
Characterizing Deprecated Deep Learning Python APIs:
An Empirical Study on TensorFlow

Nian Liu

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Computer Science (Computer Science) at

Concordia University

Montréal, Québec, Canada

September 2021

© Nian Liu, 2021

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Nian Liu

Entitled: Characterizing Deprecated Deep Learning Python APIs: An Empirical

Study on TensorFlow

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science (Computer Science)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr.

External Examiner
Dr.

Examiner
Dr.

Supervisor
Dr. Weiyi Shang

Approved by
Narayanan, Lata , Chair
Department of Computer Science and Software Engineering

2021
Mourad Debbabi, Dean
Faculty of Engineering and Computer Science

Abstract

Characterizing Deprecated Deep Learning Python APIs: An Empirical Study on
TensorFlow

Nian Liu

TensorFlow is a widely used machine learning platform, with millions of people using it to

create and train models. It is available in a variety of programming languages, including Python,

Java, C++, and JavaScript, among which Python is the most commonly used. Along with Tensor-

Flow’s evolution, new Python APIs are introduced, while others may be deprecated. Although the

characteristics of deprecated APIs in traditional software frameworks such as Android have been

extensively researched in recent years, little attention has been paid to how deprecated APIs in

TensorFlow evolve and what impact this has on deep learning. In this thesis, we conducted an em-

pirical study on deprecated Python APIs in TensorFlow. Our study analyzed 20 TensorFlow releases

spanning versions 1.0 to 2.3 to investigate API deprecation and its causes. In addition, we studied

projects containing 12 popular deep learning models to identify deprecated API usage. Finally, in

order to investigate the potential impact of deprecated APIs on deep learning models, we manually

updated the deprecated APIs in these projects to compare model accuracy before and after updating.

Our research seeks to provide developers with insight into how TensorFlow deprecated APIs evolve,

as well as help them understand why APIs became deprecated and the implications of not updating

their models by removing deprecated APIs.

iii

Acknowledgments

Throughout the completion of this study, I received lots of support and assistant.

Firstly, I would like to thank my supervisor, Professor Weiyi Shang, who provided insight into

the research questions and methodology. Whenever I felt it is difficult to continue and had no idea

about the next step work, he would help me analyze the problem and encourage me to try step by

step. In addition, there were lots of problems in my two years of study, especially as an international

student. He not only guided us on the academic work but helped us to adapt to the local life.

Secondly, I would like to thank my colleagues in my laboratory. They gave me a lot of sugges-

tions in this thesis and provided stimulating discussions about the research. Also, in this pandemic

period, life was hard sometimes. We often had a meeting and communication, which made the

research completed successfully.

Finally, I would like to thank my parents. I have studied for about 20 years and am just about

to graduate now. Without their financial support and accompaniment, I will not be able to complete

my study.

iv

Contents

List of Figures vii

List of Tables viii

1 Introduction 1

2 Background 4

2.1 TensorFlow Python APIs . 4

2.2 API Deprecation . 5

2.3 Deep Learning with TensorFlow . 6

3 Experimental Setup 7

3.1 TensorFlow versions . 7

3.2 Deep Learning models . 8

4 Case Study Results 10

4.1 RQ1: How many TensorFlow APIs are deprecated over time? 10

4.2 RQ2: Why did TensorFlow APIs become deprecated? 17

4.3 RQ3: Are TensorFlow deprecated APIs still used in user projects, if so, to what

extent? . 24

4.4 RQ4: Do deprecated APIs in deep learning models affect the accuracy of models?

If so, how much does accuracy suffer? . 28

5 Threats to Validity 33

v

6 Related Works 35

7 Conclusion 38

Bibliography 40

vi

List of Figures

Figure 2.1 Hierarchy of TensorFlow API . 5

Figure 4.1 Distribution of deprecated API rate (the number of deprecated APIs to total

APIs). All deprecated APIs, including those that were deprecated in prior versions,

are evaluated for each API version . 13

Figure 4.2 The total number of deprecated APIs (in accumulation) and retained depre-

cated APIs . 14

Figure 4.3 Density distribution of the survival time of TensorFlow deprecated APIs.

Survival time corresponds to the number of versions a deprecated API is removed

from TensorFlow since it is deprecated . 15

Figure 4.4 Density distribution of the number of versions TensorFlow APIs (between

retained and removed deprecated APIs) get deprecated since introduced into Ten-

sorFlow . 15

Figure 4.5 Distribution of method-level API deprecation rationales. The number of

deprecated APIs for each rationale is indicated in parentheses 21

Figure 4.6 Distribution of parameter-level API deprecation rationales. The number of

deprecated APIs for each rationale is indicated in parentheses 22

vii

List of Tables

Table 3.1 Overview of studied TensorFlow branches 8

Table 3.2 Overview of studied Models branches. There are no releases for TensoFlow

1.14 and 1.15 . 9

Table 4.1 An overview of studied TensorFlow versions. Deprecated APIs are considered

as long as they are annotated . 12

Table 4.2 The number of added and removed deprecated APIs for each update 13

Table 4.3 API Deprecation Rationales . 17

Table 4.4 Statistic overview of selected Models branches 25

Table 4.5 Deep learning models in Models r2.3 . 25

Table 4.6 Distribution of deprecated APIs in Models 26

Table 4.7 Frequence of deprecated APIs being used in Models 27

Table 4.8 Deprecated API and its replacement . 29

Table 4.9 Deep Learning Models and used Datasets 29

Table 4.10 Difference in accuracy of deep learning models before and after deprecated

API updates . 31

viii

Chapter 1

Introduction

The rapid adoption of Artificial Intelligence has led to the development of many machine learn-

ing frameworks to help people build and train machine learning algorithms. TensorFlow is a widely

used framework that helps companies such as Airbnb, Intel, and Airbus, to solve real-world, every-

day machine learning problems (Community, 2021). TensorFlow provides a collection of APIs that

allows developers to create and train machine learning models using mainstream programming lan-

guages, such as Python, Java, C++, and JavaScript, and to deploy their projects easily to the cloud,

server, or local machine (Abadi et al., 2016).

TensorFlow has released 20 official versions of this writing. Each new version has new fea-

tures introduced and outdated features suppressed. As TensorFlow has grown rapidly, many APIs

are no longer recommended by API designers (i.e., deprecated) since their behavior has become

incompatible with the new version. API deprecation in TensorFlow follows a deprecated-replace-

remove cycle (Li et al., 2020). In this scheme, an API is first flagged as deprecated by inserting a

@deprecated annotation, indicating that this API is no longer maintained in the framework. The

annotation also contains replacement messages describing how to update this deprecated API. Dep-

recated APIs will be removed after a period of development time in order to clean up the framework.

Prior studies have investigated API evolution and its potential impact on projects. Li et al.

(2020) conduct an exploratory study about Android deprecated APIs. They propose an approach

to investigate the evolution of deprecated APIs in Android and explored real-world Android apps

to study the developers’ reaction to deprecation. Zhang et al. (2021) analyze the API evolution in

1

TensorFlow 2 and disclose reasons for the API evolution. However, their study focuses on API

evolution instead of API deprecation, and they do not look into how such evolution affects deep

learning models. Some studies have revealed that software evolution might result in compatibility

issues. For example, Wei, Liu, and Cheung (2016) discovered that Python framework evolution

might lead to compatibility issues, whereas Dietrich, Jezek, and Brada (2014) indicates that the up-

grade of Java libraries could cause project problems such as compatibility issues. Unlike traditional

software, projects in deep learning focus more on models accuracy instead of performance metrics

like CPU usage, response time, etc. To the best of our knowledge, there has not been much focus on

how deprecated APIs evolve in TensorFlow and whether their use has an impact on deep learning

models. To fill this gap, we conduct an empirical study on characterizing TensorFlow deprecated

Python APIs. Specifically, we aim to answer the following research questions:

RQ1: How many TensorFlow APIs are deprecated over time?

RQ2: Why did TensorFlow APIs become deprecated?

RQ3: Are TensorFlow deprecated APIs still used in user projects? If so, to what extend?

RQ4: Do deprecated APIs in deep learning models affect the accuracy of models? If so, how

much does accuracy suffer?

