽 is the angle between the 
sidewall and the water surface, and 𝜓 is the ratio of the EDC of the lateral wall to the 
EDC of the bottom ൫𝜓 = 𝑢∗(௕) 𝑢∗(௪)⁄ ൯. Equation (8) is applicable and valid under the fol-
lowing conditions: 
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ቐ 𝑏ℎ ≥ 2 1 − cos 𝛽sin 𝛽(1 − 𝜓 cos 𝛽) ≤ 0 (9)

The conditions of Equation (9) regarding the applicability of Equation (8) involve the 
case where the intersection of the dividing lines is located above the water surface in wide 
channels. In those cases where the dividing lines are located below the water surface in 
narrow and deep channels, the average stress at the limits is given by Equation (10): 

⎩⎪⎨
⎪⎧ 𝜏̅(௕)𝜌𝑔ℎ𝐽௙ = 𝑏4ℎ 𝜉𝜏̅(௪)𝜌𝑔ℎ𝐽௙ = 𝑏4ℎ𝜓ଶ 𝜉   (10)

where 𝜉 is the slope of the dividing line, which is defined as 𝜉 = ୱ୧୬ ఉటିୡ୭ୱ ఉ. Similarly, for 
wide channels, Equation (10) is only valid if: 

ቐ 𝑏ℎ ≤ 2 1 − cos 𝛽sin 𝛽(1 − 𝜓 cos 𝛽) ≤ 0 (11)

Thus, for channels having a rough and homogeneous trapezoidal section, the local 
bed and sidewall average stresses are obtained using Equations (8) and (10), with 𝜓 = 1, 
assuming that the dividing lines are the bisectors of the internal base angles of the trape-
zoid. 

3.1.4. Guo and Julien Method 
Guo and Julien present a formula for determining the average shear stress of the bed 

and sidewalls within a smooth rectangular open channel. The method uses conformal 
mapping, assuming in a first approximation a constant vortex viscosity without consider-
ing the effect of secondary currents [22]. In a second approximation, they use two grouped 
empirical correction factors for the effects of secondary currents, the variable viscosity of 
the vortices, and other possible effects to calculate the shear stresses (Equation (12)): 

⎩⎪⎨
⎪⎧ 𝜏̅(௕)𝜌𝑔ℎ𝐽௙ = 4𝜋 Arctg ൤exp ൬−𝜋ℎ𝑏 ൰൨ + 4𝜋 ℎ𝑏 exp ൬−ℎ𝑏 ൰𝜏̅(௪)𝜌𝑔ℎ𝐽௙ = 𝑏2ℎ ቆ1 − 𝜏̅(௕)𝜌𝑔ℎ𝐽௙ቇ   (12)

3.1.5. Method of Seckin et al. 
Drawing on the studies by Knight et al., Seckin et al. [23] use nonlinear regression to 

develop equations derived from an experimental analysis to obtain the percentage total 
mean shear force on the base and the smooth walls of the wetted perimeter in terms of the 
width-to-depth ratio. From the percentages of the shear force (%𝑆𝐹𝑤), Knight et al. pro-
duce equations to determine this average shear stress (Equation (13)): 

⎩⎪⎨
⎪⎧ 𝜏̅(௕)𝜌𝑔𝑅𝑆௙ = (1 − 0.01%𝑆𝐹𝑤) ൬1 + 2𝐻𝐵 ൰𝜏̅(௪)𝜌𝑔𝑅𝑆௙ = 0.01%𝑆𝐹𝑤 ൬1 + 𝐵2𝐻൰   (13)

where 𝑅 is the hydraulic radius, 𝑆௙ is the energy gradient, 𝐵 is the width of the channel, 𝐻 is the channel depth, and %𝑆𝐹𝑤 is the percentage of the shear force acting on the walls 
along a unit of channel length, determined by Equation (14): 



Water 2021, 13, 2950 10 of 25 
 

 

൝ log(%𝑆𝐹𝑤) = −1.4026 log(𝐵 𝐻⁄ + 3) + 2.6692or 𝑆𝐹𝑤 = exp(𝛼), 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 𝛼 = −3.23 log(𝐵 𝐻⁄ + 3) + 6.146. (14)

Reanalyzing the Knight et al. equations, Seckin et al.[23] use a shifted power adjust-
ment model to find %𝑆𝐹𝑤. They then use various function models to estimate the average 
wall and bed shear stress of a channel. Seckin et al.[23] apply a rational function model to 
determine the average bed shear stress, 𝜏̅(௕), and a logistic model to determine the average 
wall shear stress 𝜏(̅௪). The developed respective equations are: 

⎩⎪⎨
⎪⎧ 𝜏(̅௕)𝜌𝑔𝑅𝑆௙ = 𝑎 + 𝑏(𝐵 𝐻⁄ )1 + 𝑐(𝐵 𝐻⁄ ) + 𝑑(𝐵 𝐻⁄ )ଶ , 𝑤ℎ𝑒𝑟𝑒 𝑎 = 0.946, 𝑏 = 0.117, 𝑐 = 0.088 𝑎𝑛𝑑 𝑑 = 0.0011 𝜏(̅௪)𝜌𝑔𝑅𝑆௙ = 𝑎1 + 𝑏expሾ−𝑐(𝐵 𝐻⁄ )ሿ , 𝑤ℎ𝑒𝑟𝑒 𝑎 = 0.011, 𝑏 = −0.989 𝑎𝑛𝑑 𝑐 = 0.00034  , (15)

where 𝑎, 𝑏, 𝑐, and 𝑑 represent constants. 

