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Abstract 

 

Fast and Memory Efficient Strassen’s Matrix Multiplication on GPU 

Cluster 

 

Arjun Gopala Krishnan 

 

Prior implementations of Strassen's matrix multiplication algorithm on GPUs traded 

additional workspace in the form of global memory or registers for time. Although Strassen's 

algorithm offers a reduction in computational complexity as compared to the classical 

algorithm, the memory overhead associated with the algorithm limits its practical utility. 

While there were past attempts at reducing the memory footprint of Strassen's algorithm by 

compromising parallelism, no prior implementation, to our knowledge, was able to hide the 

workspace requirement successfully. This thesis presents an implementation of Strassen's 

matrix multiplication in CUDA, titled Multi-Stage Memory Efficient Strassen (MSMES), that 

eliminates additional workspace requirements by reusing and recovering input matrices. 

MSMES organizes the steps involved in Strassen's algorithm into five stages where multiple 

steps in the same stage can be executed in parallel. Two additional stages are also discussed 

in the thesis that allows the recovery of the input matrices. Unlike previous works, MSMES 

has no additional memory requirements irrespective of the level of recursion of Strassen's 

algorithm. Experiments performed with MSMES (with the recovery stages) on NVIDIA 

Tesla V100 GPU and NVIDIA GTX 1660ti GPU yielded higher compute performance and 

lower memory requirements as compared to the NVIDIA library function for double 

precision matrix multiplication, cublasDgemm. In the multi-GPU adaptation of matrix 

multiplication, we explore the performance of a Strassen-based and a tile-based global 

decomposition scheme. We also checked the performance of using MSMES and 

cublasDgemm for performing local matrix multiplication with each of the global 

decomposition schemes. From the experiments, it was identified that the combination of 

using Strassen-Winograd decomposition with MSMES yielded the highest speedup among all 

the tested combinations.  
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Chapter 1 Introduction 

Matrix multiplication is one of the most fundamental algorithmic problems and finds 

extensive use in the fields of simulation, machine learning, graphics, network theory, to name 

a few [2]. This prevalence of the multiplication operation makes any improvements on the 

time complexity of the matrix multiplication algorithm highly desirable. One of the earliest 

implementations of matrix multiplication on high performance devices came in the form of 

BLAS (Basic Linear Algebra Subprograms) library implemented in Fortran [3]. The interface 

of BLAS library was standardized by the BLAS Technical forum [4]. The specifications of 

BLAS became the de-facto standard for low-level implementations of matrix multiplication. 

Over the years, as computations started shifting towards GPGPU (General-Purpose 

computing on Graphics Processing Units) paradigm, BLAS was implemented for GPUs. The 

extensive research that went into adapting matrix multiplication on GPU architecture, 

algorithmic tools, theoretical approaches, and software engineering methods have resulted in 

faster and more efficient algorithms and implementations [2]. 

Until 1969 matrix multiplication was believed to be an operation of cubic complexity. 

However, the introduction of Strassen's algorithm [5], named after Volker Strassen, opened 

the possibility of numerous sub-cubic matrix multiplication algorithms. Even with the 

superior time complexity of Strassen's algorithm compared to naive algorithms, it was never 

widely used in any of the BLAS implementations due to its additional workspace 

requirements, higher memory operation, and numerical instability at higher levels of 

recursions. In this thesis, we present optimized implementations that addresses the additional 

workspace and memory operation requirements of Strassen's algorithm on GPUs. 

1.1    Problem Statement and Motivation 

The work on this thesis began as an exploration into GCNs (Graph Convolution 

Networks) [31] and possible techniques to improve the training phase performance of these 

networks. During the initial research, it was identified that GCNs use a matrix chain 

multiplication consisting of five matrices to compute the propagation function for a layer 

during the training phase [31]. Exploring opportunities to optimize this matrix chain 

multiplication resulted in the work presented in chapter 3 and 4. Although GCNs generally 

rely on sparse matrix multiplication algorithms due to the sparseness of the adjacency matrix 

used in the training phase, the multiplication explored in this thesis is dense matrix 
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multiplication. This choice was made due to the wider range of applications possible with a 

dense matrix multiplication algorithm. Equation 1.1 represents the propagation function for 

the (l + 1)th layer of the GCN. Here, Ȃ = A + I where A is the adjacency matrix of the graph, 

and I is the identity matrix. D is the diagonal node degree matrix. 𝐻(𝑙)is the propagation 

function for the l-th layer of the GCN. 𝑊(𝑙)is the weight matrix for the l-th layer and σ(.) is a 

non-linear activation function. 

 

𝑓(𝐻(𝑙), 𝐴) =  𝜎(𝐷̂−
1
2𝐴̂𝐷̂−

1
2𝐻(𝑙)𝑊(𝑙)) 

1Equation 1.1: Propagation function for the layer l + 1 in a GCN. 

The work presented by J. Huang et al. [1] showed the possibility to partially optimize 

the memory requirements of Strassen’s algorithm. This provided the motivation to attempt an 

implementation of Strassen’s algorithm on GPUs that was completely able to hide the 

additional workspace requirements. 

The inability of [1] to eliminate the additional workspace requirement and the 

increasing register pressure with higher levels of recursion while using Strassen Reloaded 

algorithm [1] on GPUs was the first problem we wanted to address with the thesis. This led to 

the development of a Multi-Stage Memory Efficient Strassen’s Algorithm (MSMES) which 

is discussed in detail in chapter 3. 

The literature review conducted to explore multi-GPU implementations of Strassen’s 

algorithm uncovered no prior attempts at implementing a kernel that used Strassen’s 

algorithm to decompose the matrix as well as to perform the local matrix multiplications. 

Conversely, G. Ballard et al. had shown in [2] that a communication optimal implementation 

of Strassen decomposition followed by Strassen multiplication is feasible on a Cray XT4 [26] 

supercomputer. Hence, the second problem we wanted to address in this thesis was to 

implement an efficient multi-GPU matrix multiplication kernel using a global Strassen 

decomposition to split work among the participating GPUs which then uses MSMES to 

perform local matrix multiplications. This implementation is discussed in detail in chapter 4. 

1.2    Challenges and contributions 

Strassen’s algorithm performs less computations per memory operations because it is 

a sub cubic matrix multiplication algorithm. This means that the performance of any 



3 

 

implementation of Strassen’s algorithm will heavily depend on memory consumption and 

data transfer latencies. NVIDIA GPUs use a complex memory hierarchy consisting of system 

memory, GPU global memory, shared memory and register memory [6]. While there are 

numerous CUDA (Compute Unified Device Architecture) library functions like 

mallocManaged [44] during testing we realized that these features are not optimized for the 

memory access patterns exhibited by Strassen’s algorithm. Hence, one of our major 

challenges was to identify techniques to optimize memory access at all levels of the memory 

hierarchy. We used recommendations from CUTLASS (CUDA Templates for Linear Algebra 

Subroutines) and other custom caching and prefetching as well as load balancing techniques 

to optimize the memory footprint and memory access latencies of our implementations. 

The following are the major contributions of our approach: 

• Designed and implemented Strassen’s algorithm called MSMES in CUDA which 

has no additional memory requirement compared to a naïve matrix multiplication 

algorithm. 

• Our implementation of MSMES can perform any level of recursive Strassen with 

no additional memory requirements. To our knowledge, this is the only 

implementation of a recursive Strassen based GEMM (Generalized Matrix-matrix 

Multiplication) which has no additional workspace requirement. 

• Formulated a performance model that allows us to predict the execution time of 

MSMES for any matrix size on any NVIDIA hardware. 

• Designed and implemented a multi-GPU version of MSMES that uses Strassen-

Winograd global decomposition to distribute work among the participating GPUs. 

• Compared the performance of Strassen-Winograd-MSMES (Global 

decomposition using Strassen-Winograd algorithm followed by local MSMES 

multiplication) against other configurations mentioned in table 4.3. 

1.3    Thesis Outline 

The rest of the thesis is organized as follows. Chapter 2 details background 

information that applies to the problems discussed in Chapters 3 and 4. Chapter 3 discusses 

the implementation of our memory efficient single GPU implementation of Strassen’s 

algorithm. In chapter 4 the details of multi-GPU implementation of Strassen’s algorithm are 

discussed. In addition to Chapter 2, relevant related works are also discussed separately in 
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Chapters 3 and 4. Finally, in chapter 5 we discuss some recommendations for future 

augmentations that can be added to the implementations in chapter 3 and 4.  
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Chapter 2 Background 

2.1 BLAS 

Basic Linear Algebra Subprograms (BLAS) is a specification that defines functions 

for commonly used operations in numerical programming like vector addition, dot products, 

matrix multiplication etc. [35]. BLAS originated as a Fortran library in 1979 and was 

eventually standardized by the BLAS technical forum [4]. 

Since BLAS is just a specification, most of the commonly used languages, 

frameworks, and architectures have their own implementations of BLAS specifications which 

are highly optimized for the respective hardware and compiler used with the language. BLAS 

allow users to develop programs that are independent of the hardware and libraries being 

used. The extensive work that goes into optimizing BLAS implementations also mean that 

the users are guaranteed superior performance compared to custom implementation a user 

might program [35]. 

BLAS functions are organized into three levels which corresponds to the 

chronological order of publication, as well as the degree of polynomial complexity of the 

algorithm [35]. 

Level 1 

This level defines operations that typically take linear time, O(N), for completion. 

Hence, routines defined in this level generally corresponds to vector operations like dot 

products, vector additions etc. 

Level 2 

This level defines matrix-vector operations like a generalized matrix-vector 

multiplication. The operations defined in this level generally have quadratic complexity, 

O(N2). 

Level 3 

This level defines matrix-matrix operations like a generalized matrix-matrix 

multiplication (GEMM). The operations defined in this level generally have cubic 

complexity, O(N3).  
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Given, matrices A, B, and C where A is M × K, B is K × N, and C is an M × N 

matrix, and where 𝛼 and 𝛽 are constants, GEMM computes: 

𝐶 =  𝛼𝐴 × 𝐵 +  𝛽𝐶           

(1) 

In chapter 3 we implement a Level 3 BLAS standard matrix-matrix multiplication that 

uses Strassen’s algorithm to compute the result. 