In order to answer these research questions, we gather 20 TensorFlow releases ranging from

TensorFlow 1.0 to TensorFlow 2.3. RQ1 is then answered by extracting and analyzing the depre-

cated APIs in each release. For RQ2, we analyze the deprecation message in deprecated APIs to

identify the possible reasons for API deprecation. To address RQ3, we also gather 12 popular deep

learning models from TensorFlow’s official Github organization to explore developers’ reactions to

these deprecated APIs. To measure the impact of deprecated APIs in deep learning models, we com-

pare the model accuracy in RQ4 before and after updating deprecated APIs. Several findings have

been disclosed as a result of these studies: 1) The number of deprecated APIs grows steadily as Ten-

sorFlow evolves, especially after TensorFlow 1.13, which represents a significant rise. Only a small

portion (4.52%) of deprecated APIs are currently removed, but their survival time is quite short (2

versions in median). Deprecated TensorFlow APIs take a median of 12 versions to become depre-

cated. 2) Optimization improvements (e.g., API Optimization (53.77%)) is the primary reason of

Tensorflow API method deprecations. Usability improvements (e.g., Parameter Name Change

2

(91.67%)) is the leading reason for parameter deprecations. 3) Around 5% to 10% of deprecated

APIs are still in use even in well-maintained projects. 4) Accuracy difference between deprecated

API and their replacements in our test does not appear to be significant. This result indicates that

accuracy changes do not incentivize the users of these APIs to migrate to the replacement APIs.

To summarize, this thesis makes the following contributions:

• To the best of our knowledge, this is the first empirical study to reveal the current status of

deprecated APIs in TensorFlow.

• We performed the first research discovering the rationale behind deprecated APIs in Ten-

sorFlow. We analyzed the deprecation message in 235 deprecated APIs and found 6 API

deprecation reasons: 4 at the method level, 2 at the parameter level.

• We automatically uncover deprecated APIs in 12 existing deep learning models, which helps

explore developers’ reactions to TensorFlow deprecated APIs.

• We present a quantitative study about the impact of deprecated APIs in deep learning models.

Thesis organization. This thesis is organized as follows: Section 2 gives a brief background

introduction to help readers better understand this study. Section 3 introduces our experimental

setup. Section 4 presents the detailed case study results for four research questions. Section 5

discusses the threats to validity. Section 6 presents related works. Finally, Section 7 concludes this

thesis.

3

Chapter 2

Background

This section provides an overview of TensorFlow Python APIs, API deprecation, and deep learn-

ing with TensorFlow.

2.1 TensorFlow Python APIs

TensorFlow (2021) is a machine learning framework that can be used to build and train deep

learning models. TensorFlow offers APIs in many popular programming languages, with Python

APIs currently being the most popular (Carbonnelle, 2021). These APIs evolve with the release of

each TensorFlow version. Since its initial release in 2015, TensorFlow has released 20 versions at

the time of this writing, the latest version is version 2.3.

As presented in Figure 2.1, TensorFlow contains multiple abstraction layers. The top layer

contains high-level, object-oriented APIs. The second layer from the top is composed of the com-

ponents for building customized models. The third layer is a low-level API built with Python.

Developers can use these APIs to create and implement new machine learning algorithms. The

fourth layer is the TensorFlow kernel API which is built with C++. Finally, the bottom-most layer

is the hardware layer where TensorFlow code can run on multiple platforms, like CPU, GPU, and

TPU.

4

Figure 2.1: Hierarchy of TensorFlow API

2.2 API Deprecation

With the release of new TensorFlow versions, some APIs can not meet the requirement of the

framework (e.g., performance or security reason (Li, Bissyandé, Klein, & Le Traon, 2016)), causing

APIs to deprecate. However, the deprecated APIs can not be removed directly as they may lead to

runtime crashes (Li et al., 2020). In this context, these APIs will first be flagged as deprecated

using Python annotations and then removed after a reasonable time (e.g., several releases of the

framework).

To mark a deprecated API, developers can wrap it in the deprecated() decorator (i.e., @deprecated

). In this decorator, the arguments passed to deprecated() can be used to display a deprecation

message, which informs users that an API is deprecated and when it will be removed, as well as

what developers can do in the meantime. Listing 2.1 presents a real example of deprecated API in

TensorFlow. In this example, is_gpu_available() is a deprecated API of test modules. On line 2,

API designers notify developers using an alternative API tf.config.list_physical_devices().

1 @deprecation.deprecated(None,

2 "Use ‘tf.config.list_physical_devices(’GPU’)‘ instead.")

3 @tf_export("test.is_gpu_available")

4 def is_gpu_available(cuda_only=False, min_cuda_compute_capability=None):

5 """Returns whether TensorFlow can access a GPU.

Listing 2.1: An example of deprecated python API in TensorFlow

5

2.3 Deep Learning with TensorFlow

Deep learning is a research area of Artificial Intelligence (AI) inspired by the human brain and

often used to process data-sets and create patterns for use in decision making (Hargrave, 2021). It

has been widely used in AI domains, such as image classification, object detection, pattern recogni-

tion, and natural language processing (NLP), and proven to be successful (Guo et al., 2016; Lopez

& Kalita, 2017; Schmidhuber, 2015).

Listing 2.2 presents an example of the use of TensorFlow API to train and test models. It firstly

imports the mnist dataset (line 3) and defines the Sequential model (line 6) by invoking tf.keras

.models.Sequential(). Secondly, an optimizer (line 12) and loss function (line 13) are used for

model training. Finally, model.evaluate() (line 16) is invoked following the invocation of model

.fit() (line 15) to train and test the model. In this example, the Keras module is an open-source

software library that acts as an interface for TensorFlow (Keras, 2021).

1 """TensorFlow quickstart for beginners"""

2 import tensorflow as tf

3 mnist = tf.keras.datasets.mnist

4 (x_train, y_train), (x_test, y_test) = mnist.load_data()

5 x_train, x_test = x_train / 255.0, x_test / 255.0

6 model = tf.keras.models.Sequential([

7 tf.keras.layers.Flatten(input_shape=(28, 28)),

8 tf.keras.layers.Dense(128, activation=’relu’),

9 tf.keras.layers.Dropout(0.2),

10 tf.keras.layers.Dense(10, activation=’softmax’)

11])

12 model.compile(optimizer=’adam’,

13 loss=’sparse_categorical_crossentropy’,

14 metrics=[’accuracy’])

15 model.fit(x_train, y_train, epochs=5)

16 model.evaluate(x_test, y_test, verbose=2)

Listing 2.2: Example of model built with TensorFlow

6

Chapter 3

Experimental Setup

In this section, we discuss our experimental setup.

This study aims to analyze deprecated Python APIs in TensorFlow and their potential impact

on deep learning models. The experimental data consists of two parts: 1) 20 TensorFlow releases

spanning version 1.0 to 2.3 extracted from TensorFlow’s official Github website 1. 2) 12 Deep

Learning models maintained by the official TensorFlow Github organization.

In the following sections, we introduce these two parts of the dataset.

3.1 TensorFlow versions

TensorFlow is an open-source Machine Learning framework that was first released in 2015. It

is available on Github with ∼95K commits, ∼3K contributors, and 49 branches at the time of this

study.

To answer RQ1 and RQ2, we collect the source code of TensorFlow releases from the official

TensorFlow Github repository. Table 3.1 displays a collection of 20 Github branches spanning

TensorFlow versions 1.0 to 2.3. Each branch corresponds to a TensorFlow version examined in our

study. We explore each version, including the most recent source code update at the time of this

study.
1https://github.com/tensorflow/tensorflow

7

https://github.com/tensorflow/tensorflow

Table 3.1: Overview of studied Tensor-
Flow branches

TF version Branch HEAD Date

2.3 r2.3 2020-07-24
2.2 r2.2 2020-07-24
2.1 r2.1 2020-07-24
2.0 r2.0 2020-07-24
1.15 r1.15 2020-07-24
1.14 r1.14 2019-08-22
1.13 r1.13 2019-07-15
1.12 r1.12 2019-06-21
1.11 r1.11 2018-09-25
1.10 r1.10 2018-08-23
1.9 r1.9 2018-07-09
1.8 r1.8 2018-06-04
1.7 r1.7 2018-05-07
1.6 r1.6 2018-05-30
1.5 r1.5 2018-03-27
1.4 r1.4 2018-07-09
1.3 r1.3 2017-10-17
1.2 r1.2 2018-03-22
1.1 r1.1 2017-05-18
1.0 r1.0 2017-05-02

3.2 Deep Learning models

To address RQ3 and RQ4, we gather the source code of deep learning models in order to inves-

tigate the use of deprecated APIs and their impact on deep learning models. These deep learning

models are extracted from a repository from offficial TensorFlow Github website: Models2. The

Models repository stores various implementations of state-of-the-art (SOTA) deep learning models

and modelling solutions for TensorFlow users (Yu et al., 2020). The root directory of Models in-

cludes three sub-directories: official, research, and community. The official part is maintained by

the official TensorFlow development team and uses the latest APIs, while the research and com-

munity parts are maintained by developers in the TensorFlow community, where APIs may have

become outdated. Therefore, in this study, we choose the official part as our research focus. Table

3.2 displays the Github branches of Models analyzed for our study. Each branch is associated with
2https://github.com/tensorflow/models

8

https://github.com/tensorflow/models

Table 3.2: Overview of studied Models
branches. There are no releases for Ten-
soFlow 1.14 and 1.15

API version Branch HEAD Date

2.3 r2.3 2020-07-30
2.2 r2.2 2020-04-15
2.1 r2.1 2020-01-07
2.0 r2.0 2020-10-15
1.13 r1.13 2019-02-06
1.12 r1.12 2018-11-07
1.11 r1.11 2018-08-31
1.10 r1.10 2018-07-16

one version of TensorFlow API. It should be noted that there is no release of studied Models for

TensorFlow 1.14 and 1.15.

