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Abstract

A Three Echelon Location Routing Problem with Multiple Commodities and Courier
Deliveries

Sara Ahmed

Research on location-routing is extensive, providing new variants for numerous applications.

It is worth mentioning that most contributions present in the literature of freight distribution are lim-

ited to two-echelon, single commodity networks imposing one delivery strategy for all flows. While

there are recent variants that consider extensions to this problem, they rarely consider modifying

all the features simultaneously. To address this gap, we define a multi-echelon location and routing

problem with multi-commodity pick-up-and-delivery (3E-LRP-MC-PD). We further consider the

choice between three different transportation strategies for each commodity. The problem is formu-

lated as an integer program and three additional variants of the formulation are considered. A slope

scaling decomposition matheuristic is proposed to solve the problem in reasonable computational

time. Computational experiments are performed to asses the different formulations and to evaluate

the performance of the matheuristic. Finally, additional experiments are conducted to investigate

the impact of the unique attributes of the 3E-LRP-MC-PD.

Keywords: Location-routing (LR), Multi-echelon, Multi-commodity, Hybrid network, Decom-

position, Matheuristic
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Chapter 1

Introduction

1.1 Definition & Scope

Distribution logistics plays a pivotal role in all industries and economies. In 2017 the growth

of the logistics industry in Canada was 1.5 times faster than any other industry (Transport Canada,

2018). More recently, Chopra (2019) highlighted that freight distribution costs make up about 20%

of the cost of manufacturing. Finally, Armstrong & Associates (2020) reported that distribution

logistics expenditures in 2019, were greater than 8% percent of the sales revenue for North America,

Europe and Asia.

This rapid growth is indicative of the new challenging freight distribution landscape. Nowadays,

companies are operating in a more global marketplace (Brandimarte & Zotteri, 2007; Rushton et al.,

2017). This translates to geographical dispersion between the supply and demand points. Addition-

ally, most industries have a diverse product portfolio, where products can differ in terms of size and

transportation requirements. Lastly, customers costly expectations of faster deliveries, result in very

restrictive service level requirements.

Fortunately, the rapidly changing landscape also facilitates new cost-saving opportunities. Re-

search in city logistics (Cleophas, Cottrill, Ehmke, & Tierney, 2019; Ranieri, Digiesi, Silvestri,

& Roccotelli, 2018; Savelsbergh & Woensel, 2016) and e-commerce (Houde, Newberry, & Seim,

2017; Rodrigue, 2020) highlighted these opportunities. The more commonly utilized strategy is

the use of consolidation facilities to improve efficiency and reduce costs. These facilities allows
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Figure 1.1: Key Components of distribution and logistics (Rushton et al., 2017)

exploitation of economies of scale from load and route consolidations. Distribution costs can also

be reduced through collaboration initiatives. In essence, collaboration allows companies to benefit

from the established infrastructure of other supply chains (Ranieri et al., 2018). A common ex-

ample is when companies complete only part of the delivery and use couriers to perform last mile

deliveries to consumers (Cleophas et al., 2019; Ranieri et al., 2018).

To cope with today’s competitive distribution environment, the academic and business world

redefined the scope of distribution logistics. Originally distribution was only seen as the physical

movement of goods. Nowadays, the more acceptable definition of distribution logistics has a much

wider scope (Rushton et al., 2017). As explained by Rushton et al. (2017), logistics is a part of

the supply chain ensuring profitable transfer of goods while maintaining acceptable service level

requirements. Hence, logistics management covers a wide range of activities summarized in Figure

1.1.

Rushton et al. (2017) explained that logistics activities can be further categorized as material

handling logistics and distribution logistics. Although the areas sometimes overlap, distribution

logistics broadly covers the flow of goods from production sites to consumers. These logistics

activities usually include network design and transportation management (mode, route and load

2



planning).

This new extensive scope acknowledges that distribution management requires making both

strategic and everyday operational decisions. Strategic decisions imply a long planning horizon.

These decisions usually cover locating facilities and determining their capacities. The strategic level

provides the conditions in which the operational decisions are implemented (Schmidt & Wilhelm,

2000). Operational decisions then determine how the distribution network is utilized to respond to

customer demands (Schmidt & Wilhelm, 2000). Operational decisions include everyday scheduling

and routing operations.

1.2 Industrial Scenarios

To design and utilize a competitive distribution network, it is important to: (1) optimize the

interaction between strategic and operational decisions (Schmidt & Wilhelm, 2000); and (2) exploit

the opportunities of the new distribution landscape (Savelsbergh & Woensel, 2016). This is best

exemplified by Amazon’s distribution strategy. Amazon is a key player in the e-commerce industry.

The company’s unique selling proposition comes from making a wide range of products accessible

in very short delivery time (Rodrigue, 2020). This unique selling advantage creates very challenging

distribution requirements. Firstly, Amazon’s geographical expansion means that supply and delivery

points are sparsely located. Additionally, the wide range of products require tailored transportation

strategies because of the different products’ size and transportation requirements. Finally, offering

consumers same day or next day deliveries translate to very short allowed transit time.

To achieve a competitive strategy, Amazon divides distribution to two main stages (Rodrigue,

2020). The first stage involves the delivery of orders to consolidation facilities near delivery points.

This allows the company to exploit economies of scale. According to Rodrigue (2020), the ideal

location and size of each facility was determined by considering a trade-off between economies of

scale, fixed costs, operational requirements and lead time. The second stage is last mile delivery,

where individualized deliveries are made to final consumers. The nature of last mile delivery can

excessively increase routing costs. To overcome this, some deliveries are routed between a network

of local post offices. While the remaining parcels are delivered using other third party logistics (3PL)

3



providers . Collaborating with couriers and 3PLs allows Amazon to use a unique transportation

strategy for each parcel, which can significantly reduce costs.

The healthcare industry also highlights the importance of optimizing distribution logistics. Beaulieu,

Roy, and Landry (2018) and Dooley (2009) showed that healthcare logistics costs are 8 to 20 times

greater than other industries. This clear logistic inefficiency is often associated with the complexity

of the healthcare supply chains (Abdulsalam, Gopalakrishnan, Maltz, & Schneller, 2015; Beaulieu

et al., 2018; Landry, Beaulieu, & Roy, 2016). According to Beaulieu et al. (2018), the wide prod-

uct range is a major contributor to the complexity. Hospitals’ inventories include medical supplies,

drugs, food products and house keeping products (Landry & Beaulieu, 2013). In addition to product

range, hospital logistics often require transportation between geographically dispersed locations. A

closer look, however, shows that the distribution requirements of the healthcare industry are very

similar to that of e-commerce. Both in terms of the diverse product range with corresponding

unique transportation requirements; and in terms of geographical dispersion. However, as identified

by Beaulieu et al. (2018), healthcare organizations do not usually apply distribution strategies that

are often utilized by other industries which results in excessive logistics costs.

1.3 The Optimization Approach

As highlighted, a good distribution strategy is invaluable. In addition to excessive expenditures,

poor distribution logistics can also affect a business’s competitiveness, quality of service and cus-

tomer satisfaction. It is therefore only natural that extensive research has been done in planning

problems for freight transport and distribution. One popular academic approach is modelling dis-

tribution decisions as location-routing optimization problems. Then developing efficient solution

strategies to make cost-effective strategic (location) and operational (routing) decisions.

From an modelling perspective, a distribution network connects supply and delivery points. At

the very least, when all freight is transported directly from origin (suppliers) to destination (con-

sumers), the network will include a supply stage and a delivery stage. Often, they also include

one or more intermediary stages involving storage, merging or consolidation of freight. Transporta-

tion occurs between each pair of stages and each pair is represented by one echelon (level) of the

4



distribution network (Cuda, Guastaroba, & Speranza, 2015).

Distribution networks can be broadly categorized based on the number of echelons present

(Cuda et al., 2015). A single echelon network is utilized if all the commodities (freight) are di-

rectly delivered from their origin to their destination (i.e. without intermediate facilities). Direct

deliveries should be used if there is a short distance between origins and destinations, the ship-

ment fills the capacity of the vehicle, or there are tight time restrictions (Guastaroba et al., 2016).

Conversely, freight can be indirectly shipped to its destination through a multi-echelon distribution

network. An indirect delivery involves commodities being transported from their origin to one or

more intermediate facilities before reaching their destination. Guastaroba et al. (2016) provided a

detailed review of the different intermediate facilities, their impact on freight transportation, and the

relevant problems in the literature.

It is challenging to realistically model the distribution landscape without excessively increasing

complexity, ultimately hindering good solutions. Hence, optimization problems addressing distribu-

tion networks are usually simplified and do not accurately reflect real industrial scenarios (Azizi &

Hu, 2020). More recent variants are addressing one or more realistic industrial aspect. This includes

more realistic modeling of multi-commodity attributes and allowing unique transportation strategy

for each commodity. More realistic variants may also consider more flexible routing decisions. Fi-

nally, few variants account for possible collaboration strategies along the distribution network. It is

fair to note that while the recent variants consider more realistic aspects, they rarely consider all the

limitations simultaneously.

1.4 Contribution of the Research

This research considers how to strategically design and route a range of commodities through a

multi-echelon distribution network represented in Figure1.2. For each commodity there is a choice

between: (1) direct delivery, (2) consolidated (indirect) delivery, and (3) courier delivery. For the

commodity flows that utilize consolidated delivery, the locations of the consolidation points are

selected from a set of possible transshipment locations. Finally vehicle routes are determined al-

lowing both pick-up and delivery of commodities by the same vehicle and also allowing vehicles to

5



Figure 1.2: Echelons present in the 3E-LRP-MC-PD

Figure 1.3: An example of a vehicle route including arcs in different echelons

transverse any arc on the network. An example of the flexible routing is seen in Figure 1.3. The aim

is to generate a routing plan that reduces logistic costs while respecting the quality restrictions of

the products being transported. This is formulated as a three-echelon location and routing problem

with multi-commodity pick-up-and-delivery (3E LRP-MC-PD) considering both direct and courier

shipments. This thesis aims to model this new more realistic variant of the location-routing problem

and design a matheuristic to efficiently solve challenging instances.

The motivation behind considering three different transportation strategies (hybrid network) is

to: (i) more accurately represent real industrial scenarios, (ii) account for the difference between

commodities’ attributes and hence the different transportation requirements, and (iii) explore the

potential cost-saving opportunities of allowing flows on the same network to be transported dif-

ferently. Direct and consolidated delivery are often studied in the literature. Direct delivery from
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a commodity’s origin to its destination is often ideal for large or time-sensitive shipments and for

shipments with close origin and destination. Consolidating the delivery of multiple shipments can

be utilized when transporting less restrictive commodities to improve vehicle utilization and benefit

from economies of scale.

Courier deliveries are often used for last mile delivery of e-commerce freight where freight

needs to be transported from warehouses to scattered individual consumers. A commodity is trans-

ported from its origin to an intermediary courier collection point and the courier would be responsi-

ble for the delivery to the destination. Courier deliveries can reduce routing costs and provide flex-

ibility because courier collection points are numerous, already established and more conveniently

located compared to consumers. As highlighted by Amazon’s last-mile distribution, using courier

deliveries provides the flexibility needed for frequent collection and timely deliveries of special

commodities without adding complexity to the vehicle route planning. They can also be beneficial

for transporting small shipments with distant origin and destination if the courier delivery cost is

less than the vehicle routing cost.

Finally unique commodity attributes are considered to more realistically convey product variety

and transportation restrictions. The literature often distinguishes multiple commodities in terms of

the amount of each commodity and the service level requirements. A new bundling attribute is

defined between commodity pairs, such that some commodity pairs can not be transported together.

The main contributions of this research are:

• Introducing a new multi-commodity three-echelon location-routing problem in a hybrid net-

work with pick-up and delivery.

• Distinguishing the different commodities based on multiple criteria including bundling re-

strictions and service level constraints.

• Proposing courier deliveries as a transportation strategy, in addition to the typical direct and

consolidated delivery options.

• Allowing vehicle routes to include pick-up and delivery requests and to transverse all eche-

lons.
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• Proposing a new decomposition scheme for a matheuristic algorithm to solve the 3E-LRP-

MC-PD problem.

1.5 Thesis Structure

The structure of the thesis is organized as follows. Chapter 2 provides a detailed literature re-

view of the relevant variants of the location-routing problem and the matheuristic approaches used

to solve them. Chapter 3 presents an integer programming (IP) formulation for the 3E-LRP-MC-

PD and proposes additional variants that can help improve the performance of commercial solvers.

In Chapter 4 we present a new decomposition scheme and present a slope-scaling matheuristic

algorithm to solve the 3E-LRP-MC-PD in reasonable computational time. Chapter 5 proposes a

procedure to generate instances of the 3E-LRP-MC-PD such that all attributes are represented with-

out inducing bias. In Chapter 6, we present the computational studies to assess the formulations;

evaluate the matheuristic and analyze the impact of the unique attributes of the studied problem.

Finally, we summarize our research and present a direction for future research in Chapter 7.

.
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Chapter 2

Literature Review

In this chapter, first we define the standard location-routing problem. Then we discuss the recent

relevant variants and extensions of the problem. Finally, we review the decomposition matheuristic

approaches proposed to solve large instances of the LRP.

2.1 Location-Routing

Distribution network design encompasses both strategic decisions related to facility location and

operational routing decisions. In the past the two problems were addressed separately by determin-

ing locations first and then the routes (Mara, Kuo, & Asih, 2021). The traditional approach failed to

account for the interdependency of the two decisions which led to sub-optimal results (Min et al.,

1998; Salhi & Rand, 1989).

As explained by Mara et al. (2021), early work was done by Boventer (1961), Maranzana (1964)

and Webb (1968) to highlight the ”inter-dependency” of the location and routing decisions. How-

ever, the computational power at the time was not developed enough to solve both problems concur-

rently. Since then, the constant development in optimization research, along with the technological

advancements allowed extensive research to address the integrated approach to the location-routing

problem (Mara et al., 2021).

In their earlier work, Nagy and Salhi (2007) defined the standard location-routing problem as

9



Figure 2.1: The standard single-echelon location routing problem (Min et al., 1998)

”location planning with tour planning aspect taken into account.” Following this Drexl and Schnei-

der (2015) defined LRPs to be a problem where at least two interdependent decisions must be made:

(i) the location of facilities to open from a finite or infinite set of potential locations, and (ii) the ve-

hicle routes to build, such that customer demand is satisfied. Schneider and Drexl (2017) further

distinguished the standard LRP to be discrete, static, single objective problem with no inventory

decision in a single-echelon system where a customer is visited only once for delivery. Figure 2.1

shows a feasible solution to the standard LRP highlighting its key characteristics. For extensive

reviews on the standard LRP we refer the interested readers to the surveys by Prodhon and Prins

(2014) and Schneider and Drexl (2017).

2.2 Variants and Extensions of LRP

According to Drexl and Schneider (2015), varaints of LRPs change one or more characteristic

of the standard problem (defined in section 2.1). Mara et al. (2021) and Drexl and Schneider (2015)

provided a detailed taxonomy for classifying variants of LRPs studied in the literature.