3.1.6. Severy and Felder Method 
By performing flow tests in a smooth rectangular channel, Severy and Felder [24] 

develop an equation to calculate the average shear stress of a channel from detailed meas-
urements of flow velocity. They use three approaches to compute the boundary shear 
stress: the logarithmic law within the inner flow region, the velocity defects law in the 
outer flow region, and the direct-step method. Relying on the equations of Schlichting and 
Montes, Severy and Felder develop Equation (16) as a function of a resistance factor to 
calculate the local shear stress (Equation (16)): 𝜏଴ = 18 𝑓𝜌𝑉ଶ (16)

where 𝑉 is the flow velocity, and f is the Darcy-Weisbach friction factor for gradually 
varying flows, in this case determined by: 𝑓 = 8. 𝑔. 𝑆௙. ቀ׬ (1 − 𝐶)௬ୀ௒వఴ௬ୀ଴ 𝑑𝑥ቁଶ ቀ𝐷ு4 ቁ𝑞௪ଶ  (17)

where 𝑆௙ is the energy gradient, 𝑥 is the longitudinal distance in the direction of flow 
propagation, 𝑦 is the perpendicular elevation from the channel bed, 𝑌ଽ଼ is the character-
istic flow depth, 𝐶 is the fraction voids in the flow, 𝑞௪ is the discharge, and 𝐷ு is the 
hydraulic diameter. 

In summary, shear stress is a physical measure of the normal force applied to a chan-
nel. Shear stress is intrinsically linked to the nature of the velocity profile and indirectly 
represents many hydraulic characteristics. Pells [5] selected the mean shear stress of the 
channel as an appropriate indicator of the erosive force of water. Van Schalkwyk [25] and 
Pells [5] demonstrated that the amount of observed erosion is well correlated with shear 
stress. Most researchers hold that the erosion caused by the flow of water in the channel 
is due to the shear stress exerted by the water at the bottom surface of the flow channel. 
However, Annandale [7] showed that this notion is only valid for laminar flow; for turbu-
lent flow, the erosion capacity of water depends on the pressure fluctuations exerted by 
the water rather than shear stress. Moreover, shear stress cannot explain all the probable 
mechanisms of erosion, including erosion by the dynamic expulsion of blocks recessed in 
a rock mass or erosion by fragile fracture of the rock mass into small pieces because of 
turbulent flow. In addition, the average shear stress in the flow channel is a hard-to-esti-
mate parameter that can cause considerable uncertainty in estimates of the hydraulic head 
under differing flow conditions within the spillways (e.g., hydraulic jump). Most equa-
tions used to evaluate this parameter (Equations (5)–(17)) were developed for narrow, 
smooth-wall flow channels (e.g., pipes) and then applied analytically to other types of 
channels. Most of these equations have also been developed using assumptions that do 
not apply to spillway flow channels, including the homogeneity of the shear stress of the 
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flow channel, the non-inclusion of secondary currents in a flow channel, and the non-
differentiation of subcritical and supercritical flows. Finally, these methods are based on 
different assumptions, which can lead to an approach-dependent shear stress estimate. 
Their use in the cases of flow channels of spillways is therefore highly questionable. 

3.2. Average Flow Velocity in Open Channels 
The average flow velocity (𝑢ത) can be calculated on a plane that is perpendicular to 

the flow direction and is given by the shearing movement in a fluid. This movement leads 
to the continuous dissipation of energy and depends considerably on the profile of the 
flow channel surface, the viscosity of the fluid, and the nature of the flow. Various flow 
resistance coefficients, including the expressions of Darcy-Weisbach, Chézy, and Man-
ning, are known to represent the resistance to flow [26] in the calculation of the average 
flow velocity. 

First, assuming 𝜏଴̅ ∝  𝑢തଶ, Chézy [5] [26] defined a resistance coefficient to represent 
the resistance to flow and developed an equation to calculate the average flow velocity as 
Equation (18): 𝑢ത =  𝐶ඥ𝑅ு. 𝑆;  where 𝐶 = ට𝜌. g𝐾  (18)

where 𝜏̅଴ is the shear stress, 𝐶 is the resistance coefficient of Chézy, 𝑢ത  is the average 
cross-sectional flow velocity, and 𝐾 is a probability coefficient or relative roughness co-
efficient. 

Experiments on fluid flow in pipes led Darcy and Weisbach [5] [26] to develop a flow 
resistance coefficient (𝑓) and derive an equation for calculating the average flow velocity 
on a smooth surface. Subsequently, this index was applied to open-channel flows by re-
placing the diameter of the pipe with an effective diameter representative of the hydraulic 
radius of a flow channel. The resulting analytical equation is presented as Equation (19): 𝑢ത = ට଼୥௙ ඥ𝑅ு. 𝑆௙ cos 𝜃 ;  where 𝐻௙ = 𝑓 ௅ௗ೐೑೑ ௨ഥమଶ୥ = 𝑓 ௅ோಹ ௨ഥమ଼୥ , (19)

where 𝐻௙ is the energy loss by friction (in m) over a distance 𝐿, and 𝑑௘௙௙ is the effective 
diameter of channel function for the hydraulic radius of the channel (𝑑௘௙௙ = 4𝑅ு). 

Moreover, the calculation of the shear stress in a channel can be performed using 
Darcy’s coefficient. Equation (20) was developed for this purpose: 𝜏̅௕ = 𝜌. 𝑢തଶ 𝑓𝐿𝐻௙8 𝐻௙𝐿. cos 𝜃 cos 𝜃   ⟹  𝜏̅௕ = 𝑓8 𝜌. 𝑢തଶ (20)

Manning [5] [26] calculated the average velocity of a uniform flow from a channel 
with a flow resistance coefficient of 𝑛 via Equation (21). It is noted that the Manning co-
efficient (𝑛) depends not only on the shape and roughness of the channel but also on the 
nature of the flow itself. Hence, this parameter is generally an approximation in calcula-
tions, and the known values are specific to river systems: 

𝑢ത = 1𝑛 𝑅ுଶ ଷ⁄ 𝑆ଵ ଶ⁄ ;  where 𝑛 =  𝑅ுଵ ଺⁄𝐶 = 𝑅ுଵ ଺⁄ ඨ 𝑓8g (21)

In addition to Equations (19)–(21), other equations exist for relating flow velocity to 
the coefficient of resistance to flow. Knowing that flow resistance is influenced by various 
parameters, including the shape of the cross section, the non-uniformity of the limits of 
the flow channel, and the instability of the flow—in addition to the viscosity and the 
roughness of the walls of a flow channel—flow resistance can be classified into four com-
ponents: surface or skin friction, form resistance, wave resistance from free surface distor-
tion, and the resistance associated with local acceleration or flow unsteadiness [27]. When 
the Weisbach coefficient of resistance (f) is applied, flow resistance can be expressed as: 
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𝑓 = 𝐹 (𝑅𝑒, 𝐾,  𝜂଴, 𝑁, 𝐹𝑟, 𝑈) (22)

where 𝐹 represents a function, 𝑅𝑒 is the Reynolds number, 𝐾 is the relative roughness 
coefficient (usually expressed as 𝑘௦ 𝑅⁄ , where 𝑘௦ is the equivalent wall surface roughness 
and 𝑅 is the hydraulic radius of the flow),  𝜂଴ is the cross-sectional geometric shape, 𝑁 
is the non-uniformity of the channel in both profile and plan, 𝐹𝑟 is the Froude number, 
and 𝑈 is the degree of flow unsteadiness. The parameters of this equation are independ-
ent, and the four resistance components (surface, form, wave, and unsteadiness) interact 
nonlinearly so that any linear separation and combination are artificial. 

