

Fast and Memory Efficient Strassen’s

Matrix Multiplication on GPU Cluster

Arjun Gopala Krishnan

A Thesis

in

The Department of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Computer Science at

Concordia University

Montreal, Quebec, Canada

August 2021

© Arjun Gopala Krishnan, 2021

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Arjun Gopala Krishnan

Entitled: Fast and Memory Efficient Strassen’s Matrix Multiplication on GPU Cluster

and submitted in partial fulfillment of the requirements for the degree of

M. Comp. Sc.

complies with the regulations of the University and meets the accepted standards with respect

to originality and quality.

Signed by the final examining committee:

_____________________________________ Chair

 Dr. Hovhannes Harutyunyan

_____________________________________ Examiner

Dr. Hovhannes Harutyunyan

_____________________________________ Examiner

Dr. Rajagopalan Jayakumar

_____________________________________ Supervisor

Dr. Dhrubajyoti Goswami

Approved by __

Chair of Department or Graduate Program Director

__

 Dr. Mourad Debbabi, Dean

 Faculty of Engineering and Computer Science

Date __

iii

Abstract

Fast and Memory Efficient Strassen’s Matrix Multiplication on GPU

Cluster

Arjun Gopala Krishnan

Prior implementations of Strassen's matrix multiplication algorithm on GPUs traded

additional workspace in the form of global memory or registers for time. Although Strassen's

algorithm offers a reduction in computational complexity as compared to the classical

algorithm, the memory overhead associated with the algorithm limits its practical utility.

While there were past attempts at reducing the memory footprint of Strassen's algorithm by

compromising parallelism, no prior implementation, to our knowledge, was able to hide the

workspace requirement successfully. This thesis presents an implementation of Strassen's

matrix multiplication in CUDA, titled Multi-Stage Memory Efficient Strassen (MSMES), that

eliminates additional workspace requirements by reusing and recovering input matrices.

MSMES organizes the steps involved in Strassen's algorithm into five stages where multiple

steps in the same stage can be executed in parallel. Two additional stages are also discussed

in the thesis that allows the recovery of the input matrices. Unlike previous works, MSMES

has no additional memory requirements irrespective of the level of recursion of Strassen's

algorithm. Experiments performed with MSMES (with the recovery stages) on NVIDIA

Tesla V100 GPU and NVIDIA GTX 1660ti GPU yielded higher compute performance and

lower memory requirements as compared to the NVIDIA library function for double

precision matrix multiplication, cublasDgemm. In the multi-GPU adaptation of matrix

multiplication, we explore the performance of a Strassen-based and a tile-based global

decomposition scheme. We also checked the performance of using MSMES and

cublasDgemm for performing local matrix multiplication with each of the global

decomposition schemes. From the experiments, it was identified that the combination of

using Strassen-Winograd decomposition with MSMES yielded the highest speedup among all

the tested combinations.

iv

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor Dr. Dhrubajyoti Goswami. This

work would have been impossible without his guidance, care, and encouragement.

I am thankful to my family, friends and colleagues for their support and encouragement.

v

Table of contents

List of Tables ... viii

List of Figures .. viii

List of Equations .. ix

Chapter 1 Introduction .. 1

1.1 Problem Statement and Motivation ... 1

1.2 Challenges and contributions ... 2

1.3 Thesis Outline .. 3

Chapter 2 Background .. 5

2.1 BLAS .. 5

2.2 Strassen’s algorithm ... 6

2.3 GPU Architecture... 7

2.4 GPGPU Programming model .. 9

2.5 CUDA ... 10

Chapter 3 Multi-Stage Memory Efficient Strassen ... 14

3.1 Introduction .. 14

3.2 Background and Related Works .. 15

3.2.1 CUTLASS ... 15

3.2.2 Memory requirement of Strassen’s algorithm .. 20

3.2.3 Recursive Strassen’s algorithm ... 20

3.2.4 Previous works implementing Strassen’s algorithm. .. 21

3.3 Multi-Stage Memory Efficient Strassen .. 22

3.3.1 Concurrent submatrix utilization of Strassen’s algorithm .. 23

vi

3.3.2 Strassen multiplication kernel ... 23

3.3.3 Rescheduling the stages to increase concurrency ... 24

Stage 1 (addition/subtraction stage): ... 25

Stage 2 (Multiplication stage): .. 25

Stage 3 (addition stage):.. 25

Stage 4 (addition/subtraction stage): ... 25

Stage 5 (Multiplication stage): .. 25

3.3.4 Reconstruction of the Input Matrices .. 26

Stage 6 (addition/subtraction: recuperation stage 1):.. 26

Stage 7 (addition/subtraction: Recuperation stage 2): .. 26

3.3.5 Recursive Strassen (Multi-level Strassen) .. 26

3.4 Implementation and experiments ... 27

3.4.1 Addition/subtraction kernel .. 27

3.4.2 Multiplication kernel ... 28

3.4.3 Optimizing the kernel launch parameters .. 28

3.4.4 Experiments .. 31

3.5 Performance Analysis .. 35

3.5.1 Stage-wise breakdown of exectuion time ... 35

3.5.2 Performance Modeling.. 36

3.6 Conclusion ... 39

Chapter 4 Multi-GPU Strassen’s algorithm .. 41

4.1 Introduction: ... 41

4.2 Background: ... 41

4.2.1 Module 1: Global decomposition module... 41

4.2.2 Module 2: Local multiplication module. .. 44

vii

4.3 Previous Works: ... 45

4.5 Implementation: ... 47

4.4.1 Strassen-Winograd decomposition. .. 47

4.4.2 Naïve/2D decomposition: ... 49

4.6 Experiments: .. 50

4.7 Conclusion: .. 51

Chapter 5 Future Work and Conclusion ... 53

5.1 Introduction: ... 53

5.2 Matrix chain multiplication.. 53

5.3 Dynamic Load balancing ... 55

5.4 Conclusion .. 55

References ... 57

viii

List of Tables

Table 2.1: Steps in Strassen’s matrix multiplication. ... 7

Table 2.2: Comparison of the GPUs used in the experiments. ... 8

Algorithm 3.1: CUTLASS GEMM algorithm (adapted from [1]). .. 20

Table 3.1: Test Configurations. .. 31

Table 3.2: Stagewise contribution to the total execution time. ... 35

Table 4.1: Subtasks in naïve global decomposition. ... 43

Table 4.2: Tasks in Strassen-Winograd decomposition. ... 44

Table 4.3: Module combinations evaluated. ... 45

Table 4.4: Grouping subtasks in Strassen-Winograd decomposition. .. 49

List of Figures

Figure 3.5. MSMES v/s CUBLAS double precision performance in configuration (b)............... 33

Figure 3.6. MSMES v/s CUBLAS double precision performance in configuration (a) 33

Figure 3.7. Speedup of Level 2 MSMES against Level 1 MSMES v/s Level 2 MSMES

against CUBLAS in configuration (a) .. 34

Figure 3.8. Speedup of Level 3 MSMES to Level 1 MSMES v/s Level 3 MSMES to

CUBLAS in configuration (a) ... 34

Figure 4.1: Decomposition of matrices for multi-GPU multiplication. .. 42

Figure 4.2: Splitting the data in submatrix across 7 GPUs. .. 49

Figure 4.3: Decomposition strategy for matrices for 2D scheme with 7 GPUs. 50

Figure 4.4: Speedup v/s Number of elements graph for the tested configurations 51

ix

List of Equations

Equation 1.1: Propagation function for the layer l + 1 in a GCN. .. 2

Equation 5.1: This shows an example of a parenthesization where 3 GPUs will have 3

optimal independent matrix multiplications to solve parallelly. The independent

multiplications are highlighted in green55 ... 55

Equation 5.2: This shows an example of a parenthesization where 3 GPUs will not have

optimal independent matrix multiplications to solve parallelly. ... 55

1

Chapter 1 Introduction

Matrix multiplication is one of the most fundamental algorithmic problems and finds

extensive use in the fields of simulation, machine learning, graphics, network theory, to name

a few [2]. This prevalence of the multiplication operation makes any improvements on the

time complexity of the matrix multiplication algorithm highly desirable. One of the earliest

implementations of matrix multiplication on high performance devices came in the form of

BLAS (Basic Linear Algebra Subprograms) library implemented in Fortran [3]. The interface

of BLAS library was standardized by the BLAS Technical forum [4]. The specifications of

BLAS became the de-facto standard for low-level implementations of matrix multiplication.

Over the years, as computations started shifting towards GPGPU (General-Purpose

computing on Graphics Processing Units) paradigm, BLAS was implemented for GPUs. The

extensive research that went into adapting matrix multiplication on GPU architecture,

algorithmic tools, theoretical approaches, and software engineering methods have resulted in

faster and more efficient algorithms and implementations [2].

Until 1969 matrix multiplication was believed to be an operation of cubic complexity.

However, the introduction of Strassen's algorithm [5], named after Volker Strassen, opened

the possibility of numerous sub-cubic matrix multiplication algorithms. Even with the

superior time complexity of Strassen's algorithm compared to naive algorithms, it was never

widely used in any of the BLAS implementations due to its additional workspace

requirements, higher memory operation, and numerical instability at higher levels of

recursions. In this thesis, we present optimized implementations that addresses the additional

workspace and memory operation requirements of Strassen's algorithm on GPUs.

1.1 Problem Statement and Motivation

The work on this thesis began as an exploration into GCNs (Graph Convolution

Networks) [31] and possible techniques to improve the training phase performance of these

networks. During the initial research, it was identified that GCNs use a matrix chain

multiplication consisting of five matrices to compute the propagation function for a layer

during the training phase [31]. Exploring opportunities to optimize this matrix chain

multiplication resulted in the work presented in chapter 3 and 4. Although GCNs generally

rely on sparse matrix multiplication algorithms due to the sparseness of the adjacency matrix

used in the training phase, the multiplication explored in this thesis is dense matrix

2

multiplication. This choice was made due to the wider range of applications possible with a

dense matrix multiplication algorithm. Equation 1.1 represents the propagation function for

the (l + 1)th layer of the GCN. Here, Ȃ = A + I where A is the adjacency matrix of the graph,

and I is the identity matrix. D is the diagonal node degree matrix. 𝐻(𝑙)is the propagation

function for the l-th layer of the GCN. 𝑊(𝑙)is the weight matrix for the l-th layer and σ(.) is a

non-linear activation function.

𝑓(𝐻(𝑙), 𝐴) = 𝜎(�̂�−
1
2�̂��̂�−

1
2𝐻(𝑙)𝑊(𝑙))

1Equation 1.1: Propagation function for the layer l + 1 in a GCN.

The work presented by J. Huang et al. [1] showed the possibility to partially optimize

the memory requirements of Strassen’s algorithm. This provided the motivation to attempt an

implementation of Strassen’s algorithm on GPUs that was completely able to hide the

additional workspace requirements.

The inability of [1] to eliminate the additional workspace requirement and the

increasing register pressure with higher levels of recursion while using Strassen Reloaded

algorithm [1] on GPUs was the first problem we wanted to address with the thesis. This led to

the development of a Multi-Stage Memory Efficient Strassen’s Algorithm (MSMES) which

is discussed in detail in chapter 3.

The literature review conducted to explore multi-GPU implementations of Strassen’s

algorithm uncovered no prior attempts at implementing a kernel that used Strassen’s

algorithm to decompose the matrix as well as to perform the local matrix multiplications.

Conversely, G. Ballard et al. had shown in [2] that a communication optimal implementation

of Strassen decomposition followed by Strassen multiplication is feasible on a Cray XT4 [26]

supercomputer. Hence, the second problem we wanted to address in this thesis was to

implement an efficient multi-GPU matrix multiplication kernel using a global Strassen

decomposition to split work among the participating GPUs which then uses MSMES to

perform local matrix multiplications. This implementation is discussed in detail in chapter 4.

1.2 Challenges and contributions

Strassen’s algorithm performs less computations per memory operations because it is

a sub cubic matrix multiplication algorithm. This means that the performance of any

3

implementation of Strassen’s algorithm will heavily depend on memory consumption and

data transfer latencies. NVIDIA GPUs use a complex memory hierarchy consisting of system

memory, GPU global memory, shared memory and register memory [6]. While there are

numerous CUDA (Compute Unified Device Architecture) library functions like

mallocManaged [44] during testing we realized that these features are not optimized for the

memory access patterns exhibited by Strassen’s algorithm. Hence, one of our major

challenges was to identify techniques to optimize memory access at all levels of the memory

hierarchy. We used recommendations from CUTLASS (CUDA Templates for Linear Algebra

Subroutines) and other custom caching and prefetching as well as load balancing techniques

to optimize the memory footprint and memory access latencies of our implementations.

The following are the major contributions of our approach:

• Designed and implemented Strassen’s algorithm called MSMES in CUDA which

has no additional memory requirement compared to a naïve matrix multiplication

algorithm.

• Our implementation of MSMES can perform any level of recursive Strassen with

no additional memory requirements. To our knowledge, this is the only

implementation of a recursive Strassen based GEMM (Generalized Matrix-matrix

Multiplication) which has no additional workspace requirement.

