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Abstract

Towards Smart Vehicular Environments via Deep Learning and Emerging Technologies

Ahmed Al-Hilo, Ph.D.

Concordia University, 2021

Intelligent Transportation Systems (ITS) embrace smart vehicular environments through a fully

connected paradigm known as vehicular networks. Vehicular networks allow automobiles to stay

online and connected with their surroundings while travelling. In that sense, vehicular networks

enable various activities; for example, autonomous driving, road surveillance, data collection, con-

tent delivery, and many others. This leads to more efficient, safer, and comfort driving experiences

and opens up new opportunities for many business sectors. As such, the networking industry and

academia have shown great interests in advancing vehicular networks and leveraging relevant ser-

vices.

In this dissertation, several vehicular network problems are addressed along with proposing

novel ideas and utilizing effective solutions. As opposed to stationary or slow moving communi-

cations, vehicular networks experience more challenging environment as a result of vehicle mo-

bility. Consequently, vehicular networks suffer from ever-changing topology, short contact times,

and intractable propagation environments. In particular, this dissertation presents six works that

participate in supplementing the literature as follows. First, a content delivery framework in the

context of vehicular network is studied where digital contents are generated by different content

providers (CP) and have distinct values. To this end, a prefetching technique along with vehicle

to vehicle (V2V) and vehicle to infrastructure (V2I) communications are used to enable fast con-

tent delivery. Furthermore, a pricing model is proposed to deal with contents’ values to attain a

satisfactory Quality of Experience (QoE). Second, a more advanced system model is discussed to

cache contents with the assistance of vehicles and to enable a disconnected and fixed Road-Side
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Unit (RSU) to participate in providing content delivery services. The changing popularity of con-

tents is investigated besides accounting for the limited RSU cache capabilities. Third, the stationary

RSU proposed in the second work is replaced by a more flexible infrastructure, namely an aerial

RSU mounted on an unmanned aerial vehicle (UAV). The mobility of the UAV and its constrained

energy capacity are analyzed and Deep Reinforcement Learning is incorporated to aid in solving

the challenges in leveraging UAVs. Fourth, the previous two studies are integrated by investigating

the collaboration between a UAV and terrestrial RSUs in delivering large-size contents. A strategy

to fill up the UAV cache is also suggested via mulling contents over vehicles. Fifth, the complexity

of vehicular urban environments is addressed. In particular, the problem of disconnected areas in

vehicular environments due to the appearance of high-rise buildings and other obstacles is studied.

In details, a Reconfigurable Intelligent Surface (RIS) is exploited to provide indirect links between

the RSU and vehicles travelling through such areas. Our sixth and final contribution deals with

time-constrained Internet of Things (IoT) devices (IoTD) supporting ITS networks. In this regard,

a UAV is dispatched to collect their data timely and fully while being assisted by a RIS to improve

the wireless channel quality. In the end, this dissertation provides discussions that highlight open

research directions worth of further investigations.
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Chapter 1

Introduction

1.1 ITS Era in Future Wireless Networks

Future cellular network generations promise to foster revolutionary services, provide higher data

rates, allow massive connectivity, and exchange huge traffic volumes. In terms of services, three

leading-edge use case domains; enhanced mobile broadband (eMBB), ultra reliable low latency

communications (URLLC), and massive machine type communications (mMTC). Under these do-

mains exists a wide spectrum of fundamental services including, Extended Reality (XR), remote

healthcare, smart homes, industry automation, to name a few. Moreover, future cellular networks

involve various stakeholders and end-users, from fixed or slow moving entities such as smart phone

users and industrial Internet of Things (IIoT) devices to highly mobile users associated with vehic-

ular networks. Additionally, 5G and beyond technologies are forecast to enable a set of unprece-

dented services and applications related to the Intelligent Transportation Systems (ITS). ITS is a

combination of advanced technologies that aim to make driving experiences more efficient, safer,

and more convenient [1]. It is rapidly evolving to provide innovative services related to traffic

management, road safety, infotainment applications and smart highways. For example, fully au-

tonomous vehicles are expected to account for up to 66% of the passenger-kilometers traveled in

2040 [2, 3]. With reduced to non-existent human control of vehicles, the automotive industry is

transforming the vehicle interior to an entertainment space supporting various services.

In general, two classes of technologies are identified for ITS; safety- and non-safety related.
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Safety-related applications encompass traffic management, autonomous driving, cooperative ma-

neuvering, safety message dissemination, and many others. While non-safety applications include

a set of infotainment services that are consumed by on-road users such as 4K video streaming,

video games, social media browsing, etc. Indeed, the dominance of video-based services spurs a

paramount growth of traffic volume that places a significant load on the existing network infras-

tructure. Although, Road-Side Units (RSU) emerged to augment the capability of cellular networks

and typically operate on selected spectrum bands and have limited coverage, the major issue of the

lack of, or a highly congested, backhaul link is still unsolved [4, 5]. All in all, ITS applications and

services desire extra low latency, ultra high reliability, high speed, and massive connectivity in order

to satisfy the market demands. To answer these demands, vehicular communications have emerged

as an appealing technology to connect vehicles with each other via vehicle to vehicle (V2V) and

with remote entities via vehicle to infrastructure (V2I) [6].

To enable vehicular communications, Wireless Access in Vehicular Environments (WAVE) stan-

dard is used to specify the communication protocol and frequencies used in this kind of communi-

cations which is governed by dedicated short-range communications (DSRC). DSRC is a wireless

channel for medium range communications that allows one- and two-way transmissions and is com-

monly used for vehicular networks. Apart from DSRC, the community of 3GPP suggested cellular

vehicle to everything (C-V2X) to integrate vehicular communications with the cellular networks.

Vehicular communication is proposed as a proper medium to connect vehicles with their envi-

ronments that contain miscellaneous actors. As demonstrated in Fig. 1.1, vehicular environments

encompass many kinds of various entities where vehicles can communicate with, i.e., RSUs, base

stations (BS), etc. In addition, establishing a decent communication platform may require assistance

in case of vehicular networks where enormous numbers of objects appear such as buildings. Hence,

introducing reconfigurable intelligent surface (RIS) to vehicular networks is appealing to enhance

wireless communications. Given its ability to control and manipulate wireless environments, RIS

has emerged as a key enabler technology for the six-generation (6G) cellular networks. RIS is an

array composed of a number of passive low-cost elements, each of which has the ability to indepen-

dently tune the phase-shift of the incident radio waves. Furthermore, UAVs are also suggested to

aid vehicular networks owing to their mobility and flexibility which can significantly enhance the
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Figure 1.1: The vehicular network.

communications besides provisioning services for on-road users.

In this dissertation, we complement the literature by studying six scenarios where vehicular

communications and services are notably enhanced. In order to do that, we study a group of tech-

nologies whose development and practical applications have not been largely realized and are com-

monly known as emerging technologies (such as Internet of Vehicles, UAVs, RIS, Artificial Intel-

ligence, IoT, etc [7–9]). Dealing with such technologies imposes several challenges and concerns.

The rest of this chapter discusses the principle issues raised by vehicular networks while considering

various technologies’ employment. Then, we provide a list of the limitations in the literature that we

are going to cover. Finally, we briefly go over our contributions and provide a detailed organization

for this dissertation.

1.2 Vehicular Network Challenges

As opposed to stationary or slow moving nodes, vehicular networks suffer from highly chal-

lenging environment, changing topology, and challenging propagation environments.
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• Ever-changing topology and road conditions: Due to their high mobility, vehicles have

limited connection times with external entities including, nearby vehicles and surrounding

infrastructures. On the other hand, RSUs operated by WAVE protocols have limited coverage

area [10]. Therefore, it is in many instances impossible to complete the transmission pro-

cesses within one contact time especially if the wireless resources are not handled properly.

Establishing decent wireless communication links for vehicles depends highly on the trajec-

tory of vehicles, which is, in turn, specified by the vehicles variant speeds and directions. In

the context of highways, the quality of V2V is determined based on the contact time between

vehicles. Likewise, the ability of an infrastructure, i.e., RSU or UAV, to serve vehicles is in-

fluenced by the vehicles’ residence times and distance between the vehicles and the RSU. On

the other hand, the state of roads are inconstant, instead, there is peak and non-peak hours. For

example, early morning, employees and students go to work, thus, the road density is high. In

contrast, after midnight, the roads are almost empty. In addition, roads that lead to different

destinations, have different road conditions based on the traffic and the characteristics of that

region. In the context of vehicular networks, road density is one of the aspects that specifies

the number of demands for contents and services. A high road traffic reflects larger numbers

of requests and vise versa. Thus, a good planner for vehicular networks has to account for

various road conditions. It is worth-mentioning that the techniques used to improve vehicular

networks during dense road conditions are different from low- or mid-traffic events.

• Content popularity and caching: Today, the cloud offers enormous amounts of contents

that have different features, requirements, and request patterns. On the other hands, people

have different tastes towards contents which might be determined based on the culture, age,

gender, or even the location. For example, people living in a particular region have different

requests than people residing in other regions. In vehicular networks, this issue becomes much

more complicated due to the mobility nature of vehicles as vehicles travel to different and

perhaps unknown destinations. Thereby, determining content popularity profiles in vehicular

networks is exceptionally strenuous. To further compound the problem, a recent study by

Intel and Ovum reveals that video will account up to 90% of 5G traffic in 2028 [11]. Due to
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the growing interest in video-based services, whether gaming, movies, and other infotainment

applications, content providers strive to deliver high quality resolutions for premium customer

experience. Consequently, the next cellular generation will have to provide seamless service

for big content such as 4K videos to satisfy the market demands. One solution is to cache

video contents at the edge, however, owing to their massive sizes, such contents impose heavy

burdens on the edge cache units.

• Vehicular environment complexity: In vehicular networks, large objects such as trucks and

high-rise buildings often appear. Thereby, the Line-of-Sight (LoS) between the transmitters

and vehicles is not always clear. Sometimes, the connection link quality falls bellow the

intended threshold and the transmission processes become void. In this case, Reconfigurable

Intelligent Surfaces (RIS) are employed acting as passive relays between the transmitter and

destination. However, RIS deployment creates another problem owing to its hard phase-shift

configuration [12]. In addition, determining phase-shift configuration for mobile users, such

as vehicles, is very challenging.

• Emerging technologies and ITS integration: Setting up ITS in reality may encompass var-

ious kinds of unprecedented technologies that inherit their own challenges. For example,

UAVs are commonly used in the literature as a key enabling technology for vehicular net-

works owing to their mobility that can cope with the dynamic nature of such environment.

However, UAVs also suffer from a number of limitations, i.e., half-hour battery lifetime, that

are strongly influenced by UAV velocity and trajectory [13]. Additional issue that hinders

a UAV deployment for wireless communications is that the difficulty in maintaining strong

backhaul connections with the core network while persistently flying to catch up with vehi-

cles. Another enabling technology for ITS is IoT; IoT devices (IoTD) will be used largely in

ITS to enable various applications and services [14]. However, due to their restricted capabil-

ities, i.e., short battery lifetime and weak wireless transmissions, it is always challenging to

collect the data generated by such devices. IoTDs are battery powered, hence, they are more

inclined to save their power by alternating between sleep mode and active mode [15]. Where

the IoTDs can only communicate with external entities when they are active. In addition, the
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problem exacerbates when it comes to the sparsity distribution of these devices in urban areas

which makes the communication with such devices very difficult.

1.3 Limitations of Existing Works

Despite there have been significant efforts devoted to enhance wireless communications and

related services in vehicular environments, there are still several shortages in the literature. The

following summarizes the existing gaps that are going to be covered by this dissertation:

• Content providers with distinct QoE values: Providing digital contents is one of the most

demanded services not only for vehicular users but at the level of cellular networks in gen-

eral. For example, the demands for video contents constitutes 90% of the entire cellular

traffic volume. In the meantime, contents from different providers have various requirements.

Nowadays, some platforms such as YouTube and Facebook offer free video streaming, yet,

another class of content providers offer premium subscription plans for their costumers, i.e.,

Netflix and Amazon. Logically speaking, the customers of the latter type of content providers

urge for better QoE for their users; for example, low latency and seamless video streaming.

However, such problem has not been studied before in the context of vehicular networks.

• Limited backhaul availability: Deploying an infrastructure such as RSU or dispatching a

UAV does not necessarily improve content experiences unless coupled with a solution to fetch

the contents in the first place. RSUs and UAVs are deployed for various purposes including

for safety and non-safety related applications; sometimes with computational capabilities to

assist or enable vehicular networks. If the deployment happens to be done in an area where

there is no infrastructure available or the operator desires to minimize the costs, a link to the

backhaul may not be available. The RSU can then leverage the cached contents on the passing

by vehicles to populate its cache in a cost-effective manner. In such a way, the RSU will be

able to fill up its cache unit. However, that raises several challenges corresponding to the

dynamic popularity of contents, vehicle mobility, and the incentives paid to the cooperative

vehicles.
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• Massive contents and cooperative infrastructures: One of the key problematic issue in ve-

hicular networks is how large-size contents can be served to vehicles. As mentioned earlier,

vehicles have limited contact times with remote infrastructures. Consequently, large contents

often cannot be served via one infrastructure. Meanwhile, due to their high costs of deploy-

ment, it is quite undesirable to deploy a large number of RSUs on the roads. An alternate

solution is realised via UAVs. Where UAVs mounted with cache capabilities are able to col-

laborate with the RSU operator in order to work as a supplement base station that continues

serving vehicles after leaving the coverage area of the RSU. In this context, several concerns

may arise owing to the UAV mobility, cache management, and resource scheduling among

the RSU and the dispatched UAV.

• Dead urban zones: Although RSUs and UAVs are proposed as promising solutions to pro-

vide wide coverage for vehicles, there are still some areas in vehicular environments suffer

from lack of connectivity due to blocked communication links caused by high buildings, big

trucks, trees, and other objects that appear in urban areas. Thankfully, beyond 5G era presents

one of the promising technologies that can cope with such problem. Namely, RIS is capable of

manipulating wireless environments and eventually provides an indirect connection between

a source and destination. Hence, introducing RIS to vehicular networks while considering the

highly dynamic nature of the environment is a worthwhile topic to investigate.

• Scattered IoT devices to enable ITS: ITS depends on several emerging technologies, among

them, IoT stands as a strong candidate to support various purposes. Road condition monitor-

ing, traffic light status, parking lots, and autonomous driving, are all examples of applications

that incorporate IoT principles. Owing to their sparse distribution in urban areas, UAV has

been widely proposed to support IoT networks due to its flexibility to cope with such envi-

ronment. However, both UAV and IoT devices suffer from several limitations related to their

limited energy budget and short coverage. Meanwhile, the role that RIS can play in mitigating

such issues has not yet addressed.

In light of the aforementioned limitations of existing works, this dissertation proposes six main

contributions to bridge the respective gaps in realizing intelligent transportation systems.
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Figure 1.2: PhD thesis contributions overview.

1.4 Thesis Contributions

Our aim in this dissertation is to bridge the gap for the limitations presented in Section 1.3.

Consequently, we contribute six works in improving content delivery and facilitate wireless link

establishment in vehicular networks as depicted in Fig. 1.2. We consider various scenarios and

leverage several appealing technologies including terrestrial and aerial RSUs, and connected and

standalone infrastructures.
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1.4.1 Pre-fetching and V2V Communications for Enhancing Content Delivery

In traditional highway scenarios of vehicular networks where digital contents are served, several

RSUs are deployed alongside the road. Due to their limited range, there is a dark area between each

two adjacent RSUs. The RSU operators, intuitively, are interested in increasing their revenue by

providing improved services to the content providers’ customers. In the context of entertainment

services, there are several content providers having different requirements for their customers based

on the quality of their service. For example, nowadays, some platforms broadcast their content in

free-on-air mode while others accept only subscription plans for a predefined cost which varies from

one provider to another. Also, in order to provide seamless service and avoid stall events or delays,

the RSU operator prefetches enough chunks of contents that can be served within the vehicles

residence time. The content chunks buffered on the RSU will later be served to the vehicles. The

served chunks must be enough to playback until the vehicle reaches the next RSU.

Due to the limited period of time that a vehicle can stay within the RSU range, it is sometimes

impossible to serve enough content to playback without interruptions. Hence, the RSU operator

might also leverage V2V communication in a way that can relay some chunks through other vehi-

cles. Another important factor that the RSU operator can exploit is the similarity among contents

from similar content providers. For example, content providers might broadcast similar advertise-

ment to all their customers. Such practice allows the RSU to make use of the V2V communications

by serving these overlap chunks to only one vehicle while letting the the other ones receive these

parts from that vehicle. The aforementioned scenarios are formulated mathematically to increase

RSU operator revenue taking into account V2V and V2I scheduling as well as the values of con-

tents and overlap contents. Then, three algorithms are proposed to solve the formulated problems

with less complexity. The optimal solutions are also obtained via CPLEX for small instances of the

problems.

1.4.2 Enabling Content Delivery on Highway Segments with Disconnected RSUs

In typical wireless networks, back-hauling constitutes one of the main bottleneck in the network.

Every packet requested by a node has to be first fetched from the backhaul before it becomes ready
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to be transmitted to the end user/node. When it comes to 5G and beyond, it is highly forecast that

traffic volumes will exponentially increase because of the emergence of new technologies such as

4K streaming and Augmented Reality and Virtual Reality (AR/VR). This fact is more concerning in

vehicular networks where RSUs are linked up with weak backhauls which can become congested

during peak hours. Add to that, some cost-effective RSU are placed in remote and disconnected

area for safety purposes, i.e., message dissemination. In such scenario, the RSU will not be able to

provide content delivery services for vehicles unless a way to fetch contents is designed.

In contrary, in-vehicle caching (IV-Cache) is a another concept that allows vehicles to store and

share contents among them. That is, a vehicle is equipped with a memory that can save the contents

once they are downloaded. One can imagine that such contents can be harvested by the RSU once

the vehicles become within the range of the RSU. However, as the RSU has a finite cache unit, it

can only store a limited number of contents. Thus, it is better to select the most popular ones. Then,

the RSU can serve vehicles which request one of these cached contents. In order to address the

challenges of the problem laid out above, we resort to Deep Q Networks (DQN) to decide which

vehicle to fetch its content. Also, an efficient method is designed to schedule downlink to serve

vehicles.

1.4.3 Trajectory Planning and Cache Management of Aerial RSUs

An appealing upgrade for the system proposed in 1.4.2 can be realized through switching from

terrestrial to aerial RSU, for example UAV. UAVs have some advantages over fixed RSUs in ve-

hicular networks. Owing to their mobility and flexibility, UAVs can better cope with the dynamic

nature of vehicular environments. Namely, UAVs can catch up with vehicles in need for service and

expand the communication time until the service is fully provided. Additionally, UAVs can provide

a cost-effective solution; thanks to their deployability, UAVs can be dispatched only when needed,

for instance, during peak hours. In contrast, UAVs suffer from some limitations. First, UAVs have

constrained battery capacity, therefore, they can only operate for a limited time. Further, UAV mo-

bility incurs varying amounts of energy consumption based on the UAV velocity. Second, due to

their mobility, it is challenging to maintain a good fronthaul link.

Therefore, in our third contribution, we propose a UAV equipped with cache units and is being
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employed to serve vehicles on a highway. The objective is to maximize the energy efficiency of the

UAV by trying to maximize the content delivery service while optimizing the energy consumption.

This is done through an intelligent agent based on DRL that plans for the UAV trajectory. Namely,

proximal policy optimization (PPO) is leveraged to decide the UAV trajectory while two algorithms

have also been proposed to effectively tackle the problems of uplink and downlink between the UAV

and vehicles.

1.4.4 Cooperation between Terrestrial and Aerial RSUs for Optimized Content De-

livery

The demand for digital contents and advanced streaming services is experiencing unprecedented

growth lately [16–18]. Hence, one RSU might not be able to cope with the massive demands for

contents. Further, due to the short residence time of vehicles within the communication range of

one RSU, it is highly possible that the RSU can only serve contents in part. Therefore, building

upon our previous contributions, we further extend our system models by considering two types

of infrastructure; aerial RSU (mounted on a UAV) and terrestrial RSU. The RSU is assumed to

have a stable access to the cloud while the UAV has not. Hence, one way to enable the UAV to

participate in serving contents to vehicles is through relaying contents from the RSU to the UAV

via the vehicles themselves. This is done by push-carry-relay fashion where the RSU decides which

contents to relay to the UAV and then pushes them on some vehicles.

In such context, several challenges arise. The first problem is to find the trajectory of the UAV

to serve vehicles while fetching other content from the vehicles. The second problem is due to the

wireless resource scheduling of the RSU. The third problem is due to the wireless resource schedul-

ing of the UAV for the uplink and downlink. The fourth problem is due to the cache management of

the UAV storage unit to replace existing contents once the cache unit is used up. Owing to the com-

plexity of solving such problem, it is alternatively cast as an Markov decision process (MDP) whose

solution is obtained through a Dual-Task Reinforcement Learning method to handle simultaneously

RSU resource scheduling and UAV mobility.
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1.4.5 Reconfigurable intelligent surfaces to Enable Vehicular Communications in

Dark Zones

This contribution deals with more complicated scenario in vehicular networks where there is

no clear LoS between the vehicles and RSU. Technically, due to the outdoor environment where

high-rise buildings such as skyscraper appear, the transmitted signals will frequently experience

bold distortions. Fortunately, a new emerging 6G-related technology is proposed to cope with such

problem. Reconfigurable intelligent surfaces are a type of meta-surfaces that can receive and reflect

transmission signals from the transmitter to the destination. To this end, one use case can be imag-

ined in vehicular environment where the LoS between the RSU and one region/road is blocked by

a particular object, say a building. In this case, we propose RIS to be deployed and situated on a

building where it possesses LoS with the RSU and with the region of interest.

The objective of this work is to maximize the minimum average bit rate served to vehicles.

This problem is formulated as a mixed integer non-convex program which is difficult to be solved.

Also, there are some uncertainties owing to the dynamic nature of vehicular networks. Thereby,

we resort to alternative methods based on DRL to determine RSU wireless scheduling and Block

Coordinate Descent (BCD) to solve for the phase-shift matrix, i.e. passive beamforming, of the

RIS. The Markov Decision Process (MDP) is defined and the complexity of the solution approach

is discussed.

1.4.6 RIS-assisted Aerial RSU to Serve IoT Devices in Intelligent Transportation

Systems

In our last contribution, we investigate into the scenario of data collection for IoT networks

enabling ITS services. In details, a set of power-constrained IoT devices observe and generate time-

constrained data spontaneously. A UAV is dispatched to collect these data timely (within the active

periods of the IoT devices). However, due to some limitation related to the UAV small coverage area

and limited-powered IoT devices, it is not always sufficient to rely solely on the UAV to provide

high quality of service. Consequently, a RIS is proposed to improve the channel quality between

the UAV and IoT devices. In such scenario, several challenges appear that associate with the UAV
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trajectory, RIS phase-shift tuning, and IoT device scheduling. Hence, we cast the problem into two

sub-problems where the first one is solved via DRL to control UAV trajectory and schedule the IoT

devices. Then, RIS phase-shift is tackled based on BCD.

1.5 List of Publications

The research work of this dissertation produced 6 journal articles and one conference paper.
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1.5.2 Conference and Workshop Publications
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works." Proceedings of the 2nd ACM MobiCom Workshop on Drone Assisted Wireless Com-

munications for 5G and Beyond. 2020.

1.6 Organization of Thesis

The rest of this dissertation is organized as follows. In Chapter 2, we investigate a pricing

model that allows different vehicle customers belong to different content providers to have particular

QoE. As well as, the joint problem of resource allocation and content prefetching and scheduling

while maximizing the revenues of the RSU operator is studied. Chapter 3 examines the ability of

disconnected RSU to support content delivery services when equipped with cache capabilities. In

Chapter 4, we investigate the benefits of leveraging aerial RSU (UAV) instead of a terrestrial one.

Chapter 5 considers a scenario where stationary RSU collaborates with a UAV in serving contents

to vehicles. The benefits of this collaboration is studied and a content transfer method to the UAV

over vehicles is also proposed to facilitate this collaboration. Chapter 6 presents a system model

based on RIS to provide wireless connectivity for vehicles residing in a dark zone. In particular,

the communication link between the RSU and the vehicles is cut off due to the presence of high

buildings. Chapter 7 proposes a UAV assisted by RIS to improve the wireless communication

between the UAV and IoTDs enabling ITS. Here, the IoTDs are assumed to be alternating between

two modes namely, active mode and sleep mode, where they can only communicate during the first

mode. In the end, Chapter 8 concludes the dissertation and highlights a collection of open research

directions for future consideration.
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Chapter 2

Pre-fetching and V2V Communications

for Enhancing Content Delivery

2.1 Introduction

In this chapter, we focus on video-based infotainment services (Video on demand) and propose

optimized mechanisms for content prefetching and efficient management of Roadside Unit (RSU)

resources to maximize the profit of RSU operators while guaranteeing high quality of experience

with reduced costs. In a real case scenario, one can foresee that there are several RSUs providing in-

termittent coverage and vehicles arriving at different times and requesting contents from the cellular

base station where the content providers pay the cellular operator in order to store their contents at

the edge to minimize the latency. However, since cellular base stations might not be able to handle

all the demands due to limited resources and huge traffic, RSUs are utilized to offload a great deal

of requests partially or fully while maintaining a target quality level. Such a scenario expects RSUs

to cooperate in serving the vehicles since one RSU is unable to satisfy all the vehicles’ demands

at the same time. In other words, each RSU should prefetch and provide enough video content

for each vehicle to reach the next RSU without stall events and with less reliance on the cellular

networks. However, the RSU should know in advance what content it can deliver to which vehicle

such that it prefetches the desired content to avoid any backhaul delay. The management of this

operation is challenging since vehicles arrive at different times with different speeds, thus, having
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distinct residence periods. Moreover, vehicles request various kinds of video contents with differ-

ent requirements. Management of this operation has, nonetheless, to account for increasing RSU’s

profit.

To handle the stringent requirements imposed by video traffic, we leverage cooperation between

cellular and RSU networks as well as among vehicles. RSUs are provided with heads-up knowledge

on the needed content so they prefetch and have the content ready upon vehicles’ arrival. Moreover,

the system designates vehicle(s) to relay content via V2V to requesting vehicles while the latter

exit the RSU coverage. Many works have addressed content delivery in VANETs, however, to

the best of our knowledge, no research considered the profit earned by efficient management of

RSU resources to support content delivery services. Such scenario is expected to prevail in future

communication networks. This can be in the form of Data Distribution Service (DDS), where

the content providers pay to RSU operators in order to promote their contents and, subsequently,

improve Quality of Experience (QoE) to their customers. Example services include, media-service

(e.g. NetFlix), broadcasting and video sharing (e.g. YouTube), online music store (e.g. Amazon

Music), and advertising agency (e.g. Google Adsense).

In this contribution, we show how RSUs can make profit from data delivery on one hand, and

how content providers can improve their services on the other hand. Other work also explores

different factors which can influence the revenue such as the impact of V2V communication to

relay content between vehicles and how common content, e.g. advertisements, can improve the

overall revenue [19, 20]. The main contributions of this work are:

(1) Addressing the joint problem of resource allocation, content prefetching, and scheduling of

content delivery to vehicles while taking into account the set of vehicles within the RSU

coverage, and requirements of requested content.

(2) Leveraging V2V communications and common content to generate more revenues and.

(3) Designing a business model that motivates both the RSUs and vehicles to deliver content.

(4) Studying and analyzing the the performance of the proposed approach as compared to the

optimal solution and an alternative greedy approach.
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The Chapter is structured as follows. Section 2.2 presents the related works, while section 2.3

explains our system model. In Section 2.4, we formulate our problem mathematically. Section 2.5

presents three algorithms that can solve our problem with less complexity. The numerical results

and analysis are presented in section 2.6. Finally, section 2.7, summarizes the chapter.

2.2 Related Work

Data dissemination and content delivery have recently gained substantial momentum in the lit-

erature. We classify related research into three directions. First one deals with the gain and the

second group works on resource allocation based on multi-channel. While the last one focuses on

caching strategies to lower down backhaul utility which leads to high costs and delay and improve

the QoS. However, to the best of our knowledge, work that concentrates on content delivery from

the perspective of RSU revenue is very limited. [21] studies the utility of RSU to make profit by

delivering advertisements. They focus only on the advertisement part and from the viewpoint of

the advertisement agency (broker). In [22], RSUs compete against each other in order to attract

the customers and sell their contents to maximize their revenues. [23] suggests a cooperation and

competition among RSUs and parked vehicles to deliver contents. This competition is based on a

pricing model where each party in the vehicular ad-hoc network tries to maximize its profit. [24]

proposed a game model that helps to achieve adequate routing performance in vehicular networks by

motivating vehicles to cooperate in order to improve their reputation. The reputation value can also

be considered as a payment similarly to our system model. Yet, [25] also developed a distributed

game-theoretical framework to improve the performance of the networks by using incentive to mo-

tivate nodes to cooperate together. They divided the nodes into two categories, sellers and buyers,

where buyers leverage seller resources to improve their QoS. The work in this chapter is different

from the existing literature in several ways. First, it works on vehicular network to find the optimal

or sub-optimal resource allocation for RSU. Moreover, the proposed approach is broader and in the

sense that it offloads video traffic from the cellular network while prioritizing content by maximiz-

ing RSU profit. The pricing model in this work considers content with different prices as opposed

to existing literature that assumes a competition upon services by different plays such as the parked
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vehicles, RSUs, ...etc.

2.3 System Model

We consider a multi-lane highway segment with cellular coverage and having several RSUs

deployed alongside as depicted in Figure 2.1. Also, we assume each vehicle has a content request to

stream from a content provider where the content are stored at the edge server near the cellular base

station. We assume a collaborative environment between the cellular operator, the VANET network

and the content provider where the objective is to deliver seamless experience to customers.

Figure 2.1: System Model.

2.3.1 Communication Model

We assume that RSUs use the 802.11p to communicate with the vehicles and the vehicles also

use the 802.11p for V2V communication. The 802.11p uses the 5.9GHz radio spectrum and enables

a multi-rate transmission (6-27Mbps) which varies according to the distance between a vehicle and

the RSU, the channel quality, etc. In our work, we assume the coverage of the RSU is divided into

several areas (S0 to SN), each has its own transmit bit rate.

Furthermore, we assume a time slotted system, i.e., vehicle i consumes Ni slots for its sojourn

time in S0 while another vehicle with higher velocity will reside for fewer slots for the same dis-

tance. In addition, we assume there is a V2V communication between vehicles where the RSU
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might exploit some vehicles in its range to relay content to other vehicles. The V2V bitrate is as-

sumed to be constant and the proximity between the communicating vehicles must not exceed a

certain threshold, otherwise, the link is said to be impaired. We also assume that at a certain time

slot, a vehicle can communicate only with one other vehicle. The V2V communication should not

be established inside the RSU coverage due to wireless interference.

In cases when the RSU fails to fully satisfy vehicle i due to resource limitations, vehicle i

will request the rest of the needed content chunks from the cellular network. For example, if a

vehicle requests 20Mb of content, however, the present RSU was only able to deliver 16Mb, which

is not enough to play back until the end of the next RSU coverage. Thus, the rest, 4Mb, should

be downloaded from the cellular network. Indeed, if the RSU does not make wise decisions in

prefetching contents to serve passing by vehicles, the vehicles will fall back on the cellular, which

will deliver the remaining bits.

2.3.2 Pricing Model

Content providers offer RSU operators higher pay to deliver high cost content as an incentive to

prioritize content that generates more revenue. The pricing model we propose consists of two parts,

revenue of the RSU and that of the relay vehicles. The latter is paid in return to utilizing vehicles’

resources such as buffers and wireless connectivity to relay content to requesting vehicles via V2V.

The payments vehicles receive could be in the form of some credits or discount on using the RSU

service.

We assume each content provider pays the RSU operator a certain price for each data unit

delivered to the vehicles through RSUs or relay vehicles. This price depends on the content provider;

the more the content provider pays, the better QoS his customers have.

The RSU operator is assumed to scale the service prices in a number of groups, i.e., from 1 to 10

monetary unit for each specific amount of content delivered. In the previous example, if a content

provider decides to pay 10 units, then his content(s) will have the highest priority. However, if he

chooses to pay only 1 unit, then his customers will experience the lowest QoS among all others. The

price list is not fixed, it could be shaped in other ways to provide larger gaps between the different

groups of prices, for example, 1, 10, 20 ... etc. In this way, the priority difference between two
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consecutive groups is 10 units.

2.3.3 System Operations

We assume that at a specific time slot t, there is a number of vehicles that are located at different

positions within the coverage of a given RSU and each one has its own velocity, requested content,

and a buffer that may have enough content to play back until the end of the present RSU. Since there

is no caching, we assume each vehicle requests a unique content consisting of a number of bits. The

RSU operator periodically receives control information from the cellular network on the upcoming

vehicles in time to schedule its resources and prefetch the requested content. Moreover, the RSU

operator schedules the V2V communications of the current vehicles within the coverage but cannot

be rescheduled at a later time. Resources allocated to vehicles within the RSU’s coverage may be

rescheduled based on newly arriving vehicles and their requests.