The internal and external laws of the boundary layer theory are used to explain some 
components of flow resistance and better define the flow resistance with respect to these 
parameters. The theory of the boundary layer refers to a zone in a flowing fluid where the 
viscous effects are as important as the effects of inertia in terms of magnitude. Within this 
layer, the tangential velocity with respect to the wall changes very quickly, having no 
velocity at the wall and a greater-than-zero velocity outside this layer. Thus, the boundary 
layer represents the interface zone between a body and a surrounding fluid. 

According to this theory, the distribution of the velocity (u) along the normal direc-
tion (y) to the wall is correctly described by the internal law (or the law of the wall) where 
the viscous effect dominates and the external law (or velocity defects low) [16,28]. The 
expressions defined by these laws are: 𝑢𝑢∗ = 𝐹(𝑦∗, 𝑘∗)  where: 𝑦∗ = 𝑢∗𝑦𝜈 , and  (23)𝑈 − 𝑢𝑢∗ = 𝐹 ቀ𝑦𝛿 , 𝐻௦ቁ (24)

where 𝑢∗ is the shear velocity (Equation (3)), 𝑘∗ is the Von Karman’s constant, 𝑦∗ is a 
constant equal to 𝑢∗𝑦 𝜈⁄ , 𝜈 is the kinematic viscosity of the fluid, 𝑈 is the free stream 
velocity at the far end of the outer law, and 𝛿 is the boundary layer thickness. 𝐻௦ is often 
called a shape factor, a nondimensional parameter associated with the pressure gradient 
and Reynolds number, and it is usually expressed as the ratio between the displacement 
and momentum thicknesses of the boundary layer. 

Knowing that the inner and outer laws are not mutually exclusive, there is a region 
of overlap between the lower limit of the outer law and the upper limit of the inner law 
(Figure 7). To characterize this transition zone, researchers have developed equations to 
satisfy both laws. Rouse presented a logarithmic function that applies to the laws ex-
pressed by equations (23) and (24), and the power-law distribution of Chen is also used 
[27]. These equations are presented respectively in Equations (25) and (26). More infor-
mation on the logarithmic function and power-law distribution can be found in of Nezu 
et al. [29]: ௨௨∗ = 𝑐ଵ log 𝑦∗ + 𝑐ଶ, and  (25)௨௨∗ = 𝑐ଷ(𝑦∗)௠,  (26)

where 𝑐ଵ, 𝑐ଶ, and 𝑐ଷ are constants for a given channel. From these equations, the open-
channel resistance can be derived and extended from the resistance of a uniform flow in 
a circular rigid pipe. 
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Figure 7. Regions of the inner and outer laws of the boundary layer [19]. 

The closest open channel counterpart of a circular pipe (besides a half circle) is the 
two-dimensional (2D) wide channel. With the shape factor held constant for 2D wide 
channels or circular pipes, equations (23) and (24) imply that, referring to Equation (22), 
the resistance to a steady uniform flow is solely a function of the Reynolds number 𝑅𝑒 
and the relative roughness 𝐾 = 𝑘௦ 𝑅⁄ , provided that the Froude number is not high and 
its effect is negligible. Hence, the resistance factors become: 𝑓, ௡ோభ ల⁄ , ஼√௚ , = 𝐹 ቀ𝑅𝑒, ௄ೞோ ቁ, (27)

where 𝑘௦ is the equivalent wall surface roughness, and 𝑅 is the hydraulic radius. 
From Equation (27), various resistance coefficients in the form of Darcy-Weisbach 

can be derived, depending on 𝑅𝑒: 
- For a uniform and regular laminar flow with a 𝑅𝑒 < 500, the resistance factor is ob-

tained as 𝑓 = 𝐾௅ 𝑅𝑒 ⁄ ,  (28)

where 𝐾௅ = 24 for wide channels and 𝐾௅ =  16 for circular pipes. 
- For 700 < 𝑅𝑒 < 25,000, the resistance factor for a smooth pipe (and often used as an 

approximation for wide channels) is 𝑓 = 0.224 𝑅𝑒଴.ଶହ ⁄ .  (29)

- For 𝑅𝑒 ൐ 25,000, the resistance factor becomes ଵඥ௙ = −𝐾ଵ log ൬ ௞ೞ௄మோ + ௄యସோ௘ඥ௙൰ , (30)

where 𝐾ଵ, 𝐾ଶ, and 𝐾ଷ represent Colebrook-White coefficients for a regular uniform 
flow in open channels with a rigid impermeable limit [27]. 