2.2    Strassen’s algorithm 

Given matrices 𝐴 ∈  𝑅𝑀 𝑥 𝐾 and 𝐵 ∈  𝑅𝐾 𝑥 𝑁 , Strassen’s algorithm computes the 

BLAS matrix multiplication standard (equation (1)) by partitioning the matrices into 2 × 2 

submatrices such that: 

 

 [
𝐶0 𝐶1
𝐶2 𝐶3

] =  𝛼 [
𝐴0 𝐴1
𝐴2 𝐴3

] [
𝐵0 𝐵1
𝐵2 𝐵3

] +  𝛽 [
𝐶0 𝐶1
𝐶2 𝐶3

]  (2) 

       

The algorithm rearranges the arithmetic operations such that equation (1) is computed with 7 

sub matrix multiplications, rather than the 8 involved in the classical algorithm [5]. Assuming 

that dimensions of each matrix are N × N, applying the previous decomposition recursively 

would allow the computation to be performed at O(N2.81) [5]. The arithmetic operations 

involved in equation (1) are illustrated in table 2.1: 

Step Computation Result 

1 (𝐴0 + 𝐴3) 𝑃0 

2 (𝐴2 + 𝐴3) 𝑃1 

3 (𝐴0 + 𝐴1) 𝑃2 

4 (𝐴2 − 𝐴0) 𝑃3 

5 (𝐴1 − 𝐴3) 𝑃4 

6 (𝐵0 + 𝐵3) 𝑄0 
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7 (𝐵1 − 𝐵3) 𝑄1 

8 (𝐵2 − 𝐵0) 𝑄2 

9 (𝐵0 + 𝐵1) 𝑄3 

10 (𝐵2 + 𝐵3) 𝑄4 

11 (𝑃0 × 𝑄3) 𝑀0 

12 (𝑃1 × 𝐵0) 𝑀1 

13 (𝐴0 × 𝑄1) 𝑀2 

14 (𝐴3 × 𝑄2) 𝑀3 

15 (𝑃2 × 𝐵3) 𝑀4 

16 (𝑃3 × 𝑄3) 𝑀5 

17 (𝑃4 × 𝑄4) 𝑀6 

18 𝑀0 + 𝑀3 + 𝑀6 − 𝑀4 𝐶0 

19 𝑀2 + 𝑀4 𝐶1 

20 𝑀1 + 𝑀3 𝐶2 

21 𝑀0 + 𝑀2 + 𝑀5 − 𝑀1 𝐶3 

1Table 2.1: Steps in Strassen’s matrix multiplication. 

       Table 2.1 shows that Strassen’s algorithm performs equation (1) with 7 sub matrix 

multiplications and 18 addition/subtraction operations (12 additions and 6 subtractions). 

While the complexity analysis of the algorithm shows clear advantages, practical use of the 

algorithm suffers from poor performance due to additional workspace demands for storing 

intermediate results, especially in a memory-constrained GPU. 

2.3    GPU Architecture 

NVIDIA’s Tesla V100 and GTX 1660ti are examples of graphics processors which 

can perform GPGPU operations at high levels of parallelism. The Tesla V100 GPUs are 

enterprise level offerings that finds extensive use in research, GPU clusters, and professional 
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workflows [6]. The GTX 1660ti on the other hand is predominantly used in personal and 

enthusiast consumer applications. Table 2.2 illustrates the comparison of specifications of the 

two GPUs used in our experiments. 

An NVIDIA GPU is comprised of multiple graphics processing units, texture 

processing controllers, streaming multiprocessors (SM), and memory controllers. Each 

streaming multi-processor has 64 FP32 (Single-precision floating-point format) cores, 64 

INT32 (32-bit Integer format) cores, 32 FP64 (Double-precision floating-point format) cores 

and optional tensor cores. The GPUs have off chip global memory which supplies data to the 

relevant cores through on chip memory controllers. Level 2 caches are used by the memory 

controllers to hide memory transfer latencies between the cores and global memory. 

Similarly, each streaming multiprocessor has reserved Level 1 cache that can be used to hide 

memory latencies between Level 2 cache and cores. The streaming multiprocessor also has 

shared memory that can be used to transfer data between threads in a thread block. The 

CUDA cores have on chip registers that can be used to store frequently used values or 

intermediate results. Figure 2.2 describes the usage of memory hierarchy across threads, 

blocks, and grids. 

Parameter Tesla V100 GTX 1600ti 

Architecture GV100 (Volta) TU116 (Turing) 

SMs 80 24 

FP64 Cores / SM 32 32 

GPU Boost Clock 1530 MHz 1770 MHz 

Peak FP64 FLOPS 7.8 TFLOPS 169.9 GFLOPS 

Global Memory Size 16 GB 6 GB 

L2 cache size 6144 KB 1536 KB 

L1 cache / SM 128 KB 64 KB/SM 

Shared Memory / SM Configurable up to 96 

KB / SM 

48 KB / SM 

Register file size / SM 256 KB / SM 64 KB / SM 

2Table 2.2: Comparison of the GPUs used in the experiments. 

From figure 2.3 and 2.4 we can observe that there are some differences between the GV100 

SM and the TU116 SM used in the Tesla V100 and GTX 1660ti respectively. Namely, 

GV100 has tensor cores which are not available on TU116. While, tensor cores can help with 
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certain multiplication workloads, we do not leverage tensor cores in our implementations. 

Also, the CUDA GEMM implementation, cublasDgemm [45] used to compare the 

performance of our implementation also do not leverage tensor cores.  

2.4    GPGPU Programming model 

In GPGPU paradigm, the GPU takes the role of a coprocessor [7]. The CPU which 

takes the role of the host issues data and invokes device kernels or GPU kernels that need to 

operate on the data. Device kernels are functions that are executed by the GPU where a 

programmer specified number of GPU threads and thread blocks are used to execute the 

kernel. Once the processing is completed by the GPU, the data is transferred back to the 

system global memory which is accessible to the CPU. The advantage of using GPUs to 

perform matrix multiplication lies in the GPU’s ability to efficiently parallelize certain 

workloads. 

While trying to adapt a problem to the GPGPU paradigm, factors like amount of data, data 

movement latency, cache behavior, processing per data etc. must be considered to determine 

whether the workload should be assigned to the CPU or to the GPU. Generally, in a data 

intensive workload like matrix multiplication where there is a huge scope for parallel 

processing, the CPU takes the role of orchestration, and the GPU is responsible for the 

computations. There are GPGPU implementations, like [19], where it was observed that 

assigning certain operations to the CPU, where the memory transfer times are higher 

compared to computation time, resulted in better speedups. In these kinds of 

implementations, the CPU computes some workloads while managing the GPUs performing 

the remainder workloads. For adapting the problem in this thesis, it was observed that using 

CPU exclusively for orchestration while using GPUs to perform all the computations yielded 

better performance. 

There are numerous implementations of GPGPU paradigm and any language that can poll 

GPUs to perform some computation can implement a GPGPU framework [36]. OpenCL is a 

popular implementation of GPGPU that is actively supported on Intel, AMD, Nvidia and 

ARM platforms. CUDA is an NVIDIA proprietary framework that allows GPGPU 

implementations in C programming language with NVIDIA GPUs. CUDA was used for the 

implementations in this thesis due to its superior performance on NVIDIA hardware [37]. 
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2.5 CUDA 

CUDA is a parallel computing framework developed by NVIDIA for general purpose 

computing on NVIDIA GPUs. Introduced in 2007, this is the first framework that 

implemented general purpose computing APIs that did not require mapping computations to 

graphics primitives [36]. In CUDA, the function/code executed by the GPU is called a kernel. 

A kernel is parallelized by splitting the workload between threads which are grouped into 

blocks. The blocks are grouped into grids [8]. Hence, every kernel invocation requires the 

user to define the dimension of the thread block and the grid. These parameters are of the 

datatype dim3 [9]. The dim3 datatype can be used to define 1-, 2- or 3-dimensional thread 

blocks and grids. Figure 2.1 describes the organization of threads into blocks and grids. 

The GPU has a block scheduler that dynamically assigns a block to a streaming multi-

processor. A thread in a block can use shared memory of the streaming multiprocessor to 

exchange information with other threads in the same block. The threads in a block are 

arranged into groups of 32, called a warp [46]. Once the threads in a warp are ready for 

execution, the warp scheduler assigns these warps to streaming processors. If there is no warp 

divergence present in the threads that belong to a warp, all 32 threads in the warp get 

executed in a single step. If the shared memory and register demands of a kernel permit, 

multiple blocks maybe assigned to the same streaming multiprocessor. 

 

2Figure 2.1: Organization of threads, blocks, and grids in CUDA [38] 
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3Figure 2.2: Memory hierarchy of NVIDIA GPUs [40]. 



12 

 

 

4Figure 2.3: Volta GV100 Streaming multiprocessor used in Tesla V100 [41] 
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5Figure 2.4: Turing TU116 Streaming Multiprocessor used in GTX 1660ti [42] 
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Chapter 3 Multi-Stage Memory Efficient Strassen 

3.1    Introduction 

Consider two matrices of size N × N each. While the traditional iterative algorithm for 

matrix multiplication performs the operation in O(N3), several sub-cubic algorithms have 

been formulated that improve the time complexity. Strassen’s matrix multiplication is one 

such algorithm which when applied recursively can perform matrix multiplication at a time 

complexity of O(N2.807) [5]. 

Although the improvement in time complexity of Strassen’s algorithm is impressive 

from theoretical perspective, the algorithm demands higher workspace as compared to the 

traditional matrix multiplication algorithm and hence limits its practical utility, especially in a 

memory-constrained processors like GPUs. 

Prior works (e.g., [1], [12], and [18]) attempted to lower the additional workspace 

requirement of Strassen’s algorithm, but never managed to eliminate it completely. While [1] 

succeeded in removing the global memory requirements, this was done at the cost of 

increasing register memory requirements with each level of recursion of Strassen's algorithm. 

An ordering of the steps in Strassen's algorithm to lower the global memory requirement was 

formulated in [12], but it never managed to eliminate the additional workspace requirement 

entirely. While [18] successfully formulated a schedule that eliminates the global memory 

requirement for simple matrix multiplication, it could not eliminate the additional memory 

requirement for the BLAS standard matrix multiplication. 

In this chapter, we present an improved implementation of Strassen’s algorithm on 

CUDA that follows the CUTLASS guidelines. The implementation, titled Multi-Stage 

Memory Efficient Strassen (MSMES), eliminates the requirement of additional workspace 

associated with Strassen’s algorithm by organizing and restructuring the Strassen’s algorithm 

operations in stages, where multiple operations in the same stage can be executed in parallel, 

and reusing and eventually recovering the input matrices. MSMES can perform any depth of 

recursion of Strassen’s algorithm without needing extra workspace in the form of global 

memory or registers. Though it comes at a cost of nominal additional computing requirement, 

overall, there is a noticeable performance gain with increasing level of recursion. 
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The chapter is organized as follows: section 3.2 discusses the background and related 

works. Section 3.3 describes the motivation and design of MSMES. Section 3.4 describes the 

implementation of MSMES, followed by a discussion on the experiments and results. Section 

3.5 provides an analytical performance model of MSMES. Finally, section 3.6 concludes the 

chapter. 

3.2    Background and Related Works 

3.2.1    CUTLASS 

GPUs use a multi-level memory hierarchy comprised of global, shared, and register 

memories. To efficiently use this hierarchy, it is essential to hide the data movement latencies 

between the different levels of memory. CUTLASS is a collection of CUDA C++ templates 

and abstractions for implementing high-performance GEMM computations at all levels and 

scales within CUDA kernels [10]. Detailed understanding of the high-performance 

implementation of GEMM based on CUTLASS was essential to design strategies for 

hierarchical partition and movement of data for MSMES. 