The operator schedules the resources every epoch that is defined to be N
a

(N:number of time

slots,
a

:time slot length) by taking a snapshot of the current status, e.g., which vehicles are still

within the RSU’s range and those that have just arrived. Then, the operator gives each i ∈ Vn a

portion of the resources, where Vn is a set of vehicles taken into account in the nth epoch. Before i

arrives, the operator calculates how much resources the RSU will have during i’s residence time (Ti)

and what is the best scheduling for the resources since the transmission rate is variable according to

the distance from the RSU. The operator takes into account the value/price of the content.

Finally, since most of the content providers, nowadays, are broadcasting advertisements and

common data such as navigation menus, movie list, icons, ...etc. embedded or within their con-

tents, this data is considered as shared/overlap among all subscribers. Therefore, if one vehicle has

managed to download this shared data from the RSU, it can later share it with other vehicles that

belong to the same content provider. In this scenario, the RSU decides to either download all the

shared data to the vehicle or allow the vehicle to get the shared data partially or fully from another

vehicle. In case that neither the RSU nor other vehicles are able to transmit the shared data, the

vehicle should request it from the cellular network.
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2.4 Problem Definition and Mathematical Formulation

The main objective is to maximize the revenue of the RSU, therefore, we incrementally design

and formulate this mathematically. First, we take into account the RSU resources then we extend

our work by considering the V2V communication among vehicles. A further extension finalizes

the system model by considering the overlap/similarities. Overlap and similarities represent a small

potion of data that is shared among all the contents provided by one content provider.

In general, the problem can be defined as follows:

Definition 1. Given a set of content providers, vehicles and requested contents, find the optimal

resource allocation of RSU and V2V communication such that the RSU revenue is maximized. As-

sume a slotted time system with epochs of fixed number of time slots. Also, assume that RSU earns

a certain profit if it downloads one data unit for each content provider and a percentage of the gain

if the content is relayed over V2V. Also, assume there is overlap among the contents from the same

provider.

Table 2.1 lists the mathematical notations used in the problem formulation.

2.4.1 RSU Resource Scheduling

We divide the RSU coverage into several rate zones [S0 ... SN], each zone has a certain down-

load rate rs and it is calculated from:

rs = β log2(1+SNRs). (2.1)

Now, to find if vehicle i resides in s at t, we define:

Ms,t
i =


1 when sb ≤ (t−σi)

a
ϑi ≤ se,∀i, t,

0 otherwise,
(2.2)

where M is calculated offline and sb and se represent the boundaries of the region s.

To find the size of content downloaded to vehicle i from the RSU during its residence time, we
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Table 2.1: Table of notations for content delivery based on pricing model

Symbol Description
v(t) Set of Vehicles within the RSU’s coverage area at t

ϑi Velocity of vehicle i

S Ranges of transmission rate in RSU’s coverage area

d Distance between two adjacent RSUs

L Length of the coverage area of RSU

R Transmission rates of ranges in RSU’s coverage area

Rv Transmission rate of V2V

Ti Time slots when vehicle i is within RSU’s coverage area

Γi Playback rate of content requested by vehicle i

B Size of RSU buffer

V (n) Set of vehicles belong to the current epoch

V (n)
n Set of vehicles belong to the current epoch only (new arrivals)

V (n)
o Set of vehicles belong to the current epoch and the previous epoch(s) as well

Ai Size of content required for i

Ti Last time slot for vehicle i within the range on RSU

σi time slot when vehicle i enters epoch region

Ωi Downloaded content to vehicle i

n present epoch

Ci RSU benefit of one data unit from i

Q Gain ratio of RSU from V2V

Nt
ji 1: if i and j within the communication range of V2V 0:otherwise

Ph
i 1: if i requests h 0:otherwise

Eh Size of h

Variables
L(n)

i Size of content downloaded to i via RSU in epoch n

U (n)
i Size of non-overlapped content transmitted from i via V2V in epoch n

D(n)
i Size of non-overlapped content received by i via V2V in epoch n

g(n)
i Size of overlapped content transmitted from i via V2V in epoch n

f(n)
i Size of overlapped content received by i via V2V in epoch n

xt
i 1: if vehicle i is served at t 0: otherwise

yt
i j 1: if vehicle i transmits content to j at t 0: otherwise

zt
i j 1: if vehicle i transmits data belongs to h to j at t 0: otherwise

w(n)
i 1: if i will download its h from the RSU 0:otherwise
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define:

L(n)
i =

T (n)

∑
t=1

xt
i

i
{∑

s∈S
rsM

s,t
i },∀i ∈V (n), (2.3)

where
a

represents the length of one time slot.

Now, Eq(2.4) and Eq(2.5) guarantee that only one vehicle is served at each time slot.

∑
i∈V (n)

xt
i ≤ 1,∀t, (2.4)

xt
i ≤∑

s∈S
Ms,t

i ,∀i, t, (2.5)

Also, we take into consideration the constraints on the RSU buffer size as in Eq(2.6).

∑
i∈V (n)

(L(n)
i +Ω

(n)
i )≤ B. (2.6)

Finally, if we consider only the RSU resources, the objective becomes:

max ∑
i∈V (n)

LiCi. (2.7)

Where the system maximizes the download size of vehicles Li multiplied by its cost Ci.

2.4.2 V2V-assisted Content Delivery

Now, in order to address the impact of V2V, first we find the amount of data that each vehi-

cle downloads via V2V communication; at each time slot, yt
ji indicates whether vehicle i receives

Rv
a

amount of content from vehicle j or not (Eq(2.8)). Eq(2.8) computes how much each vehi-

cle downloads from other vehicle via V2V and outside RSU coverage where Rv is the data rate of

V2V communication per second. This amount is summed and computed for each time slot until the

vehicle enters the next RSU coverage.

D(n)
i =

T (n)

∑
t=1

∑
j∈V (n)

n : j 6=i

yt
jiRv

i
,∀i ∈V (n)

n . (2.8)
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Also, Eq(2.9) ensures both vehicle i and j must be within the V2V communication range at t

before vehicle j can transmit to vehicle i.

yt
ji ≤ Nt

ji,∀ j, i ∈V (n)
n ,∀t, (2.9)

where N is calculated offline based on the velocities of vehicles and their arrival times and it can

be one only if the two vehicles left the RSU coverage and the distance between them is less than or

equal a certain threshold (V2V communication range).

At time slot t, a vehicle can only serve one other vehicle and a vehicle can only receive from

one other vehicle as in Eq(2.10) and Eq(2.11).

∑
j∈V (n)

n : j 6=i

yt
ji ≤ 1,∀i ∈V (n)

n ,∀t. (2.10)

∑
i∈V (n)

n : j 6=i

yt
ji ≤ 1,∀ j ∈V (n)

n ,∀t. (2.11)

Also, a vehicle should not transmit and receive at the same time (Eq(2.12)).

∑
j∈V (n)

n : j 6=i

yt
ji + ∑

j∈V (n)
n : j 6=i

zt
i j ≤ 1,∀i ∈V (n)

n ,∀t. (2.12)

Next, for the total content size vehicle i transmits via V2V, we define:

U (n)
i =

T (n)

∑
t=1

∑
j∈V (n)

n : j 6=i

yt
i jRv

i
,∀i ∈V (n)

n . (2.13)

Eq(2.14) and Eq(2.15) guarantee that previously scheduled V2V transmissions are not changed

since that may lead to serious issues related to the chunk order.

U (n)
i =U (n−1)

i ,∀i ∈V (n)
o . (2.14)

D(n)
i = D(n−1)

i ,∀i ∈V (n)
o . (2.15)
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The total amount to be sent via V2V should be less than or equal to the total download as in

Eq(2.16).

L(n)
i +Ω

(n)
i ≥U (n)

i ,∀i ∈V (n). (2.16)

Moreover, Eq(2.17) states that a vehicle should not receive more than what it needs in the first

place.

L(n)
i +Ω

(n)
i −U (n)

i +D(n)
i ≤ Ai. (2.17)

After introducing V2V communication, the objective has changed to consider the new elements;

Di and Ui:

max ∑
i∈V (n)

n

DiCiQ+ ∑
i∈V (n)

(Li−Ui)Ci, (2.18)

where Q represents the percentage of profit that RSU earns if V2V used and Li−Ui deducts the

amount of data that vehicle i transmit via V2V communication from the RSU profit.

2.4.3 Partial Content Overlap

For the overlaps, first, we have to calculate the overlap size will be received (f(n)
i ) or sent (g(n)

i )

for each vehicle as depicted in Eq(2.19) and Eq(2.20).

f(n)
i =

T (n)

∑
t=1

∑
j∈V (n)

n : j 6=i

zt
jiRv

i
,∀i ∈V (n)

n . (2.19)

g(n)
i =

T (n)

∑
t=1

∑
j∈V (n)

n : j 6=i

zt
i jRv

i
,∀i ∈V (n)

n . (2.20)

Eq(2.21) and Eq(2.22) guarantee that vehicles which transmit have all the overlap part while the

receiver ones do not have it.

zt
i j ≤ 1−w(n)

j ,∀ j, i ∈V (n)
n ,∀t. (2.21)
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zt
i j ≤ w(n)

i ,∀ j, i ∈V (n)
n ,∀t. (2.22)

Also, both the transmitter and receiver of the overlap part must have requested the same over-

lapped content in the first place as in Eq(2.23).

zt
i j ≤

H

∑
h=1

Ph
i Ph

j ,∀ j, i ∈V (n)
n ,∀t. (2.23)

Since y and z deal with V2V communication, z should maintain similar constrains that ensure its

work such as the proximity between vehicles (Eq(2.24)), unicast transmission (Eq(2.25), Eq(2.26)

and Eq(2.27)).

zt
ji ≤ Nt

ji,∀ j, i ∈V (n)
n ,∀t. (2.24)

∑
j∈V (n)

n : j 6=i

zt
ji ≤ 1,∀i ∈V (n)

n ,∀t. (2.25)

∑
i∈V (n)

n : j 6=i

zt
ji ≤ 1,∀ j ∈V (n)

n ,∀t. (2.26)

∑
j∈V (n)

n : j 6=i

zt
ji + ∑

j∈V (n)
n : j 6=i

zt
i j ≤ 1,∀i ∈V (n)

n ,∀t. (2.27)

In addition, when a vehicle receives content related to the overlap part, this content should not

be larger than the overlap part size as in Eq(2.28).

f(n)
i ≤

H

∑
h=1

Ph
i Eh,∀i ∈V (n)

n . (2.28)

Eq(2.29), Eq(2.30) and Eq(2.31) make sure that no reschedule is allowed for V2V communica-

tion.

g(n)
i =g(n−1)

i ,∀i ∈V (n)
o . (2.29)
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f(n)
i =f(n−1)

i ,∀i ∈V (n)
o . (2.30)

w(n)
i = w(n−1)

i ,∀i ∈V (n)
o . (2.31)

Also, since we assume that V2V can establish only one connection at time, therefore, y and z

should not equal 1 at the same time slot (Eq(2.32) and Eq(2.33)).

∑
j∈V (n)

n

zt
i j ≤ 1− yt

i j,∀i ∈V (n)
n ,∀t. (2.32)

∑
j∈V (n)

n

zt
ji ≤ 1− yt

ji,∀i ∈V (n)
n ,∀t. (2.33)

The total amount to be sent via V2V plus the overlap part, if downloaded through the RSU,

should be less than or equal to the total download that a vehicle receive from the RSU as in Eq(2.34).

L(n)
i +Ω

(n)
i ≥U (n)

i +w(n)
i

H

∑
h=1

Ph
i Eh,∀i ∈V (n). (2.34)

Moreover, a vehicle should not receive more than what it needs in the first place and that includes

RSU and V2V communication (Eq(2.35)).

L(n)
i +Ω

(n)
i −U (n)

i +D(n)
i ≤ Ai− (1−wi)

H

∑
h=1

Ph
i Eh,∀i ∈V (n), (2.35)

where Ωi is the content that has be already downloaded to vehicle i in the previous epoch(s).

Now, with the overlap parts, we can rewrite our objective as follows:

max ∑
i∈V (n)

n

(D(n)
i +f(n)

i )CiQ+ ∑
i∈V (n)

(L(n)
i −U (n)

i )Ci, (2.36)

where Q is the gain ratio of the RSU from V2V (e.g 90%). g(n)
i is not deducted from the gain since

both the transmitter and receiver need it.
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Algorithm 1: Heuristic - RSU Resource Scheduling

1 Inputs: Ci,M
s,t
i ,R,Ai.

2 for t in T do
3 for i in V (n)

n do
4 xt

i = 1 where {Ci ∗∑s∈S rsM
s,t
i } gives the largest profit among V (n) and

a
∗∑s∈S rs ∗Ms,t

i ≤ Ai−Ω
(n)
i .

2.5 Alternative Solution

Our system model is difficult to solve as it contains binary variables and resource scheduling

[26]. Therefore, we propose alternative heuristic solutions which can be solved in polynomial time.

The solution is based on a greedy approach where the objective is to maximize the profit at each

time slot individually taking into account other constraints. Meanwhile, for further analysis, we

develop three heuristic algorithms; first one is for scheduling the resources of the RSU only, second

one considers V2V communication as well, and third one takes into account the overlaps.

Algorithm 1 maximizes the profit at each time slot by selecting the vehicle which gives the

highest profit among a set of vehicles within the range of the RSU. The profit is calculated by mul-

tiplying the rate of the zone the vehicle resides in by the price of the requested content. Algorithm

2 has two stages, first one maximizes the profit from RSU as in Algorithm 1, however, if a vehicle

already was scheduled for V2V and not yet satisfied, then it should keep the previous schedule as

shown in line 3 and 4. Next, through the V2V, the algorithm checks which two vehicles are within

the communication range of V2V and the difference between their prices is the largest. Also, at the

same time, the high value content vehicle still needs more content while the other vehicle downloads

enough data to transmit. If the algorithm finds two vehicles that satisfy the conditions above, then

set yt
i, j = 1 to enable the transmission through V2V. Finally, Algorithm 3 combines the other two

algorithms, it consists of two stages as in Algorithm 2, however, the only difference is that in the

second stages it checks which one gives the highest profit, the overlap or regular V2V transmission,

since two V2V communications at the same time is not allowed.
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Algorithm 2: Heuristic - V2V-assisted Content Delivery

1 Inputs: Ci,M
s,t
i ,R,Ai,Mt

i, j,Ui,Rv
2 for t in T do
3 for i in V (n) do
4 if i ∈V (n)

n and xt(n−1)
i = 1 and Li <Ui then

5 xt
i = 1

6 else
7 xt

i = 1 where {Ci ∗∑s∈S rsM
s,t
i } gives the largest profit among V (n)

n and
a
∗∑s∈S rs ∗Ms,t

i ≤ Ai−Ω
(n)
i .

8 for t in T do
9 for i in V (n)

n do
10 for j in V (n)

n do
11 if Nt

i, j = 1 then
12 set yt

i, j = 1 if the difference between their profit (C j−Ci) is the biggest
among all other vehicles and Li ≥Ui and L j +D j ≤ A j

2.6 Numerical Results and Analysis

A four-lane one way highway segment is used in the simulation and the setup parameters are

shown in table 2.2. The system model was solved by IBM ILOG CPLEX, while the heuristic

algorithms were coded using Python. In addition, the free-flow traffic model is implemented by

Python and it is adopted from [27,28] based on field observations. The relationship between vehicle

speed and traffic density can be expressed as v = v f (1−ρ/ρ jam) whereas v is the mean speed, ρ

is the traffic density, i.e., vehicle(s) per kilo meters, ρ jam is the jam density (occurs when the speed

of vehicle is 0 m/s), and v f denotes the free flow speed (occurs when the density of the road is 0

veh/m). Moreover, the arrival rate of vehicles is calculated by λ = ρv. Also, the vehicle subscribers

randomly request contents and we consider the total revenue and download generated per one RSU.

To perform a comprehensive analysis and highlight the gains achieved with enabling V2V data

exchange and allowing overlaps among delivered content, we analyze our proposed optimal solution

of the following three methods:-

• RSU-only: consider video delivery through RSUs and evaluate the resulting revenue.

• RSU-V2V: consider video delivery through RSUs and V2V data exchange and evaluate the
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Algorithm 3: Heuristic - Partial Content Overlap

1 Inputs: Ci,M
s,t
i ,R,Ai,Mt

i, j,Ui,Rv
2 for t in T do
3 for i in V (n) do
4 if i ∈V (n)

n and xt(n−1)
i = 1 and Li <Ui +g(n)

i then
5 xt

i = 1

6 else
7 xt

i = 1 where {Ci ∗∑s∈S rsM
s,t
i } gives the largest profit among V (n)

n and
a
∗∑s∈S rs ∗Ms,t

i ≤ Ai−Ω
(n)
i .

8 for t in T do
9 for i in V (n)

n do
10 for j in V (n)

n do
11 if Nt

i, j = 1 then
12 set yt

i, j = 1 if the difference between their profit (C j−Ci) is the biggest and
(C j−Ci <C j(1+Q))

13 Or set zt
i, j = 1 if wi = 1 and w j = 0 and f(n)

j +D j +L j ≤ Ai

resulting revenue of RSUs and relay vehicles respectively.

• RSU-V2V-overlap: consider video delivery through RSUs and V2V data exchange in the

existence of overlaps among delivered content. Evaluate the resulting revenue of RSUs and

relay vehicles respectively.

In addition to the three previously listed methods, we consider a method that maximizes the total

amount of video delivery by the RSUs regardless of their prices. Max Download can be of great

help to understand the amount of traffic that our proposed system model offloads from the cellular.

The results generated below are the average of 5 iterations.

2.6.1 Model Evaluation

We start our evaluation by determining the total amount of delivered content and the resulting

RSU revenue generated using RSU-only method as compared to Max Download method. As shown

in Figure 2.2 (a) and (b), although RSU-only downloads less content than Max Download, the

difference does not exceed 8% in the worst case and it decreases when the traffic density of the road
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Table 2.2: Simulation parameters in prefetching improving content delivery

Parameter Value
d 1500 meter

Number of content providers 4

Required content size [60-300] Mb

Rv 15 Mbps

V2V communication range 60 meters

Number of rate zones 5

RSU coverage 250 meter

RSU rates 11 to 27 Mbps

Q 0.9
a

1 second

vi [10-50] meter/second

Eh [15-30] Mb

Ci [0.1-8] per Mb

increases. In contrast, the difference between the two methods in terms of revenue is significant

increases further to reach around 30% for a density equals 25 veh/km. The proposed approach can

then generate notable revenues through selective offloading from the cellular network.

Next, we highlight the gains achieved through leveraging V2V data exchange and the existence

of overlap content. Figure 2.3 demonstrates the gain/revenue of both RSU-V2V and RSU-V2V-

overlap with respect to RSU-only. In this figure, the y-axis represents how much revenue/gain

RSU-V2V and RSU-V2V-overlap are able to achieve over RSU-only in percentage where, as pre-

viously mentioned, RSU-only does not consider V2V communications. The figure also shows the

comparison using two distances. 1Km and 1.5Km here indicate the distance between two adjacent

RSUs coverage area. Obviously, RSU-V2V-overlap outperforms the other two methods and the

relay vehicles can almost double the gain through transmitting the overlapped data via V2V com-

munication. Moreover, the revenue produced by RSU-V2V-overlap, as compared to the other two

methods, increases dramatically while the density of the road is increasing because there are more

chances that more vehicles requesting the same shared data will meet after leaving the RSU cover-

age. In addition, from the same figure, one can see that the distances between the adjacent RSUs can
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Figure 2.2: Comparison between Maximizing download and Maximizing profit in terms of (a) the
total amount of data downloaded (b) the total revenue earned.
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Figure 2.3: Comparison between Overlap-V2V-RSU and V2V-RSU versus RSU only

improve the performance of RSU-V2V-overlap and RSU-V2V over RSU since there will be more

time slots for V2V communication as this distance extends which means that vehicles interested

in same overlaps have higher chances to become connected with each other after leaving the RSU

coverage.

2.6.2 Effect of Buffer Capacity

In this work, since the connection time between the vehicle and the RSU is short and WAVE

protocol bandwidth is limited, then the wireless resource is the bottleneck in the network. However,

as the V2X technologies advance and, also, other communication protocols can be used in the near

future such as mmWAVE, C-V2X which provide much higher data rate, therefore, the buffer/cache

capacity may face congestion events due to the high traffic volume needs to prefetech. The same

scenario is also applicable to the backhaul, however, a dedicated fiber optic connection can always

be faster than the wireless resources.

To study the impact of having low and high buffer capacity, we carried out an experiment show-

ing this effects. As it is demonstrated in Fig. 2.4, we present two sets of results; one, Fig. 2.4 (a),

for the total revenue achieved with different buffer sizes. Fig. 2.4 (b) illustrates how much can be

downloaded using various buffer sizes for the three methods we propose in this contribution.

First of all, it is obvious that as the buffer size increases, the total revenue and download amount

increase as well. The is due the limitation enforced by the buffer capacity which limits the ability
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to serve contents to vehicles.

In 2.4 (a), it can be observed that optimal RSU and optimal V2V have almost similar revenue.

However, as the buffer capacity increases, the gap between the two methods becomes clearer. When

the buffer size increases, the system will have more choices to manage the resources for vehicles

which means there are more chances to leverage V2V communication.

The other insight we can see in figures 2.4 (a) and (b) is that optimal overlap always outperforms

the other two methods. That is because the system model can always exploit the existence of

overlaps/similarities to download more contents through V2V communication. In average optimal

overlap downloads 12% more data over the other two methods. Also, optimal overlap achieves

around 4% revenue more than than optimal V2V where the latter does not consider overlaps.

2.6.3 Pricing Model Evaluation

In this section, we evaluate our pricing model by assigning different prices for a specific content

provider and observe the impact on the QoS his customers have. Figure 2.5 depicts the results of four

experiments where we fix the prices of three content providers while vary the prices of one content

provider. The assigned prices for content providers 2, 3 and 4 are 0.5, 1 and 3 units respectively.

For the first content provider we give different prices, 0.1, 0.7, 2 and 5. The satisfaction level of

one content provider indicates the percentage of served content from that provider with respect to

the total amount of requested content and its value is constrained between 0 and 1, where 0 means

non of its customers received any service while 1 indicates that all its customers were fully served.

In other words, it is the ratio of the amount served to the amount requested. It can be observed

that the quality of service is impacted by two things, first is the price value and second is the

values offered by other content providers. The price effectively represents a weight the prioritizes

the content of a specific content provider among others. When the price of CP1 is the lowest, its

customers get the worst satisfaction rate. However, when a higher price is paid to serve its content,

the satisfaction level of its customers reached higher than any of the other three content providers.

A similar behavior applies when the content provider charges different rates for its content causing

customers that request the more expensive content to be better served than other customers.
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(a) Total revenue of RSU

(b) Total download for vehicles

Figure 2.4: Comparison between the three methods, RSU-Only, V2V, and Overlap versus different
buffer sizes

Figure 2.5: Impact of price on the QoS
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Figure 2.6: Impact of having different
a

values

2.6.4 Effect of Time Slot Size

The size of time slot is of high importance as it determines the complexity of the solution. As
a

decreases, there are more time slots that need to schedule. Thereby, a small
a

gives better control

over the resource since we can better allocate the resources among the vehicles.

As we increase the time slot size, we degrade the efficiency. Indeed, as the system allocates

resources for bigger time slots, it will have less freedom to manage the resources for different

vehicle requirements. For example, if a vehicle needs only 0.1 sec to download the rest of content

while the RSU schedules for 1 sec time slots, then the system will not be able to serve this vehicle,

otherwise, it will waste 0.9 sec. Imagine now if the time slot size is 0.1 sec, then the same vehicle

can receive service for 0.1 sec and the rest goes to other vehicles.

On the other size, a small time slot size has higher complexity than large one. When
a

is small,

then more time slots are available which means than the RSU needs to schedule for more time slots.

Therefore, since lowering the size of time slots gives better solution and increase the complexity

at the same time,
a

becomes an essential parameter that highly impacts the performance of the

system.

Fig. 2.6 illustrates the aforementioned effect of time slot size. It is clear in the figure that as we

enlarge
a

value, the solutions of the three methods deteriorate dramatically. A time slot of size 0.5

sec can produce 25% gain over time slot of size 8 sec. In contrast, when
a

= 8 sec, the complexity

of the system is 16 times less than the one of 0.5 sec.
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Another interesting insight in the same figure that showing the significance of using small time

slot size is the difference between the revenue of RSU-V2V-overlap and RSU-V2V. As it can be

seen, when
a

is small as 0.5 sec, RSU-V2V-overlap outperforms the other methods. However, as
a

becomes bigger and bigger, RSU-V2V starts performing better than RSU-V2V-overlap. RSU-V2V-

overlap deals with overlaps and according to the mathematical formulation Eq(2.21) and Eq(2.22),

it can either download the entire overlap part or does not download any. Therefore, as the time slot

size increases, the two constraints of Eq(2.21) and Eq(2.22) will limit the solution space for RSU-

V2V-overlap, while RSU-V2V does not have such constraints. Therefore, RSU-V2V can achieve

better solutions.

2.6.5 Algorithms Evaluation

Now, in order to evaluate the performance of the algorithms we develop (1,2, and 3), Figure 2.7

demonstrates the gap between the optimal solutions and our algorithms in terms of download and

revenue. Figure 2.7 (a) and (b) compares Algorithm 1 with the optimal solution considering RSU

only. The results show that Algorithm 1 is able to provide solutions that are almost the same as that

produced form the optimal.

Similarly, Figure 2.7 (c) and (d) compare Algorithm 2 with the optimal model taking into ac-

count V2V. Although the difference two solutions is now more obvious, however, Algorithm 2 is

still able to produce solid solutions with gap less than 5%.

Finally, Figure 2.7 (e) and (f) compare Algorithm 3 with the optimal model that considers all

the features including the overlaps. Again, Algorithm 3’s performance proves that our algorithm

is capable of producing solutions very close to the optimal. Even though the gap between the two

solution becomes bigger as long the density of the road increases, the difference is still acceptable

(within realistic densities) and it does not go larger than 10% in terms of revenue which is our

main objective. The reason behind the gap between the optimal solution and the heuristic solution

is as more vehicles come, there are more chances that vehicles having overlaps will meet. While

the optimal solution is able to exploit every possible chance to make revenue, our heuristic method

cannot. However, the results proves that with our method, it is possible to come with a very close

revenue at much lower complexity.
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(a) Total download (RSU-only) (b) Total revenue (RSU-only)

(c) Total download (RSU-V2V) (d) Total revenue (RSU-V2V)

(e) Total download (RSU-V2V-overlap) (f) Total revenue (RSU-V2V-overlap)

Figure 2.7: Comparison between the three methods, RSU-only (Optimal RSU), RSU-V2V (Optimal
V2V), and RSU-V2V-overlap (Optimal Overlap) versus different buffer sizes
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From Figure 2.7, we can conclude that within polynomial time we were able to achieve enough

proximity between the algorithm and the optimal values and with much less complexity.

2.7 Summary

In this chapter, we present a pricing and resource allocation model for RSU and V2V communi-

cation to encourage cooperation with the cellular operators in order to provide better video services.

We formulated the problem by dividing it into several phases to analyze the impact of various fac-

tors. Furthermore, we provide alternative solutions based on heuristic algorithms and we proved

that they are capable of producing impressive results with difference less than 5% in normal road

circumstances.
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Chapter 3

Enabling Content Delivery on Highway

Segments with Disconnected RSUs

3.1 Introduction

3.1.1 Motivation

In Chapter 2, we discussed the benefit of applying pre-fetching principles in order to maximize

content delivery quality. In this chapter, we further improve RSU content delivery services by

considering caching techniques. As known, communication devices usually come with caching

capability that is proven to have a great positive impact on reducing the costs and improving the

quality of service (QoS) [29–32]. The content cached in smart vehicles for running in-vehicle

infotainment services can be leveraged by RSUs to serve other passing by vehicles. This is done

by having the RSU populate its own cache through fetching contents stored in vehicles crossing its

coverage range. Later, these contents are delivered to other interested vehicles. Such a technique,

however, comes with several limitations that challenge its foreseen benefits.

Existing literature that addresses caching in general typically focuses on predicting the content

popularity and then caching the most popular content. Some works such as [2, 3, 33] address the

issue of time-variant popularity by resorting to intelligent techniques such as reinforcement learn-

ing. Despite the efficiency of their methods, profiling content popularity has several shortcomings
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when it comes to caching systems. Indeed, the stream of released content never stops and many

contents may lose their popularity within a very short period of time. Moreover, by the time the

content popularity profile is determined, the content may have already lost its popularity and be-

come inactive. Therefore, in this work, we tend to avoid computing the popularity of contents at the

RSU and, instead, rely on other features (i.e. size) that facilitate finding suitable caching policies

that maximize the serving rate of incoming vehicles.

3.1.2 Challenges

To improve the QoE perceived by in-vehicle passengers, traffic congestion on backhaul links has

to be alleviated through several means. One of which constitutes storing contents closer to the edge

[11]. This is done by utilizing caching techniques that can selectively identify and cache desired

contents at the edge to serve incoming vehicle requests. However, due to the limited resources in

terms of cache size, only a small portion of the whole content library can be cached at one time.

Additionally, the stream of contents generation is continues; that is, new contents are released each

time and from different sources. Such contents may have different sizes and features. Meanwhile,

vehicles may visit several RSUs along their route and download contents. Some of the visited RSUs

may have Internet connectivity while others are disconnected or suffer from limited connectivity. In

this work, we aim at actively utilizing the latter RSUs in improving the QoS by intelligently fetching

proper contents from existing vehicles within their range. Eventually, these RSUs maximize the

service rate for other arriving vehicles interested in similar contents. It is worth mentioning that

vehicles that cannot be served by a given RSU may download their requested content from the

cellular network. This downloaded content can then be cached by other RSUs along their routes.

Additional challenges are related to inciting vehicles to contribute their content as well as their

wireless resources to populate RSU caches. Finally, in practice, contents come in large sizes, while

the wireless radio resources are limited and vehicles’ residence vary within the range of the RSU.

Hence, in order to fetch a content or serve a content to a vehicle, one or a few time slots may not be

sufficient to complete the process.
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3.1.3 Contribution

In this chapter, we present a system that mitigates the problem of either a lack of or congested

backhaul in a vehicular environment. To the best of our knowledge, it is the first work that addresses

this issue by actively engaging disconnected RSUs in delivering content of dynamic libraries to

upcoming vehicles. The following summarizes our contributions:

• We propose a system model that makes use of the cached contents on passing vehicles in

order to fill up the RSU cache such that the RSU can later serve the requests arising form

vehicles without need to access the backhaul link. The system also takes into account some

kind of incentive that must be paid for the cooperating vehicles in order to motivate them to

continue the collaboration with the RSU operators.

• Then, we model the proposed system taking into account the limited wireless resources, for-

mulate the problem mathematically, and show why it is challenging to solve using traditional

optimization techniques.

• Next, to solve the aforementioned problem, we resort to intelligent techniques, namely Deep

Reinforcement learning besides a crafted algorithm for the downlink resource scheduling.

We define our system as Markov Decision Process (MDP) and specify its items (state, action,

reward). Then, we use a DQN-learning and design a heuristic algorithm to solve the caching

problem. Most importantly, our DQN-based solution does not stick with certain contents, but

rather, it learns the best policies which optimize the performance based on the utility of the

cached contents and their size.

3.1.4 Related Work

Data dissemination and content delivery in VANETs are gaining substantial momentum in the

literature owing to the great benefit they can supply to the vehicle passengers and cellular network

operators too. [34] suggested cooperative caching among a set of RSUs by replicating contents. The

incentive behind this work is that RSUs located at the same roads are highly correlated during the

service of the traffic flow. [35] studied the stochastic delay of wireless channels alongside cache
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based system in vehicular networks. Therefore, a stochastic network calculus is used to evaluate

the stochastic playback delay performance of vehicular video content delivery with cache-enabled

RSUs. In [36], authors proposed a caching system to deliver large contents such as videos to fast

moving vehicles. They addressed the efficient content delivery problems in VANET by caching

popular files in the RSUs with large storage capacity. [37] solves the problem where multiple con-

tent providers (CPs) aim to improve the data dissemination of their own contents by utilizing the

storage of RSUs. They used multi-object auction-based solution to get a sub-optimal solution for the

competition among the CPs. [33] proposed a Q-learning based caching strategy where the system

predicts the the path trajectory of vehicles and based on that it decides which RSUs should cache

the contents in order to reduce the latency. [38] suggested cooperation between RUSs and vehicles

and a model determines where to obtain the content. A cross entroy based dynamic caching strategy

is used to facilitate caching at the edge. [39] tried to predict the mobility of vehicles so they can

prefetch the content at the edge to reduce latency. Their work is based on multi-hierarchical cache

nodes where content are stored both on the RSUs and in the regional servers. Next, [40] worked on

vehicular content centric networks (VCCNs) where vechicles broadcast their requests. Their work

focused on caching popular content at a set of vehicle which are going to visit "hot region" and

stay for a long time. Hot regions are the spots on the map which their traffic densities are higher

than other regions. [3] proposed three levels of caching, namely; BS, TV White Space (TVWS),

and RSU. Now, since these three levels of communication technologies provide different commu-

nication range, they suggested that big files should be cached at the BS and small ones might be

stored at the RSU. Their objective is to maximize the average download rates for each transmission

unit. Furthermore, the authors of [41] also worked on caching in vehicular networks. However, they

considered fixed library of contents where the popularity can be easily figured out, while this is not

realistic. Thus, in our work we consider different set of contents at each service time. Second, their

work is based on different types of contents which may demand stringent latency such as navigation

maps, while our work is for infotainment services that needs to offload large traffic volume.