These Colebrook-White coefficients are implicit in the determination of f. To overcome 
this drawback, Churchill [30] and Bray [31] assumed full flow in a pipe to then propose 
an equation for calculating the flow resistance as: 𝑓 =  ଵସ ቂ− 𝑙𝑜𝑔 ቀ ௞ೞଵସ.଼ோቁ + ହ.଻଺(ସோ೐)బ,వቃିଶ

. (31)

From Equation (31), Yen suggested a formula to calculate the flow resistance for large 
open channels having a 𝑅𝑒 ൐ 3000 and a 𝑘௦ 𝑅⁄ < 0.05  [27]: 𝑓 =  ଵସ ቂ− 𝑙𝑜𝑔 ቀ ௞ೞଵଶோቁ + ଵ.ଽହோ೐బ,వቃିଶ

.  (32)

For equations (27)–(32), flow resistance is determined in terms of limit shear, that is, 
from the perspective of the relationship between force and momentum. This concept de-
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termines the flow resistance of open channels in terms of the slope of the impulse re-
sistance along a channel for a channel cross section. However, other work has shown that 
resistance to flow can also be examined from the concept of energy in terms of the energy 
loss when a fluid moves across a surface, as well as in terms of the energy slope or, more 
precisely, the gradient of the mean motion of the dissipated energy. Yen and Akan [32] 
suggest the rather than applying Equation (28), Equation (28) can be used for the momen-
tum equation of laminar sheet flow under rain-full conditions with an intensity i: 

𝑓௠ = ൤24 + 660 ቀ ௜√௚ఔయ ቁ଴.ସ൨ ଵோ௘. (33)

In summary, equations (19)–(21) indicate that the average flow velocity is directly 
related to the pressure that is applied to the surface of a rock mass or inside a joint. There-
fore, the average flow velocity is a key element for determining the specific forces that are 
applied to a rock mass. However, the average flow velocity is sensitive to the problem of 
“non-uniqueness” in the field of hydraulic erosion. Pells [5] and Van Schalkwyk [25] re-
ported that the average velocity could not be used as a representative value in hydraulic 
hazard parameters for erosion prediction. Moreover, the average flow velocity is propor-
tional to the flow resistance coefficient, which can be defined by knowing the roughness 
of the flow channels and spatial variation along the flow channel. To specify the flow re-
sistance, the resistance coefficients of Darcy-Weisbach, Chézy, and Manning are used to 
estimate mean flow velocity. The equations detailed above (equations (28)–(33)) illustrate 
the diverse means of determining resistance coefficients, and this diversity of approaches 
can explain the confusion among users and the inconsistencies among the produced val-
ues for the resistance coefficients. The application of these flow resistance coefficients in 
flood spillways also remains uncertain. Indeed, the theory of the boundary layer served 
as a basis in the development of some resistance coefficients and this theory would be less 
effective for flow channels with very rough surface. Under the flow conditions considered 
for rough unlined spillways, the roughness elements may exceed the thickness of the 
boundary sublayer (fully turbulent flow) and the velocity profile is fully developed, that 
is, the thickness of the boundary layer is equal to the depth of the outflow [5]. According 
to Yen [27], the inner law region (Figure 7) below the transition zone is generally thin and 
it is difficult to measure velocity, especially when the roughness of the wall is large. 

The multiple equations established to determine the resistance to flow of a channel 
fluid represent the derivative and the extent of the resistance of a uniform and constant 
flow in a rigid circular pipe. These coefficients are approached either from the perspective 
of impulse resistance (resistance slope) or energy loss (energy movement gradient). These 
various Darcy-Weisbach, Manning, and Chézy resistance coefficients can be related 
(Equation (27)), and there is no clear theoretical advantage of one coefficient over the 
other. The C (Chézy) coefficient is, however, the simplest to use, although there is no gen-
erally accepted table or figure of C values. The n (Manning) coefficient has the advantage 
of being nearly constant and almost independent of flow depth, Reynolds number, or 𝑘௦ 𝑅⁄  for fully developed turbulent flow on a rigid and rough surface [27]. Determining 
the resistance coefficient values by Manning, obtained from field data, relies on the head 
loss energy concept applied to channel reaches. The f (Darcy-Weisbach) coefficient has the 
advantage of being directly linked to the development of fluid mechanics, and there are 
known values for this coefficient, the most reliable source for the values of f being the 
Moody diagram. Generally, f is regarded as a point value related to the velocity distribu-
tion, although some hydraulic engineers extend it to cross-sections or reach values and 
consider it as an energy loss coefficient. Thus, it appears appropriate to refer to the Darcy-
Weisbach f for point resistance, whereas Manning’s n can serve for cross-sectional and 
reach resistance coefficients. Previous field experiments suggest that n is a simpler coeffi-
cient when accounting for the effects of other parameters beyond the Reynolds number 
and relative roughness, as well as from a fluid mechanics perspective. A drawback of 
Manning’s formula is that it is dimensionally non-homogeneous [27]. 
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In general, these flow resistance coefficients are not representative of the roughness 
of a flow channel of a spillway; for example, the Darcy-Weisbach coefficient was specifi-
cally developed for pipes having a smooth surface and was then analytically modified for 
use in open-channel flows. Manning’s coefficient is more applicable to river systems; how-
ever, the roughness values of an uncoated channel of high-speed spillways is generally 
greater than those estimated from river systems. Moreover, in practice, the resistance var-
ies among points, in particular along the flow channels of the spillway, whereas the re-
sistance coefficient for a cross section or a range of channels is a spatially weighted aver-
age of local resistance. Yen [27] concludes that despite the success of resistance coefficients 
in presenting complex physical processes in flows, much remains to be studied, including 
the effects of channel geometry and flow instability on resistance to the flow. 

3.3. Applied Stresses Inside Joints and the Block Lifting Force 
Bollaert [6,8,33,34] estimated the hydraulic load on the rock mass by considering the 

hydrodynamic tensile load of the joints, represented by the stress intensity factors in the 
various erosion mechanisms. First, erosion is defined as resulting from instantaneous brit-
tle fracture (hydrofracturing), where the hydraulic head is defined by a stress factor (𝐾ூ). 
This index represents the stress induced by the water pressure inside the joints and, hence, 
the brittle fracturing occurs when the intensity of the stress in the joints, owing to fluctu-
ating pressure, is greater than the resistance of the rock mass (Figure 2). The semi-analyt-
ical index developed by Bollaert is presented in Equation (34): 𝐾ூ = 0.8. 𝑃௠௔௫. 𝐹. ඥ𝜋. 𝐿௙,  (34)

where 0.8. 𝑃௠௔௫ represents 80% of the maximum instantaneous dynamic pressure in the 
diving tank, 𝐹 is the correction factor, which depends on the types of cracks when it is 
persistent, and 𝐿௙ is the total length of a joint. 

