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Abstract

Studying the Use of SZZ with Non-functional bugs

Sophia Quach

Non-functional bugs bear a heavy cost on both software developers and end-users. Tools to

reduce the occurrence, impact, and repair time of non-functional bugs can therefore provide key

assistance for software developers racing to fix these issues. Classification models that focus on

identifying defect-prone commits, referred to as Just-In-Time (JIT) Quality Assurance are known to

be useful in allowing developers to review risky commits. JIT models, however, leverage the SZZ

approach to identify whether or not a past change is bug-inducing. However, the due to the nature

of non-functional bugs, their fixes may be scattered and separate from their bug-inducing locations

in the source code. Yet, prior studies that leverage or evaluate the SZZ approach do not consider

non-functional bugs, leading to potential bias on the results.

In this thesis, we conduct an empirical study on the results of the SZZ approach on the non-

functional bugs in the NFBugs dataset, and the performance bugs in Cassandra, and Hadoop. We

manually examine whether each identified bug-inducing change is indeed the correct bug-inducing

change. Our manual study shows that a large portion of non-functional bugs cannot be properly

identified by the SZZ approach. We uncover root causes for false detection that have not been

previously found. We evaluate the identified bug-inducing changes based on criteria from prior

research. Our results may be used to assist in future research on non-functional bugs, and highlight

the need to complement SZZ to accommodate the unique characteristics of non-functional bugs.

Furthermore, we conduct an empirical study to evaluate model performance for JIT models by

using them to identify bug-inducing code commits for performance related bugs. Our findings show

that JIT defect prediction classifies non-performance bug-inducing commits better than performance

bug-inducing commits. However, we find that manually correcting errors in the training data only
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slightly improves the models. In the absence of a large number of correctly labelled performance

bug-inducing commits, our findings show that combining all available training data yields the best

classification results.
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Chapter 1

Introduction

Since the first software bug was discovered in 1945, software engineers have been developing

techniques to attempt to fix and prevent them Gyimothy, Ferenc, and Siket (2005); Hassan (2009);

Kamei et al. (2013). Bugs are costly to fix, and increase maintenance effort LaToza, Venolia, and

DeLine (2006). In a world that is ever more reliant on software Grubb and Takang (2003), it

appears more important than ever before to have quality software and to be able to fix bugs in a

timely manner when they do appear. To this end, researchers have developed several approaches to

identify prior bug-inducing changes to help development teams avoid future bugs by learning from

their mistakes Gyimothy et al. (2005); Hassan (2009); Kamei et al. (2013). Defect prediction models

are a well-known technique used by practitioners to identify defect-prone files and packages during

quality assurance. Once the defect-prone files or packages have been identified, developers still

need to spend time modifying and examining code. This creates time-consuming and impractical

tasks, especially for large software systems Kamei et al. (2013).

Just-In-Time Quality Assurance (JIT) provides an effort-reducing way to focus on the bug-

inducing changes and thus reduce the costs of developing high-quality software. JIT quality as-

surance relies on the SZZ approach, and must therefore grapple with the drawbacks of SZZ. The

SZZ technique helps with bug localization, and attempts to find the source-code changes that first

induces a software bug S. Kim, Zimmermann, Pan, and Whitehead (2006); Sliwerski, Zimmermann,

and Zeller (2005). However, the SZZ approach, like other bug localization techniques M. Kim and

Lee (2018), is not perfect. Previous studies have shown that the SZZ approach can mislabel some
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changes as bug-inducing S. Kim et al. (2006). These mislabels include semantically equivalent

changes, directory or file renames, and initial code importing changes da Costa et al. (2017); Fan

et al. (2019); Neto, Costa, and Kulesza (2018). An evaluation framework exists to evaluate the

various implementations of the SZZ approach that attempt to remedy these issues da Costa et al.

(2017). However, the SZZ evaluation framework and the existing SZZ approaches concentrate on

mixed bugs or functional bugs, without verifying the validity of the approach on non-functional

bugs. Indeed, the Just-In-Time training data is based off of results provided by SZZ, which may

include falsely identified past bug-inducing changes. These are then used to predict future inducing

changes, giving flawed predictions.

Non-functional requirements are a class of software constraints relating to the quality of a pro-

gram, different than functional requirements Radu and Nadi (2019). Functional requirements relate

to the functionality of a program Kotonya and Sommerville (1998). Non-functional requirements

impact aspects of a program such as efficiency, portability, and maintainability, and therefore are

a key role in software development Radu and Nadi (2019). A non-functional bug as a problem in

a piece of source code impairing some aspect of a program’s non-functional requirements Radu

and Nadi (2019). Functional changes and their software fixes are mainly localized, while non-

functional bugs may be scattered and require fixes in various parts of the software Hamill and

Goseva-Popstojanova (2014). For example, if a code change introduces a security vulnerability,

security measures to counteract this may be implemented elsewhere Liu Ping, Su Jin, and Yang

Xinfeng (2011); Mahrous and Malhotra (2018); Williams, McGraw, and Migues (2018). Devel-

opers often spend more time fixing performance bugs than fixing non-performance bugs Zaman,

Adams, and Hassan (2011). Due to the unique nature of performance bugs, we suspect it is possible

for performance bugs to present differently in source code. Zaman et al. find that more developers

are assigned to fix performance bugs than functional bugs Zaman et al. (2011). If a code change in-

troduces a performance issue, this performance issue may be fixed and improved in a different part

of the system Jin, Song, Shi, Scherpelz, and Lu (2012); Nistor, Jiang, and Tan (2013), for example

by changing configuration parameters. Non-functional bugs can be harder to fix than their functional

counterparts. The SZZ approach would seemingly be useful in helping developers locate where to

fix a performance bug in the source code. Due to the differing nature of non-functional bugs and
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functional bugs Glinz (2007); Radu and Nadi (2019), it is possible for non-functional bugs to present

differently in source code, and therefore have different tooling requirements. Functional changes

and their software fixes are mainly localized, while non-functional bugs, such as performance bugs

may be scattered and require fixes in various parts of the software Hamill and Goseva-Popstojanova

(2014). Hamill and Goseva-Popstojanova Hamill and Goseva-Popstojanova (2014) found that a sig-

nificant number of software failures required fixes in multiple software components and/or multiple

software artifacts (i.e., 15% and 26%, respectively). Due to the scattered nature of non-functional

bugs, we suspect that the SZZ approach might perform worse on non-functional bugs than mixed

bugs, namely functional bugs which can have a single concrete inducing commit that can be tracked

down through the SZZ approach.

Additionally, if performance and non-performance bug-inducing commits have different charac-

teristics, a model only based on performance bugs can theoretically label performance bug-inducing

changes better. Because there is no verified ground truth for performance bug-inducing commits,

we further manually verify the commits identified through the SZZ approach, through two review-

ers. We then evaluate Just-In-Time models solely on the manually verified performance commits

identified by the reviewers, by using four different combinations of training data. Of the model

combinations, we include one where the training data is only comprised of manually labelled bug-

inducing commits, to see whether we need a separate model for predicting performance bugs. We

seek to determine how different training data influences the models’ power to predict performance

bug-inducing commits.

In the first part of the thesis, we seek to determine the usefulness of the SZZ approach in finding

the cause of non-functional bugs. This thesis provides an evaluation of the SZZ approach with

respect to non-functional bugs, while previous studies Kamei et al. (2013); S. Kim and Whitehead

(2006); S. Kim et al. (2006); Pan, Kim, and Whitehead (2009) are evaluated on mixed bugs (both

functional and non-functional) without distinction. We leverage the NFBugs dataset as a source

of identified non-functional bugs Radu and Nadi (2019). The NFBugs dataset identifies bugs that

specifically affect non-functional requirements, as well as the root cause of these bugs, for 65 open-

source projects Radu and Nadi (2019). This dataset presents a vetted source of bugs and their root

causes with which to test the SZZ approach. We therefore use this dataset to test the effectiveness

3



1. Get bug fixing commits 2. Run the SZZ tool 3. Filter at the 
class, method level

4. Filter and tag the 
false negatives

Figure 1.1: Procedure followed to evaluate bug-inducing commits identified by the SZZ approach

of the SZZ approach on non-functional bugs. To determine the usefulness of the SZZ approach

with respect to non-functional bugs, we evaluate the SZZ approach based on three criteria: (1)

the ability of the SZZ approach to identify bug-inducing changes for non-functional bugs; (2) the

differences of inducing changes for non-functional bugs when compared to functional bugs; and (3)

the characteristics of bug-inducing commits falsely identified by an SZZ approach as bug-inducing

for non-functional bugs. We also aim to know whether or not performance bugs are well predicted

by JIT defect prediction. We conduct an empirical study on the results of the SZZ approach used

for JIT defect prediction, concentrating on the use of JIT defect prediction to identify the inducing

changes of performance related bugs in Cassandra and Hadoop. For the purpose of our thesis, we

perform our evaluation of the SZZ approach on a MA-SZZ implementation. We validate whether the

bug-inducing changes found by MA-SZZ are truly bug-inducing changes by manually examining

these identified changes in order to generate clean datasets. We conduct manual analysis to verify

cross referenced fix commits and JIRA issue reports and we evaluate the performance related data

for JIT models. Since manual analysis is time-consuming, we want to determine whether verified

data makes a significant difference in training a better model to classify performance bug-inducing

commits.

Upon evaluation of the SZZ approach, we filter out commits wrongly identified as bug-inducting

commits by the SZZ approach (false-positives). Furthermore, we conduct a manual verification of

the results of SZZ on our dataset to determine whether bug-inducing commits identified by the SZZ

approach do in fact cause their related non-functional bugs. We use 132 bug fixes from the NFBugs

dataset as our benchmark. For each fixing change, we run the SZZ approach to find how many

bug-inducing changes are identified. In total, for all 132 bug fixes, we find that there are a total

of 376 candidate bug-inducing commits. We manually observe the commits identified by the SZZ
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approach to determine whether they are truly bug-inducing. We use the additional insights gained

through our manual verification of the SZZ approach to create an extension of the NFBugs dataset.

Our findings show that among the 376 identified bug-inducing commits by the SZZ approach, only

79 of them are true positive bug-inducing commits. We manually break down the falsely identi-

fied bug-inducing commits into three reasons: multi-purposes bug-fixing commits, 2) bug already

being there, and 3) not related to the bug. Our findings show that non-functional bug-inducing

commits differ from functional bugs inducing commits, where guidelines to identify falsely de-

tected bug-inducing commits in functional bugs cannot be used reliably when using SZZ to detect

non-functional bugs.