• Formulated a performance model that allows us to predict the execution time of

MSMES for any matrix size on any NVIDIA hardware.

• Designed and implemented a multi-GPU version of MSMES that uses Strassen-

Winograd global decomposition to distribute work among the participating GPUs.

• Compared the performance of Strassen-Winograd-MSMES (Global

decomposition using Strassen-Winograd algorithm followed by local MSMES

multiplication) against other configurations mentioned in table 4.3.

1.3 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 details background

information that applies to the problems discussed in Chapters 3 and 4. Chapter 3 discusses

the implementation of our memory efficient single GPU implementation of Strassen’s

algorithm. In chapter 4 the details of multi-GPU implementation of Strassen’s algorithm are

discussed. In addition to Chapter 2, relevant related works are also discussed separately in

4

Chapters 3 and 4. Finally, in chapter 5 we discuss some recommendations for future

augmentations that can be added to the implementations in chapter 3 and 4.

5

Chapter 2 Background

2.1 BLAS

Basic Linear Algebra Subprograms (BLAS) is a specification that defines functions

for commonly used operations in numerical programming like vector addition, dot products,

matrix multiplication etc. [35]. BLAS originated as a Fortran library in 1979 and was

eventually standardized by the BLAS technical forum [4].

Since BLAS is just a specification, most of the commonly used languages,

frameworks, and architectures have their own implementations of BLAS specifications which

are highly optimized for the respective hardware and compiler used with the language. BLAS

allow users to develop programs that are independent of the hardware and libraries being

used. The extensive work that goes into optimizing BLAS implementations also mean that

the users are guaranteed superior performance compared to custom implementation a user

might program [35].

BLAS functions are organized into three levels which corresponds to the

chronological order of publication, as well as the degree of polynomial complexity of the

algorithm [35].

Level 1

This level defines operations that typically take linear time, O(N), for completion.

Hence, routines defined in this level generally corresponds to vector operations like dot

products, vector additions etc.

Level 2

This level defines matrix-vector operations like a generalized matrix-vector

multiplication. The operations defined in this level generally have quadratic complexity,

O(N2).

Level 3

This level defines matrix-matrix operations like a generalized matrix-matrix

multiplication (GEMM). The operations defined in this level generally have cubic

complexity, O(N3).

6

Given, matrices A, B, and C where A is M × K, B is K × N, and C is an M × N

matrix, and where 𝛼 and 𝛽 are constants, GEMM computes:

𝐶 = 𝛼𝐴 × 𝐵 + 𝛽𝐶

(1)

In chapter 3 we implement a Level 3 BLAS standard matrix-matrix multiplication that

uses Strassen’s algorithm to compute the result.

2.2 Strassen’s algorithm

Given matrices 𝐴 ∈ 𝑅𝑀 𝑥 𝐾 and 𝐵 ∈ 𝑅𝐾 𝑥 𝑁 , Strassen’s algorithm computes the

BLAS matrix multiplication standard (equation (1)) by partitioning the matrices into 2 × 2

submatrices such that:

 [
𝐶0 𝐶1
𝐶2 𝐶3

] = 𝛼 [
𝐴0 𝐴1
𝐴2 𝐴3

] [
𝐵0 𝐵1
𝐵2 𝐵3

] + 𝛽 [
𝐶0 𝐶1
𝐶2 𝐶3

] (2)

The algorithm rearranges the arithmetic operations such that equation (1) is computed with 7

sub matrix multiplications, rather than the 8 involved in the classical algorithm [5]. Assuming

that dimensions of each matrix are N × N, applying the previous decomposition recursively

would allow the computation to be performed at O(N2.81) [5]. The arithmetic operations

involved in equation (1) are illustrated in table 2.1:

Step Computation Result

1 (𝐴0 + 𝐴3) 𝑃0

2 (𝐴2 + 𝐴3) 𝑃1

3 (𝐴0 + 𝐴1) 𝑃2

4 (𝐴2 − 𝐴0) 𝑃3

5 (𝐴1 − 𝐴3) 𝑃4

6 (𝐵0 + 𝐵3) 𝑄0

7

7 (𝐵1 − 𝐵3) 𝑄1

8 (𝐵2 − 𝐵0) 𝑄2

9 (𝐵0 + 𝐵1) 𝑄3

10 (𝐵2 + 𝐵3) 𝑄4

11 (𝑃0 × 𝑄3) 𝑀0

12 (𝑃1 × 𝐵0) 𝑀1

13 (𝐴0 × 𝑄1) 𝑀2

14 (𝐴3 × 𝑄2) 𝑀3

15 (𝑃2 × 𝐵3) 𝑀4

16 (𝑃3 × 𝑄3) 𝑀5

17 (𝑃4 × 𝑄4) 𝑀6

18 𝑀0 + 𝑀3 + 𝑀6 − 𝑀4 𝐶0

19 𝑀2 + 𝑀4 𝐶1

20 𝑀1 + 𝑀3 𝐶2

21 𝑀0 + 𝑀2 + 𝑀5 − 𝑀1 𝐶3

1Table 2.1: Steps in Strassen’s matrix multiplication.

 Table 2.1 shows that Strassen’s algorithm performs equation (1) with 7 sub matrix

multiplications and 18 addition/subtraction operations (12 additions and 6 subtractions).

While the complexity analysis of the algorithm shows clear advantages, practical use of the

algorithm suffers from poor performance due to additional workspace demands for storing

intermediate results, especially in a memory-constrained GPU.

2.3 GPU Architecture

NVIDIA’s Tesla V100 and GTX 1660ti are examples of graphics processors which

can perform GPGPU operations at high levels of parallelism. The Tesla V100 GPUs are

enterprise level offerings that finds extensive use in research, GPU clusters, and professional

8

workflows [6]. The GTX 1660ti on the other hand is predominantly used in personal and

enthusiast consumer applications. Table 2.2 illustrates the comparison of specifications of the

two GPUs used in our experiments.

An NVIDIA GPU is comprised of multiple graphics processing units, texture

processing controllers, streaming multiprocessors (SM), and memory controllers. Each

streaming multi-processor has 64 FP32 (Single-precision floating-point format) cores, 64

INT32 (32-bit Integer format) cores, 32 FP64 (Double-precision floating-point format) cores

and optional tensor cores. The GPUs have off chip global memory which supplies data to the

relevant cores through on chip memory controllers. Level 2 caches are used by the memory

controllers to hide memory transfer latencies between the cores and global memory.

Similarly, each streaming multiprocessor has reserved Level 1 cache that can be used to hide

memory latencies between Level 2 cache and cores. The streaming multiprocessor also has

shared memory that can be used to transfer data between threads in a thread block. The

CUDA cores have on chip registers that can be used to store frequently used values or

intermediate results. Figure 2.2 describes the usage of memory hierarchy across threads,

blocks, and grids.

Parameter Tesla V100 GTX 1600ti

Architecture GV100 (Volta) TU116 (Turing)

SMs 80 24

FP64 Cores / SM 32 32

GPU Boost Clock 1530 MHz 1770 MHz

Peak FP64 FLOPS 7.8 TFLOPS 169.9 GFLOPS

Global Memory Size 16 GB 6 GB

L2 cache size 6144 KB 1536 KB

L1 cache / SM 128 KB 64 KB/SM

Shared Memory / SM Configurable up to 96

KB / SM

48 KB / SM

Register file size / SM 256 KB / SM 64 KB / SM

2Table 2.2: Comparison of the GPUs used in the experiments.

From figure 2.3 and 2.4 we can observe that there are some differences between the GV100

SM and the TU116 SM used in the Tesla V100 and GTX 1660ti respectively. Namely,

GV100 has tensor cores which are not available on TU116. While, tensor cores can help with

9

certain multiplication workloads, we do not leverage tensor cores in our implementations.

Also, the CUDA GEMM implementation, cublasDgemm [45] used to compare the

performance of our implementation also do not leverage tensor cores.

2.4 GPGPU Programming model

In GPGPU paradigm, the GPU takes the role of a coprocessor [7]. The CPU which

takes the role of the host issues data and invokes device kernels or GPU kernels that need to

operate on the data. Device kernels are functions that are executed by the GPU where a

programmer specified number of GPU threads and thread blocks are used to execute the

kernel. Once the processing is completed by the GPU, the data is transferred back to the

system global memory which is accessible to the CPU. The advantage of using GPUs to

perform matrix multiplication lies in the GPU’s ability to efficiently parallelize certain

workloads.

While trying to adapt a problem to the GPGPU paradigm, factors like amount of data, data

movement latency, cache behavior, processing per data etc. must be considered to determine

whether the workload should be assigned to the CPU or to the GPU. Generally, in a data

intensive workload like matrix multiplication where there is a huge scope for parallel

processing, the CPU takes the role of orchestration, and the GPU is responsible for the

computations. There are GPGPU implementations, like [19], where it was observed that

assigning certain operations to the CPU, where the memory transfer times are higher

compared to computation time, resulted in better speedups. In these kinds of

implementations, the CPU computes some workloads while managing the GPUs performing

the remainder workloads. For adapting the problem in this thesis, it was observed that using

CPU exclusively for orchestration while using GPUs to perform all the computations yielded

better performance.

There are numerous implementations of GPGPU paradigm and any language that can poll

GPUs to perform some computation can implement a GPGPU framework [36]. OpenCL is a

popular implementation of GPGPU that is actively supported on Intel, AMD, Nvidia and

ARM platforms. CUDA is an NVIDIA proprietary framework that allows GPGPU

implementations in C programming language with NVIDIA GPUs. CUDA was used for the

implementations in this thesis due to its superior performance on NVIDIA hardware [37].

10

2.5 CUDA

CUDA is a parallel computing framework developed by NVIDIA for general purpose

computing on NVIDIA GPUs. Introduced in 2007, this is the first framework that

implemented general purpose computing APIs that did not require mapping computations to

graphics primitives [36]. In CUDA, the function/code executed by the GPU is called a kernel.

A kernel is parallelized by splitting the workload between threads which are grouped into

blocks. The blocks are grouped into grids [8]. Hence, every kernel invocation requires the

user to define the dimension of the thread block and the grid. These parameters are of the

datatype dim3 [9]. The dim3 datatype can be used to define 1-, 2- or 3-dimensional thread

blocks and grids. Figure 2.1 describes the organization of threads into blocks and grids.

The GPU has a block scheduler that dynamically assigns a block to a streaming multi-

processor. A thread in a block can use shared memory of the streaming multiprocessor to

exchange information with other threads in the same block. The threads in a block are

arranged into groups of 32, called a warp [46]. Once the threads in a warp are ready for

execution, the warp scheduler assigns these warps to streaming processors. If there is no warp

divergence present in the threads that belong to a warp, all 32 threads in the warp get

executed in a single step. If the shared memory and register demands of a kernel permit,

multiple blocks maybe assigned to the same streaming multiprocessor.

2Figure 2.1: Organization of threads, blocks, and grids in CUDA [38]

11

3Figure 2.2: Memory hierarchy of NVIDIA GPUs [40].

12

4Figure 2.3: Volta GV100 Streaming multiprocessor used in Tesla V100 [41]

13

5Figure 2.4: Turing TU116 Streaming Multiprocessor used in GTX 1660ti [42]

14

Chapter 3 Multi-Stage Memory Efficient Strassen

3.1 Introduction

Consider two matrices of size N × N each. While the traditional iterative algorithm for

matrix multiplication performs the operation in O(N3), several sub-cubic algorithms have

been formulated that improve the time complexity. Strassen’s matrix multiplication is one

such algorithm which when applied recursively can perform matrix multiplication at a time

complexity of O(N2.807) [5].

Although the improvement in time complexity of Strassen’s algorithm is impressive

from theoretical perspective, the algorithm demands higher workspace as compared to the

traditional matrix multiplication algorithm and hence limits its practical utility, especially in a

memory-constrained processors like GPUs.

Prior works (e.g., [1], [12], and [18]) attempted to lower the additional workspace

requirement of Strassen’s algorithm, but never managed to eliminate it completely. While [1]

succeeded in removing the global memory requirements, this was done at the cost of

increasing register memory requirements with each level of recursion of Strassen's algorithm.

An ordering of the steps in Strassen's algorithm to lower the global memory requirement was

formulated in [12], but it never managed to eliminate the additional workspace requirement

entirely. While [18] successfully formulated a schedule that eliminates the global memory

requirement for simple matrix multiplication, it could not eliminate the additional memory

requirement for the BLAS standard matrix multiplication.

In this chapter, we present an improved implementation of Strassen’s algorithm on

CUDA that follows the CUTLASS guidelines. The implementation, titled Multi-Stage

Memory Efficient Strassen (MSMES), eliminates the requirement of additional workspace

associated with Strassen’s algorithm by organizing and restructuring the Strassen’s algorithm

operations in stages, where multiple operations in the same stage can be executed in parallel,

and reusing and eventually recovering the input matrices. MSMES can perform any depth of

recursion of Strassen’s algorithm without needing extra workspace in the form of global

memory or registers. Though it comes at a cost of nominal additional computing requirement,

overall, there is a noticeable performance gain with increasing level of recursion.