9

Chapter 4

Case Study Results

In this section, we answer the following four research questions.

4.1 RQ1: How many TensorFlow APIs are deprecated over time?

Motivation

TensorFlow has experienced a long development period. Since its first release in 2015, around

20 official versions were released until the time of this research. With the increased focus on freshly

introduced APIs in TensorFlow, the evolution of deprecated APIs has been the focus of few studies.

However, investigating the status of API deprecation in TensorFlow could help developers better

understand the evolution patterns of TensorFlow and prepare for the migration of the deprecated

APIs in their projects.

Approach

Table 3.1 presents the TensorFlow branches selected for our study. We analyzed 20 TensorFlow

branches ranging from TensorFlow 1.0 to TensorFlow 2.3. We also examined the most current

source code update at the time of the study and manually cloned the repository to our own machine.

To answer RQ1, we first identify the deprecated Python APIs in the studied TensorFlow ver-

sions. An API could be tagged as deprecated in both documentation and source code. Li et al.

10

(2020) disclose there is an inconsistency in tagging depreciated APIs between source code and doc-

umentation for Android projects. Their study finds that some deprecated APIs are highlighted in the

documentation but have been removed in the source code. Therefore, to make our study results more

accurate, we use TensorFlow source code as our study focus rather than TensorFlow documentation.

The Abstract Syntax Tree (AST) is a potent tool of the Python programming language and

provides tree structure for source code that can be used for static analysis of Python projects. For

each Python file, we build an AST and traverse all of the public classes and methods. For this RQ,

we use AST to retrieve useful information (i.e., API name, annotation) for deprecated APIs at the

class and method levels. As mentioned in section 2, deprecated APIs are identified by the decorator

@deprecated. Thus, if a class or method has such a decorator, it is considered deprecated and added

to a list. Furthermore, if an API was deprecated in the previous version and disappears in the current

version, we consider it removed; if an API was not deprecated in the previous version but becomes

deprecated in the current version, we consider it newly deprecated.

Results

In this section, we present the results of RQ1 through three dimensions: Deprecated APIs,

Deprecated APIs and retained APIs and Survival time.

Deprecated APIs. In this dimension, we study the distribution of deprecated APIs in Tensor-

Flow’s historical and latest releases.

Table 4.1 provides an overview of studied TensorFlow versions. The column TF Version de-

picts the TensorFlow version that we analyzed. The column SLOC displays the number of source

lines of code, while the column APIs displays the total number of APIs for each TensorFlow ver-

sion. The column Deprecated APIs is the number of deprecated APIs. According to this table, as

TensorFlow matures, SLOC, APIs, and Deprecated APIs increase while deprecated APIs increase

more. Specifically, from TensorFlow 1.0 to TensorFlow 2.3, SLOC has increased five-fold, while

the number of APIs has increased four-fold. The number of deprecated APIs has increased from 13

to 190 (i.e., nearly 15 times).

Figure 4.1 presents the distribution of deprecated API rate (the number of deprecated APIs to

11

Table 4.1: An overview of studied TensorFlow ver-
sions. Deprecated APIs are considered as long as they
are annotated

TF Version SLOC APIs Deprecated APIs

2.3 412K 6,586 190
2.2 386K 6,251 166
2.1 355K 5,934 155
2.0 337K 5,714 150
1.15 338K 5,707 150
1.14 314K 5,338 132
1.13 257K 4,419 116
1.12 229K 3,786 45
1.11 211K 3,470 29
1.10 206K 3,357 23
1.9 195K 3,251 22
1.8 188K 3,172 22
1.7 182K 3,033 22
1.6 176K 2,948 22
1.5 167K 2,798 21
1.4 154K 2,612 15
1.3 113K 2,002 15
1.2 106K 1,888 13
1.1 90K 1,659 13
1.0 82K 1,525 13

total APIs) in each Tensorflow version. The result shows that in TensorFlow’s early development

stage, from 1.0 to 1.12, the rate remains mostly stable despite the growth in the number of deprecated

APIs. Between versions 1.12 and 1.13, the deprecated API rate has a huge increase from 1.19% to

2.63%. Indeed, as illustrated in Table 4.1, the number of deprecated APIs has almost tripled in 1.13

compared to version 1.12, but the total number of deprecated APIs only increases slightly. After

TensorFlow 1.13, the rate of deprecated APIs to total APIs is steady again.

Deprecated APIs and retained APIs. In this dimension, we look into whether the deprecated

APIs are removed from TensorFlow.

Figure 4.2 presents the number of total deprecated APIs (in accumulation) and retained depre-

cated APIs. We can see that both polylines rise and are fairly near, implying that most deprecated

APIs are still available in the framework even though they have been deprecated. Only a minor

proportion of deprecated APIs are removed (9 out of 199, 4.52%).

12

Figure 4.1: Distribution of deprecated API rate (the number of deprecated APIs to total APIs). All deprecated
APIs, including those that were deprecated in prior versions, are evaluated for each API version

Table 4.2: The number of added and
removed deprecated APIs for each up-
date

TF Upgrade Addition Removal

1.0 - 1.1 0 0
1.1 - 1.2 0 0
1.2 - 1.3 2 0
1.3 - 1.4 0 0
1.4 - 1.5 8 2
1.5 - 1.6 1 0
1.6 - 1.7 0 0
1.7 - 1.8 0 0
1.8 - 1.9 0 0
1.9 - 1.10 1 0
1.10 - 1.11 6 0
1.11 - 1.12 16 0
1.12 - 1.13 72 1
1.13 - 1.14 18 2
1.14 - 1.15 18 0
1.15 - 2.0 1 1
2.0 - 2.1 8 3
2.1 - 2.2 11 0
2.2 - 2.3 24 0

Table 4.2 provides a summary of the addition and removal of deprecated APIs for each Ten-

sorFlow version upgrade. From TensorFlow 1.0 to 1.9, 3 out of 9 version upgrades add a few

13

Figure 4.2: The total number of deprecated APIs (in accumulation) and retained deprecated APIs

deprecated APIs, and only one upgrade removes two deprecated APIs. Since TensorFlow 1.9, sev-

eral APIs are deprecated in each upgrade, very few deprecated APIs are removed. TensorFlow 1.12

to TensorFlow 1.13 has the most number of deprecation addition.

Survival time. In this dimension, we examine the survival time of APIs, including the survival

time of deprecated APIs and lifespan of APIs.

Figure 4.3 is a density plot illustrating the distribution of deprecated APIs’ survival time. We

model the survival time as the number of TensorFlow versions a deprecated API is removed from

TensorFlow since it is deprecated. There are 9 deprecated APIs removed from TensorFlow with a

median age of two releases, i.e., for those removed deprecated APIs, each of them gets removed af-

ter a median of two releases. Despite the fact that only a few APIs are removed, the survival time is

rather short. According to this figure, two APIs are removed in one version after being deprecated,

and no API survives more than two TensorFlow releases. Considering the quick release of Tensor-

Flow (i.e., in Table 3.1, 20 versions released in 39 months, averaging 2 months for one version),

developers need to migrate their code quickly before these deprecated APIs become inaccessible.

Then we examine the lifespan of APIs, i.e., the number of TensorFlow versions since APIs were

introduced until they become deprecated.

Figure 4.4 depicts a density plot of the distribution of lifespans for retained APIs and removed

14

Figure 4.3: Density distribution of the survival time of TensorFlow deprecated APIs. Survival time corre-
sponds to the number of versions a deprecated API is removed from TensorFlow since it is deprecated

Figure 4.4: Density distribution of the number of versions TensorFlow APIs (between retained and removed
deprecated APIs) get deprecated since introduced into TensorFlow

15

APIs. The distribution of retained and removed APIs does not have a significant difference. In

general, it takes a median of 12 TensorFlow versions of retained APIs to become deprecated and 13

versions of removed APIs to become deprecated. Most deprecated APIs take around 13 versions to

get deprecated, which gives developers a comparatively long period to adopt these APIs and do not

need to update their code frequently.

Li et al. (2020) did an exploratory study about API deprecation in Android. They found that

16% deprecated APIs are removed in Android while this number is only 4.52% in TensorFlow. The

survival time of deprecated APIs in Android and TensorFlow are both short. Most deprecated APIs

take a comparatively long period to get deprecated In TensorFlow, whereas in Android, removed

APIs get deprecated quickly than retained APIs.