In the second part of the thesis, we study the impact from falsely identified performance is-

sues inducing changes from SZZ on the results of Just-in-Time defect prediction. We train a model

with data from the SZZ approach and then test it on manually verified performance bug-inducing

commits. Our findings show that JIT models perform better on classifying non-performance com-

mits than performance commits, with AUC values of 0.842 to 0.869 for non-performance commits,

and only 0.486 to 0.518 for performance commits. Furthermore, we find that manually vetting the

results of the SZZ approach to produce JIT models generally does not impact the models’ classifi-

cation power, and when it does, the changes only have a small effect size (Cohen’s d = 0.437) on the

classification power of these models. Finally, we find that while ideally a large number of correctly

labelled performance bug-inducing commits would be available, in the absence of this, it is still

preferable to use all commit data in the training data, i.e., truly performance bug-inducing commits,

non-performance bug-inducing commits, and non-bug-inducing commits, in order to obtain the best

classification results.

The following are the primary contributions of the thesis:

• To the best of our knowledge this is the first study to focus exclusively on the use of the SZZ

approach to identify the inducing commits of non-functional bugs.

• We manually verify the validity of the SZZ approach on non-functional bugs, and determine

potential problems with the approach in dealing with them.

• We augment the NFBugs dataset by including bug fix descriptions that contain the commits

5



where the true bug-inducing changes reside1.

• To the best of our knowledge this is the first study to focus exclusively on performance bug-

inducing changes in the context of Just-In-Time defect prediction models.

• We manually verify the validity of the SZZ approach on performance bug-inducing changes.

• We evaluate the results of the Just-In-Time model bug prediction before and after our modi-

fications after manually checking whether a commit that is labelled as bug-inducing is truly

bug-inducing.2

Chapter organization. Chapter 2 introduces the SZZ approach and other background concepts.

Chapter 3.1 presents our subject dataset, applications of the SZZ approach, and the steps of our

study. Chapter 3.2 presents our approach to determine the bug-inducing commits for non-functional

bugs. Chapter 3.3 presents our empirical study of the SZZ approach when used on non-functional

bugs. Chapter 3.2 presents a manual investigation of the results of our empirical study, as well as

discussion of these results. Chapter 2 also discusses prior work related to the work presented in this

thesis. Chapter 3.5 presents the threats to the validity of our work. Chapter 2 introduces background

concepts including the SZZ approach and Just-In-Time defect prediction. Chapter 4.1 describes the

design of our study. Chapter 4.2 presents our case study results addressing our research questions.

Chapter 4.3 presents the threats to the validity of our work. Chapter 2 presents prior work related to

the work presented in this thesis. Finally, Chapter 5 concludes the thesis.

1Our extension of the NFBugs dataset is publicly available and can be found at:
https://github.com/senseconcordia/NFBugsExtended

2Our data files and scripts used are publicly available and can be found at: https://github.com/senseconcordia/Perf-
JIT-Models
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Chapter 2

Related Work

2.1 Overview of the SZZ approach

The SZZ approach is used to identify the changes that introduce bugs. The approach starts from

a bug-fixing change, i.e., a change that is known to have fixed a bug da Costa et al. (2017). For

each identified bug-fixing change, the SZZ approach analyzes the lines of code that were updated

to introduce the fix. In order to identify the change that originally introduced the bug, the SZZ

approach traces through the history of the source code management system da Costa et al. (2017).

The git annotate function, now replaced by git blame Borg, Svensson, Berg, and Hansson (2019)

that is provided by most SCM systems is used by the approach to identify the last time a given line

of code was changed before the bug-fixing commit da Costa et al. (2017). Figure 2.1 shows a bug

fix and a corresponding identified bug-inducing change from the SZZ approach.

Because no SZZ approach provides perfect precision and recall of bug-inducing commits, it is

necessary to understand the nature of the results given by the SZZ approach. In an ideal scenario, the

SZZ approach can identify the exact changes that introduce a bug. In this ideal case, we consider the

results to be changes identified by the SZZ approach that are truly bug-inducing changes, i.e., true

positives. These results can directly be used by developers to find the root cause of a known bug.

However, if the SZZ approach identifies changes that are not truly bug-inducing changes as bug-

inducing, we consider those to be false positives. False positives can cause developers to needlessly

look at faultless code. False negatives are truly bug-inducing changes that were missed by the SZZ
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Time

SZZ

Step 1. Bug Fixing change
Commit#ffac062

Diff with prior version

Step 2. Diff
(++)	t	=	[str(j)	+	"	"	+	t[i]	for	i,j	in	enumerate((y,d,h,m,s))	if	j	!=	0]
(++)	t	=	[i	+	"s"	for	i	in	t	if	not	i.startswith("1")]
(--)	t	=	[]	
(--)				for	i,j	in	enumerate(res):		
(--)								if	j	!=	0:		
(--)												t.append(str(j)	+	"	"	+	q[i])

Blame

Step 3. Bug-inducing change
Commit#d3a3ac9

Step 2. Diff
(++)	t	=	[]	
(++)				for	i,j	in	enumerate(res):		
(++)								if	j	!=	0:		
(++)												t.append(str(j)	+	"	"	+	q[i])

Figure 2.1: Overview of the SZZ approach. The SZZ approach first looks at the changes made in
a bug-fixing change (Step 1). It then uses git diff to localize the exact fix (Step 2). Finally, the
deletions are traced back to the origin of the deleted code (Step 3). The origin of the deleted code is
a potential bug-inducing change.

approach. False negatives would require different tools or manual investigation to find the root cause

of a bug. Various modifications of the SZZ approach attempt to improve its true positive rate and

reduce its false positives and false negative rates.

2.2 Applications of the SZZ approach

Kamei et al. Kamei et al. (2013) study defect prediction models that focus on identifying defect-

prone software change level, rather than file or package level, referred to as “Just-In-Time Quality

Assurance”, where developers can review and test these risky changes while they are still fresh in

their minds. In this case, the SZZ approach is used to link each defect fix to the source code change

introducing the original defect by combining information from the version archive with the bug

tracking system. Findings from Kamei et al. Kamei et al. (2013) indicate that “Just-In-Time Quality

Assurance” may provide an efficient way to focus on the most risky changes and thus reduce the

costs of developing high-quality software.

Current adoption of techniques that predict software quality remains low. One of the reasons

for the low adoption rate of current analytics and prediction techniques is the lack of actionable and

publicly available tools. Rosen et al. Rosen, Grawi, and Shihab (2015) present Commit Guru Rosen
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et al. (2015), a publicly available, language agnostic, analytics and prediction tool that identifies and

predicts risky software commits mined from any Git repository. Additionally, Commit Guru Rosen

et al. (2015) automatically identifies risky (i.e., bug-inducing) changes and builds a prediction model

to assess the likelihood of a recent commit being bug-inducing in the future. A similar approach to

the SZZ approach is used to determine bug-fixing commits Rosen et al. (2015).

The wide application of the SZZ approach motivates our research of the usefulness of the SZZ

approach when used to identify the inducing changes on non-functional bugs.

In this chapter, we situate our work within the context of past studies that have evaluated SZZ

approaches and studying non-functional bugs.

2.3 Implementations of SZZ

The first SZZ approach B-SZZ (the basic SZZ implementation) was defined by Sliwerski et

al. Sliwerski et al. (2005), to identify the changes that introduce bugs. SZZ requires a code change

that fixes a bug found in the code as a base input, also known as bug-fixing changes. Figure 2.1

shows an example of the SZZ approach, with a bug fix and a corresponding identified bug-inducing

change. Since then, due to B-SZZ’s limitations, there have been several improvements proposed:

including the AG-SZZ implementation by Kim et al S. Kim et al. (2006). Costa et al. da Costa et al.

(2017) later proposed the MA-SZZ implementation, which is built on top of AG-SZZ. MA-SZZ im-

proves upon AG-SZZ by removing potential bug-introducing changes that are meta-changes. Meta-

changes are source code independent changes, such as source code management branch changes,

source code merges, and changes to file properties such as end-of-line changes da Costa et al. (2017).

Costa et al. da Costa et al. (2017) find that B-SZZ has the lowest disagreement ratio in general

(0%-9%), followed by the MA-SZZ (0%-17%) da Costa et al. (2017). The bugs analyzed by MA-

SZZ have the shortest time-span of bug-introducing changes, while B-SZZ has the longest time-

span of bug-introducing changes [7]. Costa et al. [7] also report that MA-SZZ returns the second

highest count of future bugs. We choose the MA-SZZ implementation proposed by Costa et. al da

Costa et al. (2017), as it is similar to B-SZZ with some improvements, such as excluding style
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changes and including usage of an annotation graph S. Kim et al. (2006), and the removal of meta-

changes da Costa et al. (2017). MA-SZZ is also used in several studies including work on Just-In-

Time defect prediction, to identify bug-inducing changes Kamei et al. (2013); McIntosh and Kamei

(2018) as a ground truth for building the prediction models. Additionally, prior work in refactoring

changes, such as RA-SZZ Neto et al. (2018), uses MA-SZZ by incorporating it with RefDiff to

propose a refactoring aware SZZ implementation Neto et al. (2018). Although newer approaches

introduce refactoring awareness, we do not know how those interact with software performance.

We therefore err on the side of caution by using MA-SZZ, a more established and more commonly

used implementation of the SZZ approach.

Borg et al. Borg et al. (2019) propose an open implementation of the SZZ approach for git

repositories. The authors include a usage example for the Jenkins project and conclude with a

case study on JIT bug prediction. The SZZ Unleashed implementation is based on Sliwerski et

al.’s Sliwerski et al. (2005) work, as well as later enhancements by Williams and Spacco Williams

and Spacco (2008). Because MA-SZZ is also based on Sliwerski et al.’s Sliwerski et al. (2005)

work, our findings on non-functional bugs may benefit SZZ Unleashed Borg et al. (2019) as its

purpose is for git repositories, which can contain a mixture of functional and non-functional bugs.

2.4 Evaluating SZZ approaches

Kim et al. present algorithms to identify bug-inducing changes automatically and accurately.

They compare their algorithms to the SZZ S. Kim et al. (2006) approach. They removed false

positives and false negatives by using annotation graphs, and ignored non-semantic code changes

and outlier fixes. They also manually inspected the commits listed as bug fixing to determine if

they were indeed changes that fixed a bug in the code. In Chapter 3, we evaluate our dataset with

MA-SZZ, while Kim et al. S. Kim et al. (2006) evaluated the approach on the first version of the

SZZ approach. In Chapter 4, we evaluate our Cassandra and Hadoop datasets with the bug inducing

changes found by SZZ. Furthermore, we concentrate on the SZZ approach S. Kim et al. (2006), as

it is used in JIT defect prediction.