Accumulating matrix product:  

Accumulating matrix product is a set of loop optimizations recommended by NVIDIA in 

CUTLASS documentation to improve the memory access pattern associated with GEMM 

implementations on GPU. 

For the remainder of the thesis, it is assumed that 𝛼 = 1 and β = 0 in equation (1) without loss 

of generality. The simplest iterative solution to the problem consists of three loops as follows:  

for (int i = 0; i < M; ++i) 

    for (int j = 0; j < N; ++j) 

        for (int k = 0; k < K; ++k)  

            C[i][j] += A[i][k] * B[k][j]; 

 

For simplicity, in the remainder of the thesis it is assumed that M = N = K. Thus, 

computational complexity of the previous loop-nest is O(N3) and the space requirement is 

O(N2). However, for the theoretical compute complexity to hold, every matrix element 

requires reusing O(N) times [10]. Therefore, the above implementation depends on holding 
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large working set of data in on-chip memory, which results in thrashing at higher values of 

M, N, and K.  

By applying loop inversion to the simple iterative solution, the k-th loop has been 

permuted outside the i-th and j-th loops as follows: 

for (int k = 0; k < K; ++k) 

    for (int i = 0; i < M; ++i) 

        for (int j = 0; j < N; ++j) 

            C[i][j] += A[i][k] * B[k][j]; 

This form loads the k-th column of A and k-th row of B once and performs the outer 

product on them and accumulates the result in C. After this step, the k-th column and k-th row 

of A and B respectively are never used again. However, this implementation requires the 

entire C matrix to be available in the on-chip memory and can again result in thrashing [10]. 

The memory requirement of this implementation can be reduced by partitioning C 

matrix into M_tile by N_tile that are guaranteed to fit in on-chip memory. Now, the outer 

product formulation can be applied on each tile. With this formulation, each row of A and 

each column of B are fetched only once. 

for (int m = 0; m < M; m += M_tile) 

    for (int n = 0; n < N; n += N_tile) 

        for (int k = 0; k < K; ++k) 

            for (int i = 0; i < M_tile; ++i) 

                for (int j = 0; j < N_tile; ++j) 

                    C[m + i][n + j] += A[m + i][k] * B[k][n + j]; 

Here the outer loops can be trivially parallelized [10]. This technique of stepping 

through K dimension in memory optimized blocks while accumulating results on C partition 

is called accumulating matrix product [10]. 

Blocking Strategies: 

Further improvements can be achieved by exploiting the hierarchical memory 

structure of GPUs. The matrices are decomposed into a hierarchy of thread block tiles, warp 

tiles, and thread tiles. This technique enables fine tuning of matrix tile dimensions at various 

levels of execution to better suit the available form of memory. 
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Device level: 

 Blocking at this level is performed for thread blocks [1]. The matrices A, B, and C are 

partitioned into Ms × Ks, Ks × Ns, and Ms × Ns blocks respectively. Each thread block is 

responsible for computing an Ms × Ns block of matrix C. The product of each Ms × Ks block 

of A with a corresponding Ks × Ns block of B is accumulated into the respective Ms × Ns 

block of C. Hence, the partitions of the C matrix are referred to as C accumulators. Since the 

C accumulators are updated numerous times during the computation, the C partitions are 

lifted to the register memory to reduce access latencies. In order to improve data locality, the 

partitions of A and B matrices are iteratively lifted to the shared memory where the data is 

accessible to all the threads in a thread block. 

a) Thread block level: Blocking at this level is performed for warps [1]. At this level, the 

C accumulator is spatially partitioned across all the warps in a thread block. Each warp 

iteratively loads along the K dimension an A fragment (a sub-column of A partition of height 

Mw), and a B fragment (a sub row of B partition of width Nw) into registers. Then the outer 

product of these fragments are performed to compute the accumulation for the iteration. 

b) Warp Level: Blocking is performed for the threads at this level [1]. Each thread in the 

warp computes an Mr × Nr partition of C accumulator by performing outer products of 

elements in an Mr fragment of A with an Nr fragment of B in “strip mining” (cyclic) pattern. 

Apart from register demand considerations, Mr and Nr are determined by the smallest 

granularity of vector load which is 128 bits. 

c) Thread level: Threads issue a sequence of independent Fused Multiply Add 

instructions to the CUDA cores and computes accumulating matrix outer product of Mr 

subcolumns of A with Nr subrow of B. 
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6Figure 3.1: Blocking strategies and data movement for CUTLASS multiplication kernel [1]. 

Software prefetching:  
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CUTLASS uses global and local data prefetching to hide data movement latencies at 

various memory levels. The interleaving of prefetch instructions from global memory (lines 

12 and 14 in Algorithm 3.1 below) and, from shared memory (lines 17 and 18 in Algorithm 

3.1) with computations keep the SMs busy without having to wait for the next set of data to 

be loaded in. A synchronization step (line 24 in Algorithm 3.1) is required to ensure that all 

shared memory writes are completed before they get read in lines 12 and 14 in the next 

iteration. 

Figure 3.1 describes the partition and movement of data in a CUTLASS matrix multiplication 

kernel. 

01: Register: fragA[2][MR], fragB[2][NR] 

02: Register: nextA[MR], nextB[NR] 

03: NOP 

04: Register: accumC[MR × NR] 

05: Shared memory: tileA[KS × MS], tileB[KS × NS] 

06: Load one MS × KS block of A into tileA[KS][MS] 

07: Load one KS × NS block of B into tileB[KS][NS] 

08: __syncthreads() 

09: Load first subvector of tileA into fragA[0][MR] 

10: Load first subvector of tileB into fragB[0][NR] 

11: for block_k = 0 : KS : K then 

12: prefetch one subcolumn of next MS × KS block of A into nextA 

13: NOP 

14: prefetch one subrow of next KS × NS block of B into nextB 

15: NOP 

16: for warp_k = 0 : 1 : KS then 

17:  prefetch next subcolumn of tileA into fragA[(warp_k + 1) % 2][MR] 

18:  prefetch next subrow of tileB into fragB[(warp_k + 1) % 2][NR] 

19:  for i = 0 : 1 : MR then 

20:   for j = 0 : 1 : NR then 

21:    accumC[i][j] += fragA[warp_k % 2][i] × fragB[warp_k % 2][j] 

22: store nextA[MR] into tileA[KS][MS] 
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23: store nextB[NR] into tileB[KS][NS] 

24: __syncthreads() 

25: write back accumC to corresponding block of C 

3Algorithm 3.1: CUTLASS GEMM algorithm (adapted from [1]). 

 

3.2.2    Memory requirement of Strassen’s algorithm 

By analyzing the arithmetic operations involved in Strassen’s algorithm, it can be 

shown that a naive implementation of the algorithm would require extra workspace to store 

the intermediate results P0 through P4, Q0 through Q4, and M0 through M6. Since each of these 

intermediate results are 
𝑁

2
 ×

𝑁

2
 in size, a naïve implementation would require an extra 

workspace of 16 × (
𝑁

2
×
𝑁

2
) = 4𝑁2 . 

On limited global memory devices like GPUs, this need for extra workspace limits the 

maximum problem size that can be solved using Strassen’s as compared to GEMM 

implementations. While global decomposition techniques can be used to improve the 

maximum problem size, the inability of naïve Strassen implementations to match the 

maximum problem size for GEMM would result in more steps after global decomposition, 

which can offset the improvements from computation complexity reduction of Strassen. 

The increase in data movement on account of more steps in Strassen’s algorithm 

results in higher mops (memory operations per second) to flops (floating point operations per 

second) ratio as compared to traditional matrix multiplication algorithms. Hence, a naive 

implementation of Strassen’s algorithm would also be more susceptible to the effect of 

memory latency on execution time. This limits the possibility of using techniques like unified 

memory [11], offered by CUDA, to offset the limited global memory in GPUs. 

The higher mops to flops ratio of Strassen’s algorithm necessitates the need to use 

registers and shared memory to store frequently used values to reduce the effects of larger 

latency involved in load and store instructions to and from global memory [1]. Again, a non-

memory optimized implementation of the Strassen’s kernel with high register or shared 

memory requirement would stifle the concurrency and thread occupancy [47] of the kernel. 

3.2.3    Recursive Strassen’s algorithm 
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While 1-level Strassen (i.e., with no recursion applied) already reduces the number of 

submatrix multiplication from 8 to 7 as compared to the classical algorithm, recursive 

application of the algorithm is required to achieve the theoretical complexity of 𝑂(𝑁2.81) [5]. 

Strassen's algorithm is recursively applied by further decomposing each of the 7-submatrix 

multiplication and reapplying Strassen's algorithm to these operations. Although a multi-level 

Strassen reduces computational complexity, it has been observed that the extra workspace 

requirement gets amplified as the levels increase [1], [12]. A naive non-recursive Strassen's 

algorithm has an extra memory requirement of 4𝑁2. But when the algorithm is applied 

recursively to create a 2-level Strassen, the workspace requirement increases to 7𝑁2. 

       To effectively harness the reduction in computational complexity of multi-level 

Strassen's algorithm, the extra workspace requirement at all levels of the algorithm would 

have to be hidden efficiently. 

3.2.4    Previous works implementing Strassen’s algorithm. 

      A modified version of GPU8 algorithm [13] is used in [12] to implement a fast 

Strassen’s multiplication algorithm. The GPU8 algorithm is adapted for 1-level Strassen, 1-

level Winograd, multi-level Strassen, and multi-level Winograd. To our knowledge, this is 

the first attempt at implementing a Strassen based GEMM on GPUs. It uses temporary 

storage strategy formulated by Douglas et al [14] for the Winograd variant, which lowers the 

workspace requirement to 
2

3
𝑁2. For the Strassen’s implementation, it formulates an ordering 

which also lowers the workspace requirement to 
2

3
𝑁2. For the multi-level algorithms, it uses 

strategies discussed by Huss-Lederman et al [15], [16] which use two temporary matrices at 

each level of recursion. 

        Huang et al. [1] implement the Strassen’s algorithm on GPUs by following 

recommendations from CUTLASS for efficient data movement within the memory hierarchy 

of NVIDIA GPUs. It adapts the algorithm formulated by Lai et al [17] to hide memory 

requirements for intermediate results. It designs a new kernel by modifying the CUTLASS 

GEMM kernels, where additions of A and B submatrices are performed in the kernel during 

the packing phase. This eliminates the need for a temporary workspace to store this 

information, because the results are directly loaded to the registers and shared memory. It 

also develops a performance model for choosing the appropriate block sizes and predicting 

performance for various blocking configurations. While the global memory requirements are 
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eliminated, the kernel’s register requirements are higher as compared to the CUTLASS 

GEMM. The need for registers also increases with each level for the multi-level Strassen’s 

implementation. This is in contrast to our work where the need for registers is a constant 

irrespective of the level of recursion.  