In cases where brittle fracture is not likely, another mechanism dominates, i.e., fa-
tigue erosion or the progressive hydrofracturing of a rock mass. If the intensity of the 
stresses in the joints does not exceed the fracture toughness of the rock mass, the existence 
of a continuous fluctuating pressure in the joints can ultimately lead to the failure of the 
rock because of fatigue (Figure 3). In this context, Bollaert considered the hydraulic head 
via a stress intensity amplitude factor (Δ𝐾ூ), which corresponds to the difference in inten-
sity of maximum and minimum stresses inside a joint or, in a rough estimation, could be 
considered equal to 40% of 𝐾ூ. 

In a fractured rock mass characterized by a system of joint sets that form a block 
assembly, erosion occurs by the dynamic expulsion of the blocks through water pressure 
as a lifting force. Bollaert [6,8,33,34] estimated this load by considering the essential lifting 
force of the individual block. This lifting force can be expressed as a dynamic impulse 
index that is obtained by the temporal integration of the net forces applied to a block. 
These forces include the force applied on top of the block (𝐹௢), the lifting force beneath 
the block (𝐹௨), the submerged weight of the block (𝐺௕), and the friction along the sides 
of the block (𝐹௦௛) (Figure 1). The equation developed to define the lifting force of an indi-
vidual block is presented in Equation (35): 𝐼 = ׬ (𝐹௨ − 𝐹௢ − 𝐺௕ − 𝐹௦௛). 𝑑𝑡୼௧௣௨௟௦௘଴ = 𝑚. 𝑉୼௧௣௨௟௦௘,  (35)

where 𝑉୼௧௣௨௟௦௘ is the velocity of the fluid in the joint, and 𝑚 is the mass of the rock block. 
In summary, the Bollaert index [6,8,33,34] defining the erosive force of water on a 

rock mass illustrates effectively the three mechanisms of erosion and the importance of 
the pressure dynamics in hydraulic erosion. These indices (𝐾ூ and 𝐼) illustrate the erosive 
force of water, as they are developed on the basis of various erosion mechanisms of a 
fractured rock mass. To correctly apply these indices, however, some considerations must 
be addressed. First, these indices are not applicable to other flow modes at spillways; for 
example, they do not apply to parallel flow along the bottom of the channel and hydraulic 
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jumps. Moreover, the first two factors depend mainly on the maximum instantaneous dy-
namic pressure (𝑃௠௔௫). This pressure depends in turn on the average velocity of the jet at 
the impact point (𝑉௝) and the dynamic pressure coefficient. The latter coefficient is ob-
tained by multiplying the quadratic mean pressure coefficient (𝐶௣௔ᇱ ) by a pressure ampli-
fication factor in the joints  (Γା)  and then adding a mean dynamic pressure coeffi-
cient (𝐶௣௔). The expression developed to calculate the instantaneous dynamic pressure is 
presented in Equation (36): 𝑃௠௔௫ = 10ି଺𝜌. ൫𝐶௣௔ + Γା. 𝐶௣௔ᇱ ൯. ௏ೕమଶ୥, (36)

where the parameters 𝐶௣௔ 𝑎𝑛𝑑 𝐶௣௔ᇱ  depend on the toughness of the rock mass and are ob-
tained experimentally. Nonetheless, the toughness of the rock mass is an irrelevant crite-
rion for the erosion of fractured rocks, and no setup can determine the toughness of a rock 
[7]. The parameter 𝐿௙ in Equation (34) represents the total length of a single joint. How-
ever, from the field data obtained by Pells [5], this parameter does not adequately repre-
sent the geometry of an entire erosion zone because it is determined using a reduced phys-
ical model that is not representative of a fractured rock mass. 

The second index developed by Bollaert, the lifting force of a block, also includes 
some nuances as to its reliability for estimating the erosive force of water. The first is that 
the index does not consider the shear strength along the sides of the blocks (𝐹௦௛). Moreo-
ver, according to Figure 1, the net lifting force of a block also depends on the joint open-
ings. As the openings become larger, the amount of water seeping into the joints increases, 
which directly influences the pressure below the blocks. Therefore, this index of dynamic 
block uplift once again ignores an important parameter contributing to the resistance of a 
block to erosion. Furthermore, the indices developed by Bollaert [6,8,33,34] apply only to 
plunging jets, and, hence, these indices are not applicable to other flow conditions. As a 
result, they must be improved to not only determine the erosive hydraulic force of the 
plunging jets for which they have been developed but also for their application to other 
flow modes. 

3.4. Indices of Energy Dissipation 
The dissipation of energy in spillways depends mainly on the flow condition, which 

is primarily a function of spillway shape. Therefore, hydraulic powers should vary among 
flow conditions. Several authors have thus developed expressions to calculate the dissi-
pation of energy in relation to the variation of the total energy gradient ቀௗாௗ௫ቁ to define the 
erosive force of water within spillways. Van Schalkwyk [25] evaluated the energy dissi-
pation for plunging flows. Annandale [4] attempted to develop an expression for estimat-
ing the energy gradient for calculating energy dissipation in plunging jets, hydraulic 
jumps, and knickpoint flows. Similarly, Pells [5] developed expressions to determine the 
variation of the hydraulic gradient for plunging jets and hydraulic jumps. 

Van Schalkwyk [25] used the ratio between the total power of flow (𝑇) and the sur-
face on which it is dissipated (𝐴) to estimate the energy dissipation, following Equation 
(37): 𝑃 =  ஺் , where 𝑇 = 𝜌g𝑄, (37)

where 𝑄 is the water flow rate, and 𝐻 is the total head. 
Equation (37) was then applied to different flow modes observed at spillways to es-

timate the energy dissipation of each. Accordingly, energy dissipation for an inclined 
channel was calculated on the basis of the power loss over a distance. The energy released 
owing to variations of the total head corresponds to the slope of the hydraulic gradient, 
and the produced equation is presented in Equation (38): 𝑃 = 𝜌g𝑞𝑆, where 𝑆 =  ௗுௗ௫  and ௗ்ௗ௫ = 𝜌g𝑄𝑆, (38)
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where 𝑞 is the flow rate per unit length of channel width (𝑞 = 𝑄 𝐵௙⁄ ), and 𝐵௙  is the 
channel width. 