The scope of this thesis is limited to extensions of the standard LRP that consider multiple

echelons, commodities or transportation strategies for a single planning horizon. As well as LRP
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Figure 2.2: Two-echelon location-routing problem representation (Boccia et al., 2011)

variants that allow pick-up & delivery along the vehicle route. This thesis addresses exclusively

distribution logistics and accordingly variants of the LRP that consider material handling logistics

including inventory and production planning decisions are outside of its scope.

2.2.1 Multi-echelon LRP

Multi-echelon LRPs are extensions of the standard LRP considering one or more intermediary

stages between primary facilities and final customers. Instead of being served directly from a central

facility (Figure 2.1), in a multi-echelon LRP a commodity passes two or more stages in the network

before reaching the final customer. Figure 2.2 present a two echelon LRP. In a typical multi-echelon

network vehicle routes are restricted to a single echelon. This can be seen in Figure 2.2 where a

vehicle route in the first echelon starts at a primary facility and visits multiple secondary facilities.

The second echelon vehicle routes start at a secondary facility and visits multiple customer loca-

tions. It is worth noting that vehicles do not typically transverse arcs in more than one echelon (i.e.

no vehicle visits all primary, secondary and customer locations).

Distribution systems in industrial applications are often modeled as two-echelon networks.
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Therefore, the two echelon LRP (2E-LRP) is the most frequently addressed extension of the stan-

dard LRP in the freight distribution literature (Cuda et al., 2015). The two echelon network is a spe-

cial case of multi-echelon networks, where commodities are transported from origin to destination

through one type (stage) of intermediate facilities (Mirhedayatian, Crainic, Guajardo, & Wallace,

2019). The most recent contributions tackled variants of the same basic problem that rise from dif-

ferent industrial scenarios, or proposed new solution algorithms. For example, Abbassi, Kharraja,

El Hilali Alaoui, Boukachour, and Paras (2020) optimized the distribution of non-medical products

in a two-echelon healthcare network. They proposed a multi-objective mathematical formulation.

Then applied two heuristics: a swarm optimization algorithm and a genetic algorithm, both im-

proved by variable neighborhood search, to solve it. Mirhedayatian et al. (2019) and Winkenbach,

Kleindorfer, and Spinler (2016) considered the postal delivery distribution system. Mirhedayatian

et al. (2019) studied an uncapacitated 2E-LRP with synchronization of flows at the intermediate

facilities and designed a decomposition-based heuristic to address this problem. While Winkenbach

et al. (2016) modeled the postal delivery problem in France as a capacited 2E-LRP, and they also

proposed a two stage heuristic to solve the model.

According to Cuda et al. (2015) city logistics is the most cited application of 2E-LRPs in freight

distribution. Crainic, Ricciardi, and Storchi (2009) clarified that city logistics address freight dis-

tribution explicitly in urban areas, where it is critical to reduce nuisances related to freight trans-

portation activities. Zhao, Wang, and De Souza (2018) studied the parcel delivery problem in a two

echelon urban setting in China. They took into account a heterogeneous capacitated vehicle fleet,

and joint delivery alliance practices. To solve the problem, the authors proposed a cooperative ap-

proximation heuristic algorithm which relies on a Lagrangian heuristic for locating facilities, and on

improvement procedures for customer allocation. Yang and Zeng (2018) focused on a general 2E-

LRP with time constraints in city logistics systems, and provided a probability based metaheuristic

algorithm to solve the mixed integer model.

Fewer published studies involved three or more echelon LRPs. Wu, Nie, and Xu (2017) mod-

eled rail distribution of perishable products as a three echelon LRP with time windows and budget

constraints. The three echelons considered are between the following four stages: food suppliers,

distribution centers, rail stations and trains. A relaxation model provided the lower bounds of the
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Figure 2.3: Pure vs Hybrid two-echelon distribution network (Guastaroba et al., 2016)

problem and a hybrid cross entropy algorithm is proposed to solve the problem. Janjevic, Winken-

bach, and Merchán (2019) also addressed a three-echelon location-routing problem, but applied to

urban last mile e-commerce distribution. The authors formulated the problem as a non-linear op-

timization model and used a heuristic approach to obtain good solutions for large instances of the

problem. Dai, Aqlan, Gao, and Zhou (2019) investigated the potential of addressing three echelon

and four echelon LRPs arising from applications in distribution systems and supply chains in city

logistics. They implemented a two phase method based on the Clarke and Wright savings algorithm

to solve the multi-echelons problems; proving that the algorithm can be utilized to solve the problem

in a reasonable time.

2.3 Hybrid Nerworks

Multi-echelon LRP variants can also be classified based on the type of network. Guastaroba et

al. (2016) identified two types of distribution networks in a multi-echelon system. A pure network

(seen in Figures 2.2 and 2.3a) is where direct delivery is not considered, which means all shipments

must be transferred through an intermediate facility. While a hybrid network allows the choice

between direct and indirect transportation for each delivery (Figure 2.3b). LRPs in hybrid networks

are not as frequently addressed in the literature.
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Goodarzi and Zegordi (2016) condisered a 2E-LRP in a cross-dock network, allowing direct

shipment. According to Goodarzi and Zegordi (2016), forcing all shipments to go through cross-

docks could be economically unwise. Their analysis showed that direct delivery could be better for

shipments near full truck-load and for some shipments with origins and destinations close together.

Goodarzi and Zegordi (2016)’s computational experiment also proved that considering both distri-

bution strategies simultaneously dramatically improves the objective function value, compared to

considering either one of the strategies alone.

Hosseini, Shirazi, and Karimi (2014) also studied a cross-dock network; but considered three

different transportation strategies. Similar to Goodarzi and Zegordi (2016), both direct deliveries

and consolidated deliveries were allowed. Additionally, Hosseini et al. (2014) considered milk run

deliveries that connect multiple suppliers with a single customer. Milk runs allowed consolidation

of commodities within a vehicle, instead of cross-docks. Hosseini et al. (2014), concluded that it

is worth investigating the role three transportation strategies could play in increasing flexibility and

reducing costs and delivery time.

2.4 Multi-commodity Networks

Most contributions to LRP literature consider how a single commodity moves through the net-

work. One variant of this problem, that is hardly studied in the literature, considers multicommodity

transportation over the same network. Additional characteristics associated with multicommod-

ity distribution include facility or vehicle capacity restrictions per commodity, time restrictions, or

service level constraints (Guastaroba et al., 2016).

Hamidi, Farahmand, Sajjadi, and Nygard (2014), Gianessi, Alfandari, Létocart, and Calvo

(2016) and Boccia, Crainic, Sforza, and Sterle (2018) all studied multi-commodity LRPs. The sup-

ply and demand at nodes were expressed per commodity type but there was no further distinction

between the commodities’ attributes. Hamidi et al. (2014) proposed a multi-commodity capaci-

tated LRP in a 3-echelon distribution network. Their model allowed both consolidated delivery

through capacitated depots and direct delivery between plants and customers. Gianessi et al. (2016)

studied a specific variant of the multicommodity-ring LRP, where intermediate facilities need to be
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connected via a ring. Boccia et al. (2018) addressed a 2E-LRP with multi-commodity flows. The

authors proposed a new flow intercepting formulation to model the problem.

Boudahri, Aggoune-Mtalaa, Bennekrouf, and Sari (2013), Asgari, Rajabi, Jamshidi, Khatami,

and Farahani (2017) and Li, Lan, and Saldanha-Da-Gama (2019) addressed additional commodity

attributes. Boudahri et al. (2013) used a multi-commodity LRP to optimize an agricultural (perish-

able) food supply chain. The authors considered the volume, weight and transit time requirements

for each commodities. Additionally, the capacities of plants and vehicles were expressed per com-

modity type. Asgari et al. (2017) examined a waste LRP in a two-echelon system. The network

contained generation nodes, treatment centers and disposal sites. Each type of waste was described

in terms of recycling percentage at each node and risk of transporting along each arc. Finally, Li

et al. (2019) studied a multi-objective LRP for perishable commodities. The authors used a penalty

parameter to model the decreasing freshness of each commodity.

2.5 Pick-up & Delivery

Further extension of the multi-commodity LRP allows pick-up and delivery at consumer nodes.

In a standard LRP, freight is delivered to consumers from one or more potential facilities. Pick-

up and delivery LRPs allow picking up of goods at consumers and delivering them to facilities or

other consumers. Rieck, Ehrenberg, and Zimmermann (2014) and Rahmani, Cherif-Khettaf, and

Oulamara (2015) considered a multi-commodity 2E-LRP with pick-up and delivery. Rieck et al.

(2014) studied a hub-and-spoke network, where a customer can have either a pick-up or a delivery

demand. In the problem investigated by Rahmani et al. (2015), a single commodity is distributed

from suppliers to intermediate facilities, it is then transformed to more than one commodity to

be delivered to final consumers. Finally, Azizi and Hu (2020) considered a multi-commodity 2E-

LRP with pick-up and delivery in a hybrid network (considering direct delivery and consolidated

delivery options). The problem was formulated as a mixed integer linear programming model and

solved using CPLEX.
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2.6 Matheuristics in LRP

Over the last decade hybrid approaches have been used to tackle the LRPs to combine the power

of different solution algorithms. Matheuristics are some of the most popular hybrid approaches

combining mathematical programming and heuristics. A matheuristic approach enables researchers

to benefit from the advancing computational powers of commercial solvers and lead to more flexible

algorithms (Mara et al., 2021). According to Archetti and Speranza (2014) and Mara et al. (2021)

decomposition matheuristics are best suited for integrated problems including LRPs. Archetti and

Speranza (2014) defined a decomposition matheuristic approach to be a scheme where the problem

is divided to several sub-problems, of which some are solved using mathematical programming.

The most common decomposition scheme addressing LRPs, divide the decisions to location/allocation

decisions and routing decisions. Lam and Mittenthal (2013) and Escabor, Linfati, and Toth (2013)

proposed a route first location second approach. Lam and Mittenthal (2013) considered a clustering-

based heuristic for the multi-depot LRP. First customer-route allocation was determined by cluster-

ing customers based on geographical location such that each cluster did not violate the vehicle

capacity. Each cluster was then treated as a single customer and a facility location problem was

solved determining number, size and locations of facilities and the allocation of customers to facili-

ties. A final descent heuristic was used to improve customer-route allocation and customer-facility

allocation. Escabor et al. (2013) also used a clustering-based iterative heuristic. An initial tour

was constructed containing all customers. Then a splitting strategy was utilized splitting the tour to

smaller tours that respect vehicle capacity. Location/allocation decisions were determined by solv-

ing an integer linear program. Finally, local search and diversification strategies were employed to

improve the search.

Schittekat et al. (2013) also separated location and routing decisions, but the location decisions

were not solved for. The authors addressed a school bus location-routing problem where the bus

stops are selected from a set of candidate stops. First the routing problem was solved using a greedy

randomized search and improved using variable neighborhood descent. The stops selected in the

route were automatically opened. The authors then used a a mathematical program to determine the

allocation of students to stops such that the capacity of the buses were not exceeded.
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Hemmelmayr, Doerner, Hartl, and Vigo (2014) solved a vehicle routing and bin allocation prob-

lem for a waste management system. Both a location first route second approach and a route first

location second approach were tested. The location problem was solved using a commercial solver.

A variable neighborhood search procedure was used to solve the routing part of the problem.

Winkenbach et al. (2016) utilized an iterative two stage procedure to solve a 2E-LRP with

limited facility and vehicle capacity. Location and allocation decisions were determined first by

solving a sub-problem with relaxed facility capacity constraints. The objective was to minimize

daily operational costs. A second vehicle routing sub-problem, with the same objective, was then

solved while considering the opened facilities’ capacities. The second sub-problem could result in

re-allocations of some customers to ensure the capacity of opened facilities are respected. When the

re-allocations resulted in higher cost, the first problem was rendered infeasible and solved again to

optimize the best facilities to open.

Pichka, Bajgiran, Petering, Jang, and Yue (2018) proposed a two phase procedure to address

the 2E-LRP in city logistics. First location and allocation decisions were determined. Then feasible

routing solutions for each echelon were generated using a modified Clarke and Wright algorithm.

Finally the routing decisions in each echelon were improved using a simulated annealing approach.
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Chapter 3

Problem Definition and Formulation

In this chapter we first formally define the 3E-LRP-MC-PD. We then propose an integer pro-

gramming formulation to model this problem. Finally, we present two modifications to the formu-

lation proposed which can potentially reduce the computational time of commercial solvers.

3.1 Problem Definition

LetG = (N0, A0) be the complete graph, whereN0 is the set of nodes and A0 is the set of arcs.

Node 0 is a fictitious node where vehicles must start and end their routes. The sets N and A are the

sets of nodes and arcs, respectively, without considering node 0. H ⊆ N is defined as the set of

nodes corresponding to the transshipment candidate set and for i ∈ H , ci is the fixed cost of opening

transshipment facility i. C ⊆ N is defined as the set of intermediary collection points for couriers

and and ccour is the unit cost of using a courier for delivery. The set K denote the commodities. For

every i ∈ C and k ∈ K, tcik is defined as the time taken to deliver commodity k to its destination

using courier i.

Each commodity k ∈ K is characterized by the origin node ok; the destination node dk; quantity

in units qk; the maximum allowed transit time (service level constraints) tmaxk and the bundling

restrictions b(k,k′) between a pair of commodities.

A heterogeneous Vehicle fleet V is used to transport commodities along arcs. For v ∈ V : cv is

the cost of acquiring vehicle v and Γv is the capacity of vehicle v. cvij and tvij are the cost and time,
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respectively, of routing vehicle v along arc (i, j) such that (i, j) ∈ A.

The following set of binary decision values are defined:

• av vehicle utilization variable, is equal to 1 vehicle v is acquired and 0 otherwise.

• fvkij flow variable, is equal to 1 if commodity k passes through arc (i, j) in vehicle v and 0

otherwise.

• gik courier delivery variable is equal to 1 if commodity k is delivered through courier inter-

mediate node i ∈ C and 0 otherwise.

• xvij routing variable, is equal to 1 if vehicle v passes through arc (i,j) and 0 otherwise.

• yi location variable, is equal to 1 if transshipment facility i ∈ H is open and 0 otherwise.

• Zv
i node routing variable, is equal to 1 if vehicle v passes through node i and 0 otherwise.