      The work by Boyer et al. [18] creates schedules for Strassen and Winograd 

variants of matrix multiplication, where workspace requirements are optimized for various 

constraints of execution. The authors are able to create a schedule for 𝐶 = 𝐴 × 𝐵 with no 

extra memory requirements. They are also able to create schedules for equation (1), which 

can drop the additional memory requirement from N2 to 
2

3
𝑁2. We did not use the schedules 

from [18] because the variant, which does not consume any extra workspace, cannot be 

generalized to the BLAS standard for matrix multiplication denoted by equation (1) since it 

uses the output C matrix to store some of the temporary results. Also, this scheme will not be 

able to support multi-level Strassen’s algorithm. 

P. Lai et al. [43] implemented a Strassen-Winograd based GEMM on CUDA which 

used Strassen-Winograd algorithm to divide the matrix. Once a predicted cut-off dimension is 

crossed, CUDA implementations of GEMM like cublasSgemm or cublasDgemm was used to 

perform the actual computations. Unlike MSMES, this implementation did not address the 

additional workspace requirements of Strassen-Winograd algorithm. 

3.3    Multi-Stage Memory Efficient Strassen 

This section describes our work, MSMES, that eliminates the additional workspace 

requirement of Strassen’s algorithm on GPUs without compromising parallelism. The extra 

workspace requirement of Strassen’s algorithm arises from the need to store intermediate 

results. With a naïve implementation of an addition kernel followed by a multiplication 

kernel, the intermediate results P0 through P4, and Q0 through Q4 (refer to Table 2.1) would 

require temporary workspace. Similarly, when a naïve multiplication kernel followed by 

addition kernel is used, the intermediate results M0 through M6 would need additional 

workspace. While it is possible to reduce the additional workspace requirement by tackling 

each of the 25 steps (12 additions + 6 subtractions + 7 multiplications) in a serial fashion, this 

technique would hinder the ability to efficiently parallelize the algorithm. 
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The idea behind a memory efficient Strassen’s algorithm on GPUs was inspired by the 

Strassen’s kernel defined in [1] and from an observation on the concurrent submatrix 

utilization of each multiplication operation in Strassen’s algorithm. 

3.3.1    Concurrent submatrix utilization of Strassen’s algorithm 

Consider the following rearrangement of the steps in Strassen’s algorithm: 

𝑀0 =  (𝐴0 + 𝐴3)  × (𝐵0 + 𝐵3); 𝐶0 +=  𝑀0;  𝐶3 +=  𝑀0; 

𝑀1 = (𝐴2 + 𝐴3)  × 𝐵0;  𝐶2 +=  𝑀1;  𝐶3−= 𝑀1; 

𝑀2 = 𝐴0  × (𝐵1 − 𝐵3); 𝐶1 +=  𝑀2;  𝐶3 +=  𝑀2; 

𝑀3 = 𝐴3  × (𝐵2 − 𝐵0); 𝐶0 +=  𝑀3;  𝐶2 +=  𝑀3; 

𝑀4 = (𝐴0 + 𝐴1)  × 𝐵3;  𝐶1 +=  𝑀4;  𝐶0−= 𝑀4; 

𝑀5 = (𝐴2 − 𝐴0)  × (𝐵0 + 𝐵1); 𝐶3 +=  𝑀5 

𝑀6 = (𝐴1 − 𝐴3)  × (𝐵2 + 𝐵3); 𝐶0 +=  𝑀6;  

 

Each of these steps compute one of the submatrix multiplications involved in 

Strassen’s algorithm. It can be observed that the steps access at most 2 submatrices each of A 

and B concurrently. These results are updated to at most 2 submatrices of C concurrently. 

We design an adder kernel where, instead of consuming the extra workspace needed 

to store: 

 

{
𝐴𝑖  ±  𝐴𝑗
𝐵𝑘  ±  𝐵𝑙

}  𝑖, 𝑗, 𝑘, 𝑙 𝜖 {0, 3} 

the results are stored in 𝐴𝑖 and 𝐵𝑘 respectively. If 𝐴𝑗 and 𝐵𝑙 are unaltered, the original values 

of 𝐴𝑖 and 𝐵𝑘 can be recovered by a simple matrix subtraction (or addition) of order O(N2) and 

can then be used for the next submatrix multiplication. This technique would eliminate the 

extra workspace needed to store P0 through P4, and Q0 through Q4. 

3.3.2    Strassen multiplication kernel 
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We extend the CUTLASS GEMM kernel from [10] to accommodate the new Strassen 

primitive: 

 

𝑀𝑖 = 𝐴𝑗  ×  𝐵𝑘;  𝐶𝑙 ±=  𝑀𝑖;  𝐶𝑚 ±=  𝑀𝑖: 𝑖, 𝑗, 𝑘, 𝑙, 𝑚 𝜖 {0, 6} 

 

From Algorithm 3.1, it can be observed that the extra workspace needed to store M0 through 

M6 has been eliminated using C accumulator registers in the kernel (lines 04 and 21 in 

algorithm 3.1). The C accumulator was already used in the original CUTLASS GEMM 

kernel. Hence, our modified kernel does not use any extra registers to eliminate the additional 

workspace demand of Strassen’s algorithm. 

3.3.3    Rescheduling the stages to increase concurrency 

From the adjustments discussed in subsections 3.3.1 and 3.3.2, although the extra 

workspace requirement is eliminated, it is achieved at the cost of concurrency of performing 

the submatrix multiplications. To identify an ordering of the steps to improve the concurrency 

of the algorithm, the following constraints are considered. 

• A submatrix can be overwritten with the result of an addition or subtraction it was 

involved in as long as there is a way to recover the original values of the submatrix in 

the next stage. 

• Overwrite submatrices in such a way that the recovery is simple and can be ideally 

done in a single stage. 

• No C submatrices will be used for overwrites since equation (1) necessitates the 

retention of old values in the C matrix. 

With these considerations, the following groupings are identified. 

 

{
 

 
𝑀1 = (𝐴2 + 𝐴3)  × 𝐵0;  𝐶2 +=  𝑀1;  𝐶3−= 𝑀1;

𝑀2 = 𝐴0  × (𝐵1 − 𝐵3); 𝐶1 +=  𝑀2;  𝐶3 +=  𝑀2;

𝑀3 = 𝐴3  × (𝐵2 − 𝐵0); 𝐶0 +=  𝑀3;  𝐶2 +=  𝑀3;
𝑀4 = (𝐴0 + 𝐴1)  × 𝐵3;  𝐶1 +=  𝑀4;  𝐶0−= 𝑀4;}

 

 
→ 𝐺𝑟𝑜𝑢𝑝 1 
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{

𝑀0 = (𝐴0 + 𝐴3)  × (𝐵0 + 𝐵3); 𝐶0 +=  𝑀0;  𝐶3 +=  𝑀0;

𝑀5 =  (𝐴2 − 𝐴0)  × (𝐵0 + 𝐵1); 𝐶3 +=  𝑀5

𝑀6 =  (𝐴1 − 𝐴3)  × (𝐵2 + 𝐵3); 𝐶0 +=  𝑀6; 

} → 𝐺𝑟𝑜𝑢𝑝 2 

 

In the previous groupings, 2 submatrices of A and B each are overwritten while their 

respective partners remain intact. This would allow a maximum of 4 submatrix multiplication 

steps to be executed concurrently. The following outlines the stages involved in this grouping 

strategy: 

Stage 1 (addition/subtraction stage): 

𝐴2 = 𝐴2 + 𝐴3 

𝐵1 = 𝐵1 − 𝐵3 

𝐵2 = 𝐵2 − 𝐵0 

𝐴1 = 𝐴0 + 𝐴1 

Stage 2 (Multiplication stage): 

𝑀1 = 𝐴2  ×  𝐵0;  𝐶2 +=  𝑀1;  𝐶3 −=  𝑀1; 

𝑀2 = 𝐴0  ×  𝐵1;  𝐶1 +=  𝑀2;  𝐶3+= 𝑀2; 

𝑀3 = 𝐴3  ×  𝐵2;  𝐶0 +=  𝑀3;  𝐶2+= 𝑀3; 

𝑀4 = 𝐴1  ×  𝐵3;  𝐶1 +=  𝑀4;  𝐶0 −=  𝑀4; 

Stage 3 (addition stage): 

𝐴0 = 𝐴0 + 𝐴3 

𝐵0 = 𝐵0 + 𝐵3 

Stage 4 (addition/subtraction stage): 

𝐴2 = 𝐴2 − 𝐴0 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 (𝐴2 + 𝐴3 − 𝐴3 − 𝐴0) 

𝐵0 = 𝐵1 + 𝐵0 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 (𝐵1  −  𝐵3 + 𝐵0 + 𝐵3) 

𝐴1 = 𝐴1 − 𝐴0 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 (𝐴1 + 𝐴0  −  𝐴0 − 𝐴3) 

𝐵2 = 𝐵2 + 𝐵0 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 (𝐵2  − 𝐵0 + 𝐵0 + 𝐵3) 

Stage 5 (Multiplication stage): 
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𝑀0 = 𝐴0  ×  𝐵0;  𝐶0 +=  𝑀0;  𝐶3+= 𝑀0; 

𝑀5 = 𝐴2  ×  𝐵1;  𝐶3 +=  𝑀5; 

𝑀6 = 𝐴1  ×  𝐵2;  𝐶0 +=  𝑀6; 

      All steps in a stage can be executed concurrently. During the multiplication stages, where 

multiple threads might be updating the same C submatrix values, atomicAdd function [9] is 

used to avoid race conditions. 

      Though stage 3 in this scheduling, with only 2 concurrent steps, might seem like a 

bottleneck, the embarrassingly parallel nature of matrix addition allows the stage to be 

completed with the same thread density and without adding any extra delays to the workflow. 

This observation is confirmed in subsection 3.5.1. 

3.3.4    Reconstruction of the Input Matrices 

In a GPU based matrix multiplication algorithm, the input matrices A and B are copied 

to the global memory of the GPU and are duplicates of the input matrices. Hence, in most 

scenarios, recovery of the input matrix can be omitted for a very small improvement in 

runtime. But, for the sake of completeness, the following two stages have been designed to 

recover the input matrices. While recovery is optional for non-recursive Strassen’s, most 

workflows utilizing matrices would apply multiple operations on the input matrices. Hence, 

all the experiments conducted are performed with the recovery stages.  

Stage 6 (addition/subtraction: recuperation stage 1): 

𝐴0 = 𝐴0 − 𝐴3 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 (𝐴0 + 𝐴3 − 𝐴3) 

𝐵0 = 𝐵0 − 𝐵3 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 (𝐵0 + 𝐵3 − 𝐵3) 

Stage 7 (addition/subtraction: Recuperation stage 2): 

𝐴1 = 𝐴1 + 𝐴3 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 (𝐴1 − 𝐴3 + 𝐴3) 

𝐵1 = 𝐵1 − 𝐵0 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 (𝐵1 + 𝐵0 − 𝐵0) 

𝐴0 = 𝐴0 − 𝐴3 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 (𝐴0 + 𝐴3 − 𝐴3) 

𝐵0 = 𝐵0 − 𝐵3 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 (𝐵0 + 𝐵3 − 𝐵3) 

3.3.5    Recursive Strassen (Multi-level Strassen) 

In a multi-level Strassen’s algorithm, each of the 7-submatrix multiplication is further 

decomposed by applying Strassen’s algorithm on them. In MSMES, using the modified 
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multiplication kernel and by using input matrices to store intermediate results, no extra global 

memory, shared memory, or registers are consumed irrespective of the number of levels of 

recursion. 