15

The chapter is organized as follows: section 3.2 discusses the background and related

works. Section 3.3 describes the motivation and design of MSMES. Section 3.4 describes the

implementation of MSMES, followed by a discussion on the experiments and results. Section

3.5 provides an analytical performance model of MSMES. Finally, section 3.6 concludes the

chapter.

3.2 Background and Related Works

3.2.1 CUTLASS

GPUs use a multi-level memory hierarchy comprised of global, shared, and register

memories. To efficiently use this hierarchy, it is essential to hide the data movement latencies

between the different levels of memory. CUTLASS is a collection of CUDA C++ templates

and abstractions for implementing high-performance GEMM computations at all levels and

scales within CUDA kernels [10]. Detailed understanding of the high-performance

implementation of GEMM based on CUTLASS was essential to design strategies for

hierarchical partition and movement of data for MSMES.

Accumulating matrix product:

Accumulating matrix product is a set of loop optimizations recommended by NVIDIA in

CUTLASS documentation to improve the memory access pattern associated with GEMM

implementations on GPU.

For the remainder of the thesis, it is assumed that 𝛼 = 1 and β = 0 in equation (1) without loss

of generality. The simplest iterative solution to the problem consists of three loops as follows:

for (int i = 0; i < M; ++i)

 for (int j = 0; j < N; ++j)

 for (int k = 0; k < K; ++k)

 C[i][j] += A[i][k] * B[k][j];

For simplicity, in the remainder of the thesis it is assumed that M = N = K. Thus,

computational complexity of the previous loop-nest is O(N3) and the space requirement is

O(N2). However, for the theoretical compute complexity to hold, every matrix element

requires reusing O(N) times [10]. Therefore, the above implementation depends on holding

16

large working set of data in on-chip memory, which results in thrashing at higher values of

M, N, and K.

By applying loop inversion to the simple iterative solution, the k-th loop has been

permuted outside the i-th and j-th loops as follows:

for (int k = 0; k < K; ++k)

 for (int i = 0; i < M; ++i)

 for (int j = 0; j < N; ++j)

 C[i][j] += A[i][k] * B[k][j];

This form loads the k-th column of A and k-th row of B once and performs the outer

product on them and accumulates the result in C. After this step, the k-th column and k-th row

of A and B respectively are never used again. However, this implementation requires the

entire C matrix to be available in the on-chip memory and can again result in thrashing [10].

The memory requirement of this implementation can be reduced by partitioning C

matrix into M_tile by N_tile that are guaranteed to fit in on-chip memory. Now, the outer

product formulation can be applied on each tile. With this formulation, each row of A and

each column of B are fetched only once.

for (int m = 0; m < M; m += M_tile)

 for (int n = 0; n < N; n += N_tile)

 for (int k = 0; k < K; ++k)

 for (int i = 0; i < M_tile; ++i)

 for (int j = 0; j < N_tile; ++j)

 C[m + i][n + j] += A[m + i][k] * B[k][n + j];

Here the outer loops can be trivially parallelized [10]. This technique of stepping

through K dimension in memory optimized blocks while accumulating results on C partition

is called accumulating matrix product [10].

Blocking Strategies:

Further improvements can be achieved by exploiting the hierarchical memory

structure of GPUs. The matrices are decomposed into a hierarchy of thread block tiles, warp

tiles, and thread tiles. This technique enables fine tuning of matrix tile dimensions at various

levels of execution to better suit the available form of memory.

17

Device level:

 Blocking at this level is performed for thread blocks [1]. The matrices A, B, and C are

partitioned into Ms × Ks, Ks × Ns, and Ms × Ns blocks respectively. Each thread block is

responsible for computing an Ms × Ns block of matrix C. The product of each Ms × Ks block

of A with a corresponding Ks × Ns block of B is accumulated into the respective Ms × Ns

block of C. Hence, the partitions of the C matrix are referred to as C accumulators. Since the

C accumulators are updated numerous times during the computation, the C partitions are

lifted to the register memory to reduce access latencies. In order to improve data locality, the

partitions of A and B matrices are iteratively lifted to the shared memory where the data is

accessible to all the threads in a thread block.

a) Thread block level: Blocking at this level is performed for warps [1]. At this level, the

C accumulator is spatially partitioned across all the warps in a thread block. Each warp

iteratively loads along the K dimension an A fragment (a sub-column of A partition of height

Mw), and a B fragment (a sub row of B partition of width Nw) into registers. Then the outer

product of these fragments are performed to compute the accumulation for the iteration.

b) Warp Level: Blocking is performed for the threads at this level [1]. Each thread in the

warp computes an Mr × Nr partition of C accumulator by performing outer products of

elements in an Mr fragment of A with an Nr fragment of B in “strip mining” (cyclic) pattern.

Apart from register demand considerations, Mr and Nr are determined by the smallest

granularity of vector load which is 128 bits.

c) Thread level: Threads issue a sequence of independent Fused Multiply Add

instructions to the CUDA cores and computes accumulating matrix outer product of Mr

subcolumns of A with Nr subrow of B.

18

6Figure 3.1: Blocking strategies and data movement for CUTLASS multiplication kernel [1].

Software prefetching:

19

CUTLASS uses global and local data prefetching to hide data movement latencies at

various memory levels. The interleaving of prefetch instructions from global memory (lines

12 and 14 in Algorithm 3.1 below) and, from shared memory (lines 17 and 18 in Algorithm

3.1) with computations keep the SMs busy without having to wait for the next set of data to

be loaded in. A synchronization step (line 24 in Algorithm 3.1) is required to ensure that all

shared memory writes are completed before they get read in lines 12 and 14 in the next

iteration.

Figure 3.1 describes the partition and movement of data in a CUTLASS matrix multiplication

kernel.

01: Register: fragA[2][MR], fragB[2][NR]

02: Register: nextA[MR], nextB[NR]

03: NOP

04: Register: accumC[MR × NR]

05: Shared memory: tileA[KS × MS], tileB[KS × NS]

06: Load one MS × KS block of A into tileA[KS][MS]

07: Load one KS × NS block of B into tileB[KS][NS]

08: __syncthreads()

09: Load first subvector of tileA into fragA[0][MR]

10: Load first subvector of tileB into fragB[0][NR]

11: for block_k = 0 : KS : K then

12: prefetch one subcolumn of next MS × KS block of A into nextA

13: NOP

14: prefetch one subrow of next KS × NS block of B into nextB

15: NOP

16: for warp_k = 0 : 1 : KS then

17: prefetch next subcolumn of tileA into fragA[(warp_k + 1) % 2][MR]

18: prefetch next subrow of tileB into fragB[(warp_k + 1) % 2][NR]

19: for i = 0 : 1 : MR then

20: for j = 0 : 1 : NR then

21: accumC[i][j] += fragA[warp_k % 2][i] × fragB[warp_k % 2][j]

22: store nextA[MR] into tileA[KS][MS]

20

23: store nextB[NR] into tileB[KS][NS]

24: __syncthreads()

25: write back accumC to corresponding block of C

3Algorithm 3.1: CUTLASS GEMM algorithm (adapted from [1]).

3.2.2 Memory requirement of Strassen’s algorithm

By analyzing the arithmetic operations involved in Strassen’s algorithm, it can be

shown that a naive implementation of the algorithm would require extra workspace to store

the intermediate results P0 through P4, Q0 through Q4, and M0 through M6. Since each of these

intermediate results are
𝑁

2
 ×

𝑁

2
 in size, a naïve implementation would require an extra

workspace of 16 × (
𝑁

2
×
𝑁

2
) = 4𝑁2 .

On limited global memory devices like GPUs, this need for extra workspace limits the

maximum problem size that can be solved using Strassen’s as compared to GEMM

implementations. While global decomposition techniques can be used to improve the

maximum problem size, the inability of naïve Strassen implementations to match the

maximum problem size for GEMM would result in more steps after global decomposition,

which can offset the improvements from computation complexity reduction of Strassen.

The increase in data movement on account of more steps in Strassen’s algorithm

results in higher mops (memory operations per second) to flops (floating point operations per

second) ratio as compared to traditional matrix multiplication algorithms. Hence, a naive

implementation of Strassen’s algorithm would also be more susceptible to the effect of

memory latency on execution time. This limits the possibility of using techniques like unified

memory [11], offered by CUDA, to offset the limited global memory in GPUs.

The higher mops to flops ratio of Strassen’s algorithm necessitates the need to use

registers and shared memory to store frequently used values to reduce the effects of larger

latency involved in load and store instructions to and from global memory [1]. Again, a non-

memory optimized implementation of the Strassen’s kernel with high register or shared

memory requirement would stifle the concurrency and thread occupancy [47] of the kernel.

3.2.3 Recursive Strassen’s algorithm

21

While 1-level Strassen (i.e., with no recursion applied) already reduces the number of

submatrix multiplication from 8 to 7 as compared to the classical algorithm, recursive

application of the algorithm is required to achieve the theoretical complexity of 𝑂(𝑁2.81) [5].

Strassen's algorithm is recursively applied by further decomposing each of the 7-submatrix

multiplication and reapplying Strassen's algorithm to these operations. Although a multi-level

Strassen reduces computational complexity, it has been observed that the extra workspace

requirement gets amplified as the levels increase [1], [12]. A naive non-recursive Strassen's

algorithm has an extra memory requirement of 4𝑁2. But when the algorithm is applied

recursively to create a 2-level Strassen, the workspace requirement increases to 7𝑁2.

 To effectively harness the reduction in computational complexity of multi-level

Strassen's algorithm, the extra workspace requirement at all levels of the algorithm would

have to be hidden efficiently.

3.2.4 Previous works implementing Strassen’s algorithm.

 A modified version of GPU8 algorithm [13] is used in [12] to implement a fast

Strassen’s multiplication algorithm. The GPU8 algorithm is adapted for 1-level Strassen, 1-

level Winograd, multi-level Strassen, and multi-level Winograd. To our knowledge, this is

the first attempt at implementing a Strassen based GEMM on GPUs. It uses temporary

storage strategy formulated by Douglas et al [14] for the Winograd variant, which lowers the

workspace requirement to
2

3
𝑁2. For the Strassen’s implementation, it formulates an ordering

which also lowers the workspace requirement to
2

3
𝑁2. For the multi-level algorithms, it uses

strategies discussed by Huss-Lederman et al [15], [16] which use two temporary matrices at

each level of recursion.

 Huang et al. [1] implement the Strassen’s algorithm on GPUs by following

recommendations from CUTLASS for efficient data movement within the memory hierarchy

of NVIDIA GPUs. It adapts the algorithm formulated by Lai et al [17] to hide memory

requirements for intermediate results. It designs a new kernel by modifying the CUTLASS

GEMM kernels, where additions of A and B submatrices are performed in the kernel during

the packing phase. This eliminates the need for a temporary workspace to store this

information, because the results are directly loaded to the registers and shared memory. It

also develops a performance model for choosing the appropriate block sizes and predicting

performance for various blocking configurations. While the global memory requirements are

22

eliminated, the kernel’s register requirements are higher as compared to the CUTLASS

GEMM. The need for registers also increases with each level for the multi-level Strassen’s

implementation. This is in contrast to our work where the need for registers is a constant

irrespective of the level of recursion.

 The work by Boyer et al. [18] creates schedules for Strassen and Winograd

variants of matrix multiplication, where workspace requirements are optimized for various

constraints of execution. The authors are able to create a schedule for 𝐶 = 𝐴 × 𝐵 with no

extra memory requirements. They are also able to create schedules for equation (1), which

can drop the additional memory requirement from N2 to
2

3
𝑁2. We did not use the schedules

from [18] because the variant, which does not consume any extra workspace, cannot be

generalized to the BLAS standard for matrix multiplication denoted by equation (1) since it

uses the output C matrix to store some of the temporary results. Also, this scheme will not be

able to support multi-level Strassen’s algorithm.

P. Lai et al. [43] implemented a Strassen-Winograd based GEMM on CUDA which

used Strassen-Winograd algorithm to divide the matrix. Once a predicted cut-off dimension is

crossed, CUDA implementations of GEMM like cublasSgemm or cublasDgemm was used to

perform the actual computations. Unlike MSMES, this implementation did not address the

additional workspace requirements of Strassen-Winograd algorithm.

3.3 Multi-Stage Memory Efficient Strassen

This section describes our work, MSMES, that eliminates the additional workspace

requirement of Strassen’s algorithm on GPUs without compromising parallelism. The extra

workspace requirement of Strassen’s algorithm arises from the need to store intermediate

results. With a naïve implementation of an addition kernel followed by a multiplication

kernel, the intermediate results P0 through P4, and Q0 through Q4 (refer to Table 2.1) would

require temporary workspace. Similarly, when a naïve multiplication kernel followed by

addition kernel is used, the intermediate results M0 through M6 would need additional

workspace. While it is possible to reduce the additional workspace requirement by tackling

each of the 25 steps (12 additions + 6 subtractions + 7 multiplications) in a serial fashion, this

technique would hinder the ability to efficiently parallelize the algorithm.

