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Abstract: Frequency response analysis (FRA) is a powerful and widely used tool for condition
assessment in power transformers. However, interpretation schemes are still challenging. Studies
show that FRA data can be influenced by parameters other than winding deformation, including
temperature. In this study, a machine-learning approach with temperature as an input attribute
was used to objectively identify faults in FRA traces. To the best knowledge of the authors, this has
not been reported in the literature. A single-phase transformer model was specifically designed
and fabricated for use as a test object for the study. The model is unique in that it allows the non-
destructive interchange of healthy and distorted winding sections and, hence, reproducible and
repeatable FRA measurements. FRA measurements taken at temperatures ranging from −40 ◦C
to 40 ◦C were used first to describe the impact of temperature on FRA traces and then to test the
ability of the machine learning algorithms to discriminate between fault conditions and temperature
variation. The results show that when temperature is not considered in the training dataset, the
algorithm may misclassify healthy measurements, taken at different temperatures, as mechanical or
electrical faults. However, once the influence of temperature was considered in the training set, the
performance of the classifier as studied was restored. The results indicate the feasibility of using the
proposed approach to prevent misclassification based on temperature changes.

Keywords: frequency response analysis interpretation; transformer condition monitoring; machine
learning; comparative standard deviation; support vector machine

1. Introduction

Power transformer monitoring is crucial to prevent unplanned service interruptions
and maintain electric power system stability. Frequency response analysis (FRA) is a well-
known method for condition monitoring in power transformers that can identify changes
in a transformer’s active parts. From early studies of the technique in the late 1970s [1] to
the present, FRA has demonstrated an ability to detect mechanical and electrical faults in
power transformers.

FRA is a non-intrusive monitoring and diagnostic technique that can be implemented
without requiring transformer disassembly. As recommended by the principal FRA stan-
dards [2,3], a small sinusoidal voltage waveform is applied over a large frequency band
(from a few Hz up to a couple of MHz) to one of the terminals of the transformer (input
point), and the response is measured in terms of its amplitude (dB) and phase (degrees) at
another available terminal (output point).

The current and reference FRA traces are compared to interpret the FRA measure-
ments, identify changes in the transformer’s active parts and relate these changes to faults.
Ideally, reference measurements are taken just before energization, and subsequent FRA
measurements can then show the evolution of the mechanical condition of the transformer
over the years. When a reference trace is not available, comparisons between phases in
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a three-phase transformer or between identical transformers (sister units) can allow the
identification of mechanical deformations [4].

In recent studies of FRA interpretation, there has been an increase in the use of
machine learning algorithms to help in developing objective interpretations and to reduce
dependency on expert analyses [5–7]. The main challenge now is building a sufficient
database to train and test these algorithms. Although more and more FRA testing has been
conducted worldwide, data for machine-learning training is still scarce [8].

Another key point in objective FRA interpretation is the method’s sensitivity to
small changes in the active parts of the power transformers. Alterations in winding
geometry, for example, directly influence winding inductance and capacitance and are
therefore reflected in FRA traces as frequency shifts and/or amplitude variations. FRA
traces are also susceptible to other factors, such as core magnetization, insulation type,
and aging, moisture, and temperature [9–12]. Since the interpretation algorithms can be
affected by these conditions, they must be considered in the training sets of the machine
learning algorithms.

This study used a laboratory model to build the database necessary to train and test
machine learning algorithms. The model allows fault modes to be introduced and FRA
measurements to be replicated to generate a large database. A support vector machine
(SVM) method with demonstrably good performance in fault identification [13] was tested.
The SVM algorithm’s ability to distinguish fault measurements from healthy measurements
at different temperatures was evaluated. The main goal was to determine the influence of
temperature variation on the SVM algorithm used for the automatic classification of FRA
measurements. The comparative standard deviation (CSD) index was used to quantify
deviations between healthy and faulty FRA traces. Frequencies and amplitudes of the
main resonance and anti-resonance points were also obtained to characterize each FRA
measurement. The CSD and the resonance points served as input to the SVM algorithm,
both individually and combined.

When on-site FRA measurements are taken, temperature can lead to misinterpretation.
This study presents a systematic investigation of the influence of temperature on FRA
measurement results. A series of experiments were performed on a laboratory model under
controlled temperature conditions. The contributions of this study are as follows:

• Investigation of FRA measurements in a laboratory winding model under a wide
range of temperatures (−40 ◦C to 40 ◦C);

• Comparative analysis of machine learning algorithm performance with a large database
of fault modes, considering the effects of temperature on automatic classification;

• Recommendations that will minimize the influence of temperature variation on auto-
mated FRA traces interpretation.

