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ABSTRACT 

Resource Allocation in Collocated Massive MIMO for 5G and Beyond 
 

Maryam Miriestahbanati 

 

Massive multiuser multiple-input multiple-output (MIMO) systems have been recently introduced 

as a promising technology for the next generation of wireless networks. It has been proven that 

linear precoders/detectors such as maximum ratio transmitting/maximum ratio combining 

(MRT/MRC), zero forcing (ZF), and linear minimum mean square error (LMMSE) on the 

downlink (DL)/uplink (UL) transmission can provide near optimal performance in such systems. 

Acquiring channel state information (CSI) at the transmitter as well as the receiver is one of 

the challenges in multiuser massive MIMO that can affect the network performance. Any data 

transmission in multiuser massive MIMO systems starts with the user transmitting UL pilots. The 

base station (BS) then uses the MMSE estimation method to accurately estimate the CSI from the 

pilot sequences. Since the UL and DL channels are reciprocal in time division duplex (TDD) mode, 

the BS employs the obtained CSI to precode the data symbols prior to DL transmission. The users 

also need the CSI knowledge to accurately decode the DL signals. Beamforming training (BT) 

scheme is one of the methods that is proposed in the literature to provide the CSI knowledge for 

the users. In this scheme, the BS precodes and transmits a pilot sequence to the users such that 

each user can estimate its effective channel coefficients. 

Developing an optimal resource distribution method that enhances the system performance is 

another challenging issue in multiuser massive MIMO. As mentioned earlier, CSI acquisition is 

one of the requirements of multiuser massive MIMO, and UL pilot transmission is the common 

method to achieve that. Conventionally, equal powers have been considered for the pilot 

transmission phase and data transmission phase. However, it can be shown that the performance 

of the system under this method of power distribution is not optimal.  

Therefore, to further improve the performance of multiuser massive MIMO technology, 

especially in cases where the antenna elements are not well separated and the propagational 

dispersion is low, optimal resource allocation is required. Hence, the main objective of this 
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M.A.Sc. thesis is to develop an optimal resource allocation among pilot and data symbols to 

maximize the spectral efficiency, assuming different receivers such as MRC, ZF, and LMMSE are 

employed at the BS. Since the calculation of spectral efficiency using the lower bound on the 

achievable rate is computationally very intensive, we first obtain closed-form expressions for the 

achievable UL rate of users, assuming the angular domain in the physical channel model is divided 

into a finite number of separate directions. An approximate expression for spectral efficiency is 

then developed using the aforementioned closed-form rates. Finally, we propose a resource 

allocation scheme in which the pilot power, data power, and training duration are optimally chosen 

in order to maximize the spectral efficiency in a given total power budget.  

Extensive simulations are conducted in MATLAB and the results are presented that illustrate 

the notable improvement in the achievable spectral efficiency through the proposed power 

allocation scheme. Moreover, the results show that the performance of the proposed method is 

much superior when the number of channel directions or the number of antennas at BS increases. 

Furthermore, while the advantage of the proposed method is more notable in the case of ZF and 

LMMSE receivers, it still outperforms the equal power allocation method for the MRC receiver in 

terms of spectral efficiency.  
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Chapter 1:  INTRODUCTION 

Due to the rapid evolution of communication technologies and computers, the life cycle of each 

new generation of the cellular network is approximately a decade or less. The primary issue with 

the ongoing wireless networks is that they rely on either increasing bandwidth or densifying the 

cells to achieve the required throughput. These resources are rare, expensive, and are reaching 

their saturation point [1]. Therefore, the fifth generation of wireless networks will emerge soon. 

The requirements set for 5G include 100 times higher connected devices and typical user data in 

comparison to 4G long term evolution advanced (LTE-A), as well as 10 times lower power 

consumption, and 5 times less latency [2]–[4]. Three major complementary technologies identified 

to fulfill these requirements of next generation wireless networks are: i) millimeter-wave 

(mmWave) spectrum occupancy with the carrier frequency range of 30-300 GHz and high 

available bandwidth [5]–[8], ii) massive multiple-input multiple-output (MIMO) technique with 

multiple antenna elements at each base station (BS) [9]–[12], and iii) ultra dense networks (UDNs) 

with extreme utilization of infrastructure in the network [13]–[16]. 

Multiuser massive MIMO is one of the enabling technologies for delivering 5G services to 

mobile users with mmWave. Moreover, due to the multi-user diversity in massive multiuser 

MIMO, the system performance is generally less sensitive to the propagation environment. This 

makes the multiuser massive MIMO technology an important part of multiple communication 

standards such as LTE, 802.11, and 802.16. As it is shown in Figure 1-1, in such systems, a BS with 

a large number of antenna elements serves a number of users in the same time-frequency slot, 

results in a huge enhancement in the spatial multiplexing and diversity gain [9]–[12], [17], [18]. 

Moreover, Massive MIMO has the ability to improve both spectral and energy efficiency—even 

with simple linear processing such as maximum ratio transmitting/maximum ratio combining 

(MRT/MRC), zero forcing (ZF), and linear minimum mean square error (LMMSE)—and helps to 

overcome the path loss of mmWave carrier frequencies [19]–[21]. 
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Figure 1-1- Massive multiuse MIMO system (dashed arrow represents pilot transmission and solid 

arrow shows data transmission) 

In this thesis, we consider the situation where the user’s channels in massive MIMO are 

correlated. The reason for this correlation is that the antenna elements are not well separated in 

practical applications and the propagation dispersion is low [22]. Note that employing optimization 

methods—in order to enhance spectral efficiency—is crucial in such channels. Hence, by 

assuming the channel estimation is done through uplink (UL) training, we propose a novel resource 

allocation in which the data and pilot powers along with the training duration are optimally selected 

to maximize spectral efficiency.  

1.1 Thesis Motivation 

The growth in the number of mobile devices and smartphones has increased the demand for 

bandwidth in telecommunication systems. Moreover, the development of various mobile and 

Internet of Things (IoT) applications has caused a huge surge in need for more bandwidth. The 

mmWave frequency spectrum with an available large bandwidth can promise a very high rate of 

data transmission. However, due to the small wavelength of these frequencies, new spatial 

processing techniques are required. Therefore, we investigate massive MIMO in this thesis, as one 

of the technologies that enable data transmission through mmWaves. As mentioned before, in 

practical applications the users’ channels in collocated massive MIMO are correlated that results 

in spectral efficiency degradation [22]–[24]. This motivates us to investigate the UL spectral 
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efficiency optimization through the resource allocation for such channels, considering multiple 

receivers such as MRC, ZF, and LMMSE at the BS.  

1.2 Literature Review 

Massive multiuser MIMO systems have recently gained much attention. Its ability to improve the 

network performance has made it a promising technology for the next generation of wireless 

networks [9]–[11], [17], [19]–[21], [25], [26]. Specifically, it is shown in [9] that increasing the 

number of antennas without bound eliminates the effect of intracell interference, fast fading, and 

uncorrelated noise. It is also indicated in [20] that for 𝑀 ≫ 𝐾, where 𝑀 and 𝐾 represent the number 

of antennas at the BS and the number of users respectively, reducing the users’ allocated powers 

in proportion to 
1

𝑀
 for the case of perfect channel state information (CSI) knowledge and to 

1

√𝑀
 for 

imperfect CSI still results in the same network performance. In addition, massive MIMO systems 

are employed in the industrial Internet of Things (IoT) to provide connectivity among the devices 

[27]. Massive MIMO systems can also be used in wireless transmission over Terahertz (THz) 

bands in order to overcome blockage and mobility [28]. 

Massive MIMO can be deployed in either a collocated or distributed way. In the collocated 

case (that is also called cellular massive MIMO and investigated in this thesis), the BS is equipped 

with a large number of antennas. While in cell-free massive MIMO the antennas are called access 

points (APs) and distributed randomly all over a coverage area and cover users simultaneously 

[29]–[34]. In other words, in cell-free massive MIMO users are covered by all or a subset of APs 

in a user-centric method and therefore, there are no edge users anymore [35]. While spreading the 

APs over the area increases the backhaul complexity, it improves the coverage probability by using 

the diversity of shadow fading. Specifically, in [29], it is shown that cell-free massive MIMO 

improves 95%-likely per user throughput over a small-cell scheme, in which each AP is dedicated 

to one user. Moreover, a max-min power control algorithm—based on large-scale fading 

coefficients—is applied in [29], in order to ensure a uniform throughput over the coverage area. 

In [31], both MRT—called conjugate beamforming (CB) in this paper—and ZF precodings are 

analyzed in downlink (DL) transmission of a cell-free massive MIMO network. The results 

emphasize that ZF precoding significantly outperforms MRT precoding. However, ZF cannot be 

implemented in a distributed way. In other words, all the processing should be done at the CPU, 

which increases the complexity. 
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Note that channel hardening and favorable propagation are two main properties of the cellular 

massive MIMO. Channel hardening means that by scaling up the antenna array in collocated 

massive MIMO, the channel between the users and antennas at the BS behaves as almost 

deterministic. In other words, the beamforming in massive MIMO transforms the fading channel 

into an almost deterministic channel [25]. Favorable propagation is also another property of 

collocated massive MIMO which means that the channel vectors of the users are almost 

orthogonal. With this property, the communication performance of users is the same as the 

situation when the user is alone in the network [36]. In [37], the authors evaluate if the cell-free 

massive MIMO also inherits the channel hardening and favorable propagation properties. The 

results in [37] show that for the non-singular path loss model with path loss exponent (𝛼)> 2, in 

order to satisfy the channel hardening condition, the AP density should be 𝜆𝑎~1 𝐴𝑃/𝑚
2, which is 

an unrealistic condition in practice. In other words, channel hardening is not a valid assumption in 

deriving the achievable rates of the cell-free massive MIMO for this path loss model. Moreover, 

the results regarding the investigation of the favorable propagation in cell-free massive MIMO 

indicate that the higher antenna density, smaller path loss, and larger distance between two users 

are the factors that help the channels to become nearly orthogonal. Besides, although cell-free 

massive MIMO is capable of providing more uniform service in the network, it requires more 

backhauling traffic as well as more infrastructures that increase the network cost [38]. 

Acquiring the CSI by the BS has a key role in the performance of massive MIMO systems. 

By using the pilot transmission method followed by MMSE estimation in an UL transmission, the 

BS accurately estimates the users’ channel coefficients and as the result, the transmitted data by 

users [39]–[41]. Note that since in practical wireless networks the coherence time is not very long, 

the transmitted pilots in different cells are not typically orthogonal. Hence, to cope with the pilot 

contamination effect due to this non-orthogonality, various low complex pilot assignment 

strategies are proposed in [42].  

CSI acquisition is also necessary for DL transmission. The BS requires the CSI in order to 

precode the signals prior to transmission. In frequency division duplex (FDD) operation, the users 

first estimate the CSI through DL pilots transmitted by the BS and then, send the estimated CSI to 

the BS over a feedback channel [43]. Note that the number of DL pilots is determined according 

to the number of antennas at the BS that makes this process very costly. However, according to 
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the reciprocity property of the channel in the time division duplex (TDD) mode, the BS can apply 

the estimated CSI in the UL for the DL precoding. In other words, in the TDD mode, the pilot 

transmission is determined by the number of users. Since in massive MIMO systems, the number 

of users is less than the antennas at the BS, CSI acquisition under TDD mode is preferable than 

the FDD mode [44]. The users also need the CSI to decode the transmitted signal in the DL 

coherently. In some studies, such as [41] and [45], the users are assumed to be aware of the mean 

of the effective channel gain. While for some practical scenarios in DL transmission that the 

channel does not harden, the blind estimation method is proposed to improve the DL performance 

[46]. 

In most of the studies, orthogonal or independent channel vectors are assumed for users [9], 

[40], [41]. However, the antenna elements are not well separated in practical applications that 

results in low propagational dispersion. Therefore, the channel vectors are correlated and can be 

modeled as 𝑃-dimensional vectors, where 𝑃 indicates the number of angular bins [22]–[24], [47]–

[49]. Note that in a network with correlated channels and 𝑀 ≫ 𝑃, although the energy efficiency 

grows in proportion to the number of antennas 𝑀, the throughput gain is no more than that of a 

network with 𝑃 antennas and uncorrelated channels [22]. Besides, it is known that optimal resource 

allocations can significantly improve the performance. This motivated us to investigate the 

resource allocation in practical applications with correlated channels, where increasing the number 

of BS antennas cannot further improve the throughput. 

Various resource allocation schemes have been proposed in the literature to further improve 

the performance of both collocated and cell-free massive multiuser MIMO systems [29], [33], 

[50]–[58]. Specifically, in [29], by using max-min power control in both the DL and UL of cell-

free massive MIMO, the minimum of the rates of all users is maximized. Applying a bisection 

search to solve this max-min problem results in uniformly good service for all users in different 

locations. In [33], the total energy efficiency of the cell-free massive MIMO, which is defined as 

the total throughput divided by the total power consumption (considering both hardware power 

consumption and backhaul power consumption), is optimized. This energy efficiency 

maximization is done under the per-antenna power constraint and per-user spectral efficiency 

constraint. Moreover, in the received-power-based AP selection method proposed in this paper, 

the selection of APs to serve a user is based on the power control coefficients obtained from the 
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energy efficiency optimization algorithm. A power allocation scheme among pilot power and data 

power is proposed in [50] to optimize the sum spectral efficiency of collocated massive MIMO, 

where only the ZF receiver is investigated at the BS and channel vectors are correlated. By 

applying a power control technique in [51], the spectral efficiency of collocated massive MIMO 

is optimized, assuming the peak power of each user is limited, the channel vectors are correlated, 

and the BS has access to the perfect CSI. In [52], considering only the MRC technique at BS, the 

authors propose a resource allocation scheme that optimizes the training duration as well as the 

data and pilot signal powers for uncorrelated users’ channel vectors. In [54], a scheduling 

mechanism for power allocation is investigated in which at any time slot, only a group of users 

that do not generate interference for each other adjust their power. The authors have proven that 

applying this mechanism can improve the sum rate per cell in networks with a finite number of BS 

antennas and a fixed number of users. In [55], for the MRC technique at the BS, a power allocation 

scheme is proposed in which the power of each pilot symbol and data symbol is optimally selected 

to maximize spectral efficiency in collocated massive MIMO. In [57], a max-min energy efficiency 

optimization problem in collocated multiuser massive MIMO is investigated in which the transmit 

covariance matrix is at first designed per BS and simplified into a beam domain power allocation 

and then, handled by solving a sequence of convex optimization sub-problems. Also, to solve the 

sub-problems, two approaches, i.e., a centralized as well as a distributed approach are proposed. 