23

The idea behind a memory efficient Strassen’s algorithm on GPUs was inspired by the

Strassen’s kernel defined in [1] and from an observation on the concurrent submatrix

utilization of each multiplication operation in Strassen’s algorithm.

3.3.1 Concurrent submatrix utilization of Strassen’s algorithm

Consider the following rearrangement of the steps in Strassen’s algorithm:

𝑀0 = (𝐴0 + 𝐴3) × (𝐵0 + 𝐵3); 𝐶0 += 𝑀0; 𝐶3 += 𝑀0;

𝑀1 = (𝐴2 + 𝐴3) × 𝐵0; 𝐶2 += 𝑀1; 𝐶3−= 𝑀1;

𝑀2 = 𝐴0 × (𝐵1 − 𝐵3); 𝐶1 += 𝑀2; 𝐶3 += 𝑀2;

𝑀3 = 𝐴3 × (𝐵2 − 𝐵0); 𝐶0 += 𝑀3; 𝐶2 += 𝑀3;

𝑀4 = (𝐴0 + 𝐴1) × 𝐵3; 𝐶1 += 𝑀4; 𝐶0−= 𝑀4;

𝑀5 = (𝐴2 − 𝐴0) × (𝐵0 + 𝐵1); 𝐶3 += 𝑀5

𝑀6 = (𝐴1 − 𝐴3) × (𝐵2 + 𝐵3); 𝐶0 += 𝑀6;

Each of these steps compute one of the submatrix multiplications involved in

Strassen’s algorithm. It can be observed that the steps access at most 2 submatrices each of A

and B concurrently. These results are updated to at most 2 submatrices of C concurrently.

We design an adder kernel where, instead of consuming the extra workspace needed

to store:

{
𝐴𝑖 ± 𝐴𝑗
𝐵𝑘 ± 𝐵𝑙

} 𝑖, 𝑗, 𝑘, 𝑙 𝜖 {0, 3}

the results are stored in 𝐴𝑖 and 𝐵𝑘 respectively. If 𝐴𝑗 and 𝐵𝑙 are unaltered, the original values

of 𝐴𝑖 and 𝐵𝑘 can be recovered by a simple matrix subtraction (or addition) of order O(N2) and

can then be used for the next submatrix multiplication. This technique would eliminate the

extra workspace needed to store P0 through P4, and Q0 through Q4.

3.3.2 Strassen multiplication kernel

24

We extend the CUTLASS GEMM kernel from [10] to accommodate the new Strassen

primitive:

𝑀𝑖 = 𝐴𝑗 × 𝐵𝑘; 𝐶𝑙 ±= 𝑀𝑖; 𝐶𝑚 ±= 𝑀𝑖: 𝑖, 𝑗, 𝑘, 𝑙, 𝑚 𝜖 {0, 6}

From Algorithm 3.1, it can be observed that the extra workspace needed to store M0 through

M6 has been eliminated using C accumulator registers in the kernel (lines 04 and 21 in

algorithm 3.1). The C accumulator was already used in the original CUTLASS GEMM

kernel. Hence, our modified kernel does not use any extra registers to eliminate the additional

workspace demand of Strassen’s algorithm.

3.3.3 Rescheduling the stages to increase concurrency

From the adjustments discussed in subsections 3.3.1 and 3.3.2, although the extra

workspace requirement is eliminated, it is achieved at the cost of concurrency of performing

the submatrix multiplications. To identify an ordering of the steps to improve the concurrency

of the algorithm, the following constraints are considered.

• A submatrix can be overwritten with the result of an addition or subtraction it was

involved in as long as there is a way to recover the original values of the submatrix in

the next stage.

• Overwrite submatrices in such a way that the recovery is simple and can be ideally

done in a single stage.

• No C submatrices will be used for overwrites since equation (1) necessitates the

retention of old values in the C matrix.

With these considerations, the following groupings are identified.

{

𝑀1 = (𝐴2 + 𝐴3) × 𝐵0; 𝐶2 += 𝑀1; 𝐶3−= 𝑀1;

𝑀2 = 𝐴0 × (𝐵1 − 𝐵3); 𝐶1 += 𝑀2; 𝐶3 += 𝑀2;

𝑀3 = 𝐴3 × (𝐵2 − 𝐵0); 𝐶0 += 𝑀3; 𝐶2 += 𝑀3;
𝑀4 = (𝐴0 + 𝐴1) × 𝐵3; 𝐶1 += 𝑀4; 𝐶0−= 𝑀4;}

→ 𝐺𝑟𝑜𝑢𝑝 1

25

{

𝑀0 = (𝐴0 + 𝐴3) × (𝐵0 + 𝐵3); 𝐶0 += 𝑀0; 𝐶3 += 𝑀0;

𝑀5 = (𝐴2 − 𝐴0) × (𝐵0 + 𝐵1); 𝐶3 += 𝑀5

𝑀6 = (𝐴1 − 𝐴3) × (𝐵2 + 𝐵3); 𝐶0 += 𝑀6;

} → 𝐺𝑟𝑜𝑢𝑝 2

In the previous groupings, 2 submatrices of A and B each are overwritten while their

respective partners remain intact. This would allow a maximum of 4 submatrix multiplication

steps to be executed concurrently. The following outlines the stages involved in this grouping

strategy:

Stage 1 (addition/subtraction stage):

𝐴2 = 𝐴2 + 𝐴3

𝐵1 = 𝐵1 − 𝐵3

𝐵2 = 𝐵2 − 𝐵0

𝐴1 = 𝐴0 + 𝐴1

Stage 2 (Multiplication stage):

𝑀1 = 𝐴2 × 𝐵0; 𝐶2 += 𝑀1; 𝐶3 −= 𝑀1;

𝑀2 = 𝐴0 × 𝐵1; 𝐶1 += 𝑀2; 𝐶3+= 𝑀2;

𝑀3 = 𝐴3 × 𝐵2; 𝐶0 += 𝑀3; 𝐶2+= 𝑀3;

𝑀4 = 𝐴1 × 𝐵3; 𝐶1 += 𝑀4; 𝐶0 −= 𝑀4;

Stage 3 (addition stage):

𝐴0 = 𝐴0 + 𝐴3

𝐵0 = 𝐵0 + 𝐵3

Stage 4 (addition/subtraction stage):

𝐴2 = 𝐴2 − 𝐴0 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 (𝐴2 + 𝐴3 − 𝐴3 − 𝐴0)

𝐵0 = 𝐵1 + 𝐵0 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 (𝐵1 − 𝐵3 + 𝐵0 + 𝐵3)

𝐴1 = 𝐴1 − 𝐴0 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 (𝐴1 + 𝐴0 − 𝐴0 − 𝐴3)

𝐵2 = 𝐵2 + 𝐵0 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 (𝐵2 − 𝐵0 + 𝐵0 + 𝐵3)

Stage 5 (Multiplication stage):

26

𝑀0 = 𝐴0 × 𝐵0; 𝐶0 += 𝑀0; 𝐶3+= 𝑀0;

𝑀5 = 𝐴2 × 𝐵1; 𝐶3 += 𝑀5;

𝑀6 = 𝐴1 × 𝐵2; 𝐶0 += 𝑀6;

 All steps in a stage can be executed concurrently. During the multiplication stages, where

multiple threads might be updating the same C submatrix values, atomicAdd function [9] is

used to avoid race conditions.

 Though stage 3 in this scheduling, with only 2 concurrent steps, might seem like a

bottleneck, the embarrassingly parallel nature of matrix addition allows the stage to be

completed with the same thread density and without adding any extra delays to the workflow.

This observation is confirmed in subsection 3.5.1.

3.3.4 Reconstruction of the Input Matrices

In a GPU based matrix multiplication algorithm, the input matrices A and B are copied

to the global memory of the GPU and are duplicates of the input matrices. Hence, in most

scenarios, recovery of the input matrix can be omitted for a very small improvement in

runtime. But, for the sake of completeness, the following two stages have been designed to

recover the input matrices. While recovery is optional for non-recursive Strassen’s, most

workflows utilizing matrices would apply multiple operations on the input matrices. Hence,

all the experiments conducted are performed with the recovery stages.

Stage 6 (addition/subtraction: recuperation stage 1):

𝐴0 = 𝐴0 − 𝐴3 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 (𝐴0 + 𝐴3 − 𝐴3)

𝐵0 = 𝐵0 − 𝐵3 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 (𝐵0 + 𝐵3 − 𝐵3)

Stage 7 (addition/subtraction: Recuperation stage 2):

𝐴1 = 𝐴1 + 𝐴3 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 (𝐴1 − 𝐴3 + 𝐴3)

𝐵1 = 𝐵1 − 𝐵0 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 (𝐵1 + 𝐵0 − 𝐵0)

𝐴0 = 𝐴0 − 𝐴3 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 (𝐴0 + 𝐴3 − 𝐴3)

𝐵0 = 𝐵0 − 𝐵3 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 (𝐵0 + 𝐵3 − 𝐵3)

3.3.5 Recursive Strassen (Multi-level Strassen)

In a multi-level Strassen’s algorithm, each of the 7-submatrix multiplication is further

decomposed by applying Strassen’s algorithm on them. In MSMES, using the modified

27

multiplication kernel and by using input matrices to store intermediate results, no extra global

memory, shared memory, or registers are consumed irrespective of the number of levels of

recursion.

The problem is recursively decomposed by applying Strassen’s algorithm until the

submatrix dimension reaches the cutoff length, at which point no more recursion is applied

and the matrices are multiplied directly using the modified Strassen’s multiplication kernel.

In recursive Strassen, it is imperative to use the recovery stages to revert the changes made to

the input matrices so that the subsequent steps in the prior level of recursion will not be

affected. Since all the additional operations performed at each level of recursion is O(N2), the

theoretical time complexity of Strassen’s algorithm remains unchanged.

3.4 Implementation and experiments

All the kernels of MSMES are implemented in CUDA, designed for NVIDIA GPUs.

The kernels closely replicate the memory management and data transfer strategies used in

CUTLASS GEMM to utilize all levels of GPU memory hierarchy. This allows the kernels to

efficiently hide memory transfer latencies.

The kernels are designed in such a way that each stage of the algorithm can be

completed by invoking a single device kernel. The stages in the algorithm belong to one of

two fundamental types discussed in the following. A stage is either an addition/subtraction

stage or a multiplication stage. Therefore, two kernels are developed which can be configured

to fit the steps in any of the stages.

3.4.1 Addition/subtraction kernel

Through analysis of the stages of the proposed reschedule in the previous section, it

can be observed that there are 2 types of addition/subtraction stages as follows:

1. Type 3.4.1.1: stages 1, 4, and 7 where 4 submatrix addition/subtraction operations are

performed.

2. Type 3.4.1.2: stages 3 and 6 where 2 submatrix addition/subtraction operations are

performed.

28

The kernel splits the threads into either 4 groups or 2 groups for stages of type 3.4.1.1

and 3.4.1.2, respectively. Each thread group is assigned the pointers corresponding to the

submatrices in their respective step in the stage.

The addition kernel performs one level of prefetching of Ms × Ks chunk to the shared

memory to interleave computations with load instructions from global memory.

3.4.2 Multiplication kernel

There are two multiplication stages in the proposed reschedule as follows:

1. Type 3.4.2.1: stage 2 which consists of 4 submatrix multiplications with each result

getting updated to 2 submatrices of C.

2. Type 3.4.2.2: stage 5 which consists of 3 submatrix multiplications where one of the

results is added to 2 submatrices of C and the other 2 results are added to one submatrix

each of C.

The kernel can be configured to split the threads into 4 groups for type 3.4.2.1 stage

and into 3 groups for type 3.4.2.2 stage. Each thread group is assigned the pointer to the C

submatrix to which they are intended to update the results of multiplication.

The kernel performs prefetches from global memory to shared memory and from

shared memory to registers to hide memory latencies and overlap load operations with

computations.

3.4.3 Optimizing the kernel launch parameters

As discussed in section 2.5, every kernel launched in CUDA requires the block

dimensions and grid dimensions to be supplied in dim3 data type. These parameters define

the launch configuration of the kernel. [1] has conducted experiments to determine the ideal

launch configurations for their implementations.

During testing it was realized that the recommendations from [1] are unbefitting for

MSMES. By profiling the kernels using nvprof [48], it was determined that the usage of

launch configurations recommended by [1] resulted in higher register usage by each thread

performing MSMES. This higher register consumption exhausted the available register per

SM (Streaming Multiprocessor) and limited the number of threads that could run

concurrently thereby reducing the thread concurrency of MSMES.