Van Schalkwyk [25] then reformulated Equation (37) to calculate energy dissipation 
for a plunging flow by selecting a coefficient of 3 as the energy gradient for the plunging 
jet. Equation (39) presents the modified Equation (37) for calculating the energy dissipa-
tion at a plunging flow: 𝑃 = 3g𝑞.  (39)

Equations (38) and (39), developed by Van Schalkwyk, are only applicable to inclined 
uniform flow and plunging jets; however, some considerations should be noted. For ex-
ample, the flow within the inclined flow channels of spillways is not uniform; and using 
a coefficient of 3 as the energy gradient for a plunging jet needs to be evaluated further, 
as the energy gradient of a plunging jet is highly variable. These equations are therefore 
not sufficiently comprehensive to evaluate the erosive force of water within spillways. 

Annandale [4] also proposed equations for calculating the erosive force of water 
within spillways. When the density of water, the unit flow rate, and the energy loss of a 
flow are accounted for, the resulting equation is: 𝑃 =  𝛾. 𝑞. ∆𝐸,  (40)

where ∆𝐸 is the energy loss depending on the type of flow, and 𝑞 is the specific dis-
charge rate equal to the flow rate divided by channel width. Considering a flow channel 
with a length (𝑤) and depth of water (𝑑) that is measured perpendicular to the flow 
direction, the unit discharge rate is calculated using Equation (41): 𝑞 = ொ௪ = ௨ഥ×஺௪ =  ௨ഥ.௪.ௗ௪ =  𝑢ത. 𝑑.  (41)

From Equation (40), Annandale [4] developed several equations to estimate the ero-
sive hazard parameter for various flow modes at spillways, including for lunging jets, 
hydraulic jumps, and knickpoint flows. 

In regard to plunging jets, Figure 8 shows the characteristic parameters considered 
by Annandale, where energy loss  (∆𝐸)  is calculated as a function of specific dis-
charges (𝑞ଵ 𝑎𝑛𝑑 𝑞ଷ). From this, Annandale [4] developed equations (42) and (43) to deter-
mine the energy dissipation for a plunging jet: 

𝑃 = 𝛾. 𝑞. 𝑦௖. ൮∆௭௬೎ + ଷଶ − ௬೗௬೎ − ଵସ ቀଷଶ + ∆௭௬೎ቁ ቌ1 + ଵ.଴଺ට∆೥೤೎ାయమቍଶ൲  (depends on 𝑞ଵ),  (42)

𝑃 =  𝛾. 𝑞. ௩మ଼୥ ቌ1 + ଵ.଴଺ට∆೥೤೎ାయమቍଶ  (depends on 𝑞ଷ), (43)

where 𝑦௖ is the critical depth of the jet, ∆𝑧 is the height of the spillway, 𝑣 is the average 
flow velocity, and 𝑦௟ is the downstream flow depth. 
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Figure 8. Schematic representation of a plunging flow according to Annandale [4]. 

For a fluid flowing as a hydraulic jump, the significant parameters considered by 
Annandale for this type of flow are represented in Figure 9, and the relevant equation is 
presented in Equation (44): 

𝑃 = 𝛾. 𝑞 ൮𝑦௟ + ௤మଶ୥௬೗మ − ௬೗ଶ ቆට1 + 8F୰୪ଶ − 1ቇ − ௤మଶ୥ − ସ௬೗మቆටଵା଼୊౨మౢିଵቇమ൲. (44)

 
Figure 9. Flow conditions of a hydraulic jump [4]. 

According to Annandale [4], the maximum dissipation of a knickpoint flow occurs at 
the point where the angle of the flow channel changes from a low to a steep angle (Figure 
10). 
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Figure 10. Schematic of a knickpoint flow [4]. 

Equation (45) is subsequently used to estimate the energy dissipation for a knickpoint 
flow: 𝑃 = 𝛾. 𝑞 ቀଵାୡ୭ୱ(ఏିఈ)ଵିୡ୭ୱ(ఏିఈ) 𝐾௟ ቀ௩೒మଶ୥ቁ + 𝑆௙. 𝐿ቁ, (45)

where 𝐾௟ is a probability coefficient estimated at 1 (on the pretense that it provides con-
sistent results), 𝜃 is the angle approximated by superimposing the theoretical ogee shape 
onto the channel bed geometry, and 𝛼 is the slope angle of the channel. 

The equations used by Annandale [4] to estimate the energy dissipation for various 
flow modes lack clarity and detail and have thus been criticized; for example, Pells [5] 
points out that the Annandale equation ignores the hydraulic jump length (∆𝑥) in the 
definition of flow dissipation (i.e., the expression is 𝜌g𝑞∆𝐸  rather than the correct 
form 𝜌g𝑞 ∆ா∆௫). This issue was modified by Annandale [7] by using ∆𝑥 = 1 m and mention-
ing that this value provides a conservative estimate in the absence of effective data. Hen-
derson [35] demonstrated that the length of dissipation is a significant parameter at ∆𝑥 =6𝑦ଶ (𝑦ଶ is the height of the water downstream of the flow channel), where the Froude 
number lies in the 4.5 < F୰ < 13 range. Moreover, for the specific discharge rate between 
1 and 50 m2 s−1, Annandale’s analytical solution overestimates the unit energy dissipation 
[5]. This dissipation length is also ignored in the analytical solution of the unit power dis-
sipation of a knickpoint flow condition and downstream of a jet. Finally, the equation 
provided by Annandale [4] for calculating the energy dissipation of the back roller (Equa-
tion (43)) disregards the length of the energy dissipation. These criticisms therefore dis-
courage the use of the Annandale equations in this context. 