The research was not intended to evaluate the numerical index used to quantify
deviations between traces or the performance of the classification algorithms. The CSD
index and the SVM were selected because they have been widely used in previous studies
concerning FRA interpretation [6,8,13,14]. Other numerical indices and/or classification
algorithms should offer similar conclusions.

2. Materials and Methods

The study had three parts: (1) FRA measurements were performed on a laboratory
winding model; (2) the numerical CSD index was calculated to quantify deviations between
reference measurements, and frequencies and amplitudes of resonance and anti-resonance
points were determined; and (3) an SVM algorithm was used to automatically classify
the measurements.

2.1. Laboratory Setup

Measurements were taken on a laboratory transformer model specifically designed
for FRA testing, the model having no specifications for power or voltage ratings. The
model has a uniform conductor structure (same conductor throughout the windings and
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an equal number of turns per winding section), and solid, non-graded insulation. The
model has two windings that are arranged concentrically. The outer winding (winding 1)
has 16 separable sections, each with 28 turns, for a total of 448 turns. The outer diameter of
winding 1 measures 317 mm, its inner diameter measures 300 mm, and it is 511.3 mm high.
The inner winding (winding 2) consists of three fixed layers with 76 turns per layer, for a
total of 228 turns. The outer diameter of winding 2 measures 277 mm, its inner diameter
measures 259 mm, and it is 530 mm high. Figure 1 shows the laboratory winding model
and its connection schematic.
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Figure 1. Laboratory winding model used for FRA tests: (a) photo and (b) connection schematic.

A commercial instrument was used to measure FRA traces in the laboratory winding
model. For this study, the minimum number of data points per decade was 200, as specified
in the IEC standard 60076-18 [2]. Measurements were taken from 1 kHz up to 1 MHz. Two
databases of measurements were used for the study: a database with four fault modes and
a database with measurements taken at a variety of temperatures.

2.1.1. Fault Database

The fault database was created by introducing four different faults in the laboratory
winding model, as well as taking healthy state measurements to serve as reference mea-
surements. The faults include one electrical fault, shorted turns (ST), and three mechanical
deformations: axial displacement (AD), radial deformation (RD), and disc space variation
(DSV). Figure 2 illustrates the faults and the healthy state of the laboratory winding model.

The AD fault was created by inserting spacers at the bottom of winding 1 to displace
it relative to winding 2, resulting in a loss of magnetic coupling between the windings. The
fault was incremented in six steps, AD 1 to AD 6. For the first step (AD 1), 6-mm spacers
were inserted under winding 1. Spacers were then added in steps of 5.4 mm, to a maximum
of 34.4 mm of displacement (AD 6). Figure 2b illustrates the winding model as winding 1
is displaced vertically upwards.

The RD fault was generated by replacing healthy sections of the winding with de-
formed sections. Figure 3 shows examples of both healthy and deformed sections used
for the measurements. This fault was also incremented in six steps, RD 1 to RD 6. At
RD 1, only one deformed section was introduced, to replace section 2 (top to bottom). The
sections highlighted in Figure 2c were replaced one by one in each subsequent step with a
deformed section until six sections were deformed (RD 6).

The DSV fault was created by adding spacers in three different positions between
the sections of winding 1, as shown in Figure 2d. For DSV 1, a 6-mm spacer was inserted
between Sections 2 and 3, and for DSV 2, a 5.4-mm spacer was inserted between these same
sections, for a total displacement of 11.4 mm. Next, first a 6-mm spacer (DSV 3) and then a
5.4-mm spacer (DSV-4) were added between Sections 8 and 9, and finally, DSV 5 and DSV
6 were created by adding 6-mm and then 5.4-mm spacers between Sections 14 and 15. In
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incrementing the DSV fault, the new spacers were added as described without removing
the spacers already added for the preceding steps.
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Figure 2. Laboratory winding model: (a) healthy state, (b) axial displacement, (c) radial deformation, (d) disc space variation
and (e) shorted turns.

The shorted turns (ST) fault was created by short-circuiting sections of winding 1. For
ST 1, the turns of Section 2 were shorted, for a total of 28 shorted turns. For ST 2, the turns
of Section 3 were also shorted, for a total of 56 shorted turns, and so forth, with ST 6 having
Sections 2, 3, 8, 9, 14, and 15 shorted, for a total of 168 shorted turns. In incrementing the
ST fault, the shorted turns were added without correcting those shorted for the preceding
step. Figure 2e shows the locations of the shorted turns.
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All measurements in the database were taken at 20 ◦C. A total of 343 FRA traces were
used. Details of the FRA traces in the database are given in reference [13].