In [58], a method of power allocation among pilot and data symbols of all the users is investigated 

that maximizes the spectral efficiency in DL transmission. Note that in none of the aforementioned 

studies, spectral efficiency maximization has been considered for the correlated channels where 

the three linear receivers, namely, MRC, ZF, and LMMSE are employed. Besides, in none of these 

works, a closed-form expression for lower bound on achievable rate has been obtained that can 

reduce the computational complexity. 

Inspired by the above discussion, we investigate the spectral efficiency maximization through 

a resource allocation among pilot and data transmissions, where channel vectors are correlated and 

the three receivers mentioned above are employed. Hence, in this thesis, we propose a scheme in 

which the training duration, pilot power, and data power are optimally selected to maximize the 

UL spectral efficiency of a single-cell multiuser massive MIMO scenario. Besides, since the 

calculation of spectral efficiency using the lower bound on the achievable rate is computationally 

very intensive, we obtain closed-form expressions for spectral efficiency.  
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1.3 Thesis Objectives 

The demand for high rate data transmission has led to research and development efforts towards 

the new generation of wireless communication systems. Even though in the next generation of 

wireless systems a dense implementation of APs and new spectral bands will most likely be used, 

the need for approaches that maximize the spectrum efficiency in a given band will never vanish. 

As discussed in the previous section, there are a number of works in the literature that investigate 

the maximization of spectral efficiency in massive multiuser MIMO systems. However, in none 

of them, the UL spectral efficiency maximization has been considered for the correlated channels 

where the three linear receivers, namely, MRC, ZF, and LMMSE are employed. Hence, the main 

objective of this M.A.Sc. thesis is to investigate and propose a solution for resource allocation, as 

one of the main challenges in collocated massive MIMO with correlated channels. More 

specifically, we consider the UL transmission in a practical scenario in which the channel vectors 

are correlated and propose an optimal resource allocation among data and pilot transmissions, in 

order to improve the network performance. 

1.4 Thesis Scope and Tasks 

In this thesis, by assuming correlated channel vectors, we investigate the spectral efficiency 

maximization of collocated massive MIMO through a resource allocation scheme for MRC, ZF, 

and LMMSE receivers. Although the multi-cell scenario is more practical, the single-cell scenario 

can also be deployed in some applications such as stadiums and rural wireless broadband access 

[44]. Hence, we focus on the single-cell scenario and make the following contributions: 

- Following the method in [22], we derive the achievable UL ergodic rate of the users 

assuming LMMSE receiver is employed at the BS, the channel vectors are correlated, and 

the channel estimation is done through UL pilot transmission. Also, to maintain a consistent 

notation, the UL ergodic rate of MRC and ZF receivers derived in [22] are re-adjusted for 

the single-cell scenario. 

- We derive closed-form approximate UL ergodic rates for MRC, ZF, and LMMSE 

receivers, assuming a uniform linear array at the BS. We also show that these approximate 

rates are very accurate and develop an approximation for spectral efficiency based on these 

rates. 
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- We propose a resource allocation method in which the data and pilot powers along with 

the training duration are optimally selected and maximize the spectral efficiency for the 

three receivers mentioned above. Moreover, in order to find out the receiver for which the 

proposed power allocation is more effective, a comparison among different receivers is 

presented. 

To show the effectiveness of the proposed resource allocation method, different simulations 

are conducted in MATLAB under different physical conditions. In fact, the physical parameters 

that have been considered in this thesis include the number of users, the number of antennas at the 

BS, the number of channel directions, different signal to noise ratio (SNR) values, different users’ 

locations, UL training duration, pilot power, and data power. It is worth mentioning that the results 

related to the ZF receiver are published at the IEEE ICC conference [50]. Besides, the extended 

results related to MRC, ZF, and LMMSE, as well as a comprehensive comparison among all three 

receivers are published in Physical Communication/Elsevier journal [59]. 

1.5 Thesis Layout 

This report is structured as follows:  

In chapter 2, we present the fundamental concepts related to point-to-point MIMO, multiuser 

MIMO, and multiuser massive MIMO and its benefits. Besides, different linear 

precoders/receivers such as MRC, ZF, and LMMSE are briefly introduced in this chapter. 

In chapter 3, the system model that includes a MIMO channel with finite dimensions is 

presented. Moreover, the UL transmission that consists of the UL pilot transmission and the data 

transmission phase is investigated. Besides, the achievable UL data transmission rates of MRC, 

ZF, and LMMSE receivers are derived in this section. Assuming a uniform linear antenna array at 

the BS, tight closed-form approximate UL rates are also derived for MRC, ZF, and LMMSE 

receivers. 

The spectral efficiency is developed in chapter 4. This chapter also includes the investigation 

of the proposed power allocation scheme as well as the detailed proof of the concavity of spectral 

efficiency. This chapter also provides the numerical results developed in MATLAB.  

Finally, chapter 5 concludes the report by summarizing the work accomplished in this thesis 

and specifies the future direction of the research. 
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Notation: boldface small and big letters stand for vectors and matrices, respectively. The 

superscripts 𝑇, *, and 𝐻 denote transpose, conjugate, and conjugate transpose, respectively. 𝑰𝑘 is 

a 𝑘 × 𝑘 identity matrix. [𝑿]𝑖𝑗 shows the (𝑖, 𝑗)th entry of matrix 𝑿. Finally, 𝑵~𝒞𝒩(𝟎, 𝑪) represents 

a complex Gaussian matrix with zero mean and covariance matrix 𝑪. 
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Chapter 2:  BACKGROUND 

The goal of this thesis is to establish an optimal resource allocation scheme for multiuser massive 

MIMO systems. Therefore, it is required to review the background related to point-to-point 

MIMO, multiuser MIMO, and massive MIMO and the existing precoders/receivers for this 

technology. Hence, we start this chapter with an overview of point-to-point as well as multiuser 

MIMO. We then investigate multiuser massive MIMO and its potential advantages. Finally, we 

describe MRT/MRC, ZF, and LMMSE as three main linear precoders/receivers in multiuser 

massive MIMO. 

2.1 Point-to-point and Multiuser MIMO 

In this section, we first investigate a point-to-point MIMO transmission and present its achievable 

rate. Then, we briefly investigate the multiuser MIMO channels. Let’s assume a transmitter with 

𝑛𝑡 antennas serves one receiver with 𝑛𝑟 antennas. Using OFDM in the network converts a 

frequency-selective wideband channel into multiple flat-fading narrowband channels [9]. Hence, 

we assume that the MIMO channel is a narrowband time-invariant channel in which the received 

signal by the receiver can be represented by 

𝒚 = √𝑃𝑢𝑮𝒙 + 𝒏, (2-1) 

where 𝒚 is the received vector with the size of 𝑛𝑟 × 1, 𝒙 is the 𝑛𝑡 × 1 transmitted vector with 

𝔼{|𝒙|2} = 1, 𝒏 is 𝑛𝑟 × 1 receiver’s additive white Gaussian noise vector (𝒏~𝒞𝒩(0, 𝑰)), and 𝑃𝑢 

shows the transmitted power or equivalently, the SNR. Under the assumption of perfect knowledge 

of CSI 𝑮, the following capacity can be derived for such channel [60] 

𝐶 = 𝐼(𝒙; 𝒚) = log2 (det (𝑰𝑛𝑟 +
𝑃𝑢
𝑛𝑡
𝑮𝑮𝐻)), 

(2-2) 

where 𝐼(𝒙; 𝒚) indicates the mutual information operator. Besides, the singular value 

decomposition of the propagation channel matrix can be represented by 

𝑮 = 𝝋𝑫𝑣𝝍
𝐻, 

(2-3) 
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where 𝝋 and 𝝍𝐻 are the unitary matrices with size 𝑛𝑟 × 𝑛𝑟 and 𝑛𝑡 × 𝑛𝑡, respectively and 𝑫𝑣 is 

the 𝑛𝑟 × 𝑛𝑡 diagonal matrix that comprises the singular values of 𝑮. Therefore, the capacity given 

by (2-2) can be rewritten as 

𝐶 = ∑ log2(1 +
𝑃𝑢𝜈𝑗

2

𝑛𝑡
)

min (𝑛𝑡,𝑛𝑟)

𝑗=1

, (2-4) 

where 𝜈𝑗s represent the singular values of 𝑮. It can be shown that  

log2 (1 +
𝑃𝑢𝑇𝑟(𝑮𝑮

𝐻)

𝑛𝑡
) ≤ 𝐶 ≤ min (𝑛𝑡, 𝑛𝑟) × log2 (1 +

𝑃𝑢𝑇𝑟(𝑮𝑮
𝐻)

𝑛𝑡min (𝑛𝑡, 𝑛𝑟)
), 

(2-5) 

where if we assume 𝑇𝑟(𝑮𝑮𝐻) ≈ 𝑛𝑡𝑛𝑟(that corresponds to the propagation coefficient magnitude 

of one), we can get 

log2(1 + 𝑃𝑢𝑛𝑟) ≤ 𝐶 ≤ min(𝑛𝑡 , 𝑛𝑟) × log2 (1 +
𝑃𝑢max(𝑛𝑡, 𝑛𝑟)

𝑛𝑡
). 

(2-6) 

It is worth noting that the minimum capacity happens in the case of extreme keyhole propagation 

conditions (where only one of the singular values of 𝑮 has a non-zero value) and the maximum 

happens if all the elements of 𝑮 are independent random variables.  

On the other hand, in multiuser MIMO, the BS is equipped with 𝑀 antennas and serves 

𝐾 single-terminal users simultaneously. Compared to point-to-point MIMO, the advantages of 

multiuser MIMO include [40]:  

- the terminals can be very simple. 

-  broadcast MIMO can better handle the transition between line-of-sight conditions and rich 

scattering propagation conditions. 

- while the point-to-point MIMO can fail to deliver high-throughput in line-of-sight 

conditions, the multiuser MIMO can still provide high-throughput under the same 

condition, as long as the angular separation of the users is larger than the transmit array’s 

Rayleigh resolution. 

It can be shown that under favorable conditions (where the users’ channel vectors are 

asymptotically orthogonal), the sum-capacity of broadcast MIMO is comparable to the point-to-

point MIMO capacity. In other words, 
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𝐶 =∑ log2(1 +𝑀𝑃𝑢𝑑𝑘)

𝐾

𝑘=1

, 
(2-7) 

where 𝑑𝑘 is the large-scale fading coefficients of users. 

A drawback of multiuser MIMO is that the BS must know the CSI. Therefore, when the perfect 

CSI is not available at the BS, the users transmit UL pilot signals prior to the data transmission 

that increases the overhead. It is known that channel knowledge acquisition is simpler under the 

TDD operation. In TDD systems, the DL channel matrix is the transpose of the UL channel matrix 

[25]. Therefore, the BS can employ the channel knowledge acquired through UL pilots for DL 

precoding prior to the transmission. 

2.2 Multiuser Massive MIMO 

As mentioned in the previous section, multiuser MIMO has big advantages—such as working with 

cheap single-antenna terminals and simplified resource allocation—over the point-to-point 

MIMO. However, considering the equal number of transmitted and received antennas as well as 

frequency division duplex (FDD) operation in multiuser MIMO, make it an unscalable technology. 

The idea of implementing an unlimited number of antennas at the BS–that later widely accepted 

as the massive MIMO technique—was firstly introduced by Thomas Marzetta in [9]. In multiuser 

massive MIMO, with a large number of low-power antenna elements at each BS, the energy is 

focused on small space regions that brings a huge improvement in throughput and energy 

efficiency [11]. In general, the potential benefits that can be exploited from massive MIMO can 

be summarized as follows: 

1- spectral efficiency: spatial multiplexing of a large number of users creates more 

multiplexing gain, more throughput, and therefore, higher spectral efficiency. By 

serving multiple users in the same time-frequency resource in massive MIMO, the 

achievable spectral efficiency is ten times more than the conventional MIMO [11], [61]. 

2- capacity and link reliability: it is shown that by increasing the number of antennas, the 

capacity can increase without bound. Besides, the diversity gain provided by massive 

MIMO increases the link robustness [18]. 
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3- energy efficiency: it is shown in [19] that when the number of antennas at the BS 

increases without bound, the transmit power can be reduced in proportion to 
1

𝑀
 in the 

case of perfect CSI, and to 
1

√𝑀
 for imperfect CSI, while keeping the same UL rate. 

4- in addition to the mentioned benefits, security enhancement, robustness improvement, 

simplified signal processing, and cost efficiency are other advantages provided by 

massive MIMO [11], [62], [63]. 

Operating in TDD mode in massive MIMO brings the reciprocity between UL and DL. 