3.2 The 3E-LRP-MC-PD Formulation

Next an integer programming formulation is introduced to address this problem.

min
∑
i∈H

yici +
∑
v∈V

cvav +
∑
v∈V

∑
(i,j)∈A

cvijx
v
ij +

∑
k∈K

∑
i∈C

qkgikccour (1)

∑
v∈V

∑
(ok,j)∈A

fvk(okj) = 1 ∀k ∈ K (2)

∑
v∈V

∑
(i,dk)∈A

fvk(idk) +
∑
i∈C

gik = 1 ∀k ∈ K (3)

∑
v∈V

∑
(i,j)∈A

fvkij =
∑
v∈V

∑
(j,i)∈A

fvkji ∀k ∈ K, i /∈ C : i 6= dk, i 6= ok (4)

∑
v∈V

∑
(i,j)∈A

fvkij + gik =
∑
v∈V

∑
(j,i)∈A

fvkji ∀k ∈ K, i ∈ C : i 6= dk, i 6= ok (5)

fvkij ≤ xvij ∀v ∈ V, (i, j) ∈ A, k ∈ K (6)
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∑
(i,j)∈A

fvkij ≤
∑

(j,i)∈A

fvkji ∀v ∈ V, k ∈ K, j ∈ H ′ ∩ C ′ : j 6= ok, j 6= dk (7)

∑
(i,j)∈A

fvkij −
∑

(j,i)∈A

fvkji ≤ yj ∀v ∈ V, k ∈ K, j ∈ H : j 6= ok, j 6= dk (8)

∑
(i,j)∈A

fvkij −
∑

(j,i)∈A

fvkji ≤ gjk ∀v ∈ V, k ∈ K, j ∈ C : j 6= ok, j 6= dk (9)

∑
k∈K

qkf
v
kij ≤ Γvxvij ∀(i, j) ∈ A, v ∈ V (10)

fvkij + fvk′ij ≤ 1 + b(k, k′) ∀v ∈ V, (i, j) ∈ A, k ∈ K, k′ ∈ K : k 6= k′ (11)

∑
(i,j)∈A0

xvij =
∑

(j,i)∈A0

xvji ∀v ∈ V, i ∈ N0 (12)

∑
(0,j)∈A0

xv0j = av ∀v ∈ V (13)

∑
(i,0)∈A0

xvi0 = av ∀v ∈ V (14)

xvij ≤ av ∀v ∈ V, (i, j) ∈ A0 (15)

∑
(i,j)∈A0

xvij = Zv
i ∀i ∈ N0, v ∈ V (16)

∑
(i,j)∈A0

xvij = Zv
j ∀j ∈ N0, v ∈ V (17)

∑
i′∈S

∑
j′∈N0/S

xvi′j′ +
∑
i′∈S

∑
j′∈N0/S

xvj′i′ ≥ Zv
i ∀i ∈ S, S ⊂ N0, |S| ≥ 2, v ∈ V (18)

∑
v∈V

∑
(i,j)∈A

tvijf
v
kij +

∑
i∈C

tcikgik ≤ tmaxk ∀k ∈ K (19)

fvkij ∈ {0, 1} ∀k ∈ K, (i, j) ∈ A, v ∈ V (20)

yi ∈ {0, 1} ∀i ∈ H (21)

xvij ∈ {0, 1} ∀(i, j) ∈ A0, v ∈ V (22)
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av ∈ {0, 1} ∀v ∈ V (23)

Zi
v ∈ {0, 1} ∀i ∈ N0, v ∈ V (24)

gik ∈ {0, 1} ∀i ∈ C, k ∈ K (25)

The objective function (1) minimizes total costs. This comprises four main components: cost

of selecting transshipment facilities, cost of acquiring vehicles, vehicle routing costs and courier

delivery costs, respectively. Constraints (2) - (5) are flow balancing constraints for origin, destina-

tion, intermediary nodes and courier nodes. Constraint (6) ensures that if flow passes through arc

in a vehicle, then the vehicle passes through this arc. Constraint (7)-(9) assures that the flow can

only change vehicles at transshipment nodes or courier intermediary facilities. Constraint (10) is

the vehicle capacity constraints and constraint (11) enforce bundling restrictions between products

transported by the same vehicle. Constraints (12) - (18) are standard vehicle routing constraints.

Constraint (12) balances vehicle flow assuring that if a vehicle arrives at a node it must leave it.

Constraints (13) and (14) state that all vehicles should start and finish their route at node 0. Con-

straint (15) ensures that a vehicle passes through an arc only if the vehicle is acquired. Constraints

(16) and (17) activate variable Z and constraint (18) is the standard sub-tour elimination constraint.

The maximum allowed route length for every commodity is enforced by (19). Constraints (20)- (25)

are the standard non-negativity and integrality constraints.

3.3 Modifications

It is hard to predict how difficult a formulation is to solve using commercial solvers. Accord-

ingly, we propose two possible modifications to the 3E-LRP-MC-PD formulation proposed in sec-

tion 3.2, which can help improve CPLEX’s performance. The impact of these modifications on

computational complexity and quality of CPLEX solutions is discussed in chapter 6.

3.3.1 Equality Constraints

The proposed formulation in section 3.2 has 9 sets of equality constraints. Our first proposition

is to reformulate some of these constraints to inequality constraints.
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Flow conservation constraints (2) - (5) can be rewritten as (26) - (29), respectively.

∑
v∈V

∑
(ok,j)∈A

fvk(okj) −
∑
v∈V

∑
(j,ok)∈A

fvk(jok) ≥ 1 ∀k ∈ K (26)

∑
v∈V

∑
(dk,i)∈A

fvk(dk,i) −
∑
v∈V

∑
(i,dk)∈A

fvk(i,dk) −
∑
i∈C

gik ≤ −1 ∀k ∈ K (27)

∑
v∈V

∑
(i,j)∈A

fvkij −
∑
v∈V

∑
(j,i)∈A

fvkji ≤ 0 ∀k ∈ K, i /∈ C : i 6= dk, i 6= ok (28)

∑
v∈V

∑
(i,j)∈A

fvkij + gik ≤
∑
v∈V

∑
(j,i)∈A

fvkji ∀k ∈ K, i ∈ C : i 6= dk, i 6= ok (29)

Additional flow conservation constraints are required to ensure that the resulting new formula-

tion is equivalent to the formulation proposed in section 3.2.

∑
v∈V

∑
(i,j)∈A

fvkij ≤ 1 ∀k ∈ K, i ∈ N \G (30)

∑
v∈V

∑
(i,j)∈A

fvkji ≤ 1 ∀k ∈ K, i ∈ N \G (31)

Constraints 30 and 31 ensure that a commodity can flow along a maximum of one arc and in

one vehicle into (equation 30) or out of (equation 31) any non-courier node.

Moreover, vehicle routing constraints (12) - (14) can be reformulated as (32) - (34), respec-

tively. ∑
(i,j)∈A0

xvij ≤
∑

(j,i)∈A0

xvji ∀v ∈ V, i ∈ N0 (32)

∑
(0,j)∈A0

xv0j ≤ av ∀v ∈ V (33)

∑
(i,0)∈A0

xvi0 ≤ av ∀v ∈ V (34)
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Additional vehicle routing constraints are used to ensure feasibility of routes.

∑
(i,j)∈A0

xvij ≤ 1 ∀v ∈ V, i ∈ N0 (35)

∑
(j,i)∈A0

xvji ≤ 1 ∀v ∈ V, i ∈ N0 (36)

Equations 35 and 36 state that a vehicle can only transverse one arc to leave or enter a node,

respectively.

3.3.2 Sub-tour elimination Constraints

We also propose replacing the subtour elimination constraints (16) - (18) with the Miller-Tucker-

Zemlin (MTZ) formulation. To implement this, the variable Zv
i (constraint 24) also needs to be

redefined. The MTZ formulation is presented below.

av = Zv
0 ∀v ∈ V (37)

Zv
i ≥ 2av ∀i ∈ N, v ∈ V (38)

Zv
i ≤ |N |av ∀i ∈ N, v ∈ V (39)

Zv
i − Zv

j + (|N | − 1)xvij ≤ |N | − 2 ∀i ∈ N, j ∈ N, v ∈ V (40)

Zi
v ∈ Z+ ∀i ∈ N0, v ∈ V (41)

Constraints (37) activate variable Z by labelling node 0 as 1 if a vehicle is acquired. Constraints

(38) - (40) eliminate sub-tours by labeling the order in which the nodes are visited; such that the first

non-zero node is labelled 2 and every subsequent node is consecutively labelled. Finally, constraint

23



(41) is the standard non-negativity and integrality constraint.

3.3.3 Resulting Formulations

Combining the modifications discussed in sections 3.3.1 and 3.3.2 result in four possible formu-

lations summarized in the table 3.1.

Table 3.1: Summary of the 3ElRP-MC-PD Formulations

Formulation
Modification

Equality Subtour
1 - -
2 x -
3 x x
4 - x

Formulation 1 is the one introduced in section 3.2. Formulation 2 consider the equality modifi-

cations and uses the same sub-tour prevention proposed in section 3.2. The third formulation uses

both the equality modifications and the MTZ subtour elimination constraints. Finally, the fourth

formulation uses the flow and routing constraints from section 3.2 and the MTZ subtour elimination

constraints.
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Chapter 4

Methodology

In this chapter we introduce an iterative slope scaling decomposition matheuristic to solve large

instances of the 3E-LRP-PC-MD in a reasonable computational time. First we justify the choice of

a decomposition matheuristic and propose a new decomposition scheme. Then we introduce the two

corresponding sub-problems (min-cost flow and multi-commodity arc routing). We also introduce

approximate cost-coefficients to guide the search. Furthermore, we present a heuristic to solve the

vehicle assignment sub-problem. Finally, we discuss diversification strategies.

4.1 Decomposition Scheme

Medium to large instances of standard LRP are already hard to solve using exact methods be-

cause of: (1) the exponential number of variables and constraints; (2) the complexity and inter-

dependency of the assignment, flow and routing constraints. The 3E-LRP-MC-PD introduces ad-

ditional complexity in terms of increasing the number of decisions to be made and increasing the

number of flow, routing and assignment constraints. The new variant of the LRP also introduces

additional constraints to account for transit time and bundling limitations, making the flow and rout-

ing decisions more restrictive. Most importantly, the new characteristics of the 3E-LRP-MC-PD

enforce additional inter-dependencies, making the constraints more strongly interconnected. Due to

the additional complexity, for most medium sized instances it is even hard to find an initial feasible

solutions in a reasonable computational time.
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Three main reasons led us to choose a decomposition matheuristic approach to address the com-

plexity of the 3E-LRP-MC-PD. First, decomposing the problem and focusing on a subset of deci-

sions at a time, reduces both the problem size and the complexity arising from the interdependency

of the decisions. Secondly, a decomposition approach allows us to consider the unique charac-

teristics of the problem independent of the flow and routing constraints which provides flexibility.

Finally, a matheuristic facilitates the use of the advanced computational power of solvers to solve

some of the decomposed sub-problems to optimality which significantly improves the performance

of the algorithm.

As discussed in Section 2.6, a typical decomposition scheme usually separates LRPs to loca-

tion decisions and routing decisions. The two sub-problems are then solved iteratively to achieve

good results. We propose a different decomposition accounting for the unique characteristics of the

3E-LRP-MC-PD problem, namely the multi-commodity attributes and the multiple transportation

strategies.

We view the 3E-LRP-MC-PD as a hierarchy of three interdependent decisions:

(1) The path of each commodity through the network from origin to destination

(2) The number of vehicles and corresponding routes to allow the commodities to be transported

along their selected paths

(3) The transshipment facilities to open

The commodity paths (first decision level) is constrained in terms of the transit time of each

commodity. Figure 4.1 shows an example of three feasible paths for commodity k. Each arc is

labelled with time taken to transverse the arc and tmaxk is the maximum allowed transit time for k

to reach its destination dk.The first path is a direct path from ok to dk. The second path is from ok to

a transshipment center then to dk. Finally, the third path is from ok to a courier collection point and

the courier will then deliver to dk. All paths are feasible because the time taken to reach destination

is less than tmaxk.

The characteristics of the second decision level is best illustrated using the example in Figure

4.2. Consider an instance where the paths of three commodities are as seen in Figure 4.2a). The
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Figure 4.1: Feasible commodity paths

Figure 4.2: Feasible Vehicle Assignment
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Figure 4.3: Feasible Vehicle Assignment for restricted bundling

vehicle assignment needs to ensure that every arc: (1,2) , (2,3) and (4,5) and corresponding com-

modities are assigned to a vehicle. For k = 2 all arcs (1,2) and (2,3) in the commodity paths

must be assigned to the same vehicle because intermediate node (2) is not a transshipment node.

If q1 + q2 ≤ Γv and q3 ≤ Γv then assigning arcs (1,2) , (2,3) and (4,5) as seen in Figure 4.2b)

is feasible in terms of vehicle capacity. Additionally if the bundling restrictions (b12 = 1) then

transporting k = 1andk = 2 on the same arc (1,2) using the same vehicle is feasible. Finally,

the vehicle assignment solution seen in 4.2b) is feasible because an additional arc (3,4) is added to

ensure connectivity and arcs (0,1) and (5,0) are added to ensure that the vehicle starts and ends at

node 0.

For the same instance of 3 commodities paths seen in Figure 4.2a), if (b12 = 0) then the ve-

hicle assignment solution in Figure 4.2b) is no longer feasible. Alternatively, a feasible vehicle

assignment is seen in Figure 4.3. Due to the bundling restriction commodities 1 and 2 can not be

transported together along the same arc in the same vehicle. Hence, an additional vehicle is required

to serve the path of commodity 1 (Figure 4.3b) )

As seen in Figures 4.2 and 4.3 the second decision level is assigning arcs to vehicles such that

each arc in a commodity paths is assigned to a vehicle. The vehicle assignment decisions must

ensure feasibility of commodity paths. If a commodity path contains more than one arc then the

arcs can be assigned to different vehicles only if they are connected by a transshipment facility.

Additionally, the vehicle assignment decision must ensure connectivity of a vehicle route and that

the vehicle capacities are respected. Finally, if the arc assigned to a vehicle is a part of more than
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Figure 4.4: A Feasible Commodity Path Split Between Two Vehicles

one commodity path, then bundling restrictions need to be accounted for.

The third location decision assures feasibility of a commodity path and vehicle assignment. If a

commodity path is split at a transshipment facility, and each segment is assigned to a vehicle, then

the corresponding transshipment facility needs to be open. An example of this can be seen in Figure

4.4. The path of a commodity (seen in Figure 4.4a)) has an intermediate transshipment node (3).

Accordingly, having arcs (1,2) and (2,3) assigned to one vehicle and arc (3,4) assigned to another

(Figure 4.4 b)) is feasible if transshipment facility (3) is open.

With this decision hierarchy in mind the 3E-LRP-MC-PD can be decomposed to two sub-

problems. The first sub-problem is a min-cost flow (MCFP) problem with transit time restrictions

for each commodity. The second sub-problem is a multi-commodity arc routing problem (MCARP).