Reinforcement learning has been used widely for solving caching problems. In [42], deep Q

network has been employed to solve for interference alignment, an emerging interference manage-

ment technique, in cache enabled system. The authors of [43] used Q-learning to solve for cache
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replacement policies in order to optimize the costs of BS transmission costs. [44] proposed deep

reinforcement learning as a framework to enhance and improve cache hit rate performance while

it requires no information regarding the popularity of contents. In [45], federated learning is com-

bined with reinforcement learning to optimize caching strategies for a collection of edge nodes that

can exchange their learning parameters. The authors of [46] proposed liquid state machine (LSM)

to solve for the joint problem of caching and resource allocation for unmanned aerial vehicle net-

works. The users’ content request distribution is predicted by LSM beside enabling UAVs to better

manage their wireless resources to serve users with stable queues. In addition, this work took into

account two types of transmission; licensed and unlicensed bands.

To the best of our knowledge, our work in this chapter differs from the literature in that it is the

first work which dynamically exploits common interest among vehicles to store popular contents on

RSU cache. Moreover, it is the first work that solves for caching using deep reinforcement learning

without assuming fixed library of contents. Instead, it builds a table to compute the utility of the

cached and available contents in order to decide for better caching strategies.

3.2 System Model

We consider a road segment as shown in Fig. 3.1 where an RSU is deployed. The RSU has

a cache capacity of size K and coverage area of size G. We also assume that vehicles arrive at a

certain rate leading to a given traffic density ρ . In addition, without loss of generality, we assume

each vehicle has one content cached and requests another content once it enters the coverage area

of the RSU. All the contents are stored on a server that is not accessible by the RSU.

3.2.1 Content and Popularity Model

We consider a library of contents containing M items/contents located somewhere in the cloud

with some of its contents cached at vehicles. To bring our model to reality, we assume contents have

different sizes. Let Sm denote the size of m’th content. Also, let Xi and Yi denote the content cached

and content requested by the i’th vehicle respectively.

Vehicles request contents with different frequencies, e.g., content A might receive 10 requests
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Figure 3.1: System Model

while content B receives only 1 request during the same period. The popularity of contents are

modeled using Zipf distribution where the skewness parameter characterizing the distribution.

On the other hand, the lists of available contents inside the vehicles’ caches also follow Zipf

distribution. This is justified by the following; during their sojourns, vehicles pass through several

regions at different times and days. Each region and time has its own characteristics [47, 48], thus,

have various content popularities. For example, early morning, people tend to watch news while

social media contents are preferred during evening times [49]. The content popularity and caching

content inside the transport networks in [49] is modeled as Zipf-like distribution. Additionally, some

on-vehicle caching mechanism might leverage the fact that using similar distribution can improve

the performance of the network [50].

The library of contents changes from time to time. In reality, each day there are new contents

generated while the existing contents start to experience much lower hit rates after some time.

Therefore, in this work, we assume each service time has different library of contents. Here, we

assume that the RSU operator does not know Zipf skewness parameter beforehand and it experiences

new library of contents at each service time.
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3.2.2 Traffic Model

In this work, we assume a free-flow model similar to [51] where the relationship between ve-

locity and traffic can be expressed as v = v f (1− ρ/ρ jam) where v f is the expected velocity, ρ is

the traffic density (i.e., vehicle(s) per kilo meters) and ρ jam is the jam density (jam density is ex-

treme traffic density when traffic flow stops completely). Moreover, the arrival rate of vehicles is

calculated by λ = ρv. The vehicle arrivals follow a Poisson distribution and velocities are generated

using truncated normal distribution.

3.2.3 Caching Strategy

As mentioned above, the popularity of requested and cached contents are varying with time.

Where each one is modeled using different transition and Zipf values. Therefore, the RSU should

decide for each vehicle whether it takes the content cached on the vehicle or not. If the RSU decides

to take a content from a vehicle, then it has to pay a certain cost in return depending on the size

of content. Practically, the RSU may need to compensate the sender vehicle for leveraging its

resources such as the cache and transmission equipment. Moreover, the RSU needs to offer some

incentive for the vehicles to motivate them to cooperate with the RSU in order to facilitate content

delivery [52]. Therefore, let w ∈ (0−∞] represent the ratio of uploading one data unit of content to

the RSU (uplink) with respect to serving one data unit of content to vehicles (downlink).

The size of RSU cache is limited and relatively small in comparison with the library size, hence,

it can be filled up quickly. We should note that the size of the library of contents is much bigger than

the cache size (i.e., K � ∑
M
m (Zm)). Thereby, when the RSU cache becomes full and new content

cannot fit in the cache, a replacement technique must be used.

3.2.4 Communication Model

We assume a time division multiplexing access as the transmission technology. We further

assume separate spectrum for up and downlink. The RSU uses downlink to serve the vehicles and

uplink to fetch the contents from the vehicles. In order to avoid collisions, downlink resources are

allocated for vehicles and since our goal is to maximize served data amounts then allocating the
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resources can be done in any order. For the uplink, however, we prevent simultaneous transmissions

to avoid any possible collisions to occur. In other words, the RSU cannot decide to fetch a content

from a vehicle if it is presently fetching another contents since there might not be sufficient resources

to fetch both contents completely. We further assume constant data rate for up and downlink similar

to [53].

3.2.5 Operation Phase

We consider a time slotted system where at each time slot there might be a vehicle arriving or

already in the RSU coverage area. The RSU should decide once the vehicle arrives if RSU wants to

fetch the cached content on the vehicle. If it decides to fetch the content, then the RSU receives it

when enough time slots are allocated. Without loss of generality, we assume the RSU is capable to

download the vehicle cached content during its sojourn time. Worth noting, this system is based on

the arrival events of vehicles rather than time slots because actions are only required when a vehicle

enters the RSU coverage area.

At the beginning, we assume the RSU cache is empty, therefore, the RSU cannot serve any

requests. However, as the time advances, it starts to fill up its cache. It is worth-mentioning that

several vehicles might arrive at the same time. In that case, the RSU decides for each vehicle

individually. Moreover, the RSU cache capacity is limited, so when it is filled up, the RSU should

start to replace contents that have reduced popularity with more demanded content at that time.

Since the popularity changes, then the RSU should update its cache regularly.

3.3 Mathematical Formulation

To mathematically formulate the joint problem of content caching and resource allocation: For

I vehicles that will pass through the coverage area of the RSU, let Y denote the request for contents

and X denote the available contents. Table 3.1 lists all the mathematical notations used in our

formulation.

Before starting with the mathematical formulation, we need to emphasize that this system is

workable as long as the content sizes do not exceed a certain value. The largest size of content that
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Table 3.1: Mathematical Notations in caching enabled content delivery

Parameters

T time horizon composed of several time slots {0,1, .., t, ..,T}
I set of vehicles passing during time T {0,1, .., i, .., I}

Urate Uplink data rate

Drate Downlink data rate

X i
m Vehicle i has content m

Y i
m Vehicle i requests content m

Sm Size of content m

M Set of contents m = {0,1, ...,M−1}
Vstart beginning of RSU coverage

Vend end of RSU coverage

Pt
i Position of vehicle i at time t

C Capacity of RSU cache

Variables

ki 1: Vehicle i is served, 0: otherwise

ut
i,m 1: if time slot t is allocated for vehicle i to fetch content m

ht
m 1: remove content m at time t

et
m 1: content m is cached at time t
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is applicable in this system is equal to the maximum amount that can be fetched from one vehicle

during its contact time with the RSU, Eq (3.1).

Sm ≤UrateΠ,∀m ∈M, (3.1)

where Π is the least sojourn time.

In this system, a vehicle may hold several contents cached while it is in need for only one content

during its contact with the RSU. Therefore, ∑
M
m=0 X i

m > 0,∀i ∈ I and ∑
M
m=0Y i

m = 1,∀i ∈ I. The RSU

can decide to take one or several contents from the same vehicle as long as enough resources are

allocated. In addition, the RSU can also decide not to fetch any contents.

In this work, as our interest lies mainly in finding caching decisions rather than wireless resource

allocation, therefore, for simplicity, we consider fixed data rates where Urate and Drate represent the

up and downlink data rates, We further assume a particular range for the RSU wireless coverage

where vehicles can only communicate with the RSU within that range [51].

Now, let us define Γ as a parameter which indicates whether a vehicle is within the range of the

RSU or not.

Γ
t
i =


1 Vstart ≤ Pt

i ≤Vend ,∀i ∈ I, t ∈ T ,

0 otherwise.

(3.2)

This parameter is of special importance to ensure no transmission is allowed beyond the cover-

age range of the RSU as we will show later in this section.

Next, we present the set of constraints for our problem.

3.3.1 Cache Management

The RSU cannot cache a content unless it is fully fetched from a vehicle. That is, enough time

slots have been allocated to the vehicle and the content to be uploaded. The number of time slots

depends on the size of the content and uplink rate. Indeed, it is the resultant of dividing the size of

content by the uplink rate.

Then, let us define e to indicate whether a content is cached or not at each time slot, where:

49



et
m =


1 Content m is available in the RSU cache at time t, ∀t ∈ T ,

0 otherwise.
(3.3)

Before we show how indicator e is computed, let us introduce variable h, where h denotes

whether a content is removed or not at a particular time slot. Thus, when ht
m = 1, et+1

m = 0,∀t ∈

T,m ∈M. Intuitively, a content can only be removed if it is already cached, Eq(3.4).

ht
m ≤ et

m,∀m ∈M, t ∈ T. (3.4)

Now, in order to find the value of indicator e, we need to find how many times a content has

been fetched minus how many times it was removed. The content is considered cached if and only

if the number of fetches is greater than that of deletions as in Eq (3.5).

et
m =

I

∑
i=0

1{⌈ Sm

Urate

⌉
≤∑

t
l=0 ul

i,m

}− t

∑
l=0

hl
m,∀m ∈M, t ∈ T, (3.5)

where 1 is an indicator which equals 1 when its condition holds and 0 otherwise. The condition of

1 tells whether enough time slots have been already allocated to fetch the content.

Throughout the operation horizon, the RSU cache may become full owing to its limited storage

capacity. Moreover, due to the dynamicty of popularity of contents, the RSU may need to maintain

its cache by updating its contents from time to time. Hence, when the RSU decides to cache a new

content, it should remove a content or several ones in order to free space for the recently fetched

one to fit in. Eq (3.6) prevents caching amounts of contents larger than the RSU cache capacity and,

in addition, it allows removing content(s) to make room for other ones.

M

∑
m=0

(Smet
m−Smht

m)≤C,∀t ∈ T. (3.6)
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3.3.2 Resource Allocation

First, in the uplink, to avoid collisions, a time slot should only be allocated for no more than one

vehicle. Moreover, we assume only one content can be transmitted during a time slot.

I

∑
i=0

M

∑
m=0

ut
i,m ≤ 1,∀t ∈ T. (3.7)

Furthermore, the RSU can only communicate with vehicles within its range.

ut
i,m ≤ Γ

t
i,∀t ∈ T, i ∈ I,m ∈M. (3.8)

In addition, a vehicle can solely send contents which are available on its cache.

ut
i,m ≤ X i

m,∀t ∈ T, i ∈ I,m ∈M. (3.9)

Similar to the uplink, a vehicle can be served if enough time slots are allocated to the downlink

and the requested content was cached in the RSU.

ki =


1
⌈ Sm

Drate

⌉
≤ ∑

T
t=0 bt

i,∀i ∈ I,Y i
m = 1,

0 otherwise,

(3.10)

where b is a decision variable for the downlink resources and can become 1 only if the content is

cached and the requester vehicle is within the range of the RSU at that time slot as in Eq (3.11).

bt
i ≤

M

∑
m=0

Y i
met

mΓ
t
i,∀i ∈ I, t ∈ T. (3.11)

Again, to avoid collisions, at each time slot, only one downlink transmission is allowed.

I

∑
i=0

bt
i ≤ 1,∀t ∈ T. (3.12)
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3.3.3 Objective

Finally, the objective of this work is to maximize the served amount taking into consideration

the incentive paid for cooperative vehicles.

max
ut

i,m,b
t
i ,ht

m

I

∑
i=0

M

∑
m=0

(kiY i
mSm−

T

∑
t=0

wut
i,mUrate),

s.t. Eq(3.1),Eq(3.4),Eq(3.7),(3.8),(3.9),(3.11),(3.12),

(3.13)

where w is a weight for the cost of fetching contents from vehicles. In other words, it is the value

measuring the loss of taking one data unit from a vehicle to the RSU with respect to the gain of

serving one data unit to a vehicle. The rationale behind proposing w is to prevent frequent fetches

which could cause instability in the system and waste resources and time. Also, offering rewards to

the vehicles motivates them to cooperate with the RSU operator. The first part of Eq(3.13) represents

the amount served through the RSU cache where ki denotes whether a vehicle is served or not. The

second component, ∑
T
t=0 wut

i,mUrate, represents the cost paid in return to fetching contents from

vehicles. Here, the decision variable ui,m determines how many time slots are scheduled for vehicle

i to fetch from. Moreover, ui,m is multiplied by Urate where the latter is the average uplink data rate.

Then, the outcome of this operation represents the amount fetched from vehicle i. If this amount is

no less than the size of the content intended to be fetched, we can assume that the content is safely

received and cached on the RSU as is Eq(3.5). In return, the RSU pays a cost corresponding to the

total amount fetched; in this case, it is the content size.

Looking at the elements of the problem, one can see that there are a number of factors that have

influence on the caching decisions. For example, content size and content popularity. These two

factors highly influence the caching decisions. Popular Large-size contents generate more revenue

once served, yet, take more space on the cache and have lessen probabilities of being served or

fetched within the limited residual time of vehicles. Meanwhile, less popular contents with smaller

sizes may provide spaces in the cache unit to store more contents. Besides, small-size contents can

be served and fetched easier. Furthermore, in practice, it is not logical to assume the values of Y

and X matrices are known a priori. First, the massive amount of content generated every minute and

computing the popularity for each one would add an enormous overhead on the network. Second,

52



in highly dynamic environment such as roads, estimating content popularity for a long run may not

be prudent. Thus, we put forth a deep reinforcement learning model, which is kind of approximated

RL, to manage the trade off between hit rate and fetching costs [54].

It is worth noting that DRL convergence speed depends highly on the complexity of the envi-

ronment and that includes mainly state space and action space. Here, in order to avoid having large

action space which includes all the sup-spaces, uplink, downlink and cache replacement, we will

use DQN only to solve for the uplink decisions. Uplink actions are the key in our system since

it decides which content will be cached. Consequently, the two other actions will be solved via

alternative methods which are laid out in the following section.

3.4 Deep Q Networks

Generally speaking, Q-learning does not account for the transition probabilities from one state

to another. Rather, this method calculates the expected reward of each state-action combination:

Q : S×A→ R. (3.14)

Deep Q Networks (DQN), on the other hand, is used to overcome the limitations of Q-learning

[55]. Many applications such as video games, autonomous vehicles, UAVs, and so forth, evolve

thousands of states and actions in reality. Therefore, curse of dimensionality is a serious problem

with many RL use cases. Thus, neural networks come in handy where deep learning is used to

approximate the Q function (a function computes the expected reward of taking an action in a par-

ticular state) for indefinite number of states and actions [56]. The Q function is approximated by

deep neural network (DNN) where the objective of DNN is to deal with the increased number of

states and reduce the amount of time required for exploration. DQN has been proposed in the litera-

ture to solve some problems related to vehicular networks due to its ability to deal with uncertainties

and dynamic nature of such environment [57–59]. Fig. 3.2 shows how DQN can be implemented

to help in reducing complexity in our system. Here, each action has a Q-value (the expected return

of an action in a given state) and the next action is determined by the maximum Q-value.
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Figure 3.2: Deep Q Networks Structure

3.4.1 DQN Implementation

The Markov decision process is represented by a tuple (S,A,γ,P,R) where [60]:

• S is a set of states, also known as state space, that includes all the possible states st ∈ S at any

time slot t.

• A is a set of possible actions, also known as action space, that agent can take at each time slot

t which is denoted by at .

• γ is the discount factor satisfying 0 ≤ γ < 1 and it specifies how much the decision maker

cares about rewards in the distant future relative to those in the immediate future.

• P is the transition probability of being in next state given the current state and current action

Pr(st+1 | st ,at),∀st+1,st ∈ S,at ∈ A.

• R : S×A→ R is a reward function where rt = r(st ,at ,st+1) denotes the single-step reward of

the system for transitioning from state st to state st+1 due to action at .

Given the above mentioned MDP, we explain the action, state, and reward as follows:

• State S: The state at time slot t, st ∈ S, is defined as:

st = (Xt ,Yt ,Savailable
t ,Srequested

t ,Pt ,Ecached
t ,Scached

t ), (3.15)

where Xt is a vector that contains the indices of available contents on vehicles present at time

slot t. Yt is a vector that contains the indices of requested contents by vehicles present at time
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slot t. Savailable
t is a vector that contains the size of available contents on vehicles present at

time slot t. Srequested
t is a vector that contains the size of requested contents by vehicles present

at time slot t. Ecached
t is a vector that contains the indices of the cached contents at time slot t.

Scached
t is a vector that contains the size of cached contents on the RSU at time slot t.

• Action A: The action taken at time slot t, at ∈ A, is an integer number refers to the vehicle

index (i ∈ It , where It is a set of vehicles available within the RSU coverage at time slot t)

which is scheduled to upload its content to the RSU at time slot t1.

• Reward: The immediate reward, rt , is the sum of positive rewards (for each data unit delivered

from the cache) and negative rewards w (for each data unit the RSU fetches from the coming

vehicles) where w denotes the proportion of cost of fetching content from vehicles versus the

reward of serving contents to vehicles.

The ultimate objective of the agent is to maximize the total revenue which is defined as the

total amount served minus the total cost spent to fetch contents from vehicles as demonstrated in

Eq (3.13). As shown in Algorithm 4, the agent first initializes target and value networks where the

latter parameters are copied to the target network every Z (a hyperparameter) steps to overcome the

problem of instability due to continuous changing with iterations. Next, the algorithm iterates until

the system converges. At each iteration, a new service period is generated with different values (set

of vehicles and contents). Each iteration consists of three steps, first the agent takes action according

to the ε probability, either explores or exploits. We use ε-greedy as exploration method where an

exploration parameter determines how much to explore versus how much to exploit. The value of

ε decreases with the iterations until it reaches its minimum. Thus, we define ξ as a decay and ρ as

minimum value for the ε .

After executing the action, the algorithm/agent observes the new state and the reward incurred

by the action. The reward is computed based on two parts; Λt which is the amount served at that

time slot (based on Algorithm 5) and ϒt which indicates the amount fetched at the same time slot t

multiplied by the weighting factor w. Meanwhile, if the cache is full and a new content is received,

1In order to avoid having varying number of actions among the time slots, we assume the number of actions is fixed
and it is not less than the maximum number of available vehicles
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Algorithm 4: Deep Q Networks for Content Fetching and Resource Allocation

1 Inputs: w, T , M, ξ , ρ , Learning Rate, Discount Factor.
2 Outputs: Cache and Resource Scheduling Policy.
3 Initialize replay memory D of C capacity.
4 Initialize value network with random weights θ .
5 Copy value network θ to create the target network θ ′.
6 for M iterations: Generate new service period do
7 for t = 0 to T do
8 Set ε = ε.ξ .
9 Set ε = max(ρ,ε).

10 With probability ε select an action at .
11 Or select at = maxaQ∗(st ,a;θ).
12 Execute action at .
13 if Content m is fully fetched then
14 Set et+1

m = 1.

15 if RSU cache is full then
16 Delete least used item(s).

17 Run Algorithm 5 and collect immediate downlink reward (Λt).
18 Calculate rt .
19 Observe next state st+1.
20 Store transition (st ,at ,rt ,st+1).
21 Set st+1 = st .
22 Sample random minibatch of transition (st ,at ,rt ,st+1) from D.
23 Perform a gradient descent.
24 θ ′← θ .

the RSU removes the least used content(s) from the cache. Next, the agent gathers and stores the

new sample in the buffer. Then, the agent takes random sample from the minibatch to update the

value and target network. The loss function (mean squared error between the target and predicted

value) is formulated and, then, a gradient descent is performed to minimize it and update the value

network. Finally, every Z steps, the target network is updated by the trained value network.

Algorithm 5 is used to allocate resources for the downlink. This algorithm selects vehicle Π

which should be not fully served, within the range of the RSU, and requested an available/cached

content. Then, it commits to serve vehicle Π until fullness or departure. In case vehicle Π is fully

served, the algorithm chooses another one which satisfies the conditions above. The advantage of
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Algorithm 5 is that it does not allow sparse resource allocation which may lead to improper service

experiences. That is, the RSU serves several vehicles partially with no revenue instead of focusing

on some vehicles which can commit to serve them in whole and make a good revenue.

Algorithm 5: Commitment-based content service

1 Inputs: It : set of vehicles within RSU range at t.
2 Outputs: Π =−1,Λt = 0
3 if Π =−1 or Π /∈ It or et

Y Π
m
= 0 then

4 for each i ∈ It do
5 if et

Y i
m
= 1 and i not fully served then

6 Set Π = i

7 if Π≥ 0 then
8 Increase vehicle Π service by Drate

9 if Content is fully served to Π then
10 Calculate downlink reward Λt

11 Set Π =−1

3.4.2 Complexity Analysis

This section discusses the complexity of DQN. The total computational complexity for DNN is

O(Kd1 ∑
G−1
g=1 dgdg+1) where K is the size of the input layer. G is the number of layers and dg denotes

the number of units in g’th layer. In addition, the complexity of training one minibatch is O(MT D)

where M, T , and D represent number of iterations, steps, and forward/backward propagation, re-

spectively [61]. The complexity of Algorithm 5 is O(A) where A denotes the maximum number of

vehicles present simultaneously in one time slot inside the range of the RSU.

3.5 Simulation and Numerical Results

3.5.1 Simulation Setup

We perform our simulation using Python and TensorFlow v2. The DQN model consists of two

layers each one has 200 nodes. Moreover, we resort to Adam optimizer which is designed to train

deep neural networks. In order to demonstrate the effectiveness of our DQN-proposed solution,

we compare it with two baseline methods namely, random actions (Random) and minimize content
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size (MIN). Noteworthy, there are no other works in the literature that study fetching and caching

contents on a disconnected-RSU.

• Random: selects random actions at each time slot.

• MIN: minimizes the size of downloaded contents. For example, if the available content is

smaller than the largest cached content, then the action is to take the content.

The RSU cache size is limited, hence, after it becomes full, the RSU should replace contents for

any further fetching. The replacement technique we use in this work is Least Recently Used (LRU).

In this technique, whenever the cache needs to free space, it starts removing the least recently

used contents and stops when a sufficient space is made for the new content to be cached. The

simulation is built and performed on a virtual environment, while the results are collected for 15

hours of operating time. For the content popularity, as it is aforementioned, we use Zipf distribution

to generate popularities. Regarding the Zipf parameters, we set the skew parameter to 1.3 for the

requests distribution and 1.1 for the available contents distribution. The rest of the experiment

parameters are presented in Table 3.2.

Table 3.2: Simulation parameters in caching enabled content delivery

Parameter Value

Service period 15h

Number of Contents 50

Size of Contents [200-600] Mb

Urate 100 Mbps

Drate 100 Mbps

Size of RSU cache 1000 Mb

RSU Coverage Range 500 m

Density [6-14] Veh/Km

w [0.4-0.8]

Learning Rate 0.01

Discount Factor 0.99

Exploration [0.01-0.9]
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3.5.2 Numerical Evaluation

We start our study showing that our DQN model converges as presented in Fig. 3.3. It can

be observed that at the very first iterations, the reward was very low. However, after iterating for

several times, the reward starts increasing sharply until it saturates after almost 1000 iterations. It

can be seen that after convergence, the cumulative reward keeps some fluctuations. This is due to the

exploration which is essential to continue indefinitely in order to catch recently released contents.

Furthermore, the set of vehicles changes each service time.

Figure 3.3: The learning curve of DQN (smoothed)

Next, the proposed system model is simulated in order to examine three essential aspects related

to our DQN-based solution using various scenarios. For each scenario, we collect three performance

metrics, namely the total revenue, service rate, and total cost, respectively. The total revenue is the

total amount of contents served by the RSU cache minus the cost spent to fetch the new content as

depicted in (3.13). In this section, we investigate the effect of different road densities, the impact of

having larger RSU cache size, and finally the effect of having different weights (w). All presented

results show the 95% confidence interval.

Effect of Road Density

We examine the revenue attained by our DQN-based model in comparison to the other three

methods, by varying the traffic densities. As demonstrated in Fig. 3.4 (a) where the comparison is

done using several densities, it can be seen that DQN outperforms the other methods in terms of
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(a) Total revenue of RSU (b) Total service rate of RSU

(c) Total cost of RSU

Figure 3.4: Comparison among the techniques using different road densities

the achieved profit. In contrast, RANDOM generates the worst reward because RANDOM does not

realise the impact of assigning the resources for different vehicles within short periods which leads

to the dispersion of resources. On the other hand, MIN results in lowest service rate with less than

10% service rate. This is because MIN selects small content and these contents may be unpopular.

In contrast, we can also note that MIN consumes much less cost than others since the size of content

it fetches is small.

At very low density (6 veh/km) the proposed method achieves around 200 NU (NU stands

for normalized unit) which was the only positive revenue achieved at this density. As the density

increases, the DQN model still outperforms the other methods achieving around 800 NU at 8 veh/km

and almost plateaus after 10 veh/km. This is due to the constrained wireless and cache resources. It

can also be observed that MIN is able to increase its revenue when the density of the road increases

while the other methods do not experience a remarkable enhancement in their performance. As
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aforementioned, MIN can fit smaller contents and hence, when the number of vehicles increases,

MIN can serve more vehicles.

Fig. 3.4 (b) and 3.4 (c) provide more details about how much each method is able to serve

incoming requests and the total cost spent to fetch and fill the RSU cache. Fig. 3.4 (b) shows

the service rate; we define the service rate as the amount of served requests over the total amount

of requests. Recall that better service rate does not necessarily mean better overall performance.

The overall performance depends on two factors namely, service rate and cost. Therefore, a good

solution has to take care of this trade-off and try to balance for better solutions. Back to Fig. 3.4 (b),

one can observe that MIN achieves less service rate than others since it picks contents of smaller size

regardless of their popularity. One can also notice that at low density of 6 veh/km, DQN achieves

low service rate. Indeed, as the number of vehicles is small, DQN will have less information to train

on, thus, it may not find a good solution. Worth noting, in this experiment, we train our model for

up to 4000 iterations for all cases. So, you can notice that as the density increases, the service rate

increases as well alongside the total rewards.

Fig. 3.4 (c) demonstrates that the total cost of RANDOM increases sharply as the road density

increases. It starts at around 2000 NU and end up exceeding 4000 NU. The RANDOM approach

wastes cost on incomplete processes due to random fetching. MIN, however, spends less cost with

around 700 NU as it fetches only small contents. Meanwhile, the cost spent by DQN exhibits an

increasing behavior with respect to the road density but it remains much more cost-effective as

compared to RANDOM.

Effect of Cost

Now, we study the impact of different weight values for w. As stated before, w means how

much the RSU operator invests in each data unit downloaded from vehicles versus how much it

gains from each data unit served to vehicles. Therefore, in this section, we study our system model

using different values for w ranging from 0.2 to 0.6 with a density of 12 veh/Km. As demonstrated

in Fig. 3.5 (a), the revenue generally decreases as w increases since the RSU operator spends higher

cost to fetch a content from passing vehicles as w increases. The other interesting point is that

DQN was able to generate more revenue even at low cost such as 0.2. Indeed, with low w, RSU
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(a) Total revenue of RSU (b) Total service rate of RSU

(c) Total cost of RSU

Figure 3.5: Comparison among the techniques using different w

can download contents at low prices, meaning, there is no high penalty for fetching more contents

which is the major part that harms the total revenue of RANDOM. This being said, DQN can better

exploit the limited cache capacity. MIN, on the other hand, does not exhibit considerable change as

w increases and this is due to the fact that it fetches small-size contents that do not consume high

cost.

A quick look at Fig. 3.5 (b), one can see that all the methods, except MIN, provide similar

service rate which is something we already justified before. Fig. 3.5 (c) shows that DQN comes in

the second place with cost spent up to 3000 NU when w = 0.6. That means, unlike MIN, DQN is

aware of the trade-off between the service rate and cost; hence, it slightly increases its costs in order

to maintain good service rate.
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(a) Total revenue of RSU (b) Total service rate of RSU

(c) Total cost of RSU

Figure 3.6: Comparison among the techniques using different cache capacities
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Effect of Cache Size

The capacity of RSU cache has a great impact on the system, it affects the service rate as well

as cost at the same time. Larger cache can store more contents to be used to serve vehicles, while it

reduces the amount of spent cost as less updates will be needed. In this experiment, to facilitate the

simulation, we use a road density of 12 veh/km. In Fig. 3.6 (a), one can observe that at low cache

capacity, the difference among the four methods is more obvious. Having content of different sizes,

small cache size may accommodate up to one content and, hence, the different methods exhibit

high differences among them depending on the cached content. However, as the cache capacity

increases, more contents will fit at the same time. Therefore, not only the service rate increases, but

also the performance of all methods seems to enhance as all of them use LRU to replace contents

with a remarkable advantage to DQN. Hence, we can picture that the most requested contents will

stay in the cache and only the least popular contents will be replaced when the size of the cache is

large enough. It can also be observed that after the cache size exceeds 1100 Mb, the change on the

reward becomes less obvious due to the characteristics of Zipf distribution.

Next, in Fig. 3.6 (b), it can be observed that RANDOM and DQN give almost similar service

rates that increase as the cache capacity grows bigger. They all start below 20% while end up around

30% when the cache size reaches 1300 Mb. DQN seems to know how to use this extra space offered

when the cache capacity increases as it improves the service rate while maintaining almost similar

costs with a slight increase.

The takeaway from the results shown above is that our solution approach based on DRL prin-

ciples can strike a balance between the cache hit ratio and cost spent to fetch contents. In details,

our proposed solution attains the highest revenue while keeping the service rates and penalties at

acceptable levels in most cases.

3.6 Summary

In this chapter, we presented a system design that maximizes the total revenue for RSU operators

without accessing backhaul links. Instead, the RSU makes use of the contents already cached by

vehicles to populate the RSU cache. We mathematically formulated the problem of RSU caching
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and demonstrated its challenges in dynamic environments with varying contents. Consequently,

we leveraged deep reinforcement learning to propose and develop a caching and resource allocation

strategy at the RSUs that can adapt to a highly changing environment. The proposed solution utilizes

a DQN-learning model that caches based on the utility of contents in a certain period (service period)

and it is demonstrated through extensive simulations to outperform other alternative methods.
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Chapter 4

Trajectory Planning and Cache

Management of Aerial RSUs

4.1 Introduction

4.1.1 Preliminaries and Motivation

Building upon our previous contributions in Chapter 3, we extend that work considering more

advanced aerial RSU mounted on an unmanned aerial vehicle (UAV). Owing to their agility and

flexibility, UAVs can be deployed to assist a VANET infrastructure by providing vehicles’ users

with the same services (e.g., infotainment, road safety and assistance, content delivery, etc.) or could

help vehicles when the infrastructure is not available [62]. As opposed to Base Stations (BS) and

Road Side-Units (RSU), a UAV is mobile and, therefore, can follow moving objects, i.e. vehicles.

A UAV can plan its trajectory to get closer to those vehicles that need to establish connections.

The network operator dispatches a UAV to help serving end users in vehicles demanding con-

tents from the network/content provider. We can assume each UAV is augmented with a cache that

enables it to store, carry and deliver contents to the vehicles. Caching is shown to have good impact

on the network by reducing the access on the backhaul [63–65] through averting repeated fetching

for similar contents and remarkably lowering latency down.

Now, unlike User Equipment (UEs) such as smartphones which are limited by size and capacity,
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vehicles have sufficient energy and they can carry large components, i.e. cache and processing units.

It is anticipated that new smart vehicles, especially those which are equipped with OnBoard Units

(OBUs), would have caching capabilities. Hence, when contents are downloaded, it is preferred to

keep them in their caches for a little while to prevent redundant requests. In fact, the prevailing

trend of vehicle users is to visit several zones in their journey. Sometimes, they send requests for

diverse contents from different entities, e.g., BS, RSU, Access Points, and others. A UAV can make

profit out of this by harvesting these contents from the passing by vehicles in order to serve other

vehicles which demand similar contents.