The problem is recursively decomposed by applying Strassen’s algorithm until the 

submatrix dimension reaches the cutoff length, at which point no more recursion is applied 

and the matrices are multiplied directly using the modified Strassen’s multiplication kernel. 

In recursive Strassen, it is imperative to use the recovery stages to revert the changes made to 

the input matrices so that the subsequent steps in the prior level of recursion will not be 

affected. Since all the additional operations performed at each level of recursion is O(N2), the 

theoretical time complexity of Strassen’s algorithm remains unchanged. 

3.4    Implementation and experiments 

All the kernels of MSMES are implemented in CUDA, designed for NVIDIA GPUs. 

The kernels closely replicate the memory management and data transfer strategies used in 

CUTLASS GEMM to utilize all levels of GPU memory hierarchy. This allows the kernels to 

efficiently hide memory transfer latencies. 

The kernels are designed in such a way that each stage of the algorithm can be 

completed by invoking a single device kernel. The stages in the algorithm belong to one of 

two fundamental types discussed in the following. A stage is either an addition/subtraction 

stage or a multiplication stage. Therefore, two kernels are developed which can be configured 

to fit the steps in any of the stages. 

3.4.1    Addition/subtraction kernel 

Through analysis of the stages of the proposed reschedule in the previous section, it 

can be observed that there are 2 types of addition/subtraction stages as follows: 

1. Type 3.4.1.1: stages 1, 4, and 7 where 4 submatrix addition/subtraction operations are 

performed. 

2. Type 3.4.1.2: stages 3 and 6 where 2 submatrix addition/subtraction operations are 

performed. 
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The kernel splits the threads into either 4 groups or 2 groups for stages of type 3.4.1.1 

and 3.4.1.2, respectively. Each thread group is assigned the pointers corresponding to the 

submatrices in their respective step in the stage. 

The addition kernel performs one level of prefetching of Ms × Ks chunk to the shared 

memory to interleave computations with load instructions from global memory. 

3.4.2    Multiplication kernel 

There are two multiplication stages in the proposed reschedule as follows: 

1. Type 3.4.2.1: stage 2 which consists of 4 submatrix multiplications with each result 

getting updated to 2 submatrices of C. 

2. Type 3.4.2.2: stage 5 which consists of 3 submatrix multiplications where one of the 

results is added to 2 submatrices of C and the other 2 results are added to one submatrix 

each of C. 

The kernel can be configured to split the threads into 4 groups for type 3.4.2.1 stage 

and into 3 groups for type 3.4.2.2 stage. Each thread group is assigned the pointer to the C 

submatrix to which they are intended to update the results of multiplication. 

The kernel performs prefetches from global memory to shared memory and from 

shared memory to registers to hide memory latencies and overlap load operations with 

computations. 

3.4.3 Optimizing the kernel launch parameters 

As discussed in section 2.5, every kernel launched in CUDA requires the block 

dimensions and grid dimensions to be supplied in dim3 data type. These parameters define 

the launch configuration of the kernel. [1] has conducted experiments to determine the ideal 

launch configurations for their implementations.  

During testing it was realized that the recommendations from [1] are unbefitting for 

MSMES. By profiling the kernels using nvprof [48], it was determined that the usage of 

launch configurations recommended by [1] resulted in higher register usage by each thread 

performing MSMES. This higher register consumption exhausted the available register per 

SM (Streaming Multiprocessor) and limited the number of threads that could run 

concurrently thereby reducing the thread concurrency of MSMES. 
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NVIDIA’s CUDA occupancy calculator [39] was used to fine tune the launch 

parameters as well as the values of Mr, Nr, and Ks mentioned in section 3.2.1. By setting Mr 

= Nr = Ks = 8 and by setting count of threads in the block to 128, the register consumption 

was lowered, and the warp concurrency results shown in figures 3.2, 3.3 and 3.4 were 

obtained. The results shown are for an NVIDIA GPU with compute capability 7.5 using 

CUDA version 11.1 which has a shared memory size of 65536. 

Future adaptations to a GPU with a different compute capability or with a different 

CUDA version should go through similar analysis to determine the configurations as the 

register file size, shared memory size and max warp occupancy of the multiprocessor can 

vary from GPU to GPU. 

 

7Figure 3.2: Variation of warp occupancy with threads per block. 
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8Figure 3.3: Variation of warp occupancy with registers per thread. 

 

9Figure 3.4: Variation of warp occupancy with shared memory per block. 
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3.4.4    Experiments 

Experiments were performed with the following configurations: 

Parameter Configuration (a) Configuration (b) 

CPU Intel Xeon Gold 6140 × 2 Intel Core i5 9400 

GPU Tesla V100 × 11 GTX 1660ti 

RAM 383GB 16GB 

OS Scientific Linux 7.9 

(Nitrogen) 

Windows 10 

CUDA version 11.0 11.1 

C compiler 

version 

GCC 4.8.5 Microsoft C/C++ 

19.27.29112 

4Table 3.1: Test Configurations. 

Both cublasDgemm and MSMES were provided the same double precision input 

matrices generated using curandGenerateUniformDouble [49]. Execution times were 

measured using CUDA events which has a resolution of approximately half a microsecond 

[9]. The effective throughput and memory consumption are considered as the primary metric 

to evaluate performance. 

Effective throughput computed using equation (3) gives actual throughput for 

classical cubic matrix multiplication algorithms which performs 2𝑁3floating point 

operations. For sub-cubic algorithms like Strassen’s algorithm, equation (3) gives 

performance relative to classical algorithms. 

 

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑖𝑛 𝑇𝐹𝐿𝑂𝑃𝑆 =  
2×𝑁3

𝑡𝑖𝑚𝑒 𝑖𝑛 𝑠
 ×  10−12     (3) 

 

Efficacy of global memory usage was evaluated by running the kernels with 

successively larger matrices until the kernel ran out of space. Three experiments were 

conducted to evaluate the performance of MSMES: 

1) The performance of MSMES in double precision multiplication was compared against the 

cublasDgemm kernel [45]. On configuration (b), MSMES outperformed the 
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cublasDgemm kernel for matrices of size as low as 896 (N=896 for an N × N matrix) 

(Figure 3.5). Beyond the crossover point, MSMES outperformed cublasDgemm kernel by 

7.73% on the average. On configuration (a) beyond matrix of size 1152 (N=1152 for an N 

× N matrix), MSMES outperformed cublasDgemm kernel by 7.12% on the average 

(Figure 3.6). 

2) MSMES has memory consumption comparable to cublasDgemm. This is an expected 

outcome because the multiplication kernel used in our implementation is a modified 

version of the CUTLASS GEMM kernel. On configuration (a) with 6GB of global 

memory, MSMES computed double precision matrix multiplication for square matrices 

as large as 14976 (N=14976 for an N × N matrix), whereas cublasDgemm failed to 

initialize beyond square matrix dimension of 14720 (N=14720 for an N × N matrix). On 

configuration (b) with 16GB of global memory, MSMES computed double precision 

square matrix multiplication for matrices of dimension as large as 24576, whereas 

cublasDgemm failed to initialize beyond 24320. 

3) N-level MSMES outperformed 1-level MSMES and cublasDgemm over the test range 

with no extra memory consumption. On configuration (a), 2-level MSMES yielded a 

maximum speedup of 1.125 against 1-level (i.e. non-recursive) MSMES at N = 2048. 3-

level MSMES yielded a maximum speedup of 1.21 against 1-level MSMES at N = 16384 

(Figures 3.7 and 3.8).         

4) When compared to cublasDgemm, 2-level MSMES yielded a maximum speedup of 1.23 

at N = 7168 and 3-level MSMES yielded a maximum speedup of 1.25 at N = 7168 

(Figures 3.7 and 3.8).  

While MSMES can perform deeper recursions for multi-level Strassen’s algorithm 

with no extra memory demands, experiments were limited to 3-levels due to the known 

numerical instability of Strassen’s algorithm at higher levels of recursion. 
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5Figure 3.5. MSMES v/s CUBLAS double precision performance in configuration (b) 

 

6Figure 3.6. MSMES v/s CUBLAS double precision performance in configuration (a) 
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7Figure 3.7. Speedup of Level 2 MSMES against Level 1 MSMES v/s Level 2 MSMES 

against CUBLAS in configuration (a) 

 

8Figure 3.8. Speedup of Level 3 MSMES to Level 1 MSMES v/s Level 3 MSMES to CUBLAS in 

configuration (a) 
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3.5    Performance Analysis 

In this section, the performance of MSMES is analyzed by inspecting the contribution 

of each stage to the total execution time. Such an analysis would aid in the discovery of 

bottlenecks, if any, and would also allow to quantify the impact of performing recovery 

stages 6 and 7. 

Later in the section, a performance model for MSMES is presented by analyzing the 

computation and communication involved in the implementation. 

3.5.1    Stage-wise breakdown of exectuion time 

The time consumed by each kernel launch associated with a stage was measured using 

CUDA events. The results obtained from CUDA events were further validated by profiling 

the kernel with nvprof [49] using the same launch configurations. The timing data is 

illustrated in Table 3.2.  

 

9Table 3.2: Stagewise contribution to the total execution time. 

 

It was observed from the data that the addition/subtraction kernels of type 3.4.1.1 

(refer to section 3.4) are each responsible for roughly 0.5% (average contribution from all the 

 

N 

Contributions as percentage of total execution time 

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 

256 0.79 54.38 0.39 0.78 42.48 0.4 0.78 

1792 0.72 54.9 0.38 0.74 42.14 0.38 0.74 

3328 0.64 55.31 0.32 0.62 42.18 0.31 0.62 

4864 0.52 56.2 0.29 0.55 41.62 0.3 0.52 

6400 0.41 56.68 0.21 0.41 41.67 0.21 0.41 

7936 0.39 56.81 0.2 0.39 41.63 0.2 0.38 

9472 0.36 57.14 0.19 0.36 41.41 0.18 0.36 

11008 0.33 57.33 0.18 0.34 41.29 0.19 0.34 

12544 0.33 57.8 0.18 0.33 40.83 0.18 0.35 

Average 0.5 56.3 0.26 0.5 41.7 0.26 0.5 
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rows in table 3.2) of the total execution time. Addition/subtraction kernels of type 3.4.1.2 

(refer to section 3.4) are each responsible for approximately 0.26% (average contribution 

from all the rows in table 3.2) of the total execution time. This difference in contributions 

between 3.4.1.1 and 3.4.1.2 of approximately 48% arises because 3.4.1.1 performs twice as 

many computations as 3.4.1.2 per kernel launch. 

Multiplication kernel of type 3.4.2.1 and 3.4.2.2 (refer to section 3.4) contributes 

56.3% and 41.7% (average contribution from table 3.2) respectively to the total execution 

time. The difference in contributions between 3.4.2.1 and 3.4.2.2 of roughly 30% arises 

because 3.4.2.2 only performs 
3

4
th of the number of computations performed by 3.4.2.1 per 

kernel launch. 