The two sub-problems are solved as a part of the slope-scaling matheuristic. These steps are sum-

marized in the algorithm 1 below, and explained in Sections 4.2 to 4.7.
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Algorithm 1 Slope-Scaling Matheuristic Steps

1: Initialize : Kc = ∅
2: Initialize : c

k(0)
ij (eq (42))F k(0)

ij (eq (43)) ∀(i, j) ∈ A, k ∈ K
3: while stopping criteria do
4: while 2ndstopping criteria do
5: RandomSelect : if IterativeMCFP should be used
6: if true then
7: Solve : IterativeMCFP
8: else
9: Solve : MCFP

10: end if
11: Solve : MCARP using Heuristic
12: RandomSelect : if a vehicle should be removed
13: if true then
14: Remove : V ehicle
15: Solve : MCARP using Heuristic
16: end if
17: UpdateCosts
18: RandomSelect : if all arcs costs should be updated
19: if False then
20: Reinitialize : Cost coefficients
21: end if
22: end while
23: Randomly select if a commodity should be added toG −K space
24: if true then
25: RandomSelect : strategy to use
26: end if
27: if |Kc| ≥ 2 then
28: Randomly select if a commodity should be removed fromG −K space
29: if true then
30: RandomSelect : strategy to usee
31: end if
32: end if
33: end while
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4.2 Sub-problem 1: Min-cost flow problem

For each commodity k ∈ K an MCFP is solved to determine the minimum cost path such that

the length of the path does not exceed the allowed transit time.

In principle the selection of a commodity path dictates the transportation strategy: direct, courier

or consolidated delivery (seen in Figure 4.1). However, to be able to control the solution space being

explored (see Section 4.7), we force a subset of commodities to use courier deliveries.

We define the subset Kc ⊆ K to be the commodities that must utilize courier delivery and

accordingly, we define the binary decision variable gik for k ∈ Kc and i ∈ C, which is equal to 1 if

courier collection point i is used to deliver commodity k and is 0 otherwise .

When solving for each commodity k ∈ K, we define a binary flow decision variable fkij for

every (i, j) ∈ A0. fkij is equal to 1 if arc (i, j) is in the path of commodity k and 0 otherwise. We

define additional binary variables Zk
i for i ∈ N0 to ensure an elementary path for each commodity,

such that Zk
i is equal to 1 if node i is in the path of commodity k and 0 otherwise.

The objective function coefficients of the MCFP, at iteration t of the matheurisic, are approxi-

mated as per commodity unit routing cost (ck(t)ij ) and fixed costs (F k(t)
ij ). At iteration 0, the cost

coeffecients are initialized to small values using equations (42) and(43)respectively. The costs are

updated using equations (100) and (99) after the MCARP is solved.

c
k(0)
ij = 0.05

max{cvij : v ∈ V }
max{Γv : v ∈ V }

(42)

F
k(0)
ij = 0.0005

max{cv : v ∈ V }
max{Γv : v ∈ V }

(43)

For commodities that are utilizing courier deliveries (k ∈ Kc), the MCFP is formulated as the

integer problem below.

min
∑
k∈K

∑
(i,j)∈Af

(c
k(t)
ij + F

k(t)
ij )qkf

k
ij +

∑
i∈C

qkgikccour (44)
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∑
(ok,j)∈A

fkokj −
∑

(j,ok)∈Af

fkjok = 1 (45)

∑
(i)∈C

gik −
∑

(i,dk)∈A

fkidk = 1 (46)

∑
(i,j)∈A

fkij −
∑

(i,j)∈A

fkji = 0 ∀i ∈ N : i 6= ok, i 6= dk (47)

∑
(i,j)∈A

fkij − gjk = 0 ∀j ∈ C (48)

∑
(i,dk)∈A

fkidk = 0 (49)

∑
(i,j)∈A

tijf
k
ij +

∑
(i)∈C

tcikgik ≤ tmaxk (50)

∑
(i,j)∈A

fk0j = 1 (51)

∑
(i,j)∈A

fki0 = 1 (52)

∑
(i,j)∈A

fkij − Zk
i = 0 ∀i ∈ N0 (53)

∑
(i,j)∈A

fkij − Zk
j = 0 ∀j ∈ N0 (54)

∑
i′∈S

∑
j′∈N0/S

fki′j′ +
∑
i′∈S

∑
j′∈N0/S

fkj′i′ ≥ Zk
i ∀i ∈ S, S ⊆ N0, |S| ≥ 2 (55)
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fkij ∈ {0, 1} ∀(i, j) ∈ A0 (56)

gik ∈ {0, 1} ∀i ∈ G (57)

Zk
i ∈ {0, 1} ∀i ∈ N0 (58)

The objective function (44) minimizes the approximated path cost. Constraints (45) - (48) are

flow balancing constraints at origin, destination, intermediate and courier nodes respectively. Con-

straint (49) ensures that the delivery of to destination is done through an intermediate courier facility.

Constraint (50) is the transit time constraint. Constraint (51) and (52) ensures that a commodity path

must start and end at a fictitious node. Constraints (53) - (55) are the standard subtour elimination

constraints, used to ensure elementary paths. Constraints (56) - (58) are the standard non-negativity

and integrality constraints.

For commodities not utilizing courier deliveries (k ∈ K \ Kc) the formulation is modified to

exclude the courier options. The corresponding integer formulation is stated below.

min
∑
k∈K

∑
(i,j)∈Af

(c
k(t)
ij + F

k(t)
ij )qkf

k
ij (59)

∑
(ok,j)∈A

fkokj −
∑

(j,ok)∈Af

fkjok = 1 (60)

∑
(i,dk)∈A

fkidk −
∑

(dk,i)∈Af

fkdki = 1 (61)

∑
(i,j)∈A

fkij −
∑

(i,j)∈A

fkji = 0 ∀i ∈ N : i 6= ok, i 6= dk (62)

∑
(i,j)∈A

tijf
k
ij ≤ tmaxk (63)
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∑
(i,j)∈A

fk0j = 1 (64)

∑
(i,j)∈A

fki0 = 1 (65)

∑
(i,j)∈A

fkij − Zk
i = 0 ∀i ∈ N0 (66)

∑
(i,j)∈A

fkij − Zk
j = 0 ∀j ∈ N0 (67)

∑
i′∈S

∑
j′∈N0/S

fki′j′ +
∑
i′∈S

∑
j′∈N0/S

fkj′i′ ≥ Zk
i ∀i ∈ S, S ⊆ N0, |S| ≥ 2 (68)

fkij ∈ {0, 1} ∀(i, j) ∈ A0 (69)

Zk
i ∈ {0, 1} ∀i ∈ N0 (70)

After solving the first sub-problem for all k ∈ K any arc (i, j) ∈ A that is not a part for any

commodity path is closed. The subset Af ⊆ A defines the set of opened arcs.

4.3 Sub-problem 2: Multi-commodity arc routing problem

The aim of the MCARP is to select the minimum number of vehicles and determine the vehicle

routes to serve the commodity paths while respecting vehicle capacity constraints and bundling

restrictions.

The solution from the first sub-problem f
k
ij : (i, j) ∈ Af and k ∈ K (path per commodity) is

used as an input parameter to the MCARP. To construct feasible vehicle routes further arcs might

be needed to ensure connectivity of all nodes. One way to overcome this without adding excessive

computational complexity is to define a small arc set Av such that Af ⊆ Av ⊆ A0. Av can be
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determined by considering the arcs in Af to be undirected and for every (i, j) ∈ Af additional arc

(j, i) is added to Av.

The MCARP is formulated as an integer program.

min
∑
v∈V

cvav +
∑

(i,j)∈Av

cvijx
v
ij (71)

∑
v∈V

fvkij = f
k
ij ∀k ∈ K, (i, j) ∈ Af (72)

fvkij ≤ xvij ∀v ∈ V, (i, j) ∈ Af , k ∈ K (73)

∑
k∈K

qkf
v
kij ≤ Γvxvij ∀(i, j) ∈ Af , v ∈ V (74)

fvkij + fvk′ij ≤ 1 + b(k, k′) ∀v ∈ V, (i, j) ∈ Af , k ∈ K, k′ ∈ K : k 6= k′ (75)

∑
(i,j)∈Af

xvij =
∑

(j,i)∈Af

xvji ∀v ∈ V, i ∈ N0 (76)

∑
(0,j)∈Af

xv0j = av ∀v ∈ V (77)

∑
(i,0)∈Af

xvi0 = av ∀v ∈ V (78)

xvij ≤ av ∀v ∈ V, (i, j) ∈ Av (79)

∑
(i,j)∈Af

xvij = Zv
i ∀i ∈ N, v ∈ V (80)

∑
(i,j)∈Af

xvij = Zv
j ∀j ∈ N, v ∈ V (81)

∑
i′∈S

∑
j′∈N0/S

xvi′j′ +
∑
i′∈S

∑
j′∈N0/S

xvj′i′ ≥ Zv
i ∀i ∈ S, S ⊆ N, |S| ≥ 2, v ∈ V (82)
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fvkij ∈ {0, 1} ∀k ∈ K, (i, j) ∈ Af , v ∈ V (83)

xvij ∈ {0, 1} ∀(i, j) ∈ Av, v ∈ V (84)

The objective (71) is to reduce the cost of acquiring vehicles and the routing costs, respectively.

Constraints (72) connects the first and second sub-problem, and enforces that one vehicle carries

commodities along each arc in the commodity’s path. Constraints (73) ensures that if flow passes

through arc in a vehicle, then the vehicle passes through this arc. Constraints (74) - (82) are the

same as (10) - (18) in the 3E-LRP-MC-PD formulation but for the subset of arcs Av.

4.4 A Heuristic for MCARP

Algorithm 2 VAP Heuristic Steps

1: set randomly H∗ ⊆ H
2: Initialize : ∀(i, j) ∈ Af : Kij , νij , K

v
ij and c

v
ij

3: while Kij 6= ∅ ∀(i, j) ∈ Af do
4: (i∗, j∗), v∗ ←MinimumCost Selection
5: k∗ ← CommodityAssignmentIP ((i∗, j∗), v∗,Kv∗

i∗j∗)

6: Update Ki∗j∗ , νi∗j∗ , c
v∗
ij ∀(i, j) ∈ Af

7: Update ∀(i, j) ∈ Af : Kv
ij ,

8: end while
9: V ehicle SizeChange

10: FeasibleRouteIP

Despite the restricted number of arcs considered in the MCARP, it is still computationally taxing

to solve using a commercial solver. Accordingly, a greedy MCARP heuristic is proposed to select

vehicles and determine feasible vehicle routes. The steps of the MCARP heuristic is summarized in

algorithm 2.
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4.4.1 Initialization & Selection

Initialization

First a subset of transshipment centers to open H∗ ⊆ H is randomly chosen such that h ∈ H∗

is an intermediate node in one or more commodity paths.

Then, for every arc (i, j) ∈ Af we define:

• A commodity set: Kij = {k ∈ K : f
k
ij = 1}

• A vehicle set: νij of vehicles that are allowed to transverse arc.

• A feasible commodity set: Kv
ij . For every v ∈ νij a subset k ∈ Kij that are allowed to be

assigned to the vehicle if arc (i, j) is assigned to the vehicle.

For all arcs (i, j) ∈ Af , νij is initialized to include all vehicles of the largest capacity: νij =

{v ∈ V : Γv = max{Γv : v ∈ V }}. Kv
ij is initialized to be Kv

ij = Kij for all v ∈ νij . Finally, the

cost cvij of assigning arc (i, j) to vehicle v is initially estimated to be cv + cvij .

Minimum Cost Selection

The aim of this step is to determine the minimum cost arc (i∗, j∗) to vehicle v∗ assignment. To

do this we select the minimum cvij from all feasible assignments.

Assigning arc (i, j) to vehicle v is feasible if all the following conditions apply:

• Kij 6= ∅: The set of commodities to assign to arc (i, j) is not empty

• v ∈ νij : vehicle v is in the set of arcs allowed to transverse arc (i, j)

• Kv
ij 6= ∅: the subset of commodities allowed to be assigned to the v and (i, j) pair is not

empty

• If there’s at least one k ∈ Kv
ij where qk ≤ Γv
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4.4.2 Commodity Assignment IP

Given the minimum cost arc and vehicle pair (i∗, j∗), v∗ and the associated feasible commodity

set Kv∗
i∗j∗ : the commodity assignment IP is solved to maximize the |K∗| : K∗ ⊆ Kv∗

i∗j∗ . The

commodity assignment IP is formulated as follows.

max
∑

k∈Kv∗
i∗j∗

fv
∗

ki∗j∗ (85)

∑
k∈Kv∗

i∗j∗

qkf
v∗
ki∗j∗ ≤ Γv (86)

fv
∗

ki∗j∗ + fv
∗

k′i∗j∗ = 1 + b(k,k′) k, k′ ∈ Kv∗
i∗j∗ : k 6= k′ (87)

fv
∗

ki∗j∗ ∈ {0, 1} ∀k ∈ Kv∗
i∗j∗ (88)

The objective (85) is to maximize the number of commodities to be assigned to vehicle v∗ on

arc (i∗, j∗). Constraint (86) is the vehicle capacity constraint. Constraint (87) enforces bundling

restrictions and constraint (88) is the non-negativity and integrality constraint.

4.4.3 Updates

Three main updating steps are required before the next minimum cost selection to improve and

motivate feasible selections.

Vehicle Set Updates

After assigning an arc (i∗, j∗) to a vehicle v∗, the set νij needs to be updated for all arcs (i, j) ∈

Af to prevent assigning any arc to v∗ that would result in a routing infeasibility. The two possible

sources of routing infeasibilities can be seen in the examples in Figure 4.5.

Figure 4.5a) shows an instance where arc (1,2) is assigned to v∗ and arcs (1,3) and (4,2) are in

the set Af . Assigning either arcs to v∗ would result in a routing infeasibility because it would mean
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Figure 4.5: Examples of vehicle routing infeasibility

Figure 4.6: Example of commodity path infeasibility

that nodes 1 and 2 will be visited more than once. In the example shown in Figure 4.5b) arcs (1,2)

and (2,3) are assigned to v∗ and arc (3,1) is in Af . Assigning arc (3,1) to v∗ would result in sub-tour

in the vehicle route. In both examples to prevent the discussed arcs from being assigned to v∗, the

set νij is updated by removing v∗.

Feasible Commodity Set Updates

The MCARP heuristic can also result in an infeasibility related to commodity transfer at non-

transshipment node. This is best illustrated using the example in Figure 4.6. Consider a vehicle

v∗ travelling route 1-2-3 seen in Figure 4.6a). Furthermore, consider the additional unassigned

arcs (i, j) ∈ Af : (6,5) , (5,1) and (1,4) (seen in Figure 4.6b)). If route feasibility only, is being

considered, then v∗ is removed from set of allowed vehicles ν14. Accordingly, arcs (6,5) and (5,1)
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can be iteratively added to v∗ because they do not compromise the feasibility of the route.

Now consider an unassigned commodity k path 6-5-1-4 seen in Figure 4.6b). The path does

not contain any transshipment nodes. Hence, all arcs in the path must be assigned to the same

vehicle. If arcs (6,5) and (5,1) are added to v∗ as discussed in the previous paragraph then the path

of commodity k will be split at node 1. Meaning that the arcs(6,5) and (5,1) will be assigned to v∗,

while the remaining arc (1,4) will be assigned to a different vehicle.