Therefore, channel coefficients can be estimated at BSs through UL pilot transmission and be used 

for precoding in DL transmission. In other words, there is no need for DL pilot transmission by 

BSs and feeding the estimated DL channels back by users [11]. In general, communication and 

data transmission in massive MIMO has three phases: a) UL pilot transmission, b) UL data 

transmission, and c) DL data transmission. In the first phase, each user uses 𝜏 symbols for UL 

training. All users in the same cell transmit mutually orthogonal pilot sequences contemporarily, 

which translates into 𝜏 ≥ 𝐾, where 𝐾 represents the number of active users in each cell. The pilot 

sequences can be represented by matrix √𝜏𝑃𝑃𝜱 with size 𝜏 × 𝐾, where 𝑃𝑃 is the power of each 

pilot symbol, and due to the orthogonality of the pilot sequences we have,  

𝜱𝐻𝜱 = 𝑰𝐾. 
(2-8) 

After receiving pilots, each BS uses an estimator such as MMSE estimator to approximate the 

channel coefficients matrix G between M antennas of BS and K users. Having found the CSI, the 

BS uses a linear precoder/detector (which is based on the estimated CSI) to encode/separate users’ 

data in DL/UL. In other words, assuming a single-cell multiuser massive MIMO scenario, the 

signal received by the BS in the UL can be represented by 

𝒚𝐵𝑆 = √𝑃𝑢𝑮𝒙 + 𝒏, 
(2-9) 

where 𝑮 is the 𝑀 × 𝐾 channel matrix, i.e., [𝑮]𝑚𝑘 indicates the channel coefficient between the 

mth antenna of BS and the kth user. Moreover, 𝑃𝑢, 𝒙, and 𝒏 represent the average power used by 

each user, the 𝐾 × 1 transmitted data vector of 𝐾 users, and the 𝑀 × 1 additive white Gaussian 

noise vector (𝑛𝑚~𝒞𝒩(0,1)), respectively [19]. If 𝑨 shows the 𝐾 ×𝑀 CSI dependent linear 

detection matrix, the BS then multiplies the received signal𝒚𝐵𝑆 by 𝑨 as follows 
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𝒓𝐵𝑆 = 𝑨𝒚𝐵𝑆. (2-10) 

In the DL transmission, using precoding matrix 𝑨, the BS generates the 𝑀 × 1 vector 𝒔, as the 

input to its antennas, as follows 

𝒔 = 𝑨𝑻𝒒, 
(2-11) 

Where 𝒒 is the 𝐾 × 1 symbol vector intended for 𝐾 users. Therefore, the 𝐾 × 1 vector of signals 

received by 𝐾 users equals 

𝒚𝑢 = √𝑃𝑓𝑮
𝑻𝒔 + 𝒘=√𝑃𝑓𝑮

𝑻𝑨𝑻𝒒 + 𝒘, 
(2-12) 

Where 𝑃𝑓 is the average power used by the BS for transmission of each user’s data, and 

𝑤𝑘~𝒞𝒩(0,1) is the additive white Gaussian noise at each user. Finally, assuming users are aware 

of the mean of the effective channel information, each user tries to decode its own data. In the 

following subsection, we investigate MRT/MRC, ZF, and LMMSE as three encoders/detectors 

that are commonly used in massive MIMO.  

2.3 MRT/MRC, ZF, LMMSE Precoders/Detectors 

The complexity issue in massive MIMO is still a concern in practical systems [22]. While the large 

array antennas can be built by simple antenna units, the signal processing should be also simple. 

In this subsection, we briefly analyze three linear common precoders/detectors in massive MIMO. 

2.3.1 MRT precoder/MRC detector 

In MRT/MRC, the encoder/detector matrix is defined as the conjugate-transpose of the estimated 

channel matrix. In other words, if we assume �̂� is the channel estimation matrix, the 

encoding/detection matrix equals  

𝑨 =  �̂�𝐻. 
(2-13) 

In [9], using MRT/MRC as the linear precoder/combiner in DL/UL transmission, it is shown that 

in a multi-cellular network with an infinite number of antennas, the effect of uncorrelated noise 

and small-scale fading vanish, the spectral efficiency is independent of bandwidth, and the number 

of covered users and throughput are also independent of the size of the cells. It is worth mentioning 

that compared to other linear processors, MRT/MRC has the advantage of being able to be 

implemented in a distributed manner.    
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2.3.2 ZF precoder/detector 

In [64], [65], ZF-based linear algorithms are proposed as methods that can approach the capacity 

of the MIMO broadcast channel, where the transmitter and receivers have multiple antennas. The 

ZF processor has the ability to suppress interuser interference. Therefore, it has better performance 

at higher SNRs. In the case of the ZF transmitter/receiver, the detection matrix A equals the 

pseudo-inverse matrix of the conjugate-transposed channel estimation matrix. In other words, 

𝑨 = (�̂�(�̂�𝐻�̂�)−1)𝐻. 
(2-14) 

Different studies have compared the performance of the MRT/MRC to ZF in different 

scenarios [10], [22], [39]. In [10], it is shown that as the number of transmitting antennas at the BS 

grows, ZF precoding performs almost like an interference-free system. Moreover, at low SNRs—

especially for a smaller number of antennas at BS—the MRT precoder outperforms ZF in terms 

of sum-rate capacities and at higher SNRs, ZF has a better performance. It is worth mentioning 

that the MRT encoder approximates the ZF encoder very well when the antenna array is scaled up. 

In [22], the achievable UL rate of a massive MIMO system with a finite-dimensional channel 

model is investigated. The results in [22] emphasize that comparing to MRC, ZF has a better 

performance when the pilot contamination effect is low, and vice versa. Moreover, for a smaller 

number of angular bins, MRC is preferable, while for a larger number of angular bins, ZF has a 

better performance.  

2.3.3  LMMSE-based precoder/detector 

In LMMSE detector, the kth row of the detection matrix can be defined as 

𝒂𝑘 = ((�̂��̂�
𝐻 +

1

𝑃𝑢
𝐜𝐨𝐯(−√𝑃𝑢𝜺𝒙 + 𝒏))

−1�̂�𝑘)
𝐻, 

(2-15) 

where �̂�𝑘 is the kth column of estimated channel matrix �̂�, 𝜺 is the channel estimation error matrix, 

and 𝐜𝐨𝐯(𝜽) represents the covariance matrix of a random vector 𝜽 [19]. In general, different 

optimum formulas are proposed for the LMMSE-based precoding matrix [41], [66]. In [66], the 

optimum precoding matrix, in order to minimize the sum-mean square error (sum-MSE) of a 

single-cell multiuser MIMO, is introduced as 

𝑨 = 𝑐(�̂�𝐻�̂� +
𝐾

𝑃𝑟+1
𝑰 +

𝐾

𝑃𝑑
𝑰)−1�̂�𝐻, 

(2-16) 
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where 𝑐 is used to ensure the compliance of power constraint, 𝑃𝑟 denotes the normalized pilot 

power at each user, and 𝑃𝑑 is the normalized transmit power of the BS. 

To summarize, in MRC, by neglecting the effect of multiuser interference and considering it 

as noise, the received SNR of each stream is maximized. However, the ZF detector neglects the 

effect of noise and maximizes the SINR by inverting the channel matrix and removing the effect 

of the channel. Therefore, it has a better performance in the interference-limited scenarios. It is 

worth mentioning that both MRC and ZF detectors may enhance the noise level, especially when 

the channel coefficients are small. Therefore, in order to take the effect of noise in the equalization, 

the LMMSE method is proposed. The LMMSE detector takes the noise effect into consideration 

and by using the knowledge of SNR, reduces the enhanced interference. Therefore, this detector 

achieves better performance, especially when the noise power is large [18]. 

2.4 Concluding Remarks 

All in all, massive MIMO relies on measuring the frequency responses of the propagation 

channels. This means users (or BSs) should transmit known training signals and the receiver 

estimates the channel coefficients and utilizes them before the movement of users significantly 

changes the channel. In other words, it is assumed in massive MIMO that the total transmission 

time can be divided into multiple coherence intervals and during each coherence interval, pilot 

signals should be transmitted prior to the data transmission. In fact, using the measured CSI makes 

the massive MIMO a scalable technology. However, because of the required overhead for the CSI 

acquisition, the number of users that can be served simultaneously in one cell is limited. Besides, 

the re-use of the same pilots in different cells makes the pilot-derived estimate of the channels to 

be contaminated with interference and hence, degrades the massive MIMO performance [1]. Even 

though in this thesis we focus on the single-cell scenario and do not take the pilot contamination 

effect into account, by applying our proposed resource allocation scheme in a multi-cell scenario 

in the future work, the pilot contamination can also be reduced and the spectral efficiency can be 

further improved. 

Besides, in this thesis, we will consider all three above-mentioned receivers at the BS. In the 

next chapters, we will analytically derive the achievable UL rates of MRC, ZF, and LMMSE 

detectors. By assuming a uniform linear antenna array at the BS, we also develop closed-form 
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approximations for the achievable rate as well as the achievable spectral efficiency of these 

receivers and present a performance comparison among them. 
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Chapter 3:  FINITE-DIMENSIONAL MULTIUSER MASSIVE MIMO 

In this chapter, we first introduce the MIMO channel with finite dimensions [22]. Then, we 

investigate the UL training as well as the UL data transmission phases and by assuming the MMSE 

estimation scheme at the BS, derive the achievable UL rate in the finite-dimensional channel 

model. Finally, we develop the closed-form per-user achievable UL rate for three different linear 

detectors at the BS: MRC, ZF, and LMMSE. In chapter 4, we will use the bounds that we derive 

in this chapter to propose a new resource allocation scheme. 

3.1 System Model 

In a single-cell multi-user massive MIMO, a BS equipped with 𝑀 antennas serves 𝐾 single-

antenna users. We assume the same time-frequency resource is dedicated to all users for UL 

transmission. Therefore, the 𝑀 × 1 received vector at the BS equals 

𝒚 = √𝑃𝑢𝑳𝒙 + 𝒏, 
(3-1) 

where 𝑳 is the 𝑀 ×𝐾 channel matrix between the 𝐾 users and 𝑀 antennas. Here, we assume the 

channel is finite-dimensional and therefore, the angular domain provided by the physical channel 

contains a limited number of directions 𝑃, where 𝑃 ≤ 𝑀. For each direction 𝜙𝑝, 𝑝 = 1,2, … , 𝑃, the 

𝑀 × 1 array steering vector can be written as 

𝒖(𝜙𝑝) =
1

√𝑃
[𝑒−𝑗𝑓1(𝜙𝑝), 𝑒−𝑗𝑓2(𝜙𝑝), … , 𝑒−𝑗𝑓𝑀(𝜙𝑝)]

𝑇
, 

(3-2) 

where 𝜙𝑝 ∈ [−𝜋/2, 𝜋/2], and 𝑓𝑚(𝜙) is a function of 𝜙. Considering a uniform linear antenna 

array at the BS, (3-2) can be modified to 

𝒖(𝜙𝑝) =
1

√𝑃
[1, 𝑒−𝑗2𝜋

𝑑
𝜆
sin(𝜙𝑝), … , 𝑒−𝑗2𝜋

(𝑀−1)𝑑
𝜆

sin(𝜙𝑝)]
𝑇

. (3-3) 

Let 𝑔𝑝𝑘 denote the propagation coefficient of user 𝑘 associated with direction 𝑝. Therefore, the 

channel coefficient between 𝑘th user and the 𝑚th antenna of BS is equal to [𝑳]𝑚𝑘 =

∑ 𝑢𝑚(𝜙𝑝)𝑔𝑝𝑘
𝑃
𝑝=1 , where 𝑢𝑚(𝜙𝑝) is the 𝑚th entry of 𝒖(𝜙𝑝) vector. Hence, the channel matrix 

between the BS and K users can be written as 

𝑳 = 𝑼𝑮, 
(3-4) 
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where 𝑮 is the propagation coefficients matrix with size 𝑃 × 𝐾 that should be estimated at the BS, 

and 𝑼 = [𝒖(𝜙1),… , 𝒖(𝜙𝑃)] is a full rank 𝑀 × 𝑃 matrix. The propagation coefficient 𝑔𝑝𝑘 can be 

defined as 

𝑔𝑝𝑘 = ℎ𝑝𝑘√𝛽𝑘,         𝑝 = 1,… , 𝑃, (3-5) 

where ℎ𝑝𝑘 is the fast fading coefficient, and 𝛽𝑘 represents the large-scale fading coefficient 

including path loss and shadowing. The ℎ𝑝𝑘s, 𝑝 = 1, … , 𝑃, 𝑘 = 1,… , 𝐾 are assumed to be 

independent random variables with zero-mean and unit variance complex Gaussian distribution, 

i.e., 𝒞𝒩(0,1). 𝛽𝑘s, 𝑘 = 1, … , 𝐾 are also supposed to be constant over several coherence intervals 

and known a priori. Therefore, we can represent matrix 𝑮 as 

𝑮 = 𝑯𝑫𝟏/𝟐, 
(3-6) 

where 𝑯 and 𝑫 are the 𝑃 × 𝐾 fast fading coefficients matrix and 𝐾 × 𝐾 diagonal matrix of the 

large-scale fading coefficients, respectively. Note that the BS needs to estimate the matrix 𝑯, while 

𝑼 and 𝑫 are known. Therefore, UL pilots are employed to provide an estimation of the matrix 𝑯. 

We assume each user uses 𝜏 ≥ 𝐾 symbols for UL training, where pilot sequences are mutually 

orthogonal and can be represented by matrix √𝜏𝑃𝑃𝜱. Therefore, the 𝑀 × 𝜏 received pilot matrix 

at the BS can be denoted by 

𝒀𝑝 = √𝜏𝑃𝑃𝑳𝜱
𝑇 +𝑵 = √𝜏𝑃𝑃𝑼𝑮𝜱

𝑇 +𝑵, 
(3-7) 

where 𝑵 is 𝑀 × 𝜏 complex AWGN matrix with i.i.d elements with zero mean and variance equals 

one, i.e., 𝑵~𝒞𝒩(0,1). In order to estimate the channel, the BS projects the received pilot matrix 

on 𝜱∗. Therefore, we have 

�̃�𝑝 = 𝒀𝑝𝜱
∗ = √𝜏𝑃𝑃𝑼𝑯𝑫

𝟏/𝟐 + �̃�, 
(3-8) 

where �̃� = 𝑵𝜱∗~𝒞𝒩(𝟎, 𝑰(𝑀𝐾×𝑀𝐾)). Since the columns of 𝑯 are independent, its 𝑘th column can 

be estimated independently and according to �̃�𝑝,𝑘, that is the 𝑘th column of the projected received 

pilot matrix. Using the MMSE estimator, we have [67] 

�̂�𝑘 = √𝜏𝑃𝑃𝛽𝑘(𝜏𝑃𝑃𝑼
𝐻𝛽𝑘 + 𝑰𝑃)

−𝟏𝑼𝐻�̃�𝑝,𝑘, (3-9) 

where �̃�𝑝,𝑘 = √𝜏𝑃𝑃𝑼𝒉𝑘√𝛽𝑘 + �̃�𝑘. By estimating each column of 𝑯, the estimation of channel 

matrix 𝑳 can be represented as 
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�̂� = 𝑼�̂�𝑫𝟏/𝟐. 
(3-10) 

The channel estimation error can also be defined as 𝜺 = �̂� − 𝑳, that according to the MMSE 

estimation properties, is independent of �̂�. 