2.1.2. Temperature Database

The second database created in this study was a temperature database. The FRA
measurements were taken with the laboratory winding model placed inside a climatic
chamber that can simulate temperatures ranging from −40 ◦C to 30 ◦C. For testing at
40 ◦C, portable heaters were added inside the chamber. The chamber was first heated to
40 ◦C using the portable heaters and the temperature was then decreased in steps of 10 ◦C,
down to −40 ◦C. This was done to prevent condensation from forming on the winding
model. Once the room temperature was stable (not varying more than ±1 ◦C), the FRA
trace was obtained. At least four measurements were taken at each temperature to ensure
a sufficient database of measurements. A total of 42 measurements were included in the
temperature database.

2.2. Numerical Index Calculation

The numerical CSD index was used to quantify deviations between the reference
measurement at 20 ◦C and measurements for other temperatures and faults. CSD values
range from zero (perfect match) to infinity, increasing as the deviations between traces
increase. The index works well for frequency deviations, but its sensitivity is not as good
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for amplitude deviations [8,14]. In a comparison with other numerical indices, the CSD
was deemed to offer good performance in evaluating deviations in FRA traces, given its
monotonicity, linearity, and sensitivity [8,13].

The following equation is used to calculate the CSD:

CSD =

√
∑N

I=1
[(

X(i)− X
)
−
(
Y(i)−Y

)]2
N − 1

, (1)

X = 1/N
N

∑
i=1

X(i) and Y = 1/N
N

∑
i=1

Y(i),

where X and Y are, respectively, the reference and investigated amplitude vectors of
measured frequency responses; X(i) and Y(i) are the ith element of these vectors; and N is
the number of data points in vectors X and Y at the frequency window under evaluation.

It is important to note that the frequency range of the index calculation has a signifi-
cant impact on the calculated value. Many different methods are thus used to select the
frequency band for the index calculation. One of the simplest approaches is to evaluate
the entire frequency spectrum, as described in [15,16]. However, if the frequency range
is too wide, deviations between traces might be suppressed or may overlap, resulting
in a lack of sensitivity in the numerical index evaluation. The frequencies may then be
divided into sub-bands, as explained in [2,17]. To overcome the problem of frequency band
division, this study used a sweep frequency window approach, a method based on the
study described in [18]. A frequency window (WS) is determined from the number of data
points per decade ( fp/d) in the FRA traces, using Equation (2). Then, the frequency window
is swept over the complete frequency range (1 kHz to 1 MHz) in steps of WS/4 to obtain a
vector of CSD values:

WS = 10 + 6
( fp/d − 200

200

)
. (2)

2.3. Support Vector Machine Learning

A support vector machine (SVM) is a supervised learning model with associated
learning algorithms. SVMs were first developed for solving binary classification problems.
They can, however, be adapted for multiclass problem applications with the help of
one-versus-one or one-versus-all heuristic methods. These heuristic methods split and
transpose a multiclass problem into a binary classification problem. The SVM algorithm
allows the classification of linearly separable patterns (xi) from two classes: C1 and C2.
The discrimination between classes is achieved by positioning a hyperplane as a decision
boundary. SVMs choose the maximum margin linear separator centered between the
hyperplanes h1 and h2, described in Equations (3) and (4):

h1(xi) = wtxi + b ≥ 1, for xi ∈ C1, (3)

h2(xi) = wtxi + b ≤ −1, for xi ∈ C2, (4)

where w is the weight vector and b is the bias or threshold. The support vectors, which
give the name to the method, are all the points lying on h1 or h2. The main task of SVM
algorithms is to find the optimal weights and biases that minimize the cost function [19].

However, real-world data are frequently not linearly separable, so the SVM does a
kernel trick to transform the input space into a higher-dimensional space where the data is
linearly separable. This transformation is made possible by the use of kernel functions [20].
Many different functions can be used as kernel functions in SVMs, some of the most
common being linear, polynomial and Gaussian.
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For the database for this research, the polynomial kernel function was found to
perform well and was used for classification. A polynomial function with order p was
used, as defined in Equation (5):

G
(

xj, xk
)
= (1− x′j xk)

p. (5)

A 10-fold cross-validation method can be used to train and test SVM algorithms to
prevent overfitting in the data used for model validation. In this method, the data set is
divided into 10 parts. One part is then left out of the training and is used instead as the
test set, and the classification is performed 10 times, with a different part used each time as
the test set. The average deviation of the repeated classifications is then returned as the
classification error.