To significantly reduce the chance of this infeasibility we update the feasible commodity sets

by removing any unassigned k ∈ Kij from Kv∗
ij if v∗ /∈ νij . If k is removed from Kv∗

ij then k is

removed from subsequent feasible commodity sets Kv∗
i1j1

, if all the following conditions apply:

• k’s path includes arc (i1, j1)

• k is unassigned (i.e. k ∈ Ki1j1 )

• (i1, j1) is connected to arc (i, j) so if (i1 = j ∨ j1 = i)

• nodes i1 and j1 are non-transshipment nodes (i1, j1 /∈ H∗)

Finally if k is removed from the feasible commodity set Kv∗
i1j1

, then the steps are repeated to

update sets Kv∗
i2j2

: i2 = j1 ∨ j2 = i1. This iterative procedure is repeated till all relevant feasible

commodity sets are updated.

This procedure and an additional step (discussed in Section 4.4.4 ) reduces the chance of a

commodity changing vehicle at non-transshipment center but does not eliminate the infeasibility

completely. Accordingly, we allow the solution of some iterations of the matheuristic to be infeasi-

ble.

4.4.4 Assignment costs

Initially the cost (cvij) of assigning any arc (i, j) ∈ Af to any vehicle v ∈ νij is approximated

as cv + cvij . After the selection of (i∗, j∗) and v∗ pair, and the selection of a subset of commodities

K∗ ⊆ Kij to assign to the pair; the costs (cv
∗

ij ) of all remaining arcs (i, j) ∈ Af are updated as

follows:
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• cv
∗

ij = cv∗ij ∀(i, j) ∈ Af : To encourage adding arcs to v∗, the cost of assigning any arc to v∗ is

reduced to routing cost

• cv
∗

ji∗ = r cv∗ji∗ : i∗ /∈ H∗, (j, i∗) ∈ Af : If any arc precedes (i∗, j∗) and i∗ is not an open

transshipment facility, the cost of assigning the arc to v∗ is reduced further using reduction

factor r. This encourages addition of connected arcs (in a commodity path) to the vehicle

reducing the chance of the infeasibility discussed in Section 4.4.3.

• cv
∗

j∗i = r cv∗j∗i : j∗ /∈ H∗, (j, i∗) ∈ Af : If any arc succeeds (i∗, j∗) and j∗ is not an open

transshipment facility, the cost of assigning the arc to v∗ is reduced further using reduction

factor r. This encourages addition of connected arcs (in a commodity path) to the vehicle

reducing the chance of the infeasibility discussed in Section 4.4.3.

4.4.5 Vehicle Size Change

As explained in Section 4.4.1, the arc-routing heuristic initially only considers the largest vehicle

capacity. Therefore, it is possible that a smaller vehicle can be used for the the exact same route.

Let v∗ be one of the maximum capacity vehicles selected by the matheuristic and R∗ be the

route of the vehicle such that R∗ ⊆ Af : xv
∗

ij = 1. If there exists a vehicle v1 ∈ V such that

Γv1 ≤ Γv∗ and the capacity of the vehicle is respected for every (i, j) ∈ R∗, allowing v1 to replace

v∗ is feasible. If using a smaller vehicle is feasible, the cost of using v1 and v∗ is calculated using

equation (89). Finally, if the cost of using v1 is less than the cost of v∗, v∗ is replaced with v1 to

transverse the route R∗.

cv +
∑

(i,j)∈R∗
xvijc

v
ij (89)

4.4.6 Feasible Route IP

The aim of this step in the MCARP heuristic is to construct a feasible route for every vehicle

chosen by the heuristic. A feasible vehicle route is one that starts and ends at node 0, is fully

connected and does not contain sub-tours. To construct feasible routes additional arcs may be

needed to ensure connectivity.

41



Figure 4.7: Examples of feasible vehicle routes

Figure 4.7 shows two examples of feasible vehicle routes. In the first example (Figure4.7a)),

vehicle 1 is assigned arcs (1,2) , (2,3) and (4,5) during the heuristic step. Additional arc (3,4) is

required to ensure connectivity. Arcs (0,1) and (5,0) are required so that the vehicle 1 starts and

ends at node 0. In the second example (Figure4.7b)), vehicle 2 has only one arc assigned (1,2).

Accordingly, only arcs (0,1) and (2,0) are required for the route to be feasible.

Let V ′ be the set of chosen vehicles such that V ′ ⊆ V . We define Nv ⊆ N be the nodes

visited by vehicle v and Av be the complete graph between nodes i ∈ Nv. Acv ⊆ Av are the

arcs (i, j) ∈ Af assigned to vehicle v using the VAP heuristic. If all arcs assigned to vehicle v are

connected (i.e |Acv| = |Nv| − 1 ) then an arc from origin to starting node and from end node to

origin are added to the vehicle.

However if the arcs are disconnected, similar to the example in Figure4.7a), then the Feasible

Route IP is solved to determine the cheapest arcs to add to ensure connectivity of route. In the

example in Figure4.7a) it is possible to add arc (4,1) instead of (3,4) to ensure connectivity.

The IP formulation below is solved for ∀v ∈ V ′ using CPLEX.

min
∑

(i,j)∈Av/Avc

cvijx
v
ij (90)

xvij = 1 ∀(i, j) ∈ Avc (91)

∑
(i,j)∈Av

xvij =
∑

(j,i)∈Av

xvji i ∈ Nv (92)
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∑
(0,j)∈Av

xv0j = 1 i ∈ Nv (93)

∑
(i,0)∈Av

xvi0 = 1 i ∈ Nv (94)

∑
(i,j)∈Av

xvij = 1 ∀i ∈ Nv (95)

∑
(i,j)∈Av

xvji = 1 ∀j ∈ Nv (96)

∑
i′∈S

∑
j′∈Nv/S

xvi′j′ +
∑
i′∈S

∑
j′∈Nv/S

xvj′i′ ≥ 1 ∀i ∈ S, S ⊂ Nv, |S| ≥ 2 (97)

xvij ∈ {0, 1} ∀(i, j) ∈ A0, v ∈ V (98)

The objective function (90) minimizes the costs of additional arcs to open to create a feasible

route. Equation (91) ensures that any arc assigned to vehicle in the VAP heuristic step is included in

the vehicle’s route. Equations (93) - (95) are the same as (12) - (14) but defined only over the subset

of nodes visited by the vehicle. Equations (95) - (97) are the same as (16)- (18).

4.5 Updating Cost Coefficient

At the end of each iteration for every k ∈ K the approximate per commodity unit routing

and fixed costs for arcs (i, j) ∈ A where fvkij = 1 are estimated using equations (100) and (99)

respectively.

F
k(t)
ij =

cv∑
(i,j)∈A x

v
ij∑

k∈K fvkij
(99)

c
k(t)
ij =

cvij∑
k∈K fvkij

(100)
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4.6 Randomizing the search

For some iterations of the proposed matheuristic, we randomly select if any of the following

randomization procedures should be applied.

4.6.1 Removing a vehicle from the solution

Given the subset of used vehicles V ′ ⊆ V , a ratioRv is computed for every v ∈ V ′. The vehicle

with the largest non-zero ratio is removed from the solution and the arcs are re-assigned using the

steps 3 to 10 presented in algorithm 2 .

Rv =
Total arcs that can be reassigned to a smaller vehicle

Total arcs that require full vehicle capacity
(101)

4.6.2 Iterative MCFP

The MCFP explained in Section 4.2 is solved for every k ∈ K. The commodity path selec-

tion is guided by the cost coefficients F k(t)
ij and ck(t)ij calculated at the end of each iteration of the

matheuristic.

A more random approach is described below:

(1) Randomly selecting k ∈ K to solve the MCFP for.

(2) Solving MCFP for k with the coefficients calcaulated F k(t)
ij and ck(t)ij to determine path of the

commodity

(3) For each arc chosen in the path of commodity k (i.e. (i, j) ∈ A: fkij = 1). The cost

coefficients: F k′(t)
ij and ck

′(t)
ij for any commodity k′ that can be bundled with k (bkk′ = 1)

are assigned a small value

(4) The steps 1-3 are repeated till the MCFP is solved for all commodities

4.6.3 Cost Coefficients Update

At the end of each iteration F k(t)
ij and ck(t)ij are updated using the equations (99) and (100). If

this random modification step is selected, a subset of arcs As ∈ Af are randomly selected and the
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costs are reset to initial values (equations (43) and (42)).

4.7 New Solution Space

The matheuristic steps described in Sections 4.2 - 4.6 are solved with a predetermined selection

of the subset Kc ⊆ K of commodities that must be delivered using couriers. We refer to this as-

signment as a K-G solution space. The K-G solution space can be modified by adding or removing

commodities selected for courier delivery.

First we define P k (∀k ∈ K) to be the per unit cost of the path of commodity k. P k is calculated

using equation (102). If k /∈ Kc (the commodity is not preassigned to a courier) the second term is

equal to 0.

P k =
∑

(i,j)∈Af

(c
k(t)
ij + F

k(t)
ij )fkij +

∑
i∈C

gikccour (102)

Through the iterative procedure of the matheuristic we retain the path costs associated with the

best solution found (P k
best) and the costs associated with the cheapest path found for each commodity

(P k
cheapest).

4.7.1 Adding Commodity-Courier Assignment

We consider three strategies for selecting a commodity to assign to courier deliveries. The first

is selecting the commodity k /∈ Kc with the maximum P k
best. The second strategy is selecting the

commodity k with the maximum P k
cheapest. Finally, a commodity k /∈ Kc can be randomly selected

regardless of its relative path cost.

4.7.2 Removing Commodity-Courier Delivery

Given the best solution costs P k
best(∀k ∈ Kc), three strategies can be used when selecting a

commodity to remove from the G-K solution space. The first strategy is to select the commodity

assigned to courier delivery with the most expensive P k
best to remove. The second strategy is to use

a random weighted probability selection where commodity k with the most expensive P k
best is most
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likely to be chosen and commodity k with the least expensive P k
best is the least likely to be chosen.

Finally, a commodity k can be randomly selected from the set Kc.
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Chapter 5

Instance Generation

The 3E-LRP-MC-PD is a new variant of the location routing problem and accordingly there

are no benchmark instances available. To conduct our computational experiments we develop an

instance generator, coded in C, to randomly generate several classes of instances. In this chapter, we

describe the procedure we follow to generate random instances that include all the characteristics of

the 3E-LRP-MC-PD.

5.1 Network

All instances are built on a base graph in the Euclidean x,y plane where the x and y co-ordinates

range from [0,1000]. To ensure that the nodes are adequately distributed, the graph is divided into

clusters (areas) seen in Figure 5.1.

Given the set of nodes N , C is the subset of courier nodes and S is the remaining subset of

non-courier nodes.

5.1.1 Non-Courier Nodes

The generation of the nodes in the subset S are based on the following parameter values:

• Cardinality of subset |S|

• Number of clusters on the graph and their corresponding x and y limits.
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Figure 5.1: Cluster representation

Figure 5.2: Example Nodes Generated
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To generate locations of nodes i ∈ S:

• An approximate of nodes per cluster is determined using the equation below

|S|
Total Clusters

(103)

• For nodes in a given cluster the x and y co-ordinates are randomly generated within the x and

y limits of the cluster.

• Additional nodes are randomly generated by choosing a cluster at random and accordingly

randomly selecting the x and y co-ordinates of the node within the cluster limits

An example of nodes generated for |S| = 10 can be seen in Figure (5.2)

5.1.2 Courier Nodes

Figure 5.3: Example Courier Nodes Generated

Courier deliveries provide a key advantage of conveniently located collection points. We con-

sider this feature when generating instances using two strategies. The first strategy assumes that
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there is a close courier node to every non-courier node in the network. Accordingly, the generation

of the nodes in C are based on the following:

• |C| = |S|

• Cradius.

For every i ∈ S a node j ∈ C the x and y co-ordinates of j are randomly generated such that

the maximum x or y distance node j is from node i is equal to Cradius. For all the instances tested

we assume Cradius to be 300. An example of courier nodes generated based on the first strategy can

be seen in Figure 5.3a).

Assuming that |C| = |S| can increase the complexity of the instances solved, especially because

the xvij , f
v
kij decision variables exponentially increase with the increase of the number of nodes on

the network. Accordingly, a less restrictive assumption is needed for courier locations. For our

second strategy, we consider instances where the number of courier collection points is less than the

number of non-courier nodes. We locate the courier collection points at central locations as seen in

figure 5.3b).

5.1.3 Transshipment Nodes

Given a number of transshipment potential locations |H| such that H ⊂ S, nodes i ∈ H are

selected by:

• Selecting a cluster at random

• Choosing the center node of the cluster as the transshipment facility

• If |H| is more than the number of clusters then additional transshipment facilities are selected

at random from i ∈ S

5.1.4 Travel time

The Euclidean distances cij among nodes are computed. A parameter for the tmax between the

furthest nodes is predetermined, for the instances generated we assume tmax to be 8 hours. The

travel times tij between the remaining nodes are scaled accordingly.
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5.2 Commodities

K is the set of commodities being transported through the network. We define additional sub-

sets DD,CD,RD ⊆ K to ensure that for each instance all relevant commodity attributes are rep-

resented. DD is a subset of commodities that we initially assume will use direct delivery and their

attributes are generated accordingly. Similarly, CD is a subset of commodities that we initially as-

sume will use courier delivery. Finally, RD is a subset of commodities for which, all the attributes

are randomly generated. The following parameters are initially set before generating commodity

attributes:

• |K| the total number of commodities

• |DD|, |CD|and|RD| the number of (assumed) direct, courier and random commodities.

• Maximum and minimum quantity (units) for commodity Qmin, Qmax

For the instances generated, we assume the ratio DD : CD : RD to be 1 : 1 : 1. Addition-

ally, we assume Qmax to be 20 units and Qmin to be 10% of Qmax, to represent a wide range of

commodity sizes.

Direct delivery is assumed to be more favorable for commodities that fill vehicle capacities and

where the origin and destination are relatively close. Accordingly, given k ∈ DD:

• Origin ok is assigned by selecting a node at random from i ∈ S

• Destination dk of commodity flow is determined by finding the j such that cokj is minimum

• qk is randomly generated in range [0.7Qmax,Qmax]

Courier delivery is assumed to be more favorable for small commodities where the origin and

destination are far apart. Accordingly, given k ∈ CD:

• Origin ok is assigned by selecting a node at random from i ∈ S

• Destination dk of commodity flow is determined by finding the j such that cokj is maximum

• qk is randomly generated in range [Qmin, 0.4Qmax]
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Random commodities are added to ensure that the instances are generated without bias. Ac-

cordingly, given k ∈ RD:

• Origin ok is assigned by selecting a node at random from i ∈ S

• Destination dk is determined by selecting a node at random from i ∈ S such that ok 6= dk

• qk is randomly generated in range [Qmin, Qmax]

For all k ∈ K the remaining commodity attributes are randomly generated as follows:

• Transit time restrictions tmaxk are randomly selected from range [1.5tokdk , 5tokdk ]

• Bundling restrictions between pair of commodities bkk′ are randomly generated from range

[0,1]

5.3 Vehicles

This section aims at generating vehicles of different capacities where the fixed costs of vehicles

are relative to capacities and the routing costs of arcs are subject to economies of scale.