As mentioned before, the BS uses a linear detector to separate the received user data streams. 

Therefore, according to (2-10) we have 

𝒓 = √𝑃𝑢𝑨𝑳𝒙 + 𝑨𝒏. (3-11) 

Let 𝑟𝑘 be the 𝑘th element of the received vector 𝒓 and 𝑥𝑘 be the transmitted signal of the 𝑘th user. 

In order to obtain the lower bound of the achievable UL rate of this user, we write 

𝑟𝑘 = √𝑃𝑢𝒂𝑘 �̂�𝑘𝑥𝑘 + ∑ √𝑃𝑢𝒂𝑘 �̂�𝑗𝑥𝑗

𝐾

𝑗=1,𝑗≠𝑘

−∑√𝑃𝑢𝒂𝑘𝜺𝑗𝑥𝑗

𝐾

𝑗=1

+ 𝒂𝑘𝒏. (3-12) 

Therefore, the following UL rate is achievable for the 𝑘th user in the network. 

𝑅𝑘 = 𝔼{log2(1 + SINR𝑘)}, (3-13) 

where  

SINR𝑘 =
𝑝𝑢|𝒂𝑘 �̂�𝑘|

2

𝔼{|√𝑝𝑢 ∑
𝐾
𝑗=1,𝑗≠𝑘 𝒂𝑘 �̂�𝑗𝑥𝑗|

2
|𝒂𝑘, �̂�𝑘} + 𝑝𝑢 ∑

𝐾
𝑗=1 𝒂𝑘𝒄𝒐𝒗(𝜺𝑗)𝒂𝑘

𝐻 + ‖𝒂𝑘‖2
. 

(3-14) 

In the following subsections, we will derive the achievable ergodic rate of the UL transmission 

from the 𝑘th user to the BS for MRC, ZF, and LMMSE receivers. Then, assuming 𝑀 to be large 

enough, we develop an approximate closed-form formula for the ergodic rates. 

3.2 Achievable Uplink Rate of MRC Receiver 

For the MRC receiver, the first term in the denominator of (3-14) can be given by 

𝔼{|√𝑝𝑢 ∑

𝐾

𝑗=1,𝑗≠𝑘

𝒂𝑘 �̂�𝑗𝑥𝑗|

2

|𝒂𝑘, �̂�𝑘} = 𝑝𝑢�̂�𝑘
𝐻
( ∑

𝐾

𝑗=1,𝑗≠𝑘

𝐜𝐨𝐯(�̂�𝑗)) �̂�𝑘. 
(3-15) 

Accordingly, by substituting (2-13) and (3-15) into (3-14) and using the fact that 𝐜𝐨𝐯(�̂�𝑗) =

𝛽𝑗𝐔𝐔
† − 𝐜𝐨𝐯(𝜺𝑗), we have 

𝑅𝑘
𝑀𝑅𝐶 = 𝔼{log2(1 +

‖�̂�𝑘‖
4

�̂�𝑘
𝐻
[(∑ 𝛽𝑗

𝐾
𝑗=1 ) 𝑼𝑼𝐻 − 𝐜𝐨𝐯(�̂�𝑘)]�̂�𝑘 +

1
𝑃𝑢
‖�̂�𝑘‖

2
)}, 

(3-16) 
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where 𝐜𝐨𝐯(�̂�𝑘) = 𝜏𝑃𝑃𝛽𝑘
2𝑼(𝜏𝑃𝑃𝑼

𝐻𝑼𝛽𝑘 + 𝑰𝑃)
−1𝑼𝐻𝑼𝑼𝐻. It can be shown that for a uniform linear 

antenna array given by (3-3), we have 

1

𝑀
𝐮𝐻(𝜙𝑝)𝐮(𝜙𝑞) =

1

𝑀𝑃
∑ 𝑒

𝑗2𝜋
𝑑
𝜆
(𝑠𝑖𝑛(𝜙𝑝)−𝑠𝑖𝑛(𝜙𝑞))𝑚

𝑀−1

𝑚=0

. 
(3-17) 

If 𝑝 = 𝑞, (3-17) equals 
1

𝑃
. For 𝑝 ≠ 𝑞 and 𝑀 large enough, (3-17) can be approximated by  

1

𝑀
𝐮𝐻(𝜙𝑝)𝐮(𝜙𝑞) =

1

𝑀𝑃

1 − 𝑒𝑗2𝜋
𝑑
𝜆
(𝑠𝑖𝑛(𝜙𝑝)−𝑠𝑖𝑛(𝜙𝑞))𝑀

1 − 𝑒𝑗2𝜋
𝑑
𝜆
(𝑠𝑖𝑛(𝜙𝑝)−𝑠𝑖𝑛(𝜙𝑞))

≈ 0. (3-18) 

Hence, when the number of antennas (𝑀) is large enough, we have 

1

𝑀
𝑼𝐻𝑼 ≈

1

𝑃
𝑰𝑃. (3-19) 

Using (3-19), a closed-form approximation for the ergodic rate of users can be achieved as follows. 

Theorem 1: Using MRC processing at the BS, a closed-form approximation for the achievable 

ergodic rate given by (3-16) can be obtained as 

�̃�𝑘
𝑀𝑅𝐶 = log2

(

  
 
1 +

𝜏𝑃𝑃𝛽𝑘
2

𝜏𝑃𝑃
𝑀
𝑃 𝛽𝑘 + 1

(𝑃 − 1) (
𝑀
𝑃)

2

𝑀
𝑃 (
∑ 𝛽𝑗
𝐾
𝑗=1 ) −

𝜏𝑃𝑃𝛽𝑘
2

𝜏𝑃𝑃
𝑀
𝑃 𝛽𝑘 + 1

(
𝑀
𝑃)

2

+
1
𝑃𝑢
)

  
 
. 

(3-20) 

Proof: See appendix I. 

3.3 Achievable Uplink Rate of ZF Receiver 

The detection matrix of a ZF receiver is given by (2-14). Therefore, it can be shown that the 

achievable UL rate of data transmission from 𝑘th user to the BS with ZF receiver yields to 

𝑅𝑘
𝑍𝐹 = 𝔼{log2(1 +

1

∑ [(�̂�𝐻�̂�)
−1
�̂�𝐻𝐜𝐨𝐯(𝜺𝑗)�̂�(�̂�𝐻�̂�)

−1
]
𝑘𝑘

𝐾
𝑗=1 +

1
𝑃𝑢
[(�̂�𝐻�̂�)

−1
]
𝑘𝑘

)}, 
(3-21) 

where 𝐜𝐨𝐯(𝜺𝑗) represents the covariance matrix of vector 𝜺𝑗 that equals 

𝐜𝐨𝐯(𝜺𝑗) = 𝛽𝑗𝑼𝑼
𝐻 − 𝜏𝑃𝑃𝛽𝑗

2𝑼(𝜏𝑃𝑃𝑼
𝐻𝑼𝛽𝑗 + 𝑰𝑃)

−1
𝑼𝐻𝑼𝑼𝐻. (3-22) 

Using the approximation given by (3-19), an approximate closed-form achievable UL rate can be 

derived as follows. 
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Theorem 2: Using ZF receiver at the BS, a closed-form approximation for 𝑅𝑘
𝑍𝐹 given by (3-21) 

can be obtained as 

�̃�𝑘
𝑍𝐹 = log2

(

 
 
 
 

1 +

𝜏𝑃𝑃𝛽𝑘
2

𝜏𝑃𝑃
𝑀
𝑃 𝛽𝑘 + 1

(𝑃 − 𝐾) (
𝑀
𝑃)

2

𝑀
𝑃
(∑

𝛽𝑗

𝜏𝑃𝑃
𝑀
𝑃 𝛽𝑗 + 1

𝐾
𝑗=1 ) +

1
𝑃𝑢
)

 
 
 
 

. 
(3-23) 

Proof: See appendix II. 

3.4 Achievable Uplink Rate of LMMSE Receiver 

According to (2-15), the 𝑘th column of the detection matrix for the case of LMMSE receiver equals 

𝒂𝑘 = ((�̂��̂�𝐻 +
1

𝑝𝑢
𝐜𝐨𝐯(−√𝑃𝑢𝜺𝒙 + 𝒏))

−1�̂�𝑘)
∗

=
𝜦𝑘

−1�̂�𝑘

�̂�𝑘
𝐻
𝜦𝑘

−1�̂�𝑘 + 1
,

 

 

(3-24) 

where 𝜦𝑘 = ∑ �̂�𝑗 �̂�𝑗
𝐻𝐾

𝑗=1,𝑗≠𝑘 + ∑ 𝐜𝐨𝐯(𝜺𝑗)
𝐾
𝑗=1 +

1

𝑃𝑢
𝑰𝑀. Similar to the previous receivers, by 

substituting (3-24) into (3-14), we obtain the following ergodic UL rate. 

𝑅𝑘
𝐿𝑀𝑀𝑆𝐸 = 𝔼 {log2 (1 + �̂�𝑘

𝐻
𝜦𝑘

−1�̂�𝑘)}

= 𝔼{log2(
1

1 − �̂�𝑘
†
[∑ (�̂�𝑗 �̂�𝑗

𝐻
+ 𝐜𝐨𝐯(𝜺𝑗))

𝐾
𝑗=1 +

1
𝑃𝑢
𝑰𝑀]−1�̂�𝑘

)}

= 𝔼{log2(
1

1 − [�̂�𝐻[∑ (�̂�𝑗 �̂�𝑗
𝐻
+ 𝐜𝐨𝐯(𝜺𝑗))

𝐾
𝑗=1 +

1
𝑃𝑢
𝑰𝑀]−1�̂�]𝑘𝑘

)} ,

 (3-25) 

where the second equality is resulted directly from (3-24). Similar to MRC and ZF receivers, by 

applying the approximation given by (3-19), a closed-form achievable UL ergodic rate can be 

found using the following theorem. 

Theorem 3: Considering LMMSE receiver at the BS, the achievable UL ergodic rate can be 

approximated by the following closed-form expression. 
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�̃�𝑘
𝐿𝑀𝑀𝑆𝐸 = log2 (1 + (

(𝑃 − 𝐾 + 1 + (𝐾 − 1)�̂�𝑘)
2

𝑃 − 𝐾 + 1 + (𝐾 − 1)�̂�𝑘
− 1)𝜃𝑘), (3-26) 

where 

𝜃𝑘 =
𝑃 − 𝐾 + 1 + (𝐾 − 1)�̂�𝑘
𝑃 − 𝐾 + 1 + (𝐾 − 1)�̂�

𝑘

× �̂�
𝑘
, 

𝜁𝑘 =
𝜏𝑃𝑝𝑃𝑢𝛽𝑘

2 (
𝑀
𝑃)

2

(𝜏𝑃𝑝𝛽𝑘
𝑀
𝑃 + 1) (1 + 𝑃𝑢

𝑀
𝑃
∑

𝛽𝑗

𝜏𝑃𝑝𝛽𝑗
𝑀
𝑃
+ 1

𝐾
𝑗=1 )

, 
(3-27) 

and �̂�𝑘 and 𝛿𝑘 can be found by solving the following equations 

�̂�𝑘 =
1

𝐾 − 1
∑

1

𝑃𝜁𝑘′ (1 −
𝐾 − 1
𝑃 +

𝐾 − 1
𝑃 �̂�𝑘) + 1

𝐾

𝑘′=1,𝑘′≠𝑘

,

𝛿𝑘(1 + ∑
𝜁𝑘′

(𝑃𝜁𝑘′ (1 −
𝐾 − 1
𝑃 +

𝐾 − 1
𝑃 �̂�𝑘) + 1)

2

𝐾

𝑘′=1,𝑘′≠𝑘

)

= ∑
𝜁𝑘′�̂�𝑘 +

1
𝐾 − 1

(𝑃𝜁𝑘′ (1 −
𝐾 − 1
𝑃 +

𝐾 − 1
𝑃 �̂�𝑘) + 1)

2

𝐾

𝑘′=1,𝑘′≠𝑘

.

 

 

(3-28) 

Proof: See appendix III. 

It is worth mentioning that the approximate rates given by (3-20), (3-23), and (3-26) are very 

close to the exact UL ergodic rates and approach tight lower bounds as 𝑀 → ∞.  

3.5 Concluding Remarks 

The finite-dimensional channel model is an interesting system model that takes the non-

orthogonality of users’ channels into account. In this chapter, by considering this system model, 

we investigated the achievable UL ergodic rate of MRC, ZF, and LMMSE receivers as the 

performance metric. Assuming a uniform linear antenna array at the BS, we further developed 

closed-form approximate expressions for the achievable rates in three distinct theorems, namely 

Theorem 1, Theorem 2, and Theorem 3. We also proved that these closed-forms are very accurate 

and approach tight lower bounds. The developed rates in Theorems 1, 2, and 3 showed that the 

pilot and data transmission powers have a substantial role in the achievable UL rates. Therefore, 
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in the next chapter, we present a resource allocation scheme that by optimally selecting the pilot 

and data powers, maximizes the users’ UL rates. 
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Chapter 4:  PROPOSED RESOURCE ALLOCATION SCHEME 

In this chapter, we first develop spectral efficiency by employing the approximate achievable rates 

found in the previous chapter. Then, we prove that the developed spectral efficiency is a concave 

function with respect to the pilot power/data power. By proposing an optimal resource allocation, 

we also maximize spectral efficiency, as the performance metric in our analysis. Finally, we 

present the simulation results that verify the mathematical analysis. 