Williams et al. revisit the SZZ approach by outlining several improvements to the approach Williams
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and Spacco (2008). They replace annotation graphs with linear number maps to track unique source

code lines as they change over software evolution. Their enhanced approach uses weights to map

the evolution of a line. They also use DiffJ, a Java syntax-aware diff tool to ignore comments and

ignore cosmetic changes Jpace (n.d.). Furthermore, they verify how often bug-inducing changes

identified by the SZZ approach are truly bug-inducing changes. We want to compare an improved

SZZ approach implementation: MA-SZZ, as the study performed by Williams et al. compared their

improvements to the first SZZ approach implementationSliwerski et al. (2005). In Chapter 4, we

want to verify whether the SZZ approach can provide true bug inducing changes on Cassandra and

Hadoop performance bugs and the impact on JIT models.

Costa et al. da Costa et al. (2017) introduced a framework to evaluate the results of SZZ approach

implementations. They note that little effort has been made to evaluate SZZ’s results, despite its

role as the foundation of several research areas in software engineering da Costa et al. (2017). The

framework evaluates the approach with three criteria: the earliest bug appearance, the future impact

of changes, and the realism of bug introduction da Costa et al. (2017). The framework is evaluated

on five SZZ implementations using data from ten open source projects. Their findings show that

previous proposed improvements to SZZ approaches tend to inflate the number of false positive bug-

inducing changes. A single bug-inducing change may be blamed for introducing hundreds of future

bugs and SZZ implementations report that at least 46% of the bugs are caused by bug-inducing

changes that are years apart from one another da Costa et al. (2017). Our study builds on the work

from Costa et al. by using their evaluation criteria as well as new evaluation criteria to evaluate

SZZ approaches on non-functional bugs rather than on a mixed dataset containing both functional

and non-functional bugs. Similarly to Costa et al. da Costa et al. (2017), in Figure 3.5 we evaluate

our data on the earliest bug appearance, in Figure 3.4 we evaluate our data on the future impact

of changes. In Chapter 3, we build on the work from Costa et al. by evaluating the identified bug

inducing changes from SZZ on non-functional bugs rather than on a mixed dataset containing both

functional and non-functional bugs.

Fan et al. Fan et al. (2019) studied the impact of mislabelled changes of the SZZ approach

on JIT prediction. They analyze four different SZZ implementations and build the JIT prediction

models using the labeled data of these four variants Fan et al. (2019). For MA-SZZ, Fan et al. Fan
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et al. (2019) find that the labeled data has low false positive and false negative rates, compared

to AG-SZZ, which contains a much larger number of false negatives. The low false positive and

false negative rates may not be likely to impact the prediction of the MA models Fan et al. (2019).

Checking the impact of performance bugs on the NFBugs data is an avenue for future work to

advance studies pertaining non-functional bugs.

2.5 Just-In-Time defect prediction

Defect prediction models are a well-known technique for identifying defect-prone files or pack-

ages for practitioners to allocate quality assurance efforts. One underlying problem is that once

the critical files or packages have been identified, developers still need to spend considerable time

examining and modifying source code, which is time consuming and impractical for large software

systems.

Kamei et al. Kamei et al. (2013) study prediction models that focus on identifying defect-prone

software at the change level, rather than file or package level, referred to as Just-In-Time Quality

Assurance, where developers can review and test these bug-inducing changes while they are still

fresh in their minds. Kamei et al. Kamei et al. (2013) use a wide range of factors based on the

characteristics of a software change, such as the number of added lines, and developer experience.

They perform a large scale study on JIT models to see if they can predict whether or not a change

will lead to a defect Kamei et al. (2013). To know whether or not a change introduces a defect,

Kamei et al. Kamei et al. (2013) use the SZZ approach, linking each defect fix to the source code

change introducing the original defect by combining information from the version archive with the

bug tracking system. They find that using only 20 percent of the effort it would take to inspect

all changes, they can identify 35 percent of all defect-inducing changes. Their findings indicate

that JIT may provide an effort-reducing way to focus on the most bug-inducing changes and thus

reduce the costs of developing high-quality software Kamei et al. (2013). We build on this work by

evaluating the JIT models specifically on performance related bug-inducing changes rather than all

bug-inducing changes.

JIT models identify bug-inducing code changes and are trained using techniques that assume
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past bug inducing changes are similar to future ones. However, this assumption may not hold,

e.g., as system complexity tends to accrue, expertise may become more important as systems age.

McIntosh et al. McIntosh and Kamei (2018) study JIT models as systems evolve. Through a longitu-

dinal case study of open source systems, they find that fluctuations in the properties of fix-inducing

changes can impact the performance and interpretation of JIT models. They find that the discrimi-

natory power (AUC) and calibration (Brier) scores of JIT models drop considerably one year after

being trained. Our work focuses on studying JIT performance related bug-inducing changes and

how they can impact the performance of JIT models. Our thesis also focuses on the data itself that

is produced by the SZZ approach, i.e., the bug-inducing changes detected by the SZZ approach.

2.6 Performance Bugs

Jin et al Jin et al. (2012) define a performance bug as a bug that causes a perceivable negative

performance impact. For clarification between the distinction of performance and non-performance

bugs, we provide example code snippets of a performance bug and a non-performance bug, in

Figure 2.2 and Figure 2.3, respectively.

Performance bug in Figure 2.2: The commit message for the changes shown is: Make repair

coordination less expensive by moving MerkleTrees off heap Removal of for loop in hash() of

MerkleTrees.java. This code snippet shows the code changes in the bug-fixing commit 2117e2a.

The for loop in the hash() function of MerkleTrees.java class is now less expensive, by using a

Javva entryset instead of a keyset in the modified for loop. The red lines were initially added by the

bug-inducing commit 0dd50a6, and were responsible for the creation of the MerkleTrees.java class

and the hash() method.

Non-performance bug in Figure 2.3: The commit message for the changes shown is: fix call-

back when repair request times out. This code snippet shows the code changes in the bug-fixing

commit 74c464a. The get() method callback now uses getMessageCount() instead of isDataPre-

sent(). The red line was initially added in the bug-inducing commit 71ccb7d.

To identify performance bugs, Ding et al. Ding, Chen, and Shang (2020) use keywords as the
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- for (Range<Token> rt : merkleTrees.keySet())

- {

- if (rt.intersects(range))

- {

- byte[] bytes = merkleTrees.get(rt).hash(range);

- if (bytes != null)

- {

- baos.write(bytes);

- hashed = true

- }

- }

- }

+ for (Map.Entry<Range<Token>, MerkleTree> entry : merkleTrees.entrySet())

+ if (entry.getKey().intersects(range))

+ hashed |= entry.getValue().ifHashesRange(range, n -> baos.write(n.hash()));

+ return hashed ? baos.toByteArray() : null;

Figure 2.2: Simplified example of code changes in a fix commit for a performance bug.

- return resolver.isDataPresent() ? resolver.resolve() : null;

+ return resolver.getMessageCount() > 0 ? resolver.resolve() : null;

Figure 2.3: Simplified example of code changes in a fix commit for a non-performance bug.

heuristics to identify performance issue reports. Ding et al. Ding et al. (2020) start by using the key-

words that are used in prior research Jin et al. (2012); Zaman, Adams, and Hassan (2012). In order

to avoid missing performance issues, the list of keywords was expanded by using word embedding.

Ding et al. Ding et al. (2020) adopt a word2vec model trained over textual data from Stack Overflow

posts to identify the words that are semantically related to the existing list of keywords. Examples of

the uncommon words that are related to performance issues include “sluggish”, and “laggy”, which

may not be used in previous research, but can help collect performance issue reports. In order to

ensure that there exists a performance improvement after the issue fixes, Ding et al. Ding et al.

(2020) only focus on the issue reports that have the type Bug and are labeled as Resolved or Fixed.

In total, Ding et al. Ding et al. (2020) find 121 performance-related issue reports in Cassandra and

83 in Hadoop. We use this vetted performance-related data in our thesis.
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2.7 Predicting performance bugs

Software quality research and practice concerns itself with a variety of different types of bugs.

Non-functional bugs, including performance and security bugs, can be particularly costly bugs Za-

man et al. (2011). Tools can help reduce the cost overhead caused by these bugs Jin et al. (2012). In

Chapter 3, we focus on the applicability of the SZZ approach to determine the root cause of these

non-functional bugs.

Jin et al. Jin et al. (2012) have studied 109 real-world performance bugs from five software

systems in order to better guide software practitioners. Their findings show that developers need

tool support to automatically fix such types of performance issues Jin et al. (2012). They also find

that performance issues of newer software versions can be inherited easily from previous versions.

This study calls for further and more detailed research on performance diagnosis, performance

testing, and performance issue detection. Our study contributes to furthering software performance

research by evaluating a tool to help developers automatically locate buggy code in the software.

In theory, the SZZ approach should be able to locate at which point in time non-functional bugs,

including performance issues, are introduced from previous versions, given that the performance

issue has been detected.

Zaman et al. Zaman et al. (2011) conduct both qualitative and quantitative studies on 400 per-

formance and non-performance issues in Mozilla Firefox and Google Chrome, two open source

web browsers. The study aims to understand the difference between performance issues and non-

performance issues. Their findings show that developers spend more time fixing performance issues

rather than non-performance issues Zaman et al. (2011). The study shows the importance of iden-

tifying root causes for performance issues and evaluating the impact of changes on performance is-

sues. Our thesis analyzes the performance bugs in Cassandra and Hadoop, and the SZZ approach’s

ability to determine the bug inducing changes and concentrate on the impact of these changes on

predictive models.

Nistor et al. Nistor et al. (2013) studied software performance since performance is critical for

how users perceive the quality of software products. Performance bugs lead to poor user experi-

ence and low system throughput Bryant and O’Hallaron (2015); Molyneaux (2009). Their study
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includes how performance bugs are discovered, fixed, and compares the results with those for non-

performance bugs from three popular code bases: Eclipse JDT, Eclipse SWT and Mozilla Fire-

fox Guindon (n.d.); team (n.d.). Their results include suggestions of techniques to help developers

reason about performance and suggest that better profiling techniques are needed for discovering

performance bugs. Our study on the evaluation of a SZZ approach on performance bugs, can help

determine whether it is reliable for developers to use references to past inducing code from past

performance bugs to locate and fix new bugs with the help of a SZZ-implemented tool.