The following parameters are used:

• Maximum fixed cost per vehicle cvmax

• Approximate number of vehicles in solution Vpredict

• Number of vehicle sizes Vtype in heterogeneous vehicle fleet

• Economies of scale factor efactor

We assume that cvmax is 100 times the maximum possible distance on the graph and efactor to

be 0.6. We also assume Vpredict to be |K|/5.

Minimum and maximum vehicle capacities τv are determined using:

• The minimum vehicle capacity τmin
v is set to be Qmax allowing direct delivery commodities

to fully utilize one type of vehicles
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• The maximum vehicle capacity τmax
v is calculated using

∑
k∈K qk

Vpredict
(104)

The remaining vehicle attributes v ∈ Vtype are generated as follows:

• Routing cost cvmax
ij = 10 cij

• τv is randomly generated in range [τmin
v ,τmax

v ]

• Fixed cost of acquiring vehicle is calculated using:

cv = cvmax τv
τmax
v

(105)

• To allow for economies of scale:

cvmax
ij = efactor ∗ cvmin

ij (106)

and the remaining routing costs for all vehicles are scaled accordingly

The 3E-LRP-MC-PD assumes an unlimited vehicle fleet, we model this assumption in the in-

stances generated by assuming that there are |K| vehicles from each vehicle type. However, this

assumption exponentially increases the size of the problem. Hence, we also consider instances

where there are 0.25|K| vehicles from each vehicle type. We verify that the instances considering

0.25|K| vehicles per type do not violate the unlimited vehicle fleet assumption during testing.

5.4 Courier costs

The costs of couriers per unit are calculated using either average routing per unit or the maxi-

mum routing per unit cost. The parameter rc is determined such that it rc is 1 the courier per unit

cost is equal to the per unit routing cost below.
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• The average per unit routing cost is calculated using:

rc
∑

(i,j)∈A

∑
(v)∈Vtypes

cvij
τ v

(107)

• The maximum per unit routing cost is:

rc
∑

(i,j)∈A

∑
(v)∈Vtypes

cvmin
ij

τ vmin
(108)
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Chapter 6

Computational Experiments

In this chapter, we present our computational results. First we describe the CPLEX configura-

tion that provides the best performance when solving the 3E-LRP-MC-PD. Then we present four

computational sessions. The aims of the sessions are:

(1) Evaluating the performance of the four formulations summarized in table 3.1.

(2) Assessing the performance of the decomposition matheuristic

(3) Examining the impact of the 3E-LRP-MC-PD attributes on its complexity

(4) Establishing the importance of considering these attributes when optimizing distribution lo-

gistics.

In this research, all solution procedures and algorithms are coded in C and we use CPLEX 20.1

as the MIP solver. All computational experiments are conducted on an Intel(R) Xeon(R) CPU E5-

2687W v3 processor @ 3.10 GHz with 750 GB of RAM running on Linux environment. The solver

can use up to seven threads for solving any instance of the 3E-LRP-MC-PD and a total time limit

of 4h of CPU time (14400s) is imposed.
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6.1 CPLEX Parameters

We initially test CPLEX at default settings to solve the 3E-LRP-MC-PD and for most medium

sized instances finding an initial feasible solution is difficult. We test several non-default parameters

to improve CPLEX’s performance. Our tests show that solving the 3E-LRP-MC-PD using most of

CPLEX’s parameters at default settings and the following modified parameters provide the best

results:

• Emphasising feasibility over optimality

• Selecting branching variable at a node based on pseudo reduced costs

• Using relaxation induced neighborhood search (RINS) heuristic at a high frequency

For formulations 1 and 2, the seperation and addition of the sub-tour elimination constraints

(18) are implemented using CPLEX callback functions (User Cuts and Lazy Constraints) to reduce

the time required to solve the LP relaxation. At an integer or a fractional solution found by CPLEX,

we solve a series of minimum s-t cut problems for the vehicles used (v ∈ V : av > 0). We use the

Concorde callable library by Applegate, Bixby, Chvátal, and Cook (2011) to solve the minimum s-t

cut problems and identify the violated constraints to be added to the 3E-LRP-MC-PD formulation.

Additionally, we find that adding the following parameter works best with the Lazy Constraints:

• Performing primal reductions only during preprocessing

These parameters are used for all the computational experiments using CPLEX to solve medium

sized instances of the 3E-LRP-MC-PD.

6.2 Categorizing Instances

The size of any instance of the 3E-LRP-MC-PD is defined by the following dimensions:

• |S|: the total number of non-courier nodes

• |H|: the total number of potential transshipment locations

• |C|: the number of courier nodes
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• |K|: the number of commodities being transported in the network

• Vtype: the number of vehicle types

• Vrep: the available number of vehicles from each type

Given that there are six dimensional features, it is difficult to define a fixed criteria to categorize

the size of the instances as small, medium or large.

For simplicity we mainly focus on varying the number non-courier nodes (|S|) and the total

number of commodities (|K|) when defining different sized instances. For our computational ex-

periments, we classify small instances as instances with |S| ≤ 10 and |K| ≤ 10. Additionally, we

define medium sized instances as instances with |S| ≤ 10, but with total commodities ranging from

20 to 40 ( 20 ≤ |K| ≤ 40).

Initially, we solve instances of varying |S| and |K| dimensions using CPLEX. We use the av-

erage computational time required to find an initial feasible solution and the quality of the final

solution to confirm that this categorization is sensible.

6.3 Session 1: Comparing Formulations

The aim of the first computational session is to assess the performance of the four formulations

summarized in Table 3.1. Due to the difficulty in finding any feasible solutions to the 3E-LRP-MC-

PD, we use the time taken to find an initial solution as a performance indicator. We also consider

the common indicators: the quality of CPLEX’s final solution (optimality gap); and if solved to

optimality, the time take to solve the instance.

We first test small instances of |S| = [5, 8], with total commodities |K| ≤ 10. Set 1 considers

one transshipment center (H = 1) and two vehicle types (Vtypes = 2). The instances are generated

based on the initial assumptions (discussed in Sections 5.1.2 and 5.3). We assume that the number of

courier nodes are equal to the number of non-courier nodes (|C| = |S|) to represent the conveniently

located courier collection points. We also assume that the number of available vehicles from each

type (Vrep) is equal to the total number of commodities (|K|), to represent the unlimited vehicle

fleet and guarantee that there is at least one intuitive feasible solution.
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Thirteen instances are solved using CPLEX. Since the small instances are relatively easy to

solve, CPLEX is used at default parameters. The computational results for Set 1 are summarized

in Table 6.1. Columns 2-5 summarize the instance parameters. Columns 2 and 3 are the number

of non-courier and courier nodes |S| and |C|, respectively. The fourth column is the number of

commodities |K| and the fifth column Vrep is the number of vehicles available (repetitions) from

each vehicle type. The next three columns correspond to the time taken to find an initial feasible

solution (IFS), the best upper bound and the optimality gap found by CPLEX. The column %GAP

displays the relative gap between the best integer feasible solution and the lower bound found by

CPLEX at termination. A %GAP of zero indicates that CPLEX solves the instance to optimality.

Finally, if an instance is solved to optimality, the time taken to find the optimal solution is shown in

column 8 (CPU). Columns 6-8 are repeated for each formulation. We use time in the column CPU

to indicate that the optimal solution is not found in the given time limit.
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Table 6.1: Formulation Comparison for Set 1

Instance F1 F2 F3 F4

|S| |C| |K| Vrep
Time
to IFS (s)

%GAP CPU (s)
Time
to IFS (s)

%GAP CPU (s)
Time
to IFS (s)

%GAP CPU (s)
Time
to IFS (s)

%GAP CPU (s)

1 5 5 5 5 3.80 0.00 10.27 1.69 0.00 5.27 0.60 0.00 2.06 0.53 0.00 1.95
2 6 6 34.95 0.00 95.41 6.91 0.00 112.05 1.55 0.00 58.51 1.34 15.22 time
3 6 6 14.59 0.00 56.90 2.38 0.00 61.83 2.01 0.00 38.16 0.90 18.33 time
4 8 8 85.74 0.00 250.28 23.69 0.00 2524.89 8.31 0.00 179.18 41.11 14.01 time
5 8 8 5 5 6.90 0.00 36.37 2.67 0.00 12.72 1.78 0.00 10.83 1.86 0.00 20.09
6 5 5 16.71 0.00 644.35 3.52 0.00 20.60 1.16 0.00 8.19 1.08 6.04 time
7 6 6 25.83 0.00 50.74 9.00 0.00 72.34 3.37 0.00 26.33 233.27 29.80 time
8 6 6 43.19 0.00 94.80 17.09 0.00 33.62 2.15 0.00 24.97 2.11 14.32 time
9 6 6 13.63 0.00 24.18 4.54 0.00 10.67 2.83 0.00 12.75 2.79 6.71 time
10 8 8 271.16 0.00 2433.59 63.47 0.00 399.35 53.98 0.00 200.88 7.41 18.07 time
11 8 8 41.63 0.00 56.55 9.13 0.00 54.39 17.38 0.00 26.14 4.42 8.10 time
12 8 8 249.59 0.00 4336.35 20.76 0.00 722.20 47.15 0.00 320.38 4.50 8.08 time
13 10 10 88.20 0.00 2706.71 87.74 0.00 1176.34 19.56 0.00 67.44 3358.60 18.07 time

Average 68.9 0.0 830.5 19.4 0.0 400.5 12.4 0.0 75.1 281.5 12.1 11.0

59



The results summarized in Table 6.1 show that for formulations F1, F2 and F3; CPLEX solves

all thirteen instances to optimality in reasonable computational time. F4 appears to be the worst

formulation as only two of the small instances are solved to optimality. Additionally, the average

%GAP for F4 is 12.1 which is a large optimality gap relative to the size of the instances. For

most of the data set, F3 outperforms all other formulations in terms of the time taken to find an

initial feasible solution and the time taken to solve the instances to optimality. We also observe that

relaxing some of equality constraints (F2) (discussed in Section 3.3.2), results in better performance

for most instances, as seen through the comparison between F1 and F2.

We also test the performance of the four formulations for larger instances. For Set 2, we consider

H = 2 and Vtypes = 2. The instances are generated based on the initial assumptions for both |C|

and Vrep. At default settings, CPLEX does not find an initial feasible solution in the 14400s of

allowed computational time. Accordingly, CPLEX parameters are set to the values discussed in

Section 6.1.

Table 6.2 shows the results of the second data set. We set 0.1 as an acceptable relative tolerance

between the upper bound and the lower bound found by CPLEX. Accordingly, instances with 0.1

displayed in the %GAP column are the instances solved to optimality. As seen in Table 6.2 only

one of the instances (14) is solved to optimality. The time taken by CPLEX to find an optimal

solution for F3 is 82% less than the time taken for F2. Based on the solutions for instance 14,

F4 is the worst formulation, because no feasible solution can be found for an instance that can be

solved to optimality using the other formulations. For instance 15, an initial feasible solution is

found only using F1. For the remaining six instances no feasible solution is found regardless of the

formulation solved. Most importantly, we observe that the assumptions: |C| = |S| and Vrep = |K|

can redundantly increase the complexity of the instances and hence can be restrictive when solving

larger data sets using CPLEX.

60



Table 6.2: Formulation Comparison for Set 2

Instance F1 F2 F3 F4

|S| |C| |K| Vrep
Time
to IFS (s)

%GAP
CPU
(s)

Time
to IFS (s)

%GAP
CPU
(s)

Time
to IFS (s)

%GAP
CPU
(s)

Time
to IFS (s)

%GAP
CPU
(s)

14 5 5 15 15 251.25 1.42 time 129.44 0.10 14038.30 318.31 0.10 2438.76 time - time
15 6 6 20 20 9253.1 17.47 time time - time time - time time - time
16 30 30 time - time time - time time - time time - time
17 7 7 25 25 time - time time - time time - time time - time
18 30 30 time - time time - time time - time time - time
19 8 8 20 20 time - time time - time time - time time - time
20 25 25 time - time time - time time - time time - time
21 10 10 20 20 time - time time - time time - time time - time

Table 6.3: Formulation Comparison for Set 3

Instance F1 F2 F3 F4

|S| |C| |K| V
rep

Time
to IFS (s)

%
GAP

CPU
(s)

Time
to IFS (s)

%
GAP

CPU
(s)

Time
to IFS (s)

%
GAP

CPU
(s)

Time
to IFS (s)

%
GAP

CPU
(s)

22 6 4 20 5 197.43 0.10 546.83 101.20 0.10 2244.00 12.64 0.10 201.48 time - time
23 6 20 5 878.25 6.46 time 276.88 0.10 9784.25 674.17 0.10 5816.24 time - time
24 4 40 10 time - time time - time 3338.80 15.81 time time - time
25 7 4 30 7 time - time time - time time - time time - time
26 7 30 7 time - time time - time time - time time - time
27 8 4 30 7 time - time time - time 13805.48 1.69 time time - time
28 10 4 25 6 7982.43 3.41 time 3658.35 1.27 time 2793.54 0.55 time time - time
29 30 7 time - time time - time 2076.67 1.52 time time - time
30 35 8 time - time time - time 3089.40 3.51 time time - time
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To be able to analyze larger sets, we relax this assumption and consider instances where Vrep 6=

|K| and for most instances |C| 6= |S|. Set 3 considers nine instances, of varying sizes summarized

in Table 6.3. All instances consider H = 2 and Vtypes = 2. Comparing the results for Set 3 (Table

6.3) with the results of Set 2 (Table 6.2) show that relaxing the assumptions related to the |C| and

Vrep can significantly reduce complexity.

F3 is able to find feasible solutions for seven out of the nine instances. While formulations F1

and F2 find solutions for only three instances. On the other hand F4 is unable to find a feasible

solution for any of the instances. The optimal solution is found for instances 22 and 23 using F1,F2

and F3. F3 still outperforms the other formulations in terms of computational time. Overall the

performance of F1 and F2 are relatively similar and it is difficult to predict which one will perform

better.

The results from the first computational session show that F3 is the best proposed formulation for

the 3E-LRP-MC-PD. This contradicts our initial intuition. Mainly because the sub-tour elimination

constraints used in F1 and F2 are only added if violated (Section 6.1). We initially expected that

using callback functions to add violated constraints will reduce the complexity of the problem and

hence make formulations F1 and F2 more likely to outperform other formulations.

6.4 Session 2: Matheuristic Performance

The aim of the second computational session is to assess the performance of the slope scal-

ing decomposition matheuristic (proposed in chapter 4) in solving the 3E-LRP-MC-PD. We use a

total of fifty three instances to test the matheuristic and for all instances CPLEX is used to solve

formulation F3 within a 14400s time limit.