4.1 Spectral Efficiency and Optimal Resource Allocation 

Let 𝑇 indicate the length of coherence interval in symbols. If an interval of 𝜏 symbols is allocated 

to the UL training, 𝑇 − 𝜏 symbols remain for UL data transmission. Hence, the spectral efficiency 

can be represented by 

𝑆𝐸 =
𝑇 − 𝜏

𝑇
∑ �̃�𝑘

𝐾

𝑘=1

. 
(4-1) 

As mentioned before, pilot and data powers have a substantial role in the achievable UL rate 

and hence, the spectral efficiency. Therefore, optimal power distribution between the training and 

UL data transmission along with the optimal length of pilot symbols can improve the spectral 

efficiency, and accordingly, the system performance. In this view, we propose a resource allocation 

scheme that optimally selects 𝜏, 𝑃𝑃, and 𝑃𝑢 in one coherence interval to maximize spectral 

efficiency. Mathematically speaking, we have 

max    𝑆𝐸 

𝑃𝑃, 𝑃𝑢, 𝜏
  

subject to {
𝜏𝑃𝑃 + (𝑇 − 𝜏)𝑃𝑢 ≤ 𝑃𝑡,

𝐾 ≤ 𝜏 ≤ 𝑇, (𝜏 ∈ ℕ),
𝑃𝑃 ≥ 0, 𝑃𝑢 ≥ 0,

 

(4-2) 

where 𝑃𝑡 is the total available power for each user in one coherence interval. 

Proposition 1: The spectral efficiency given by (4-1) is maximized when the whole allocated 

power in each coherence interval (𝑃𝑡) is consumed by the users. 

Proof: By substituting the rates found in the previous chapter into (4-1), it can be shown that 

the spectral efficiency is an increasing function of 𝑃𝑃 when 𝜏 and 𝑃𝑢 are given. Besides, for a given 

𝜏 and 𝑃𝑝, spectral efficiency is an increasing function of 𝑃𝑢. Hence, spectral efficiency is 

maximized when each user consumes the whole allocated power. As the result, the first inequality 

constraint in (4-2) changes to equality. ■ 
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Lemma 1: The optimal value of 𝜏 in the optimization problem given by (4-2) is equal to the 

number of users 𝐾. 

Proof: The spectral efficiency can be rewritten as 

𝑆𝐸(𝜏, 𝑃𝑃, 𝑃𝑢) = ∑𝑓𝑘(𝜏, 𝑃𝑃, 𝑃𝑢)

𝐾

𝑘=1

, (4-3) 

where for MRC receiver 

𝑓𝑘(𝜏, 𝑃𝑃, 𝑃𝑢) = (1 −
𝜏

𝑇
)

× log2(1 +
𝜏𝑃𝑃𝛽𝑘

2(𝑃 − 1) (
𝑀
𝑃)

2

𝜈1(∑ 𝛽𝑗
𝐾
𝑗=1,𝑗≠𝑘 ) +

𝑀
𝑃 𝛽𝑘 + (𝜏𝑃𝑃

𝑀
𝑃 𝛽𝑘 + 1)

1
𝑃𝑢

), 

(4-4) 

 

for ZF receiver 

𝑓𝑘(𝜏, 𝑃𝑃, 𝑃𝑢) = (1 −
𝜏

𝑇
)

× log2

(

 
 
 
 

1 +
𝜏𝑃𝑃𝛽𝑘

2(𝑃 − 𝐾) (
𝑀
𝑃)

2

𝜈1 (∑
𝛽𝑗

𝜏𝑃𝑃𝛽𝑗
𝑀
𝑃 + 1

𝐾
𝑗=1 ) + (𝜏𝑃𝑃

𝑀
𝑃 𝛽𝑘 + 1)

1
𝑃𝑢
)

 
 
 
 

, 
(4-5) 

and for LMMSE receiver 

𝑓𝑘(𝜏, 𝑃𝑃, 𝑃𝑢) = (1 −
𝜏

𝑇
)

× log2

(

 
 
 
 

1 + 𝜈2
𝜏𝑃𝑃𝑃𝑢𝛽𝑘

2 (
𝑀
𝑃)

2

(𝜏𝑃𝑃
𝑀
𝑃
𝛽𝑘 + 1)(1 + 𝑃𝑢

𝑀
𝑃
∑

𝛽𝑗

𝜏𝑃𝑃𝛽𝑗
𝑀
𝑃 + 1

𝐾
𝑗=1 )

)

 
 
 
 

, 
(4-6) 

 

and 𝜈1 = (𝜏𝑃𝑃𝛽𝑘 (
𝑀

𝑃
)
2

+
𝑀

𝑃
) and 𝜈2 = (𝑃 − 𝐾 + 1 + (𝐾 − 1)�̂�𝑘 −

𝑃−𝐾+1+(𝐾−1)�̂�𝑘

𝑃−𝐾+1+(𝐾−1)�̂�𝑘
). Let 𝜏∗, 𝑃𝑃

∗, and 

𝑃𝑢
∗ be the optimal solutions of (4-2) that satisfy all the constraints and 𝜏∗ > 𝐾. Let’s choose �̃� =
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𝐾, �̃�𝑃 =
𝜏∗𝑃𝑃

∗

𝐾
, and �̃�𝑢 =

𝑃𝑡−𝜏
∗𝑃𝑃
∗

𝑇−�̃�
 that also satisfy the constraints in (4-2). Since 𝜏∗𝑃𝑃

∗ = �̃��̃�𝑃 and 

considering the fact that 𝑔(𝑥) = 𝑥log2(1 +
𝑎

𝑏+𝑐𝑥
) with 𝑎, 𝑏, 𝑐 > 0 is a strictly increasing function 

in 𝑥 ∈ (0,∞) [55], for MRC, ZF, and LMMSE receivers we can show that 

𝑓𝑘(�̃�, �̃�𝑃, �̃�𝑢) > 𝑓𝑘(𝜏
∗, 𝑃𝑃

∗, 𝑃𝑢
∗), (4-7) 

And hence, 

𝑆𝐸(�̃�, �̃�𝑃, �̃�𝑢) > 𝑆𝐸(𝜏
∗, 𝑃𝑃

∗, 𝑃𝑢
∗), (4-8) 

that contradicts with the optimality of 𝜏∗, 𝑃𝑃
∗, and 𝑃𝑢

∗ and therefore, 𝜏∗ ≤ 𝐾. On the other hand, to 

have orthogonal pilots, we have 𝜏∗ ≥ 𝐾. This implies that the optimum value of 𝜏 is equal to 𝐾. ■ 

Therefore, according to Proposition 1 and Lemma 1, the optimization problem given by (4-2) 

can be simplified to 

max    𝑆𝐸 

𝑃𝑃
  

subject to 

{
 

 0 ≤ 𝑃𝑃 ≤
𝑃𝑡
𝐾
,

𝑃𝑢 =
𝑃𝑡 − 𝐾𝑃𝑃
(𝑇 − 𝐾)

.
 

(4-9) 

Theorem 4: The objective function in (4-9) is a concave function with respect to 𝑃𝑃 for MRC, 

ZF, and LMMSE receivers. 

Proof: In this thesis, we prove the concavity of (4-9) assuming the MRC receiver is employed 

at the BS. The concavity of spectral efficiency for ZF and LMMSE receivers can be shown by 

applying the same method. Considering 𝜏 = 𝐾 and 𝑃𝑢 =
𝑃𝑡−𝐾𝑃𝑃

(𝑇−𝐾)
, the SINR𝑘

𝑀𝑅𝐶 in (3-20) can be 

written as 

SINR𝑘
𝑀𝑅𝐶

=
𝐾𝑃𝑃𝛽𝑘

2(𝑃 − 1) (
𝑀
𝑃)

2

(𝐾𝑃𝑃 (
𝑀
𝑃)

2

𝛽𝑘 +
𝑀
𝑃
) (∑ 𝛽𝑗

𝐾
𝑗=1,𝑗≠𝑘 ) +

𝑀
𝑃 𝛽𝑘 + (𝐾𝑃𝑃

𝑀
𝑃 𝛽𝑘 + 1)

𝑇 − 𝐾
𝑃𝑡 − 𝐾𝑃𝑃⏟                                              

𝐷

. (4-10) 

The first derivative of SINR𝑘
𝑀𝑅𝐶 with respect to 𝑃𝑃 can be given by 

𝑑

𝑑𝑃𝑃
(SINR𝑘

𝑀𝑅𝐶) =
𝐾𝛽𝑘

2(𝑃 − 1) (
𝑀
𝑃)

2

𝐹(𝑃𝑃)

𝐷2(𝑃𝑡 − 𝐾𝑃𝑃)2
, 

(4-11) 

where 𝐹(𝑃𝑃) is a second order polynomial function of 𝑃𝑃 that is equal to 



28 

 

𝐹(𝑃𝑃) = 𝑃𝑃
2 (
𝑀

𝑃
(∑𝛽𝑗

𝐾

𝑗=1

)𝐾2 −
𝑀

𝑃
𝐾2(𝑇 − 𝐾)𝛽𝑘)

+ 𝑃𝑃 (−2
𝑀

𝑃
(∑𝛽𝑗

𝐾

𝑗=1

)𝐾𝑃𝑡 − 2𝐾(𝑇 − 𝐾))

+ (
𝑀

𝑃
(∑𝛽𝑗

𝐾

𝑗=1

)𝑃𝑡
2 + (𝑇 − 𝐾)𝑃𝑡) = 𝐴𝑃𝑃

2 + 𝐵𝑃𝑃 + 𝐶. 

(4-12) 

Since 
𝐾𝛽𝑘

2(𝑃−1)(
𝑀

𝑃
)
2

𝐷2(𝑃𝑡−𝐾𝑃𝑃)2
 is positive, the roots as well as the sign table of (4-11) and (4-12) are the same. 

Hence, we continue the proof of concavity by finding the roots and the sign table of 𝐹(𝑃𝑃). To do 

so, we consider the three following cases: 

1- ∑ 𝛽𝑗
𝐾
𝑗=1 < (𝑇 − 𝐾)𝛽𝑘: in this case, 𝐴 < 0 and 𝐶 > 0. Therefore, 𝐹(𝑃𝑝) = 0 has two distinct 

real roots 𝑃𝑝1, 𝑃𝑝2 =
−𝐵±√𝐵2−4𝐴𝐶

2𝐴
. Since 𝐴, 𝐵 < 0, 𝑃𝑝1 =

−𝐵+√𝐵2−4𝐴𝐶

2𝐴
< 0. Also, 

𝐵2 − 4𝐴𝐶 = 4𝐾2(𝑇 −𝐾)
𝑀

𝑃
((𝑇−𝐾) (

𝑃

𝑀
+ 𝛽𝑘𝑃𝑡)+ (∑𝛽𝑗

𝐾

𝑗=1

)(
𝑀

𝑃
𝛽𝑘𝑃𝑡

2 +𝑃𝑡))

< 4𝐾2(𝑇 − 𝐾)2 (1 + 2
𝑀

𝑃
𝛽𝑘𝑃𝑡 + (

𝑀

𝑃
)

2

𝛽𝑘
2𝑃𝑡

2
). 

(4-13) 

This implies that 

𝑃𝑝2 <
2𝐾 (

𝑀
𝑃)𝑃𝑡(

∑ 𝛽𝑗
𝐾
𝑗=1 − (𝑇 − 𝐾)𝛽𝑘)

2𝐾2 (
𝑀
𝑃) (

∑ 𝛽𝑗
𝐾
𝑗=1 − (𝑇 − 𝐾)𝛽𝑘)

=
𝑃𝑡
𝐾
. (4-14) 

Moreover, since 𝐵2 − 4𝐴𝐶 > 4𝐾2(∑ 𝛽𝑗
𝐾
𝑗=1 )

2
((

𝑀

𝑃
)𝑃𝑡 +

1

𝛽𝑘
)

2

, we have 

𝑃𝑝2 >
2𝐾 ((𝑇 − 𝐾)𝛽𝑘 −∑ 𝛽𝑗

𝐾
𝑗=1 )

1
𝛽𝑘

2𝐾2 (
𝑀
𝑃) (

∑ 𝛽𝑗
𝐾
𝑗=1 − (𝑇 − 𝐾)𝛽𝑘)

=
−
1
𝛽𝑘

𝐾
𝑀
𝑃

→ 0 as 𝑀 → ∞. (4-15) 

Therefore, the second root satisfies 0 < 𝑃𝑝2 <
𝑃𝑡

𝐾
. Table 4-1 shows the sign table of 𝐹(𝑝𝑝) for this 

case. As this table demonstrates, for 0 < 𝑃𝑝 <
𝑃𝑡

𝐾
, the first derivative of SINR𝑘

MRC
 is positive for 
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𝑃𝑝 < 𝑃𝑝2, and is negative for 𝑃𝑝 > 𝑃𝑝2. Therefore, SINR𝑘
MRC

 is a concave function with one global 

maximum. 

2- ∑ 𝛽𝑗
𝐾
𝑗=1 > (𝑇 − 𝐾)𝛽𝑘: for this case we also have 𝐵2 − 4𝐴𝐶 > 0 and as the result, 𝐹(𝑃𝑝) has 

two distinct real roots. Following the steps mentioned in the previous case, we can show that the 

first root satisfies 0 < 𝑃𝑝1 =
−𝐵−√𝐵2−4𝐴𝐶

2𝐴
<

𝑃𝑡

𝐾
. For 𝑃𝑝2 =

−𝐵+√𝐵2−4𝐴𝐶

2𝐴
, we have 

𝐵2 − 4𝐴𝐶 = 4𝐾2(𝑇 −𝐾)
𝑀

𝑃
((𝑇−𝐾) (

𝑃

𝑀
+ 𝛽𝑘𝑃𝑡)+ (∑𝛽𝑗

𝐾

𝑗=1

)(
𝑀

𝑃
𝛽𝑘𝑃𝑡

2 +𝑃𝑡))

> 4𝐾2(𝑇 − 𝐾)2 (1 + 2
𝑀

𝑃
𝛽𝑘𝑃𝑡 + (

𝑀

𝑃
)

2

𝛽𝑘
2𝑃𝑡

2). 