To optimize the study results, grid search optimization [21,22] was used to determine
the best SVM parameters and hence improve algorithm accuracy. The polynomial kernel
of order p = 2 was found to be the best fit for the dataset classification, together with a
one-versus-one heuristic method.

The described SVM algorithm was used to automatically classify the data and obtain
an objective interpretation of trace deviation. The machine learning algorithm was imple-
mented using Weka, an open-source software developed at the University of Waikato in
New Zealand [21].

Three classification scenarios were produced. For the first, the algorithm was trained
and tested as described above, using the fault database. For the second, the same already
trained algorithm was tested using the temperature database. For the third classification
scenario, the SVM algorithm was trained and tested using a combined database that
included faults and temperature measurements.

Three inputs were considered in the SVM classification. First, the CSD values cal-
culated for the frequency windows were used. Then, the frequencies and amplitudes of
resonance and anti-resonance points were also used as classification input. Lastly, the
combination of these two inputs was used to produce the classification scenarios.

Frequencies and amplitudes of resonance and anti-resonance points were detected by
a maxima and minima search of the frequency response traces. Five main resonances and
anti-resonances for each measurement were identified using an automatic search.

Figure 4 shows a flowchart of the methodology. It is important to note the colors of
the arrows in the chart: each classification scenario is presented in a different color.
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3. Temperature Influence in Frequency Response

Figure 5 shows the FRA measurements taken at temperatures from −40 ◦C to 40 ◦C,
in increments of 10 ◦C. As the figure shows, although deviations are more perceptible at
the first anti-resonance and resonance points for the complete frequency range, even higher
frequencies also present slight frequency shifts. Zooming in on the first anti-resonance
frequency region allows better visualization of the deviations influenced by temperature
changes. As the temperature increases, the resonance points shift to lower frequencies. The
zoomed-in portion of Figure 5b also shows that resonance amplitudes are damped as the
temperature increases.
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The deviations in the FRA traces, such as those seen in Figure 5, are definitely from
alterations in transformer elements, as demonstrated in previous FRA studies [1,3,8].
Changes to winding inductances, series and shunt capacitances, resistances and insulation
conductance are the main causes of deviations. Temperature can influence FRA traces by
modifying material parameters, such as magnetic permeability, resistivity, electrical permit-
tivity, etc. [23–25]. Changes to geometry due to temperature changes (thermal expansion of
conductors, for example) might also be present and affect self and mutual inductances, as
well as capacitances between turns. However, in the temperature range considered in this
study (−40 ◦C to 40 ◦C), copper dilation can be assumed to be negligible [26] and, hence,
changes to geometry were not considered as possibly affecting the FRA traces.

Coil inductances can be affected by changes in magnetic permeability due to tempera-
ture variation. However, the studies in [12] show only small inductance variations (less
than 1.1%) under similar conditions for a temperature shift of 60 ◦C. In addition, there is
no magnetic core in the tested model. Hence, the impact of inductance variation on the
FRA traces due to temperature change can be considered insignificant.

The complex model for high-frequency studies of a transformer winding can be
overviewed as a series impedance (Z(ω)) and a dielectric shunt capacitance (Y(ω)). These
elements are presented as:

Z(ω) = R(ω) + jωL(ω), (6)

Y(ω) = G(ω) + jωC(ω), (7)
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where ω is the angular frequency, R and L are the equivalent resistance and equivalent
inductance of the conductors, respectively, and G and C are the equivalent conductance
and equivalent capacitance of the insulation system, respectively.

The model under study presents dielectric materials, such as pressboard, paper, and
air. The response of these materials in the presence of alternating fields can be described by
a complex permittivity frequency dependent presented in Equation (8):

ε̂(ω) = ε′ (ω)− jε′′ (ω), (8)

where ε′ and ε′′ are the real and imaginary parts of the dielectric permittivity, respec-
tively. The admittance can then be re-written, in terms of the dielectric response [9], as
Equation (9):

Y = ωε′′C + jωε′C. (9)

The dielectric response is a function of both frequency and temperature. The depen-
dency of the permittivity to temperature can be described by its relation to the medium
conductivity (σ), which is highly temperature (T)-dependent. The imaginary part of the
dielectric response related to the conductivity is then presented by:

ε′′ (ω) =
σ(T)

ω
, (10)

and the temperature dependence of the conductivity can be described by the Arrhenius
equation, as in Equation (11) [27]:

σ(T) = σ0e(
−Ea
kBT ), (11)

where σ0 is the pre-exponential factor, Ea is the activation energy, and kB is the Boltzmann’s
constant. Finally, the increase in the complex permittivity of the insulation, due to the
increase in temperature, has an impact on the conductance loss, and this loss can be
identified by the damping effect present in the resonances in the FRA traces, as illustrated
in Figure 5b.