Intrinsic bugs are bugs where a bug-introducing change can be identified using the version con-

trol system of a software, while extrinsic bugs are caused by external changes of a software such as

errors in internal APIs, compatibility changes or even changes in the specifications Rodriguezperez,

Nagappan, and Robles (2020). Extrinsic bug introducing-changes cannot be ident ified by the ver-

sion control system of the software. Rodriguez-Perez et al. Rodriguezperez et al. (2020) study the

impact of extrinsic bugs in JIT models, by replicating Kamei et al.’s recent thesis in which they

analyze the performance of JIT models Kamei et al. (2013). Rodriguez-Perez et al. Rodriguezperez

et al. (2020) remove the extrinsic bugs from their data, as all bugs were previously considered to

be intrinsic. Findings from Rodriguez-Perez et al. Rodriguezperez et al. (2020) show that extrinsic

bugs are of a different nature than intrinsic bugs, and that extrinsic bugs are more similar to issues

that are not bugs rather than to intrinsic bugs. Our work also focuses on studying JIT models, but

we concentrate on performance related bug-inducing changes and how they can impact the perfor-

mance of JIT models. We investigate whether or not performance bugs in our dataset are extrinsic

bugs.

Tsakiltsidis et al. Tsakiltsidis, Miranskyy, and Mazzawi (2016) use four machine learning al-

gorithms to build classifiers to predict performance bugs on a real time system used in the mobile

advertisement. Their findings show that the best model is based on logistic regression, using lines

of code changed, file age and size as explanatory variables to predict performance bugs. They also

find that reducing the number of changes delivered on a commit can decrease the chance of perfor-

mance bug injection. While Tsakiltsidis et al. Tsakiltsidis et al. (2016) have a special goal to predict

performance bugs, our study focuses on the prediction of performance bug-inducing chances within

a general JIT model.
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Yang et al. use 14 code-change based metrics to build simple unsupervised and supervised

models in effort-aware JIT defect prediction Yang et al. (2016). They find that many simple un-

supervised models perform better than the state-of-the-art supervised models in effort-aware JIT

defect prediction. Their study used the data sets provided online by Kamei et al. Kamei et al.

(2013), which employ the SZZ approach. Our study investigates the predictive power of supervised

models in effort-aware JIT defect prediction Kamei et al. (2013) as well, however our labelling of

defect-prone commits is done by employing the MA-SZZ approach. We also manually correct the

labelling of defect-prone commits, found by the MA-SZZ approach, and compare the models.

Chen et al. Chen, Shang, and Shihab (2020) propose an approach that automatically predicts

whether a test would manifest performance regressions given a code commit, using both traditional

metrics and performance-related metrics from the commit changes that are associated with each

test. For each commit, they build random forest classifiers that are trained from all prior commits to

predict in this commit whether each test would manifest performance regression Chen et al. (2020).

We also use traditional metrics from the commit changes to build classifiers trained from prior

commits to predict if a commit is bug-inducing or not, focusing on performance bugs.

Software quality research and practice concerns itself with a variety of different types of bugs.

Non-functional bugs, including those of performance and security can be particularly costly bugs Za-

man et al. (2011). Tools can help reduce the cost overhead caused by these bugs Jin et al. (2012).

In this study we concentrate on the applicability of the SZZ approach to determine the root cause of

these non-functional bugs.

The absence of bug-inducing knowledge in issue trackers forces researchers to rely on alterna-

tive sources of information, such as the SZZ approach, which can be used as a heuristic approach

to identify bug-inducing changes Borg et al. (2019). In a recent systematic literature review, it was

determined that few researchers have made their SZZ implementations publicly available, causing

extra research effort to be spent, as new projects based on SZZ output need to initially re-implement

the approach Borg et al. (2019). The repeated re-implementation of SZZ also raises the risk that

newly developed SZZ implementations have not been properly tested Borg et al. (2019). Borg et

al. Borg et al. (2019) present SZZ Unleashed, an open implementation of the SZZ approach for

Git repositories. Our thesis uses the same implementation of SZZ as McIntosh et al. McIntosh and
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Kamei (2018).

Automatic identification of the differences between two versions of a file is a common and

basic task in several applications of mining code repositories, commonly by using the git diff com-

mand Nugroho, Hata, and Matsumoto (2019). Nugroho et al. Nugroho et al. (2019) empirically

analyze the impact of diff algorithms in three major applications: code churn metrics of the SZZ

approach, and patches extraction. The results of locating bug-inducing changes using the SZZ ap-

proaches relies on the diff results. Nugroho et al. Nugroho et al. (2019) find that 25% of purposes

of using the git diff command is for identifying bug-inducing change identification in the SZZ ap-

proach. Meanwhile, the work presented in this thesis evaluates the detected-bug-inducing changes

of the SZZ approach.

Their results include suggestions of techniques to help developers reason about performance and

suggest that better profiling techniques are needed for discovering performance bugs. Our study on

the evaluation of an SZZ approach on non-functional bugs, can help determine whether it is reliable

for developers to use references to past inducing code from past performance bugs to locate and fix

new bugs with the help of an SZZ-implemented tool.
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Chapter 3

An Empirical Study on the Use of SZZ

for Identifying Inducing Changes of

Non-functional Bugs

In this section, we present the design of our exploratory study. We first present the dataset as

the subject of our study. Afterwards, we layout the two steps of our study and their motivations.

3.1 Study Design

3.1.1 Subject dataset

Because SZZ requires known bugs as inputs, our research hinges on the availability of vetted

non-functional bugs. Datasets of non-functional bugs have been produced and vetted in prior re-

search Ohira et al. (2015); Radu and Nadi (2019). However, non-functional bugs and their causes,

sometimes require domain knowledge to be understood and detected. It is therefore beneficial

for the root-causes of each non-functional bug to be clearly indicated as provided by the NFBugs

dataset Radu and Nadi (2019). Such information is crucial in our study to verify the bug-inducing

changes identified by the SZZ approach.
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Fortunately, recent research by Radu and Nadi Radu and Nadi (2019) initiated an open reposi-

tory that contains a dataset of real-world non-functional bugs, with each bug’s detailed information

(see Listing 3.1). The NFBugs dataset contains bugs from 65 open source GitHub projects: 40 Java

projects and 25 Python projects. These projects contain 89 listed Java non-functional bugs and 43

listed Python non-functional bugs. For each project, NFBugs lists at least one bug, its respective fix

and its detailed root causes. Each listed bug has been manually identified and has a corresponding

YAML file, with the file and method that pinpoints the bug as well as a short description of the bug,

however it contains no mention of commits that induced the bug. An example of a YAML file is

shown in Listing 3.1. This study makes use of the NFBugs dataset to advance the state-of-the-art

and allow future replication.

source :

name: g i t h u b − s e a r c h

p r o j e c t :

name: V S t e s t

u r l : h t t p s : / / g i t h u b , com / g e o r g e r i z / V S t e s t /

f i x :

tag : p e r f o r m a n c e

d e s c r i p t i o n : R e p l a c i n g . append l oo p wi th l i s t comp improves p e r f o r m a n c e b e c a u s e i t

does n o t have t o a c c e s s t h e i n s t a n c e method

commit message : > p r o j e c t d u r a t i o n : l i s t comprehens ion i n s t e a d o f f o r lo op

commit: h t t p s : / / g i t h u b , com / g e o r g e r i z / V S t e s t / commit / f f a c 0 6 2

l o c a t i o n :

f i l e : d u r a t i o n / d u r a t i o n . py

method: d u r a t i o n ( s e c o n d s )

api : b u i l t i n s . l i s t

api change : b u i l t i n s . l i s t . append −> b u i l t i n s .

l i s t l i s t comprehens ion

r u l e : u se l i s t comprehens ion i n s t e a d o f l i s t . append l o o p s t o c r e a t e l i s t s e f f i c i e n t l y

Listing 3.1: An example YAML file from the NFBugs dataset for a non-functional bug ffac062 in

VS test
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3.1.2 Implementation of SZZ

Since its creation, SZZ has been modified and re-implemented with various modifications da

Costa et al. (2017); Davies, Roper, and Wood (2014); S. Kim et al. (2006); Sliwerski et al. (2005).

In this thesis we concentrate on the MA-SZZ (meta-change aware SZZ) implementation of SZZ da

Costa et al. (2017). Meta-changes are source code independent changes; source code management

branch changes, source code merges, and changes to file properties such as end-of-line changes are

all examples of meta-changes da Costa et al. (2017). We concentrate on the MA-SZZ implementa-

tion of SZZ because it is commonly used in prior research da Costa et al. (2017) and is language

agnostic. The MA-SZZ da Costa et al. (2017) approach is an implementation of SZZ that adds meta-

change awareness to the AG-SZZ approach S. Kim et al. (2006). MA-SZZ uses an annotation-graph

to represent the evolution of each line of code within source files. Depth-first search is performed

on the annotation-graph to find potential bug-inducing changes. We use our own implementation of

the MA-SZZ approach to perform our evaluation of the SZZ approach on non-functional bugs. Be-

cause prior research has used MA-SZZ to observe functional bugs, we also use MA-SZZ to observe

non-functional bugs. We did not want to introduce a different SZZ approach (e.g., RA-SZZ Neto

et al. (2018)) because although RA-SZZ has shown improvements over other SZZ approaches Neto

et al. (2018), changing the approach may introduce confounding factors and make the results im-

possible to compare fairly. However, while we suspect that refactorings actually can have an effect

on non-functional bugs, as they do on functional bugs, we have not yet found a study that presents

the effects of refactoring on non-functional software bug incidence detection. Therefore, to be

conservative, we use an MA-SZZ implementation of the SZZ approach rather than an RA-SZZ im-

plementation because using RA-SZZ would potentially change the performance of the method and

make the results difficult or impossible to compare with prior studies.

The SZZ approach requires a bug-fixing change as an input. The approach then performs its

depth-first search to find potential bug-inducing changes. Therefore, we require bug-fixing changes,

specifically bug-fixing commits, to use as inputs for the SZZ approach. The NFBugs dataset lists

the bug-fixing commit hash of each non-functional bug instance. Most of the closed bug reports

identify the fix commit that closed the bug report. We therefore use these bug-fix commits as input
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data for our study.