29

NVIDIA’s CUDA occupancy calculator [39] was used to fine tune the launch

parameters as well as the values of Mr, Nr, and Ks mentioned in section 3.2.1. By setting Mr

= Nr = Ks = 8 and by setting count of threads in the block to 128, the register consumption

was lowered, and the warp concurrency results shown in figures 3.2, 3.3 and 3.4 were

obtained. The results shown are for an NVIDIA GPU with compute capability 7.5 using

CUDA version 11.1 which has a shared memory size of 65536.

Future adaptations to a GPU with a different compute capability or with a different

CUDA version should go through similar analysis to determine the configurations as the

register file size, shared memory size and max warp occupancy of the multiprocessor can

vary from GPU to GPU.

7Figure 3.2: Variation of warp occupancy with threads per block.

My Block Size, 128

0

8

16

24

32

0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

M
u

lt
ip

ro
ce

ss
o

r
W

ar
p

 O
cc

u
p

an
cy

(#
 w

ar
p

s)

Threads Per Block

30

8Figure 3.3: Variation of warp occupancy with registers per thread.

9Figure 3.4: Variation of warp occupancy with shared memory per block.

My Register Count, 36

0

8

16

24

32

0 8 1
6

2
4

3
2

4
0

4
8

5
6

6
4

7
2

8
0

8
8

9
6

1
0

4

1
1

2

1
2

0

1
2

8

1
3

6

1
4

4

1
5

2

1
6

0

1
6

8

1
7

6

1
8

4

1
9

2

2
0

0

2
0

8

2
1

6

2
2

4

2
3

2

2
4

0

2
4

8

2
5

6
M

u
lt

ip
ro

ce
ss

o
r

W
ar

p
 O

cc
u

p
an

cy
(#

 w
ar

p
s)

Registers Per Thread

Shared Memory, 2048

0

8

16

24

32
0 4

0
9

6

8
1

9
2

1
2

2
8

8

1
6

3
8

4

2
0

4
8

0

2
4

5
7

6

2
8

6
7

2

3
2

7
6

8

3
6

8
6

4

4
0

9
6

0

4
5

0
5

6

4
9

1
5

2

5
3

2
4

8

5
7

3
4

4

6
1

4
4

0

6
5

5
3

6
M

u
lt

ip
ro

ce
ss

o
r

W
ar

p
 O

cc
u

p
an

cy
(#

w
ar

p
s)

Shared Memory Per Block

65536

31

3.4.4 Experiments

Experiments were performed with the following configurations:

Parameter Configuration (a) Configuration (b)

CPU Intel Xeon Gold 6140 × 2 Intel Core i5 9400

GPU Tesla V100 × 11 GTX 1660ti

RAM 383GB 16GB

OS Scientific Linux 7.9

(Nitrogen)

Windows 10

CUDA version 11.0 11.1

C compiler

version

GCC 4.8.5 Microsoft C/C++

19.27.29112

4Table 3.1: Test Configurations.

Both cublasDgemm and MSMES were provided the same double precision input

matrices generated using curandGenerateUniformDouble [49]. Execution times were

measured using CUDA events which has a resolution of approximately half a microsecond

[9]. The effective throughput and memory consumption are considered as the primary metric

to evaluate performance.

Effective throughput computed using equation (3) gives actual throughput for

classical cubic matrix multiplication algorithms which performs 2𝑁3floating point

operations. For sub-cubic algorithms like Strassen’s algorithm, equation (3) gives

performance relative to classical algorithms.

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑖𝑛 𝑇𝐹𝐿𝑂𝑃𝑆 =
2×𝑁3

𝑡𝑖𝑚𝑒 𝑖𝑛 𝑠
 × 10−12 (3)

Efficacy of global memory usage was evaluated by running the kernels with

successively larger matrices until the kernel ran out of space. Three experiments were

conducted to evaluate the performance of MSMES:

1) The performance of MSMES in double precision multiplication was compared against the

cublasDgemm kernel [45]. On configuration (b), MSMES outperformed the

32

cublasDgemm kernel for matrices of size as low as 896 (N=896 for an N × N matrix)

(Figure 3.5). Beyond the crossover point, MSMES outperformed cublasDgemm kernel by

7.73% on the average. On configuration (a) beyond matrix of size 1152 (N=1152 for an N

× N matrix), MSMES outperformed cublasDgemm kernel by 7.12% on the average

(Figure 3.6).

2) MSMES has memory consumption comparable to cublasDgemm. This is an expected

outcome because the multiplication kernel used in our implementation is a modified

version of the CUTLASS GEMM kernel. On configuration (a) with 6GB of global

memory, MSMES computed double precision matrix multiplication for square matrices

as large as 14976 (N=14976 for an N × N matrix), whereas cublasDgemm failed to

initialize beyond square matrix dimension of 14720 (N=14720 for an N × N matrix). On

configuration (b) with 16GB of global memory, MSMES computed double precision

square matrix multiplication for matrices of dimension as large as 24576, whereas

cublasDgemm failed to initialize beyond 24320.

3) N-level MSMES outperformed 1-level MSMES and cublasDgemm over the test range

with no extra memory consumption. On configuration (a), 2-level MSMES yielded a

maximum speedup of 1.125 against 1-level (i.e. non-recursive) MSMES at N = 2048. 3-

level MSMES yielded a maximum speedup of 1.21 against 1-level MSMES at N = 16384

(Figures 3.7 and 3.8).

4) When compared to cublasDgemm, 2-level MSMES yielded a maximum speedup of 1.23

at N = 7168 and 3-level MSMES yielded a maximum speedup of 1.25 at N = 7168

(Figures 3.7 and 3.8).

While MSMES can perform deeper recursions for multi-level Strassen’s algorithm

with no extra memory demands, experiments were limited to 3-levels due to the known

numerical instability of Strassen’s algorithm at higher levels of recursion.

33

5Figure 3.5. MSMES v/s CUBLAS double precision performance in configuration (b)

6Figure 3.6. MSMES v/s CUBLAS double precision performance in configuration (a)

0

50

100

150

200

250

1
2

8

6
4

0

1
1

5
2

1
6

6
4

2
1

7
6

2
6

8
8

3
2

0
0

3
7

1
2

4
2

2
4

4
7

3
6

5
2

4
8

5
7

6
0

6
2

7
2

6
7

8
4

7
2

9
6

7
8

0
8

8
3

2
0

8
8

3
2

9
3

4
4

9
8

5
6

1
0

3
6

8

1
0

8
8

0

1
1

3
9

2

1
1

9
0

4

1
2

4
1

6

1
2

9
2

8

1
3

4
4

0

1
3

9
5

2

1
4

4
6

4

C
o

m
p

u
te

 p
er

fo
rm

an
ce

,
G

F
L

O
P

S

Dimension of matrix, N

MSMES Cublas

0

1

2

3

4

5

6

7

8

2
5

6

6
4

0

1
0

2
4

1
4

0
8

1
7

9
2

2
1

7
6

2
5

6
0

2
9

4
4

3
3

2
8

3
7

1
2

4
0

9
6

4
4

8
0

4
8

6
4

5
2

4
8

5
6

3
2

6
0

1
6

6
4

0
0

6
7

8
4

7
1

6
8

7
5

5
2

7
9

3
6

8
3

2
0

8
7

0
4

9
0

8
8

9
4

7
2

9
8

5
6

1
0

2
4

0

1
0

6
2

4

1
1

0
0

8

1
1

3
9

2

1
1

7
7

6

1
2

1
6

0

1
2

5
4

4

C
o

m
p

u
te

 P
er

fo
rm

an
ce

,
T

F
L

O
P

S

Matrix Dimension, N

MSMES Cublas

34

7Figure 3.7. Speedup of Level 2 MSMES against Level 1 MSMES v/s Level 2 MSMES

against CUBLAS in configuration (a)

8Figure 3.8. Speedup of Level 3 MSMES to Level 1 MSMES v/s Level 3 MSMES to CUBLAS in

configuration (a)

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1
0
2

4

2
0
4

8

3
0
7

2

4
0
9

6

5
1
2

0

6
1
4

4

7
1
6

8

8
1
9

2

9
2
1

6

1
0
2

4
0

1
1
2

6
4

1
2
2

8
8

1
3
3

1
2

1
6
3

8
4

S
p

ee
d

u
p

Matrix Dimension, N

Level 2 vs level 1 MSMES speedup Level 2 vs Cublas speedup

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1024 2048 3072 4096 5120 6144 7168 8192 9216 10240 11264 12288 13312 16384

S
p

ee
d

u
p

Matrix Dimension, N

Level 3 vs level 1 MSMES speedup Level 3 vs Cublas speedup

35

3.5 Performance Analysis

In this section, the performance of MSMES is analyzed by inspecting the contribution

of each stage to the total execution time. Such an analysis would aid in the discovery of

bottlenecks, if any, and would also allow to quantify the impact of performing recovery

stages 6 and 7.

Later in the section, a performance model for MSMES is presented by analyzing the

computation and communication involved in the implementation.

3.5.1 Stage-wise breakdown of exectuion time

The time consumed by each kernel launch associated with a stage was measured using

CUDA events. The results obtained from CUDA events were further validated by profiling

the kernel with nvprof [49] using the same launch configurations. The timing data is

illustrated in Table 3.2.

9Table 3.2: Stagewise contribution to the total execution time.

It was observed from the data that the addition/subtraction kernels of type 3.4.1.1

(refer to section 3.4) are each responsible for roughly 0.5% (average contribution from all the

N

Contributions as percentage of total execution time

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7

256 0.79 54.38 0.39 0.78 42.48 0.4 0.78

1792 0.72 54.9 0.38 0.74 42.14 0.38 0.74

3328 0.64 55.31 0.32 0.62 42.18 0.31 0.62

4864 0.52 56.2 0.29 0.55 41.62 0.3 0.52

6400 0.41 56.68 0.21 0.41 41.67 0.21 0.41

7936 0.39 56.81 0.2 0.39 41.63 0.2 0.38

9472 0.36 57.14 0.19 0.36 41.41 0.18 0.36

11008 0.33 57.33 0.18 0.34 41.29 0.19 0.34

12544 0.33 57.8 0.18 0.33 40.83 0.18 0.35

Average 0.5 56.3 0.26 0.5 41.7 0.26 0.5

36

rows in table 3.2) of the total execution time. Addition/subtraction kernels of type 3.4.1.2

(refer to section 3.4) are each responsible for approximately 0.26% (average contribution

from all the rows in table 3.2) of the total execution time. This difference in contributions

between 3.4.1.1 and 3.4.1.2 of approximately 48% arises because 3.4.1.1 performs twice as

many computations as 3.4.1.2 per kernel launch.

Multiplication kernel of type 3.4.2.1 and 3.4.2.2 (refer to section 3.4) contributes

56.3% and 41.7% (average contribution from table 3.2) respectively to the total execution

time. The difference in contributions between 3.4.2.1 and 3.4.2.2 of roughly 30% arises

because 3.4.2.2 only performs
3

4
th of the number of computations performed by 3.4.2.1 per

kernel launch.

It was also observed from the data that the contributions of the addition/subtraction

kernels decrease with the increase in problem size. This trend was expected since each of the

addition/subtraction kernels has a time complexity of O(n2), where n is the dimension of the n

× n submatrix under consideration at the current level of recursion. In contrast, the

multiplication kernels have time complexity of O(n3).

It can be calculated from the average contributions of stages 6 and 7 (across all the

rows of table 3.2) to the total execution time that the recovery of the input matrices adds to

approximately 0.76% to the total execution time, which is in fact quite negligible.

3.5.2 Performance Modeling

MSMES has three time-consuming operations: performing arithmetic operations on

the matrix elements (addition, subtraction, or multiplication), loading matrix elements from

global memory to shared memory, and loading matrix elements from shared memory to

registers. The implementation presented here overlaps memory operations with computations.

Therefore, the lower bound of total execution time, T, can be represented as:

𝑇 ≥ 𝑚𝑎𝑥(𝑇𝑓𝑙𝑜𝑝, 𝑇𝑔𝑚𝑜𝑝, 𝑇𝑠𝑚𝑜𝑝)

37

Here, 𝑇𝑓𝑙𝑜𝑝 is the time taken for performing the arithmetic operations. 𝑇𝑔𝑚𝑜𝑝 is the

time taken for global memory loads and stores, and 𝑇𝑠𝑚𝑜𝑝 is the time taken to perform shared

memory operations.

The following assumptions are made in the prediction model.

1. Peak FP64 performance of the GPU, 𝜏𝑓𝑙𝑜𝑝𝑠, is assumed to be available throughout the

execution, and this performance is uniformly distributed across all the active threads.

2. Peak global memory bandwidth, 𝜏𝑔𝑚𝑜𝑝𝑠, is available throughout the execution and is

uniformly distributed among the active threads.

3. Peak shared memory bandwidth, 𝜏𝑠𝑚𝑜𝑝𝑠, is available throughout the executions and is

uniformly distributed among the active threads.

In real-life scenario, where multiple processes might be requesting GPU resources at

the same time, these assumptions may not hold. Hence, the model provided here gives the

theoretical best-case performance of MSMES.