(4-16) 

Therefore, 

𝑃𝑝2 >
4𝐾(𝑇 − 𝐾) + 2𝐾

𝑀
𝑃 𝑃𝑡(

∑ 𝛽𝑗
𝐾
𝑗=1 + (𝑇 − 𝐾)𝛽𝑘)

2𝐾2 (
𝑀
𝑃) (

∑ 𝛽𝑗
𝐾
𝑗=1 − (𝑇 − 𝐾)𝛽𝑘)

>
2𝐾
𝑀
𝑃 𝑃𝑡(

∑ 𝛽𝑗
𝐾
𝑗=1 + (𝑇 − 𝐾)𝛽𝑘)

2𝐾2 (
𝑀
𝑃) (

∑ 𝛽𝑗
𝐾
𝑗=1 + (𝑇 − 𝐾)𝛽𝑘)

=
𝑃𝑡
𝐾
, 

(4-17) 

that does not satisfy the constraints. Therefore, 𝑃𝑝1is the only acceptable root. According to Table 

4-2, 
𝑑

𝑑𝑃𝑃
(SINR𝑘

𝑀𝑅𝐶) is positive for 𝑃𝑝 < 𝑃𝑝1 and is negative for 𝑃𝑝 > 𝑃𝑝1. Hence, SINR𝑘
MRC

 is a 

concave function with respect to 𝑃𝑝 that has one global maximum in 0 < 𝑃𝑝 <
𝑃𝑡

𝐾
. 

3) ∑ 𝛽𝑗
𝐾
𝑗=1 = (𝑇 − 𝐾)𝛽𝑘: in this case, 

𝑑

𝑑𝑃𝑃
(SINR𝑘

𝑀𝑅𝐶) has two identical real roots 𝑃𝑝1 = 𝑃𝑝2 =
𝑃𝑡

2𝐾
. 

According to Table 4-3, SINR𝑘
MRC

 is a concave function with respect to 𝑃𝑝 with a global maximum 

at 𝑃𝑝 =
𝑃𝑡

2𝐾
. 

To sum up, the SINR𝑘
MRC

 is always a concave function with respect to 𝑃𝑝 when 0 < 𝑃𝑝 <
𝑃𝑡

𝐾
. 

Accordingly, log
2
(1 + SINR𝑘

MRC) is also a concave function. Since the summation of concave 

functions is always a concave function, we can conclude that the objective function defined in 

(4-9) is also a concave function and the proof of Theorem 4 is accomplished. ■ 
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Table 4-1- Sign table of 𝑭(𝑷𝑷) where ∑ 𝜷𝒋
𝑲
𝒋=𝟏 < (𝑻 − 𝑲)𝜷𝒌 

𝑃𝑝1 < 0                                0 < 𝑃𝑝2 <
𝑃𝑡
𝐾

 

𝐹 (𝑃𝑃 < 𝑃𝑝1) 𝐹 (𝑃𝑝1 < 𝑃𝑃 < 𝑃𝑝2) 𝐹 (𝑃𝑃 > 𝑃𝑝2) 

− + − 

 

Table 4-2- Sign table of 𝑭(𝑷𝑷) where ∑ 𝜷𝒋
𝑲
𝒋=𝟏 > (𝑻 − 𝑲)𝜷𝒌 

0 < 𝑃𝑝1 <
𝑃𝑡
𝐾
                                𝑃𝑝2 >

𝑃𝑡
𝐾
           

𝐹 (𝑃𝑃 < 𝑃𝑝1) 𝐹 (𝑃𝑝1 < 𝑃𝑃 < 𝑃𝑝2) 𝐹 (𝑃𝑃 > 𝑃𝑝2) 

+ − + 

 

Table 4-3- Sign table of 𝑭(𝑷𝑷) where ∑ 𝜷𝒋
𝑲
𝒋=𝟏 = (𝑻 − 𝑲)𝜷𝒌 

         𝑃𝑝1 = 𝑃𝑝2 =
𝑃𝑡
2𝐾
           

𝐹 (𝑃𝑃 < 𝑃𝑝1) 𝐹 (𝑃𝑃 > 𝑃𝑝1) 

+ − 

 

4.2 Simulation Results for Different Receivers 

In this section, simulation results are provided that verify the mathematical analysis presented 

above. First, considering fixed 𝛽𝑘s, we present an example of the objective function given by (4-9) 

for MRC, ZF, and LMMSE receivers. Then, we evaluate the approximate expressions obtained for 

the achievable spectral efficiency of the receivers mentioned above. Besides, considering the 

different number of BS antennas and the different number of channel dimensions, the performance 

of our proposed power allocation scheme is studied. We also analyze and compare the optimum 

ratio of 
𝑃𝑃

𝑃𝑢
  for different receivers. Finally, by investigating a more practical scenario in which 𝛽𝑘s 

change, we evaluate the achievable spectral efficiency applying our proposed power allocation 

method. Note that the results presented in this section are published in [59]. 
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In all the simulations, the users are assumed to be distributed uniformly in a hexagonal single-

cell and no user is closer than 𝑑ℎ = 50 meters to the BS. To generate the large-scale fading 

coefficients, that model the single-slope path loss as well as the shadowing, we use 𝛽𝑘 =
𝑧𝑘

(
𝑑𝑘
𝑑ℎ
)
𝛼, 

where 𝑧𝑘 is the log-normal random variable with 𝛿𝑠ℎ𝑎𝑑𝑜𝑤 = 8𝑑𝐵, 𝑑𝑘 is the distance between user 

𝑘 and the BS, and the path loss exponent is assumed to be equal to 𝛼 = 3.8. The total coherence 

interval is considered to be 𝑇 = 200 in symbols that corresponds to the coherence time of 1 ms 

and coherence bandwidth of 200kHz. Moreover, different values for the physical parameters such 

as 𝐾, 𝑃, 𝑀, and SNR—that can be represented by SNR =
𝑃𝑡

𝑇
, assuming the noise power to be one—

are considered for different simulations. Table 4-4 summarizes all the parameters used for different 

simulation results.  

 

Table 4-4- System parameters for the simulations 

Figures 𝐾 𝑀 𝑃 SNR 𝛽 values 

Figure 4-1 15 100 30 −5dB 
[13.9,3.69,6.54,3.09,28.94,64.63,6.82,8.68, 

13.97,6.68,14.18,13.97,1.27,44.96,7.83]× 10−2 

Figure 4-2 20 100 30 −30dB-10dB 
[9.1,1.0,0.6,1.8,1.0,32.1,103.5,0.8,55.77,0.3, 

0.5,11.78,1.6,3.4,8.7,3.5,7.6,2.6,844.8,159.7]× 10−3 

Figure 4-3 20 200 30 −30dB-10dB 
[9.1,1.0,0.6,1.8,1.0,32.1,103.5,0.8,55.77,0.3, 

0.5,11.78,1.6,3.4,8.7,3.5,7.6,2.6,844.8,159.7]× 10−3 

Figure 4-4 20 50-500 30 −5dB 
[9.1,1.0,0.6,1.8,1.0,32.1,103.5,0.8,55.77,0.3, 

0.5,11.78,1.6,3.4,8.7,3.5,7.6,2.6,844.8,159.7]× 10−3 

Figure 4-5 20 50-500 30 5dB 
[9.1,1.0,0.6,1.8,1.0,32.1,103.5,0.8,55.77,0.3, 

0.5,11.78,1.6,3.4,8.7,3.5,7.6,2.6,844.8,159.7]× 10−3 

Figure 4-6 20 50-500 30 −5dB 
[9.1,1.0,0.6,1.8,1.0,32.1,103.5,0.8,55.77,0.3, 

0.5,11.78,1.6,3.4,8.7,3.5,7.6,2.6,844.8,159.7]× 10−3 

Figure 4-7 20 50-500 30 5dB 
[9.1,1.0,0.6,1.8,1.0,32.1,103.5,0.8,55.77,0.3, 

0.5,11.78,1.6,3.4,8.7,3.5,7.6,2.6,844.8,159.7]× 10−3 

Figure 4-8 20 200 30-100 0dB 
[9.1,1.0,0.6,1.8,1.0,32.1,103.5,0.8,55.77,0.3, 

0.5,11.78,1.6,3.4,8.7,3.5,7.6,2.6,844.8,159.7]× 10−3 

Figure 4-9 20 200 30-100 10dB 
[9.1,1.0,0.6,1.8,1.0,32.1,103.5,0.8,55.77,0.3, 

0.5,11.78,1.6,3.4,8.7,3.5,7.6,2.6,844.8,159.7]× 10−3 
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Figure 4-10 20 150 30, 70 −30dB-10dB 
[9.1,1.0,0.6,1.8,1.0,32.1,103.5,0.8,55.77,0.3, 

0.5,11.78,1.6,3.4,8.7,3.5,7.6,2.6,844.8,159.7]× 10−3 

Figure 4-11 20 150 40 0dB 
500 different 𝛽 vectors corresponding to 500 

Monte-Carlo simulations 

Figure 4-12 20 150 40 10dB 
500 different 𝛽 vectors corresponding to 500 

Monte-Carlo simulations 

 

Figure 4-1 displays an example of the objective function in (4-9) for different receivers, 

assuming 𝑃 = 30, 𝐾 = 15, and 𝑀 = 100. Note that only for this figure the radius of the hexagonal 

cell is assumed to be 500 meters, while for the rest of the simulation results the radius of 1000 

meters is considered. As this figure demonstrates, (4-9) is a concave function. Hence, it has a 

global optimum solution in the interval of 0 ≤ 𝑃𝑃 ≤
𝑃𝑡

𝐾
 for MRC, ZF, and LMMSE receivers that 

can be found using a convex optimization method [68]. This optimal value of 𝑃𝑃 is large enough 

to provide accurate channel estimations yet small enough to leave an adequate power for the data 

transmission phase. 

 

Figure 4-1- Spectral efficiency versus 𝑃𝑃 for MRC, ZF, and LMMSE receivers (in this figure, 

SNR = −5𝑑𝐵, 𝑀 = 100, and 𝑃 = 30) 
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To verify the accuracy of the approximate closed-form rates, Figure 4-2 and Figure 4-3 are 

presented. These figures compare the numerically evaluated exact spectral efficiency with the 

approximate spectral efficiency given by (4-1), assuming equal power 
𝑃𝑡

𝑇
 is allocated to data and 

pilot symbols. In order to obtain the semi-analytic spectral efficiency, a uniform linear array with 

𝑑

𝜆
= 0.3 is considered at the BS. Moreover, the arrival angles are assumed to be uniformly 

distributed over [−𝜋/2, 𝜋/2], i.e., 𝜙𝑝 = −
𝜋

2
+
(𝑝−1)𝜋

𝑃
, 𝑝 = 1,… , 𝑃. Both figures show that the 

derived approximations are very accurate. Besides, the results for different numbers of BS 

antennas depict that by increasing 𝑀, our approximations become even more precise and approach 

tight lower bounds for all the receivers. Also, for smaller numbers of BS antennas, the analytical 

results are more precise at lower SNR values, while they are tight for all the SNR values when 𝑀 

is large. To summarize, Figure 4-2 and Figure 4-3 emphasize that although the approximate 

expression obtained for the LMMSE receiver is more accurate, the analytical results are also very 

tight for MRC and ZF receivers, especially when 𝑀 is large. Hence, in the following, by choosing 

sufficiently large 𝑀 values, we will use the derived approximations for all numerical works. 

 

Figure 4-2- Semi-analytic spectral efficiency as well as approximate spectral efficiency (in this 

figure, 𝑀 = 100, 𝑃 = 30, and 𝑃𝑢 = 𝑃𝑃 =
𝑃𝑡

𝑇
) 
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Figure 4-3- Semi-analytic spectral efficiency as well as approximate spectral efficiency (in this 

figure, 𝑀 = 200, 𝑃 = 30, and 𝑃𝑢 = 𝑃𝑃 =
𝑃𝑡

𝑇
) 

Figure 4-4 and Figure 4-5 show the achievable spectral efficiency versus 𝑀 for different UL 

training durations and different SNR values. As these figures confirm, the minimum value of 𝜏 that 

keeps the orthogonality among pilots is the optimal value of UL training duration in order to 

maximize the spectral efficiency of MRC, ZF, and LMMSE receivers. In other words, for a specific 

number of users in the network, the optimal number of transmitted pilots that also avoids pilot 

contamination is equal to the number of users.  

To compare the achievable spectral efficiency of the proposed power allocation scheme to the 

equal power allocation, Figure 4-6 to Figure 4-9 are presented. Figure 4-6 and Figure 4-7 display 

spectral efficiency as a function of the number of antennas at the BS for MRC, ZF, and LMMSE 

receivers. Figure 4-8 and Figure 4-9 present the spectral efficiency as a function of the number of 

directions 𝑃. For different SNR values, they compare the proposed power allocation method with 

the case where 𝑃𝑢 = 𝑃𝑃 =
𝑃𝑡

𝑇
 as in [22] for single-cell scenario (note that in [22], only MRC and 

ZF receivers are investigated). As these figures show, the proposed resource allocation method 

improves the spectral efficiency in comparison to the case where 𝑃𝑢 = 𝑃𝑃 =
𝑃𝑡

𝑇
. This improvement 

becomes more prominent as the number of BS antennas and the number of channel directions 
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grow. Besides, these figures display that our power allocation scheme is more efficient on LMMSE 

and ZF receivers than the MRC receiver, especially at higher SNR values. In addition, the results 

for different SNR values confirm the superiority of the LMMSE receiver in terms of the achievable 

spectral efficiency. They also depict that comparing to MRC and ZF, the spectral efficiency of the 

LMMSE receiver has the least sensitivity to the 𝑃 increment. In other words, the enhancement of 

spectral efficiency achieved by increasing the number of directions has a very slight slope for the 

LMMSE receiver. 