Furthermore, the shift of resonances to lower frequencies, as the temperature increases,
can be associated with an increase in the capacitances of the model [27]. The capacitance
changes can be calculated from the first resonance point (Figure 5b). Local resonances
and anti-resonances are characterized by the interaction between inductive and capacitive
reactances [28]. Every resonance or anti-resonance considered independently can be
interpreted through Equation (12):

fres =
1

2π
√

LiCi
, (12)

where fres is the resonance frequency, and Li and Ci are the inductance and capacitance
corresponding to the resonance point under consideration.

It is well established that winding inductances are not significantly affected by tem-
perature variation [9,12]; the main hypothesis is that temperature primarily influences the
resonance frequency points due to moisture migration/dynamics and electrical permit-
tivity changes. Based on this hypothesis, capacitance variation with temperature can be
estimated using Equation (12), with the inductance value estimated from Equation (13).
This equation is derived from the FRA transfer function in (14) with a 50 Ω measurement
impedance for the measuring instrument [4]:

Li =
50sin(−ϕ)

10HdB/20 2π f
, (13)

HdB = 20 log10

(
Vout

Vin

)
, (14)
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where Vin is the input voltage applied at the input point, Vout is the output voltage mea-
sured at the response terminal, and ϕ is the phase difference between input and output
voltages [3].

The inductance value is then calculated at the linear descendent part of the FRA trace
leading to the first anti-resonance. In this region (around 4 kHz), the inductances are
very close to each other, demonstrating that the inductance is not significantly influenced
by temperature. The average value is 28 mH. Capacitance values are calculated using a
rearranged Equation (12), solving for Ci, and using the first anti-resonance frequencies at
each temperature point. The results are shown in Figure 6, along with the polynomial fitted
curve for the data points of the capacitance calculation.
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As shown in Figure 6, distributed capacitance increases as the temperature increases.
This is mainly due to the electrical permittivity change in the test environment. Since the
model has air insulation, any change in the testing chamber temperature directly affects
the temperature of the insulation, which in turn displaces the resonant frequencies.

4. Numerical Index Results

The CSD index was used to quantify deviations according to temperature change.
The index was calculated over the complete frequency range, from 1 kHz to 1 MHz, in
frequency windows calculated from (2). Figure 7 illustrates CSD values for the different
temperatures. To avoid overloading the figure, only the two extreme temperatures (40 ◦C
and −40 ◦C), plus the curve at reference temperature (20 ◦C), are included in the figure.
The CSD index indicated higher values around the first anti-resonance and resonance
points, and lower but significant values at higher frequencies (above 200 kHz), as can be
seen in Figure 7.

CSD values were similarly calculated for the different fault modes (axial displacement,
radial deformation, disc space variation, and shorted turns) for further comparisons and
classification algorithm implementation. Figure 8 provides a sample (only one step of each
fault) of the results and the calculated CSD vectors.

As Figure 8 shows, the different faults affected the frequency response at different
frequency ranges. A comparison of Figures 7 and 8 shows that the shorted turns fault had
an impact similar to that of temperature variation on the first anti-resonance, with smaller
CSD values. Temperature variation caused significant deviations at higher frequencies
(above 250 kHz), as was the case with the different fault modes. As this comparison
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indicates, an automatic algorithm might have difficulty distinguishing simple temperature
variation in FRA measurements from a fault mode.
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5. Classification Algorithm Results and Discussions

The fault database was used for classification scenario 1. A CSD vector was calculated
and used as input for the classification algorithm. The resonance and anti-resonance points
of the traces were also considered. The algorithm analyzed each of the 343 instances and
classified them into 5 classes: no-fault, axial displacement (AD), radial deformation (RD),
disc space variation (DSV), or shorted turns (ST). Figure 9 shows the confusion matrices
obtained for these classifications.
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The general performance of this classification was 93% when only CSD values were
used as input. The performance increased to 99.7% when resonance and anti-resonances
were considered as input. In all the classification scenarios, 10-fold cross-validation was
used to train the algorithm. The confusion matrix shows the percentage of instances classi-
fied in each class, along with the total number of instances corresponding to this percentage.