In summary, the number of deprecated APIs in TensorFlow grows steadily while TensorFlow

1.13 has a significant increase. Only a small proportion (4.52%) of deprecated APIs are removed

eventually, but their survival time is relatively short (2 versions in median). Most deprecated APIs

take a comparatively long period (12 versions in median) to get deprecated since they were intro-

duced into TensorFlow.
RQ1 Finding

Deprecated APIs increase constantly as TensorFlow evolves, with TensorFlow 1.13 seeing

a significant increase. Only a small proportion (4.52%) of deprecated APIs are eventually

removed, but their survival time is quite short (2 versions in median). Most deprecated APIs

take a comparatively long period (12 versions in median) to get deprecated since they were

introduced into TensorFlow.

16

4.2 RQ2: Why did TensorFlow APIs become deprecated?

Motivation

In this section, we explore TensorFlow’s deprecated APIs to discover the reasons for their dep-

recation. In RQ1, after TensorFlow 1.9, almost every TensorFlow upgrade will add some new

deprecated APIs; this motivates us to investigate why these APIs become deprecated. The answers

to this research question can provide insight into the evolution of the Tensorflow API.

Approach

The following is our approach workflow.

As discussed in RQ1, we extract useful messages for deprecated APIs in the latest TensorFlow

version (2.3), including API names, fields, annotations, etc. For each deprecated API, we first

explore the deprecation message extracted by AST to discover rationales of API deprecation. If the

deprecation message is missing or inaccurate, we manually examine the API source code. We then

conduct pair reviews (i.e., two persons working on reviewing individually) on all deprecated APIs

to label their deprecation rationales and reached an agreement of 88.9%. We then merge our results

after discussion with a third reviewer to eliminate bias in the results.

Results

In this part, we present the results of RQ2.

In this study, we analyzed 235 deprecated APIs in TensorFlow 2.3 (including those removed in

the previous versions).

Table 4.3: API Deprecation Rationales

Deprecation Rationale Level

API Optimization Method
API Name Change Method
Compatibility Issue Method
Feature Deleting Method
Parameter Name Change Parameter
Unnecessary Parameter Parameter

17

Deprecation rationale classification. Based on the results of our analysis, we identified six API

deprecated rationales, four of which are at the method level and two at the parameter level, as

presented in Table 4.3. The following is an introduction of these six rationales:

1) API Optimization: As TensorFlow evolves, many older APIs are no longer able to meet its

increasing requirements. Developers introduce newer APIs to replace the older ones, bringing many

advantages, such as improved performance, organization, etc.

1 @deprecation.deprecated(date=None, instructions="Use ‘tf.cast‘ instead.")

2 @tf_export(v1=["to_float"])

3 @dispatch.add_dispatch_support

4 def to_float(x, name="ToFloat"):

5 """Casts a tensor to type ‘float32‘."""

6 return cast(x, dtypes.float32, name=name)

Listing 4.1: An example of API deprecation due to API Optimization from math ops.py at TensorFlow 2.3

Listing 4.1 provides an example of this rationale. to_float() (line 4) is a Python API used

to cast a tensor to type float32 where tensor is a multidimensional array. Actually, there are some

other APIs with similar functionality, such as to_int32(), to_double(), etc. These APIs can be

replaced a single new API tf.cast(). This type of API change merges multiple APIs to one API

and makes the API calling more concise and organized.

2) API Name Change: In this rationale, the replaced APIs are given new names without chang-

ing their functionality or the underlying source code. As TensorFlow evolves, API names may not

reflect the current functionality, so they are changed to meet the new requirements.

1 @deprecation.deprecated(

2 date=None, instructions=’Please use ‘layer.add_weight‘ method instead.’)

3 @doc_controls.do_not_doc_inheritable

4 def add_variable(self, *args, **kwargs):

5 """Deprecated, do NOT use! Alias for ‘add_weight‘."""

6 return self.add_weight(*args, **kwargs)

Listing 4.2: An example of API deprecation due to API Name Change from base layer.py at TensorFlow

2.3

18

Listing 4.2 presents an example of this rationale. The API add_variable() (line 4) allows

developers to add variables to deep learning layers, which is an alias for add_weight() (line 5).

However, developers discovered that add_weight() is more appropriate as the variables in deep

learning are officially termed weight, hence add_variable() became deprecated.

3) Compatibility Issue: TensorFlow releases a new version every few months. A new version

typically introduces new features which may cause compatibility issues for older APIs, preventing

them from being used in the newer version.

1 @deprecation.deprecated(

2 None,

3 "This function will only be available through the v1 compatibility "

4 "library as tf.compat.v1.saved_model.utils.build_tensor_info or "

5 "tf.compat.v1.saved_model.build_tensor_info.")

6 def build_tensor_info(tensor):

7 """Utility function to build TensorInfo proto from a Tensor.

Listing 4.3: An example of API deprecation due to Compatibility Issue from utils impl.py at TensorFlow

2.3

Listing 4.3 shows an example of an API that is deprecated due to compatibility issues. As Ten-

sorFlow evolves, some older APIs are no longer compatible with the newer version of TensorFlow,

such as build_tensor_info() (line 6). The docstring (line 3–5) of this deprecated API indicates

that it will only be available in TensorFlow 1.x.

4) Feature Deleting: TensorFlow adds or deletes features in each new release. When a feature

is removed from a version, the relevant API may become deprecated.

1 # We no longer track graph in tf.layers layers. This property is only kept to

maintain API backward compatibility.

2 @property

3 @deprecation.deprecated(

4 date=None,

5 instructions=’Stop using this property because tf.layers layers no longer

track their graph.’)

6 def graph(self):

7 if context.executing_eagerly():

19

8 raise RuntimeError(’Layer.graph not supported when executing eagerly.’)

9 return None

Listing 4.4: An example of API deprecation due to Feature Deleting from base.py at TensorFlow 2.3

Listing 4.4 presents an example of this rationale. Since the instruction property (line 5) of

the API indicates that the graph is no longer tracked by tf.layers, this API is now deprecated.

5) Parameter Name Change: Similar to API name changes, Parameter names may also be

updated. The new parameter names attempt to be more intuitive and understandable than the old

ones, making the APIs more user-friendly.

1 @deprecation.deprecated_args(None, "Please use ‘rate‘ instead of ‘keep_prob‘. ""

Rate should be set to ‘rate = 1 - keep_prob‘.", "keep_prob")

2 def dropout(x, keep_prob=None, noise_shape=None, seed=None, name=None,

3 rate=None):

4 """Computes dropout.

Listing 4.5: An example of parameter deprecation due to Parameter Name Change from builder impl.py

at TensorFlow 2.3

Listing 4.5 presents an example with the API’s parameter name changed. The API dropout

() (line 2) has a parameter named keep_prob. However, developers believe that rate is more

appropriate than keep_prob because it is more commonly used, therefore keep_prob has been

deprecated and replaced with rate.

6) Unnecessary Parameter: Some API parameters could also be deprecated, in addition to

the API itself. With the evolution of APIs, their parameters may become unnecessary due to the

changes in API logic. Parameter deprecation is discussed in this rationale.

1 @deprecation.deprecated_args(None, ’‘inputs‘ is now automatically inferred’, ’

inputs’)

2 @doc_controls.for_subclass_implementers

3 def add_update(self, updates, inputs=None):

4 """Add update op(s), potentially dependent on layer inputs.

Listing 4.6: An example of parameter deprecation due to Unnecessary Parameter from base layer.py at

TensorFlow 2.3

20

Listing 4.6 illustrates an example of this rationale. The API add_update() (line 3) has a param-

eter inputs for developers to manually provide inputs, but inputs is now automatically inferred

according to the argument at line 1. Therefore, this parameter will no longer be required for manual

input by developers.

Deprecation rationale analysis. By performing a pair review of these 235 APIs, we reached an

agreement for the initial classification of 209 APIs (88.9%). As for the remaining 26 APIs, we

integrated our discussion results after discussing them with a third reviewer. Figure 4.5 and Figure

4.6 present the rationales of API deprecation. More specifically, Figure 4.5 depicts the method level

(199 out of 235) of API deprecation rationales, whereas Figure 4.6 depicts the parameter level (36

out of 235).

Figure 4.5: Distribution of method-level API deprecation rationales. The number of deprecated APIs for
each rationale is indicated in parentheses

As indicated in Figure 4.5, API Optimization is the leading cause of API deprecation, taking up

53.77% (107). API Name Change accounts for 29.15% (58) of all deprecated APIs at the method

level. This rationale includes APIs with merely a name change but the same functionality. By

renaming the API, the framework could be more organized and user-friendly. Feature Deleting has

the fewest deprecated APIs at the method level, with 7.54% (15), which indicates that TensorFlow is

21

Figure 4.6: Distribution of parameter-level API deprecation rationales. The number of deprecated APIs for
each rationale is indicated in parentheses

still focusing on introducing new features rather than removing the existing features, as highlighted

by RQ1 Finding. There are 19 APIs (9.55%) that fall into the Compatibility Issue. Such APIs are

only available in TensorFlow 1.x and are likely to be removed in upcoming TensorFlow releases.