3.1.3 Steps of our study

The steps of our study can be found in Figure 1.1. Using the non-functional bug dataset and the

MA-SZZ implementation of SZZ, we first run the SZZ approach to identify bug-inducing commits.

Then we carry out our study in two steps.

Step 1: Manually verifying the bug-inducing commits identified by SZZ

Prior studies have manually evaluated the results that are generated by the SZZ approach da

Costa et al. (2017). However, those studies do not make a distinction between functional and

non-functional bugs during their evaluation. Nonetheless, it has been shown that non-functional

bugs present different characteristics than functional bugs Nistor et al. (2013). In particular, non-

functional requirements describe the quality attributes of a program, as opposed to its function-

ality Kotonya and Sommerville (1998). Therefore, the prior manual evaluation results for SZZ

approaches may not generalize to non-functional bugs.

In addition, in order to further improve the SZZ approach on non-functional bugs, it is necessary

to first obtain a dataset of non-functional bugs with correctly identified bug-inducing commits. The

correct bug-inducing commits are paramount for any further analysis. In this step, we therefore

seek to manually verify the inducing changes for non-functional bugs and complement the existing

dataset of these non-functional bugs by incorporating their corresponding true inducing changes.

Step 2: Automatically evaluating the bug-inducing commits identified by SZZ

Manually evaluating results from the SZZ approach is time consuming and almost impossible to

scale in practice. However, practitioners may always face the challenge of having falsely identified

bug-inducing changes from SZZ approaches. To address such a challenge, prior work by Costa et

al. da Costa et al. (2017) provides characterizations of SZZ results using three characteristics of

bug-inducing changes as guidelines: 1) Earliest bug appearance, 2) Future impact of a change,

and 3) Realism of bug introduction. These bug characteristics can be used to provide a fine-grained

evaluation of the SZZ approach. Earliest bug appearance measures when a bug was introduced.

Future impact of a change, analyzes the number of future bugs that a given bug-inducing change in-

troduces. Finally, realism of bug introduction analyzes whether the bug-inducing changes found by
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SZZ approaches realistically correspond to the actual bug introduction context. If these automated

guidelines cannot reliably identify the falsely identified bug-inducing commits for non-functional

bugs, practitioners and researchers may not adopt these guidelines for evaluating the results of SZZ

approaches on other datasets.

The results of Step 1: Manually verifying the bug-inducing commits identified by SZZ are

used in Chapter 3.2. The results of Step 2: Automatically evaluating the bug-inducing commits

identified by SZZ are used in Chapter 3.3.

3.2 Manually verifying bug-inducing commits for non-functional bugs

identified by the SZZ approach

In this step, we manually verify the bug-inducing commits that are automatically identified by

the SZZ approach.

Before applying the SZZ approach on our dataset, we first exclude nine bugs (five from Java

and four from Python) where the bug-fix commits are part of merge commits. We exclude merge

commits since studies shows that the SZZ approach should not take merge commits into account

due to the noise that can be introduced by a code merge Fan et al. (2019).

Afterwards, we run the SZZ approach for the remaining 123 bugs. The SZZ approach produces

a list of bug-inducing candidate commits for each bug. After running the SZZ approach on the

remaining bugs, we obtained a total of 284 candidate bug-inducing commits for Java and 92 for

Python. Each bug in the NFBugs database has been manually identified and has a corresponding

YAML file listing the file(s) and method(s) for the bug as well as a short description of the bug,

as shown in Listing 3.1. Each of these remaining candidate bug-inducing commits, are manually

verified by three of the authors of this thesis independently, to avoid introducing any bias.

The steps performed in this thesis for the manual analysis of bug-inducing commits are as fol-

lows:

• Step A: The reviewers read the description of a non-functional bug from the NFBugs dataset.

• Step B: The reviewers examine the code from the mentioned bug-fix commit.
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• Step C: For each of the candidates identified as bug-inducing commits by the SZZ approach,

the reviewers examine the code that is changed in the commit and determine whether it in-

duces the corresponding bug.

After all steps are individually completed by the first, third, and fourth authors for all bugs remaining

in the dataset, the reviewers then meet to discuss disagreements. All three reviewers must have the

same classification (i.e., bug-inducing or not bug-inducing) for a candidate commit, otherwise this

is marked as a disagreement. The disagreements are resolved as follows:

• Step D: The reviewers re-read the bug-fix and the bug-inducing commit in question.

• Step E: Each reviewer states the reason why they think the identified commit is bug-inducing

or not bug-inducing.

• Step F: The reviewers discuss until all three agree on a final decision.

All agreements and disagreements are recorded and used to calculate the Multi Kappa Fleiss score,

a robust statistic useful for either interrater or intrarater reliability testing McHugh (2012). After-

wards, the three individuals meet and discuss any differences and reach a consensus.

Finally, we manually investigate all the false candidate of bug-inducing commits for non-functional

bugs, in order to uncover reasons of such faults.

Results.

For the manual examination of the candidate bug-inducing commits, there were a total of 27

candidate bug-inducing commits disagreements, 20 from Java and 7 from Python bugs. To quan-

titatively evaluate how often we agreed during manual evaluation, we use the Multi Kappa Fleiss

score McHugh (2012). The Multi Kappa Fleiss score was 0.728 - a moderate level of agreement

for Java, and 0.815 - a strong level of agreement for Python McHugh (2012). All 27 candidate bug-

inducing commit disagreements were resolved through discussion between the three individuals. In

many cases, the disagreements split 1:2 were resolved due to one individual missing some critical

information while manually reviewing the code. After a second look at the code, the reviewers’

response allowed the three reviewers to reach consensus.
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Table 3.1: Java and Python Projects: True-Positives and False-Positive after filtering based on rele-
vant method and class based on the description provided

Language No. Pairs of identified bug-inducing commits TP FP
Java 284 109 175

Python 92 50 42

Only 41 out of 123 bugs have fully correct bug-inducing changes identified by the SZZ ap-

proach. 27 bugs have fully wrong identified bug-inducing changes. For the bugs where the SZZ

approach was not able to identify any truly bug inducing commits, we manually look in the

repository to find the commits that were bug-inducing for bugs: accounting for 27 out of 123

bugs. 19 bugs have a combination of correct bug-inducing changes and incorrect bug-inducing

changes, e.g., in the case of multi-purpose bug-fixing commits, some code changes in the commit

are not done to fix the bug, tracking such changes may result in falsely identified bug-inducing

commits.

Out of the 376 bug-inducing commits, 217 commits were ruled out as false positive bug-

inducing commits which were not in the same method or class from the total 376 identified bug-

inducing commits. For the remaining 159 bug-inducing commits, there are a total of 80 bug-

inducing commits that are false positives and therefore were falsely labelled as bug-inducing com-

mits by the SZZ approach shown in Figure 3.1. Based on our findings on the NFBugs dataset, there

are 55 performance bugs that have 94 bug-inducing commits with 45 truly bug-inducing commits,

and there are five security bugs that have five bug-inducing commits with four truly bug-inducing

commits.

Prior studies have reported that the SZZ approach still needs improvements to accurately iden-

tify bug-inducing changes da Costa et al. (2017). For MA-SZZ, Costa et al. da Costa et al. (2017)

report a 0% to 17% disagreement ratio, where they count a bug as a disagreement if all of the

candidate bug-inducing changes identified by the SZZ approach for that bug are classified as incor-

rect. However, based on our manual analysis results, the SZZ approach performs even worse on

non-functional bugs.
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Figure 3.1: Breakdown of false positive bug-inducing commits which were not in the same method-
/class mentioned from the bug-fix description from NFBugs.

Our findings show that among the 376 identified bug-inducing commits for 123 bugs, only 79

true positive bug-inducing commits are identified by the SZZ approach. Only 40 bugs have

fully correctly identified bug-inducing changes.

We manually identify three reasons that account for all of falsely identified bug-inducing com-

mits for non-functional bugs: 1) multi-purposes bug-fixing commits, 2) bug already being there, 3)

not related to the bug shown in Table 3.2 and Figure 3.1. Reasons for not related to the bug include

modifications of Javadoc or comments, the additional or removal of Java modifiers to variables,

reverting changes, and some where we cannot find overlapping lines between removed lines in the

fix commit and added lines in the identified bug-inducing commit.

Table 3.2: Breakdown of falsely identified non-functional bug-inducing commits into multi-
purposes bug-fixing commits, 2) bug already being there, 3) not related to the bug.

Total Multi-purpose Bug already being there Not related to the bug
Java 54 8 7 39
Python 26 8 0 18

Multi-purposes bug-fixing commits. Our SZZ approach tracks all the code changes in the bug-

fixing commits to identify bug-inducing commits. However, if a bug-fixing commit has multiple

purposes, (i.e., some code changes in the commit are not done to fix the bug), tracking such changes

would result in falsely identified bug-inducing commits. Unfortunately, we find a large number of

cases where the bug-fixing commits are not dedicated to fixing a non-functional bug. For exam-

ple, the commit message of commit 2391544 from the Catacomb-Snatch (in Java) project is “Code
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Cleanup: Closed resource leaks, and removed or commented out unused code/resources, and did

some code layout clean up (braces on ifs and correct indentation)”. The first part of the commit

message is clearly related to the non-functional bug of system resource leaks; while on the other

hand, removing the unused code and the code layout cleanup may introduce noise to the SZZ ap-

proach.

In total, eight out of 54 falsely identified bug-inducing commits in Java and eight out of 26

in Python are due to multi-purpose bug-fixing commits. We would like to further verify whether

these falsely identified bug-inducing commits are from a small number of bugs that are fixed in a

multi-purpose manner. We find that these falsely identified bug-inducing commits originated from

only five bugs in Java and one bug Python. Since there exists five bugs in Java and two bugs in

Python with multi-purpose fixes, that have all true-positive identified bug-inducing commits. By

manually looking at these bug-fixing commits, we find that all of the changes that are not associated

with bug fixing are adding lines of source code, not affecting results of SZZ approaches. On the

other hand, since the SZZ approach has become an application of automated bug-detection tools,

multi-purpose bug-fixing commits have become a shortcoming of automatically applying SZZ for

other downstream tasks, such as Just-In-Time Quality Assurance Kamei et al. (2013). Our results

can be used to understand how badly the input noise actually affects the results of the SZZ approach

and later impact its downstream tasks.

We also want to see whether commits of single-purpose or multi-purpose affect the performance

of the SZZ approach in identifying bug-inducing commits. To do this, we also breakdown the single-

purpose fixes based on whether the identified bug-inducing commits are false positive-bug-inducing

commits or true positive-bug-inducing commits in Table 3.3. 23 out of 48 and 17 out of 25 single-

purpose bug fixing commits, for Java and Python, respectively, lead to false positives. The results

are comparable with the ones with multi-purpose bug fixing commits.