Serving contents to non-stationary entities through cache-augmented UAVs given the uncertain-

ties of the traffic and requests remains unaddressed [66]. The existing works have either overlooked

caching techniques to offload traffic or the energy consumption incurred by the UAVs movement.

Therefore, in this chapter, we aim at addressing this problem and solve it efficiently leveraging

recently developed machine learning tools.

4.1.2 Challenges

In contrast to stationary entities such as terrestrial base stations, a UAV can control its trajectory.

However, this mobility comes with a set of pros and cons. On one hand, the UAV is able to move

closer to the desired vehicles to create stronger connection with higher data rates. On the other

hand, as the UAV moves towards a vehicle, it may become distant from others. Hence, the pre-

scheduled transmission process may falter if the process is still incomplete. Besides, the UAV

consumes different amounts of energy based on its velocity. Thereby, the UAV should plan its

trajectory taking into account the mobility of vehicles and the total energy consumption in order

to avoid fast battery depletion and wasting its resources. Hence, finding a good UAV trajectory

to deliver contents to existing and newly arriving vehicles is not a straightforward problem. To

further complicate this problem, caching decisions can be difficult to make since the cache capacity

is limited while the library of contents is relatively large, and the UAV is completely oblivious to

vehicles’ arrivals and their demands for contents.
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4.1.3 Contribution

In this work, we design a platform to assist content delivery in vehicular networks. We can

summarize our novelties and contributions as follows:

• We present a UAV caching based system where the UAV helps vehicle users to download

their desired contents while it makes decisions to fetch contents for its own cache from the

same vehicles. The proposed system also considers the limited amount of energy on the UAV

and, thus, it aims at striking a balance between the traffic offloaded and energy consumption.

Then, we formulate the problem of UAV trajectory, radio resources, and caching replace-

ment mathematically as an optimization problem to find a suitable trajectory to maximize the

energy efficiency of the UAV.

• Next, owing to the complexity of the addressed problem and ambiguity of input parameters,

we proposed PPO algorithm towards solving the aforementioned issue of UAV mobility in an

efficient manner.

• Finally, to answer the challenges of uplink and downlink resource allocation, we develop two

effective yet light designed algorithms to schedule for wireless resources. Additionally, we

conduct extensive tests to prove their efficiency and compatibility with PPO model.

4.2 Related Work

UAVs have been widely studied and they attract the telecommunication community. They have

been used in the literature as cache units, flying base stations, and relay nodes. Despite the numerous

amount of works in this domain, only few studies exist that address the problem of caching UAV to

serve highly dynamic requester objects.

The study of [67] investigates into the performance of UAVs which cache, relay, and serve

multimedia contents to IoT devices. The authors of this work solve the joint problem of UAVs

placement and content caching to optimize wireless throughput. First, as apposed to our work, the

entertainment large contents are served to stationary IoT devices. Thus, dealing with fixed or low

mobility environment is much easier than dynamic one. Second, the contents are assumed of similar
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size and the UAV is assumed to cache contents proactively based on the popularity and other factors.

While we address a different scenario where the UAV has no access to the backhaul and, hence, it

needs to fetch the contents from the passing by vehicles. In [65], a proactive caching scheme is

studied where a UAV is dispatched to provide content delivery service for vehicle users in a certain

area. The objective of this work is to find UAV trajectory besides content placement and delivery

mechanism to optimize the overall UAV throughput taking into account its limited battery capac-

ity. In [64], the authors present a networking framework consisting of caching UAVs which store

popular contents in advance to alleviate heavy traffic on the congested backhaul. The UAVs then

serve mobile users through their cache units instead of fetching the contents from the internet. The

authors of [68] suggest a new architecture for UAV to deliver content in vehicular environments.

Their scenario does not consider caching or library of contents, but rather one content which is re-

quested by multiple vehicles. In [46], the authors present a solution for the joint problem of caching

and resource allocation to serve fixed users from the cache unit or via server-UAV-user link. They

leverage liquid state machine (LSM) to realise the content popularity distribution. The work of [66]

tries to improve the QoE of wireless devices through caching UAV. As a solution, they leverage the

history and information of user in order to find out his request patterns. In [69], authors use UAV

to provide coverage for vehicles in a particular area where the infrastructure becomes out of service

due to disaster situations. This work aims at satisfying certain QoS to the end users. The authors

of [70] utilize UAVs to help the infrastructure operation taking into account the cost incurred by

deploying more UAVs. Thus, it optimizes the number of UAVs dispatched in order to provide cov-

erage for a certain region. Moreover, in [71], the authors study the communication between a swarm

of UAVs moving at fixed velocity with passing vehicles and they model the average data packet de-

livery delay in such scenario. In addition, [72] proposes deployment of UAVs to mitigate security

problems in vehicular networks where the vehicles communication with the RSU is jammed. The

UAV is leveraged to relay contents or messages in case the correspondent RSU is being attacked or

there is high link interference, hence, the link is obscured.

Alternatively, a plenty of works have been devoted for static infrastructure for improving content

delivery in vehicular networks. The study of [34] suggests cooperative caching among a set of

RSUs by replicating contents. The incentive behind this work is that RSUs located at the same
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roads are highly correlated during the service of the traffic flow. Furthermore, [35] studies the

stochastic delay of content delivery in cache-based system in vehicular networks. Here, a stochastic

network calculus is employed to evaluate the stochastic playback delay upper bounds of vehicular

video content delivery with cache-enabled RSUs. In [36], authors proposed a caching system to

deliver large contents such as videos to fast moving vehicles. They addressed the efficient content

delivery problems in VANET by caching popular files in the RSUs with large storage capacity.

In [37], the authors solve the problem where multiple content providers (CPs) aim to improve the

data dissemination of their own contents by utilizing the storage of RSUs. They used multi-object

auction-based solution to get a sub-optimal solution for the competition among the CPs. Also, [33]

proposed a Q-learning based caching strategy where the system predicts the the path trajectory of

vehicles and based on that it decides which RSUs should cache the contents in order to reduce the

latency. Some works such as [38], suggest cooperation between RSUs and vehicles where a model

is proposed to determine from where to obtain the content. Moreover, the work of [73] suggests

caching using different types of infrastructure entities to minimize the total delay of content delivery.

The aforesaid works have addressed the problem of content delivery through leveraging UAVs

and fixed entities, however, the existing works either suggest proactive caching mechanisms (which

depends on a previous knowledge regarding the environment such as request for contents and arrival

rate of requesters which, most of the time, may not be provided beforehand.) or utilize the congested

and hard-to-implement backhaul link [65]. Assuming a UAV with sufficient backhaul link capacity

to fetch, cache, and serve looks impractical scenario for the case of UAVs as they move and, hence,

cannot maintain stable connection to the backhaul especially when they are required to follow and

serve moving objects such as vehicles. Most importantly, the energy consumption of the UAV was

overlooked in the previous works with caching. We list the key limitations of the existing related

work on UAV servicing users in table 4.1.

Finally, none of these studies has looked into how cache-equipped UAVs can offer communi-

cation and content delivery services for dark areas, which are commonly assumed to be covered

through UAVs, where no internet connection is available.

70



Table 4.1: Limitations of existing works.

Paper Caching Dynamic Environment Energy consumption

[67] × X ×
[65] X X ×
[64] X × X

[68] × X ×
[46] X × ×
[66] X × X

[69] × X ×
[70] × X ×
[71] × X ×

4.3 System Model

Consider a one-way highway segment of a certain length (G) where a standalone UAV is utilized

to provide content delivery service for the visitor vehicles as illustrated in Fig 4.1. The highway

segment is presumed to entrust the UAV to respond to the content requests with a cache unit mounted

on the UAV having limited space (η) to fetch, buffer, and relay contents. Meanwhile, a set of

vehicles (I) travels through this particular highway where each vehicle i ∈ I buffered a content

before they approach this highway segment. The incoming vehicles are also in need of contents

while they are within the highway. Assume each vehicle has one content to request and this content

can be downloaded while the vehicle is within the highway segment. Therefore, we assume that

each requested content can tolerate time not less than that taken by a vehicle to cross the highway.

The UAV is dispatched to carry out this operation for a certain amount of time (N). The service

time consists of several time slots (n = 1, ...,N) of length δ . Next, the details of each aspect of the

system model is given in a subsection.

Remark: In this work, for tractability, we deal only with one UAV. However, the same approach

may apply for several UAVs covering a certain highway. In this context, the overall network per-

formance could be notably improved since multiple UAV are much powerful and resource-rich to

serve vehicles than a solo UAV. Given that scenario, the highway can be fragmented into smaller
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Figure 4.1: System Model

segments where there is one UAV dedicated to serve each segment separately as in Fig. 4.1. The first

UAV, which is located at the beginning of the highway, may serve some of the vehicles while the

remaining unserved ones will probably receive service through the consequent UAVs. The adjacent

UAVs may operate on different wireless spectrum and, hence, the interference could be neglected.

Interestingly, as multiple UAVs are deployed, one can leverage cooperation among them to improve

cooperation among them. For instance, UAVs covering adjacent segments may get closer to each

other in order to establish wireless communication and transfer contents between them. However,

this is beyond the scope of this work and is kept for future research.

4.3.1 U2V and V2U Communication

We assume the communication between UAV and vehicles is established with orthogonal time

division multiplexing access (TDMA). Furthermore, we assume the communication is full-duplex

and over two different spectrum. For generality, we further assume the transmission power of vehi-

cles and UAV are constant, thus, the uplink and downlink data rates (Un
i and Dn

i respectively) vary

with the distance only. At each time slot n, the UAV is either fetching a content from a vehicle,

and/or forwarding a content to a vehicle, or idle.
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4.3.2 Content Model

The library of contents encompasses a number of items (J) which have different sizes. The

probability of content being requested is driven from Zipf distribution where the skewness parameter

α1 characterizes this distribution as in Eq(4.1).

1
kα1

∑
J
j=0

1
kα1

, (4.1)

where k is the item rank.

The same type of distribution models the probability of content being buffered on a vehicle, yet,

with different skewness parameter α2. Moreover, for the convenience of exposition, all contents are

assumed to tolerate time larger than the travelling time of vehicles to cross the highway to avoid

having varying request deadlines. Also, we assume that contents do not allow partial service. That

means, in order to serve a content, it has to be fully downloaded, else, it is considered corrupted,

hence, it does not count similar to [53, 74].

4.3.3 Traffic Model

To model the arrivals and velocities of passing vehicles, we assume a free-flow model similar

to [51] where the relationship between velocity and traffic can be expressed as v = v f (1−ρ/ρ jam)

where v f is the expected velocity, ρ is the traffic density, i.e., vehicle(s) per Km, and ρ jam is the jam

density (jam density is extreme traffic density when traffic flow stops completely). Moreover, the

arrival rate of vehicles is calculated by λ = ρv. The vehicle arrivals follow a Poisson distribution

and velocities are generated using truncated normal distribution.

For a certain period of time (N), there is a subset of In ⊂ I vehicles coming where I = {I0∪ I1∪

I2...∪ IN}. Each vehicle i∈ In has a certain velocity and arrival time (ai) as mentioned before. Also,

di represents the departure time of vehicle i.
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4.3.4 Operation Phase and Objective

Initially, we assume the UAV is positioned at the middle of the highway segment (w0 = G
2 ).

When the UAV moves, it consumes energy and the amount of energy consumed with each move

depends on the velocity selected at that time slot n. In practice, UAV has a maximum velocity of

Vmax which should not be violated. Also, the energy consumed for movement is modeled as non-

linear function with distance traveled [75]. It must be stressed that since the energy consumed for

operating the UAV is much larger than that of serving vehicle (transmission power), we only take

the former into account. Besides considering energy consumption, the UAV needs to decide for the

following actions:

• UAV trajectory (wn)1.

• Serve content to a vehicle (xn
i )

• Fetch content from a vehicle (yn
i ).

• Caching decision or replacement policy ( f n
j ).

In case that the UAV is unable to serve or fetch a content completely before the vehicle leaves,

the process must be terminated2.

Finally, the ultimate objective of utilizing the UAV is to provide service for a specific region.

However, exploiting UAV comes with costs due to energy consumption. UAVs are known to be

energy constrained, therefore, the UAV needs to operate smartly such that it makes the most of its

energy and cache capability. In this work, we address the trade-off between content delivery and

energy consumption by optimizing energy efficiency. Here, the energy efficiency is defined as the

power required to transmit one data unit or the number of bits that can be sent over a unit of power

consumption which is usually quantified by bits per Joule [76].

1Since this work concentrates mainly on improving content delivery via caching UAV and for the sake of simplicity,
we assume that the altitude of the UAV is fixed.

2We assume once the UAV runs out of energy another one is dispatched caching similar contents of the last UAV.
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4.3.5 Problem Definition

Definition 1. Given a set of vehicles travelling through a highway covered by a UAV. Assume

the UAV travelling velocity affects its energy consumption, also, the UAV is equipped with a finite

cache unit. Assume the coming vehicles have one content in their buffers and raise a request for

another content. Assume that the UAV has a particular service time consists of several time slots

where at each time slot, the UAV can move or hover, besides, it can serve and/or fetch contents

from vehicles at different data rates based on the distance. In the light of the foregoing, what is the

optimal movement, serving, fetching, cache replacement actions for the UAV such that the energy

efficiency is maximized.

4.4 Problem Formulation

This section formulates the system model described above mathematically. To make it clearer

and more organized, we categorize the different aspects of the system. Additionally, Table 4.2

provides a summery of the variables and parameters used in the formulation.

4.4.1 Wireless Communication

Typically, the communication channel between UAVs and end users is usually modeled as large-

and small-scale fading. However, in the context of highways where there exists a clear link between

transmitter and receiver, the communication link can be characterized by strong line-of-sight and,

hence, small and large scale fading can be omitted [69, 70]. Thereby, the channel gain between the

UAV and vehicle i at time slot n can be written as follows:

hn
i = h0

(√
(Ln

i −wn)2 +H2

)−τ

,∀i ∈ In,∀n, (4.2)

where h0 is the mean path gain at reference distance = 1m. H denotes the altitude of the UAV and τ

denotes path loss exponent.

Let us define PV→U and PU→V to denote the received power of UAV and vehicles respectively.
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Table 4.2: Mathematical notations in UAV assisting content delivery

Parameters

Z j content size

G highway length

J list of contents

I set of vehicles

N time horizon

ai arrival time of vehicle i

di departure time of vehicle i

Ln
i location of vehicle i at time n

Ri, j 1: if i requests content j and 0 otherwise

Ci, j 1: if i cached content j and 0 otherwise

Vmax UAV maximum velocity

η UAV cache capacity

δ length of one time slot

τ path loss exponent

h0 median of the mean path gain at reference distance = 1m

σ thermal noise power

hn
i channel gain between the UAV and vehicle i at time slot n

H Fixed altitude of the UAV.

Pi,n
V→U Received power of vehicle i from the UAV at time slot n.

PU→V Received power of the UAV from vehicle i at time slot n

PV Transmission power of vehicles.

PU Transmission power of the UAV.

Dn
i Immediate data rate to vehicle i from the UAV at time slot n

Un
i Immediate data rate to the UAV from vehicle i at time slot n

W Channel bandwidth available.

δ Time slot size.

π Air density.

νn Velocity of the UAV in time slot n.

Variables

f n
j 1: if UAV removes content j at n and 0 otherwise

xn
i 1: if UAV serves vehicle i at n and 0 otherwise

yn
i 1: if UAV fetches from vehicle i at n and 0 otherwise

wn location of UAV at n

kn
j 1: if UAV cached content j at n and 0 otherwise

Qi 1: if UAV served vehicle i sufficiently and 0 otherwise
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Now, PV→U = hn
i PV and PU→V = hn

i PU where PV and PU are constant values representing the trans-

mission power of vehicles and the UAV respectively.

Now, let us introduce variables Dn
i and Un

i which are the instantaneous data rates for down

and uplink scheduled to the passing vehicle i at time slot n respectively and they are calculated as

follows:

Dn
i (x

n
i ,w

n) =


xn

i W log2

(
1+

Pi,n
U→V
σ2

)
if ai < n < di,∀i ∈ In,∀n,

0 otherwise,

(4.3)

Un
i (yi,wn) =


yn

i W log2

(
1+

Pi,n
V→U
σ2

)
if ai < n < di,∀i ∈ In,∀n,

0 otherwise,

(4.4)

where W is the available channel bandwidth (in Hz). σ is the thermal noise power which is linearly

proportional to the allocated bandwidth. ai and di represent the arrival and departure time of vehicle

i, respectively3. xn
i ∈ {0,1} is a decision variable to allocate downlink resources to vehicle i. If

xn
i = 1 then vehicle i is receiving content from the UAV at time slot n. yn

i ∈ {0,1} is also a decision

variable to schedule uplink resources to vehicle i at time slot n. Since we assume Time-Division

Multiple Access (TDMA) as a channel access method for the UAV and vehicle links, then only one

transmission is allowed per time slot:
In

∑
i=0

xn
i ≤ 1,∀n. (4.5)

In

∑
i=0

yn
i ≤ 1,∀n. (4.6)

4.4.2 UAV Mobility

The maximum distance the UAV can pass during one time slot should not exceed its maximum

velocity.

|wn−wn+1| ≤Vmaxδ ,∀n. (4.7)

3The instantaneous rate depends on the instantaneous location of the vehicles. However, we are interested in the in-
stantaneous rate of vehicles present within the highway segment, therefore, for more tractable analysis, the instantaneous
rate is reduced to zero outside the given highway segment.
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In addition, the movement of the UAV incurs energy consumption which depends on the velocity

of the UAV similar to [70, 75].

P(νn)total = K
(

1+3
M2

tip

w2
b

)
︸ ︷︷ ︸
Blade profile power

+
1
2

π(νn)3F︸ ︷︷ ︸
Parasite power

+mug

√√√√√√(−(νn)2 +

√
(νn)4 +(

mU g
πA

)2

2

)
︸ ︷︷ ︸

Induced power

. (4.8)

where νn denotes UAV velocity at time slot n. Mtip represents the blade’s rotor speed, K and

F are two constants which depend on the dimensions of the blade and the UAV drag coefficient,

respectively, π is the air density, mU and g respectively denote the mass of the UAV and the standard

gravity, A is the area of the UAV. The total energy consumption to cover a distance d at a constant

velocity UAV w can be computed as E(ν)total =
∫ d/ν

0 P(ν)dt = P(ν)
d
ν

as in [70].

4.4.3 Cache Management

Let us define β n
i ∈ {0,1} as an indicator holding value 1 if the content available on vehicle i is

fully fetched by the UAV before or at time slot n and 0 otherwise.

β
n
i =


1 ∑

n
n′=0 δUn′

i ≥ ∑
J
j=0Ci, jZ j,∀i ∈ I,n ∈ N.

0 otherwise.

(4.9)

In addition, Eq (4.10) prevents wasting radio resources to vehicle that completely uploaded its

content to the UAV.

yn+1
i ≤ 1−β

n
i ,∀i ∈ I,n ∈ N. (4.10)

Next, we introduce kn
j ∈ {0,1} as a binary variable where it is equal to 1 if content j is available

on the UAV at time slot n and 0 otherwise. The value of k has three cases; it is either equal to 1

when the content is just fetched or 0 if it is removed in the previous time slot. The third case is that

it remains the same if no change occurs on its value4.

4For more tracebility, the initial value of k0
j = 0,∀ j ∈ J since the cache is assumed empty at the beginning.
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kn
j(y

n
i , f n

j ) =


1 ∑

I
i=0 yn

i β n
i Ci, j = 1,∀n,

0 f n−1
j = 1,

kn−1
j otherwise,

(4.11)

where f n
j ∈ {0,1} is a decision variable where it equals to 1 if content j is removed from the UAV

cache at time slot n+1, 0 otherwise.

Eq(4.12) prevents violating the limited cache capacity of the UAV.

J

∑
j=0

kn
j Z j ≤ η ,∀n. (4.12)

A content cannot be removed from the UAV cache if it does not exist in the cache beforehand.

f n
j ≤ kn

j ,∀ j ∈ J,n. (4.13)

4.4.4 Service Management

Before we formulate our objective function mathematically, let us define Qi ∈ {0,1} which

denotes whether a vehicle has been sufficiently served or not during its sojourn time.

Qi(xn
i ,y

n
i ,w

n, f n
j ) =


1 ∑

N
n=0 δDn

i ≥ ∑
J
j=0 Ri, jZ j,∀i ∈ In,n,

0 otherwise,
(4.14)

where Ri, j indicates whether content j is requested by vehicle i (Ri, j = 1) or not (Ri, j = 0).

In fact, the UAV cannot serve a vehicle if the requested content is not available in its cache as

illustrated in Eq (4.15).

xn
i ≤

J

∑
j=0

Ri, jkn
j ,∀i ∈ In,n. (4.15)
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4.4.5 Objective

The ultimate objective is to maximize energy efficiency (bits per Joule) and can be written as:

max
wn,xn

i ,y
n
i , f

n
j

J

∑
j=0

I

∑
i=0

Qi(xn
i ,y

n
i ,w

n, f n
j )Z jRi, j

∑
N
n=0 P(wn)

,

s.t. Eq(4.5),Eq(4.6),Eq(4.7),Eq(4.10),

Eq(4.12),Eq(4.13),Eq(4.15),

(4.16)

where Qi is function of the four decision variables.

The presented problem is mixed integer non-linear programming (MINLP), which is known to

be difficult to solve , owning to the binary variables, xn
i , f n

j ,y
n
i and the real-value decision variable

wn, as well as, our objective function in Eq (4.16) is non-convex because of the trajectory variable

in Eq (4.7) [77]. Furthermore, the solution of the problem (if exists) is dependant of the knowledge

of instantaneous positions of vehicles at each time slot during their journey along the highway seg-

ment. However, in practice, the upcoming set of vehicles alongside their information (their requests

and available contents in their buffers) are revealed once they approach the highway segment. Par-

ticularly, the values of parameters Li, Ri, j, and Ci, j remains hidden as long as vehicle i has not yet

reached the highway segment. Given the high complexity of the problem and the numbers of uncer-

tainties, definitely there is a need for alternate solution with lower complexity and high efficiency

to tackle such scenario [78]. Therefore, we model our problem as MDP and, then, we propose

PPO-Clip, which we will introduce next, and effective algorithms to solve for the aforementioned

problem. PPO-Clip is efficient to deal with ambiguities in the environments as it is able to learn and

estimate values through observations. This MDP model and PPO-Clip will be laid out in the next

section.

4.5 Solution Approach

This section provides a complete solution for the predefined problem of UAV mobility and

caching. Due to the intractability of the optimum problem and in order to simplify the arduous

challenges addressed by this work, we divide our problem into three sub-problems. This first one
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is to find trajectory of the UAV while the other sub-problems deal with wireless transmission and

caching replacement.

4.5.1 PPO-Clip to Control UAV Trajectory

In this work, we resort to Deep Reinforcement Learning to solve for the trajectory decisions.

Many applications such as video games, autonomous vehicles, UAVs, and so forth, encompass

uncountable number of states and actions. These high-dimensional spaces create phenomena of

curse of dimensionality. Precisely, we leverage Proximal Policy Optimization (PPO). PPO is a

cutting-edge, benchmark, model-free, on-policy, policy gradient Reinforcement Learning algorithm

designed at OpenAI [79, 80]. It is famous for its tunability besides its outstanding performance and

lower complexity. In fact, the goal of PPO is to balance between implementation, batch sampling,

and ease of tuning. Genuinely, PPO-Clip approximates the hard constraint applied to Trust Region

Policy Optimization by using much more effortless equations. Therefore, PPO-Clip is much simpler

version and demonstrates remarkable efficiency.

To go for the implementation part, the problem is formulated as MDP (similar to Section 3.4.1)

where the state, action, reward, are defined as follows:

• State S: The state at time slot n, sn ∈ S, is defined as sn = (wn,Dn,Un,Ln,Cn,Rn,Z,kn). First,

wn is UAV position at time slot n. Dn is a vector that contains the amounts served to each

vehicle at time slot n. Un is a vector that contains the amounts fetched from each vehicle at

time slot n. Ln is a vector that contains the amounts served to each vehicle at time slot n. Cn

is a vector that contains the content requested by each vehicle at time slot n. Rn is a vector

that contains the content available on each vehicle at time slot n. Z is a vector that contains

the sizes of available contents. kn is a vector that contains the cached contents on the UAV at

time slot n.

• Action A: The action taken at time slot n is an ∈ A. In this work, in order to void the high

complexity of continuous action space, we approximate the action space by descritizing the

UAV velocities. Thus, our action space includes 0 speed for hovering and a certain number

of velocities to step the UAV forward and backward and those velocities are predetermined.
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• Reward: The immediate reward, rn, is the sum of positive rewards due to serving vehicles

sufficiently and negative reward or penalty due to consuming energy for UAV operation. It

is worth mentioning that the objective function in Eq (4.16) emphasizes the total reward is a

product of the division of total amount served over energy consumption. However this cannot

be realised with RL. As RL calculates the immediate reward in each step, the total energy

consumption value remains unknown and only reveals once the episode ends. Thereby, we

modify our immediate reward to be as follows:

rn =
J

∑
j=0

I

∑
i=0

Qn
i Z jRi, j−ψP(wn),∀n, (4.17)

where ψ is a weighting factor to balance the impact of the two terms. In Eq (4.17), to solve the

aforesaid issue, instead of dividing the amount served over energy consumption, we subtract

them. However, in order to not neglect the impact of any terms, we add ψ to tackle this issue.

Now, the step-reward contains two parts; positive reward and negative reward (penalty). The

positive reward is awarded to the agent when the UAV serves a vehicle sufficiently while the

agent is penalized due to the energy consumed with each UAV move.

As illustrated in algorithm 6, the PPO interacts with the environment to collect the samples

through several iterations (typically thousands of epochs) and realises the actual rewards.

First the PPO initializes random sampling policy and value function for the neural networks.

Then, in each epoch, the agent observes the environment which consists of the set of vehicles and

their availabilities, requests, cached contents, UAV position and so on. Then, an action is selected

based on the policy and the action is used to move the UAV to its new position, however, the UAV

should remain inside its service region. Algorithm (8) and (7) are used to realise the resource

allocation among the set of vehicles present at that time slot. For the downlink, the UAV computes

a positive reward if a content is served to a vehicle. In the uplink, the UAV stores a content in the

cache once it is fully fetched. A replacement may be required if there is no space available to fit the

new content. In each epoch, PPO computes the advantage function that helps the agent to estimate

how good it performs compared to average action for a certain state. Then, the clipped objective of

PPO is optimized and the policy is updated accordingly once every several epochs [80].
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Algorithm 6: PPO-Clip to Find UAV Trajectory

1 Inputs: Ln
i , Ci, j, Ri j , N, Learning Rate, γ , ε .

2 Outputs: The UAV velocity control policy π .
3 Initial policy π with random parameter θ

4 initial value function V with random parameters φ

5 for each episode k ∈ {0,1,2, ...} do
6 for n : {0,1,2, ...,N} do
7 Observe state Li,Ci, j,Ri, j,Un

i ,D
n
i ,∀i ∈ In, Z j, wn.

8 Perform action an ∈ A based on policy πθold .
9 Set wn+1 = wn +an

10 if UAV is outside the highway segment then
11 Keep the UAV at the previous position.

12 Set xn
i ∈ {0,1} using Algorithm (8)

13 Calculate step reward as in Eq (4.17)
14 Set yn

i ∈ {0,1} using Algorithm (7)
15 if vehicle i content is fully received by the UAV then
16 if vehicle i content needs space then
17 Remove other content(s) as in 4.5-C.

18 Store vehicle i content in the UAV cache.

19 Compute the advantage function.
20 Optimize the clipped objective.
21 θold ← θ .

4.5.2 Heuristic Algorithms to Wireless Resource Allocation

The second sub-problem of UAV and vehicle radio resources scheduling is solved by two algo-

rithms for the up and downlink.

Concerning the uplink, as laid out in Algorithm 7, the UAV sorts the contents cached based on

their popularities. Next, it checks whether the content available on each present vehicle is already

cached or not and whether it is downloaded earlier. If the conditions above are satisfied, then the

UAV makes sure the content size will only replace content(s) which are less in size. In this step, the

UAV needs to ensure that it will not require to remove contents which are more popular for those

which receive less hits. The complexity of Algorithm 7 is O(∂J) where ∂ represents the maximum

number of vehicles present simultaneously in the highway segment. The value of ∂ depends on the
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highway density and, in reality, ∂ � I.

Algorithm 7: Uplink Radio Resource Allocation

1 Inputs: n, Z j, Ci, j.
2 Outputs: Π as the vehicle to fetch from at n.
3 Set Π = None.
4 Sort cache items by popularity
5 for ∀i ∈ I where ai < n < di do
6 if i’s content does not exist in the RSU cache and the content is not fully fetched yet

then
7 Compute the total size of cached contents on the UAV.
8 if the vehicle i content cannot fit in the cache then
9 Define R = 0 as the amount to remove in order to cache the new content.

10 for each content j : kn
j = 1 do

11 if vehicle i content is more popular that of Π and j then
12 Set R = R+Z j

13 if vehicle i content size ≤ R then
14 Set Π = i
15 break

16 else
17 break

18 else
19 if Π’ content is less popular than i’s then
20 Set Π = i

For the downlink, the UAV is committed to serve a vehicle as long it resides within the highway

and not fully served. The UAV also need to make sure that the distance between the UAV and the

vehicle does not exceed a certain threshold (Ω) as in Algorithm 8. This condition can improve the

download experiences since it prevents the UAV from sticking to only one far vehicle which will

not be served after all due to far distance. In case no vehicle is being served at that time, the UAV

will compare among the available vehicles based on data rates. The vehicle with higher data rate or

shortest distance will be selected to download. The complexity of Algorithm 8 is O(∂ ).
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Algorithm 8: Downlink Radio Resource Allocation

1 Inputs: n, Ω, Z j, Ri, j, G (denotes vehicle currently being served).
2 Outputs: Λ as the best vehicle to serve.
3 if G 6= None then
4 if dG ≤ n or (Z j | Ri,G = 1)≤ Dn

G or |LG−wn|> Ω then
5 Set G = None

6 if G 6= None then
7 Set Λ = G

8 else
9 for i ∈ I where ai < n < di do

10 if i requested a content that is cached on the UAV, not completely served, has more
time slots to remain on the highway segment, and the remaining time slots are
enough to receive the whole content then

11 Set Λ = i

12 Set G = Λ

4.5.3 Cache Replacement

The cache replacement policy used in this work is as follows. Whenever the cache is full and a

new content is fetched, the UAV starts freeing up space by removing contents which are less popular

until enough room is made to store the recently fetched content.

Fig. 4.2 summarizes the solution framework and the way the different algorithms interact with

each other. As PPO is built on top of actor critic, it inherits its architecture. Thus, there are two

networks: actor which is responsible for generating the action, and critic which computes the advan-

tage function. There is also a memory to store the samples of the environment to help the networks

reducing the loss function.

4.6 Performance Evaluation

4.6.1 Simulation Setup

We carry out the simulation studies using Python and PyTorch. To mimic the reality, we take

a highway of 2 Km where a UAV is dispatched to cover it with a 2 Gb-cache unit. For the sake of

simplicity, we will do our simulation only for one UAV, however, the same can apply for several

UAVs covering a large highway. The library of contents is generated having random content sizes
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Figure 4.2: Solution approach scheme.

while the frequency of content being requested and buffered on vehicles follows Zipf distribution

with skewness parameters, α1 and α2, equal to 1.3 and 1.6, respectively, and similar to [47]. The

set of vehicles is generated at random where the arrivals follow Poisson distribution. Here, as

mentioned earlier, we use free flow traffic model to general vehicle arrivals and velocities which has

been used widely in the literature to simulate vehicular environment [81–83]. Meanwhile, the agent

is exposed to 1,440,000 samples before results are collected where each sample represents one time

slot. Then, different sets are generated for testing. For consistency, the results are averaged over

2000 iterations.

The PPO consists of 2 neural networks, actor and critic, each network has 3 layers, input, hidden,

and output. The hidden layer contains 64 nodes and Adam optimizer is designed to train the DNNs.

In addition, Hyperbolic Tangent is used mainly as activation function while Softmax is only used

for the actor output layer. The key simulation parameters are listed in Table 4.3.

4.6.2 Baseline Methods

We study the performance of our solution approach by comparing its outputs with different

methods. Since, to the best our knowledge, there is no work in the literature that addresses similar
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Table 4.3: Simulation parameters in UAV assisting content delivery

Parameter Value

Highway length 2 Km

δ 1 sec [77]

Number of UAVs 1

Number of Contents 50

Size of Contents [700-1300] Mb

Bandwidth 10 MHz [84]

σ2 10−14

τ 3

h 10−15

Pi,n
U→V , Pi,n

V→U 0.1 w

UAV discrete velocities [0, 10, 20, 30, 40] m/s

Density [2-14] Veh/Km

Learning Rate 0.002

Discount Factor 0.99

Clip 0.02
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challenges of UAV mobility, resource allocation, plus cache replacement, we design 4 UAV-steering

techniques to use as baselines.