Figure 4.6 presents the rationales of API deprecation at the parameter level. Among the 36

deprecated APIs, 33 (91.67%) are deprecated due to Parameter Name Change, implying that

Parameter Name Change is the most common rationale for API deprecation at the parameter

level. Only 3 APIs (8.33%) fall into the Unnecessary Parameter.

Sawant, Huang, Vilen, Stojkovski, and Bacchelli (2018) analyzed 4 Java frameworks and found

that introducing a new feature and functional defect are the most frequent reasons for deprecating an

API in Java. This finding is similar to our result where API Optimization being the most common

rationale. However, 29.15% APIs are deprecated because of API Name Change in TensorFlow,

while renaming of feature only takes a very small portion in Java.

In conclusion, API Optimization is the most prevalent rationale for API deprecation at the

method level, accounting for 53.77%. Moreover, API Name Change (29.15%) is the second most

common rationale, followed by Compatibility Issue(9.55%). Parameter Name Change (91.67%)

is the most leading deprecation rationale at parameter level.

22

RQ2 Finding

Tensorflow API method deprecations are lead by optimization improvements (e.g., API Opti-

mization (53.77%)), meanwhile, parameter deprecations are lead by usability improvements

(e.g., Parameter Name Change (91.67%)).

23

4.3 RQ3: Are TensorFlow deprecated APIs still used in user projects,

if so, to what extent?

Motivation

In TensorFlow, deprecation follows a deprecated-replace-remove cycle, as discussed in sec-

tion 1. However, replacing deprecated APIs may take a long time because developers encounter

challenges such as becoming accustomed to using deprecated APIs or deprecated APIs having no

substitute message provided (Li et al., 2020). In this section, we examine the use of deprecated

APIs with some popular deep learning models. Through this research question, we would like to

discover if and to what extent deprecated APIs are used in TensorFlow projects.

Approach

The following is our approach workflow.

Data extration. Our study draws on the Models repository from official TensorFlow Github web-

site which consists of several deep learning models, as indicated in Section 3.

Table 4.4 presents the statistics of analyzed Models branches. There are eight Models branches,

each of which corresponds to a different TensorFlow API version from 1.10 to 2.3 (however, Ten-

sorFlow 1.14 and 1.15 are not available). From branch r1.10 (the earliest branch) to r2.3 (the most

recent branch at the time of the study), the source lines of code (SLOC) have increased by six times,

and the number of methods has increased by more than four times. Furthermore, the number of

deep learning models in this repository has increased from 5 to 12.

Now we take branch r2.3 as an example and display the deep learning models for this branch

in Table 4.5. As we can see, there are 12 deep learning models implemented in this repository.

These models are divided into categories that include a variety of deep learning areas such as Image

Classification (IC), Natural Language Processing (NLP), etc.

Deprecated API search. First, we clone the Models repository from Github to our local machine.

For each repository branch, we determine which TensorFlow API version it is using, so that we

24

Table 4.4: Statistic overview of selected Models branches

Branch SLOC Methods Models API Version

r2.3 53K 939 12 2.3
r2.2 51K 956 9 2.2
r2.1 47K 848 9 2.1
r2.0 31K 638 8 2.0
r1.13 12K 285 5 1.13
r1.12 11K 254 5 1.12
r1.11 10K 227 5 1.11
r1.10 9K 218 5 1.10

Table 4.5: Deep learning models in Models r2.3

Model Category Designers

EfficientNet Image Classification Lin, Goyal, Girshick, He, and Dollár (2017)
Mnist Image Classification LeCun, Bottou, Bengio, and Haffner (1998)
ResNet Image Classification K. He, Zhang, Ren, and Sun (2016)
Mask R-CNN Object Detection and Segmentation K. He, Gkioxari, Dollár, and Girshick (2017)
RetinaNet Object Detection and Segmentation Lin et al. (2017)
ShapeMask Object Detection and Segmentation Kuo, Angelova, Malik, and Lin (2019)
ALBERT Natural Language Processing Lan et al. (2019)
BERT Natural Language Processing Devlin, Chang, Lee, and Toutanova (2018)
NHNet Natural Language Processing Gu et al. (2020)
Transformer Natural Language Processing Vaswani et al. (2017)
XLNet Natural Language Processing Yang et al. (2019)
NCF Recommendation X. He et al. (2017)

can know what deprecated APIs it may be using according to the deprecated API list collected

in RQ1. We then look for keywords associated with these deprecated APIs in the source code of

Models. We also add certain filter conditions to reduce the number of false positives. For example,

for the deprecated API conv2d(), we search .conv2d to ensure that it is actually an API invocation.

However, because several Python libraries may have the same API name, there may be some false

positives. As a result, we perform a manual check to filter out false positives after extracting all of

the deprecated API used in Models.

Results

In this section, we present the results of RQ3.

Table 4.6 indicates the distribution of deprecated APIs in Models. Column Dep APIs displays

25

Table 4.6: Distribution of deprecated APIs in Models

Branch Mnist Res1 Reti2 Trans3 XLN4 Oth5 Dep APIs Dep APIs (TF) Per (%)

r2.3 0 1 2 4 2 1 10 190 5.26
r2.2 2 4 1 4 3 0 14 166 8.43
r2.1 2 4 1 4 3 0 14 155 9.03
r2.0 1 5 0 4 2 0 12 150 8.00
r1.13 1 5 0 3 0 1 9 116 7.76
r1.12 0 0 0 0 0 0 0 45 0
r1.11 0 0 0 0 0 0 0 29 0
r1.10 0 0 0 0 0 0 0 23 0

1: Res is ResNet.
2: Reti is RetinaNet.
3: Trans is Transformer.
4: XLN is XLNet.
5: Oth is Others, it includes files not belong to any particular model.

the number of deprecated APIs used in Models, whereas column Dep APIs (TF) displays the total

number of deprecated APIs in the corresponding TensorFlow version. Column Per (%) displays the

percent of the number of deprecated APIs used in Models to that in the corresponding TensorFlow

version. We could see that in Models r2.3, there are 10 deprecated APIs used, which is 5.26% of the

total deprecated APIs in TensorFlow 2.3. A similar proportion of deprecated APIs exists in versions

2.3, 2.2, 2.1, 2.0, and 1.3 of the Models. The result indicates that there are still some deprecated

APIs in Models even though TensorFlow does not recommend using them. Models versions r1

.12, r1.11.0, and r1.10.0 do not have any deprecated APIs, which could be due to the fact that

these branches have fewer source lines of code, and the total number of deprecated APIs before

TensorFlow 1.13 is lower, as discussed in RQ1.

Table 4.7 presents the frequency of deprecated APIs used in Models. The most frequent API is

tf.to_float(), which appears 61 times followed by tf.to_int32() appears 50 times. tf.data.

experimental.parallel_interleave (24) and tf.py_func (18) both have a frequency more than

15 times. In Models, 16 of the 17 deprecated APIs appear twice or more. Models is well maintained

by TensorFlow official developers, and employs the latest up-to-date APIs. However, there are still

203 deprecated API calls in this project, not to mention third-party projects that may not be able to

update their TensorFlow releases in time. This result is similar with what found in Android, where

Li et al. (2020) indicates that 61.97% Android apps are making use of deprecated APIs. Although

26

Table 4.7: Frequence of deprecated APIs being used in Models

API Frequency

tf.to float 61
tf.to int32 50
tf.data.experimental.parallel interleave 24
tf.py func 18
tf.sparse to dense 9
tf.data.make one shot iterator 6
tf.io.tf record iterator 5
tf.keras.backend.set learning phase 5
tf.nn.softmax cross entropy with logits 4
tf.layers.batch normalization 4
tf.layers.conv2d 4
tf.layers.dense 4
tf.layers.max pooling2d 4
tf.data.experimental.map and batch 3
tf.test.is gpu available 2
tf.test.TestCase.test session 2
tf.config.experimental run functions eagerly 1

Total 203

most of these APIs appear easy to migrate, the developers are not doing so. To investigate the

advantages or disadvantages of migrating these APIs, we manually update them and observe the

effect in model accuracy in RQ4.

RQ3 Finding

Despite the fact that Models is well-maintained by TensorFlow official, it still has deprecated

APIs. There was no deprecated API in Models prior to TensorFlow 1.13. However, following

the release of TensorFlow 1.13, deprecated APIs (∼ 5-10 % of TensorFlow deprecated APIs)

have appeared, which could be attributed to the significant increase in deprecated APIs in

TensorFlow 1.13.