We divide our instances to two test sets:

(1) Set 1: Small instances solved to optimality using CPLEX

(2) Set 2: Larger instances, for which most of the data set are not solved to optimality and for a

subset instances CPLEX does not find any feasible solutions in 14400s of computational time

For the small instances in Set 1, we run the matheuristic once for a maximum of 300 iterations.
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Table 6.4: Matheuristic Performance: Set 1

Instance CPLEX Matheuristic

|S| |C| |K| Vrep |H| %
GAP

CPU
(s)

%Opt
GAP

CPU
(s)

1 5 5 5 5 1 0.00 2.06 1.71 3.38
2 6 6 1 0.00 58.51 0.20 2.54
3 6 6 1 0.00 38.16 0.16 17.54
4 8 8 1 0.00 179.18 0.24 20.00
5 8 8 5 5 1 0.00 10.83 0.00 3.40
6 5 5 1 0.00 8.19 3.64 3.45
7 6 6 1 0.00 26.33 4.97 15.78
8 6 6 1 0.00 24.97 5.81 15.86
9 6 6 1 0.00 12.75 5.85 16.02
10 8 8 1 0.00 200.88 4.60 17.13
11 8 8 1 0.00 26.14 6.60 16.54
12 8 8 1 0.00 320.38 7.05 16.03
13 10 10 1 0.00 67.44 5.07 17.01

Average 75.06 3.53 12.67

The results for Set 1 can be seen in Table 6.4. CPLEX solves all thirteen instances in Set 1 to

optimality. Hence, the column % Opt Gap records the optimality gap between the matheuristic

solution and the optimal solution. As seen in Table 6.4, the matheuristic solves five out of the

thirteen instances to an optimality gap of less than 2%. The average optimality gap is 3.53% which

shows that the matheuristic reaches high quality solutions for small instances. The computational

time of the matheuristic is consistently less than CPLEX, however, for the small instances (Set 1)

they are both negligible.
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Table 6.5: Matheuristic Performance: Set 2

Instance CPLEX Matheuristic

Best Average Avg
CPU(s)

|S| |C| |K| V
rep |H| UB LB

%
GAP

CPU
(s)

Best
OFV

%
GAP
UB

%
GAP
LB

Avg
OFV

%
GAP
UB

%
GAP
LB

14 6 4 20 5 2 366,334.08 365,969.03 0.10 2,244.00 456,996.10 24.75 24.87 460,740.91 25.77 25.90 255.32
15 6 20 5 2 413,342.73 412,931.33 0.10 9,784.25 479,261.82 15.95 16.06 479,261.82 15.95 16.06 363.52
16 4 25 6 2 477,354.02 395,040.55 17.24 6,054.45 510,066.96 6.85 29.12 518,792.08 8.68 31.33 387.90
17 6 25 6 2 505,520.47 467,619.32 7.50 5,730.90 591,282.04 16.97 26.45 591,282.04 16.97 26.45 661.26
18 4 30 7 2 449,989.14 431,830.20 4.04 6,983.39 567,064.91 26.02 31.32 610,952.24 35.77 41.48 502.47
19 4 35 8 2 537,883.09 487,906.86 9.29 13,199.70 647,315.77 20.35 32.67 681,447.09 26.69 39.67 657.06
20 4 40 10 2 618,471.32 520,675.90 15.81 11,859.05 729,904.84 18.02 40.18 786,098.46 27.10 50.98 816.79
21 7 4 20 5 2 427,431.54 396,509.36 7.23 1,492.89 468,594.58 9.63 18.18 475,128.32 11.16 19.83 394.22
22 4 25 6 2 530,526.36 488,880.51 7.85 13,232.63 623,892.65 17.60 27.62 629,182.07 18.60 28.70 414.17
23 4 30 7 2 614,470.53 497,184.23 19.09 13,090.82 687,902.72 11.95 38.36 704,574.84 14.66 41.71 686.80
24 4 40 10 2 2,347,452.06 550,217.02 76.56 11,112.41 907,278.77 -61.35 64.89 934,545.37 -60.19 69.85 917.45
25 8 4 20 5 2 391,704.21 391,313.93 0.10 1,518.85 416,888.25 6.43 6.54 432,599.96 10.44 10.55 353.46
26 4 25 6 2 354,165.80 340,844.87 3.76 14,041.00 448,601.50 26.66 31.61 483,843.26 36.61 41.95 548.03
27 4 30 7 2 367,838.45 361,632.00 1.69 14,235.70 533,211.23 44.96 47.45 572,446.07 55.62 58.30 670.90
28 9 4 20 5 2 371,533.27 371,163.25 0.10 12,474.66 475,074.61 27.87 28.00 485,036.59 30.55 30.68 365.87
29 6 20 5 2 367,902.63 350,676.51 4.68 8,271.94 395,047.09 7.38 12.65 399,644.36 8.63 13.96 538.10
30 8 20 5 2 367,437.05 349,642.93 4.84 6,809.11 391,508.60 6.55 11.97 397,417.69 8.16 13.66 644.28
31 4 25 6 2 482,660.73 365,398.33 24.29 13,216.99 473,296.53 -1.94 29.53 475,521.94 -1.48 30.14 574.51
32 6 25 6 2 359,418.27 322,273.28 10.33 3,752.53 388,079.07 7.97 20.42 425,803.79 18.47 32.13 775.09
33 8 25 6 2 360,284.48 319,753.32 11.25 14,211.36 382,140.65 6.07 19.51 387,486.37 7.55 21.18 1,018.38
34 10 4 20 5 2 327,550.39 327,227.10 0.10 612.31 361,450.32 10.35 10.46 392,091.20 19.70 19.82 452.39
35 6 20 5 2 323,855.05 323,531.20 0.10 2,596.62 358,621.49 10.74 10.85 381,331.34 17.75 17.87 646.78
36 8 20 5 2 324,787.83 324,463.07 0.10 2,442.65 353,644.03 8.88 8.99 365,455.33 12.52 12.63 753.40
37 4 25 6 2 446,592.97 444,150.80 0.55 3,509.17 496,763.55 11.23 11.85 511,339.21 14.50 15.13 597.59
38 6 25 6 2 441,092.67 435,616.87 1.24 10,940.23 504,395.99 14.35 15.79 545,587.66 23.69 25.24 862.50
39 4 30 7 2 497,202.26 489,664.82 1.52 13,141.64 552,226.96 11.07 12.78 557,857.93 12.20 13.93 1,133.78
40 4 35 8 2 509,027.74 491,140.83 3.51 14,307.98 534,422.40 4.99 8.81 576,416.38 13.24 17.36 1,213.85

Average 8.63 8550.64 11.49 23.59 15.90 28.39 637.25
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To assess the matheuristic performance for Set 2, we run the matheuristic three independent

times for each instance (in Tables 6.5 and 6.6) for 2000 iterations every run.

Table 6.5 summarizes the instances for which CPLEX finds at least one feasible solution. The

table shows the best objective function value found (Best OFV) and the average objective function

value found (Avg OFV) of the three runs. We calculate the %GAP between the matheuristic solu-

tion and the upper bound found by CPLEX as 100 × OFV−UB
UB . We record the GAP between the

matheuristic’s best and average OFVs and CPLEX’s UB in the corresponding %GAP UB columns.

We also calculate the GAP between the matheuristic solutions and the lower bound found by CPLEX

at termination as 100× OFV−LB
LB .

Additionally, the column CPU for CPLEX displays the time taken to find the optimal solution

when an optimal solution is found (%GAP ≤ 0.10). Otherwise, it displays time take by CPLEX to

find best feasible solutions. Finally, the average time take to run the heuristic for 2000 iterations is

shown in column Avg CPU.

The computational results in Table 6.5 show that the matheuristic finds a solution with less

than 10% deviation from CPLEX’s upper bound for ten out of the twenty seven instances. For

two of these instances the matheuristic finds a solution better than CPLEX’s best solution. The

matheuristic’s worst deviation from CPLEX’s upper bound is 44.96% for instance 27. However, the

average deviation based on both the best solution is 11.49%. On the other hand the average gap

between the algorithms best solution and the LB is 23.59%. The results of the best and average

matheuristic performance also show that the quality of the solutions produced by the matheuristic

are relatively consistent. Finally the results show a good performance of the matheuristic against

CPLEX in terms of speed. The algorithm is able to generate a reasonably good solution within an

average of 10 minutes. While CPLEX requires an average of 2.3 hours.
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Table 6.6: Matheuristic Performance: Set 2 continued

Instance CPLEX
Matheuristic

Best OFV Avg OFV Avg
CPU(s)

|S| |C| |K| V
rep

|H| UB LB
%
GAP

CPU
(s)

Best
OFV

% GAP
LB

Avg
OFV

%
GAP LB

41 7 4 35 8 2 0.00 527,170.38 - time 708,395.74 34.38 758,732.72 43.93 726.66
42 8 8 25 6 2 0.00 405,423.86 - time 602,192.38 48.53 634,392.54 56.48 1,013.04
43 9 4 30 7 2 0.00 412,217.52 - time 605,741.26 46.95 614,183.20 48.99 674.05
44 6 30 7 2 0.00 402,971.36 - time 545,785.44 35.44 621,782.31 54.30 1,059.53
45 8 30 7 2 0.00 399,062.47 - time 499,021.59 25.05 527,043.98 32.07 1,468.78
46 4 35 8 2 0.00 366,944.73 - time 625,409.94 70.44 649,120.56 76.90 984.85
47 6 35 8 2 0.00 343,745.83 - time 590,974.47 71.92 611,257.72 77.82 1,456.15
48 8 35 8 2 0.00 372,105.45 - time 573,411.06 54.10 627,833.42 68.72 2,085.18
49 4 40 10 2 0.00 432,971.04 - time 731,826.02 69.02 758,655.93 75.22 1,146.81
50 10 8 25 6 2 0.00 437,793.46 - time 494,101.88 12.86 523,716.59 19.63 1,217.99
51 6 30 7 2 0.00 483,929.29 - time 546,648.87 12.96 564,856.81 16.72 1,531.57
52 8 30 7 2 0.00 483,103.34 - time 540,383.43 11.86 553,008.96 14.47 2,271.84
53 4 40 10 2 0.00 577,103.35 - time 753,808.23 30.62 766,260.68 32.78 1,195.89

Average 40.32 47.54 1,294.80
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The results from Table 6.6 show that Set 2 is much harder than Set 1. For thirteen out of the

forty instances in Set 2, CPLEX does not find a feasible solution in 4h of computational time. Table

6.6 shows that the matheuristic provides solutions within an average 40.3% GAP from CPLEX’s

LB at termination in an average of 21 mins.

6.5 Session 3: Complexity of the 3E-LRP-MC-PD

As discussed in Sections 6.1 and 6.3, and seen in Table 6.6, medium sized instances of the

3E-LRP-MC-PD can be relatively hard to solve. The aim of this session is to identify the char-

acteristics that contribute the most to this complexity. Accordingly, we investigate the impact of

bundling restrictions, transit time constraints and considering a courier transportation strategy on

the complexity of the 3E-LRP-MC-PD.

Similar to the first computational session (Section 6.3) we define complexity based on:

• How difficult it is to find an initial feasible solution

• The quality of the final solution found in the given time limit

6.5.1 Bundling & Transit Time

Unlike the standard LRP, the 3E-LRP-MC-PD considers bundling and transit time restrictions

which increases the number of constraints in the model. More importantly bundling restrictions

also increase the inter-dependencies between flow decision variables which may contribute to the

complexity of the problem.

To investigate how influential are the additional constraints and connectivity, we consider in-

stances of the 3E-LRP-MC-PD for which in the given time limit: (1) no optimal solution is found

(Table 6.7) and (2) no feasible solution is found (Table 6.8). We investigate the impact of relaxing

the bundling restrictions and the transit time constraints on the time taken to find an initial feasible

solution and the quality of the final solution. The relaxed F3 formulations are solved with the same

computational limit of 14400s.

The computational results in Table 6.7 show the impact of relaxing the bundling and transit time

constraints on nine instances that are not solved to optimality. CPLEX does not find the optimal
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solution for any of the instances when either sets of constraints are relaxed. However, relaxing the

transit time constraints improve the %GAP for five out of the nine instances. It is interesting to

observe that relaxing the transit time constraints increases the time needed to find an initial feasible

solution for eight out of the nine instances.

The results in Table 6.7 show that relaxing the bundling constraints improves the optimality gap

for four out of the nine instances. It also reduces the time taken to find an initial feasible solution for

seven instances. However, the results from Table 6.7 show that for five instances, the formulation

with the relaxed bundling constraints has a greater optimality gap than the original F3 formulation.

For instance 7, the new problems defined by relaxing the (1) bundling constraints and (2) the transit

time constraints is more difficult to solve than the original problem.

Table 6.8 summarizes the impact of relaxing the constraints on five instances for which no

feasible solution is found. For instance 10 relaxing either constraints results in finding an IFS.

Relaxing the transit time constraint has a greater impact on complexity reducing both the time to

IFS and optimality gap. For instances 11 and 14 relaxing bundling constraints allows an IFS to

be found and provides a final solution with an optimality gap of less than 8%. While relaxing

transit time constraints appears to have no impact on the complexity. Finally for two instances, both

constraints do not seem to affect the complexity of the instance and no solution is found for the new

relaxed problems.

Based on the results from Tables 6.7 and 6.8, we observe that relaxing bundling restrictions

can help reduce the time needed to find an initial feasible solution for most instances (71%). We

conclude that relaxing the bundling constraints may reduce the complexity related to finding feasible

solutions. However, the new problem defined can still be challenging to solve to optimality. The

problem defined by relaxing the transit time constraints may be less complex since CPLEX finds a

better final solution in the same computational time. However, relaxing the transit time constraints

does not usually improve the time taken to find initial feasible solutions. Hence, it may not affect

the complexity of instances where no initial solution is found for the original problem. Finally, it is

important to note that the correlation between relaxing the transit time constraints and the optimality

gap aspect of complexity is only valid for 42% of the instances tested; so it is not as strong as the

relationship between the bundling constraints and complexity.
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Table 6.7: Relating Bundling and Transit Time Requirements to Complexity

Instance
CPLEX

F3 (RESULTS)
F3 with

Relaxed Bundling restrictions
F3 with

Relaxed Transit Time restrictions

|S| |C| |K| V
rep

Time
to IFS (s)

%
GAP

CPU
time (s)

Time
to IFS (s)

%
GAP

CPU
time (s)

Time
to IFS (s)

%
GAP

CPU
time (s)

1 6 4 25 6 1,798.97 17.24 time 126.58 4.53 time 3,683.32 10.17 time
2 4 30 7 4,182.45 4.04 time 901.48 6.32 time 23.07 3.03 time
3 4 40 10 3,338.80 15.81 time 882.56 4.77 time time - time
4 4 35 8 367.63 9.29 time 6,446.40 16.16 time time - time
5 7 4 25 6 2,128.73 7.85 time 427.35 3.63 time 1,408.34 7.70 time
6 4 30 7 13,090.80 19.09 time 3,426.84 19.60 time 14,253.44 25.42 time
7 4 40 10 11,015.28 76.56 time time - time time - time
8 8 4 25 6 2,917.44 3.76 time 737.09 4.66 time 4,363.56 3.60 time
9 9 4 25 6 4,056.76 24.29 time 1,594.91 6.56 time 11,530.55 10.10 time

Table 6.8: Relating Bundling and Transit Time Requirements to Complexity (2)

Instance
CPLEX

F3 (RESULTS)
F3 with

Relaxed Bundling restrictions
F3 with

Relaxed Transit Time restrictions

|S| |C| |K| V
rep

Time
to IFS (s)

%
GAP

CPU
time (s)

Time
to IFS (s)

%GAP
CPU
time (s)

Time
to IFS (s)

%
GAP

CPU
time (s)

10 7 4 35 8 time - time 6,446.40 16.16 time 2,868.09 14.03 time
11 8 8 25 6 time - time 1,446.55 7.37 time time - time
12 4 35 8 time - time - - time time - time
13 8 40 10 time - time - - time time - time
14 9 9 25 6 time - time 3,338.12 7.10 time time - time
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6.5.2 Courier Collection Nodes

Considering a courier collection transportation strategy is a key characteristic of the 3E-LRP-

MC-PD. Although courier collection nodes act as conveniently located sink nodes, they add com-

plexity, because on the very least, they increase the number on nodes and arcs on the network and

accordingly the related decision variables.