• Stationary UAV (S-UAV): keeps the UAV fixed at the middle of the highway segment.

• Random UAV Mobility (RAUM): selects random velocity to move the UAV at each time slot.

• Maximum Speed Selection (MASS): always chooses the maximum velocity for the UAV. When

the UAV reaches one end of the highway segment, it goes back in the opposite direction.

• Minimum Energy Selection (MISS): always chooses the velocity that infers the lowest energy

consumption, for the UAV. When the UAV reaches one end of the highway segment, it goes

back in the opposite direction.

It is crucial to mention that for fair comparisons, all the UAV trajectory methods suggested

above are developed to work based on our proposed algorithms for the up and downlink which are

explained in section 4.5.

4.6.3 Result Analysis

First of all, we examine the convergence of our model. As shown in Fig. 4.3, the PPO-Clip

model converges after around 2000 iterations.

Figure 4.3: PPO-Clip convergence over iterations.

Next, to examine the efficiency of our PPO-based solution, we show in Fig. 4.4 how the perfor-

mance of the PPO evolves within time until it reaches convergence state. Here, one can observe that
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the solution is quite fast at the beginning where PPO reaches above 50% of the maximum perfor-

mance attained in less than 5 hours and around three-quarters of the maximum performance within

a day of training. In addition, we can also notice that exposing the PPO agent to more training

samples may enhance the performance further until it converges after less than 6 days of training.

Figure 4.4: PPO-Clip performance versus time.

Before we start evaluating the PPO-based solution with other methods, it is very important to

see and examine the efficiency of the up and downlink designed algorithms. In order to do that, we

suggest two other algorithms to compare with, namely, Greedy and Random. Where Greedy prefers

to fetch and serve vehicles that has higher immediate data rate and Random takes random actions.

As illustrated in Fig. 4.5, the difference is very significant. With our proposed solution, there is

around 50% difference between the proposed algorithms and Greedy. In addition, one can notice

that Random does not exist in this figure. Actually, Random produces 0 gain in every attempt. This

is because that it cannot complete any transmission due to the randomness in resource allocation.

It can also be observed that MISS and MASS have higher amounts of contents served with Greedy

method. This can be justified as follows: MASS and MISS are unable to serve or fetch large contents

because they do not catch up with vehicles and their connection is not stable as in RAUM and S-

UAV. However, with Greedy, it is not mandatory to fetch popular contents which might be large.

Thus, MASS and MISS are able to make some gain by fetching and serving smaller and probably

unpopular contents.

In terms of evaluation, we compare these four methods with our PPO-based solution approach

in terms of the energy efficiency level, amount served to vehicles, and energy consumption.
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Figure 4.5: Proposed wireless allocation algorithms vs Greedy wireless allocation.

First, Fig. 4.6 demonstrates the energy efficiency levels achieved by the five methods. As it can

be seen, the values of our proposed solution in addition to S-UAV and RAUM are much higher than

MISS and MASS. The reason behind this is that MISS and MASS highly deviate from their regions

and, thus, most of their transmission processes are interrupted before they mange to complete. In

general, the energy efficiency grows as the number of vehicles increases. Such behavior is normal

given that as the density of the highway increases, there will be more chances for the UAV to

serve or fetch content using the same amount of energy. We can also observe that the proposed

solution scores the highest levels in all cases with a remarkable differences from others. Indeed, it

outperforms S-UAV and RAUM by around 20% to 30%. Meanwhile, S-UAV comes in the second

place with a slight difference from RAUM. As S-UAV keeps the UAV stable in the middle of the

highway, it can attain some stability to the wireless links. However, this method fails in some cases

when the content is large and the UAV needs to move toward the vehicle in order to save the link.

Moreover, as Eq (4.8) infers, hovering is not the best choice for power consumption. Indeed, as Eq

(4.8) is non-linear, velocity of 25 m/s consumes the lowest amount of energy. Likewise, RAUM

almost obtains identical performance values to S-UAV. Here, we use uniform random distribution,

therefore, the UAV goes back and forth over the middle of the highway segment and does not move

away from the center.

As shown in the same figure, MISS was the worst technique with very close to 0 energy effi-

ciency regardless of the highway density. The reason behind that is MISS moves the UAV very slow

while vehicles move much faster, thus, it will never catch up with vehicles to serve or fetch from
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them.

Figure 4.6: Impact of road density on energy efficiency.

Although the amount served to vehicle is not the sole goal of this work, one can note that the

PPO-based solution manages to serve more amount of contents than others. In Fig. 4.7, we can

see the total amount served resulted from using the proposed method and S-UAV is 15-35% higher

than RAUM and 95% higher than MISS and MASS. The reason behind this good performance of

S-UAV is, as mentioned above, owing to its fixed location. We can also notice that the proposed

solution starts by 750 Mb at low density while ends up with more than 2000 Mb of content served.

That is, the density of the road can notably increase the the service amount and the reason behind

this is aforesaid. Moreover, along the y-axis, the proposed solution comes at first place.

Figure 4.7: Impact of road density on amount of content served.

Next, Fig. 4.8 shows how much energy each method can incur. Based on energy consumption
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function in Eq (4.8), the amount of energy consumed is correlated with the traveled distance. How-

ever, this relationship is non-linear. Hovering consumes higher energy than low velocity movement.

Thus, we can see that S-UAV incurs high energy consumption at around 350 KJ. In contrast, MISS

wastes less amount of energy at less than 250 KJ since it uses velocity that incurs the lowest amount

of energy. Meanwhile, one can also notice that the proposed solution consumes moderate amount of

energy at a bit above than 250 KJ. Taking the amount served by the proposed solution shown in Fig.

4.7 and the amount of energy consumption in this figure, it becomes very clear that the proposed

solution is actually the best one.

Figure 4.8: Amounts of energy consumption incurred using the five methods (per 4 minutes).

Next, we investigate into the role that cache capacity can play in improving the efficiency of the

system. As it can be seen in Fig. 4.9, the energy efficiency starts at almost 0 level when the cache

unit is very small to fit only one tiny content. The level of energy efficiency jumps surprisingly to

3.7 at cache capacity 1200 Mb. This increase continues as the cache unit grows. However, at some

point it saturates. Actually, that depends on the shape of popularity of contents. In this work, as

we use Zipf distribution to model the frequency of requests, the top popular contents receive much

higher hits than other. Therefore, once these contents can fit in the cache, the extra space will have

very little effect. One can also observe that the proposed solution comes in the first place at much

higher performance.

Now, let us see the impact of Zipf parameter (α) on the performance. α characterizes the

distribution where large values of α means the top popular contents will receive much higher hits

than others and vise versa. It can be observed in Fig. 4.10 that as α increases, the performance
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Figure 4.9: Impact of cache unit capacity on energy efficiency.

of S-UAV, RAUM and besides the proposed solution demonstrate better results. Indeed, as we

mentioned earlier, when the α becomes larger, the UAV can serve more vehicles as the overlap over

requests raises. We can also note that the proposed solution’s performance becomes much higher

than others as α increases. That means the PPO-Clip can better adapt and take advantage of the

identical requests than other methods which are blind in this regard.

Figure 4.10: Impact of Zipf skewness parameter on energy efficiency.

4.7 Summary

In this work, we presented a novel UAV-assisted content delivery in VANETs without having

to be connected to the internet. The system model, which is mathematically formulated, is solved
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efficiently using Deep Reinforcement Learning technique namely, PPO-Clip with two designed al-

gorithms. The solution method is put to test against other baseline methods to examine its adequacy.

The results illustrate that even UAV without internet connectivity is able to contribute in serving

contents to vehicles through taking the chance of collecting contents from the upcoming vehicles.
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Chapter 5

Cooperation between Terrestrial and

Aerial RSUs for Optimized Content

Delivery

5.1 Introduction

5.1.1 Motivation

In Chapters 3 and 4, we presented two kinds of caching based systems to serve vehicular net-

works; the first one is stationary RSU and the second one is flying UAV. In this chapter, however,

we attempt to mine the benefits of the two scenarios by allowing cooperation between the stationary

and aerial RSUs. In general, vehicle edge caching has been widely introduced in the literature to

improve content delivery services in vehicular networks [11,85]. Caching can alleviate traffic loads

and reduce latency across the network by avoiding duplicate content retrievals and transmitting con-

tents form nearby units. Drones, or UAVs, on the other hand, are considered as appealing solutions

to ameliorate vehicular network performance and overcome the key issues raised earlier, particu-

larly with having backhaul bottlenecks. Given their agility, flexibility, and deployability, UAVs are

seen as a solid candidate to help in offloading data traffic from the vehicular networks. As opposed

to terrestrial infrastructure, UAVs can better communicate with vehicles as they possess the ability
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to fly and follow moving objects. UAVs are also known to have much efficient links with higher

probability of creating Line of Sight (LoS) since they can adjust their positions to establish better

links by reducing distances and avoiding obstacles such as skyscraper and towers. Therefore, in this

work, we leverage UAVs and caching principles to design a new paradigm where a UAV is deployed

to cooperate and assist a RSU in serving contents.

Building upon our previous work [86], we further extend that work by considering a cooperative

cache-based system. In this chapter, we address the issue of accessing popular contents for in-

vehicle users. More specifically, we assume that a RSU and a UAV co-exist to serve contents to

vehicles navigating on a road segment. The UAV acts as a complement infrastructure to the RSU

in a sense of completing services for partially served vehicles and/or probably provide full service

for un-served ones. To do so, the UAV is assumed to be equipped with finite cache capabilities to

store and serve contents. In addition, due to the complexity of establishing an efficient backhaul link

to the UAV, we come up with an alternative method [87]. In a nutshell, we design a relay scheme

where the RSU can populate contents on the UAV over the passing vehicles in push-carry-forward

fashion. In this way, the loads can be reduced on the backhaul besides maintaining the content list

stored on the UAV during the operational phase.

5.1.2 Challenges

In this work, we identify three main challenges. The first challenge is due to radio resource

scheduling. For example, when the RSU serves a vehicle, it has to consider the ability of the UAV to

complete the remaining part. This includes answering two questions; whether the requested content

is cached on the UAV and whether the UAV has enough resources (spectrum and time) to serve

the rest of the contents. The latter question is based on the UAV status (e.g., number of vehicles

within its coverage and still need service). More importantly, the RSU should not reject requests

while wasting its resource to serve vehicles which can be served through the UAV at a later time. The

RSU may also want to populate contents on the UAV cache by serving some vehicles till completion

which can subsequently forward/shuttle these contents to the UAV. The second challenge is related

to the UAV. The UAV needs to plan its trajectory, radio resources, and decide for contents placement

(which contents and how much to cache for each one). The UAV should take into account popularity
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of contents, and vehicles status (how much each vehicle has been served through the RSU). If a

vehicle has been already served partially through the RSU and the UAV is capable of completing

the service, the UAV has to satisfy that vehicle. Otherwise, the service is rejected and the RSU

would have wasted resources on incomplete tasks. Hence, the overall performance of the network

degrades. A third challenge appears as a result of the unknown parameters of the environment.

There is a number of uncertainties in our context including the arrivals of upcoming vehicles, their

velocities, and their requests and such information is not given in advance.

In general, the interplay between the RSU and the UAV is of utmost importance. If it is not

handled properly, there will be many vehicles leaving the road segment without being served suffi-

ciently. Thus, in order to tackle the challenges mentioned above, we propose a solution approach,

Dual-Task Deep Reinforcement Learning (DTDRL), based on Deep Reinforcement Learning (DRL)

to control both the RSU and UAV. DRL is an effective method to deal with dynamic environ-

ments [88].

5.1.3 Contributions

This chapter presents a scheme for serving vehicles through a cooperative system composed of

an RSU and a UAV while populating the UAV cache by content delivered through the vehicles from

the RSU. Our contributions are as follows:-

• We present and model a cooperative system where a deployed UAV aides an existing RSU to

deliver contents for passing vehicles in a particular road segment. The UAV is used to offload

some of the services provided by the RSU and hence enhance the overall network perfor-

mance. To this end, an optimizer plans how to schedule the RSU and UAV radio resources

besides planning the UAV trajectory and maintaining the UAV cache.

• We formulate the joint problem of UAV trajectory, RSU and UAV resource scheduling math-

ematically as an optimization problem to find the optimal solution that maximizes the con-

cerned utility.

• Given the hardness of the problem and the existing uncertainties, we resort to a solution

based on DRL. Thus, we formulate the problem as MDP taking into consideration two sets of
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actions namely, UAV mobility and RSU service.

• Based on the action space, we develop DTDRL method where the two actions are handled.

Our solution approach can handle simultaneously RSU resource scheduling and UAV mobil-

ity.

• In addition, we design three effective algorithms to assist the DTDRL agent in allocating the

resources of RSU downlink and UAV uplink and downlink.

• We conduct several extensive simulation based experiments using SUMO to study the behav-

iors of our proposed system and compare our solution approach with other baseline methods.

5.1.4 Organization

In Section 5.2, related works are presented. Section 5.3 explains our system model in details

followed by Section 5.4 which formulate the problem mathematically. In Section 5.5, we discusses

our solution approach. Then, Section 5.6 presents our numerical results and finally, Section 5.7

sums up the chapter.

5.2 Related Work

A wide spectrum of studies has been devoted to content delivery in vehicular networks for

multitude of infotainment services. Some works are based on stationary infrastructures while others

investigate the roles of aerial base stations such as UAVs. However, there exists only limited number

of papers which address the collaboration among various types of facilities. Here, as this study seeks

a collaboration among stationary and non-stationary entities, this section will be more concentrated

on the studies that deal with the interplay between UAVs and fixed base stations.

The authors of [89] present a framework to help planning joint UAV and RSU networks for

urban areas. The proposed framework takes into account the limited budget, UAV battery capacity,

wireless coverage and motivates renewable energy. However, this work does not involve a coopera-

tive planning strategy to deliver contents. In [90], the authors propose a new scheme for cooperative

RSUs in order to serve vehicles while considering content popularity for caching purposes. The
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paper also considers service delay and content encoding technology. The authors in [41] propose

a new scheme to jointly optimize content delivery and content caching in vehicular edge networks

via deep deterministic policy gradient and formulate as double time-scale Markov decision process.

In [91–93], the authors try to improve data dissemination in vehicular networks through considering

different types of connections namely, vehicle to vehicle (V2V), vehicle to RSU (V2I), and vehicle

to UAV (V2U). Indeed, these three papers focus more on reducing transmission latency rather than

serving contents. Next, the authors of [94] provide a platform to enable UAV-assisted vehicular

networks by cooperating with other transceivers, specifically, vehicles and RSUs. In spite of the

several issues addressed by that work in vehicular networks which include dynamic topology, reli-

able connectivity and others, it does not elaborate on caching strategies to improve content delivery.

Furthermore, the authors of [95] suggest software defined networks to support heterogeneous ve-

hicular networks where RSU and BS are collaborating in multicasting contents to the users. The

objective of this work is to improve the utility of each facility, RSU and BS, where each one par-

tially contributes towards serving the demands of vehicles by offering incentives. In addition, the

authors of [96] design a framework for cooperative RSU and high-altitude platforms (HAPs) where

the latter broadcasts contents to users before the requests arise.

Other main limitations of the referenced works are summarized in the following two points.

First, some of the works are only applicable for distributing small-size data that, in reality, does not

significantly contribute to mitigate network bottlenecks. Second, the assumption of one data/file size

may not represent a real scenario, besides, some of the above mentioned works provide a solution for

only one static snapshot while the consecutive time slots are remain unaddressed. Unlike the works

discussed above, the novelty of this current work concentrates around introducing a cooperative

content service mechanism to improve the utility of RSU and UAV and provide efficient solution

approach to control the different aspects of the system. Our work mainly focuses on leveraging the

flexibility and mobility nature of the UAV besides providing a new method to relay contents to the

UAV via passing vehicles.
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5.3 System Model

We consider the service of content delivery in vehicular networks as shown in Fig. 5.1. A set

of vehicles, I = {0,1,2, ..., i, ..., |I|}, travel through the considered network and stream contents that

are stored at the network edge on caches co-located with the infrastructure, e.g., RSU1. Now, since

vehicles have only limited residence within the range of the RSU, the content to be streamed may

not be completely served by the RSU alone; hence, in this work we exploit cooperative content

delivery to offload an overwhelmed RSU with large data demands where a UAV is also leveraged

to assist the network in delivering contents, partially or fully to passing by vehicles. The UAV is

assumed to be flying within the service area and passing by vehicles are exploited by the RSU to

store, carry and forward contents to update the cache at the UAV. Here, we assume that the UAV

and RSU can exchange control information over an out of band signaling channel. Accordingly, the

UAV through this channel informs the RSU regarding its cache status and request contents to be

delivered through passing vehicles. The optimizer can then plan the best trajectory of the UAV.

Now, upon their deployment, UAVs will generally have limited access to the network through

a robust backhaul link, and accordingly, updating the cache of the UAV directly from the network

may be difficult. To overcome this issue, one possible solution is to do proactive caching ahead

of deployment [66]; however, since the popularity of the content may change with time, and that

content may be generated and consumed spontaneously particularly with the emergence of popu-

lar social media applications, dynamically adapting the content of the cache becomes critical for

improving the quality of experience of end users.

We advocate in this chapter the cooperation of vehicles with the RSU to establish a link through

which the RSU can make the necessary updates on the cache of the UAV; namely, vehicles will act

as content mules and the RSU opportunistically will forward through them the contents it needs to

deliver to the UAV.

A time horizon of length N is considered and time is assumed to be slotted into smaller time

slots {0,1,2, ...,n, ...,N} where each time slot n is of length ∆ sec. At each time slot n, there is

a subset of vehicles In ⊆ I; some vehicles are within the range of the RSU and others could also

1For simplicity, we use one-way one-dimensional road segment, however, the same environment can be extended to
multiple dimensions.
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Figure 5.1: System Model

be within the coverage of the UAV. Vehicles are assumed to arrive at the road segment according

to a particular arrival rate. The RSU makes decisions to serve requests initiated by each vehicle

to download a content, and the RSU also makes decisions to offload content delivery to the UAV

through these vehicles. We can summarize the proposed scenario as follows:

• Vehicles enter the coverage region of the RSU and each vehicle in a vehicular network broad-

casts on the control channel announcement beacon messages, which contain information

about the requested content and its route2.

• The RSU schedules the transmissions to serve vehicles, taking into account the requested

content size, available radio resources and vehicles’ residence times.

• Given the short residence time of vehicles within the coverage of the RSU and the limited

wireless resources of the RSU, the RSU may leverage a UAV to cooperate in delivering con-

tents to the vehicles.

• It is assumed that vehicles leaving the coverage region of the RSU will pass through the

coverage of the UAV.

• The UAV is assumed to be deployed with some cached contents; as explained, the RSU

opportunistically selects some vehicles to transfer contents (and hence update) to the UAV

2For simplicity, we assume each vehicle requests one content.
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by pushing the entire contents on the vehicles. The selected vehicles will store the contents

in their local buffers and carry them until they become in contact with the UAV where they

forward the buffered contents.

• To facilitate the communication between the UAV and passing by vehicles, the RSU manages

the mobility of the UAV such that the UAV can fetch contents from vehicles to update its

cache. Besides, the RSU tries to give sufficient contact time between the UAV and the vehicles

to receive full service.

• Once the UAV cache is loaded with contents, it is ready to participate in collaborating with

the RSU in delivering contents to the vehicles. Thus, the RSU will take into consideration the

ability of the UAV to serve the demands.

The RSU aims at satisfying the vehicles by serving the contents in whole before they leave the

considered area [86].

5.3.1 Content Model

We assume a library containing a particular number of contents (J), each of size Z j. The pop-

ularity of contents depicted by its access frequency which is assumed to be derived from a Zipf

distribution with a skewness parameter α which characterizes the distribution.

5.3.2 Communication Model

The RSU and the UAV are both assumed to be operating on the cellular spectrum and they

communicate with vehicles using cellular VANETs [97]. We assume to use Time-Division Multiple

Access (TDMA) where each time slot is allocated at most to one vehicle. Both infrastructures, RSU

and UAV, are assumed to be capable of transmitting simultaneously. That said, each one can only

communicate with vehicles within its coverage area. Typically, the communication channel between

RSUs and end users is usually modeled as large- and small-scale fading. However, in the context of

RSU where the RSU is situated such that there exists a clear link between transmitter and receiver

[98]. Thus, the communication link can be characterized by strong line-of-sight. Consequently, the
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channel gain between the RSU and vehicle i at time slot n can be written as follows:

hn
R→i = h0

(√
(Ln

i −wn)2

)−τ

,∀i ∈ In,∀n (5.1)

where h0 is the mean path gain at reference distance = 1m and τ denotes path loss exponent. Also,

wn is the UAV location at time slot n and Ln
i denotes vehicle i location at time slot n.

Then, the instantaneous throughput of the RSU downlink to vehicle i can be formulated as

follows:-

T n
R→i =W log(1+

hn
R→iPR

σ2 ),∀i ∈ In,n, (5.2)

where W is the available bandwidth, PR denotes the transmission power of the RSU, and σ is the

thermal noise power.

For the UAV, we use channel model for the UAVs in urban area where high-rise buildings and

other objects appear which could disturb the links between the UAV and receiving vehicles. Thus,

we assume that the link propagation is characterized by both Line-of-Sight (LoS) and non Line-of-

Sight (NLoS). Here, Sn
U→i ∈ {LoS, NLoS} indicates the state of the channel between the UAV and

vehicle i at time slot n. The probability of having LoS link adopted in this chapter is similar to [99].

Then, we can find the probability of channel states between the UAV and vehicle i.

Pr(Sn
U→i = LoS) =

1
1+η1e(−η2(θ

n
U→i−η1))

,∀i ∈ In,n, (5.3)

where η1 and η2 are constant parameters of the environment. θ n
U→i =

180
π

arctan(
zU

dn
U→i

) is the angle

degree between vehicle i and the UAV at n. Meanwhile, zU denotes the height of the UAV antenna

and dn
U→i is the horizontal distance between vehicle i and the UAV at time slot n. Moreover, the

probability of having NLoS can be found from Pr(Sn
U→i = NLoS) = 1−Pr(Si,n

U =LoS). Next, the

channel power gain for each vehicle i ∈ In at time slot n is computed as:

hn
U→i =


(Dn

U→i)
−β1 Sn

U→i = LoS,

β2(Dn
U→i)

−β1 otherwise,
(5.4)
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where Dn
U→i is the Euclidean distance between the UAV and vehicle i at time slot n; Dn

U→i =√
(dn

U→i)
2 + z2

U . β1 denotes the path loss exponent and β2 is the attenuation factor for NLoS. Thus

hn
U→i can also be rewritten as:

hn
U→i = p(Sn

U→i = LoS)(Dn
U→i)

−β1 + (1 − Pr(Sn
U→i = LoS))β2(Dn

U→i)
−β1 (5.5)

Then, the instantaneous throughput of the UAV downlink to vehicle i can be formulated as

follows:-

T n
U→i =W log(1+

hn
U→iPU

σ2 ),∀i ∈ In,n, (5.6)

where PU is the UAV transmission power. Likewise, we can find the uplink throughput between

vehicle i and the UAV at time slot n.

T n
i→U =W log(1+

hn
U→iPV

σ2 ),∀i ∈ In,n, (5.7)

where PV is the vehicle i transmission power. To maintain a free interference communication (i.e.,

the interference below a certain threshold), a minimum distance between the RSU and the UAV is

considered. Therefore, interference-free communication is considered in this work. In other words,

the trajectory of the UAV maintains a distance away from the RSU to keep the interference below

the threshold.

Also, in the case when they operate on the same spectrum, we assume that the UAV and RSU

are equipped with directional antennas where the coverage range of each one does not overlap with

that of the other or they communication quality should be greater than a certain threshold [100].

Next, we constrain the mobility of the UAV such that it does not get closer to the RSU. Also, as

this work focuses on providing service to a certain road segment, the UAV is assumed to move only

within the boundaries of that area.

Finally, the UAV position is determined by its trajectory where the UAV can move back, forth,

or hover in its place at each time slot. Let (wn+1−wn), the distance that UAV moves during one time

slot, denote the UAV speed and direction at time slot n. For example, if (wn+1−wn)> 0, the UAV

has moved forth, else, the UAV has moved back. The maximum UAV speed, Vmax, is predetermined
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and should not be violated.

5.4 Mathematical Formulation

This section formulates the system model described above mathematically. Let us define xn
i, j as

a scheduling variable for the wireless resources of the RSU, where:

xn
i, j =


1 vehicle i is served content j by the RSU at time slot n,

0 otherwise.

(5.8)

Likewise, we define yn
i for the UAV wireless resources:

yn
i =


1 vehicle i is served by the UAV at time slot n,

0 otherwise.

(5.9)

Then, we define vn
i, j for the uplink resources from vehicle i to the UAV for content j:

vn
i, j =


1 vehicle i is sending content j to the UAV at time slot n,

0 otherwise.

(5.10)

Now, we compute the total amount of content j served to vehicle i through the RSU at each time

slot n (Un
R→i, j).

Un
R→i, j = xn

i, j∆T n
R→i,∀i ∈ In,n ∈ N, j ∈ J, (5.11)

where ∆ is the length of one time slot and J is the library of contents. Similarly, we compute Un
i→U, j

which denotes the total amount to upload content j to the UAV through vehicle j during time slot n.

Un
i→U, j = vn

i, j∆T n
i→U , ,∀i ∈ In,n ∈ N, j ∈ J. (5.12)
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Then, we compute the amount served to vehicle i through the UAV during time slot n.

Un
U→i = yn

i ∆T n
U→i,∀i ∈ In,n ∈ N. (5.13)

Next, vehicle i is considered served if and only if it downloads its desired content fully from the

RSU, UAV, or both. Here si indicates whether vehicle i is served or not as follows:

si =


1 ∑

J
j=0Ci, jZ j ≤ ∑

N
n=0(∑

J
j=0(U

n
R→i, jCi, j)+Un

U→i),∀i ∈ I,

0 otherwise.

(5.14)

5.4.1 Backhauling via Vehicles

Here, we suppose that the UAV does not have the requested contents. Therein, we assume that

the UAV has a certain cache capabilities that can be filled with contents until fullness.

Let us define ζ n
i, j ∈ {0,1} as an indicator holding value 1 if content j on vehicle i is fully fetched

by the UAV before or at time slot n and 0 otherwise.

ζ
n
i, j =


1 Z j ≤ ∑

n
n′=0Un′

i→U, j,∀i ∈ In,n, j ∈ J,

0 otherwise.

(5.15)

Next, we introduce mn
j ∈ {0,1} as a binary variable where it is equal to 1 if content j is available

on the UAV at time slot n and 0 otherwise. The value of mn
j has three cases; it is either equal to 1

when the content is just fetched or 0 if it is removed in the previous time slot. The third case is that

it remains the same if no change occurs on it.

mn
j =


1 ∑

I
i=0 vn

i, jζ
n
i, j = 1,∀n, j ∈ J,

0 f n−1
j = 1,

mn−1
j otherwise,

(5.16)

where f n
j ∈ {0,1} is a decision variable that equals to 1 if content j is decided to remove at the end

of time slot n and 0 otherwise. Next, we introduce ŝi, j ∈ {0,1} which holds value of 1 if vehicle i

106



has downloaded the entire content j from the RSU only.

ŝi, j =


1 Z j ≤ ∑

N
n=0Un

R→i, j,∀i ∈ I, j ∈ J,

0 otherwise,
(5.17)

Now, we can write the optimization problem as follows:

max
x,y,v, f ,w

I

∑
i=0

si

J

∑
j=0

Ci, jZ j (5.18a)

s.t.
N

∑
n=0

yn
i ≤ 1, i ∈ In, (5.18b)

N

∑
n=0

J

∑
j=0

xn
i, j ≤ 1, i ∈ In, (5.18c)

N

∑
n=0

J

∑
j=0

vn
i, j ≤ 1, i ∈ In, (5.18d)

vn
i, j ≤ ŝi, j,∀n, i ∈ In, j ∈ J, (5.18e)

yn
i ≤

J

∑
j=0

mn
jCi, j,∀n, i ∈ In, (5.18f)

J

∑
j=0

mn
jZ j ≤ η ,∀n, (5.18g)

f n
j ≤ mn

j ,∀ j ∈ J,n. (5.18h)

|wn+1−wn| ≤Vmax,∀ j ∈ J,n. (5.18i)

|wn−ϖ | ≥ Λ,∀n. (5.18j)

Since we assume TDMA as transmission access then only one transmission is allowed at a time as in

Constraint (5.18b) and (5.18c). Constraint (5.18e) limits vehicle i upload transmission for the UAV

to the contents that has been downloaded fully from the RSU. Constraint (5.18f) is added to ensure

vehicle i is not being served through the UAV if the latter does not possess the requested content.

Constraint (5.18g) prevents violating the limited cache capacity of the UAV where η denotes UAV

cache size. Also, constraint (5.18h) states that a content cannot be removed from the UAV cache if it

does not exist in the cache beforehand. Constraint (5.18i) prevents violating UAV max speed. And
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finally, Constraint (5.18j) restrains UAV mobility to not cross a certain point such that no overlap

occurs between the coverage ranges of the RSU and UAV where ϖ and Λ denote RSU position and

the minimum distance between the two entities, the RSU and UAV, respectively.

Now, if we look at the objective function with its constraints, we can see that the presented

problem contains several binary variables alongside a real-value decision variable wn. In addition,

our objective function is non-convex owing to the UAV trajectory. Hence, our problem is MINLP

which is known to be difficult to solve. Furthermore, there are two unknown parameters; Ci, j and

Ln
i . These two parameters belong to the vehicles and in such context, its is impractical to assume the

upcoming vehicles and their demands are given beforehand. Despite that there are some heuristic

methods to solve such types of problems, they are still inefficient as they cannot considers all the

possible scenarios [101]. Therefore, we suggest to use DRL in order to learn the environment

aspects and solve our presented problem. The complete implementation of our solution approach is

explained in the next section.

5.5 Solution Approach

To solve the given problem, we design DTDRL (based on DRL) besides cooperative and full-

service content delivery algorithms. The problem is formulated as MDP (similar to Section 3.4.1)

where the state, action, reward, are defined as follows:

• State S: The state at time slot n, sn ∈ S, is defined as:

sn = [wn,Ln,Rn,Cn,Dn,Un,Kn], (5.19)

where wn denotes the current position of the UAV. Ln is a vector that contains the position of

each vehicle at time slot n. Rn is a vector that contains the content requested by each vehicle

at time slot n. Dn is a vector indicates how much each vehicle has downloaded at time slot n.

Un is a vector indicates how much each vehicle has uploaded to the UAV at time slot n. Kn is

a vector the contains the indices of cached contents on the UAV at time slot n.

• Action A: The action taken at time slot n, an ∈ A, is composed of two sub-actions; an
1 and an

2.
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The first sub-action, an
1 ∈ {0,1}, is for the RSU and it specifies whether to continue or cut

the service for the vehicle chosen by Algorithm 10. We design Algorithm 10 to reduce the

action space where this algorithm selects a vehicle to serve each time the RSU has no vehicle

scheduled to serve3. However, it is still the agent responsibility to decide whether to continue

or stop the service for the scheduled vehicle through an
1. The second sub-action, an

2, is an

integer number to select one velocity out of a list of different velocities for the UAV. Hence,

The action space is of size 2Y where Y denotes the total discrete UAV velocities including

hovering.

• Reward: The immediate reward, rn, is the sum of positive rewards due to serving vehicles

sufficiently. Here, the decision maker/agent selects vehicle i which lies in the coverage region

of the RSU to be served. Vehicle i must still be in need for content at time slot n. Similarly,

the solution approach also chooses vehicle within UAV coverage to transmit or receive (if

the UAV has the required content cached). For the sake of simplicity, we assume that each

vehicle can only download one content. Thus, the immediate reward can be written as:

rn =


∑

J
j=0Ci, jZ j ∑

I
i=0 ∑

J
j=0Ci, jZ j ≤∑

n
n′(∑

J
j=0(U

n′
R→i, jCi, j)+Un′

U→i),

0 otherwise.

(5.20)

Intuitively, we may design random or greedy policy. For example, the agent probably selects

vehicles to serve at random or based on the strength of the communication channel between the

RSU and vehicles to be served. However, such policies may lack substantial benefits owing to the

complexity of the proposed system. Specifically, concerning the cooperation between the RSU and

UAV is overlooked in such basic policies. Thereby, deep reinforcement learning can better explore

and build knowledge about the environment and then exploit based on the enhanced policy it has

developed throughout the learning phase.