It was also observed from the data that the contributions of the addition/subtraction 

kernels decrease with the increase in problem size. This trend was expected since each of the 

addition/subtraction kernels has a time complexity of O(n2), where n is the dimension of the n 

× n submatrix under consideration at the current level of recursion. In contrast, the 

multiplication kernels have time complexity of O(n3). 

It can be calculated from the average contributions of stages 6 and 7 (across all the 

rows of table 3.2) to the total execution time that the recovery of the input matrices adds to 

approximately 0.76% to the total execution time, which is in fact quite negligible. 

3.5.2    Performance Modeling 

MSMES has three time-consuming operations: performing arithmetic operations on 

the matrix elements (addition, subtraction, or multiplication), loading matrix elements from 

global memory to shared memory, and loading matrix elements from shared memory to 

registers. The implementation presented here overlaps memory operations with computations. 

Therefore, the lower bound of total execution time, T, can be represented as: 

 

𝑇 ≥  𝑚𝑎𝑥(𝑇𝑓𝑙𝑜𝑝, 𝑇𝑔𝑚𝑜𝑝, 𝑇𝑠𝑚𝑜𝑝) 
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Here, 𝑇𝑓𝑙𝑜𝑝 is the time taken for performing the arithmetic operations. 𝑇𝑔𝑚𝑜𝑝 is the 

time taken for global memory loads and stores, and 𝑇𝑠𝑚𝑜𝑝 is the time taken to perform shared 

memory operations. 

The following assumptions are made in the prediction model. 

1. Peak FP64 performance of the GPU, 𝜏𝑓𝑙𝑜𝑝𝑠, is assumed to be available throughout the 

execution, and this performance is uniformly distributed across all the active threads. 

2. Peak global memory bandwidth, 𝜏𝑔𝑚𝑜𝑝𝑠, is available throughout the execution and is 

uniformly distributed among the active threads. 

3. Peak shared memory bandwidth, 𝜏𝑠𝑚𝑜𝑝𝑠, is available throughout the executions and is 

uniformly distributed among the active threads. 

In real-life scenario, where multiple processes might be requesting GPU resources at 

the same time, these assumptions may not hold. Hence, the model provided here gives the 

theoretical best-case performance of MSMES. 

The MSMES implementation with recovery stages activated has three kernel 

invocations of type 3.4.1.1 (stages 1, 4 and 7), two kernel invocations of type 3.4.1.2 (stages 

3 and 6), one kernel invocation of type 3.4.2.1 (stage 2), and one kernel invocation of type 

3.4.2.2 (stage 5). Therefore, the total values being computed in the following sections are 

aggregates of the contributions of the seven kernels we just outlined. 

1) Arithmetic operations time 

       Kernels of type 3.4.1.1 perform four matrix addition operations on sub matrices 

of dimension 
𝑁

2
×
𝑁

2
 and hence all together perform 𝑁2 computations. Kernels of type 3.4.1.2 

perform two matrix addition operations on sub matrices of dimension 
𝑁

2
×
𝑁

2
 and hence all 

together perform 
𝑁2

2
 computations. Kernel of type 3.4.2.1 performs four matrix multiplication 

operations followed by eight matrix additions on sub matrices of dimension 
𝑁

2
×
𝑁

2
 and hence 

all together perform (
8𝑁3

8
 +  2𝑁2) computations. Kernel of type 3.4.2.2 performs three 

matrix multiplication operations followed by four matrix additions on sub matrices of 

dimension 
𝑁

2
×
𝑁

2
 and hence all together perform (

6𝑁3

8
 +  𝑁2) computations. 
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Therefore, time for total arithmetic operations can be calculated as (3 × contribution 

of 3.4.1.1 + 2 × contribution of 3.4.1.2 + contribution of 3.4.2.1 + contribution of 3.4.2.2): 

 

𝑇𝑓𝑙𝑜𝑝 = 

7𝑁3

4 + 7𝑁2

𝜏𝑓𝑙𝑜𝑝𝑠
 

2) Global memory operations time 

       Kernels of type 3.4.1.1 access eight submatrices of dimension 
𝑁

2
×
𝑁

2
 and hence 

perform (2𝑁2) global memory operations. Similarly, kernels of type 3.4.2.1 access four sub 

matrices of dimension 
𝑁

2
×
𝑁

2
 and hence perform (𝑁2) global memory operations.  

For computing global memory operations of kernels of type 3.4.2, we calculate the 

memory operations of an individual thread block. This value is then multiplied by the total 

number of thread-blocks per kernel launch to compute the total global memory operations 

performed by the kernel launch. Given operand matrices of size 𝑁 × 𝑁 (a kernel is provided 

the entire operand matrix whereas the individual stage being addressed in the kernel uses only 

sub matrices of dimension 
𝑁

2
×
𝑁

2
 ), kernel of type 3.4.2.1 uses 

𝑁2

𝑁𝑆
2 thread blocks per launch, 

where each thread block computes an (𝑁𝑆 × 𝑁𝑆) tile of the output matrix. With the reduced 

computations in kernel 3.4.2.2, we have 
3𝑁2

4𝑁𝑆
2 thread-blocks per launch of kernel. In kernel type 

3.4.2.1, each thread block accesses 𝑁𝑆 ×
𝑁

2
 blocks of each of the input matrices for matrix 

multiplication and later accesses two tiles of size 𝑁𝑆 × 𝑁𝑆 to perform matrix 

addition/subtraction to update the results. Therefore, 3.4.2.1 performs 
𝑁2

𝑁𝑆
2 × (2𝑁𝑆

2 + 𝑁𝑆 × 𝑁) 

global memory operations. In kernel type 3.4.2.2, each thread block accesses 𝑁𝑆 ×
𝑁

2
 blocks 

of each of the input matrices for matrix multiplication and later a third of the thread-blocks 

access two tiles of size 𝑁𝑆 × 𝑁𝑆 to perform matrix addition/subtraction to update the results; 

the remaining thread-blocks access one tile of 𝑁𝑆 ×𝑁𝑆 to perform updates. Therefore, 3.4.2.2 

performs  
3𝑁2

4𝑁𝑆
2 × (𝑁𝑆 × 𝑁) +

𝑁2

4𝑁𝑆
2 × (2𝑁𝑆

2) +
𝑁2

2𝑁𝑆
2 × (𝑁𝑆

2) global memory operations. 

Summing up, total time for global memory operations can be calculated as: 
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𝑇𝑔𝑚𝑜𝑝 = 
11𝑁2 +

7𝑁3

4𝑁𝑆
𝜏𝑔𝑚𝑜𝑝𝑠

 

3) Shared memory operations time 

Kernels of type 3.4.1.1 and 3.4.1.2 perform (2𝑁2) and (𝑁2 ) shared memory 

operations, respectively. Given thread block dimensions 𝑡𝑥 and 𝑡𝑦, kernel of type 3.4.2.1 has 

𝑁2× (𝑡𝑥 × 𝑡𝑦)

𝑁𝑆
2  threads. Kernel of type 3.4.2.2 has 

3𝑁2(𝑡𝑥 × 𝑡𝑦)

4𝑁𝑆
2  threads. The shared memory 

operation of a kernel is calculated by multiplying the shared memory operation of one of its 

threads with the thread count of the kernel. In kernel 3.4.2.1, all the threads access 𝑁𝑅 × 𝑁 

row of A and 𝑁𝑅 × 𝑁 column of B. The values computed are then written back to two 

𝑁𝑅 × 𝑁𝑅 tiles of C. In kernel 3.4.2.2, all the threads access 𝑁𝑅 ×𝑁 row of A and 𝑁𝑅 × 𝑁 

column of B. Later a third of the threads in 3.4.2.2 accesses two 𝑁𝑅 × 𝑁𝑅 tiles of C to update 

the results to. The remaining threads in 3.4.2.2 accesses only one 𝑁𝑅 × 𝑁𝑅 tile of C to update 

the results to. Therefore, Kernels of type 3.4.2.1 and 3.4.2.2 perform 
𝑁2× (𝑡𝑥 × 𝑡𝑦)

𝑁𝑆
2 × (2𝑁𝑅

2 +

𝑁𝑅 × 𝑁) and 
3𝑁2(𝑡𝑥 × 𝑡𝑦)

4𝑁𝑆
2 × (𝑁𝑅 × 𝑁) +

𝑁2(𝑡𝑥 × 𝑡𝑦)

4𝑁𝑆
2 × (2𝑁𝑅

2) +
𝑁2

2𝑁𝑆
2 × (𝑁𝑅

2) shared memory 

operations. Hence, time for shared memory operations can be calculated as: 

 

𝑇𝑠𝑚𝑜𝑝 = 

11𝑁2 +
7𝑁3(𝑡𝑥  ×  𝑡𝑦)

4𝑁𝑆
2 × 𝑁𝑅

𝜏𝑠𝑚𝑜𝑝𝑠
 

3.6    Conclusion 

The chapter presents an implementation of Strassen's matrix multiplication algorithm 

in CUDA, titled Multi-Stage Memory Efficient Strassen (MSMES), that eliminates additional 

workspace requirements by reusing and recovering input matrices. MSMES organizes the 

steps involved in Strassen's algorithm into five stages where multiple steps in the same stage 

can be executed in parallel. Two additional stages are also discussed in the chapter that 

allows the recovery of input matrices. MSMES has no additional memory requirements, 

irrespective of the depth of recursions of Strassen's algorithm. Tests were performed to 

measure compute performance and memory utilization on two hardware configurations. On 
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configuration (a) which consists of a Tesla V100 GPU, MSMES on average outperformed the 

CUDA library matrix multiplication function cublasDgemm beyond matrices of dimension 

1152. On configuration (b) which consists of a GTX 1660ti, MSMES outperformed 

cublasDgemm for matrices of dimension as small as 896. On either configuration, MSMES 

was able to accommodate larger matrices than cublasDgemm, thereby proving the lower 

memory requirements of MSMES. The ability of MSMES to perform multi-level Strassen 

with no additional global, shared, and register memory demands make it suitable for 

applications where numerical stability is not essential. 
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Chapter 4 Multi-GPU Strassen’s algorithm 

4.1    Introduction: 

With the shift of parallel computing to GPGPU paradigm, supercomputing clusters 

are increasingly depending on the compute performance of GPUs to improve its Rpeak and 

Rmax scores [23]. In fact, Six out of ten of the most performant supercomputers in the world 

uses GPUs to derive more than 90% of its compute performance [24]. This shift makes it 

necessary to adapt fundamental operations like matrix multiplication to multi-GPU 

architectures. 