It is therefore intuitive that considering courier nodes will increase complexity. To assess the

contribution of courier nodes to the complexity we first compare the CPLEX solutions for instances

of the 3E-LRP-MC-PD with solutions to the same instance but without the courier delivery option.

Additionally, we observe the impact of increasing the number of couriers being considered on the

complexity.

Table 6.9: Relating Courier Transportation Strategy to Complexity

Instance F3 Courier Delivery F3 without Cour Delivery

|S| |C| |K| V
rep

Time
to IFS (s)

%
GAP

CPU
time (s)

Time
to IFS (s)

%
GAP

CPU
time (s)

1 6 4 20 5 101.20 0.10 2,244.00 62.52 0.10 1,248.92
2 6 20 5 9,253.13 17.47 time 46.32 0.10 14,267.37
3 4 25 6 1,798.97 17.24 time 126.58 4.53 time
4 6 25 6 5,730.90 7.50 time 392.34 7.63 time
5 4 30 7 4,182.45 4.04 time 901.48 6.32 time
6 6 30 7 time - time 1,037.37 14.44 time
7 7 4 25 6 2,128.73 7.85 13,232.63 427.35 3.63 time
8 4 30 7 13,090.80 19.09 13,090.82 4,345.68 15.72 time
9 8 4 20 5 183.08 0.10 1,518.85 88.99 0.10 6,892.46
10 4 25 6 2,917.44 3.76 time 737.09 4.66 time

We use a data set of ten instances (seen in Table6.9) to evaluate the impact of of considering

courier transportation strategy on complexity. The results show that for all instances tested, the

time needed to find an initial feasible solution is reduced if the courier strategy is not considered.

For five of the seven non-optimal instances, the % GAP is also reduced if couriers are excluded.

For one of the five instances CPLEX can not find a feasible solution for 3E-LRP-MC-PD. On the

other hand, the optimality gap is 14% when the the same instance is solved without considering

couriers. Finally, for the three instances of the 3E-LRP-MC-PD that are solved to optimality; the

new problem excluding couriers is solved in less computational time.
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We also study the impact of the number of couriers on the complexity. For each instance de-

scribed in Table 6.10, we solve for |C| = [4, 6, 8]. The results show that in general for each instance

(described by |S|,|C| and |K| ) as the number of couriers increase, the time to find an initial feasible

solution also increases. For instances 5 and 6 increasing the number of couriers leads to instances

which CPLEX can not find an initial feasible solution for. It is worth noting that based on the in-

stances summarized in Table 6.10, there is no clear correlation between increasing the number of

courier nodes and the quality of the final solutions (% GAP).

The third computational session shows that considering courier delivery has the most direct

impact on the complexity of the 3E-LRP-MC-PD. Additionally, there appears to be a positive corre-

lation between considering bundling restrictions and the time required by CPLEX to find a feasible

solution. The transit time constraints have the least impact. However, for 42% of the instances

tested, the problems resulting from relaxing transit time constraints have better quality of final so-

lutions.
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Table 6.10: Relating Number of Courier Nodes |C| to Complexity

Instance |C| =4 |C| = 6 |C| = 8

|S| |C| |K| V
rep

Time
to IFS (s)

%
GAP

CPU
time (s)

Time
to IFS (s)

%
GAP

CPU
time (s)

Time
to IFS (s)

%
GAP

CPU
time (s)

1 9 4 20 5 29.17 0.10 12,474.66 1,010.48 4.68 8,271.94 4,182.45 4.04 time
2 4 25 6 4,056.76 24.29 time 395.44 10.33 time 1,919.41 11.25 time
3 10 4 20 5 348.68 0.10 612.31 439.69 0.10 2,596.62 1,051.14 0.10 2,442.65
4 4 25 6 2,793.54 0.55 time 6,691.73 1.24 time time - time
5 4 30 7 2,076.67 1.52 time time - time time - time
6 4 35 8 3,089.40 3.51 time time - time time - time
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6.6 Session 4: Importance of the 3E-LRP-MC-PD

In the third computational session (Section 6.5), we establish that the unique characteristics of

the 3E-LRP-MC-PD, contribute (with varying intensities) to making the problem harder to solve.

The aim of the fourth computational session is to justify why these attributes are worth considering,

even though they are computationally taxing.

6.6.1 Bundling & Transit Time

Today’s current distribution environment is characterized by a wide product range. We consider

bundling and transit time restrictions to more realistically model the product variety and their unique

transportation requirements. If these unique transportation requirements are not considered when

planning distribution; then the optimized costs of the distribution logistics can be misleading. We

assess the magnitude of not accounting for the unique transportation requirement by: comparing

the costs calculated by solving the 3E-LRP-MC-PD, to the distribution costs calculated if the (1)

bundling or the (2) transit time constraints are neglected.

Table 6.11: The Impact of Relaxing Bundling Restrictions on Costs

Instance 3E-LRP-MC-PD No Bundling % decrease
in

Cost|S| |C| |K| V
rep

|H| UB
%

GAP
UB

%
GAP

1 6 4 20 5 2 366,334.08 0.10 252,828.88 0.10 30.92
2 4 30 7 2 449,989.14 4.04 308,594.11 10.84 28.54
3 4 35 8 2 537,883.09 9.29 311,968.45 0.10 36.06
4 7 4 25 6 2 530,526.36 7.85 306,113.75 0.10 37.38
5 8 4 20 5 2 391,704.21 0.10 162,238.72 0.08 58.54
6 4 25 6 2 354,165.80 3.76 249,415.46 0.10 26.82
7 4 30 7 2 367,838.45 1.69 261,829.28 9.83 27.60
8 10 4 20 5 2 327,550.39 0.10 256,341.95 32.45 21.66
9 4 25 6 2 446,592.97 0.55 262,237.35 27.26 40.96
10 4 30 7 2 497,202.26 1.52 309,140.18 32.91 36.87

Average 34.53

We first choose 10 instances of the 3E-LRP-MC-PD where CPLEX finds a solution with an

optimality gap of less than 10%. This allows us to make valid inferences about the distribution costs

(objective function value). The data set chosen is summarized in Table 6.11. We then solve the
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same instances without considering bundling restrictions. The column UB for the 3E-LRP-MC-PD

shows the distribution cost accounting for the bundling attributes. While the column UB for the

relaxed bundling problem shows the costs if bundling restrictions are not considered. The results

show that failing to account for bundling restrictions can lead to underestimating distribution costs

for all instances by an average of 34.53%.

We also consider how relaxing transit time requirements can result in underestimating distribu-

tion costs. We study four scenarios with identical parameters and different transit time requirements

(seen in Table 6.12). The first scenario considers the most restrictive transit time constraints where

the transit time required for a commodity k : tmaxk is strictly equal to the travel time between

origin and destination. For the remaining three scenarios we randomly generate the transit time for

a commodity k (as explained in Section 5.2) based on the ranges specified in Table 6.12. The fourth

scenario has the most relaxed transit time requirements such that the minimum transit time for a

commodity is three times the time required for a direct delivery between its origin and destination.

Since the first scenario is the most restricted, it is most likely to have the highest distribution

costs. This is because for most commodities only direct delivery can be considered and the cost-

saving potential of using courier deliveries or indirect delivery can not be exploited. We use the first

scenario as a benchmark and compare the impact of varying levels of relaxation on the reduction

in distribution costs. For four instances relaxing transit time restrictions to scenarios 2 and 3 lead

to a decrease in costs. For instances 8 to 11 relaxing the distribution costs to scenario 2 is not

enough to impact costs. However a more extreme relaxation (scenario 3) leads to more than 10%

decrease in costs for all scenarios. The results for the first 3 scenarios show that in general the more

aggressive the relaxation of the time constraints the greater the cost reductions. This is indicative of

how neglecting transit time requirements can result in underestimating distribution costs.

It is worth noting that relaxing beyond a certain level (between scenarios 2 and 3) does not lead

to significant cost reductions. It is also important to note that inaccurately relaxing bundling restric-

tions has a greater impact on underestimating costs compared to relaxing transit time constraints.
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Table 6.12: The Impact of Transit Time Restrictions on Costs

Instance tmaxk = [1,1] tokdk tmaxk = [1,1.5] tokdk tmaxk = [1.5,5] tokdk tmaxk = [3,5] tokdk

|S| |C| |K| V
rep |H| UB

%
GAP UB

%
GAP

%
decrease
in Cost

UB
%

GAP

%
decrease
in Cost

UB
%

GAP

%
decrease
in Cost

1 6 4 20 5 2 417,052.20 0.01 416,501.00 0.09 0.13 366,334.08 0.10 12.16 366,334.08 0.10 12.16
2 4 30 7 2 529,637.46 0.10 537,114.76 3.38 -1.41 449,989.14 4.04 15.04 447,094.16 3.03 15.58
3 4 35 8 2 665,856.48 0.34 582,809.39 1.12 12.47 537,883.09 9.29 19.22 0.00 time -
4 7 4 25 6 2 530,098.59 7.70 613,324.90 0.10 -15.70 530,526.36 7.85 -0.08 530,098.59 7.70 0.00
5 8 4 20 5 2 392,476.19 0.00 393,086.19 0.04 -0.16 391,704.21 0.10 0.20 391,704.21 0.10 0.20
6 4 25 6 2 447,413.13 0.10 365,258.53 0.06 18.36 354,165.80 3.76 20.84 354,165.80 3.60 20.84
7 4 30 7 2 445,749.30 0.10 406,213.56 0.10 8.87 367,838.45 1.69 17.48 366,884.39 1.61 17.69
8 10 4 20 5 2 427,522.76 0.10 427,522.76 0.10 0.00 327,550.39 0.10 23.38 327,550.39 0.10 23.38
9 4 25 6 2 539,597.26 0.10 539,597.26 0.10 0.00 446,592.97 0.55 17.24 446,592.97 0.62 17.24

10 4 30 7 2 583,232.36 0.34 583,232.36 0.34 0.00 497,202.26 1.52 14.75 0.00 time -
11 4 35 8 2 573,894.06 1.00 573,894.06 1.00 0.00 509,027.74 3.51 11.30 0.00 time -

Average 2.05 13.78 13.39
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6.6.2 Courier Collection Nodes

Finally, we analyze the cost saving opportunities provided by considering courier deliveries. We

consider eight instances that do not consider courier deliveries and have an optimality gap of less

than 10%, to ensure the validity of the analysis. The instances are summarized in Table 6.13.

We solve additional instances with identical parameters but considering courier delivery as an

additional transportation strategy. We estimate the courier delivery cost as the average per unit

routing costs (equation (107)) and use the procedure described in Section 5.1.2 to determine the

location of courier nodes. The results from table 6.13 show that considering courier deliveries

reduce distribution costs for all instances. For two instances, considering courier deliveries reduce

costs by more than 50% .

Table 6.13: The Cost Saving Potential of Considering Courier Delivery

Instance
F3 without

Courier Delivery
3E-LRP-MC-PD

F3 Courier Delivery
%

decrease
in Cost|S| |C| |K| V

rep
UB

%
GAP

UB
%

GAP
1 6 4 20 5 469,562.27 0.10 366,334.08 0.10 28.18
2 6 20 5 469,562.27 0.10 457,556.44 17.47 2.62
3 4 25 6 613,286.62 4.53 477,354.02 17.24 28.48
4 6 25 6 610,502.93 7.63 505,520.47 7.50 20.77
5 4 30 7 685,327.83 6.32 449,989.14 4.04 52.30
6 7 4 25 6 713,690.32 3.63 530,526.36 7.85 34.52
7 8 4 20 5 454,040.89 0.10 391,704.21 0.10 15.91
8 4 25 6 532,704.72 4.66 354,165.80 3.76 50.41

Average 28.04

The fourth computational session shows that not accounting for transit time and bundling re-

strictions can lead to underestimation of transportation costs. The results from this session show

that it is more misleading to neglect bundling restrictions than to fail to account for transit time

requirements. As seen in Tables 6.11 and 6.12, relaxing bundling restrictions results in a more sig-

nificant decrease in distribution costs. Finally, Table 6.13 shows that considering courier strategies

has a notable cost saving potential.
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Chapter 7

Conclusion and Future Research

In this thesis we studied a 3 echelon location routing problem with multiple commodities and

allowing pick-up and delivery (3E-LRP-MC-PD). It is an extension of the multi-echelon location-

routing problem that considers multiple commodities, three transportation strategies and allows flex-

ible vehicle routing between echelons. Moreover, we consider bundling restrictions and transit time

requirements as unique attributes for all commodities. To the best of our knowledge, no problem

in the location-routing literature addressed all these features simultaneously. We modeled the prob-

lem as an integer program and proposed three additional formulations based on relaxing equality

constraints and modifying the sub-tour elimination constraints. We also developed a slope-scaling

matheuristic which utilizes a new decomposition scheme.

We presented a computational study of the four formulations. The formulation with relaxed

equality constraints and the Miller-Tucker-Zemlin subtour elimination constraints outperformed

others when solved using CPLEX. We observed that even with this formulation there are medium

sized instances, for which it is difficult to find initial feasible solutions. Furthermore, we studied

factors increasing the complexity of the 3E-LRP-MC-PD. We found that considering courier de-

livery strategy contributes the most to the complexity of the problem, followed by the bundling

restrictions. Additionally, we evaluated the impact of neglecting bundling restrictions and transit

time on the estimated distribution costs. We concluded that if the bundling restrictions and transit

time are unaccounted for, then the distribution costs will be underestimated and hence misleading.

We also quantified the cost saving opportunity of using courier deliveries. Finally, we evaluated
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the performance of the proposed matheuristic in addressing the complexity of the 3E-LRP-MC-PD.

Our algorithm obtained near optimal solutions for small instances and an average optimality gap of

11.49% for medium-sized instances.

There are three main future directions for this research. First, developing other heuristic strate-

gies for the arc-routing sub-problem. Secondly, exploring the potential of sub-gradient optimization

to improve the updating of coefficients at the end of each iteration of the matheuristic procedure.

Finally, using the 3E-LRP-MC-PD to address an industrial case-study.
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