27

4.4 RQ4: Do deprecated APIs in deep learning models affect the ac-

curacy of models? If so, how much does accuracy suffer?

Motivation

According to RQ3, even in projects maintained by TensorFlow official like Models, there are still

deprecated APIs. To the best of our knowledge, no prior research has looked into how deprecated

APIs in deep learning projects affect model accuracy. To fill this gap, we manually upgrade the

deprecated APIs found in RQ3 and compare the model accuracy difference before and after updating

to investigate the potential impact of deprecated APIs on deep learning models.

Approach

To answer RQ4, we first identify all deep learning models that use all of the deprecated APIs (17)

collected in RQ3. Then we train and test models 20 times with their original parameters. Following

that, we update deprecated API invocations for one deprecated API based on replacement messages

from its annotation and documentation, then repeat the training and testing a further 20 times. In

this way, we can collect the model accuracy before and after deprecated API updating, yielding 40

result records (i.e., 20 before and 20 after) for each deprecated API. We follow the same procedure

for all deprecated APIs. Finally, we compute the p-value and Cohen’s D through the t-test API in

pingouin library between the results before and after deprecated API update for each deprecated

API to look into the impact of deprecated APIs on deep learning models. pingouin (Vallat, 2018)

is an open source python package used to perform statistical computation.

Among all the 17 distinct deprecated APIs used in Models, 5 APIs obviously have no impact on

model accuracy and are therefore excluded from our experiment:

• tf.data.make_one_shot_iterator, tf.io.tf_record_iterator: designed to iterate over

training data, without resolving value computations.

• tf.test.is_gpu_available: a method for displaying GPU information that has no impact

on model accuracy.

28

Table 4.8: Deprecated API and its replacement

Deprecated API Replaced API

tf.to float tf.cast
tf.to int32 tf.cast
tf.data.experimental.parallel interleave tf.data.Dataset.interleave
tf.py func tf.py function
tf.sparse to dense tf.sparse.to dense
tf.nn.softmax cross entropy with logits tf.nn.softmax cross entropy with logits v2
tf.layers.batch normalization tf.keras.layers.BatchNormalization
tf.layers.conv2d tf.keras.layers.Conv2D
tf.layers.dense tf.keras.layers.Dense
tf.layers.max pooling2d tf.keras.layers.MaxPool2D
tf.data.experimental.map and batch tf.data.Dataset.map; tf.data.Dataset.batch
tf.config.experimental run functions eagerly tf.config.run functions eagerly

• tf.keras.backend.set_learning_phase: used to specify whether the current phase is train-

ing or testing.

• tf.test.TestCase.test_session: called in a file located in the official/utils/testing folder,

which normally contains helper files and is unrelated to any particular model.

For the remaining 12 deprecated APIs, we manually updated them following the replacement

messages. Table 4.8 shows the deprecated API and its replacement.

Table 4.9: Deep Learning Models and used Datasets

Models Dataset Training Steps Hardware

Minst Minst (LeCun et al., 1998) 24,000 Tesla V100
Transformer WMT17(Bojar et al., 2017) 5,000 Tesla V100
Resnet Cifar-10 (Krizhevsky, 2009) 390 Google v3-8
Resnet ImageNet (Russakovsky et al., 2015) 5,000 Google v3-8
XLnet IMDB (Maas et al., 2011) 2,000 Google v3-8
RetinaNet COCO (Lin et al., 2014) 5,000 Google v3-8

In RQ3, we found deprecated APIs in 5 deep learning models. Table 4.9 shows the Deep Learn-

ing Models and used Datasets. We trained and tested these models on a Tesla V100 GPU and Google

v3-8 TPU, and our deep learning models are trained and tested using the same settings listed in doc-

umentation except for the training steps. Ideally, these deep learning models should be trained as

many times as possible to achieve satisfying accuracy, which may take a long period. However,

29

because our research focuses on differences in accuracies before and after deprecated API updates

rather than predicting the dataset, a large training step number is unnecessary.

p-value is a statistical measure for indicating the statistical significance of relationships between

two data groups (Thiese, Ronna, & Ott, 2016). It is a probability that indicates whether the null

hypothesis (i.e., assuming no difference between the two groups of data samples) is rejected or

not. If the p-value is less than a certain threshold (typically 0.05), the null hypothesis is rejected,

implying that there is a difference between the two data samples. In this study, our null hypothesis

is that model accuracy before and after deprecated API updating remains the same, therefore if the

p-value is less than the threshold (0.05), the model accuracy has a difference; otherwise, it does not.

Cohen’s D is an effect size used to indicate the magnitude of the difference between data groups

(Sullivan & Feinn, 2012). As the effect size grows, the relationship between two data groups gets

stronger. Cohen’s D of 0.2 is considered as a small effect, 0.5 is medium, and 0.8 is large. Cohen’s D

is independent of sample size, but p-value will be influenced by sample size, while with a sufficiently

large sample, the p-value will almost always show significant (Sullivan & Feinn, 2012). Therefore,

In this study, we use Cohen’s D combined with p-value to measure the model accuracy difference

before and after deprecated API updates.

t-test is a type of statistical test that is used to compare the means of two groups (Yim, Nahm,

Han, & Park, 2010). Two sample t-test consists of independent samples and paired samples. Inde-

pendent samples are independent of each other, while paired samples are dependent on each other.

The model accuracies before and after deprecated API updates are two independent samples. There-

fore, In our test, we used the independent t-test to evaluate the model accuracy difference before

and after updating the deprecated APIs.

Results

In this section, we present the results of RQ4.

We trained and tested the associated deep learning models for the 12 deprecated APIs, and the

results are included in Table 4.10. Column API Name displays the names of deprecated APIs,

and their full-qualified names can be found in Table 4.7. Column Version is the TensorFlow API

version for each deprecated API. Column Model displays the deep learning model that encloses

30

Table 4.10: Difference in accuracy of deep learning models before and after deprecated API
updates

API Name Version Model Train Acc (B) Acc (A) p-val Cohen’s D

to_int32 1.13.0 Mnist 24,000 99.26% 99.27% 0.59 0.17 (S)
soft1 2.2.0 Trans8 5,000 4.59 4.63 0.56 0.18 (S)
to_int32 1.13.0 Trans 5,000 4.94 4.89 0.77 0.11 (S)
to_float 1.13.0 Trans 5,000 4.94 4.79 0.34 0.39 (M)
sparse2 2.1.0 ResNet 390 16.13% 16.67% 0.75 0.10 (S)
exp3 2.3.0 ResNet 5,000 0.19% 0.22% 0.32 0.35 (M)
conv2d 1.13.0 ResNet 5,000 0.16% 0.17% 0.79 0.08 (S)
max_4 1.13.0 ResNet 5,000 0.16% 0.17% 0.86 0.06 (S)
dense 1.13.0 ResNet 5,000 0.16% 0.21% 0.14 0.47 (M)
batch5 1.13.0 ResNet 5,000 0.16% 0.21% 0.17 0.44 (M)
map_6 2.1.0 XLnet 2,000 90.02% 90.00% 0.51 0.21 (M)
parallel7 2.1.0 XLnet 2,000 90.02% 90.16% 0.61 0.16 (S)
py_func 2.1.0 RetinaNet9 5,000 0.24 0.24 0.35 0.30 (M)

1: soft is softmax_cross_entropy_with_logits
2: sparse is sparse_to_dense
3: exp is experimental_run_functions_eagerly
4: max_ is max_pooling2d
5: batch is batch_normalization
6: map_ is map_and_batch
7: parallel is parallel_interleave
8: Trans is Transformer and uses BLEU score (Papineni, Roukos, Ward, & Zhu, 2002)
to evaluate model accuracy.
9: RetinaNet uses Average Precision at IoU=.50:.05:.95(Lin et al., 2021) to evaluate
model accuracy.

each deprecated API. Column Train is the training steps for each model. Columns Acc (B) and

Acc (A) display average model accuracy before and after deprecated API updates, respectively.

In columns p-val and Cohen’D, we measure the difference between the model accuracy before

and after deprecated API updates by p-value and Cohen’D respectively. In column Cohen’D, S

denotes a small effect, and M denotes a medium effect. Notably, there is a speacial case where the

deprecated API to_int32() is invoked in both the Mnist and Transformer models. The p-value of

model accuracy for Mnist and Transformer are 0.59 and 0.77, accordingly, which are significantly

greater than the threshold (0.05), indicating that there is no statistically significant difference in

model accuracy before and after deprecated API updates. According to table 4.10, max_pooling2d

() in ResNet model has the highest p-value (0.86). The smallest p-value (0.14) is found in dense()

31

in ResNet, however it is still greater than the threshold (0.05), i.e, none of these deprecated APIs

has p-value lower than the threshold (0.05). For seven deprecated APIs, Cohen’s D depicts small

effects, indicating that the model accuracy difference is insignificant. Six deprecated APIs have a

medium effect of Cohen’s D, but their p-value is less than the threshold (0.05), therefore there is no

significant difference in model accuracy.