Bug already being there. For seven out of 54 falsely identified bug-inducing commits in Java

and no cases in Python, when we examine the bug-inducing commit, we find that the non-functional

bug already exists. Such a finding shows that in many cases, after the non-functional bugs are

induced, developers may change the same lines of code, while not realising there exists a non-

functional bug. In some other cases, the developers refactor or reformat the same line of code

27



Table 3.3: Number of single-purpose and multi-purpose bugs with false positive and all true positive
bug-inducing changes.

Single-purpose Multi-purpose
Language with FP with all TP with FP with all TP

Java 23 25 5 5
Python 17 8 1 2

- results = [‘total: %d’ % sum(c.values())] + map(lambda n: ‘%s: %d’ % (n[0], n[1]), c.items())

+ results = [‘total: {}’.format(sum(c.values()))] + map(

+ lambda n: ‘{}: {}’.format(n[0], n[1]), c.items())

Figure 3.2: Simplified example of an ”Already there/Re-factoring” bug-inducing code line that was
modified to semantically equivalent code

without actually changing the functionality. In either scenario, the SZZ approach may consider

the later changes as bug-inducing instead of the original changes. This phenomenon is intuitive

since non-functional bugs often take a long time to be discovered and fixed Nistor et al. (2013).

Therefore, considering the most recent code change before the bug reporting date may not be a

suitable heuristic for non-functional bugs. We did not find any cases of bugs already being there in

our Python dataset.

We present an example of a semantically equivalent change wrongly identified as a bug-inducing

change in Figure 3.2. The bug-inducing code lines that the SZZ approach looks for are results =

[‘total: ’.format(sum(c.values()))] + map( and lambda n: ‘{}: {}’.format(n[0], n[1]), c.items()).

These lines are shown as additions in this commit in green, however, in this same commit, the lines

are also shown as a removal in red. The difference between these two is the string formatting, no

logic is altered. The commit message is: “String formatting”. The SZZ approach stops at this

commit and flags it as bug-inducing, since the bug-inducing code has technically been added in this

line. However, although this is technically correct, this code was actually first introduced further

back in time with different formatting in a different commit. The approach wrongly suspects the

beautifying commit as a bug-inducing commit, which we describe as a case of “Bug already being

there”.

Not related to the bug. For Java we find 39 out of 54 falsely identified bug-inducing commits

in Java and 18 out of 26 in Python that are not related to the non-functional bug. Figure 3.3 shows
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Bug Fix (line removals)

Falsely Bug Inducing (line 
additions)

Truly Bug Inducing (line 
additions)

The four 
buggy 
lines of 
code are 
removed 
in the 
Bug Fix

The two 
lines of 
code are 
removed 
in the Bug 
Fix

ffac062

6b8266c

d3a3ac9

... 
res = [y,d,h,m,s] 
q = ["year","day","hour","minute","second”] 
t = [] 
for i,j in enumerate(res): 

if j != 0: 
t.append(str(j) + "" + q[i]) 
if j != 1: 

t[-1] += "s”
...

...  
t = [] 
for i,j in enumerate(res): 

if j != 0: 
t.append(str(j) + "" + q[i]) 
if j != 1: 

t[-1] += "s”
...

... 
res = [y,d,h,m,s] 
q = ["year","day","hour","minute","second”] 
...

Figure 3.3: Example of a bug-fix (ffac062) with two inducing commits, one bug-inducing (d3a3ac9),
and one falsely bug-inducing (6b8266c)

two candidate commit bugs for a bug from the NFBugs dataset. The corresponding YAML file is

shown in Listing 3.1. Upon manual analysis by the three reviewers, commit 6b8266c in Figure 3.3

is identified as a false positive bug-inducing commit whereas commit d3a3ac9 in Figure 3.3 is

identified as a true positive bug-inducing commit. Commit 6b8266c in Figure 3.3 was ruled out

because it does not have a relation to the builtins.list.append and use list comprehension instead

of list.append loops to create lists efficiently as stated in the Listing 3.1 bug description. From the

description, the reviewers knew to look for a commit that refers to builtins.list.append.
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We manually identify three reasons for falsely identified bug-inducing commits for non-

functional bugs including 1) multi-purposes bug-fixing commits, 2) bug already being there,

and 3) changes not related to the bug.

3.3 Automatically evaluating bug-inducing commits identified by the

SZZ approach

In this step, we apply the three automated guidelines that are proposed by Costa et al. da Costa

et al. (2017), i.e., 1) Earliest bug appearance, 2) Future impact of a change, and 3) Realism of

bug introduction, in order to study whether such automated guidelines can help identify the falsely

detected bug-inducing commits by the SZZ approach when used on non-functional bugs. The results

are summarized in Table 3.4.

• Earliest bug appearance. For the corresponding candidate bug-inducing changes of each

bug, we check the time of the change and the impacted version of the software. If the impacted

version of the software is earlier than the candidate bug-inducing change, the candidate bug-

inducing change is considered false.

• Future impact of a change. For each bug-inducing change, we calculate the count of induced

bugs and the time-span of the induced bugs. If one change induces too many bugs or the

induced bugs are across a long period of time, the bug-inducing change may be false.

• Realism of bug introduction. For each bug, we calculate the time-spans between the bug-

inducing changes for each bug. If the time-span is too long, the bug-inducing changes may

be false. We also consider bug-inducing changes after a bug-fixing change.

We use the results of the guidelines presented above for all bugs (functional and non-functional)

as a baseline. For each of the two languages in NFBugs: Java and Python, we pick the top two

projects with the largest number of reported bugs in the NFBugs dataset. We pick the top two

projects since the project with the third highest number of reported bugs had significantly fewer

30



reported bugs compared to the top two, making the sample size too small for comparison. In par-

ticular, we focus on four projects that are included in the NFBugs dataset, i.e, Elasticsearch and

Jenkins (in Java) and Falcon and Gae-boilerplate (in Python). We choose these four projects since

they contribute a large number of bugs for their respective language in the NFBugs dataset. We first

extract all bugs (both functional and non-functional). For Falcon and Jenkins we look at their JIRA

bug reports, meanwhile the other projects rely on GitHub’s issue tracker. All of the issue trackers in

our data are open to access. In order to study the functional and non-functional bugs that are around

the same time period during development, we extract all the commits that are in a time period that

is between six months before the reporting date of the first non-functionally bug and six months

after the date of the last reported non-functional bug. We use the issue id (e.g., # with a number

in GitHub issue tracker) in the commit message to link each issue and its issue fixing commit. We

only consider the issues that are tagged with a bug label in either the GitHub issue tracker or JIRA.

We assessed the functional-bug fixes in these four projects in the dataset, using a search for the

issue id in the commit messages to identify the bug fixing commits, and then we further identify the

bug-inducing commits related to them by running the SZZ approach. For the manual analysis of

functional bugs, we pick a random sample with a confidence interval of 95%±10% and end up with

96 identified bug-inducing commits in Java, and 91 identified bug-inducing commits in Python. We

execute the MA-SZZ approach on the non-functional and functional bugs. Afterwards, we evaluate

the three criteria: earliest bug appearance, future impact of a change, and realism of bug introduc-

tion using scripts that we created to calculate these guidelines proposed by Costa et al. da Costa et

al. (2017).

Finally, we calculate the metrics that correspond to the three guidelines used by Costa et al. da

Costa et al. (2017), i.e., 1) Earliest bug appearance, 2) Future impact of a change, and 3) Realism

of bug introduction.

Results. We summarize the breakdown of results based on the three guidelines proposed Costa et

al.’s da Costa et al. (2017) prior work, for identifying falsely detected bug-inducing commits by the

SZZ approach. We compare our results to Costa et al.’s da Costa et al. (2017) in Table 3.4.

Earliest bug appearance and Realism of bug introduction da Costa et al. (2017) are not

effective in identifying false candidate of inducing changes of non-functional bugs from SZZ
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Table 3.4: Percentages of bugs that will be identified by the three guidelines proposed by Costa et
al. da Costa et al. (2017)

Reported by the prior study Reported by NFBugs
Future impact (commit level) 95% 54%
Earliest bug appearance (bug level) 0-3% 0-17%
Realism of a bug (bug level) 46% 3%

approaches. We observed only one case of Earliest bug appearance where there is a bug-inducing

change for which the bug report for the corresponding fix was made even before the bug-inducing

change date. This is unrealistic as it is not possible to report a bug in the software before the bug

was introduced.

In their study, Costa et al. da Costa et al. (2017) uncovered some unrealistic changes. Costa et

al. da Costa et al. (2017) found that 46% of bugs are caused by bug-inducing changes that span at

least one year. It is unlikely that 46% of all bugs were caused by code changes that are years apart.

We identify another type of unrealistic result in our own findings where a bug-inducing change was

fixed or reported even before the bug change commit time. However, we only observed one case

of Realism of bug introduction where for a bug, the time span between the bug-inducing changes is

too long.

Therefore, since the Earliest bug appearance and Realism of bug introduction guidelines from

Costa et al. da Costa et al. (2017) occur infrequently in the NFBugs dataset, we cannot reliably use

them to identify false bug-inducing commit candidates.

Future impact of a change can be used as an indicator to identify false candidate of induc-

ing changes of non-functional bugs from SZZ approaches. We observed 36 cases of Future

impact of a change, where one change induced many bugs or induced bugs across a long period

of time. Part of Costa et al.’s da Costa et al. (2017) findings show that 29% of the bug-inducing

changes lead to multiple future bugs that span at least one year. This suggests that SZZ approaches

still lack mechanisms to accurately flag bug-inducing changes as it is unlikely that all 29% of the

bug-inducing changes in a project introduce bugs that took years to be discovered.

Functional and non-functional bug-inducing commits do not overlap. We find that there
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Figure 3.4: Comparison of Functional (left) and Non-Functional (right) bugs for days between
inducing changes and fixing changes.
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Figure 3.5: Comparison of Functional (left) and Non-Functional (right) bugs for days between
earliest inducing changes and fixing changes.
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are no cases within the four projects that we examined where a bug-inducing commit for a non-

functional bug had also induced a functional bug. This indicates that non-functional bugs and func-

tional bugs are quite different in nature. Non-functional bugs have may require different tooling

requirements if they manifest differently in the source code, and are scattered across and require

fixes in various parts of the software.