The MSMES implementation with recovery stages activated has three kernel

invocations of type 3.4.1.1 (stages 1, 4 and 7), two kernel invocations of type 3.4.1.2 (stages

3 and 6), one kernel invocation of type 3.4.2.1 (stage 2), and one kernel invocation of type

3.4.2.2 (stage 5). Therefore, the total values being computed in the following sections are

aggregates of the contributions of the seven kernels we just outlined.

1) Arithmetic operations time

 Kernels of type 3.4.1.1 perform four matrix addition operations on sub matrices

of dimension
𝑁

2
×
𝑁

2
 and hence all together perform 𝑁2 computations. Kernels of type 3.4.1.2

perform two matrix addition operations on sub matrices of dimension
𝑁

2
×
𝑁

2
 and hence all

together perform
𝑁2

2
 computations. Kernel of type 3.4.2.1 performs four matrix multiplication

operations followed by eight matrix additions on sub matrices of dimension
𝑁

2
×
𝑁

2
 and hence

all together perform (
8𝑁3

8
 + 2𝑁2) computations. Kernel of type 3.4.2.2 performs three

matrix multiplication operations followed by four matrix additions on sub matrices of

dimension
𝑁

2
×
𝑁

2
 and hence all together perform (

6𝑁3

8
 + 𝑁2) computations.

38

Therefore, time for total arithmetic operations can be calculated as (3 × contribution

of 3.4.1.1 + 2 × contribution of 3.4.1.2 + contribution of 3.4.2.1 + contribution of 3.4.2.2):

𝑇𝑓𝑙𝑜𝑝 =

7𝑁3

4 + 7𝑁2

𝜏𝑓𝑙𝑜𝑝𝑠

2) Global memory operations time

 Kernels of type 3.4.1.1 access eight submatrices of dimension
𝑁

2
×
𝑁

2
 and hence

perform (2𝑁2) global memory operations. Similarly, kernels of type 3.4.2.1 access four sub

matrices of dimension
𝑁

2
×
𝑁

2
 and hence perform (𝑁2) global memory operations.

For computing global memory operations of kernels of type 3.4.2, we calculate the

memory operations of an individual thread block. This value is then multiplied by the total

number of thread-blocks per kernel launch to compute the total global memory operations

performed by the kernel launch. Given operand matrices of size 𝑁 × 𝑁 (a kernel is provided

the entire operand matrix whereas the individual stage being addressed in the kernel uses only

sub matrices of dimension
𝑁

2
×
𝑁

2
), kernel of type 3.4.2.1 uses

𝑁2

𝑁𝑆
2 thread blocks per launch,

where each thread block computes an (𝑁𝑆 × 𝑁𝑆) tile of the output matrix. With the reduced

computations in kernel 3.4.2.2, we have
3𝑁2

4𝑁𝑆
2 thread-blocks per launch of kernel. In kernel type

3.4.2.1, each thread block accesses 𝑁𝑆 ×
𝑁

2
 blocks of each of the input matrices for matrix

multiplication and later accesses two tiles of size 𝑁𝑆 × 𝑁𝑆 to perform matrix

addition/subtraction to update the results. Therefore, 3.4.2.1 performs
𝑁2

𝑁𝑆
2 × (2𝑁𝑆

2 + 𝑁𝑆 × 𝑁)

global memory operations. In kernel type 3.4.2.2, each thread block accesses 𝑁𝑆 ×
𝑁

2
 blocks

of each of the input matrices for matrix multiplication and later a third of the thread-blocks

access two tiles of size 𝑁𝑆 × 𝑁𝑆 to perform matrix addition/subtraction to update the results;

the remaining thread-blocks access one tile of 𝑁𝑆 ×𝑁𝑆 to perform updates. Therefore, 3.4.2.2

performs
3𝑁2

4𝑁𝑆
2 × (𝑁𝑆 × 𝑁) +

𝑁2

4𝑁𝑆
2 × (2𝑁𝑆

2) +
𝑁2

2𝑁𝑆
2 × (𝑁𝑆

2) global memory operations.

Summing up, total time for global memory operations can be calculated as:

39

𝑇𝑔𝑚𝑜𝑝 =
11𝑁2 +

7𝑁3

4𝑁𝑆
𝜏𝑔𝑚𝑜𝑝𝑠

3) Shared memory operations time

Kernels of type 3.4.1.1 and 3.4.1.2 perform (2𝑁2) and (𝑁2) shared memory

operations, respectively. Given thread block dimensions 𝑡𝑥 and 𝑡𝑦, kernel of type 3.4.2.1 has

𝑁2× (𝑡𝑥 × 𝑡𝑦)

𝑁𝑆
2 threads. Kernel of type 3.4.2.2 has

3𝑁2(𝑡𝑥 × 𝑡𝑦)

4𝑁𝑆
2 threads. The shared memory

operation of a kernel is calculated by multiplying the shared memory operation of one of its

threads with the thread count of the kernel. In kernel 3.4.2.1, all the threads access 𝑁𝑅 × 𝑁

row of A and 𝑁𝑅 × 𝑁 column of B. The values computed are then written back to two

𝑁𝑅 × 𝑁𝑅 tiles of C. In kernel 3.4.2.2, all the threads access 𝑁𝑅 ×𝑁 row of A and 𝑁𝑅 × 𝑁

column of B. Later a third of the threads in 3.4.2.2 accesses two 𝑁𝑅 × 𝑁𝑅 tiles of C to update

the results to. The remaining threads in 3.4.2.2 accesses only one 𝑁𝑅 × 𝑁𝑅 tile of C to update

the results to. Therefore, Kernels of type 3.4.2.1 and 3.4.2.2 perform
𝑁2× (𝑡𝑥 × 𝑡𝑦)

𝑁𝑆
2 × (2𝑁𝑅

2 +

𝑁𝑅 × 𝑁) and
3𝑁2(𝑡𝑥 × 𝑡𝑦)

4𝑁𝑆
2 × (𝑁𝑅 × 𝑁) +

𝑁2(𝑡𝑥 × 𝑡𝑦)

4𝑁𝑆
2 × (2𝑁𝑅

2) +
𝑁2

2𝑁𝑆
2 × (𝑁𝑅

2) shared memory

operations. Hence, time for shared memory operations can be calculated as:

𝑇𝑠𝑚𝑜𝑝 =

11𝑁2 +
7𝑁3(𝑡𝑥 × 𝑡𝑦)

4𝑁𝑆
2 × 𝑁𝑅

𝜏𝑠𝑚𝑜𝑝𝑠

3.6 Conclusion

The chapter presents an implementation of Strassen's matrix multiplication algorithm

in CUDA, titled Multi-Stage Memory Efficient Strassen (MSMES), that eliminates additional

workspace requirements by reusing and recovering input matrices. MSMES organizes the

steps involved in Strassen's algorithm into five stages where multiple steps in the same stage

can be executed in parallel. Two additional stages are also discussed in the chapter that

allows the recovery of input matrices. MSMES has no additional memory requirements,

irrespective of the depth of recursions of Strassen's algorithm. Tests were performed to

measure compute performance and memory utilization on two hardware configurations. On

40

configuration (a) which consists of a Tesla V100 GPU, MSMES on average outperformed the

CUDA library matrix multiplication function cublasDgemm beyond matrices of dimension

1152. On configuration (b) which consists of a GTX 1660ti, MSMES outperformed

cublasDgemm for matrices of dimension as small as 896. On either configuration, MSMES

was able to accommodate larger matrices than cublasDgemm, thereby proving the lower

memory requirements of MSMES. The ability of MSMES to perform multi-level Strassen

with no additional global, shared, and register memory demands make it suitable for

applications where numerical stability is not essential.

41

Chapter 4 Multi-GPU Strassen’s algorithm

4.1 Introduction:

With the shift of parallel computing to GPGPU paradigm, supercomputing clusters

are increasingly depending on the compute performance of GPUs to improve its Rpeak and

Rmax scores [23]. In fact, Six out of ten of the most performant supercomputers in the world

uses GPUs to derive more than 90% of its compute performance [24]. This shift makes it

necessary to adapt fundamental operations like matrix multiplication to multi-GPU

architectures.

While there were previous studies into adapting Strassen’s algorithm to multi-GPU

architectures [19, 20], which decomposed the matrix using Strassen’s algorithm followed by

using CUBLAS to perform the actual multiplication, there were no previous attempts at using

Strasen to decompose the matrix followed by using Strassen’s algorithm to perform the actual

matrix multiplication. The work in [2] has already explored a global Strassen decomposition

followed by local Strassen multiplication on a distributed memory multi-CPU cluster and has

clearly shown the communication and computation advantages of a similar scheme. With the

performance benefits of MSMES that we have shown in the previous chapter, it was evident

that there is a need for a multi-GPU implementation of MSMES following the

recommendations of [2].

4.2 Background:

Owing to the variations of tests being performed to analyze the impact of various multi-GPU

matrix multiplication schemes, we use a modularized approach for our multi-GPU

discussions. Each multi-GPU matrix multiplication scheme consists of two modules.

4.2.1 Module 1: Global decomposition module

This module is responsible for the global decomposition of the input matrix. The algorithm

used in the decomposition of the input matrix generates subtasks which are distributed across

the participating GPUs to perform computations defined in the subtasks. Through analysis of

the data movement patterns and computation complexity associated with the subtasks, it is

possible to identify optimizations that improve GPU utilization, amount of data movement,

42

bottleneck subtasks etc. The following decomposition schemes were used in our work. All

the decomposition techniques used here decomposes the matrix as shown in figure 4.1.

10Figure 4.1: Decomposition of matrices for multi-GPU multiplication.

Naïve decomposition

Naïve or 2D scheme decomposes the matrix multiplication into subtasks listed in table

4.1. The decomposition technique is called 2D due to its ability to map to a two-dimensional

mesh topology of processors. From the table, it can be observed that for a 2 × 2 mesh

topology, the scheme would decompose the matrix multiplication into 8 submatrix

multiplications followed by 4 submatrix additions. If the dimension N of the input matrices

(for N × N matrices) is a multiple of P for a P × P mesh topology, it can be observed that the

subtasks would evenly distribute among the processors.

Operation Result

𝐴0 × 𝐵0 𝑅1

𝐴1 × 𝐵2 𝑅2

𝐴0 × 𝐵1 𝑅3

𝐴1 × 𝐵3 𝑅4

𝐴2 × 𝐵0 𝑅5

𝐴3 × 𝐵2 𝑅6

𝐴2 × 𝐵1 𝑅7

𝐴3 × 𝐵3 𝑅8

𝑅1 + 𝑅2 𝐶0

𝑅3 + 𝑅4 𝐶1

𝑅5 + 𝑅6 𝐶2

43

𝑅7 + 𝑅8 𝐶3

11Table 4.1: Subtasks in naïve global decomposition.

Strassen’s decomposition.

Strassen’s scheme decomposes the matrix multiplication by applying Strassen’s

algorithm on the input matrices. The tasks generated after this decomposition are listed in

table 2.1. From the table it can be observed that one level of Strassen decomposition

generates 7 submatrix multiplications and 18 submatrix additions/subtractions. With 7 GPUs

used for the submatrix multiplication it can be observed that while the submatrix

multiplications map evenly, the addition/subtraction subtasks will be mapped unevenly (18

tasks mapped to 7 processors). Even though the cost associated with the addition/subtraction

stages are observed to be nominal in section 3.5.1, the existence of the Strassen-Winograd

algorithm made this scheme unbefitting for our evaluations.

Strassen-Winograd decomposition.

Strassen-Winograd algorithm is an improvement on Strassen’s algorithm where the

number of additions/subtractions are reduced to 14 from the 18 in Strassen’s algorithm. The

tasks generated by applying 1 level of Strassen-Winograd scheme are listed in table 4.2. From

the table it can be observed that this scheme generates 7 submatrix multiplication and 15

submatrix additions/subtractions. With 7 GPUs used in the operation, the 7 submatrix

multiplications map evenly. Out of the 15 submatrix additions/subtractions, 8 are performed

prior to the submatrix multiplication and the remaining 7 are performed after the submatrix

multiplication. Even though, the submatrix additions/subtractions do not evenly map to the

number of processors used, a technique is discussed in section 4.4.1 to improve the load

distribution.

Task No. Operation Result

1 𝐴0 𝑇0

2 𝐴1 𝑇1

3 𝐴2 + 𝐴3 𝑇2

4 𝑇2 − 𝐴1 𝑇3

5 𝐴0 − 𝐴2 𝑇4

6 𝐴1 + 𝑇3 𝑇5

7 𝐴3 𝑇6

44

8 𝐵0 𝑆0

9 𝐵2 𝑆1

10 𝐵1 + 𝐵0 𝑆2

11 𝐵3 − 𝑆2 𝑆3

12 𝐵3 − 𝐵1 𝑆4

13 𝐵3 𝑆5

14 𝑆3 − 𝐵2 𝑆6

15 𝑇0 × 𝑆0 𝑄0

16 𝑇1 × 𝑆1 𝑄1

17 𝑇2 × 𝑆2 𝑄2

18 𝑇3 × 𝑆3 𝑄3

19 𝑇4 × 𝑆4 𝑄4

20 𝑇5 × 𝑆5 𝑄5

21 𝑇6 × 𝑆6 𝑄6

22 𝑄0 + 𝑄3 𝑈1

23 𝑈1 + 𝑄4 𝑈2

24 𝑈1 + 𝑄2 𝑈3

25 𝑄0 + 𝑄1 𝐶0

26 𝑈3 + 𝑄5 𝐶1

27 𝑈2 − 𝑄6 𝐶2

28 𝑈2 + 𝑄2 𝐶3

12Table 4.2: Tasks in Strassen-Winograd decomposition.