Pells [5] developed Equation (46) to calculate the erosive force of water in the flow 
channel of the spillways: Π = 𝜌g𝑄 ቀ ௉ೝఘ୥ + ௨ഥమଶ୥ቁ,  (46)

where 𝑃௥ is the water pressure, and 𝜌 is the density of water. 
The dissipation of the fluid energy represents the velocity at which the power is ex-

pended, corresponding to the flux gradient. Hence, by multiplying the slope of the total 
energy line by 𝜌g𝑄, a simplified form of the energy dissipation equation is presented in 
Equation (47): Π௎஽ = 𝜌. g. 𝑞 ௗாௗ௫.  (47)
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From Equation (47), Pells [5] developed equations related to the various flow modes 
found in spillways. Figure 11 illustrates the different parameters that are considered in 
plunging flow. From these parameters, the estimation of the energy loss in plunging flows 
over distance (between points 1 and 4 of Figure 11) is presented in Equation (48): Δ𝐸 = 𝑧ଵ + 𝑦ଵ ቆଷଶ − ଶ√ଶఈାయమ − ቀ√ଶఈାయమቁమ଼ ቇ,  (48)

where 𝑧ଵ is the height of the spillway, 𝑦ଵ is the height of the water from the surface of 

the discharge point, and 𝛼 is a coefficient depending on 𝑧ଵ and 𝑦ଵ ൬𝛼 = ටଷଶ + ௓భ௬భ൰. By 

combining Equations (47) and (48), Pells [5] proposed an equation (Equation (49)) to cal-
culate the energy dissipation for a plunging flow: Π௎஽ = 𝜌. g. 𝑞ଵ ௗாௗ௫ = ఘ.୥.௤భඥଶ௭భ௬భ ቈ𝑧ଵ + 𝑦ଵ ቆଷଶ − ଶ√ଶఈାయమ − ቀ√ଶఈାయమቁమ଼ ቇ቉.  (49)

 
Figure 11. Schematic of a plunging flow according to Pells [5]. 

Subsequently, Pells [5] estimated the energy dissipation for a hydraulic jump flow, a 
flow characterized by an abrupt change in the flow regime. By knowing the initial velocity 
and depth, the downstream depth of the flow can be calculated. Thus, it is possible to 
calculate the variation in velocity and the energy loss between two points (from upstream 
to downstream). The resulting equation is presented in Equation (50). By combining Equa-
tions (47) and (50) and applying a distance about 6𝑦ଶ between points (for 4.5 < F୰ଵଶ  < 13) 
[35], Equation (51) allows calculating the energy dissipation for a hydraulic jump: 𝛥𝐸 = 𝑦ଵ + ௤మଶ௚௬భమ − ௬భଶ ቀඥ1 + 8𝐹௥ଵଶ − 1ቁ − ସ௤మଶ௚௬మమቆටଵା଼ிೝమమ ିଵቇమ, (50)

𝛱௎஽ = ఘ.௚.௤଺௬మ ൮𝑦ଵ + ௤మଶ௚௬భమ − ௬భଶ ቀඥ1 + 8𝐹௥ଵଶ − 1ቁ − ௤మ
ଶ௚൭೤భమ ቆටଵା଼ிೝమమ ିଵቇ൱మ൲, (51)

where 𝑦ଶ is the height of the water downstream of the flow channel. 
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In summary, the analytical methods for estimating energy dissipation presented by 
Pells [5] appear to be more reliable than other approaches. Generally, energy dissipation 
is a widely used index for evaluating the hydraulic erodibility of a rock mass and is used 
to represent the erosive force of water in most modes of hydraulic erosion assessments. 
These methods are ΠUD vs. RMEI [5], ΠUD vs. eGSI [9], and P = f(Kh) [4,7,11,13,25]. This 
energy dissipation index is used because of its simplicity rather than its effectiveness in 
representing the erosive force. That is, owing to the absence of a reliable index and the 
complexity of estimating the actual erosive force of water within a spillway, energy dissi-
pation is used as a simple indicator of erosive hydraulic force. According to Pells [5], the 
use of energy dissipation by itself is common, although it does not present all the com-
plexities of the erosion process; an infinite number of combinations of spillway geometry 
and flow modes can be potentially associated with a given measure of energy dissipation. 
Moreover, a direct interpretation of energy dissipation infers that it is not a direct meas-
urement of erosive capacity but rather represents energy loss linked to the conservation 
of heat and not to the work performed. It is thus evident that there exists the need to 
develop an improved index for calculating the erosive force of water to assess the erosion 
of a fractured rock mass. 

4. Discussion 
The indices reviewed in this paper were developed to represent the erosive force or 

hazard parameter of water for the purpose of determining rock erosion in the spillways 
of hydroelectric projects. The previous sections exhaustively discuss the advantages and 
disadvantages of each method for estimating the erosive force of water. 

The non-representativeness of average velocity (𝑢ത) is linked to its sensitivity to the 
problem of “non-uniqueness” in the realm of hydraulic erosion. In short, the average 
shear stress at the surface of the flow channel (𝜏௕̅) is designated as being representative 
of the hazard parameter of the water within the spillways. However, shear stress cannot 
explain all possible erosion mechanisms within the spillways, e.g., erosion via the dy-
namic removal of blocks or erosion by the brittle fracture of large blocks into smaller 
blocks. This inability to fully explain the erosion mechanisms and the difficulty of estimat-
ing shear stress are among the limitations when using this factor to calculate the erosive 
force of the water. Energy dissipation as an erosive force does not include all the complex-
ities of the erosion process and is used to calculate the erosive hazard parameter of water 
mainly because it is simple to determine, not because of its representativeness. 

In regard to the semi-analytical solutions of Bollaert [6,8,33,34], they can be used for 
estimating the erosive force of water as they better explain the principles behind the dif-
ferent mechanisms of hydraulic erosion of rock mass; however, there are some criticisms 
of these indices. The first index, developed on the basis of the stress applied to joints (𝐾ூ), 
includes parameters that are difficult to determine for a rock mass. Among them, 𝐿௙ (the 
total length and shape of the joints) is not representative, as it was developed using a scale 
model that is not representative of the fractured zone of a rock mass. In addition, uncer-
tainty is associated with the determination of the empirical variables, including 𝐶௣௔, 𝐶௣௔ᇱ , and Γା. The second index, the dynamic impulse of the blocks (𝐼௜௠௣௨௟௦), also disre-
gards some important parameters that influence the accuracy of the model, such as the 
shear strength (𝐹௦௛) along the block sides. Another essential parameter for estimating the 
lifting force of a block (see Figure 1) is the opening of the joints, a parameter directly in-
fluencing the pressure below the blocks, the latter an important parameter neglected by 
the lifting force of the blocks. Generally, the most important parameter for estimating the 
Bollaert indices is the maximum dynamic pressures or the peak pressures applied within 
joints. However, Pells [5] mentions that the pressure fluctuation follows a Gaussian dis-
tribution; thus, no pressure peak is observed in the joints. Thus, these indices are only 
applicable to plunging flows, and modifying the existing indices becomes essential. 