 

Figure 4-4- Spectral efficiency versus the number of BS antennas for different UL training 

durations (in this figure, SNR = −5𝑑𝐵 and 𝑃 = 30)  
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Figure 4-5- Spectral efficiency versus the number of BS antennas for different UL training 

durations (in this figure, SNR = 5𝑑𝐵 and 𝑃 = 30)  

 

Figure 4-6- Spectral efficiency versus the number of BS antennas with equal power and optimum 

power allocation (in this figure, SNR = −5𝑑𝐵 and 𝑃 = 30)  
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Figure 4-7- Spectral efficiency versus the number of BS antennas with equal power and optimum 

power allocation (in this figure, SNR = 5𝑑𝐵 and 𝑃 = 30)  

 

Figure 4-8- Spectral efficiency versus the number of directions with equal power and optimum 

power allocation (in this figure, SNR = 0𝑑𝐵 and 𝑀 = 200)  
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Figure 4-9- Spectral efficiency versus the number of directions with equal power and optimum 

power allocation (in this figure, SNR = 10𝑑𝐵 and 𝑀 = 200)  

Figure 4-10 displays the optimal ratio of the pilot symbol power to the data symbol power for 

different values of SNR. It can be concluded that at low values of SNR, more power should be 

spent for the training phase, while at higher SNR values, the required power for the training phase 

decreases, and allocating more power to the data transmission phase optimizes the spectral 

efficiency. For instance, at SNR=-30dB and 𝑃 = 70, the optimum ratio equals 
𝑃𝑝

𝑃𝑢
= 7.785 that 

results in 𝜏𝑃𝑃 = 20 × 7.785 × 𝑃𝑢 ≈ (200 − 20)𝑃𝑢. This means that in order to achieve the 

optimal spectral efficiency at low SNR values, the total training power and data transmission power 

should be almost equal. While by SNR increment, allocating more power to the data transmission 

phase optimizes the spectral efficiency. This complies with the fact that increasing the SNR value 

(or equivalently decreasing the noise power) results in more accurate channel estimations. Figure 

4-10 also demonstrates that for all the discussed receivers, increasing the dimensionality of the 

channel leads to a larger optimum training power. 
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Figure 4-10- Optimal pilot power to data power ratio versus the SNR value (in this figure, 𝑀 =
150)  

Finally, Figure 4-11 and Figure 4-12 compare the cumulative distribution function (CDF) of 

the spectral efficiency at different SNR values, considering the optimal power allocation scheme 

as well as the equal power allocation. To generate these figures, 500 Monte-Carlo simulations are 

run where the position of users in the cell changes randomly in each simulation snapshot. As 

expected, regardless of the SNR value, applying the proposed power allocation scheme always 

improves the spectral efficiency of the network. However, Figure 4-12 emphasizes that at high 

SNR values, the proposed power allocation scheme offers more efficiency for ZF and LMMSE 

receivers. It is worth noting that our proposed power allocation scheme is based on large-scale 

fading coefficients. Hence, the BS can find the optimum value of 
𝑃𝑝

𝑃𝑢
 once and apply it during 

several coherence intervals, where the large-scale fading coefficients remain unchanged. This 

decreases the computational time as well as the required overhead significantly. 
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Figure 4-11- CDF of spectral efficiency with and without optimal power allocation (in this 

figure, SNR = 0dB, 𝑃 = 40 and 𝑀 = 150)  

 

Figure 4-12- CDF of spectral efficiency with and without optimal power allocation (in this 

figure, SNR = 10dB, 𝑃 = 40 and 𝑀 = 150)  
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4.3 Concluding Remarks 

In summary, in this chapter, we developed a closed-form approximation for the spectral efficiency 

of finite-dimensional multiuser massive MIMO, assuming MRC, ZF, and LMMSE receivers at the 

BS. We also analytically proved the concavity of the developed spectral efficiency with respect to 

the pilot symbol power in a theorem. Besides, we investigated the effect of several physical 

parameters on achievable spectral efficiency. These parameters include the number of users, the 

number of antennas at the BS, the number of channel directions, different SNR values, different 

users’ locations (𝛽), UL training duration, pilot power, and data power. Our simulation results 

confirmed the accuracy of the derived approximate spectral efficiencies. We also showed the 

spectral efficiency enhancement achieved through allocating optimal power to pilot and data 

transmission and presented the impact of SNR value on the optimal ratio of pilot power to data 

power.  
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Chapter 5:  CONCLUSIONS AND THE FUTURE DIRECTION 

5.1 Conclusions 

In this thesis, we propose a method for optimally dividing the resources between data and pilot 

sequences to improve the spectral efficiency in the UL transmission of multiuser massive MIMO. 

More specifically, we consider a channel model with a finite number of dimensions in a single-

cell massive MIMO system. We assume the angular domain has limited independent directions 

and by presenting the array steering vector for each one of these directions, we describe the channel 

matrix between the BS and 𝐾 users as the multiplication of the array steering matrix and the 

propagation coefficients matrix. We further assume that the channel coefficients are estimated by 

the BS through the UL pilot transmission prior to the data transmission phase. By considering the 

effect of channel estimation error into account, we derive the achievable UL rate of users, assuming 

linear receivers such as MRC, ZF, and LMMSE are employed at the BS. 

Moreover, assuming the BS is equipped with a uniform linear antenna array, we derive closed-

form approximations for the achievable UL rate of MRC, ZF, and LMMSE receivers and 

analytically prove the accuracy of these approximate expressions. We show that for a large number 

of antennas at the BS, these derived approximate closed-forms are very tight and approach lower 

bounds for all the receivers. Then, we develop an approximation for spectral efficiency based on 

these rates that reduces the computational complexity. We further prove the concavity of this 

approximate spectral efficiency with respect to pilot symbol power and propose a resource 

allocation scheme in which the pilot power, data power, and training duration are jointly selected 

in order to maximize spectral efficiency. 

To evaluate the performance of the proposed resource allocation scheme, we present several 

simulation results. The results affirm that the proposed resource allocation scheme can 

significantly improve spectral efficiency and outperforms the case with equal data and pilot 

symbols power. We also show that the performance of the proposed method with LMMSE and ZF 

receivers is much more significant than that with the MRC receiver. Finally, we conclude that 

increasing the number of dimensions as well as the number of BS antennas enhances the spectral 

efficiency improvement resulted from our proposed resource allocation. 
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5.2 Future Works 

Our research work in this thesis has mainly focused on spectral efficiency maximization in a 

single-cell multiuser massive MIMO system. However, there are additional studies that can be 

accomplished along the lines developed in this thesis. Some of these possible future studies are 

briefly presented in the following.  

5.2.1 Multiuser Massive MIMO with Various Allocated Resources 

In this thesis, we assumed that all the users in the network have the same amount of resources (the 

same power budget as well as the same number of UL pilot symbols) and distribute them in 

between UL pilot and data transmission phases in the same manner. In a more general scenario, 

we can extend the proposed method in this thesis to the case in which users have different amounts 

of resources. For such scenarios, maximizing the spectral efficiency through joint optimal pilot 

and data resource allocation results in an NP-hard optimization problem. Hence, novel iterative 

algorithms are required to find the local maximum points [58]. Another possible solution for the 

real-time implementation of this joint resource allocation scheme is to develop a neural network 

that is able to predict the optimal pilot and data powers [69].   

5.2.2 Multi-cell Multiuser Massive MIMO Systems 

In multi-cell scenarios, the transmission activities (include pilot transmission, UL data 

transmission, and DL data transmission) of different cells happen synchronously and since there 

is no cell-to-cell cooperation, inter-cell interference occurs. Hence, the system model should be 

refined to take the pilot contamination as well as the inter-cell interference effect into 

consideration. New bounds on the achievable spectral efficiencies should be derived and then, the 

proposed resource allocation method can be investigated to maximize the spectral efficiency in the 

network.  

5.2.3 Resource Allocation in Cell-free Massive MIMO 

Cell-free massive MIMO is a topology for implementing massive MIMO networks. Unlike 

collocated massive MIMO, in cell-free massive MIMO, the antennas (APs) are distributed 

randomly to maximize fairness in the network. The investigations in [70] regarding the impact of 

DL pilot training in cell-free massive MIMO have indicated that per-user net throughput, 

especially in low-density networks, can be remarkably improved by employing DL training. This 
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result emphasizes that due to the less pronounced channel hardening effect, DL pilots are more 

necessary to be used in cell-free massive MIMO than collocated massive MIMO. Therefore, 

considering pilot transmission in both UL and DL, the achievable DL rate of users can be first 

found, and then, by applying the optimal resource allocation scheme presented in this thesis, the 

DL achievable spectral efficiency of cell-free massive MIMO can be improved.  
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Chapter 6:  APPENDICES 

6.1 Appendix I 

Using the approximation given by (3-19), �̂�𝑘
𝐻
[(∑ 𝛽𝑗

𝐾
𝑗=1 ) 𝑼𝑼𝐻 − 𝐜𝐨𝐯(�̂�𝑘)]�̂�𝑘 in the denominator 

of (3-16) can be approximated by 

�̂�𝑘
𝐻
[(∑𝛽𝑗

𝐾

𝑗=1

)  𝑼𝑼𝐻 − 𝐜𝐨𝐯(�̂�𝑘)] �̂�𝑘

= �̂�𝑘
𝐻
[(∑𝛽𝑗

𝐾

𝑗=1

)  𝑼𝑼𝐻 − 𝜏𝑃𝑃𝛽𝑘
2𝑼(𝜏𝑃𝑃𝑼

𝐻𝑼𝛽𝑘 + 𝑰𝑃)
−1𝑼𝐻𝑼𝑼𝐻] �̂�𝑘

≈ �̂�𝑘
𝐻
[(∑𝛽𝑗

𝐾

𝑗=1

) −
𝜏𝑃𝑃𝛽𝑘

2 (
𝑀
𝑃)

𝜏𝑃𝑃𝛽𝑘 (
𝑀
𝑃) + 1

]𝑼𝑼𝐻 �̂�𝑘

= [(∑𝛽𝑗

𝐾

𝑗=1

) −
𝜏𝑃𝑃𝛽𝑘

2 (
𝑀
𝑃)

𝜏𝑃𝑃𝛽𝑘 (
𝑀
𝑃) + 1

]𝛽𝑘�̂�𝑘
𝐻𝑼𝐻𝑼𝑼𝐻𝑼�̂�𝑘

≈ [(∑𝛽𝑗

𝐾

𝑗=1

) −
𝜏𝑃𝑃𝛽𝑘

2 (
𝑀
𝑃)

𝜏𝑃𝑃𝛽𝑘 (
𝑀
𝑃) + 1

]𝛽𝑘 (
𝑀

𝑃
)
2

‖�̂�𝑘‖
2
. 

(6-1) 

Moreover, we have 

‖�̂�𝑘‖
4
=(𝛽𝑘�̂�𝑘

𝐻𝑼𝐻𝑼�̂�𝑘)
2
≈ 𝛽𝑘

2 (
𝑀

𝑃
)
2

‖�̂�𝑘‖
4
.  (6-2) 

Substituting (6-1) and (6-2) into (3-16) results in 

  

𝑅𝑘
𝑀𝑅𝐶 ≈ 𝔼{log2(1 +

1

[(∑ 𝛽𝑗
𝐾
𝑗=1 )−

𝜏𝑃𝑃𝛽𝑘
2(
𝑀
𝑃
)

𝜏𝑃𝑃𝛽𝑘(
𝑀
𝑃
)+1

+
1

𝑃𝑢

𝑃

𝑀
]
1

𝛽𝑘

1

‖�̂�𝑘‖
2

)}, (6-3) 

that becomes exact as 𝑀 → ∞. Besides, according to Jensen’s inequality and because log2(1 +
1

𝑥
) 

is a convex function, we conclude that 𝔼 {log2(1 +
1

𝑥
)} ≥ log2(1 +

1

𝔼{𝑥}
). Therefore, a lower 

bound for the UL rate given by (6-3) can be obtained as 
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𝑅𝑘
𝑀𝑅𝐶 ≥ log2

(

 
 
 
 

1 +
1

[(∑ 𝛽𝑗
𝐾
𝑗=1 ) −

𝜏𝑃𝑃𝛽𝑘
2 (
𝑀
𝑃)

𝜏𝑃𝑃𝛽𝑘 (
𝑀
𝑃) + 1

+
1
𝑃𝑢

𝑃
𝑀]

1
𝛽𝑘
𝔼 {

1

‖�̂�𝑘‖
2}

)

 
 
 
 

. 
(6-4) 

Applying the properties of central complex Wishart matrix [71] and considering 𝐜𝐨𝐯(�̂�𝑘) ≈

𝜏𝑃𝑃𝛽𝑘(
𝑀

𝑃
)

𝜏𝑃𝑃𝛽𝑘(
𝑀

𝑃
)+1
𝑰𝑃, we have 

𝔼 {
1

‖�̂�𝑘‖
2} = 𝔼 {𝒕𝒓 ((‖�̂�𝑘‖

2
)
−𝟏

)} =
𝜏𝑃𝑃𝛽𝑘 (

𝑀
𝑃) + 1

𝜏𝑃𝑃𝛽𝑘 (
𝑀
𝑃)

×
1

𝑃 − 1
, 

(6-5) 

for 𝑃 ≥ 2. Substituting (6-5) into (6-4) results in the approximate rate given by Theorem 1.  