While there were previous studies into adapting Strassen’s algorithm to multi-GPU 

architectures [19, 20], which decomposed the matrix using Strassen’s algorithm followed by 

using CUBLAS to perform the actual multiplication, there were no previous attempts at using 

Strasen to decompose the matrix followed by using Strassen’s algorithm to perform the actual 

matrix multiplication. The work in [2] has already explored a global Strassen decomposition 

followed by local Strassen multiplication on a distributed memory multi-CPU cluster and has 

clearly shown the communication and computation advantages of a similar scheme. With the 

performance benefits of MSMES that we have shown in the previous chapter, it was evident 

that there is a need for a multi-GPU implementation of MSMES following the 

recommendations of [2]. 

4.2    Background: 

Owing to the variations of tests being performed to analyze the impact of various multi-GPU 

matrix multiplication schemes, we use a modularized approach for our multi-GPU 

discussions. Each multi-GPU matrix multiplication scheme consists of two modules.  

4.2.1    Module 1: Global decomposition module 

This module is responsible for the global decomposition of the input matrix. The algorithm 

used in the decomposition of the input matrix generates subtasks which are distributed across 

the participating GPUs to perform computations defined in the subtasks. Through analysis of 

the data movement patterns and computation complexity associated with the subtasks, it is 

possible to identify optimizations that improve GPU utilization, amount of data movement, 
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bottleneck subtasks etc. The following decomposition schemes were used in our work. All 

the decomposition techniques used here decomposes the matrix as shown in figure 4.1. 

 

 

10Figure 4.1: Decomposition of matrices for multi-GPU multiplication. 

 

Naïve decomposition 

Naïve or 2D scheme decomposes the matrix multiplication into subtasks listed in table 

4.1. The decomposition technique is called 2D due to its ability to map to a two-dimensional 

mesh topology of processors. From the table, it can be observed that for a 2 × 2 mesh 

topology, the scheme would decompose the matrix multiplication into 8 submatrix 

multiplications followed by 4 submatrix additions. If the dimension N of the input matrices 

(for N × N matrices) is a multiple of P for a P × P mesh topology, it can be observed that the 

subtasks would evenly distribute among the processors. 

Operation Result 

𝐴0 × 𝐵0 𝑅1 

𝐴1 × 𝐵2 𝑅2 

𝐴0 × 𝐵1 𝑅3 

𝐴1 × 𝐵3 𝑅4 

𝐴2 × 𝐵0 𝑅5 

𝐴3 × 𝐵2 𝑅6 

𝐴2 × 𝐵1 𝑅7 

𝐴3 × 𝐵3 𝑅8 

𝑅1 + 𝑅2 𝐶0 

𝑅3 + 𝑅4 𝐶1 

𝑅5 + 𝑅6 𝐶2 
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𝑅7 + 𝑅8 𝐶3 

11Table 4.1: Subtasks in naïve global decomposition. 

Strassen’s decomposition. 

Strassen’s scheme decomposes the matrix multiplication by applying Strassen’s 

algorithm on the input matrices. The tasks generated after this decomposition are listed in 

table 2.1. From the table it can be observed that one level of Strassen decomposition 

generates 7 submatrix multiplications and 18 submatrix additions/subtractions. With 7 GPUs 

used for the submatrix multiplication it can be observed that while the submatrix 

multiplications map evenly, the addition/subtraction subtasks will be mapped unevenly (18 

tasks mapped to 7 processors). Even though the cost associated with the addition/subtraction 

stages are observed to be nominal in section 3.5.1, the existence of the Strassen-Winograd 

algorithm made this scheme unbefitting for our evaluations. 

Strassen-Winograd decomposition. 

Strassen-Winograd algorithm is an improvement on Strassen’s algorithm where the 

number of additions/subtractions are reduced to 14 from the 18 in Strassen’s algorithm. The 

tasks generated by applying 1 level of Strassen-Winograd scheme are listed in table 4.2. From 

the table it can be observed that this scheme generates 7 submatrix multiplication and 15 

submatrix additions/subtractions. With 7 GPUs used in the operation, the 7 submatrix 

multiplications map evenly. Out of the 15 submatrix additions/subtractions, 8 are performed 

prior to the submatrix multiplication and the remaining 7 are performed after the submatrix 

multiplication. Even though, the submatrix additions/subtractions do not evenly map to the 

number of processors used, a technique is discussed in section 4.4.1 to improve the load 

distribution. 

Task No. Operation Result 

1 𝐴0 𝑇0 

2 𝐴1 𝑇1 

3 𝐴2 + 𝐴3 𝑇2 

4 𝑇2 − 𝐴1 𝑇3 

5 𝐴0 − 𝐴2 𝑇4 

6 𝐴1 + 𝑇3 𝑇5 

7 𝐴3 𝑇6 
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8 𝐵0 𝑆0 

9 𝐵2 𝑆1 

10 𝐵1 + 𝐵0 𝑆2 

11 𝐵3 − 𝑆2 𝑆3 

12 𝐵3 − 𝐵1 𝑆4 

13 𝐵3 𝑆5 

14 𝑆3 − 𝐵2 𝑆6 

15 𝑇0 × 𝑆0 𝑄0 

16 𝑇1 × 𝑆1 𝑄1 

17 𝑇2 × 𝑆2 𝑄2 

18 𝑇3 × 𝑆3 𝑄3 

19 𝑇4 × 𝑆4 𝑄4 

20 𝑇5 × 𝑆5 𝑄5 

21 𝑇6 × 𝑆6 𝑄6 

22 𝑄0 + 𝑄3 𝑈1 

23 𝑈1 + 𝑄4 𝑈2 

24 𝑈1 + 𝑄2 𝑈3 

25 𝑄0 + 𝑄1 𝐶0 

26 𝑈3 + 𝑄5 𝐶1 

27 𝑈2 − 𝑄6 𝐶2 

28 𝑈2 + 𝑄2 𝐶3 

12Table 4.2: Tasks in Strassen-Winograd decomposition. 

 

 

4.2.2    Module 2: Local multiplication module. 

This is the module that performs the actual multiplication operation locally on the 

participating processors. 

cublasDgemm: 

cublasDgemm is the CUDA implementation of BLAS multiplication operation for 

double precision floating point numbers [45]. 
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MSMES (Multi-Stage Memory Efficient Strassen’s algorithm): 

MSMES is our implementation of a memory efficient Strassen’s matrix multiplication 

algorithm on CUDA that was explored in detail in the previous chapter. 

With the ability to combine different options for each of the modules, the configurations 

outlined in table 4.3 are explored in this chapter 

Sl. No. Global decomposition 

Scheme 

Local multiplication 

algorithm 

1 2D cublasDgemm 

2 2D MSMES 

3 Strassen-Winograd cublasDgemm 

4 Strassen-Winograd MSMES 

13Table 4.3: Module combinations evaluated. 

4.3    Previous Works: 

The work in [3] designed a generic matrix-matrix multiplication algorithm for C = A 

x B for multi-GPU accelerated distributed memory platforms. They were able to overcome 

the limitations of SLATE [https://icl.bitbucket.io/slate/] library where C matrix must fit in the 

global memory of the GPUs. The work designed an algorithm around tiled matrix outer 

products with numerous optimizations to realize their results. They used data prefetching at 

various levels of memories like our work to overlap computations with communications. The 

work performs an implementation of GEMM in PARSEC [25] to perform matrix 

multiplications. 

Zhang et al [19] implemented a multi-GPU version of matrix multiplication by 

decomposing the global matrix multiplication using Strassen’s algorithm followed by using 

CUBLAS implementation of matrix multiplication at local levels to perform the actual 

multiplication. This corresponds to the technique outlined in entry number 3 of table 4.3 here. 

[19] investigated the performance of distributed matrix multiplication by leveraging GPUs to 

perform the addition and multiplication stages of Strassen’s algorithm as well as using CPUs 

for the addition stages and GPUs for multiplication stages. Based on their implementation, 

[19] arrived at the conclusion that naïve matrix multiplication solutions outperform Strassen’s 
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algorithm on multi-GPU architectures due to the communication overheads associated with 

Strassen’s algorithm. 

Zhang et al [20] designed a middleware for scheduling tasks in operations with task 

dependencies on multi-GPU architectures. Strassen’s matrix multiplication was used as one 

of their example implementations to measure the performance of their hierarchical scheduler 

middleware. The scheduler assigns tasks to either CPUs or GPUs depending on the 

computational complexity of the task. In the example of Strassen’s matrix multiplication, 

addition/subtraction tasks were assigned to CPU cores which performs single and double 

precision addition/subtraction admirably compared to GPUs when the cost of submatrix 

communication to GPU global memory is taken into consideration. On the other hand, 

multiplication operations are assigned to GPUs which can outperform CPUs on the operation 

due to the higher parallelism associated with GPUs. This implementation is again an example 

of global Strassen decomposition of matrices followed by using CUBLAS implementation of 

matrix multiplication at local levels to perform the actual multiplication. 

Ballard et al. [2] has extensively documented the communication cost of matrix 

multiplication on Cray XT4, a distributed memory MIMD supercomputer [26].  They 

analyzed and modeled the communication costs involved with various decomposition 

strategies as well as multiplication strategies. The work performed in multi-GPU 

implementation of MSMES is an adaptation of the Communication Optimal Parallel Strassen 

Multiplication algorithm [2] on a multi-GPU CUDA architecture. 

The following schemes were explored in [2]: 

1. Classical Algorithm on memory bound architectures: This algorithm decomposes the 

input matrices into tiles that can be fit into the global memory of the CPU. These tiles 

are then mapped to the available CPUs which loads the corresponding matrices into 

their respective global memory and performs a classical (cubic) matrix multiplication 

algorithm on them. 

2. 2D global decomposition with local Strassen’s matrix multiplication: These 

algorithms also decompose the input matrices into tiles that fit into the global memory 

of the CPUs and maps the tiles to the participating CPUs. Once the tile pair is loaded 

into the CPU, it performs Strassen-Winograd algorithm on the pair of tiles. 

3. Strassen decomposition with local classical matrix multiplication: This algorithm 

traverses sufficient DFS steps in a multi-level Strassen decomposition tree such that 
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the operand matrices after DFS traversal will fit in the global memory allocated to the 

CPU. These decomposed matrices are then assigned to CPUs which perform a 

classical matrix multiplication on the submatrix. 

4. Strassen decomposition with local Strassen’s multiplication: This algorithm traverses 

sufficient DFS steps in a multi-level Strassen decomposition tree such that the 

operand matrices after DFS traversal will fit in the global memory allocated to the 

CPU. These decomposed matrices are then assigned to CPUs which perform Strassen-

Winograd algorithm on the submatrix. 

4.5    Implementation: 

This section covers the specifics of implementing the schemes explored under Module 

1 of our multi-GPU matrix multiplication implementation. The details of implementing 

MSMES has already been documented in the previous chapter and shall not be repeated here. 

We also document some of the atypical behavior we observed while using some additional 

features offered by CUDA which should have theoretically improved our implementation. 

4.4.1    Strassen-Winograd decomposition. 

The Strassen-Winograd decomposition essentially consists of three stages. The pre-

multiplication stage that consists of addition/subtraction tasks, the multiplication stage that 

performs 7 submatrix multiplications and the post multiplication addition/subtraction stage. 