As illustrated in algorithm 9, DTDRL interacts with the environment to collect the samples

through several iterations and reveal the actual rewards. First, DTDRL initializes random sampling

3This algorithm approximates the solution and without it, the agent will need to learn for longer time. The algorithm
also helps the agent to provide full content service in a prompt way rather than randomly schedule vehicles.
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policy and value function for the neural networks. Then, the agent starts to interact with the envi-

ronment through several iterations. In order to achieve dual task, the agent splits the the action an

into two sub actions, an
1 and an

2, using division with floor operations. By dividing the action an to the

Y , the agent can work out the first action which corresponds to the RSU wireless scheduling. Next,

the agent take the division reminder of an to Y which gives the second action which corresponds

to the UAV velocity. The RSU decides whether to serve the selected vehicle ζ or not based on an
1.

The vehicle ζ is chosen by Algorithm 10. This algorithm selects a vehicle which recently entered

the area and thus has the longest time to remain in contact with the RSU. If the selected vehicle is

fully served or the agent decides to cut service from it, by setting an
1 = 1, another vehicle is selected

based on the same policy. When the selected vehicle is fully served, the agent is rewarded based

on that service. Likewise, the UAV adjusts its position based on an
2 and then schedules the wireless

resources based on Algorithm 11 and 12. If the selected vehicle to be served through the UAV has

received full service, this is also considered as step reward.

Concerning the uplink, as laid out in Algorithm 11, the UAV checks each existing vehicle and

selects the one which satisfies its criteria. The vehicle should hold a popular content which is not

cached on the UAV before. The content popularity is measured based on most frequently used

(MFU). If the cache has no space to cache a content, then it can replace contents based on least

recently used, however, the fetched content has to be more popular. The complexity of Algorithm

11 is O(∂ |J|) where ∂ represents the maximum number of vehicles present simultaneously in the

road segment and |J| is the number of contents in the library. The value of ∂ depends on the road

density and, in reality, ∂ � I.

For the downlink, the UAV is committed to serve a vehicle as long as it resides within the

coverage area of the UAV and not fully served. The UAV also checks if it has already scheduled

a vehicle to serve previously so it continues the service if that vehicle still satisfies the conditions
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Algorithm 9: DTDRL

1 Inputs: L, C, N, Learning Rate, γ , ε .
2 Outputs: The dual policy of RSU resource allocation and UAV velocity control.
3 Initial policy π with random parameter θ and threshold ε

4 for each episode k ∈ {0,1,2, ...} do
5 for n : {0,1,2, ...,N} do
6 Observe state Z j,wn,Ln

i ,Ci, j,Un
i ,D

n
i ,∀i ∈ In.

7 Select action an from πθold

8 Extract first action, an
1 = b

an

Y c
9 Extract second action, an

2 = an%Y
10 Serve vehicle that is selected by an

1 via the RSU.
11 if an

1 = 1 then
12 Set ζ = None

13 Call Algorithm 10
14 if the selected vehicle is fully served at n then
15 Add the reward to rn based on (5.20).

16 Move the UAV according to wn+1 = wn +an
2.

17 if UAV is outside the road segment then
18 Keep the UAV at the current position.

19 Set vn
i, j ∈ {0,1} based on Algorithm 11.

20 Set yn
i ∈ {0,1} based on Algorithm 12.

21 if the selected vehicle is completely served then
22 Calculate step reward as in Eq (5.20).

23 if vehicle i content is fully received by the UAV then
24 if vehicle i content needs space then
25 Remove other content(s) as in 5.5-C.

26 Store vehicle i content in the UAV cache.

27 Compute the advantage function.
28 Optimize the clipped objective.
29 θold ← θ .

Algorithm 10: RSU to Vehicle Service

1 Inputs: n, Z j, Ri, j.
2 Outputs: ζ as the chosen vehicle to commit serving.
3 if ζ = None OR Vehicle ζ has left the RSU coverage OR fully served then
4 Set ζ = None
5 for each vehicle i within RSU coverage at time slot n do
6 if vehicle i is not completely served and has the longest remaining time to stay

within the RSU coverage then
7 Set ζ = i
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Algorithm 11: Popularity-Based Content Fetching (PBCF)

1 Inputs: n, Z j, Ci, j.
2 Outputs: Π as the vehicle to fetch from at n.
3 Set Π = None.
4 Sort cache items by popularity
5 for ∀i ∈ I where ai < n < di do
6 if i’s content does not exist in the UAV cache and the content is not fully fetched

yet then
7 Compute the total size of cached contents on the UAV.
8 if the vehicle i content cannot fit in the cache then
9 Define R = 0 as the amount to remove in order to cache the new content.

10 for each content j : kn
j = 1 do

11 if vehicle i content has higher MFU value than Π and j then
12 Set R = R+Z j

13 if vehicle i content size ≤ R then
14 Set Π = i
15 break

16 else
17 break

18 else
19 if Π’ content is less popular than i’s then
20 Set Π = i
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above. However, if no vehicle has been selected previously or the service terminated, the UAV

starts to look for another vehicle to serve. The UAV gives priority to vehicles which have already

downloaded some of their requests. In such way, the UAV will enable the cooperation with the RSU

in order to fulfill vehicles needs. The UAV also takes into consideration the availability of requested

contents in its cache as it cannot serve vehicles that it does not hold along their requests in the first

place. The complexity of Algorithm 12 is O(∂ ).

Algorithm 12: Committing Content Service (CCS)

1 Inputs: n, Z j, Ri, j, G.
2 Outputs: G as the chosen vehicle to commit serving.
3 if G = None OR Vehicle G has left the UAV coverage OR fully served then
4 Set G = None
5 for each vehicle i within UAV coverage at time slot n do
6 if vehicle i requested a content that is cached on the UAV, not completely served,

has more content amount downloaded previously, and the remaining time slots are
enough to receive the whole content then

7 Set G = i

Finally, the cache replacement policy used in this work is as follows. Whenever the cache is full

and a new content is fetched, the UAV starts freeing up space by removing contents which are less

popular until enough room is made to store the recently fetched content.

5.6 Evaluation

5.6.1 Simulation Setup

For the Deep reinforcement learning, 3 linear layers are used with tanh as activation function for

the middle layers and softmax for the output layer. Internal layers contain 64 units each and Adam

optimizer is incorporated to minimize the loss function. Learning rate is set to 0.002, γ to 0.08, and

clip to 0.02. On the other hand, we use SUMO to mimic the vehicular environment with a road of 1

Km. The key simulation parameters are listed in table 5.1.
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Table 5.1: Simulation parameters in cooperative UAV-RSU framework

Parameter Value

RSU and UAV coverage range 200 m

∆ 1 sec [77]

Number of Contents 20

Bandwidth 40 MHz [84]

Zipf (α) 1.5

Pi,n
U→V , Pi,n

V→U 10 W

UAV discrete velocities [0, 10] m/s

Inter-arrival time of vehicles [0.5-3] s

UAV altitude 20m [102]

η1,η2 (for dense urban area) 11.95, 0.136

To the best of knowledge, there is no work in the literature that targets similar problem. Thus,

we use baseline methods similar to [90] to compare with our solution approach.

• NonCoop: Non-cooperative method where the RSU and UAV aim to maximize their own

gain independently. That is, the RSU greedily selects vehicles to serve such that it can fully

satisfy and generate revenue. Similarly, the UAV does the same and it is assumed stationary.

• No UAV: As its name suggests, there is no UAV while the RSU alone will try to maximize

the revenue. This will let us understand how influential the UAV is on the overall system

performance.

• Random: The RSU schedules resources to serve vehicles randomly.

5.6.2 Evaluation

We conduct five experiments to examine the various aspects of the proposed system.

DTDRL Convergence

as DTDRL encounters more observation samples and takes actions, it can learn to perform

better as demonstrated in Fig. 5.2. One can observe that DTDRL converges after approximately
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1000 iterations.

Figure 5.2: DTDRL convergence.

Vehicle Arrival Rate

In order to measure the impacts of high dense and low dense road conditions, we vary the arrival

rate and compute the ratio of total vehicles served. In Fig. 5.3, we plot the results of various arrival

rates ranging from 0.25 to 0.5. In this experiment, we set content size between 1.8 to 2.2Gb and

cache size to 18Gb. As it can be observed, the percentage of vehicles served goes down as the arrival

rate increases. In fact, as the density of the road increases, the requests will increase and the RSU

and UAV will be less able to serve all the demand. One can also notice that our solution approach

has significant advantage over the baselines. This advantage becomes more apparent as the arrival

rate increases. That is, our solution approach can better adapt to a highly dense environment by

enabling efficient cooperation between the UAV and the RSU. Besides, the mobility of UAV in

DTDRL has a great impact on the system performance.

At arrival rate of 0.25 veh/sec, our proposed DTDRL attains 10% more vehicles served than the

second highest which is NonCoop. This performance gap grows up to reach above 15% at arrival

rate of 0.5 veh/sec. On the other hand, there is a considerable difference between NonCoop and No

UAV. This difference is due to the existence of the UAV; i.e., the UAV can increase the performance

by around 15%. In the meantime, Random seems to provide poor solutions as it cannot serve most

of the vehicles due to the interrupted service provided.
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Figure 5.3: Service rates of vehicles for different vehicle arrival rates

Content Sizes

One of the key factors that impacts the performance of the system is the size of contents. When

the content sizes are small, the RSU and UAV can readily serve them completely to the requesters.

The cooperation becomes more necessary as the content size increases where the RSU needs assis-

tance from the UAV to pursue the service until completion. In light of above, we conduct this study

where we vary the content size from 1.4 to 2.2Gb. Note that arrival rate of vehicles is set to 0.33

veh/sec and cache capacity can store at most 10 contents.

As shown in Fig. 5.4, with small contents, DTDRL and NonCoop almost achieve similar per-

formance since the cooperation and UAV mobility is less important. However, the superiority of

DTDRL appears as the content size increases. We can see that at content size of 2.2 Gb, the differ-

ence becomes around 15%. Meanwhile, No UAV obtains less gain by around 50% to 40% vehicles

served. Random, as usual, comes in the last place and the performance sharply decreases with

content size.

Figure 5.4: Service rates of vehicles for various content sizes.
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Cache Capacity

the cache unit capacity plays key role in the proposed system as it impacts the capability of the

UAV to contribute in serving vehicles. A UAV with small cache unit can store only few contents

and consequently serve less number of vehicles. While a UAV with larger cache unit would more

effectively cooperate with the RSU in delivering contents. In this study, we vary the cache unit

size in the range of 4 to 20 Gb while content size is set to 2Gb and arrival rate of vehicles is 0.33

veh/sec. As illustrated in Fig. 5.5, larger cache unit results in higher overall performance. At

20Gb, it attains 15% gain higher than NonCoop. Meanwhile, No UAV is not impacted by the cache

capacity changes since it does not include a UAV in the first place. One can also notice that even

Random experiences better performance with bigger cache units.

Figure 5.5: Service rates of vehicles for different cache capacities.

Content Popularity Distribution

the popularity distribution characteristics is, in general, very critical in cache based systems as

it determines the average number of hits each content will receive and the shape of hits distribu-

tion. Thus, in this study we are going to vary the skewness parameter, α , of Zipf and observe the

behaviors of the system. Hence, we change α between 1.1 to 1.7. At 1.1 the hits will be more fairly

distributed among contents while in 1.7 the hits will be concentrated on the top popular contents.

As seen in Fig. 5.6, when α is as small as 1.1, the service provided is relatively limited. This

is due to that the UAV can less contribute in serving vehicles as more requests are not cached. In

this experiment we set the content size to 2 Gb and cache unit to 10Gb while arrival rate is 0.33
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veh/sec. However, as α increases, one can observe that more vehicles are being served by DTDRL.

As α goes higher, popular contents will receive higher requests as well. Thus, if those contents

are cached, the UAV will be able to serve them. We can notice that our proposed method makes

most benefit of this feature while the other methods achieve very limited gain. That is, our method

can better take advantage of the cooperation and the existence of the UAV and offload more traffic

volume from the RSU.

Figure 5.6: Service rates of vehicles for Zipf skewness values.

UAV mobility

needless to say, UAV trajectory has profound influences on the overall performance. Thus, in

order to study the performance of our solution approach in terms of steering the UAV, we conduct a

study where we compare with three different well-known counterparts.

• SUAV: Stationary UAV similar to NonCoop.

• RW: Random walking UAV.

• CW: Constant walking UAV where the UAV moves at the maximum speed. Once the UAV

reaches either end of its designated coverage segment, it reverses the direction.

In this experiment, we set cache size to 10Gb, content size to 2Gb, and vehicle arrival rate to

0.3 veh/sec. Additionally, we perform two tests, one with content updates through vehicles and the

second one without updates. In the latter, we assume there are random contents stored in the UAV

cache and will not be updated. Through this, we can evaluate the impacts of the proposed fetching

methods.

118



In Fig. 5.7, we present the contributions of the UAV in serving vehicles. This is computed

as the total gain achieved through the UAV over the total gain. As demonstrated in the bar chart

of Fig. 5.7, our proposed method generates much higher gain from the UAV than using a UAV

with static cache. In general, it is very noticeable that DTDRL contributes higher than the other

methods at 35% of total vehicle service and about 42% better than SUAV. SUAV, in its turn, comes

in the second place with slightly better performance than RW. Meaning, that a stationary UAV can

better establish stable connection with vehicles than other methods that do not take smart decisions.

We can also observe that RW has slightly better performance than CW due to that we use uniform

random walking where the UAV circulates around the center of its coverage. That will allow the

UAV to establish opportunistically longer contact times with some vehicles. In contrary CW keeps

the UAV moving far from the center of the road and thus the connection will experience several

interruption events.

Moreover, one can also observe that if the UAV does not update its cache through fetching

contents, there will be significant loss. Our DTDRL demonstrates the highest utility of the fetching

with more than 40% increase in the UAV contribution when fetching contents from the passing

vehicles. Meanwhile, the other UAV mobility methods show only limited enhancement with content

updates.

Figure 5.7: Comparison of UAV shares in serving vehicles for different trajectory techniques.
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5.7 Summary

In this chapter, we presented a cooperative framework where a RSU and a UAV, equipped with

a cache capability, cooperate to support content delivery service in vehicular networks. DTDRL

algorithm is exploited to learn the vehicular environment and its dynamics in order to control the

scheduling and caching mechanism. Simulation results show that the cooperation between the two

infrastructures is very lucrative in terms of number of requests satisfied. The numerical results also

demonstrate that the mobility of the UAV plays a key role in the overall performance. In addition,

this work presents a new technique to populate contents on a flying UAV cache via passing vehicles

and show how useful it is to leverage such technique. Finally, we demonstrate that the DTDRL

approach achieves the highest performance compared to the other counterpart methods.
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Chapter 6

Intelligent Surfaces to Enable Vehicular

Communications in Dark Zones

6.1 Introduction

In the first four contributions discussed in Chapters 2, 3, 4, and 5, various scenarios have been

studied. However, none of these works has addressed the issue of non-line-of-sight (NLoS) that ap-

pears in urban environments. Technically speaking, in many areas where large objects, i.e., high-rise

buildings or trucks, appear, it is very probable that wireless links between terrestrial infrastructures

and vehicles face frequent disturbances. Hence, the service quality falls below the desirable levels

and sometimes for extended periods of time. Moreover, certain regions, where obstacles severely

block Line of Sight (LoS), are permanently out of coverage which, here, are dubbed as dark zones.

Expanding wireless coverage to unserved areas translates to dramatic raise in costs. Meanwhile,

recently, reconfigurable intelligent surfaces (RIS) have been recognized as a key promising tech-

nology for achieving cost- and energy-efficient communications via smartly reshaping the wireless

propagation environment [103]. RIS is composed of a number of passive low-cost elements, each

of which has the ability to independently tune the phase-shift of the incident radio waves. By ade-

quately configuring the phase-shifts with the assistance of the RIS controller, the reflected signals

can be constructively added [104]. Thus, the received signal strength can be improved at the point

of interest.
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Consequently, by leveraging RIS, an indirect LoS wireless communication link can be provided

for vehicles travelling in a dark zone; i.e. a road where large buildings block the LoS of the Road

Side Unit (RSU) [105]. It is assumed that those vehicles are requesting service and the RSU is inter-

ested in maximizing the quality-of-service (QoS) for the passing by vehicles. To this end, the RSU

operator may need to jointly optimize the RSU resource scheduling and RIS element coefficients

(passive beamforming) such that the minimum average bit rates of vehicles is maximized. In addi-

tion, despite that a few works have addressed RIS phase-shift configuration in vehicular networks,

only non-practical phase-shift RIS case is considered where RIS elements can have continuous ele-

ment tuning. However, due to limited hardware, phase-shift elements of RIS can only have limited

number of values [106, 107].

Leveraging RIS in highly dynamic environments similar to vehicular communications implies a

multitude of challenges. First, vehicles constantly change their position, hence, the distance between

the RIS and vehicles is varying over time and that would highly affect the channel quality between

them. Second, the RSU has limited resources in terms of the number of available wireless channels.

Thereby, the RSU needs to optimize the radio scheduling while considering the mobility of vehicles

which makes the problem more challenging especially when accounting for multi-user scenarios

[108]. Third, vehicles move at different and varying speeds, that is, vehicles have various residence

times. Considering the same service amounts for all the vehicles passing by the dark zones will

deteriorate the performance of low speed vehicles. Subsequently, maximizing the minimum average

bit rates provided to navigating vehicles regardless of their sojourn times should be considered.

Fourth, the arrival times and speed of upcoming vehicles are not available, in practice, upfront to

the RSU operator which makes the problem further more intricate. Finally and most importantly,

discrete RIS phase-shift matrix configuration is a well-known problem which is generally hard to

be solved especially in a context where the phase-shift matrix of the RIS together with wireless

scheduling are jointly optimized.

To the best of our knowledge, this work is the first to consider practical/discrete RIS in vehicular

networks where the mobility of vehicles together with the environment uncertainties are addressed.

To this end, to tackle the aforementioned challenges, an intelligent solution approach is proposed,

namely Deep Reinforcement Learning, along with effective optimization technique based on block
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coordinate descent (BCD). The contributions of this work can be summarized as follows:

• A system model is presented that leverages discrete phase-shift RIS technology to extend

and enhance RSU communication. Precisely, a RSU provides service for vehicles passing

through a blocked zone indirectly by employing a RIS where the mobility of vehicles and

future arrivals are considered.

• We investigate the joint vehicle scheduling and passive beamforming in RIS-empowered ve-

hicular communication. This framework is formulated as an optimization problem with the

goal of maximizing the minimum achievable bit rate for the vehicles passing through the dark

zone. However, the formulated problem ends up to mixed integer non-convex problem, which

is known to be difficult to solve.

• In order to tackle this challenge, we decouple the formulated problem into two sub-problems;

wireless scheduling sub-problem and phase-shift matrix optimization sub-problem. Then, we

resort to solve the first sub-problem via Deep Reinforcement Learning (DRL). To do so, the

Markov Decision Process (MDP) is defined to be solved via DRL algorithm. Further, we

propose BCD to solve the second sub-problem. We also demonstrate the robustness of our

BCD algorithm. And, the computational complexity of the proposed algorithms are analyzed.

• Two case studies are carried out. The first one is to investigate how recent vehicular technolo-

gies can enable RIS integration with vehicular communications through obtaining precise

vehicle positioning. Also, another study explores the area of RIS placement to optimize the

overall network performance.

• Several extensive simulation based experiments are conducted using Simulation of Urban

MObility (SUMO) to validate the effectiveness of our solution method and to compare with

counterpart methods.

Notations: Vectors are denoted by bold-face italic letters. diag(x) denotes a diagonal matrix

whose diagonal element is the corresponding element in x. CM×N denotes a complex matrix of

M×N. For any matrix M, MH and MT denote its conjugate transpose and transpose, respectively.

Pr(A | B) denotes the probability of event A given event B.
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6.2 Related Work

Lately, high research efforts have been devoted towards investigating the introduction of the

RIS to vehicular networks. In [109], the authors studied resource allocation of RIS-aided vehicular

communications where they aim to maximize vehicle to base station link quality while guaranteeing

vehicle to vehicle communications. The authors of [110] provided analysis for outage probability

in RIS-enabled vehicular networks. This paper derives an expression of outage probability showing

that RIS can reduce the outage probability for vehicles in its vicinity. The analysis also proves that

higher density roads increase outage probability since passing vehicles can block the communication

links. In [111], the authors proposed RIS-aided vehicular networks while considering two scenarios

to estimate the channels. The first one is by assuming fixed channel estimation within a coherence

time. While the second one neglects the small scale fading based on the fact that vehicular positions

can be realised in advance. [112] considered constraint discrete phase-shift RIS with two challenges;

channel estimation and passive beamforming.

Another body of works on RIS deals with practical considerations of discrete RIS elements.

In [107], the authors introduced a finite number of phase-shift elements of RIS where the power is

minimized while maintaining certain signal-to-interference-plus-noise ratio threshold. [113] proved

how discrete phase-shift RIS is able to achieve high performance with minimum required number

of phase quantization levels. This work shows that 3 levels are enough to attain the full diver-

sity order. In addition, the authors of [114] also worked on practical RIS where multiple users

are served in parallel. The objective of this work is to maximize the sum rate where the contin-

uous digital beamforming and discrete RIS beamforming are done. [115] proposed RIS to assist

multiple-input multiple-output (MIMO) systems with 2-bit phase-shift elements. In [116], the au-

thors proposed utilizing RIS in cognitive radio systems yielding improved spectral efficiency and

energy efficiency. [117] maximized the achievable sum rate of multi-users while the RIS sends in-

formation via controlling the reflecting modulation. [118] proposed a new location-based RIS where

users’ locations are not perfectly known. Hence, the angle between the users and RIS are estimated

to configure the beams of the RIS and trasmitter. In addition, some other works also leverage RIS

for security purposes, for example [119] suggested that RIS can help in alleviating security breaches

124



related to eavesdropping. In [120], the authors studied the security issues related to eavesdropping

attacks under different circumstances including active and passive relays (RIS).

As opposed to the previous papers, this work accounts for vehicles mobility where vehicles

constantly change their position with time. Additionally, as time progresses, new vehicles arrive

to the concerned area while others depart. This process of birth-and-death vehicles brings many

uncertainties to the context which are hard to cope with. Thus, we aim to find a solution approach

that can handle the dynamic nature of this context besides anticipating the upcoming arrivals and

other hidden information about the environment. Accounting for these two objectives will help the

RSU-RIS to better decide when and how to serve vehicles during their residence time. Moreover,

unlike many existing works in the literature, we propose to use practical/discrete RIS.

6.3 System Model

We consider a particular road segment with no direct connectivity via a RSU as depicted in

Fig. 6.1. The line of sight (LoS) is assumed to be blocked by an obstacle, i.e., a high building

[121]. We also consider a predefined time horizon of length N which encompasses several smaller

time slots, [0,1, ..,n, ...,N]. Meanwhile, we assume a flow of vehicles indexed by v is navigating

and requesting communication services from the RSU located at (xR,yR,zR) where xR,yr are the

Cartesian coordinates and zR is height of the infrastructure. The vehicles are moving at different

and varying speeds, therefore, at each time slot n ∈ N, vehicle v location is denoted by (xn
v ,y

n
v ,zv).

In order to provide uninterrupted service, the network operator leverages an RIS equipped with M

elements, which is situated on a building and possesses a strong LoS with both the moving vehicles

passing by the dark zone and the RSU. Here, we denote the RIS location by (xI,yI,zI). The RSU

operator aims to satisfy the vehicles by providing favourable quality of service.

The RSU is assumed to have a number of channels C to be scheduled for the vehicles [122]1. In

case when there are several vehicles present, the RSU has to determine how to schedule its resources

and tune the RIS elements. Further, due to the mobility nature of the vehicular environment the

distances between the RIS and vehicles change as time progresses. Meaning, the network operator

1For simplicity, we assume each vehicle can only be served via one channel.
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Figure 6.1: System Model

has to take into consideration that link quality degrades as vehicles moving far from the RIS.

Unlike prior work which deals with continuous phase-shift RIS, we assume a realistic scenario

of a RIS where phase-shift coefficients are discrete. This scenario is more practical since it accounts

for the real-world hardware limitations. However, discrete RIS is more challenging due to the addi-

tional constraint of discrete phase-shift. Moreover, the RIS consists of M elements, [1, ...,m, ...,M],

each of which is controlled via b bits. Hence, each one can be tuned to one of 2b different angles.

6.3.1 Communication Model

In the proposed model, we consider a uniform linear array (ULA) RIS [121]. In addition, similar

to the RSU, the RIS is assumed to have a certain height, zI . The communication links between RSU

and RIS and that between RIS and vehicle v are assumed to have a dominant line-of-sight (LoS).

Thus, these communication links experience small-scale fading which are modeled as Rician fading

with pure LoS components [123, 124]. Consequently, the channel gain between the RSU and RIS,

hI,R ∈ CM×1, can be formulated as follows.

hI,R =
√

ρ(dI,R)−α︸ ︷︷ ︸
path loss

√
K

1+K
h̄LoS

I,R︸ ︷︷ ︸
Rician fading

, (6.1)
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where ρ is the average path loss power gain at reference distance d0 = 1m. Also, K is the Rician

factor and h̄LoS
I,R is the deterministic LoS component which can be defined as follows

h̄LoS
I,R =

[
1,e− j 2π

λ
dφI,R , ...,e− j 2π

λ
(M−1)dφI,R

]T

︸ ︷︷ ︸
array response

,∀n ∈ N, (6.2)

where dI,R is the Euclidean distance between the RIS and RSU. φI,R =
xI− xR

dI,R
is cosine of the angle

of arrival of signal from RSU to RIS. d is the separation between RIS elements and λ is the carrier

wavelength.

Similarly, we can compute the channel gain between the RIS and vehicles which is denoted by

hn
I,v ∈ CM×1 as in Eq (6.3).

hn
I,v =

√
ρ(dn

I,v)
−α︸ ︷︷ ︸

path loss

√
K

1+K
h̄n LoS

I,v︸ ︷︷ ︸
Rician fading

,∀v,n ∈ N, (6.3)

h̄n LoS
I,v =

[
1,e− j 2π

λ
dφ n

I,v , ...,e− j 2π

λ
(M−1)dφ n

I,v

]T

︸ ︷︷ ︸
array response

,∀v,n ∈ N,
(6.4)

where dn
I,v is the euclidean distance between the RIS and vehicle v at time slot n and φ n

I,v =
xI− xn

v

dn
I,v

.

Finally, we assume the channel is completely blocked between the RSU and vehicles in that zone

similar to [121]2.

Denote the phase-shift matrix of the RIS in the nth time slot as θ
n = diag{e jθ n

1 , ...,e jθ n
M}, where

θ n
m is the phase-shift of the mth reflecting element m = 1,2, ,M. Due to the hardware limitations, the

phase-shift can only be selected from a finite set of discrete values. Specifically, the set of discrete

values for each reflecting RIS element can be given as θ n
m ∈Ω = {0, 2π

Q , . . . , 2π(Q−1)
Q }, where Q = 2b

and b is the number of bits that control the number of available phase-shifts for the RIS elements.

Hence, the signal to noise ratio (SNR) is:

λ
n
v =

P|hH
I,Rθ

nhn
I,v|2

σ2 ,∀v,n ∈ N, (6.5)

2In this work, we assume that the channel gain between RIS and vehicles is fixed within one time slot.
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where P is the transmission power of the RSU and σ2 is the thermal noise power.

Then, we can compute hH
I,Rθ

nhn
I,v based on Eq (6.2) and Eq (6.3).

hH
I,Rθ

nhn
I,v =

ρ
K

K +1√
(dn

I,i)
α
√

(dI,R)α

×
M

∑
m=1

e j(θ n
m+

2π

λ
(m−1)dφ n

I,v−
2π

λ
(m−1)dφI,R),∀v,n ∈ N. (6.6)

Now, instantaneous bit rate given to each vehicle is calculated as.

ln
v = jn

v log2(1+λ
n
v ),∀v,n, (6.7)

where jn
v ∈ [0,1] is a decision variable to schedule the resources of RSU to vehicle v at time slot n.

Hence, jn
v = 1 means vehicle v is served at time slot n and 0 otherwise. Now, the average bit rate

each vehicle receives throughout its sojourn time can be computed by the following.

zv =
1

Hv

N

∑
n=1

ln
v ,∀v, (6.8)

where Hv is the residence time of vehicle v in the dark zone. Next, we formally define our problem

as:

Definition 1 Assume a flow of vehicles travelling through a dark zone. The vehicles are demand-

ing connection to a remote RSU. Meanwhile, a RIS is deployed at specific point, i.e., on a building,

where it possesses a strong LoS with the RSU and the dark zone. The RIS has a certain number of

elements where the operator can tune their coefficients to provide service for vehicles in order to

enhance channel gains and improve bit rates. During a certain time horizon (encompassing multi-

ple time slots), what is the best RSU wireless scheduling and phase-shift configuration for the RIS

elements such that the minimum average bit rate provided to vehicles is maximized.

6.4 Mathematical Formulation

In this section we formulate the problem of RSU wireless scheduling and RIS element tuning

mathematically. Let Av and Dv denote the arrival time and departure time of vehicle v, respectively.

The notations used in this corresponding are listed in Table 6.1.
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Table 6.1: Mathematical notations in RIS enabled vehicular communications

Parameters

xI,yI,zI RIS location

xR,yR,zR RSU location

xn
v ,y

n
v ,z

n
v Vehicle v location at time slot n

N Time horizon consists of smaller time
slots.

V n Set of available vehicles during time
slot n

C Number of RSU channels

Hv Vehicle v residence time

φI,R Angle of arrival at RIS from RSU

φ n
I,v Angle of arrival between the RIS and

vehicle v at time slot n

α Path loss exponent

P Transmission power of the RSU

ρ Median of the mean path gain at refer-
ence distance = 1m

σ Thermal noise power

b Number of control bits for the RIS ele-
ments

Q Number of RIS phase-shift patterns

Variables

jn
v 1: if vehicle v is scheduled for service

by the RSU at n and 0 otherwise

θ n
m RIS element m phase-shift angle at

time slot n
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The optimization problem alongside the objective function can be mathematically written as

follows. For the sake of clarity, let Θ = {θ 1,θ 2, . . . ,θ N} and J = { jn
v ,∀v,n ∈ N}.

max
Θ,J

{minzv} (6.9a)

s.t.
V n

∑
v=1

jn
v ≤C,∀n ∈ N, (6.9b)

jn
v ∈ [0,1],∀n ∈ N,v, (6.9c)

jn
v ≤max(n−Av,0),∀n ∈ N,v, (6.9d)

jn
v ≤max(Dv−n,0),∀n ∈ N,v, (6.9e)

θ
n
m ∈Ω,∀n ∈ N,m ∈M. (6.9f)

Here, the objective function, Eq (6.9a), is max-min which translates to maximizing the minimum

average bit rate. Constraint (6.9b) ensures that the number of channels scheduled to vehicles is no

more than that available at the RSU. Constraint (6.9c) allows vehicles to be served via one channel

only. Constraints (6.9d) and (6.9e) make sure that vehicle can only be served via RIS while it is

within the area of the dark zone. Finally, constraint (6.9f) restrains the number of phase-shift values.

Now, the problem is non-convex due to the discrete RIS element phase-shift optimization. Also,

the phase-shift matrix is hard to be solved. For instance, if the phase-shift is tuned to optimally

serve the first vehicle, the other ones might receive less quality and vise versa. Furthermore, in

this problem, it is hard to eliminate the coupling relationship between phase-shift configuration

and wireless scheduling. In addition, the information of vehicles such as their arrival, speed, and

departure, are unknown in advance. Due to the dynamic nature of the environment, it is impractical

to assume such information is given. Hence, a effective solution mechanism has not only to deal

with the difficulties of such problem, but it has also to predict for the hidden parameters.

In order to address the above challenges, we resort to Deep Reinforcement Learning (DRL)

with multi-binary action space to find a policy that maximizes the minimum average bit rate for

vehicles. However, if DRL is used to solve for the two decisions of resource scheduling and phase-

shift matrix, the action space will be equal to all the possible combinations of wireless scheduling

and phase-shift patterns for M elements which is unbearably large. Such massive action space
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would increase the DRL agent difficulty to learn. Similar to [125, 126], a more practical solution

approach can be realised by delegating one decision to an optimization technique while dedicating

the second one to machine learning based approach. In particular, the DRL agent first determines

which vehicles are going to be served at time slot n. While, BCD algorithm is invoked to configure

the phase-shift matrix such that the service offered to the scheduled vehicles is optimized. Next, the

solution approach, in details, will be discussed.

6.5 Solution Approach

The solution approach for joint resource scheduling and passive beamforming is presented in

this section. First, we decompose the aforementioned problem into two sub-problems, the first sub-

problem is due to the resource scheduling and second one corresponds to the phase-shift matrix of

the RIS. The information and mobility of the upcoming vehicles are unknown in advance. That

is, solving the first sub-problem is quite challenging. Hence, we resort to DRL to observe the

environment and tackle multi-user RSU scheduling. Next, the RIS elements are tuned based on

Block Coordinate Descent (BCD) [127–129]. The details of our solution methodology are laid out

in the next sections.