Our review found that the main shared factor related to the indices used to represent 
the erosive force is the pressure applied to the discontinuities of the rock mass. Among all 
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the mechanisms controlling hydraulic erosion, erosion by dynamic block removal appears 
to be the most common erosion mechanism of fractured rock masses, as evidenced by 
several cases of erosion observed at the flow channels of spillways around the world. 
These cases of erosion by removal of the blocks mainly concern the spillways with inclined 
flow channels. Figure 12 shows in detail the mechanism of erosion by removal of the 
blocks in the inclined flow channels of the spillways. This remark therefore emphasizes 
that different flow modes within spillways share similar dynamics of erosion; hence, the 
dynamic expulsion index of the blocks seems more suitable than the other indices to rep-
resent the erosive force of water. Nonetheless, the dynamic expulsion index must be im-
proved, as it neglects important parameters, including shear strength and joint opening. 
Moreover, this index is only applicable to plunging flows. 

The dynamic expulsion index should be modified to determine the erosive force of 
water for the various flow modes occurring in spillways. This includes flows on inclined 
channels, hydraulic jumps, and knickpoints. The mechanism of rock mass erosion in rela-
tion to these flow modes is defined using parameters such as the pressure above and un-
der the block, the submerged weight of the block, the opening of the joints, the arrange-
ment of the joints with respect to the direction of flow, and the shear forces along the sides 
of the block. 

 
Figure 12. The block removal erosion mechanism for flow parallel to the bottom of the flow channel 
(modified from Annandale [4]). 

In this regard, the critical unanswered questions include determining the uplift pres-
sure in the joint as a function of the parameters of the joint and identifying the influence 
of or the interaction between the pressure and joint geomechanical parameters, including 
the joint profile, opening, and roughness of the joint surface. Other relevant parameters 
are the effect of the submerged weight of the blocks and the surface profile of the open 
channels on this erosive hydraulic force (the pressure). Future studies should include the 
characterization of the dynamic pressure variation applied to the discontinuities of the 
rock mass to reduce these uncertainties. 

5. Conclusions and Future Research Directions 
This paper identifies the most important parameters affecting hydraulic power, such 

as the instantaneous dynamic pressure for the hydraulic erosion of the rock mass. We also 
highlight the various geomechanical parameters that can influence this pressure, depend-
ing on the various known erosion mechanisms of the rock mass of the spillways. It appears 
that no index is effective for the moment to represent the erosive force of the water, how-
ever some of them can be improved. 

Existing and ongoing studies include simulations at the laboratory scale via the use 
of a physical model of an inclined channel spillway. These models must represent the 
fractured rock mass as realistically as possible. Instrumentation is also essential to study 
the pressure changes as a function of the variation in the parameters of the rock mass. This 
additional information will permit assessing: 
(1) Pressure variation in relation to block shape and size, 
(2) Pressure variation in relation to joint opening, 
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(3) Pressure variation in relation to the arrangement of the joints relative to the flowing 
direction of the water, 

(4) Pressure variation in relation to different flow channel profiles, 
(5) Relative displacement of the blocks as a function of the shear force along the joints 

affected by pressure. 
This experimental setup would help improve our understanding of rock mass ero-

sion and, hence, define the representative indices of hydraulic power and the resistance 
of the rock mass. This experimental setup would favor developing a reliable method to 
evaluate hydraulic erosion of fractured rock masses in spillways. 
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Abbreviations 
Symbol Description Units 
A Cross-sectional area of a water flow mଶ 𝐹  Limit correction factor for stress intensity  
H Total energy charge or water height m 
K Relative roughness coefficient  𝐿  Pipe length m 
N Non-uniformity of the channel in both profiles  
Q Water flow rate mଷ sିଵ 𝑅𝑀𝐸𝐼  Rock mass erodibility index  𝑆  Gradient (slope) of ground  𝑇  Total power W 
U Degree of flow unsteadiness  𝑒𝐺𝑆𝐼  Geological strength index for erodibility  𝑚  Mass of rock kg 

q 
Unit discharge, the volumetric discharge per unit width of the 
channel 

mଶ sିଵ 𝑧  Elevation above a datum m 
(%SFw) Percentage of shear force  F୰  Upstream Froude number  𝐵௙  Width of a flow section measured at the water surface m 𝐹௢  Force on a block  𝐹௨  Force under a block  𝐺௕  Submerged weight of a rock block  𝐻௙  Friction energy loss over a pipe length  𝐼ூ௠௣௨௟௦  Dynamic impulse or block lifting force Kg m sିଵ 𝐽௙  Average energy slope  𝐾௛  Kirsten’s index  



Water 2021, 13, 2950 24 of 25 
 

 

𝐾ூ,௜௡  In situ resistance of a rock mass MPa mଵ ଶ⁄  𝐾௟  Sub-hydrostatic pressure factor of flow  𝐿௙  Total joint length m 𝑃(௕), 𝑃(௪) The wetted perimeter of the bed and sidewalls of the flow 
channel, respectively 

 𝑅ு  Hydraulic radius m 𝑆௙  Friction slope, the gradient of the total hydraulic energy line  𝑉୼௧௣௨௟௦௘   Flow or fluid velocity m sିଵ 𝑑௣  Pipe diameter m 𝑘௦   Equivalent wall surface roughness  𝑦௖  Critical spray depth m 𝑦௟  Downstream flow depth m g  Acceleration due to gravity m sିଶ  𝜂଴   Cross-sectional geometric shape  𝛽  Angle between the sidewall and the water surface ° 𝜃  Channel tilt angle ° 𝜈  Kinematic viscosity m sିଵ 𝜉   Slope of the dividing line  𝜌  Density of water kg mିଷ 𝜓   Ratio of the energy dissipation capacity  
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