Based on Figure 3.4 and Figure 3.5 we can see that the median non-functional bugs appear to

take a longer time on average to fix, compared to functional bugs. However, we cannot make any

statistically significant conclusions due to the insufficient sample size. We use the data presented in

violin plots in Figure 3.4 and Figure 3.5, and perform Wilcoxon rank sum tests, comparing the non-

functional and functional bugs. Elasticsearch’s comparison for functional bugs and non-functional

bugs of days between all bug-inducing changes for fixing changes is the only statistically significant

comparison (p=0.004).

The Cliff’s Delta value for Elasticsearch’s comparison for functional bugs and non-functional

bugs of days between all bug-inducing changes for fixing changes is: -0.251. Cliff’s Delta indicates

that the type of bug (Functional or Non-Functional) has a small effect on the number of days between

inducing changes and fixing changes for the Elasticsearch project.

The false results of SZZ on functional and non-functional bugs may be different. We

further perform manual analysis on the functional bugs from Elasticsearch, Jenkins, Falcon, and

Gae-boilerplate. Upon performing manual analysis on the functional identified bug-inducing com-

mits following the steps listed in Chapter 3.2 we have calculated the Multi Kappa Fleiss score to

be 0.736 - a moderate level of agreement for Java, and 0.822 - a substantial level of agreement for

Python. Through our validation of the functional bugs, we further discarded three bugs from the

Python projects and six bugs from the Java projects, because they were non-functional bugs, rather

than functional bugs. For Python, out 56 of the examined bugs, 40 of them have at least one truly

identified bug-inducing commit. For Java, out of 76 of the examined bugs, 31 of them have at least

one truly identified bug-inducing commit. 50 out of the 88 identified bug-inducing commits were

not truly bug-inducing for Python, and 59 out 89 identified bug-inducing commits in Java were not

truly bug-inducing. In summation, 61.7% of the functional commits identified by the SZZ approach

were not truly bug inducing compared to 80.0% for non-functional bugs. Similarly to Table 3.2,
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we break down the falsely identified functional bug-inducing commits in Table 3.5. Through ob-

servation, non-functional bugs experience more false positives bug-inducing commits because of

multi-purposes bug-fixing commits. While it is possible for commits to be falsely identified due

to multi-purpose bug-fixing commits in functional bugs, this occurs more rarely in functional bugs

than in non-functional bugs. The bug already there reason for false positive bug incidence detection

does appear in functional and non-functional bugs, however, they appear to experience different

magnitudes of this fault: 20.2% for functional bugs, and 8.7% for non-functional bugs. Therefore,

our results show that not only is functional bug incidence detection more accurate than non-

functional bug incidence detection, but functional bug false positive incidences also present

themselves differently than for non-functional bugs.

Table 3.5: Breakdown of falsely identified functional bug-inducing commits into multi-purposes
bug-fixing commits, 2) bug already being there, 3) not related to the bug.

Total Multi-purpose Bug already being there Not related to the bug
Java 59 2 14 43
Python 50 0 8 42

Non-functional bug-inducing commits differ from functional bugs inducing commits. Guide-

lines to identify falsely detected bug-inducing commits by the SZZ approach such as Earliest

bug appearance and Realism of bug introduction cannot be reliably used when using SZZ to

detect non-functional bugs.

3.4 Discussion

Prior studies found that SZZ implementations still have room for improvement and suggest

handling special cases to more accurately detect bug-inducing changes da Costa et al. (2017); S. Kim

et al. (2006). The three cases of improvement include handling are:

• Semantically equivalent changes: Some implementations of the SZZ approach, including the

one used for the purpose of the thesis, take into account comments, blank lines, indentation

and white-space changes. However, even adjusted SZZ approaches, still have problems with
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other types of format changes such as reordering and renaming parameters Williams and

Spacco (2008).

• Directory or file re-names: the SZZ approach cannot flag potential bug-inducing changes that

are actually directory/file renaming changes since version control systems may not accurately

track renamed files. Therefore, the SZZ approach cannot connect code changes that are per-

formed on older versions of a renamed file da Costa et al. (2017). Broken historical links

could be recovered heuristically by using repository mining techniques. Steidl, Hummel, and

Juergens (2014)

• Initial code important changes: In cases where a project has been migrated from one version

control system to another, SZZ approaches should trace back into the old version control

system data since in those cases the initial commit of an version control system may not be

the actual starting point of the project. However, current SZZ approaches are not able to trace

back across different version control system and therefore cannot handle imported changes

from a change in version control system da Costa et al. (2017).

We examine whether the above three improvements would help improve identifying the true

bug-inducing commits for non-functional bugs. In order to perform such examination, we need to

have all of the true bug-inducing commits for all of the non-functional bugs in NFBugs. Therefore,

we examine the 28 non-functional bugs that do not have true bug-inducing commits detected from

the first step of our study (cf. Chapter 3.3). We manually check the history of the source code in

each project and try to identify the true bug-inducing commits for each of those bugs. In particular,

the first author of the thesis proposed true bug-inducing commits for each bug and the third and

fourth authors independently verified the proposed bug-inducing commits. If at least one author

does not agree about a proposed bug-inducing commit, the three authors conduct further discussion

about the specific case. If a proposed bug-inducing commit was deemed to be false, the first author

did another round of examination to propose other commits as bug-inducing. This procedure was

repeated until all three authors agreed that the bug-inducing commit was correctly identified.

We find that 60 out of 82 of the true bug-inducing commits for the non-functional bugs in Java

and 21 out of 32 in Python, are actually the initial version of the corresponding code snippet. In
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other words, the non-functional bugs were induced when developers first introduced the code

into the project.

Finally, we manually examine whether the above three improvements would help detect the

true bug-inducing commits as bug-inducing. We only find two cases where addressing semantically

equivalent cases can avoid mistakes, while the other two improvements do not have any impact on

the results. We believe that this is the case since our subject systems all use Git as version control

systems, where directory or file re-names are handled by the version control systems. In addition,

the subject dataset may not have many cases of migrating version control systems. Therefore, the

improvements proposed by prior studies may not help address the falsely detected bug-inducing

commits for the non-functional bugs in NFBugs. However, they may indeed help when if the non-

functional bugs are from a project that uses an older version control system (like Subversion) and/or

has gone through migrations from one version control system to another.

3.5 Threats to Valdity

In this subchapter we discuss the threats to the validity of our research.

External validity.

Threats to external validity are concerned with the extent to which we can generalize our results.

Our dataset contains a total of 65 open source GitHub projects: 40 Java projects and 25 Python

projects. It is possible that our results might not generalize to all programming languages. However,

since our dataset consists of both Java and Python projects, we are confident that our results should

have the potential to be generalized to projects of other languages. Furthermore, to further mitigate

any language bias, the SZZ approach we used is language agnostic. While Ohira et al.’s Ohira et

al. (2015) dataset can be seen as complementary to the NFBugs dataset, it does not contain enough

information in terms of bug descriptions, for us to fully be sure of the results when we do a manual

evaluation as some information (the cause of the bug) that is available in the NFBugs dataset is

missing. We require this information since we are not domain experts for the projects in the dataset.

It should be possible, however, for domain experts to use Ohira et al.’s Ohira et al. (2015) dataset to

replicate our study. For future work, we plan to extend our study of non-functional bugs from other
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datasets, e.g., the data from Ohira et al. Ohira et al. (2015).

While the reasons for falsely detected bug-inducing commits for non-functional bugs presented

in this thesis are shown to have an effect on the detection of non-functional bugs, we do not claim

that these reasons are unique to non-functional bugs. Because non-functional bugs are the focus of

this thesis, we did not study how these reasons could affect functional bugs.

Construct validity.

Threats to construct validity are concerned with the validity of our conclusions within the con-

straints of the dataset we used. The dataset used for this thesis contains a total of 65 open source

GitHub projects: 40 Java projects and 25 Python projects. Very few of the projects have an issue

tracking system, and so for many, looking for the creation time of bug reports for a bug in the sys-

tem was inapplicable. For these cases, we use the time when a bug fix was introduced instead of

a bug report creation time to calculate the span between the introduction of a bug to the fix of that

bug. A total of 27 of the bugs in the dataset had fully wrong identified bug-inducing changes, so

we looked for false negatives, which are truly bug-inducing changes that have been missed and then

included in the augmented NFBugs dataset. We may still miss some information that introduced the

non-functional bugs, which we attempt to mitigate by having each reviewer study the bug fix de-

scription and the nature of the bug in order to evaluate whether the identified changes from the SZZ

approach induced the bug along with the methods being reported in the bug descriptions provided

by the NFBugs dataset.

Internal validity.

Threats to internal validity are concerned with how our experiments were designed. Our manual

analysis of the candidate bug-inducing commits for known bug fixing commits were subject to our

own opinion and could therefore be biased by the opinion of the experimenter. In order to mitigate

bias, we had three reviewers analyze the candidate bug-inducing commits separately and in parallel.

Following our manual analysis, we compute the Multi Kappa Fleiss scores of the agreement of the

three individuals. We obtained moderate to strong levels of agreement. The reviewers later met

together to discuss disagreements. These measures allow us to mitigate and measure the internal

bias of our manual study. Moreover, for the bugs where the SZZ approach was not able to identify

any truly bug inducing commits, we tried our best manually to look in the repository to find the
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commits that were bug-inducing for bugs. It is still possible that we may miss some bug inducing

commits.

Nugroho et al. reported that different diff algorithms produce different bug-fix commit identifi-

cation and they show that the histogram diff is better than the default diff setting in Git. However,

in this thesis, we used the default diff setting in Git because we wanted to allow a comparison to

prior studies da Costa et al. (2017) with as few confounding factors as possible. Future work and

commercial approaches, should consider using histogram diff rather than the default diff setting to

further improve the results presented in this work.

3.6 Chapter Summary

In this thesis we compared our evaluation of the SZZ approach to prior work that evaluates the

approach on functional bugs. We use the NFBugs dataset as a ground truth for non-functional bugs.

The NFBugs dataset contains 65 open source GitHub projects: 40 Java projects and 25 Python

projects. We examine the 89 listed Java bugs and 43 listed Python bugs to uncover root causes for

false bug-inducing commit detection that have not been found by previous studies. Furthermore, we

conduct an empirical study to evaluate the performance of the SZZ approach in terms of its ability

to locate bug-inducing commits in the code on the 132 listed bugs. Finally, we manually look at the

results and discuss their implications.