4.2.2 Module 2: Local multiplication module.

This is the module that performs the actual multiplication operation locally on the

participating processors.

cublasDgemm:

cublasDgemm is the CUDA implementation of BLAS multiplication operation for

double precision floating point numbers [45].

45

MSMES (Multi-Stage Memory Efficient Strassen’s algorithm):

MSMES is our implementation of a memory efficient Strassen’s matrix multiplication

algorithm on CUDA that was explored in detail in the previous chapter.

With the ability to combine different options for each of the modules, the configurations

outlined in table 4.3 are explored in this chapter

Sl. No. Global decomposition

Scheme

Local multiplication

algorithm

1 2D cublasDgemm

2 2D MSMES

3 Strassen-Winograd cublasDgemm

4 Strassen-Winograd MSMES

13Table 4.3: Module combinations evaluated.

4.3 Previous Works:

The work in [3] designed a generic matrix-matrix multiplication algorithm for C = A

x B for multi-GPU accelerated distributed memory platforms. They were able to overcome

the limitations of SLATE [https://icl.bitbucket.io/slate/] library where C matrix must fit in the

global memory of the GPUs. The work designed an algorithm around tiled matrix outer

products with numerous optimizations to realize their results. They used data prefetching at

various levels of memories like our work to overlap computations with communications. The

work performs an implementation of GEMM in PARSEC [25] to perform matrix

multiplications.

Zhang et al [19] implemented a multi-GPU version of matrix multiplication by

decomposing the global matrix multiplication using Strassen’s algorithm followed by using

CUBLAS implementation of matrix multiplication at local levels to perform the actual

multiplication. This corresponds to the technique outlined in entry number 3 of table 4.3 here.

[19] investigated the performance of distributed matrix multiplication by leveraging GPUs to

perform the addition and multiplication stages of Strassen’s algorithm as well as using CPUs

for the addition stages and GPUs for multiplication stages. Based on their implementation,

[19] arrived at the conclusion that naïve matrix multiplication solutions outperform Strassen’s

46

algorithm on multi-GPU architectures due to the communication overheads associated with

Strassen’s algorithm.

Zhang et al [20] designed a middleware for scheduling tasks in operations with task

dependencies on multi-GPU architectures. Strassen’s matrix multiplication was used as one

of their example implementations to measure the performance of their hierarchical scheduler

middleware. The scheduler assigns tasks to either CPUs or GPUs depending on the

computational complexity of the task. In the example of Strassen’s matrix multiplication,

addition/subtraction tasks were assigned to CPU cores which performs single and double

precision addition/subtraction admirably compared to GPUs when the cost of submatrix

communication to GPU global memory is taken into consideration. On the other hand,

multiplication operations are assigned to GPUs which can outperform CPUs on the operation

due to the higher parallelism associated with GPUs. This implementation is again an example

of global Strassen decomposition of matrices followed by using CUBLAS implementation of

matrix multiplication at local levels to perform the actual multiplication.

Ballard et al. [2] has extensively documented the communication cost of matrix

multiplication on Cray XT4, a distributed memory MIMD supercomputer [26]. They

analyzed and modeled the communication costs involved with various decomposition

strategies as well as multiplication strategies. The work performed in multi-GPU

implementation of MSMES is an adaptation of the Communication Optimal Parallel Strassen

Multiplication algorithm [2] on a multi-GPU CUDA architecture.

The following schemes were explored in [2]:

1. Classical Algorithm on memory bound architectures: This algorithm decomposes the

input matrices into tiles that can be fit into the global memory of the CPU. These tiles

are then mapped to the available CPUs which loads the corresponding matrices into

their respective global memory and performs a classical (cubic) matrix multiplication

algorithm on them.

2. 2D global decomposition with local Strassen’s matrix multiplication: These

algorithms also decompose the input matrices into tiles that fit into the global memory

of the CPUs and maps the tiles to the participating CPUs. Once the tile pair is loaded

into the CPU, it performs Strassen-Winograd algorithm on the pair of tiles.

3. Strassen decomposition with local classical matrix multiplication: This algorithm

traverses sufficient DFS steps in a multi-level Strassen decomposition tree such that

47

the operand matrices after DFS traversal will fit in the global memory allocated to the

CPU. These decomposed matrices are then assigned to CPUs which perform a

classical matrix multiplication on the submatrix.

4. Strassen decomposition with local Strassen’s multiplication: This algorithm traverses

sufficient DFS steps in a multi-level Strassen decomposition tree such that the

operand matrices after DFS traversal will fit in the global memory allocated to the

CPU. These decomposed matrices are then assigned to CPUs which perform Strassen-

Winograd algorithm on the submatrix.

4.5 Implementation:

This section covers the specifics of implementing the schemes explored under Module

1 of our multi-GPU matrix multiplication implementation. The details of implementing

MSMES has already been documented in the previous chapter and shall not be repeated here.

We also document some of the atypical behavior we observed while using some additional

features offered by CUDA which should have theoretically improved our implementation.

4.4.1 Strassen-Winograd decomposition.

The Strassen-Winograd decomposition essentially consists of three stages. The pre-

multiplication stage that consists of addition/subtraction tasks, the multiplication stage that

performs 7 submatrix multiplications and the post multiplication addition/subtraction stage.

There are 8 addition/subtraction operations in the pre multiplication stage with only 7 GPUs

to process them. Here, data parallelism was leveraged by splitting each of the operand

submatrix involved in the pre multiplication operations into 7 tiles. Similar optimizations

were applied to the post multiplication stage as well. Figure 4.2 shows an example of the

split. Next, subtasks were grouped together to improve task parallelism. Table 4.4 shows the

details of the groups that were created. Choosing to use data parallelism in groups 1, 2 and 4

not only allowed improved load balancing but it also eliminated the inter task dependencies

from slowing down execution. For example, from Table 4.2 task 4 is dependent on the results

of task 3, had these tasks been parallelized leveraging task parallelism, the GPU performing

task 4 would have had to wait for the results from the GPU performing task 3.

Initially all the global memory allocations on the GPU were made using

cudaMallocManaged, a CUDA library implementation for unified memory [27] and

atomidAddSystem [28] directive was used to avoid race conditions. This implementation

48

could do away with the entire group 4 in table 4.4 as the computed results from group 3 could

be atomically added to their respective C accumulator values. Unfortunately, the frequent

memory transfers associated with a device managed memory resulted in subpar performance

during group 3 subtasks. Later implementations used cudaMallocManaged only with groups

1, 2 and 4.

While tests were only conducted with matrices whose dimensions were multiples of 7,

padding a matrix to make its dimension a multiple of 7 is a trivial problem and could

therefore, theoretically allow any matrix to be decomposed using the described Strassen-

Winograd decomposition scheme.

Group No. Operations Type of parallelism used

Group 1 𝐴2 + 𝐴3

𝑇2 − 𝐴1

𝐴0 − 𝐴2

𝐴1 + 𝑇3

Data parallelism (Data is

evenly distributed among

GPUs and all the GPUs

perform all the tasks)

Group 2 𝐵1 + 𝐵0

𝐵3 − 𝑆2

𝐵3 − 𝐵1

𝑆3 − 𝐵2

Data parallelism (Data is

evenly distributed among

GPUs and all the GPUs

perform all the tasks)

Group 3 𝑇0 × 𝑆0

𝑇1 × 𝑆1

𝑇2 × 𝑆2

𝑇3 × 𝑆3

𝑇4 × 𝑆4

𝑇5 × 𝑆5

𝑇6 × 𝑆6

Task parallelism (Each

task is assigned to one

GPU)

Group 4 𝑄0 + 𝑄3

𝑈1 + 𝑄4

𝑈1 + 𝑄2

𝑄0 + 𝑄1

𝑈3 + 𝑄5

𝑈2 − 𝑄6

𝑈2 + 𝑄2

Data Parallelism (Data is

evenly distributed among

GPUs and all the GPUs

perform all the tasks)

49

14Table 4.4: Grouping subtasks in Strassen-Winograd decomposition.

15Figure 4.2: Splitting the data in submatrix across 7 GPUs.

4.4.2 Naïve/2D decomposition:

The naïve decomposition was optimized to be used with 7 GPUs to maintain the

similitude of the results from Strassen-Winograd decomposition. The input matrices were

decomposed as shown in Figure 7. While the 2D decomposition strategy maps more

conveniently to 2D mesh topology of processors, it was not possible in our test environment

since the maximum number of GPUs that could be used concurrently on environment(a)

listed in table 2.3 were limited to 8. Still, the configuration we used with 7 GPUs have

efficiencies comparable to tests run using a (2 × 2) mesh topology with 4 GPUs. The 7 GPU

configuration performed at an average efficiency of 50.1% compared to 54.8% for the (2 × 2)

mesh configuration. The subtasks involved with this decomposition were distributed

statically across the participating GPUs.

50

 16Figure 4.3: Decomposition strategy for matrices for 2D scheme with 7 GPUs.

In both the implementations, each GPU was assigned a separate CPU thread to

orchestrate communications and computations.

4.6 Experiments:

Experiments were conducted on various size of input matrices (the matrices were

square and had dimensions which were multiples of 7) containing double precision floating

point numbers generated using the CUDA library function curandGenerateUniformDouble

[29]. The time it took to complete matrix multiplications were calculated using the C++

library function time defined in time header file [30]. The speedups of the configurations

listed in Table 4.3 compared to MSMES running on a single GPU were used to measure the

performance of each of the configuration.

51

17Figure 4.4: Speedup v/s Number of elements graph for the tested configurations

From figure 4.4 it can be observed that Strassen-Winograd-MSMES configuration has

the highest speedup of 4.97 out of all the tested configuration. This configuration also

outperformed all the other configurations beyond N = 1792. Below N = 1792, Strassen-

Winograd-cublasDgemm exhibited superior performance.

4.7 Conclusion:

With the exponential increase in the consumption and generation of data, there is a

compelling need to explore algorithms that can improve the processing speed of the data.

Matrix multiplication is a fundamental linear algebra operation that finds extensive use in

data intensive workflows like deep learning, computer graphics, scientific computing etc.

In this section we explored and implemented different configurations for multi-GPU

matrix multiplication. Naïve and Strassen-Winograd decomposition techniques were

implemented using cublasDgemm and MSMES and their performances were compared.

From the experiments, it was observed that the configuration that used Strassen-Winograd

0

1

2

3

4

5

6
S

p
ee

d
u
p

Matrix Dimension, N

2D-cublasDgemm Strassen-Winograd-cublasDgemm

2D-MSMES Strassen-Winograd-MSMES

52

scheme for decomposition with MSMES for local matrix multiplication yielded the best

performance.

53

Chapter 5 Future Work and Conclusion

5.1 Introduction:

This chapter discusses the optimizations and solutions that can be augmented to the

multi-GPU implementations discussed in the previous chapter. Since the initial motivation for

the thesis came from exploring the chain matrix multiplication involved in the training phase

of GCNs, one of the sections in this chapter is our recommendations for chained matrix

multiplication.

The next section discusses the details for a theoretical load balancer that would allow

the multi-GPU implementation to perform better in an architecture with heterogeneous GPUs

or a shared architecture where some of the GPUs are behaving like stragglers due to load

from other processes.

5.2 Matrix chain multiplication

The task of computing a matrix chain multiplication on a multi-GPU architecture can

be decomposed in two different ways.

1. Each of the GPUs can be assigned a separate matrix multiplication involved in the

chain.

2. The individual matrix multiplications in the chain can be assigned to multiple GPUs

using Strassen-Winograd-MSMES decomposition discussed in the previous chapter.

While each technique has its pros and cons, this section takes into consideration the

efficiency of algorithm and the limitations of a multi-GPU architecture to recommend a

strategy for solving the matrix chain multiplication problem.

Our implementation of multi-GPU matrix multiplication using Strassen-Winograd

decomposition followed by MSMES local multiplication yields a peak speedup of 4.97 while

using 7 GPUs. While this configuration outperforms all the other configurations we tested,

the multi-GPU implementations have lackluster efficiencies compared to single-GPU

MSMES implementation. Given speedup of S using N GPUs, the efficiency (E) of a parallel

algorithm can be calculated using the following formula:

𝐸 =
𝑆

𝑁

54

This yields a peak efficiency of 71% for our Strassen-Winograd-MSMES implementation.