The temperature database was then used to test the classification algorithm (classifica-
tion scenario 2), with the CSD vector and a combination of CSD vector values and resonance
and anti-resonance points as input. Since classification with only the resonance points did
not differ from the combination of inputs, this classification was omitted from thencefor-
ward. The algorithm was expected to classify the data without having previously been
trained for temperatures other than 20 ◦C. Figure 10 shows the confusion matrices obtained
for this new test. The general performance of the SVM method dropped to 71% when the
CSD vector was used. However, the performance of the classifier using the resonance and
anti-resonance points dropped to 40%. These confusion matrices were also divided into
four additional matrix lines, according to the temperature of the measurements classified.
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The confusion matrices shown in Figure 10 corroborate the hypothesis that the algo-
rithm is not always capable of distinguishing faults from temperature variation. As the
matrices divided by temperature show, significant problems occurred when the tempera-
ture dropped below−10 ◦C, that is, a shift of−30 ◦C from the reference temperature (20 ◦C).
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The measurements from −40 ◦C to −20 ◦C were misclassified as axial displacement, disc
space variation, or shorted turns faults, depending on the input used for classification.

To overcome the misclassification problem, the SVM algorithm needs to be trained
with FRA measurements at different temperatures, to learn as many different patterns as
possible. In classification scenario 3, both the fault database and the temperature database
are considered when training the SVM algorithm. For this classification scenario, the
training and testing datasets included 70% and 30% of the complete dataset, respectively;
that is, 70% of the data was used to train the classification algorithm, with the remaining
30% left for testing and validation. Afterward, the datasets were stratified to ensure the
ratio of temperature and fault data was maintained from the initial complete dataset into
the divided training and testing sets.

The SVM’s general performance, using the combined databases (fault and temperature
databases) and the CSD vector as input, was once again 93.9%. Its performance returned to
99.1% when resonances and anti-resonances were used in combination with the CSD vector.
This indicates that once temperature is considered in the training dataset, the classification
algorithm performs as well as when only faults are used in the classification. This was true
for all inputs considered, confirming the importance of a large database of measurements
that consider different temperatures in the training dataset.

In this study, measurements at different temperatures were possible because the labo-
ratory winding model allowed a number of possibilities for FRA measurements. With real
transformers, measuring a wide range of temperatures may not be feasible. One possible
solution to this problem is to improve automated interpretation by using computational
simulation environments to help generate a database of frequency responses that includes
different fault and temperature conditions. Further research into this possibility should
be considered.

6. Conclusions

This paper addresses the interpretation of FRA measurements at different tempera-
tures using machine-learning applications. A laboratory winding model specially designed
for FRA measurements was used as the testing equipment. The model allows the intro-
duction of mechanical and electrical faults and, hence, frequency response under different
conditions can be assessed. Tests were performed in a climatic chamber, allowing the
temperature to vary from −40 ◦C to 40 ◦C. The influence of the temperature on an SVM
algorithm classification was reported.

As already reported in the literature, temperature affected the measurements. Among
other things, variations in capacitance values were noted, probably due to moisture dy-
namics related to changes in the insulation temperature. The results also showed that
when temperature is not considered in the training set of the machine learning algorithm,
the classification can be compromised. In fact, at least 30% of the tested measurements
were misclassified on the first attempt, with the error of classification as high as 60%,
depending on the input data for the classification algorithm. The misclassification occurred
predominantly in a group with temperature shifts of more than 30 ◦C.

Temperature measurements need to be included in the training set to overcome the
misclassification problem and restore SVM performance. The SVM classifications were
performed using the following as classifier input: (a) CSD index values; (b) trace resonance
and anti-resonance frequencies and amplitudes; and (c) a combination of (a) and (b). The
CSD was calculated over a frequency window that swept the entire frequency range to
obtain a vector of CSD index values.

Confusion matrices were used to get a picture of the SVM performance. They show
that the algorithm misclassifies different temperature measurements as an axial displace-
ment, disc space variation or short-circuited turns faults, corroborating the need to include
different measurement conditions in the training datasets of machine learning algorithms.
The improvement in the database when measurements that consider other factors influenc-
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ing FRA traces are included needs to be acknowledged. This is one of the contributions of
this research.
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