To analytically prove the accuracy of the derived closed-form rate, lets also find un upper 

bound for (3-16). According to Jensen’s inequality for concave functions, we have 

𝔼 {log2(1 +
1

𝑥
)} ≥ log2(1 + 𝔼 {

1

𝒙
}). This results in  

 𝑅𝑘
𝑀𝑅𝐶 ≤ log2

(

 
 
 
 

1 + 𝔼

{
  
 

  
 

1

[(∑ 𝛽𝑗
𝐾
𝑗=1 ) −

𝜏𝑃𝑃𝛽𝑘
2 (
𝑀
𝑃)

𝜏𝑃𝑃𝛽𝑘 (
𝑀
𝑃) + 1

+
1
𝑃𝑢

𝑃
𝑀]

1
𝛽𝑘

1

‖�̂�𝑘‖
2

}
  
 

  
 

)

 
 
 
 

= log2

(

 
 
 
 

1 +
𝔼 {‖�̂�𝑘‖

2
}

[(∑ 𝛽𝑗
𝐾
𝑗=1 ) −

𝜏𝑃𝑃𝛽𝑘
2 (
𝑀
𝑃)

𝜏𝑃𝑃𝛽𝑘 (
𝑀
𝑃) + 1

+
1
𝑃𝑢

𝑃
𝑀]

1
𝛽𝑘
)

 
 
 
 

, 

(6-6) 

where the expectation term can be given by 

𝔼 {‖�̂�𝑘‖
2
} = 𝑡𝑟 (𝐜𝐨𝐯(�̂�𝑘)) ≈ 𝑡𝑟 (

𝜏𝑃𝑃𝛽𝑘 (
𝑀
𝑃)

𝜏𝑃𝑃𝛽𝑘 (
𝑀
𝑃) + 1

𝑰𝑃) =
𝜏𝑃𝑃𝛽𝑘 (

𝑀
𝑃)

𝜏𝑃𝑃𝛽𝑘 (
𝑀
𝑃) + 1

𝑃. 
(6-7) 

Hence, we conclude that 



47 

 

𝑙𝑜𝑔2(1 + 𝛼(𝑃 − 1)) ≤ 𝑅𝑘
𝑀𝑅𝐶 ≤ 𝑙𝑜𝑔2(1 + 𝛼𝑃), (6-8) 

where 𝛼 =
𝜏𝑃𝑝

𝑀

𝑃
𝛽𝑘
2

[(∑ 𝛽𝑗
𝐾
𝑗=1 )−

𝜏𝑃𝑃𝛽𝑘
2(
𝑀
𝑃
)

𝜏𝑃𝑃𝛽𝑘(
𝑀
𝑃
)+1

+
1

𝑃𝑢

𝑃

𝑀
](𝜏𝑃𝑝

𝑀

𝑃
𝛽𝑘+1)

. When 𝑀 is large, [(∑ 𝛽𝑗
𝐾
𝑗=1 ) −

𝜏𝑃𝑃𝛽𝑘
2(
𝑀

𝑃
)

𝜏𝑃𝑃𝛽𝑘(
𝑀

𝑃
)+1

+

1

𝑃𝑢

𝑃

𝑀
] → (∑𝐾𝑗=1,𝑗≠𝑘 𝛽𝑗) and therefore, 𝛼 →

𝛽𝑘

(∑𝐾𝑗=1,𝑗≠𝑘𝛽𝑗)
 that has a small value. This means that the 

upper bound in (6-8) becomes very close to the lower bound that proves the accuracy of the 

obtained closed-form ergodic rate. Hence, the proof of Theorem 1 is completed. ■ 

6.2 Appendix II 

By using 
1

𝑀
𝑼𝐻𝑼 ≈

1

𝑃
𝑰𝑃 for large values of 𝑀, 𝐜𝐨𝐯(𝜺𝑗) in (3-22) can be approximated by 

𝐜𝐨𝐯(𝜺𝑗) ≈ (𝛽𝑗 −
𝜏𝑃𝑃𝛽𝑗

2(
𝑀

𝑃
)

𝜏𝑃𝑃𝛽𝑗(
𝑀

𝑃
)+1
)𝑼𝑼𝐻,  

(6-9) 

And accordingly,  

�̂�𝐻𝐜𝐨𝐯(𝜺𝑗)�̂� ≈ (𝛽𝑗 −
𝜏𝑃𝑃𝛽𝑗

2 (
𝑀
𝑃)

𝜏𝑃𝑃𝛽𝑗 (
𝑀
𝑃) + 1

)𝑫
1
2�̂�𝐻𝑼𝐻𝑼𝑼𝐻𝑼�̂�𝑫

1
2 

                        ≈ (
𝑀

𝑃
)
𝟐

(
𝛽𝑗

𝜏𝑃𝑃𝛽𝑗(
𝑀

𝑃
)+1
)𝑫

1

2�̂�𝐻�̂�𝑫
1

2.  

(6-10) 

Also, we have 

(�̂�𝐻�̂�)
−1
= (𝑫

𝟏

𝟐�̂�𝐻𝑼𝐻𝑼�̂�𝑫
𝟏

𝟐)
−1

≈ (
𝑃

𝑀
) (𝑫

𝟏

𝟐�̂�𝐻�̂�𝑫
𝟏

𝟐)
−1

.  (6-11) 

As the result, (�̂�𝐻�̂�)
−1
�̂�𝐻𝐜𝐨𝐯(𝜺𝑗)�̂�(�̂�

𝐻�̂�)
−1

 in the denominator of (3-21) can be rewritten as 

(�̂�𝐻�̂�)
−1
�̂�𝐻𝐜𝐨𝐯(𝜺𝑗)�̂�(�̂�

𝐻�̂�)
−1
≈ (

𝛽𝑗

𝜏𝑃𝑃𝛽𝑗(
𝑀

𝑃
)+1
)(𝑫

1

2�̂�𝐻�̂�𝑫
1

2)
−1

.  
(6-12) 

Substituting (6-12) and (6-11) into (3-21) simplifies the denominator to 

∑[(�̂�𝐻�̂�)
−1
�̂�𝐻𝐜𝐨𝐯(𝜺𝑗)�̂�(�̂�

𝐻�̂�)
−1
]
𝑘𝑘

𝐾

𝑗=1

+
1

𝑃𝑢
[(�̂�𝐻�̂�)

−1
]
𝑘𝑘

≈ [(𝑫
1
2�̂�𝐻�̂�𝑫

1
2)
−1

]
𝑘𝑘

(
𝑃

𝑀

1

𝑃𝑢
+∑

𝛽𝑗

𝜏𝑃𝑃𝛽𝑗 (
𝑀
𝑃) + 1

𝐾

𝑗=1

). 

(6-13) 
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By using Jensen’s inequality for the convex function log2(1 +
1

𝑥
), a lower bound for the achievable 

UL rate can be obtained as 

𝑅𝑘
𝑍𝐹 ≥ log2

(

 
 
 
 

1 +
1

(
𝑃
𝑀
1
𝑃𝑢
+ ∑

𝛽𝑗

𝜏𝑃𝑃𝛽𝑗 (
𝑀
𝑃) + 1

𝐾
𝑗=1 )𝔼{[(𝑫

𝟏
𝟐�̂�𝐻�̂�𝑫

𝟏
𝟐)
−1

]
𝑘𝑘

}

)

 
 
 
 

. 
(6-14) 

The expectation term 𝔼{[(𝑫
𝟏

𝟐�̂�𝐻�̂�𝑫
𝟏

𝟐)
−1

]
𝑘𝑘

} in (6-14) for 𝑃 ≥ 𝐾 + 1 can be given by 

𝔼{[(𝑫
1
2�̂�𝐻�̂�𝑫

1
2)
−1

]
𝑘𝑘

} =
1

𝛽𝑘𝐾
(
𝜏𝑃𝑃𝛽𝑘 (

𝑀
𝑃) + 1

𝜏𝑃𝑃𝛽𝑘 (
𝑀
𝑃)

×
𝐾

𝑃 − 𝐾
),  

(6-15) 

where the last equation is derived by using the properties of central complex Wishart matrices (the 

elements of �̂� are zero mean Gaussian random variables and 𝐜𝐨𝐯(�̂�𝑘) ≈
𝜏𝑃𝑃𝛽𝑘(

𝑀

𝑃
)

𝜏𝑃𝑃𝛽𝑘(
𝑀

𝑃
)+1
𝑰𝑃) [71]. 

Finally, substituting (6-15) into (6-14) results in the closed-form rate given by Theorem 2. 

The accuracy of the obtained closed-form rate can be justified according to the Lemma 1 

in [39]. This Lemma emphasizes that for any 𝑋 and 𝑌 that are sums of nonnegative random 

variables, we can have 𝔼{log
2
(1 +

𝑋

𝑌
)} ≈ log

2
(1 +

𝔼{𝑋}

𝔼{𝑌}
). Similarly, in this context with 𝑋 = 1 and 

𝑌 = (
𝑃

𝑀

1

𝑃𝑢
+ ∑

𝛽𝑗

𝜏𝑃𝑃𝛽𝑗(
𝑀

𝑃
)+1

𝐾
𝑗=1 ) [(𝑫

1

2�̂�𝐻�̂�𝑫
1

2)
−1

]
𝑘𝑘

, the closed-form approximate UL is very close 

to the exact UL ergodic rate and the proof of Theorem 2 is completed. ■ 

6.3 Appendix III 

According to Woodbury matrix identity, we have  

[�̂��̂�𝐻 + ∑ 𝐜𝐨𝐯(𝜺𝑗)
𝐾
𝑗=1 +

1

𝑃𝑢
𝑰𝑀⏟              

𝜰

]−1 = 𝜰−1 − 𝜰−1�̂�(𝑰𝐾 + �̂�
𝐻𝜰−1�̂�)

−1
�̂�𝐻𝜰−1. 

(6-16) 

Moreover, 
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�̂�𝐻[�̂��̂�𝐻 +∑𝐜𝐨𝐯(𝜺𝑗)

𝐾

𝑗=1

+
1

𝑃𝑢
𝑰𝑀]

−1�̂�

= �̂�𝐻𝜰−1�̂� − �̂�𝐻𝜰−1�̂�(𝑰𝐾 + �̂�
𝐻𝜰−1�̂�)

−1
�̂�𝐻𝜰−1�̂�

= (𝑰𝐾 + (�̂�
𝐻𝜰−1�̂�)

−1
)−1 = 𝑰𝐾 − (𝑰𝐾 + �̂�

𝐻𝜰−1�̂�)−1. 

(6-17) 

Substituting (6-17) into the denominator of (3-25) yields 

𝑅𝑘
𝐿𝑀𝑀𝑆𝐸 = 𝔼{log2 (

1

[(𝑰𝐾 + �̂�𝐻𝜰−1�̂�)−1]𝑘𝑘

)} . (6-18) 

Moreover, using the approximation given by (3-19) results in ∑ 𝐜𝐨𝐯(𝜺𝑗)
𝐾
𝑗=1 ≈

(∑
𝛽𝑗

𝜏𝑃𝑝𝛽𝑗
𝑀

𝑃
+1

𝐾
𝑗=1 )𝑼𝑼𝐻 for large values of 𝑀. Therefore, 

𝜰−1 ≈ [(∑
𝛽𝑗

𝜏𝑃𝑝𝛽𝑗
𝑀
𝑃 + 1

𝐾

𝑗=1

)𝑼𝑼𝐻 +
1

𝑃𝑢
𝑰𝑀]

−1

= 𝑃𝑢𝑰𝑀 − 𝑃𝑢
2(∑

𝛽𝑗

𝜏𝑃𝑝𝛽𝑗
𝑀
𝑃 + 1

𝐾

𝑗=1

)𝑼(𝑰𝑃 + 𝑃𝑢(∑
𝛽𝑗

𝜏𝑃𝑝𝛽𝑗
𝑀
𝑃 + 1

𝐾

𝑗=1

)𝑼𝐻𝑼)

−1

𝑼𝐻

≈ 𝑃𝑢𝑰𝑀 −

𝑃𝑢
2(∑

𝛽𝑗

𝜏𝑃𝑝𝛽𝑗
𝑀
𝑃 + 1

𝐾
𝑗=1 )

1 + 𝑃𝑢
𝑀
𝑃 (
∑

𝛽𝑗

𝜏𝑃𝑝𝛽𝑗
𝑀
𝑃 + 1

𝐾
𝑗=1 )

𝑼𝑼𝐻.

 (6-19) 

Besides, we have �̂�𝐻𝜰−1�̂� ≈
(3−19)

(
𝑃𝑢
𝑀

𝑃

1+𝑃𝑢
𝑀

𝑃
∑

𝛽𝑗

𝜏𝑃𝑝𝛽𝑗
𝑀
𝑃
+1

𝐾
𝑗=1

)𝑫1/2�̂�𝐻�̂�𝑫1/2. Accordingly, the achievable 

UL ergodic rate of LMMSE receiver can be approximated by 

𝑅𝑘
𝐿𝑀𝑀𝑆𝐸 ≈ 𝔼{log2(1 +

1

1
𝛾𝑘

)} , (6-20) 
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where 𝛾𝑘 =
1

[
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−1

]
 
 
 
 

𝑘𝑘

− 1. This approximation of the rate is exact 

when 𝑀 → ∞. Besides, by using Jensen’s inequality, we have 

𝑅𝑘
𝐿𝑀𝑀𝑆𝐸 ≥ log2(1 +

1

𝔼 {
1
𝛾𝑘
}
). (6-21) 

The PDF of 𝛾𝑘 can be approximated by the Gamma distribution 𝐺(𝛼𝑘, 𝜃𝑘) such that 𝑝𝛾𝑘(𝑥) =

𝑥𝛼𝑘−1𝑒−𝑥/𝜃𝑘

Γ(𝛼𝑘)𝜃𝑘
𝛼𝑘
, where 𝛼𝑘 =

(𝑃−𝐾+1+(𝐾−1)�̂�𝑘)
2

𝑃−𝐾+1+(𝐾−1)�̂�𝑘
 and 𝜃𝑘 is given by (3-27). By applying this approximate 

distribution, we have 

𝔼 {
1

𝛾𝑘
} =

Γ(𝛼𝑘 − 1)

Γ(𝛼𝑘)𝜃𝑘
=

1

(𝛼𝑘 − 1)𝜃𝑘
, (6-22) 

where the last equality is resulted from Γ(𝑥 + 1) = 𝑥Γ(𝑥). By Substituting (6-22) into (6-21), the 

rate given by Theorem 3 can be concluded.  

It is worth mentioning that by applying the same method, an upper bound for the rate given by 

(6-20) can also be found as 𝑅𝑘
𝐿𝑀𝑀𝑆𝐸 ≤ log

2
(1 + 𝔼{𝛾𝑘}) = log

2
(1 + 𝛼𝑘𝜃𝑘). This verifies that the 

closed-form ergodic rate given by Theorem 3 is very accurate and close to the exact ergodic rate, 

especially in lower values of SNR, where 𝜃𝑘 is very small. 
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