6.5.1 DRL for Wireless Scheduling

For the DRL, the problem is formulated as MDP (similar to Section 3.4.1) where the state,

action, reward, are defined below. First, let us define four new notations; f n,∀n ∈ N which denotes

the current minimum average bit rate until time slot n, kn
v ,∀n ∈ N,v denotes the speed of vehicle

v at time slot n, zn
v∀n ∈ N,v is the current average bit rate of vehicle v until time slot n, η is the

largest number of vehicles existing simultaneously, and U is the number of possible actions. Now,

the state, action, reward can be explained as:

• State S: The state at time slot n, sn ∈ S, is a vector that indicates current minimum service

provided up to n− 1 ( f n), the speeds of the existing vehicles (kn
v ,∀v) in that time slots, their

cumulative average bit rates up to n (zn
v ,∀v), and their locations (xn

v ,∀v). The state sn can be
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expressed as:

sn = [ f n,kn
1,z

n
1,x

n
1︸ ︷︷ ︸

v=1

,kn
2,z

n
2,x

n
2︸ ︷︷ ︸

v=2

, ...,kn
η ,z

n
η ,x

n
η︸ ︷︷ ︸

v=η

]. (6.10)

• Action A: The action taken at time slot n, an ∈ A is a vector of size η where η is the maximum

number of vehicles available within the zone in one time slot. Also, the sum of vector an

should be equal to C (to enforce constraint (6.9b)). For example, if an[0] = 1, then the first

existing vehicle is being served at time slot n and so forth. The number of actions can be

computed by U = η!/(C!(η −C)!). The possible combinations of action are similar to the

example below.

[ 0︸︷︷︸
1

,0,1, ..., 1︸︷︷︸
η

]

︸ ︷︷ ︸
1

, [0,1,1, ...,1]︸ ︷︷ ︸
2

, ..., [1,1,0, ...,0]︸ ︷︷ ︸
U

(6.11)

• Reward: The immediate reward, rn, is computed as follows. During the beginning of the

operational phase, rn = 0 until the first vehicle departs. For the first vehicle, the step reward

is equal to its average bit rate. Henceforth, whenever any vehicle leaves the dark zone, the

step reward is given as a penalty if and only if that vehicle has received less average bit rate

than the other vehicles which left previously. It is worth noting that since the agent seeks to

maximize the minimum average bit rate, it does not count reward if a vehicle received higher

bit rate than others.

Remark selecting an action is a non-trivial task for the problem explained above. Actually,

since our objective is to maximize the minimum average bit rate for all vehicles, it is not easy

to decide which vehicles to serve at each time slot. For instance, a vehicle has just entered may

have plenty of time to be served later while a vehicle near the end of the road segment may have

no much time to receive service. In contrary, a vehicle located at the end is way far than those

vehicles near the RIS. Hence, the latter can receive much higher bit rate if selected to be served.

Moreover, if the RSU postpones the service for one vehicle, other vehicles may arrive, therefore, that

vehicle will have less chances to be served later. In addition, in our work, we consider multi-user

communication where more than one vehicle might be scheduled by the RSU simultaneously which

makes the action space more complicated. Hence, the agent needs to interact with the environment
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and try different actions and scheduling policies in order to figure out which one attains the best

cumulative reward.

For DRL, we exploit PPO to develop our agent as laid out in Algorithm 13. First, the agent

initializes random sampling policy and value function for the neural networks. Then, in each epoch,

the agent observes the environment which consists of the set of vehicles and their information,

minimum average bit rate achieved up to n. Then at each time slot n, the agent selects an action

which is a binary vector that determine which set of vehicles will be served via the RSU. Based

on that action, the BCD algorithm is then invoked to configure the phase-shift matrix in order to

maximize the channel gain. Eventually, the time step reward is worked out which has three cases.

First, if no vehicle has departed yet, rn = 0. Second, if the very first vehicle departs, the reward is

set to its average bit rate. Third, the consecutive vehicles leaving the area will be accounted as a

penalty if and only if their average bit rate is less than f n when they have departed.

Algorithm 13: Proposed DRL for Scheduling

1 Inputs: N, v, Learning Rate, γ , ε .
2 Outputs: RSU resource scheduling and θ

n.
3 Initial policy π with random parameter θ and threshold ε

4 Initial value function V with random parameters φ

5 for each episode k ∈ {0,1,2, ...} do
6 for n : {0,1,2, ...,N} do
7 Observe state f n,kn

v ,z
n
v ,x

n
v ,∀v ∈V n.

8 Select action an from πθold

9 Assign channel to vehicle v if it is scheduled to be served.
10 Configure RIS phase-shift matrix using Algorithm 14.
11 if Vehicle v is the first one to leave then
12 Set rn = zv

13 if Vehicle v departed and zv < f n then
14 Set rn = f n− zv

15 else
16 rn = 0

17 Compute the advantage function.
18 Optimize the clipped objective.
19 θold ← θ .
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6.5.2 BCD for RIS Phase-Shift Coefficients

Block coordinate descent (BCD) has been proposed in the literature to solve for RIS phase-

shift matrix [128, 129]. In this correspondence, we aim to leverage BCD to maximize the sum of

immediate sum of bit rates of all vehicles selected to be served at time slot n.

V n

∑
v=1

jn
v ln

v ,∀n. (6.12)

To do so, Algorithm 14 receives the action selected by DRL in Algorithm 13, Jn. Once the

decision is taken by the agent, the BCD is then called to optimize the phase-shift matrix in iterative

way. In each iteration, a sequence of block optimization procedures are performed. In each one,

all elements are fixed while one is optimized by checking all its possible values, 2b. The one that

maximizes the objective will be selected. After that, the next element will be selected to optimize

and so forth. This operation is iterated until Eq (6.12) has converged. In practice, Algorithm 13

needs one iteration to surpass 95% threshold of its maximum performance. Hence, this algorithm is

pretty robust in dealing with the phase-shift coefficients.

Algorithm 14: BCD to Tune the RIS Phase-Shift Matrix

1 Inputs: Jn.
2 Outputs: θ n

3 while Eq (6.12) not converged do
4 for m = 1, ...,M do
5 Fix m′,∀m′ 6= m,m′ ∈M
6 Set θ n

m = argmax
Ω

Eq(6.12)

7 Obtain Eq (6.12)

Concerning the complexity of Algorithm 14, it is O(IM2b) where I stands for the number of

iterations until Eq (6.12) converges. In details, there are three loops in this Algorithm; first is the

number of iterations, second is the number of RIS elements, and third is the number of angles

available to control each element. An experiment is conducted to study the BCD performance and

the results are shown in Fig. 6.2. In this experiment, we vary the number of RIS elements from
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Figure 6.2: BCD convergence over iterations with different RIS elements (M), users (C), and quan-
tization levels (b).

25 to 100 elements. Moreover, we try different number of users (C) and control bits (b). Based on

the outcomes, we can approximate the complexity of Algorithm 14 to O(M2b). The complexity can

further be approximated to O(M) based on the fact that a b of 3 is enough [106]3.

6.6 Case Study: RIS Placement and Vehicle Positioning

In the literature, RIS is often proposed to tune static wireless environments such as user equip-

ment or IoT devices. However, implementing RIS in dynamic medium is far more challenging

owing to the highly sensitivity of RIS phase-shift alignment. Therefore, we carry out two studies to

address the practical RIS placement and the impacts of vehicle positioning accuracy in the context

of RIS-assist vehicular communications.

6.6.1 RIS Placement

In this section, we discuss the issue of placing RIS at different places. We statistically study

how placing the RIS at different locations can actually improve or worsen the overall performance.

Then, we will see what is the optimal location to situate the RIS. We start off by a hypothesis stating

that the optimal RIS placement is the closest one to the RSU. This hypothesis is based on initial

observations that indicate the shorter the distance between the RIS and RSU, the best channel gain

3Note that, based on our experiments, we found that b = 2 is enough to achieve high performance in our context as
demonstrated in Section 6.7.
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can be achieved. In order to prove our claim, we are going to derive it mathematically and then back

it up with simulation experiments.

Theorem 1 Given xI < x
′
I,xR < xI,xR < xv,∀v, the inequality of zv(xI)> zv(x

′
I),∀xI < x

′
I always

holds.

Proof: Here, for simplicity, we take a RIS and try to place it at different points to serve a single

vehicle as shown in Fig. 6.3. Hence, the RIS elements will always be tuned to maximize the channel

gain for that vehicle. Fortunately, Eq (6.6) can be obtained in a closed form for a single user [130].

θ
n
m =

2π

λ
(m−1)dφ

n
I,v +

2π

λ
(m−1)dφI,R,∀m ∈M,n. (6.13)

Where the phase-shifts of RIS cancel out the ones of RIS-RSU and RIS-vehicle, Eq (6.6) can

be rewritten as:

hH
I,Rθ

nhn
I,v =

ρ
K

1+K
M√

(dn
I,i)

α
√
(dI,R)α

. (6.14)

Since ρ , M, and α are constant, the only factors that remain variable are dn
I,v and dI,R which

denote the distances of RSU-RIS-vehicle. We can also notice that Eq (6.14) is a decreasing function

with respect to distances. Now, we need to prove that zv(xI) > zv(x
′
I),∀xI < x

′
I . To do so, let

us assume a vehicle has Hv = N (we assume there is a single vehicle on the road). To this end,

zv(xI)> zv(x
′
I) is greater when the sum of bit rates received throughout Hv is larger.

l1
v (xI)+ l2

v (xI)+ ...+ lN
v (xI)> l1

v (x
′
I)+ l2

v (x
′
I)+ ...+ ln

v (x
′
I),∀xI < x

′
I. (6.15)

Next, for clarity, let Y =

Pρ2
(

K
1+K

)2

M2

σ2 which is a invariant value. Hence, Eq (6.15) can be

rewritten as:

log2(1+
Y

(d1
I,v)

α(dI,R)α
)+ log2(1+

Y
(d2

I,v)
α(dI,R)α

)+ ...+ log2(1+
Y

(dN
I,v)

α(dI,R)α
)>

log2(1+
Y

(d ′1I,v)α(d ′I,R)α
)+ log2(1+

Y
(d ′2I,v)α(d ′I,R)α

)+ ...+ log2(1+
Y

(d ′NI,v)α(d ′I,R)α
),∀xI < x

′
I.

(6.16)
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Figure 6.3: RIS placement with corresponding channel gain, in the background, in 1D space.

Now, only the distance would affect the sum of bit rates over N. To facilitate the expressions,

let us further assume one dimensional environment. Hence, dI,R = |xI− xR| and dn
I,v = |xn

v− xI|. We

can also assume α = 1. Therefore, as absolute values are multiplicative:

dI,R×dn
I,v = |xIxn

v− x2
I − xRxn

v + xRxI|. (6.17)

In Fig 6.4 (a), note that Eq (6.17) has its lowest value when xI = xR or xI = xn
v . The first term

can always be achieved, during the entire time horizon (∀n ∈ N) and for all vehicles, as long as xI

and xR are fixed. However, the second one, xI = xn
v , as vehicles driving, only holds true for one time

slot n and for a specific vehicle. Therefore, with Hv > 1, we can confidently say:

N

∑
n=1

log2(1+
Y

(dn
I,v)

α(dI,R)α
)>

N

∑
n=1

log2(1+
T

(d ′nI,v)α(d ′nI,R)α
),∀xI < x

′
I. (6.18)

Consequently, the right side is greater the left side which completes the proof.

In Theorem 1, we have shown that, for a single vehicle, the ideal place for the RIS is to be as

closer as it can to the RSU. However, in practice, there exists several constraints that force the RIS

to be distant from the RSU. For example, the LoS has to be clear between the RIS and RSU and

between the RIS and the vehicles it serves. Otherwise, the wireless links would be highly disturbed

and the RIS will lose its functionality. In line with our proof and discussion above, we carry out

three experiments to see the achievable minimum average bit rate for multi-user scenario. We set

xR = 0, xI = [10,20,30,40,50]. Vehicles are generated by SUMO. The outcomes are displayed in

Fig. 6.4 (b). One can observe that with RIS closer to RSU, the performance was much higher.

However, this performance started to degrade dramatically as the RIS moves away from the RSU.

137



(a) Eq (6.16) curve with varying xI values.

(b) Multi-user scenario with varying xI values.

Figure 6.4: Simulation results for Eq (6.16) and RIS placement.
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6.6.2 Vehicle Positioning Precision

One of the challenging issues in vehicular communications is vehicle positioning in such highly

dynamic environment. Hence, in the context of RIS-assist vehicle communication, inaccurate vehi-

cles positioning might lead to severe consequences that negatively impact the channel gain. Thus,

we attempt to understand whether it is possible to leverage the emerging technologies related to

vehicle positioning such as 3D-LIDAR (Light Detection and Ranging), Global Positioning System,

etc., for the benefits of accurately estimating real vehicle positions to enable RIS-aided vehicular

communications.

First, based on the channel gain equations laid out in Eq (6.6), the impact of inaccurate vehicle

positioning on the RIS-based system performance will be examined. Let ∆ be the error in vehicles

positioning, then, the estimated position is xn
v ±∆. It is worth noting that in this context, the small

error (∆) in vehicle positioning will not have significant impact on the cascaded channel (RSU-RIS-

vehicle) path loss. Thus, we only study the phase-shift angle deviation (difference between accurate

and estimated angles of arrival). Next, we highlight the components in Eq (6.6) that are affected by

inaccurate vehicles positioning. The next equation describes the phase-shift multiplication of the

two angles of arrival, φR,I and φ n
I,v, with the RIS elements at the real position.

θ
n
m +

2π

λ
(m−1)d

xI− xn
v√

(xI− xn
v)

2 +Y
− 2π

λ
(m−1)dφI,R,∀m ∈M,n ∈ N. (6.19)

Next, we formulate the same equation, yet, at the estimated position.

θ
n
m +

2π

λ
(m−1)d

xI− xn
v±∆√

(xI− xn
v±∆)2 +Y

− 2π

λ
(m−1)dφI,R,∀m ∈M,n ∈ N. (6.20)

After subtracting the two equations, real and estimated one (Eq (6.19) - Eq (6.20)), we end up

with the following.

2π

λ
(m−1)d(

xI− xn
v√

(xI− xn
v)

2 +Y
− xI− xn

v±∆√
(xI− xn

v±∆)2 +Y
),∀m ∈M,n ∈ N. (6.21)

Eq (6.21) clearly states that the cosine angle of arrival between RIS and vehicles is affected by
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the error in vehicle positioning. It is also noted that this impact occurs for all the RIS elements.

How much this deviation from the real position affects the performance is what we answer next.

In order to show the impact of that error ∆, an experiment is conducted to realise how the bit

rate is changed while varying the value of ∆ with various vehicle positions (the distance from the

vehicle to the RIS). The results are displayed in Fig. 6.5 and indicate that the RIS can keep up to

90% of its performance with error ∆ ranging form 20 to 100 centimeters depending on the vehicle

position. It is observed that distant vehicles from the RIS are less impacted by ∆ as φ n
I,v is less

influenced by ∆ when the distance between the vehicle and RIS is larger. One can also see in this

figure that as ∆ grows up, the bit rate decreases. Yet, the RIS elements can be tuned with plausible

∆ values to maintain most of the original performance expected from RIS deployment. According

to [131], vehicular carrier-phase differential Global Navigation Satellite System (GNSS) positioning

can estimate vehicle positions with accuracy of less than 17 centimeters accompanied by a success

rate reaches up to 95%. As shown in Fig. 6.5, the minimum tolerance (to achieve 90% of the

performance) of vehicle positioning is 20 centimeters which is compatible with GNSS precision.

Note that, for simplicity, in this work, xn
v is assumed to be accurately estimated.

(a) (b) (c) (d)

Figure 6.5: Inaccurate vehicle positioning effects on the bit rate at different positions ((a) xv = 20
(b) xv = 30 (c) xv = 40 (d) xv = 50).

6.7 Simulation and Evaluation

6.7.1 Simulation Setup

As mentioned earlier, we use SUMO to mimic vehicular environment. Two flows of vehicles are

generated; one with normal speed (max speed 50Kph) and the other with slow speed (max speed

30Kph). For the Deep Reinforcement Learning, 3 linear layers are used with tanh as activation

140



Table 6.2: Simulation parameters in RIS enabled vehicular communications

Parameter Value

Road segment length 100 m

Arrival rate 0.2 Veh/sec

σ2 −110 dBm

K 10 dB [123]

α 4

P 20 dBm

C 3

ρ 10 dBm

M 100

b 2 bits

xI,yI,zI 10, 20, 10

xR,yR,zR 0, 40, 10

yn
v ,z

n
v 20, 1

function for the middle layers and softmax for the output layer. Internal layers contain 64 units each

and Adam optimizer is incorporated to minimize the loss function. Learning rate is set to 0.002, γ

to 0.08, and clip to 0.02. The results were averaged over 500 tests. The remaining parameters used

in our study are listed in Table 6.2 (unless otherwise indicated).

6.7.2 Numerical Results

First, we attempt to see the behaviour of the DRL agent. As illustrated in Fig. 6.6, the cumulative

reward, here represents minimum average bit rate, is remarkably increasing as the agent is exposed

to more epochs/iterations. One can note that after around 7000 iterations, the system starts to

converge.

In order to validate the performance of the proposed algorithm, it is compared with three other

benchmarks as follows

• Greedy Scheduling with BCD (GS-BCD): In this scheme, the vehicle schedule sub-problem
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Figure 6.6: Convergence over time.

is solved with greedy algorithm; meanwhile the passive beamforming sub-problem is ob-

tained using the proposed BCD scheme. The greedy algorithm can be explained as follows.

At each time slot n ∈ N, a greedy algorithm ranks the set of vehicles V n based on their cu-

mulative bit rate achieved up to n (zn
v). Then, those with the lowest average bit rates will be

scheduled to be served in the following time slot.

• Random Scheduling with BCD (RS-BCD): In this scheme, each time slot, the vehicles are

randomly scheduled. While the proposed BCD is used for obtaining the passive beamforming

at the RIS.

• DRL with Random Phase-Shift Matrix (DRL-RPS):The proposed DRL algorithm is used

to schedule RSU resources without any optimization over phase-shift for the RIS elements

(Random values for the RIS elements’ phase-shift).

It is worthwhile to compare with these baseline methods as they will show us how the perfor-

mance would be if one of the two sub-problems are solved via an alternative widely-used method

such as greedy or random while the second one is solved with the same method we propose.

The effect of RIS number of elements M is first studied. As demonstrated in Fig. 6.7, with

small number of elements, the achievable minimum average bit rate is very limited. However, as

more elements are incorporated, the gain starts to grow up gradually, especially for our proposed

solution approach. Another insight one can notice is the gap between the proposed solution with
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Figure 6.7: RIS number of elements M effects on network performance.

other methods over different M values. It is very apparent that this gap widens proportionally as

M increases. With M = 150, the difference between the proposed one and the greedy algorithm is

about 17%. Meanwhile, GS-BCD seems to have also a good performance compared to the other

two methods. The reason behind that is GS-BCD attempts to reduce the minimum average bit

rates for those vehicles with low bit rate levels. In addition, as GS-BCD leverages BCD, it also

benefits from the good RIS configuration. RS-BCD, on the other hand, comes in the third place

with clear gap from GS-BCD as it does not take into account low bit rate vehicles. At the end,

DRL-RPS attains very poor performance that indicates that without a proper RIS configuration, the

performance would be very poor even if the wireless scheduling is done carefully.

In our next experiment, we vary the value of b for practical RIS. When b is high, more phases

are available for the configuration which is better for optimal RIS tuning. As it can be seen in Fig.

6.8, larger b means better performance. Yet, one can also notice that b of 2 or 3 can almost obtain the

highest gain. These behaviours have also been highlighted in other works related to non-dynamic

environment [105]. In the same figure, we can see that the proposed solution always achieves the

highest performance regardless of b. Indeed, the difference can reach up to 19% from GS-BCD.

In the meantime. RS-BCD could only achieve minimal gain with larger b and still below 0.6 of

minimum average bit rate in all scenarios. In contrast to the other methods, DRL-RPS was unable

to add any gain with larger b. That is due to the fact that this method does not consider RIS element

tuning in the first place. Hence, higher b values may also mean higher probability of falling to align
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Figure 6.8: Discrete quantization levels effects.

with the vehicles as the options of angles for the RIS elements become larger.

Next, the impacts of road density on the network is studied. Here, we vary the arrival rates of

vehicles which results in more or less vehicles available simultaneously within the road segment.

Intuitively, with small arrival rate, the RSU and RIS can better serve the vehicles. As seen in Fig.

6.9, minimum average bit rate is slightly above 1.4 bps/Hz. However, as the road segment becomes

more dense, the value degrades to approach approximately 1 bps/Hz. For the other methods, we can

observe similar behaviours expect for GS-BCD where its gain seems to saturate at very low arrival

rates. That is because GS-BCD does not consider the distance between the RIS and vehicles. It

always assigns the resources for those with less zn
v regardless of their location or speed. Therefore,

the wireless resources might be wasted on far vehicles instead of making benefit by serving nearest

ones. Also, selecting two or more vehicles with relatively large gap between them reduces the

efficiency of the RIS to serve both of them since the RIS needs to maximize the sum of immediate

bit rates which is undesirable in such scenario4. This especially appears when less numbers of

vehicles exist on the road and the RSU oftentimes schedules for distant vehicles. In contrast, RS-

BCD attains steep increase in minimum average bit rates with low road density since there will be

less vehicles and the probability of vehicles being served is much higher. This impact is much less

significance with DRL-RPS due to the miss alignment in phase-shifts with the vehicles.

4Note that, the immediate average bit rate, denoted by zn
v , does not necessarily reflect the ultimate average bit rate of

vehicle v. It only represents what was the average bit rate up to n which depends on the time elapsed since vehicle v arrival.
Intuitively, this value decreases over time as the elapsed time increases, and this issue is not taken into consideration by
GS-BCD.
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Figure 6.9: Min average bit rate values over different vehicle arrival rates.

Finally, one of the insightful indices to use in similar problem of max-min is Jain’s fairness

index [132]. The formula for this index is:

(∑V
v=1 zv)

2

V ∑
V
v=1(zv)2

(6.22)

Then, we conduct an experiment to see the levels of jain’s fairness attained by the four algo-

rithms. We can notice in Fig. 6.10 that our proposed solution achieved the highest level of fairness

in comparison to the other methods. But, one can also see that the four methods, in fact, obtain high

levels in general. For GS-BCD, it actually attempts to reduce the discrepancies in minimum average

bit rates among all vehicles, hence, it enhances the fairness. RS-BCD, on the other hand, schedules

the resources at random with uniform distribution which also improves the fairness. Finally, DRL-

RPS leverages our DRL agent which indeed tries to maximize the original maxmin problem. That

is, all the methods are able to maintain nice levels of fairness among the vehicles. Despite this fact,

it is still true that only our proposed solution approach can achieve the highest fairness levels while

notably maximizing the minimum average bit rates through considering the coupling effects of the

two sup-problems.

145



Figure 6.10: Comparison for the Jainś fairness (M = 100).

6.8 Summary

We have investigated the area of RIS integration with vehicular communications. That is, the

core of this work evolved around a system model that employs RIS to provide favourable wireless

experiences for vehicles travelling in a dark zone. The RIS has demonstrated high competence in

establishing indirect links between the RSU and vehicles. Throughout this study, we have also seen

that DRL is an appealing solution to cope with the highly dynamic nature of such environment

and it can adapt to various road conditions and RIS options. In addition, BCD was also leveraged

to provide efficient yet robust solutions to the RIS phase-shift matrix. In the numerical results,

the performance of our solution method has been analyzed thoroughly by comparing it with other

benchmarks. Aside from that, we have also carried out a study on RIS placement to attain optimized

wireless communication with the RSU and non-static receivers.
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Chapter 7

RIS-assisted Aerial RSU to Serve IoT

Devices in Intelligent Transportation

Systems

In this work, we build upon our previous contribution in Chapter 6 to further improve the per-

formance of IoT-enabled vehicular networks by leveraging a UAV. In details, in this chapter, we

promote the integration between UAVs and terrestrial RIS elements and study the problem of col-

lecting data from ground IoT devices (See Fig. 7.1). A UAV is deployed and its location is adapted

to collect sensory data from active devices. Devices are assumed, to conserve energy, to switch be-

tween active and passive modes. Devices, for the purpose of facilitating some critical ITS services,

are scattered and when a device is active it has sampled an information from a signal that it needs to

send to the edge application. As mentioned, a UAV does not have continuous LoS with all devices,

and therefore, while it is in direct communication with some devices, other sensors may reach the

UAV through an indirect path enabled by the RIS. We seek to concurrently optimize the RIS phase

shift for its elements, the scheduling of IoT transmissions as well as the trajectory of the UAV.

Owing to the high complexity of the problem, we propose a solution based on Deep Reinforce-

ment Learning (DRL) to cope with these challenges. DRL has been utilized in similar problems

and showed to be both effective and efficient. Additionally, we suggest Block Coordinate Descent
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Figure 7.1: System Model.

(BCD) to solve for the RIS phase-shift configuration. Indeed, serving IoTDs using UAV assisted

by RIS, to the best of our knowledge, has never been investigated before. The contributions of this

work can therefore be summarized as follows:

• A UAV assisted with a RIS is leveraged to provide data gathering services from IoTDs. The

UAV trajectory is optimized jointly with resource scheduling and RIS element configuration.

This framework is formulated as an optimization problem aiming at maximizing the total

number of served IoTDs.

• Due to the high complexity of the formulated problem, which is a mixed-integer non-convex

problem as well as the presence of unknown parameters (activation time of IoTDs), the formu-

lated optimization problem is challenging and cannot be directly solved. In order to address

this issue, we decompose the original optimization problem into two sub-problems. The first

one is to determine the UAV mobility as well as IoTD scheduling. The second sub-problem,

and with given UAV place and scheduled indices for the IoTDs, the passive beamforming

problem, phase-shift matrix of the RIS, is solved.

• The first sub-problem is converted to Markov Decision Process (MDP) while tackling the
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massive action space incurred by UAV mobility in 2D space and IoTD scheduling. In addi-

tion, the state space is also defined to consider the UAV positioning and IoTDs’ status while

satisfying the Markov condition. After that, an agent based on proximal policy optimization

(PPO) is developed to solve the MDP. Next, the second problem is solved via Block Coordi-

nate Descent (BCD) where a low complexity method is designed to tune the RIS phase-shift

to maximize the total transmission rate for all the IoTDs being served for each transmission.

• Finally, we carry out extensive simulation experiments to analyze the performance of our

proposed solution in comparison with four baseline approaches. Furthermore, a study on the

impact of RIS presence and size on the UAV energy efficiency is also conducted.

The organization of the rest of this chapter is as follows. Section 7.1 reviews the literature while

showing the novel contributions of this work. Section 7.2 lays out the system model and presents

our objective function. Section 7.3 describes the solution approach which is based on DRL and

BCD. Section 7.4 studies the performance of the solution approach and signals out our observations.

Finally, Section 7.5 wraps up the chapter and provides some directions for future work.

Notations: Vectors are denoted by bold-face italic letters. diag(x) denotes a diagonal matrix

whose diagonal element is the corresponding element in x. CM×N denotes a complex matrix of

M×N. For any matrix M, MH and MT denote its conjugate transpose and transpose, respectively.

Pr(A | B) denotes the probability of event A given event B.

7.1 Literature Review

Serving IoTDs has been studied widely in the literature. However, there are still gaps in terms

of introducing RIS-empowered UAV communications to support IoT networks. In this section, we

present some relevant publications in the area of data collection using UAVs, specifically for IoTDs,

and RIS employment in wireless communication.

7.1.1 UAVs for Data Collection

In the literature, UAVs have been proposed to assist wireless communication for various pur-

poses. The work of [133] suggests a framework for UAVs that provides UAV trajectory planning and
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resource allocation while considering the security aspects in the presence of eavesdroppers. [134]

presents a formation of a number of UAVs that can collaborate to enhance the the service for a

machine. The authors of [135] suggest federated learning to control multiple UAVs with reduced

overhead. In [77], the trajectory of UAVs and their resources are jointly optimized to serve time-

constrained IoTD. In [136], the authors propose UAV assisted IoTDs by optimizing their data fresh-

ness also known as Age of Information or AoI. Using DRL, the altitude of the UAV is changed

to maintain a balance between the communication links of BS-UAV and IoTD-UAV. The authors

of [137] presents a UAV-based system where UAVs act as edge servers to offer computational re-

sources for the IoTDs. The number of UAVs and their position in 3D space along with IoTD task

allocation decisions are optimized jointly to provide service for the IoTD within a limited latency.

In [138], an energy-constrained UAV is proposed to aid cellular communication by uploading data

from base stations. To this end, the problem is formulated with the objective to maximize trans-

mission throughput while considering resource scheduling, UAV trajectory, and energy budget. The

authors in [139] develop a framework that makes the UAV able to offload computational tasks re-

ceived from IoTDs and others to a nearby facility. This work also addresses the problem of highly

complex communication topology in urban environment and solves the concerned problem using

DRL. The authors of [140] build a system model to collect IoTDs information using UAVs where

the energy consumption of the IoTDs is minimized. This work also accounts for UAV 3D place-

ment, resource allocation, wireless interference, and UAV altitude. In [141], a UAV is deployed

to supply energy for ground nodes and optimizing the minimum energy provided. To do so, the

trajectory of the UAV is optimized in 1D and the optimal solution is calculated.

7.1.2 RIS-aided Wireless Communication

Reflecting surfaces have gained momentum nowadays among the research communities owing

to their notable benefits they bring to wireless communication systems. In [142], the authors propose

a relay UAV assisted by an RIS to receive signals from ground users. The RIS helps to improve the

coverage and the overall performance of the network. The work of [143] discusses various scenarios

for UAV integrated by RIS to improve wireless communications including data collection taking into

account sensor nodes’ transmit power. The authors of [144] develop a framework of UAV assisted
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by RIS using Non-orthogonal multiple access (NOMA) technique to enhance spectrum efficiency.

To achieve this, the optimization problem is formulated to do UAV trajectory planning, resource

allocation as well as RIS element configuration. Then, DRL is employed to solve the problem. The

authors in [145] consider frequency division multiple access for UAV assisted by RIS to optimize

the max-sum rate. To do so, the UAV trajectory, RIS phase-shift, and resource allocation are jointly

optimized while considering different quality-of-service for users. In [146], a relaying framework

for RIS integrated with UAV is investigated where spectral and energy efficiency is sought. Different

modes are studied starting with UAV only and end up with UAV-RIS. The problem is formulated

where RIS number of elements and UAV altitude are optimized. In [109], the authors studied

resource allocation of RIS-aided vehicular communications where they aim to maximize vehicle

to base station link quality while guaranteeing vehicle to vehicle communications. The authors

of [110] provide analysis for outage probability in RIS-enabled vehicular networks. This chapter

derives an expression of outage probability showing that RIS can reduce the outage probability for

vehicles in its vicinity. The analysis also proves that higher density roads increase outage probability

since passing vehicles can block the communication links. In [111], the authors propose RIS-

aided vehicular networks while considering two scenarios to estimate the channels. The first one

is by assuming fixed channel estimation within a coherence time. While the second one neglects

the small scale fading based on the fact that vehicular positions can be realised in advance. [112]

considers constraint discrete phase-shift RIS with two challenges; channel estimation and passive

beamforming. The work in [147] proposes a UAV supported by a RIS to prepare a platform for

terahertz communications. To this end, UAV’s trajectory, RIS phase-shift, resource allocation, and

power control are jointly optimized. However, since the environment contains no uncertainties, the

problem is solved using iterative algorithm, namely successive convex approximation.

The works presented above consider various applications and scenarios for UAVs and RIS de-

ployment. However, to the best of our knowledge, no work in the literature accounted for UAV

trajectory planning in 2D space with the support of a discrete RIS to collect data generated by

IoTDs with a target deadline.
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7.2 System Model

We consider IoTDs scattered in an urban environment to collect data essential for one or more

of emerging smart cities services. The device alternates between an active and passive activation

mode to conserve energy and has a period during which its information should be collected before

it becomes stale and bear no value [70]. Each device location is denoted by (xi,yi,zi). A UAV is

dispatched to gather data from these devices and has a fixed altitude zU . The UAV can move in

two dimensions xn
U ,y

n
U . In order to enhance the communication between the IoTDs and UAV, a RIS

equipped with M reflecting elements is placed at (xR,yR,zR) as demonstrated in Fig. 7.1. The list of

parameters and variables used is shown in Table 7.1.

7.2.1 IoT Activation

IoTDs are battery-powered, hence, they are energy constrained [148]. Consequently, IoTDs

tend to be power-conservative by adopting two operational modes; sleep and active [15]. The du-

ration and frequency of sleep and active modes depend on the applications, for instance, measuring

soil humidity occurs once every hours [149] while transmitting autonomous vehicles information

happens in a much faster pace to keep the traffic smooth and safe. Other applications may require

more frequents activation patterns. In addition, according to [150, 151], the randomness of IoT

device activation pattern can be modeled using a uniform distribution.

7.2.2 Communication Model

In this section, we present the channel model, the signal-to-noise-ratio (SNR), and the achiev-

able data rate analysis. In our model, we assume that the IoTDs transmit their data to the UAV in

the uplink using frequency division multiple access (FDMA). We denote the total number of avail-

able radio resources as C. In addition, the channel model between the IoTDs and the UAV which

is referred to as "direct link" and cascaded channel model IoTDs-RIS-UAV which is referred to as

"indirect link".