In this study, we trained and tested each deep learning model 40 times, 20 times with deprecated

API, and 20 times with replaced APIs. However, p-value is influenced by sample size, while if the

sample size is big enough, the p-value will always be smaller than the threshold (0.05). A 20 size

sample may not be big enough for p-value. A much larger sample is not achievable due to the

limited computation ability in our study. Therefore, research in future work may need to find other

ways to evaluate the deep learning model accuracies.

In summary, deprecated APIs are used in deep learning projects, but some (5 out of 17) are not

directly related to model computation. In our experiment, accuracy difference between deprecated

API and their replacements does not appear to be significant (12 out of 17).

RQ4 Finding

Based on our 13 tests involving 12 deprecated APIs, none of the deprecated API in our

experiment has p-value lower than the threshold (0.05). Cohen’s D depicts a medium effect

for 6 tests and a small effect for 7 tests. The result implies that accuracy changes do not

incentivize the users of these APIs to migrate to the replacement APIs.

32

Chapter 5

Threats to Validity

In this section, we discuss the threats to the validity of our research.

External validity Threats to external validity are concerned with the extent to which we can

generalize our results. In order to answer RQ3, we examined models found at Models with different

TensorFlow versions. This TensorFlow official repository is well-maintained and does not contain

numerous deprecated APIs for RQ4 analysis. In the future, we will gather more deprecated APIs

for analysis from more projects. In RQ1, we only studied APIs that have @deprecated decorator.

Our results may not generalize to general API changes.

Construct validity Threats to construct validity are concerned with the validity of our conclu-

sions within the constraints of the dataset we used. In RQ2, we identified six rationales why APIs

become deprecated. However, manual analysis is used to accomplish this identification, which may

result in some bias. To reduce result bias in our experiment, we used pair review and discussed

any disagreements with a third reviewer. In RQ4, we evaluated the model accuracy difference. To

reduce confounding factors, we train and test models 20 times with deprecated API and repeat the

training and testing a further 20 times after updating these deprecated APIs.

Internal validity Threats to internal validity are concerned with how our experiments were

designed. In RQ4, we trained and tested the deep learning model using its default settings, but

we reduced the number of training steps from the documentation. It is probable that the training

procedures are not adequate to produce accurate results. However, these reduced training steps are

appropriate because our study does not focus on data prediction. In addition, we trained and tested

33

each deep learning model 40 times because of the limited computation resources. This sample

size may not be big enough for p-value. Increasing the sample size to several hundred may not be

practical. Therefore, future research may need to find another method to evaluate model accuracy

before and after deprecated API updating.

34

Chapter 6

Related Works

In prior research, many studies have been conducted on API evolution and its impacts on

projects. We discuss some related work in this section.

API Deprecation

Deprecated APIs often follow a deprecated-replace-remove cycle, in which APIs are first marked

as deprecated, and then replacement messages are supplied to developers to aid with code migra-

tion. Finally, these deprecated APIs are removed after a period of development time. However,

API deprecation is not always appropriately addressed. Wang, Li, Liu, and Cai (2020) present an

exploratory study of deprecated python APIs and discover that Python library contributors often

ignore the recommended package and implement ad-hoc strategies to deprecate APIs. These strate-

gies differ from library to library, while each library may use multiple strategies. Ko et al. (2014)

investigate the document quality of deprecated APIs and reveal that only 61% of deprecated API

documents provide alternative APIs while rationale and examples are rarely documented, leaving

many deprecated API usages in client applications unresolved. Brito, Hora, Valente, and Robbes

(2016) examine the frequency of deprecation messages in 661 real-world Java systems and discover

that only 64% of the API are deprecated with replacement messages, implying that almost no signif-

icant effort is made to enhance deprecation messages over time. Zhou and Walker (2016) discover

that many APIs are removed without prior deprecation or are afterward un-deprecated, and such

35

APIs are even resurrected with unexpected frequency. These works, on the other hand, are focused

on more traditional software research areas related to Java or Android. As indicated by Zhang et al.

(2020), the API evolution patterns in Python or TensorFlow largely differ. To fill this gap, our study

investigates the deprecation situation in TensorFlow.

Furthermore, many researchers investigate the migration of deprecated APIs. Haryono et al.

(2020) and Štrobl and Tronı́ček (2013) propose automated approaches to update deprecated APIs

in Android and Java. Lamothe and Shang (2018) presents practical experience about automated

API migrating techniques based on documentation and historical code changes. They disclose that

official documentation contributes the majority (75.3%) of the information to suggest API migra-

tions. However, the automation approach in deep learning fields has received little attention and

will require further research in the future. In addition, some study are conducted about the rationale

behind API deprecation. Sawant et al. (2018) perform a manual analysis of 374 deprecated meth-

ods’ Javadoc and other data sources, revealing 12 reasons why API providers deprecate a feature.

Similarly, we conduct an empirical study about API deprecation reasons in TensorFlow.

Impact of API Evolution

Researchers have conducted some research on developers’ reactions to deprecated APIs. Li et

al. (2020) present a CDA approach for characterizing deprecated Android APIs and discover that

37.87% of APPs use deprecated APIs, with Google Play accessing deprecated APIs at a higher rate

than other markets. Ko et al. (2014) investigate the quality of API documents and find that only 49%

of deprecated APIs are updated if the related API documents do not provide alternative APIs. In our

research, we look at the use of deprecated APIs in deep learning models, and our results indicate

that 5-10% of TensorFlow deprecated APIs appear in the analyzed projects.

API evolution brings many advantages and optimizations to the framework but also introduces

certain issues. Hora et al. (2018) examine 118 API changes extracted from a large-scale system

and disclose that API changes can affect the entire ecosystem in terms of client systems, methods,

developers. Zhang et al. (2020) find that Python framework API evolution may result in unexpected

behavior in client applications and propose an approach for discovering these issues automatically.

36

Our study extends these efforts into deep learning to conduct an analysis of the effect of deprecated

APIs on model accuracy.

37

Chapter 7

Conclusion

In this thesis, we conduct an empirical study on deprecated Python APIs in TensorFlow. We have

investigated the evolving pattern of deprecated APIs in 20 TensorFlow releases spanning Tensor-

Flow 1.0 to TensorFlow 2.3. In addition, we analyzed the deprecation messages for 235 deprecated

APIs to determine their deprecation rationales. Moreover, we gathered 12 deep learning models

and studied the deprecated API distribution in these projects. We then manually updated deprecated

APIs found and evaluated accuracy differences by training and testing these models before and after

deprecated APIs updating to explore the impact of deprecated APIs on deep learning models.

Our results reveal that 1) Deprecated APIs increases constantly as TensorFlow evolves while

only a small portion (4.52%) of deprecated APIs are removed eventually, but their survival time

is quite short (2 versions in median). Most deprecated APIs take a comparatively long period

(12 versions in median) to get deprecated since they were introduced into TensorFlow. 2) The

primary reasons for deprecating TensorFlow API are optimization improvements (e.g., API Op-

timization (53.77%)) for the method level and usability improvements (e.g., Parameter Name

Change (91.67%)) for the parameter level. 3) There exist few deprecated APIs (∼5-10%) in Mod-

els projects. 4) Among all of the deprecated APIs we analyzed, none of them has p-value lower

than the threshold (0.05), and Cohen’s D displays medium effect for 6 tests and small for 7 tests.

The result implies that there is no significant accuracy difference following deprecated API updates.

Therefore, accuracy changes do not incentivize the users of these APIs to migrate to the replacement

APIs.

38

In future work, we intend to gather more deep learning projects to evaluate the deprecated APIs’

impact on model performance. We also intend to extend our study to other deep learning frameworks

such as PyTorch.

39

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., . . . others (2016). Tensor-

flow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint

arXiv:1603.04467.

Bojar, O., et al. (Eds.). (2017). Proceedings of the second conference on machine transla-

tion. Copenhagen, Denmark: Association for Computational Linguistics. Retrieved from

http://www.aclweb.org/anthology/W17-47

Brito, G., Hora, A., Valente, M. T., & Robbes, R. (2016). Do developers deprecate APIs with

replacement messages? a large-scale analysis on java systems. In 2016 ieee 23rd international

conference on software analysis, evolution, and reengineering (saner) (Vol. 1, pp. 360–369).

Carbonnelle, P. (2021). Pypl popularity of programming language. http://pypl.github

.io/PYPL.html. ([Online; accessed 15-July-2021])

Community, T. (2021). Tensorflow case studies. https://www.tensorflow.org/about/

case-studies. ([Online; accessed 25-July-2021])

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional

transformers for language understanding. arXiv preprint arXiv:1810.04805.