Consider the problem of multiplying a matrix chain of M matrices performed on a

compute cluster with N processors. In supercomputing architectures like Cray where

processing cores in the range of hundreds of thousands are available [33], up to a reasonable

degree, it is possible to keep N > M. This flexibility on the number of processors allows these

architectures to use many processors to leverage the speedups offered by even inefficient

implementations to reduce the computation times of the matrix chain multiplication problem.

The Virya compute cluster, that was used to design the implementations in this thesis, on the

other hand has a hard limit of 8 GPUs per process [32]. This limits our ability to maintain N

> M for all problem sizes. In such an architecture, as soon as M becomes greater than 2N

(there is more than N independent matrix multiplications), we must consider the efficiency of

an implementation before deciding on a technique to solve the problem.

Finally, the results of the optimal matrix parenthesization problem [34] for the given

matrix chain also determines the technique that needs to be employed to solve the problem at

a given stage.

With these constraints in mind, we recommend the following steps to perform a

matrix chain multiplication on multi-GPU architectures.

1. Identify the optimal parenthesization for the given matrix chain.

2. If the number of optimal independent matrix multiplication is more than or equal to

N, use the technique Strassen-Winograd-MSMES to perform the multiplication.

Equation 5.1 provides an example of this when N = 3.

3. If the number of independent matrix multiplication is less than N, then compare the

efficiency of performing an inefficient parenthesization to the efficiency of a

Strassen-Winograd-MSMES decomposition to determine which strategy to apply.

Equation 5.2 shows an example of this.

4. Recursively apply steps 1 to 3 until the chain is completed.

𝐴1 × (𝐴2 × 𝐴3) × (𝐴4 × 𝐴5) × (𝐴6 × 𝐴7)

18Equation 5.1: This shows an example of a parenthesization where 3 GPUs will have 3

optimal independent matrix multiplications to solve parallelly. The independent

multiplications are highlighted in green.

55

(((𝐴1 × 𝐴2) × 𝐴3) × 𝐴4) × 𝐴5) × (𝐴6 × 𝐴7)

19Equation 5.2: This shows an example of a parenthesization where 3 GPUs will not have

optimal independent matrix multiplications to solve parallelly.

5.3 Dynamic Load balancing

A fundamental assumption in our current implementation of Strassen-Winograd-

MSMES is that the participating GPUs are of similar specifications and have similar

performances. This assumption unfortunately does not hold true in a heterogeneous GPU

configuration and or on a cluster where multiple processes might be competing for GPU time.

This results in certain GPUs becoming stragglers thereby causing bottlenecks.

A proposed solution to this scenario is to further decompose each of the operations

outlined in Table 4.4. By decomposing each of the operations into smaller chunks we can

send the input matrices in a “streaming” fashion to GPUs. This would not only improve the

overlap of computations with communications, but also allows the implementation to identify

stragglers and divert their workloads to other available GPUs. Like our decomposition

discussions in section 4.2.1, experiments need to be conducted for Strassen-Winograd vs

naïve decomposition strategies to see the more performant solution for “streaming” the input

matrices for the multiplication operations listed in table 4.4.

5.4 Conclusion

In this thesis, we present a novel implementation of Strassen's algorithm devoid of

additional workspace requirements. This novel implementation is also capable of recursive

Strassen's algorithm with no additional memory demands. The tests performed that compared

the performance of the implementation to cublasDgemm show superior memory consumption

and throughput. Performance models created allow the implementation to be optimized on

various hardware configurations.

The single GPU implementation coined, MSMES, was leveraged to implement a

multi-GPU version of Strassen's algorithm that outperformed other tested configurations.

56

With the augmentations we have mentioned in this section, the solution we present

could be compelling for heterogeneous/shared multi-GPU matrix chain multiplication use

cases like machine learning, deep learning, etc.

57

References

[1] J. Huang, C. Yu, and R. Van de Geijn, “Strassen's algorithm reloaded on GPUs,”

Strassen's Algorithm Reloaded on GPUs | ACM Transactions on Mathematical Software,

01-Apr-2020.

[2] G. Ballard, J. Demmel, O. Holtz, B. Lipshitz and O. Schwartz, "Communication-optimal

parallel algorithm for strassen's matrix multiplication", Proceedinbgs of the 24th ACM

symposium on Parallelism in algorithms and architectures - SPAA '12, 2012.

[3] C. Lawson, R. Hanson, D. Kincaid and F. Krogh, "Basic Linear Algebra Subprograms for

Fortran Usage", ACM Transactions on Mathematical Software, vol. 5, no. 3, pp. 308-323,

1979.

[4] "BLAS Techical Forum", Netlib.org. [Online]. Available: http://netlib.org/blas/blast-

forum/.

[5] V. Strassen, "Gaussian elimination is not optimal", Numerische Mathematik, vol. 13, no.

4, pp. 354-356, 1969.

[6] Nvidia, "NVIDIA TESLA V100 GPU ARCHITECTURE", Nvidia, 2017.

[7] J. Fung, F. Tang and S. Mann, "Mediated Reality using Computer Graphics Hardware for

Computer Vision", in International Symposium on Wearable Computing, Seattle,

Washington, USA, 2002, pp. 7-10.

[8] M. Romero and R. Urra, "CUDA Overview", Cuda.ce.rit.edu, 2012.

[9] "Programming Guide :: CUDA Toolkit Documentation", Docs.nvidia.com, 2021.

[10] A. Kerr, D. Merrill, J. Demouth and J. Tran, "CUTLASS: Fast Linear Algebra in CUDA

C++ | NVIDIA Developer Blog", NVIDIA Developer Blog, 2018.

[11] M. Harris, "Unified Memory for CUDA Beginners | NVIDIA Developer Blog", NVIDIA

Developer Blog, 2017.

[12] J. Li, S. Ranka and S. Sahni, "Strassen's Matrix Multiplication on GPUs", 2011 IEEE

17th International Conference on Parallel and Distributed Systems, 2011.

[13] S. Ranka and S. Sahni, "SIMD Matrix Multiplication", Bilkent University Lecture Series,

pp. 95-110, 1990.

[14] C. Douglas, M. Heroux, G. Slishman and R. Smith, "GEMMW: A Portable Level 3

BLAS Winograd Variant of Strassen's Matrix-Matrix Multiply Algorithm", Journal of

Computational Physics, vol. 110, no. 1, pp. 1-10, 1994.

58

[15] S. Huss-Lederman, E. Jacobson, A. Tsao, T. Turnbull and J. Johnson, "Implementation of

Strassen's algorithm for matrix multiplication", Proceedings of the 1996 ACM/IEEE

conference on Supercomputing (CDROM) - Supercomputing '96, 1996.

[16] S. Huss-Lederman, E. Jacobson, J. Johnson, A. Tsao and T. Turnbull, Strassen’s

algorithm for matrix multiplication: Modeling, analysis, and implementation, CCS-TR-

96-17, Center for Computing Sciences, 1996.

[17] P. Lai, H. Arafat, V. Elango and P. Sadayappan, "Accelerating Strassen-Winograd's

matrix multiplication algorithm on GPUs", 20th Annual International Conference on High

Performance Computing, 2013.

[18] B. Boyer, J. Dumas, C. Pernet and W. Zhou, "Memory efficient scheduling of Strassen-

Winograd's matrix multiplication algorithm", Proceedings of the 2009 international

symposium on Symbolic and algebraic computation - ISSAC '09, 2009.

[19] P. Zhang and Y. Gao, “Matrix Multiplication on High-Density Multi-GPU Architectures:

Theoretical and Experimental Investigations,” Lecture Notes in Computer Science, pp.

17–30, 2015.

[20] P. Zhang, Y. Gao and M. Qiu, "A Data-Oriented Method for Scheduling Dependent Tasks

on High-Density Multi-GPU Systems," 2015 IEEE 17th International Conference on

High Performance Computing and Communications, 2015 IEEE 7th International

Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th International

Conference on Embedded Software and Systems, 2015, pp. 694-699, doi:

10.1109/HPCC-CSS-ICESS.2015.314.

[21] T. Herault, Y. Robert, G. Bosilca and J. Dongarra, "Generic Matrix Multiplication for

Multi-GPU Accelerated Distributed-Memory Platforms over PaRSEC," 2019 IEEE/ACM

10th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems

(ScalA), 2019, pp. 33-41, doi: 10.1109/ScalA49573.2019.00010.

[22] D. Coppersmith and S. Winograd, On the asymptotic complexity of matrix multiplication.

SIAM Journal on Computing 11, 3 (1982), 472–492.

[23] In high-performance computing, what are Rmax and Rpeak? [Online]. Available:

https://kb.iu.edu/d/bbzo.

[24] June 2021 | TOP500, Top500.org, 2021. [Online]. Available:

https://www.top500.org/lists/top500/2021/06/.

59

[25] Parsec (parser) - Wikipedia, En.wikipedia.org, 2021. [Online]. Available:

https://en.wikipedia.org/wiki/Parsec_(parser).

[26] “Cray XT4,” Wikipedia, 15-Sep-2020. [Online]. Available:

https://en.wikipedia.org/wiki/Cray_XT4.

[27] “Memory management,” NVIDIA Developer Documentation. [Online]. Available:

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY.html.

[28] “CUDA C++ programming guide,” NVIDIA Developer Documentation. [Online].

Available: https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html.

[29] “Host api,” NVIDIA Developer Documentation. [Online]. Available:

https://docs.nvidia.com/cuda/curand/group__HOST.html.

[30] “std::time,” cppreference.com. [Online]. Available:

https://en.cppreference.com/w/cpp/chrono/c/time.

[31] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional

networks,” arXiv.org, 22-Feb-2017. [Online]. Available:

https://arxiv.org/abs/1609.02907.

[32] Virya: CSSE GPU server user manual, edition 2.5, Concordia University, 2019, pp. 14

[33] T. Bakker, “Supercomputer,” ECMWF, 07-Jan-2019. [Online]. Available:

https://www.ecmwf.int/en/computing/our-facilities/supercomputer.

[34] A. Grama, “The Optimal Matrix-Parenthesization Problem,” in Introduction to parallel

computing, Harlow, England: Addison-Wesley, 2013.

[35] “Basic linear algebra subprograms,” Wikipedia, 31-Jul-2021. [Online]. Available:

https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms.

[36] “General-purpose computing on graphics processing units,” Wikipedia, 15-Jun-2021.

[Online]. Available: https://en.wikipedia.org/wiki/General-

purpose_computing_on_graphics_processing_units#Implementations.

[37] J. Fang, A. L. Varbanescu and H. Sips, "A Comprehensive Performance Comparison of

CUDA and OpenCL," 2011 International Conference on Parallel Processing, 2011, pp.

216-225, doi: 10.1109/ICPP.2011.45.

[38] “Thread block (CUDA programming),” Wikipedia, 25-Jun-2021. [Online]. Available:

https://en.wikipedia.org/wiki/Thread_block_(CUDA_programming)#cite_note-6.

[39] “CUDA occupancy Calculator,” NVIDIA Developer Documentation. [Online]. Available:

https://docs.nvidia.com/cuda/cuda-occupancy-calculator/index.html.

60

[40] “Parallel thread Execution Isa Version 7.4,” NVIDIA Developer Documentation.

[Online]. Available: https://docs.nvidia.com/cuda/parallel-thread-execution/index.html.

[41] “Volta Architecture Whitepaper.” NVIDIA. [Online]. Available:

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-

whitepaper.pdf.

[42] R. Smith and N. Oh, “The NVIDIA GeForce Gtx 1660 Ti Review, Feat. Evga XC

GAMING: Turing Sheds RTX for the mainstream market,” RSS, 22-Feb-2019. [Online].

Available: https://www.anandtech.com/show/13973/nvidia-gtx-1660-ti-review-feat-evga-

xc-gaming/2.

[43] P. Lai, H. Arafat, V. Elango and P. Sadayappan, "Accelerating Strassen-Winograd's

matrix multiplication algorithm on GPUs," 20th Annual International Conference on High

Performance Computing, 2013, pp. 139-148, doi: 10.1109/HiPC.2013.6799109.

[44] “Unified memory for cuda beginners,” NVIDIA Developer Blog, 05-Jan-2021. [Online].

Available: https://developer.nvidia.com/blog/unified-memory-cuda-beginners/.

[45] “cublas,” NVIDIA Developer Documentation. [Online]. Available:

https://docs.nvidia.com/cuda/cublas/index.html.

[46] “Thread block (CUDA programming),” Wikipedia, 25-Jun-2021. [Online]. Available:

https://en.wikipedia.org/wiki/Thread_block_(CUDA_programming).

[47] “Achieved Occupancy,” NVIDIA docs. [Online]. Available:

https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudae

xperiments/kernellevel/achievedoccupancy.htm.

[48] “Profiler user's Guide,” NVIDIA Developer Documentation. [Online]. Available:

https://docs.nvidia.com/cuda/profiler-users-guide/index.html.

[49] “Host api,” NVIDIA Developer Documentation. [Online]. Available:

https://docs.nvidia.com/cuda/curand/group__HOST.html.