There are 8 addition/subtraction operations in the pre multiplication stage with only 7 GPUs 

to process them. Here, data parallelism was leveraged by splitting each of the operand 

submatrix involved in the pre multiplication operations into 7 tiles. Similar optimizations 

were applied to the post multiplication stage as well. Figure 4.2 shows an example of the 

split. Next, subtasks were grouped together to improve task parallelism. Table 4.4 shows the 

details of the groups that were created. Choosing to use data parallelism in groups 1, 2 and 4 

not only allowed improved load balancing but it also eliminated the inter task dependencies 

from slowing down execution. For example, from Table 4.2 task 4 is dependent on the results 

of task 3, had these tasks been parallelized leveraging task parallelism, the GPU performing 

task 4 would have had to wait for the results from the GPU performing task 3. 

Initially all the global memory allocations on the GPU were made using 

cudaMallocManaged, a CUDA library implementation for unified memory [27] and 

atomidAddSystem [28] directive was used to avoid race conditions. This implementation 
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could do away with the entire group 4 in table 4.4 as the computed results from group 3 could 

be atomically added to their respective C accumulator values. Unfortunately, the frequent 

memory transfers associated with a device managed memory resulted in subpar performance 

during group 3 subtasks. Later implementations used cudaMallocManaged only with groups 

1, 2 and 4. 

While tests were only conducted with matrices whose dimensions were multiples of 7, 

padding a matrix to make its dimension a multiple of 7 is a trivial problem and could 

therefore, theoretically allow any matrix to be decomposed using the described Strassen-

Winograd decomposition scheme. 

Group No. Operations Type of parallelism used 

Group 1 𝐴2 + 𝐴3 

𝑇2 − 𝐴1 

𝐴0 − 𝐴2 

𝐴1 + 𝑇3 

Data parallelism (Data is 

evenly distributed among 

GPUs and all the GPUs 

perform all the tasks) 

Group 2 𝐵1 + 𝐵0 

𝐵3 − 𝑆2 

𝐵3 − 𝐵1 

𝑆3 − 𝐵2 

Data parallelism (Data is 

evenly distributed among 

GPUs and all the GPUs 

perform all the tasks) 

Group 3 𝑇0 × 𝑆0 

𝑇1 × 𝑆1 

𝑇2 × 𝑆2 

𝑇3 × 𝑆3 

𝑇4 × 𝑆4 

𝑇5 × 𝑆5 

𝑇6 × 𝑆6 

Task parallelism (Each 

task is assigned to one 

GPU) 

Group 4 𝑄0 + 𝑄3 

𝑈1 + 𝑄4 

𝑈1 + 𝑄2 

𝑄0 + 𝑄1 

𝑈3 + 𝑄5 

𝑈2 − 𝑄6 

𝑈2 + 𝑄2 

Data Parallelism (Data is 

evenly distributed among 

GPUs and all the GPUs 

perform all the tasks) 
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14Table 4.4: Grouping subtasks in Strassen-Winograd decomposition. 

 

 

15Figure 4.2: Splitting the data in submatrix across 7 GPUs. 

 

4.4.2    Naïve/2D decomposition: 

The naïve decomposition was optimized to be used with 7 GPUs to maintain the 

similitude of the results from Strassen-Winograd decomposition. The input matrices were 

decomposed as shown in Figure 7. While the 2D decomposition strategy maps more 

conveniently to 2D mesh topology of processors, it was not possible in our test environment 

since the maximum number of GPUs that could be used concurrently on environment(a) 

listed in table 2.3 were limited to 8. Still, the configuration we used with 7 GPUs have 

efficiencies comparable to tests run using a (2 × 2) mesh topology with 4 GPUs. The 7 GPU 

configuration performed at an average efficiency of 50.1% compared to 54.8% for the (2 × 2) 

mesh configuration. The subtasks involved with this decomposition were distributed 

statically across the participating GPUs. 
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 16Figure 4.3: Decomposition strategy for matrices for 2D scheme with 7 GPUs. 

 

In both the implementations, each GPU was assigned a separate CPU thread to 

orchestrate communications and computations. 

4.6    Experiments: 

Experiments were conducted on various size of input matrices (the matrices were 

square and had dimensions which were multiples of 7) containing double precision floating 

point numbers generated using the CUDA library function curandGenerateUniformDouble 

[29]. The time it took to complete matrix multiplications were calculated using the C++ 

library function time defined in time header file [30]. The speedups of the configurations 

listed in Table 4.3 compared to MSMES running on a single GPU were used to measure the 

performance of each of the configuration. 
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17Figure 4.4: Speedup v/s Number of elements graph for the tested configurations 

From figure 4.4 it can be observed that Strassen-Winograd-MSMES configuration has 

the highest speedup of 4.97 out of all the tested configuration. This configuration also 

outperformed all the other configurations beyond N = 1792. Below N = 1792, Strassen-

Winograd-cublasDgemm exhibited superior performance. 

4.7    Conclusion: 

With the exponential increase in the consumption and generation of data, there is a 

compelling need to explore algorithms that can improve the processing speed of the data. 

Matrix multiplication is a fundamental linear algebra operation that finds extensive use in 

data intensive workflows like deep learning, computer graphics, scientific computing etc. 

In this section we explored and implemented different configurations for multi-GPU 

matrix multiplication. Naïve and Strassen-Winograd decomposition techniques were 

implemented using cublasDgemm and MSMES and their performances were compared. 

From the experiments, it was observed that the configuration that used Strassen-Winograd 
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scheme for decomposition with MSMES for local matrix multiplication yielded the best 

performance.  
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Chapter 5 Future Work and Conclusion 

5.1    Introduction: 

This chapter discusses the optimizations and solutions that can be augmented to the 

multi-GPU implementations discussed in the previous chapter. Since the initial motivation for 

the thesis came from exploring the chain matrix multiplication involved in the training phase 

of GCNs, one of the sections in this chapter is our recommendations for chained matrix 

multiplication. 

The next section discusses the details for a theoretical load balancer that would allow 

the multi-GPU implementation to perform better in an architecture with heterogeneous GPUs 

or a shared architecture where some of the GPUs are behaving like stragglers due to load 

from other processes. 

5.2    Matrix chain multiplication 

The task of computing a matrix chain multiplication on a multi-GPU architecture can 

be decomposed in two different ways. 

1. Each of the GPUs can be assigned a separate matrix multiplication involved in the 

chain. 

2. The individual matrix multiplications in the chain can be assigned to multiple GPUs 

using Strassen-Winograd-MSMES decomposition discussed in the previous chapter. 

While each technique has its pros and cons, this section takes into consideration the 

efficiency of algorithm and the limitations of a multi-GPU architecture to recommend a 

strategy for solving the matrix chain multiplication problem. 

Our implementation of multi-GPU matrix multiplication using Strassen-Winograd 

decomposition followed by MSMES local multiplication yields a peak speedup of 4.97 while 

using 7 GPUs. While this configuration outperforms all the other configurations we tested, 

the multi-GPU implementations have lackluster efficiencies compared to single-GPU 

MSMES implementation. Given speedup of S using N GPUs, the efficiency (E) of a parallel 

algorithm can be calculated using the following formula: 

𝐸 =  
𝑆

𝑁
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This yields a peak efficiency of 71% for our Strassen-Winograd-MSMES implementation. 

Consider the problem of multiplying a matrix chain of M matrices performed on a 

compute cluster with N processors. In supercomputing architectures like Cray where 

processing cores in the range of hundreds of thousands are available [33], up to a reasonable 

degree, it is possible to keep N > M. This flexibility on the number of processors allows these 

architectures to use many processors to leverage the speedups offered by even inefficient 

implementations to reduce the computation times of the matrix chain multiplication problem. 

The Virya compute cluster, that was used to design the implementations in this thesis, on the 

other hand has a hard limit of 8 GPUs per process [32]. This limits our ability to maintain N 

> M for all problem sizes. In such an architecture, as soon as M becomes greater than 2N 

(there is more than N independent matrix multiplications), we must consider the efficiency of 

an implementation before deciding on a technique to solve the problem. 

Finally, the results of the optimal matrix parenthesization problem [34] for the given 

matrix chain also determines the technique that needs to be employed to solve the problem at 

a given stage. 

With these constraints in mind, we recommend the following steps to perform a 

matrix chain multiplication on multi-GPU architectures. 

1. Identify the optimal parenthesization for the given matrix chain. 

2. If the number of optimal independent matrix multiplication is more than or equal to 

N, use the technique Strassen-Winograd-MSMES to perform the multiplication. 

Equation 5.1 provides an example of this when N = 3. 

3. If the number of independent matrix multiplication is less than N, then compare the 

efficiency of performing an inefficient parenthesization to the efficiency of a 

Strassen-Winograd-MSMES decomposition to determine which strategy to apply. 

Equation 5.2 shows an example of this. 

4. Recursively apply steps 1 to 3 until the chain is completed. 

 

𝐴1 × (𝐴2 × 𝐴3)  × (𝐴4 × 𝐴5)  × (𝐴6 × 𝐴7) 

18Equation 5.1: This shows an example of a parenthesization where 3 GPUs will have 3 

optimal independent matrix multiplications to solve parallelly. The independent 

multiplications are highlighted in green. 
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(((𝐴1 × 𝐴2) × 𝐴3) × 𝐴4) × 𝐴5) × (𝐴6 × 𝐴7)  

19Equation 5.2: This shows an example of a parenthesization where 3 GPUs will not have 

optimal independent matrix multiplications to solve parallelly. 

5.3    Dynamic Load balancing 

A fundamental assumption in our current implementation of Strassen-Winograd-

MSMES is that the participating GPUs are of similar specifications and have similar 

performances. This assumption unfortunately does not hold true in a heterogeneous GPU 

configuration and or on a cluster where multiple processes might be competing for GPU time. 

This results in certain GPUs becoming stragglers thereby causing bottlenecks. 

A proposed solution to this scenario is to further decompose each of the operations 

outlined in Table 4.4. By decomposing each of the operations into smaller chunks we can 

send the input matrices in a “streaming” fashion to GPUs. This would not only improve the 

overlap of computations with communications, but also allows the implementation to identify 

stragglers and divert their workloads to other available GPUs. Like our decomposition 

discussions in section 4.2.1, experiments need to be conducted for Strassen-Winograd vs 

naïve decomposition strategies to see the more performant solution for “streaming” the input 

matrices for the multiplication operations listed in table 4.4. 

5.4 Conclusion 

In this thesis, we present a novel implementation of Strassen's algorithm devoid of 

additional workspace requirements. This novel implementation is also capable of recursive 

Strassen's algorithm with no additional memory demands. The tests performed that compared 

the performance of the implementation to cublasDgemm show superior memory consumption 

and throughput. Performance models created allow the implementation to be optimized on 

various hardware configurations. 

The single GPU implementation coined, MSMES, was leveraged to implement a 

multi-GPU version of Strassen's algorithm that outperformed other tested configurations. 
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With the augmentations we have mentioned in this section, the solution we present 

could be compelling for heterogeneous/shared multi-GPU matrix chain multiplication use 

cases like machine learning, deep learning, etc.  
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