Dietrich, J., Jezek, K., & Brada, P. (2014). Broken promises: An empirical study into evolution

problems in java programs caused by library upgrades. In 2014 software evolution week-ieee

conference on software maintenance, reengineering, and reverse engineering (csmr-wcre)

(pp. 64–73).

Gu, X., Mao, Y., Han, J., Liu, J., Wu, Y., Yu, C., . . . Zukoski, N. (2020). Generating representative

headlines for news stories. In Proceedings of the web conference 2020 (pp. 1773–1784).

40

http://www.aclweb.org/anthology/W17-47
http://pypl.github.io/PYPL.html
http://pypl.github.io/PYPL.html
https://www.tensorflow.org/about/case-studies
https://www.tensorflow.org/about/case-studies

Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., & Lew, M. S. (2016). Deep learning for visual

understanding: A review. Neurocomputing, 187, 27–48.

Hargrave, M. (2021). What is deep learning? https://www.investopedia.com/terms/

d/deep-learning.asp. ([Online; accessed 15-July-2021])

Haryono, S. A., Thung, F., Kang, H. J., Serrano, L., Muller, G., Lawall, J., . . . Jiang, L. (2020).

Automatic android deprecated-API usage update by learning from single updated example. In

Proceedings of the 28th international conference on program comprehension (pp. 401–405).

He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r-cnn. In Proceedings of the ieee

international conference on computer vision (pp. 2961–2969).

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In

Proceedings of the ieee conference on computer vision and pattern recognition (pp. 770–

778).

He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T.-S. (2017). Neural collaborative filtering.

In Proceedings of the 26th international conference on world wide web (pp. 173–182).

Hora, A., Robbes, R., Valente, M. T., Anquetil, N., Etien, A., & Ducasse, S. (2018). How do

developers react to API evolution? a large-scale empirical study. Software Quality Journal,

26(1), 161–191.

Keras. (2021). Keras: the python deep learning API. https://keras.io/. ([Online; accessed

15-July-2021])

Ko, D., Ma, K., Park, S., Kim, S., Kim, D., & Le Traon, Y. (2014). API document quality for

resolving deprecated APIs. In 2014 21st asia-pacific software engineering conference (Vol. 2,

pp. 27–30).

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images (Tech. Rep.).

Kuo, W., Angelova, A., Malik, J., & Lin, T.-Y. (2019). Shapemask: Learning to segment novel

objects by refining shape priors. In Proceedings of the ieee/cvf international conference on

computer vision (pp. 9207–9216).

Lamothe, M., & Shang, W. (2018). Exploring the use of automated API migrating techniques in

practice: an experience report on android. In Proceedings of the 15th international conference

on mining software repositories (pp. 503–514).

41

https://www.investopedia.com/terms/d/deep-learning.asp
https://www.investopedia.com/terms/d/deep-learning.asp
https://keras.io/

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2019). ALBERT: A

lite BERT for self-supervised learning of language representations. CoRR, abs/1909.11942.

Retrieved from http://arxiv.org/abs/1909.11942

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to docu-

ment recognition. Proceedings of the IEEE, 86(11), 2278–2324.

Li, L., Bissyandé, T. F., Klein, J., & Le Traon, Y. (2016). Parameter values of android apis: A

preliminary study on 100,000 apps. In 2016 ieee 23rd international conference on software

analysis, evolution, and reengineering (saner) (Vol. 1, p. 584-588). doi: 10.1109/SANER

.2016.51

Li, L., Gao, J., Bissyandé, T. F., Ma, L., Xia, X., & Klein, J. (2020). Cda: Characterising deprecated

android APIs. Empirical Software Engineering, 1–41.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal loss for dense object detection.

In Proceedings of the ieee international conference on computer vision (pp. 2980–2988).

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., . . . Zitnick, C. L. (2014).

Microsoft coco: Common objects in context. In European conference on computer vision

(pp. 740–755).

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., . . . Zitnick, C. L.

(2021). Detection evaluation metrics used by coco. https://cocodataset.org/

#detection-eval. ([Online; accessed 15-July-2021])

Lopez, M. M., & Kalita, J. (2017). Deep learning applied to nlp. arXiv preprint arXiv:1703.03091.

Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., & Potts, C. (2011, June).

Learning word vectors for sentiment analysis. In Proceedings of the 49th annual meeting

of the association for computational linguistics: Human language technologies (pp. 142–

150). Portland, Oregon, USA: Association for Computational Linguistics. Retrieved from

http://www.aclweb.org/anthology/P11-1015

Papineni, K., Roukos, S., Ward, T., & Zhu, W.-J. (2002). Bleu: a method for automatic evaluation

of machine translation. In Proceedings of the 40th annual meeting of the association for

computational linguistics (pp. 311–318).

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., . . . Fei-Fei, L. (2015). ImageNet

42

http://arxiv.org/abs/1909.11942
https://cocodataset.org/#detection-eval
https://cocodataset.org/#detection-eval
http://www.aclweb.org/anthology/P11-1015

Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV),

115(3), 211-252. doi: 10.1007/s11263-015-0816-y

Sawant, A. A., Huang, G., Vilen, G., Stojkovski, S., & Bacchelli, A. (2018). Why are features dep-

recated? an investigation into the motivation behind deprecation. In 2018 ieee international

conference on software maintenance and evolution (icsme) (pp. 13–24).

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks, 61,

85–117.

Štrobl, R., & Tronı́ček, Z. (2013). Migration from deprecated API in java. In Proceedings of

the 2013 companion publication for conference on systems, programming, & applications:

software for humanity (pp. 85–86).

Sullivan, G. M., & Feinn, R. (2012). Using effect size—or why the p value is not enough. Journal

of graduate medical education, 4(3), 279–282.

TensorFlow. (2021). Tensorflow official website. https://www.tensorflow.org. ([Online;

accessed 25-July-2021])

Thiese, M. S., Ronna, B., & Ott, U. (2016). P value interpretations and considerations. Journal of

thoracic disease, 8(9), E928.

Vallat, R. (2018). Pingouin: statistics in python. Journal of Open Source Software, 3(31), 1026.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . . Polosukhin, I.

(2017). Attention is all you need. In Advances in neural information processing systems (pp.

5998–6008).

Wang, J., Li, L., Liu, K., & Cai, H. (2020). Exploring how deprecated python library APIs are (not)

handled. In Proceedings of the 28th acm joint meeting on european software engineering

conference and symposium on the foundations of software engineering (pp. 233–244).

Wei, L., Liu, Y., & Cheung, S.-C. (2016). Taming android fragmentation: Characterizing and detect-

ing compatibility issues for android apps. In Proceedings of the 31st ieee/acm international

conference on automated software engineering (pp. 226–237).

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). Xlnet: General-

ized autoregressive pretraining for language understanding. Advances in neural information

processing systems, 32.

43

https://www.tensorflow.org

Yim, K. H., Nahm, F. S., Han, K. A., & Park, S. Y. (2010). Analysis of statistical methods and

errors in the articles published in the korean journal of pain. The Korean journal of pain,

23(1), 35.

Yu, H., Chen, C., Du, X., Li, Y., Rashwan, A., Hou, L., . . . Li, J. (2020). TensorFlow Model

Garden. https://github.com/tensorflow/models.

Zhang, Z., Yang, Y., Xia, X., Lo, D., Ren, X., & Grundy, J. (2021). Unveiling the mystery of api

evolution in deep learning frameworks: A case study of tensorflow 2. In 2021 ieee/acm 43rd

international conference on software engineering: Software engineering in practice (icse-

seip) (p. 238-247). doi: 10.1109/ICSE-SEIP52600.2021.00033

Zhang, Z., Zhu, H., Wen, M., Tao, Y., Liu, Y., & Xiong, Y. (2020). How do python framework

APIs evolve? an exploratory study. In 2020 ieee 27th international conference on software

analysis, evolution and reengineering (saner) (pp. 81–92).

Zhou, J., & Walker, R. J. (2016). API deprecation: a retrospective analysis and detection method

for code examples on the web. In Proceedings of the 2016 24th acm sigsoft international

symposium on foundations of software engineering (pp. 266–277).

44

https://github.com/tensorflow/models

	List of Figures
	List of Tables
	Introduction
	Background
	TensorFlow Python APIs
	API Deprecation
	Deep Learning with TensorFlow

	Experimental Setup
	TensorFlow versions
	Deep Learning models

	Case Study Results
	RQ1: How many TensorFlow APIs are deprecated over time?
	RQ2: Why did TensorFlow APIs become deprecated?
	RQ3: Are TensorFlow deprecated APIs still used in user projects, if so, to what extent?
	RQ4: Do deprecated APIs in deep learning models affect the accuracy of models? If so, how much does accuracy suffer?

	Threats to Validity
	Related Works
	Conclusion
	Bibliography