152



Table 7.1: Mathematical notations

Symbol Description

I A set of IoTDs existing in the area.

N Time horizon.

(xn
U ,y

n
U ,zU ) UAV coordinates at time slots n.

(xR,yR,zR) RIS coordinates.

(xi,yi,zi) IoTD i coordinates.

Zi Size of data transmitted by device i.

σ2 thermal noise power.

ρ Median of the mean path gain at reference distance = 1m.

α Path loss exponent

P Transmission power.

K Racian factor.

δ n
i Decision variable for wireless scheduling.

Ti Active period starting time of IoTD i.

Fi Active period ending time (deadline) of IoTD i.

C Number of UAV wireless channels

b Number of control bits for the RIS elements

Q Number of RIS phase-shift patterns

φ n
R,U Angle of arrival at RIS from UAV at time slot n.

φR,i Angle of arrival between the RIS and IoTD i.

Ω Set of available phase shift values for the RIS elements.

ζ Separation value between RIS elements.

λ Carrier wave length.

ωi Service indicator equals to 1 is IoTD i served and 0 otherwise.

Γn
i signal-to-noise-ration for IoTD i at time slot n.
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Direct Link

We assume a channel model for the UAV in urban area where high-rise buildings and other

objects appear which could disturb the links between the UAV and IoTDs. Thus, we assume that the

link propagation is characterized by both strong Line-of-Sight (LoS) and non Line-of-Sight (NLoS).

Here, Sn
U→i ∈ {LoS, NLoS} indicates the state of the channel between the UAV and IoTD i at time

slot n. The probability of having LoS link adopted in this chapter is similar to [99]. Then, we can

find the probability of channel states between the UAV and IoTD i.

Pr(Sn
U→i = LoS) =

1
1+η1e(−η2(θ

n
U→i−η1))

,∀i ∈ In,n, (7.1)

where η1 and η2 are constant parameters of the environment. θ n
U→i =

180
π

arctan(
zU

D̂n
U→i

) is the angle

degree between IoTD i and the UAV at time slot n. Meanwhile, zU denotes the height of the UAV

antenna and D̂n
U→i is the horizontal distance between IoTD i and the UAV at time slot n. Moreover,

the probability of having NLoS can be obtained from Pr(Sn
U→i = NLoS) = 1−Pr(Sn

U→i =LoS).

Next, the channel gain for each IoTD i at time slot n is computed as:

hn
U,i =


(Dn

U,i)
−β1 Sn

U→i = LoS,

β2(Dn
U,i)
−β1 otherwise,

(7.2)

where Dn
U,i is the euclidean distance between the UAV and IoTD i at time slot n and β1 denotes the

path loss exponent and β2 is the attenuation factor for NLoS. Thus hn
U→i can also be rewritten as:

hn
U→i = Pr(Sn

U→i = LoS)(Dn
U,i)
−β1 +(1−Pr(Sn

U→i = LoS))β2(Dn
U,i)
−β1 (7.3)

Indirect Link

We consider a uniform linear array (ULA) RIS [121]. In addition, similar to the UAV, the RIS

is assumed to have a certain height, zI . The communication links between the UAV and RIS and

that between the RIS and IoTD i are assumed to have a dominant line-of-sight (LoS). Thus, these

communication links experience small-scale fading which are modeled as Rician fading with pure
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LoS components [123, 124]. Consequently, the channel gain between the UAV and RIS, hR,U ∈

CM×1, can be formulated as follows.

hn
R,U =

√
ρ(Dn

R,U)
−α︸ ︷︷ ︸

path loss

√
K

1+K
h̄n,LoS

R,U︸ ︷︷ ︸
Rician fading

, (7.4)

where Dn
R,U is the Euclidean distance between the RIS and UAV. Also, ρ is the average path loss

power gain at reference distance D0 = 1m. Also, K is the Rician factor and h̄LoS,n
R,U is the deterministic

LoS component which can be defined as follows

h̄LoS,n
R,U =

[
1,e− j 2π

λ
ζ φ n

R,U , ...,e− j 2π

λ
(M−1)ζ φ n

R,U

]T

︸ ︷︷ ︸
array response

,∀n ∈ N, (7.5)

where φ n
R,U =

xR− xn
U

Dn
R,U

is cosine of the angle of arrival of signal from the RIS to UAV. ζ is the

separation between RIS elements and λ is the carrier wavelength.

Similarly, we can compute the channel gain between the RIS and IoTDs which is denoted by

hn
R,i ∈ CM×1.

hn
R,i =

√
ρ(DR,i)−α︸ ︷︷ ︸
path loss

√
K

1+K
h̄n LoS

R,i︸ ︷︷ ︸
Rician fading

,∀i,n ∈ N, (7.6)

h̄n LoS
R,i =

[
1,e− j 2π

λ
ζ φR,i , ...,e− j 2π

λ
(M−1)ζ φR,i

]T

︸ ︷︷ ︸
array response

,∀i,n ∈ N, (7.7)

where DR,i is the euclidean distance between the RIS and IoTD i and φR,i =
xR− xi

dR,i
.

Denote the phase-shift matrix of the RIS in the nth time slot as Θ
n = diag{e jθ n

1 , ...,e jθ n
M}, where

θ n
m is the phase-shift of the mth reflecting element m = 1,2, ,M. Due to the hardware limitations, the

phase-shift can only be selected from a finite set of discrete values. Specifically, the set of discrete

values for each RIS reflecting element can be given as θ n
m ∈Ω = {0, 2π

Q , . . . , 2π(Q−1)
Q }, where Q = 2b

and b is the number of bits that control the number of available phase-shifts for the RIS elements.

Hence, the SNR is:

Γ
n
i =

P|hn
U→i +hn,H

R,U Θ
nhn

R,i|2

σ2 ,∀i,n ∈ N, (7.8)
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where P is the IoTD transmit power and H denotes the conjugate transpose operator. Next, we can

compute the channel gain component as in Eq (7.9).

hn
U→i +hn,H

R,U Θ
nhn

R,i = Pr(Sn
U→i = LoS)(Dn

U→i)
−β1 +β2(Dn

U→i)
−β1−Pr(Sn

U→i = LoS)β2(Dn
U→i)

−β1

+
ρ

K
K +1√

(dR,i)α

√
(dn

R,U)
α

×
M

∑
m=1

e j(θ n
m+

2π

λ
(m−1)ζ φR,i− 2π

λ
(m−1)ζ φ n

R,U ),∀i,n ∈ N.

(7.9)

The amount of data collected from each IoTD at time slot n can then be computed as follows.

ln
i = δ

n
i log2(1+Γ

n
i ),∀i,n, (7.10)

where δ n
i is a scheduling decision variable (1 if device i is scheduled at time slot n and 0 otherwise).

7.2.3 Objective Function

We seek to maximize the number of served IoTs, each during its activation period subject to

several operational constraints.

max
Θ,xU ,yU ,δ

I

∑
i=1

ωi (7.11a)

s.t.
N

∑
n=1

ln
i ≥ ωiZi, (7.11b)

θ
n
m ∈Ω,∀n ∈ N,m ∈M, (7.11c)√
(xn+1

U − xn
U)

2 +(yn+1
U − yn

U)
2 ≤V, (7.11d)

0≤ xn
U ≤ X , (7.11e)

0≤ yn
U ≤ Y, (7.11f)

I

∑
i=1

δ
n
i ≤C,∀n ∈ N. (7.11g)

δ
n
i ≤ n−Ti−1,∀i ∈ I. (7.11h)
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δ
n
i ≤ Fi−n,∀i ∈ I. (7.11i)

In Eq (7.11b), ωi indicates whether a IoTD data has been collected successfully (ωi = 1) or not

(ωi = 0), therefore, the objective aims at maximizing the number of IoTDs admitted for service.

Eq (7.11c) ensures that phase shift are set within their possible range. Eq (7.11d) does not allow

the UAV to violate its maximum speed. Eq (7.11e) and (7.11f) refrain the UAV from leaving the

concerned area. Eq (7.11g) emphasizes that the number of IoTD scheduled to transmit at each time

slot does not violate the available resources. Eq (7.11h) and (7.11i) make sure that the IoTDs are

only scheduled to transmit their data during the active period.

The above problem is a mixed-integer non-convex owing to the existence of integer and binary

decision variables of wireless scheduling and RIS discrete phase shift. Besides, the UAV trajectory

is itself non-convex [77]. Hence, the resulted problem is difficult to solve or obtain its optimal

solution in polynomial time. Further, some environment parameters such as IoTDs’ active periods

are not given in real-world. In this sense, dynamic programming and linear programming based

solutions are not suitable to solve such problems. Therefore, we resort to DRL to tackle the problem

where DRL has been used widely to effectively solve similar problems. First, we cast the original

problem into two sub-problems. The first part associates with UAV trajectory and IoTDs scheduling.

This part is formulated as MDP and then solved via PPO agent. The outputs of the first part is then

fed to the second sub-problem to solve the RIS phase-shift configuration via iterative BCD. The

complete solution will be discussed next.

7.3 Solution Approach

7.3.1 The UAV Mobility subproblem

First, the problem defined in the previous section is formulated as MDP (similar to Section

3.4.1) where the state, action, reward, are defined as follows:

• State S: The state at time slot n, sn ∈ S, can be expressed by:
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sn = [xn
U ,y

n
U ,X ,Y,T n,Fn,Un,Zn]. (7.12)

Where the state sn ∈ S includes UAV position at time slot n (xn
U ,y

n
U ). Two variables X ,Y

denote the IoTDs’ locations. A vector T n represents active period starting time for all the

IoTDs at time slot n. A vector Fn represents active period deadline for all the IoTDs at time

slot n. A vector Un represents the total amounts of data fetched from the IoTDs by time slot

n. A vector Zn represents the amount of data to be uploaded from all the IoTDs at time slot n.

• Action A: The action taken at time slot n, an ∈ A contains two sup-actions. First, an
U , is the

UAV trajectory (xU ,yU ). Second, an
i , is the IoTD wireless scheduling. In order to handle

the first part of the action space which is related to UAV mobility that is continuous for

both distance and direction of movement (angle) in 2-D space, we discretize this part into 5

directions related to the different actions that represent all kinds of movements that the UAV

can take (left, right, forward, backward, stop). The second part of the action space determines

the IoTDs wireless scheduling. To do so, the agent has to determine which IoTDs will be

scheduled to transmit in the current time slot, meaning, the agent has to select a subset of size

C from I. However, not all the IoTDs can transmit at each time slot since some of them are in

sleep mode or have already uploaded their data. The average number of IoTD that are active

in one time slot can be driven from the activation pattern of the IoTDs, which is chosen to be

uniform in this work, and can be expressed as IΛ/N where Λ represents the average active

period length of the IoTDs1. Eventually, the total number of actions available can be realised

through:

5×

( IΛ

N

)
!

C!
( IΛ

N
−C
)

!
, (7.13)

where 5 corresponds to the UAV trajectory and the second part represents all the combinations

of IoTDs that can be scheduled to serve in one time slot.
1For the sake of simplicity, in this work we assume all IoTDs have the same active period length.
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• Reward: The immediate reward, rn, is equal to the number of IoTDs served if the data suc-

cessfully uploaded to the UAV at time slot n. Otherwise, rn is set to 0.

For DRL, we exploit PPO to develop our agent as laid out in Algorithm 15. First, the agent

initializes random sampling policy and value function for the neural networks. Then, in each epoch,

the agent observes the environment which consists of the set of IoTDs and their information, active

periods, data uploaded, etc. Then at each time slot n, the agent decides where the UAV should go

next. If the next movement is still within the area of interest, the UAV will move, otherwise, the

UAV stays at its current location. This will make sure that the UAV does not leave the area and will

help the agent to learn faster by having less states and actions to explore. Next, the agent selects

an action which is a binary vector that determines which set of IoTDs will be served via the UAV.

Based on that action, the BCD algorithm is then invoked to configure the phase-shift matrix in order

to maximize the channel gain. Eventually, the time step reward is worked out which has two cases.

First, if no IoTD has uploaded its value, the step reward will be set to 0. Otherwise, the step reward

will be equal to the number of IoTDs that has managed to upload their data to the UAV completely

at that time slot.

Algorithm 15: Proposed DRL for Scheduling

1 Inputs: N, v, Learning Rate, γ , ε .
2 Outputs: UAV trajectory.
3 Initialize policy π with random parameter θ and threshold ε

4 Initialize value function V with random parameters φ

5 for each episode k ∈ {0,1,2, ...} do
6 while n < N do
7 Observe state sn.
8 Choose action an.
9 Move the UAV.

10 if UAV new location is not outside the area of interest then
11 Keep the UAV at its last location.

12 Schedule the IoT devices based on an.
13 Compute the reward rn.

14 Compute the advantage function.
15 Optimize the clipped objective.
16 θold ← θ .
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7.3.2 A BCD Method for RIS Configuration

After the DRL agent has decided the next UAV move as well as the set of scheduled IoTDs at

time slot n, Block Coordinate Descent (BCD) is then invoked to tune the RIS phase-shift coeffi-

cients. The objective of the BCD is to maximize the amount of data collected at each time slot by

maximizing the achievable data rate through all the scheduled IoTDs which can be expressed as:

max
Θ

I

∑
i=1

δ
n
i log2(1+

P|hn
U→i +hn,H

R,U Θ
nhn

R,i|2

σ2 ),n. (7.14a)

s.t. θ
n
m ∈Ω,∀n ∈ N,m ∈M. (7.14b)

The BCD algorithm works in an iterative way where a sequence of block optimization proce-

dures are performed. That is, in each iteration, it optimizes one RIS element by checking all the

possible values in Ω while fixing the other elements. The value that maximizes the objective in Eq

(7.14a) will be chosen. After that, the next element will be selected to be optimized and so forth

until all the RIS elements are optimized. This procedure repeats until there is no change in the

RIS phase-shift configuration. The main details of the proposed BCD approach are presented in

Algorithm 16. Regarding the complexity of Algorithm 16, it is O(V M2b) where V represents the

number of iterations needed until Eq (7.14a) is maximized. Indeed, there are three loops embedded

in Algorithm 16; the first loop corresponds to the number of required iterations, the second one

is to iterate over each RIS element, and the last one denotes the number of quantization levels to

control each element. For the sake of illustration, the complete solution approach is sketched in Fig.

7.2 where the two main components, PPO and BCD, are shown. After the PPO agent observes the

state of the environment, it selects an action with the help of neural networks. The action is then

processed to find an action for the UAV mobility and an action for wireless resource scheduling.

The two sub-actions are then go in the BCD algorithm to tune the RIS phase shift. Eventually, the

environment computes the step-reward resulted from that action and sends it back to the agent.
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Algorithm 16: Configure The RIS Elements
1 Inputs: δ n

i .
2 Outputs: θ n

3 while Eq (7.14a) not maximized do
4 for m = 1, ...,M do
5 Fix θ n

m′ ,∀m
′ 6= m,m′ ∈M

6 Set θ n
m = argmax

Ω

Eq(7.14a)

7 Obtain θ n

Figure 7.2: Solution architecture.
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Table 7.2: Simulation Parameters

Parameter Value

Area size 300 × 300 m2

Number of IoTDs (I) 50 IoTDs

σ2 −110 dBm

K 10 dB [123]

α 4

P 20 dBm

C 3

ρ 10 dBm

Zi 50 bits

M 100

b 2 bits

zU 50 m

zR 1 m

zi 1 m

η1,η2 (for dense urban area) 11.95, 0.136

7.4 Numerical Results

In this section, we present the simulation results to shed light on the performance of the RIS-

assisted UAV in IoT wireless networks. For the simulation settings, we use PPO to build our agent,

which is done using Python and TensorFlow. For the DRL, 3 linear layers are used with tanh as

activation function for the middle layers and softmax for the output layer. Internal layers contain

64 units each and Adam optimizer is incorporated to minimize the loss function. The learning rate

is set to 0.002, γ to 0.08, and clip to 0.02. For consistency and accuracy, the results were averaged

over 500 data tests. The IoTDs are generated and placed based on a uniform distribution, and their

active periods are uniformly distributed. The remaining parameters used in our study are listed in

Table 7.2 (unless otherwise indicated).

We observe first the behaviour of the DRL agent; as illustrated in Fig. 7.3, the cumulative

reward, which represents the number of IoTDs served, steadily increases as the agent is exposed

to more epochs/iterations. We also observe that after around 500 iterations, the system starts to

converge.
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Figure 7.3: DRL agent convergence.

In addition, we show in Fig. 7.4 the UAV trajectory where two scenarios are considered; without

RIS and with RIS (M = 50). The deadline of the activation periods are written inside the IoTD circle

and the numbers in red denote the UAV location at that time slot. 10 IoTDs are considered in this

network where each one generates data of size 60 bits. In both cases, DRL is used to control the UAV

trajectory. The difference between the two scenarios in terms of mobility behaviour is apparent. In

the scenario without RIS, Fig. 7.4 (a), the UAV flies towards a cluster of IoTDs that have their

deadline in sequence and not far from each other. Recall that the UAV has limited resources and

cannot collect all the generated data, hence, it is better to select a subset of IoTDs which can be

served to completion. In this instance, IoTDs with deadlines 40, 57, and 67, would be the perfect

choice as they locate near to each other and their deadlines do not overlap. The rest of IoTDs,

such as the one near the center (deadline=80) and the two on the right side (deadline=81 and 82),

will remain unserved as the UAV will not have enough time to fly and collect their data before

expiration. On the other hand, in Fig. 7.4 (b), the UAV is able to serve 6 (twice more) devices

with the assistance of the RIS. One can also observe that the behaviour of the agent is completely

different. For example, first the UAV flies towards the RIS to improve the quality of the indirect

LoS. Throughout this travel, the UAV is able to serve two IoTDs with deadline of 13 located on the

right side. Then, it positions itself in the left side while balancing the channel quality of the direct

and indirect LoS to serve the IoTDs with deadlines 40, 57, and 67. Finally, the UAV flies back to the

other side in order to serve the IoTD of deadline 81. We can see that the IoTDs that are located far
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from the RIS are not served since they have poor indirect LoS and the UAV has restricted maximum

speed.

(a) (b)

Figure 7.4: UAV trajectory in two scenarios: (a) without RIS (b) with RIS (M = 50)

Next, in order to validate the performance of our solution approach, we develop four baseline

methods to compare with. Indeed, to the best of our knowledge, no work in the literature addressed

similar problem. These are explained as follows.

• Random Walk UAV: In this method, the UAV trajectory is determined based on random move-

ment. On the other hand, the phase shift tuning is selected using the BCD method.

• Stationary UAV: the UAV is assumed to stay still in the middle of the network while the RIS

phase shift is tuned using BCD.

• Random Θn: the RIS phase shift is configured following random distribution at each time slot

while the UAV trajectory is planned using a DRL agent.

• Without RIS: In this method, the UAV has only direct link to communicate with the IoTDs.

Again, in this scenario, the UAV is moved using a DRL agent.

In the rest of this section, we study the impact of various environment settings and parameters

on the performance of the system and solution approach..

7.4.1 The impact of the number of RIS’s elements

Fig. 7.5 shows the number of served devices (data collected within deadline) as we vary the size

of the RIS (number of elements). We observe first, that indeed the size of the RIS helps improving
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the performance and accordingly, more devices are served when more elements are present. One

observation the figure makes is that when the phase shifts are randomly selected, not much gain can

be seen from the RIS. However, as the RIS elements are optimized, the gain is apparent and varies

with the way the UAV trajectory is optimized. Clearly, the best performance is attained when the

two are jointly optimized, yielding close to 7× gain when M = 100. Having a stationary UAV or

a UAV with random trajectory have some gains, however the gain is much smaller than when the

trajectory is determined by the developed DRL agent.

Figure 7.5: Effect of the RIS number of elements.

7.4.2 Effect of Network Size

In Fig. 7.6, we vary the number of IoTDs in the network and look at the number of served

devices (percentage), under the four different methods. First, it can be seen that with smaller devices

(10), the gain was relatively high, especially for our proposed solution. The difference between

the proposed solution and the nearest one is greater than 50% all the way through. DRL+BCD

manages to serve approximately 9 IoTDs when there are 10 IoTDs in the network. However, as the

number of IoTDs increases, the service rate goes down. This is due to the limited wireless resources

available for the UAV. Hence, when more IoTDs are added to the network, the ability of the UAV

to fulfill the network needs will degrade. However, this issue can still be tackled by increasing

the number of RIS elements2. In addition to our solution approach, the other baselines also show

2Fig. 7.5 shows that the number of RIS elements has a great impact on the number of IoTDs served. However,
determining the size of the RIS is another problem and is beyond the scope of this chapter.
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interesting behaviours. Intuitively, they all experience decreasing trends, however, Stationary UAV

and Random Walk UAV face a sudden increase at 20 IoTDs before they start to gradually decrease.

The reason behind such behaviour is that owing to the fixed wireless resources and the likelihood

of IoTDs presence within the UAV vicinity, there are some resources wasted when there is little

IoTDs near the UAV and RIS to serve. However, as the number of IoTDs increases, there will be

more chances for the UAV to find IoTDs and serve them. Eventually, when there are more IoTDs

in the network than the available resource, the percentage of served IoTDs starts to decrease and

that what happens with networks of size 30, 40, and 50 IoTDs. The last two baselines, Random

Θn and Without RIS, come in the last place with significantly poor performance, with marginal

improvement for Random Θn, due to their weak RIS tuning or non availability of the RIS.

Figure 7.6: Effect of the number of IoTDs.

7.4.3 Effect of Data Size

In Fig. 7.7, we examine the impacts of having small and large size of data generated by the

IoTDs. The percentage of IoTDs admitted for full service is shown versus the size of data in bits. In

general, the small data generated, the better service that is provided. This is due to the fact that small

data can be uploaded within shorter periods, subsequently, the UAV will have more free resources

to serve other requests.

One can observe that DRL+BCD obtains the highest performance in comparison with the base-

lines in all scenarios. The difference between our solution approach and the other methods becomes
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Figure 7.7: Effect of the data size generated by the IoTDs.

more apparent when the data size increases. That means, our solution approach can better adapt to

more complex scenarios where the UAV and RIS resource are optimized wisely. Another insight

one can look at is the impact of very large data (i.e., 90 bits). In such case, it becomes more diffi-

cult for the UAV to guarantee sufficient service for the IoTDs. Again, this issue can be tackled by

investing more in the RIS size. Meanwhile, we can see a sharp decrease experienced by Random

Walk UAV and Stationary UAV while both demonstrate better performance than Random Θn and

without RIS. Interestingly, even with random phase-shift configuration, the RIS proves itself as a

solid candidate to enhance the wireless link quality for the UAV when small size data is considered.

At 50 bits, Random Θn is able to double the number of IoTDs admitted in comparison to the UAV

alone scenario.

7.4.4 Effect of RIS on UAV Energy

One of the UAV limitation is the power capacity. Energy consumption of the UAV results from

two sides, namely, UAV mobility and wireless communication. The first part, associated with UAV

mobility, constitutes the dominant share of energy consumed from the UAV battery. Subsequently,

in this section, we focus only on this part.

For this study, we use the metric of energy efficiency to quantify the benefits of RIS in aiding

the UAV. In short, energy efficiency advocates for smaller energy consumption in regards to perform
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higher. This can save device’s battery life and improve energy consumption [152]. In the context of

this work this translates to uploading more data while consuming less energy and can be expressed

as.

Energy Efficiency =
∑

I
i=1 siZi

E(ν)total
, (7.15)

where E(ν)total represents the total energy consumption of the UAV throughout its operational time.

The mobility of the UAV incurs energy and the amount consumed depends on the velocity of the

UAV [70, 75] as follows.

P(νn)total = K
(

1+3
M2

tip

w2
b

)
︸ ︷︷ ︸
Blade profile power

+
1
2

π(νn)3F︸ ︷︷ ︸
Parasite power

+mug

√√√√√√(−(νn)2 +

√
(νn)4 +(

mU g
πA

)2

2

)
︸ ︷︷ ︸

Induced power

. (7.16)

where νn denotes UAV velocity at time slot n and Mtip is the blade’s rotor speed, K and F are two

constants which depend on the dimensions of the blade and the UAV drag coefficient, respectively,

π is the air density, mU and g respectively denote the mass of the UAV and the standard gravity, A is

the area of the UAV. The total energy consumption to cover a distance d at a constant velocity UAV

w can be computed as E(ν)total =
∫ d/ν

0 P(ν)dt = P(ν)
d
ν

as in [70].

In Fig. 7.8, the energy efficiency levels are obtained for various RIS sizes to understand the

effect of having RIS on the UAV energy efficiency. It can be observed that without RIS, the energy

consumed to upload one bit is very high. However, as the RIS size grows up, this value becomes

smaller and smaller and that translates in better energy efficiency. In other words, the presence of

RIS helps in two directions. First, it makes the UAV have more flexibility to plan its path such that

the total amounts of energy consumed at the end is minimized as per Eq (7.16). Second, it helps

to make transmission more successful by increasing the quality of the established links. This is

demonstrated with RIS of 50 elements where the energy efficiency reaches above 15 bits/KJ. This

significant increase keeps going up to increase by 30% with only 25 elements added to the RIS (at

M = 75).
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Figure 7.8: UAV energy efficiency levels with various RIS sizes.

7.5 Summary

In this work, we presented a new data gathering framework leveraging an RIS-UAV assisted

network to collect data from sensing devices within their active times. The problem is formulated

as mixed-integer non-convex programming and then, due to its complexity, is converted to MDP

to be solved later via a DRL agent. The chapter also proposed a BCD method to handle the RIS

phase shift configuration with lower complexity and high efficiency that was proved later in the

numerical results by comparing it with random coefficient settings. The superiority of our solution

approach is shown through simulations against four alternative methods. Indeed, the proposed

solution outperformed its counterparts by more than 50% in many cases. Integrating RIS to the UAV

communications has also shown another benefit of improving UAV energy efficiency remarkably

especially when considering a large RIS.
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Chapter 8

Conclusions and Future Research

Directions

8.1 Conclusion

This thesis addressed several challenges associated with the deployment of wireless communi-

cations and digital services in vehicular networks. First, Chapter 1 of this thesis provided a com-

prehensive overview of the key advantages, potential applications, and communication challenges

of vehicular networks to offer infotainment and safety-related applications. Then, limitations of

existing studies and a summary of the research contributions of this thesis were highlighted.

In Chapter 2, a system model for RSU operators was presented aiming at offering improved

QoE for the content providers’ vehicular users. Three scenarios have been considered including

V2I and V2V communications along with accounting for the similarities among contents and us-

ing pre-fetching techniques to reduce content delivery latency. The problem is formulated as an

optimization problem and then small instances have been solved via CPLEX. In addition, alterna-

tives, yet less complex solutions, have also been proposed. The simulation results showed that the

provided solutions are significantly efficient.

Next, in Chapter 3, caching principles were utilized to further improve RSU efficiency. In this

chapter, the scenario of disconnected RSU was considered. Based upon the fact that users share

common interests in terms of contents, the RSU leverages the available contents on vehicles to fill

170



up its cache unit. Later, the RSU can start to serve vehicles which request cached contents. To

this end, the popularity profiles of contents and their dynamics were taken into consideration to

maximize the RSU cache hit rate. The problem was formulated mathematically and then converted

to MDP to be solved via deep reinforcement learning.

The scenario presented in Chapter 3 was taken to another level in Chapter 4 by considering

aerial RSU (UAV) instead of terrestrial one. In this chapter, a UAV equipped with cache capabilities

to assist content delivery in vehicular environment was investigated. Based on the the restricted

UAV battery capacity, the objective of this contribution was to improve the UAV energy efficiency.

Then, the problem was formulated as MINLP to control UAV mobility and decide for the uplink and

downlink scheduling. Next, deep reinforcement learning was employed to solve for the trajectory

planning of the UAV and effective algorithms were proposed to determine wireless link establish-

ments with the vehicles.

A more comprehensive scenario was given in Chapter 5 where the collaboration between ter-

restrial RSU and UAV is studied. In this regard, the RSU was assumed to be connected to the the

backhaul link to fetch and serve contents to the vehicles. However, owing to the high demands and

size of contents, it is sometimes difficult to serve vehicles through only one entity. Hence, the RSU

can offload its demand partially to a nearby UAV. First, the RSU transfer some contents to the UAV

via the vehicles. Later, the UAV starts to collaborate with the RSU by complete the content delivery

of partially served vehicles. This problem was formulated as MDP and solved via dual task deep

reinforcement learning to decide the UAV trajectory and amount to be served via the RSU.

Moreover, the employment of reflecting surfaces in vehicular communication was investigated

in this thesis. Chapter 6 investigated the ability of RIS to establish indirect links between RSU and

vehicles when the direct link is blocked due to the presence of blockage such as a high building.

This chapter accounted for a more realistic scenario of RIS where practical discrete phase shifts

were considered. Moreover, as opposed to the existing works, the mobility of vehicles with online

phase shift tuning were addressed in this chapter. After mathematically formulating the problem,

it was shown to be hard to solve, hence, BCD with deep reinforcement learning were leveraged

to construct efficient and effective solutions for the wireless scheduling and RIS configuration. In

addition, RIS was also proposed to aid UAV in serving IoT devices used to enable time-sensitive ITS
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services in Chapter 7. The objective of this work was to maximize the number of IoTDs admitted

to be served timely and completely. Again, the scenario turned out to be very complex along with

some uncertainties in the environment such as IoTDs’ activation times. As a result, DRL was

leveraged to control UAV trajectory and wireless scheduling while the RIS phase-shift was solved

via BCD. The solution approach of this work was compared with other baselines and demonstrated

its effectiveness and superiority by doubling the achieved gains.

8.2 Future Work

8.2.1 Further Enhancement for Vehicular Networks

Although this dissertation covered several research challenges related to the deployment of

caching, UAVs, and RIS in assisting vehicular networks, there is still room for improvement as

follows.

In Chapter 2, the cost incurred by the backhaul between the RSUs and edge server can be

studied along with the roles that cache can play to reduce this cost. In Chapter 3, we can extend

this work by considering two kinds of sources to fetch the contents, namely, passing vehicles and

backhaul links. In such scenario, the RSU may need to optimize its revenue by avoiding utilizing

the backhaul link which incurred higher costs during peak hours and relay more on the passing

vehicles. However, in some extreme scenarios, it may be more beneficial for the RSU operator to

access the backhaul in case the content required is not available on the vehicles. A second direction

can leverage V2V communication by pushing contents from the RSU to the vehicles such that

vehicles can act as relay and caching nodes. In Chapter 4, the proposed idea can be further extended

through considering V2V communication in order to enhance the performance of the system and

improve the QoS to the vehicle users. Such scenario is of interest to network operator as the UAVs

may belong to another operator and we cannot guarantee their collaboration. Here, the vehicles

may need incentives to motivate them in delivering service for each others [153]. The mobility

of UAV can also be improved through considering continuous action space which gives the UAVs

more flexibility to planning their trajectory. In Chapter 5, the direct communication between the

UAV and RSU can be studied in addition to relay contents through vehicles. In Chapter 6, we can
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extend this work considering wireless resource allocation where the spectrum can be allocated to

each vehicle based on its individual needs. As a result, the RIS phase-shift configuration method

can also be updated to consider various link qualities for each specific vehicle depending on the

allocated wireless resources. In Chapter 7 multi-UAVs can be further investigated to see how they

cooperate with each other to plan their trajectory such that they avoid collisions and the ultimate

objective is optimized. Moreover, the metric of Age of Information can also be applied to this

context in order to ensure the freshness of the data collected from the IoTDs.

8.2.2 Federated Learning to Decentralize Training and Enforce Privacy

Over the last years, vehicular networks have been studied widely in order to set a foundation for

ITS. That includes a large number of novel ITS use cases which have surfaced in the literature and

the industry as well. As such, many new challenges and requirements arose that require quick and

effective solutions. Among them, we recognize the issue of big data and data privacy. Such problem

can be mitigated by using federated learning.

Despite that federated learning has been leveraged to improve wireless communications, the

employment of this technique in vehicular networks is confined to limited attempts [154–156].

Federated learning is a method in machine learning that moves part of the training process to the

entities and then collects the learning parameters only to construct a global model. Such mechanism

reduces the burden on the central unit besides it contributes in saving sensitive data privacy. In the

meantime, vehicular networks comprise a large set of entities including vehicles, RSU, BS, and

UAVs. The data generated by such unit, especially for vehicles, is very critical and might reveal

important information if compromised. Hence, federated learning can tackle such issues. In this

particular section, we identify two directions of work. The first direction is of federated learning

employment to calculate content popularity profiles at local and global scale. Here, each vehicle

may learn and share its parameters with a central unit. Then RSU can then figure out the content

popularity and cache those contents with higher demands. The second direction is related to vehicles

trajectories which are private data that vehicles are reluctant to share by default with any external

entity. However, using federated learning, vehicles can reveal some meaningful information to other

units to make decisions without exposing their critical information.
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