Our findings show that the vast majority (297 out of 376) of the automatically identified bug-

inducing commits by the SZZ approach for non-functional bugs are false positives. In addition,

although there exists guidelines from prior study to assist in automatically identify falsely de-

tected bug-inducing commits for functional bugs, these guidelines cannot be reliably used for non-

functional bugs. Finally, the existing improvements to SZZ approach cannot help improve identify-

ing the bug-inducing commits for non-functional bugs.

Our thesis is the first to focus exclusively on the use of the SZZ approach on non-functional bugs.

Moreover, we augment the NFBugs dataset by adding a field to each bug description introducing

bug-inducing commits that we manually analyzed as truly bug-inducing. By extending the dataset,

we hope this information proves useful to help future research in locating bug-inducing commits,
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particularly with respect to non-functional bugs. Our findings indicate that new or adjusted tooling

should be designed by considering the unique characteristics of non-functional bugs in order to

accurately identify their bug inducing changes.
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Chapter 4

Evaluating the impact of falsely detected

performance bug-inducing changes in

JIT models

4.1 Study Design

In this subchapter, we present the design of our study.

Dataset

In order to conduct our study, we need a dataset of performance bugs. However, existing datasets

from prior studies on non-functional bugs Ohira et al. (2015) may not be systematically shared, e.g.,

the root-causes of each non-functional bug may not be clearly indicated, while such information is

crucial in our study to verify the bug-inducing changes identified by the SZZ approach. Additionally,

while there are existing datasets that contain a source of non-functional bugs Radu and Nadi (2019),

only a small number of the bugs are concerned with performance. We therefore decided to create

our own dataset using repositories highly concerned with performance.

To create our dataset, we employ the manually analyzed bugs from Cassandra Apache (2019)

and Hadoop Apache Hadoop (n.d.) performance bugs found by Ding et al. Ding et al. (2020).
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CASSANDRA-7245 :
Out-of-Order keys 
with stress + CQL3

Filter the commit 
history to find 
CASSANDRA-
7295 in the 
commit message

Bug-fixing 
commit(s) for 
CASSANDRA-
7295

CASSANDRA-7245

4722fe7
…

Figure 4.1: An overview to extract fix commits given the JIRA issue ID: CASSANDRA-7245.

Hadoop is a free and open-source distributed system infrastructure providing processing in a reliable

and efficient manner developed by the Apache Foundation. Cassandra is a free and open-source dis-

tributed NoSQL database management designed to handle large amounts of data, also developed by

the Apache Foundation Syer, Shang, Jiang, and Hassan (2017). Hadoop and Cassandra are chosen

as our dataset because they are highly concerned with performance and have been studied in prior

research in mining performance data Chen and Shang (2017); Chen et al. (2014); Ding et al. (2020);

Syer et al. (2017). Both repositories are open-source and also have JIRA issue tracking systems for

identifying fix commits.

Bug-fixing Commit Extraction

To extract metrics for the bug-inducing commits, we start from bug reports, in the JIRA issue

tracking systems. All of the closed bug-fixing reports identify the bug-fixing commit that closed the

bug report. We therefore use these bug-fixing commits as input data for our study. If a bug report

does not have a bug-fixing commit we ignore the bug-fix because we cannot ascertain which piece

of code fixed the bug, and therefore do not have enough information to confidently study the bug.

Figure 4.1 shows our approach to extract bug fix commits.

Data preparation

Similarly to Kamei et al. Kamei et al. (2013), we consider 13 factors grouped into four dimen-

sions to filter our data, as presented in Table 4.1; these factors and dimensions are derived from the

42



Table 4.1: Summary of Change Measures from Kamei et al.’s work Kamei et al. (2013)

Dim. Name Definition

Diffusion

NS Number of modified subsystems
ND Number of modified directories
NF Number of modified files
Entropy Distribution of modified code across each file

Size
LA Lines of code added
LD Lines of code deleted
LT Lines of code in a file before the change

History
NDEV The number of developers that changed the mod-

ified files
AGE The average time interval between the last and

the current change
NUC The number of unique changes to the modified

files

Experience
EXP Developer experience
REXP Recent developer experience
SEXP Developer experience on a subsystem

source control repository data of a project. The rationale and related work for each measure can

be found in Kamei et al.’s Kamei et al. (2013) work. The studied change metrics in Table 4.1 are

grouped into four dimensions: diffusion properties, size properties, history properties, and author

experience properties. We excluded the purpose dimension because we use the manually analyzed

dataset from Ding et al. Ding et al. (2020) to identify the commits that are bug fix commits.

We use commit metric data provided by Commit Guru Rosen et al. (2015), a language-agnostic

analytics and classification tool in line with our work. Commit Guru Rosen et al. (2015) is designed

to be a prediction tool to identify and predict risky software commits, although it does not focus

specifically on performance bugs. Other prior work has also used Commit Guru for building metric-

based models Catolino (2017); Catolino, Di Nucci, and Ferrucci (2019); Kondo, German, Mizuno,

and Choi (2020); Nayrolles and Hamou-Lhadj (2018); Tabassum, Minku, Feng, Cabral, and Song

(2020). We use the tool provided by Commit Guru Rosen et al. (2015) to analyze the Cassandra and

Hadoop repositories. Although Commit Guru Rosen et al. (2015) employs the SZZ approach, we

use our own implementation of MA-SZZ as an initial classification to determine whether a commit

induces a bug in the future. Commit Guru Rosen et al. (2015) employs JIT models upon analyz-

ing each repository, while producing a downloadable CSV format file, where each row represents
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metrics and information related to a commit.

Our SZZ approach lists the mappings of bug fixing commit and identified bug inducing com-

mits, along with which files contain the overlap of removed and added lines of code, which is not

provided by Commit Guru Rosen et al. (2015). We also only consider the identified bug-inducing

commits dated prior to the bug report submission date to filter out some false positives da Costa et

al. (2017). The metrics and information provided by Commit Guru Rosen et al. (2015) is presented

in Table 4.1. We add an additional column: contains bug to label bug-inducing commits, which

takes a Boolean value. For all of the models described in this thesis, we use the metrics in Table 4.1

as the independent variables to classify contains bug (i.e., whether a commit induces a bug), the

dependent variable.

We check the data for metrics that are highly correlated by using the Spearman statistic, ρ.

The Spearman rank correlation estimates a rank-based measure of association and is resilient to

data that is not normally distributed, unlike other types of correlation (e.g., Pearson) Correlation

(Pearson, Kendall, Spearman) (n.d.). A hierarchical overview of the correlation amongst the metrics

is constructed using variable clustering analysisMcIntosh and Kamei (2018). We remove metrics

that are highly correlated where ρ > 0.75 Kamei et al. (2013).

To remove redundant commit metrics, we fit preliminary models that explain each dependent

variable using the others, using the R2 value of these models to measure how well each property is

explained by the others. Similar to McIntosh et al. McIntosh and Kamei (2018), we use the redun

function in the rms R package. This redun function iteratively drops the metric that is the most

well-explained by the other metrics until either one of two conditions is satisfied:

• (1) no model achieves an R2 ≥ 0.9, or

• (2) removing a metric makes a previously dropped property no longer explainable, i.e., its

preliminary model will no longer achieve an R2 ≥ 0.9

Similarly to Kamei et al. Kamei et al. (2013), we perform a logarithmic transformation to re-

move the effect of highly skewed change measures. A standard log transformation has been applied

to each measure listed in Table 4.1.

Unbalanced classification problems may cause problems to many learning algorithms. We find
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3,559 commits that are bug-inducing and 21,505 commits that are non-bug inducing for Cassandra.

We also find 6,632 commits that are bug-inducing and 23,569 commits that are non-bug inducing

for Hadoop. For Cassandra, there are over six times more commits that are non-bug inducing than

commits that are bug-inducing and over three times more commits that are non-bug inducing than

bug-inducing in the case of Hadoop.

We explore various methods to fix these data imbalances. We randomly upsample samples

with replacement (i.e., replicating) of the minority class (i.e., bug-inducing) to make the minority

class be the same size as the majority class (i.e., non-bug inducing) Tantithamthavorn, Hassan, and

Matsumoto (2020). We also randomly downsample (i.e., reduce) samples of the majority class (i.e.,

non-bug-inducing) to make the number of majority modules be the same number as the minority

class (i.e., bug-inducing) Tantithamthavorn et al. (2020).

A prior study Agrawal and Menzies (2018) found through a literature review that an overwhelm-

ing majority of SE thesiss (85%) use SMOTE to fix data imbalance, precisely when the data in the

target class is overwhelmed by an over-abundance of information about everything else, except the

target. To account for the data imbalance in commits that are bug-inducing and non bug-inducing in

our models, we apply the R SMOTE function on the training data. SMOTE is an algorithm for han-

dling unbalanced classification problems DMwR (n.d.). The general idea of this method is to artifi-

cially generate new examples of the minority class using the nearest neighbors of existing examples.

Furthermore, the majority class examples are also under-sampled. In our case, non-bug inducing

commits are under-sampled leading to a more balanced dataset DMwR (n.d.). For each case in the

original dataset belonging to the minority class, new examples of that class will be generated by

using the information from the k nearest neighbours of each example of the minority class DMwR

(n.d.). We also use SMOTE to balance the number of performance and non-performance related

commits within our BALANCED model.

Model construction

In this thesis, we build random forest models as our JIT classification models. Random forests

construct each tree by using a different bootstrap sample. Assuming that the number of instances in

the training set is N, a sample of these N cases is taken at random, with replacement. The random
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forest classifier uses a bootstrap approach internally to get an unbiased evaluation of the perfor-

mance of a classifier. Contrary to standard decision trees, where each decision node is split using

the best split among all variables, random forests split each node using the best subset among a ran-

domly chosen subset of variables from each of the constructed trees Li, Shang, Zou, and E. Hassan

(2017). Random forests are robust against overfitting and perform very well in terms of accuracy Li

et al. (2017), suited for predicting performance related bug-inducing commits. Due to the imbal-

ance of bug-inducing and non-bug inducing commits in our data, it is suitable to use random forest

trees to not overfit the models on non-bug inducing commits. A study that compares 31 classifiers

in software defect classification suggests that Random Forest outperforms other classifiers Ghotra,

McIntosh, and Hassan (2015).

We also explore alternative models that may be used other than a random forest model: logistic

regression modelling, support vector machine (SVM), and decision trees to determine how different

models perform.

Manual analysis

For some performance fix commits, there are several corresponding identified bug-inducing

commits (i.e., N:1). For example, commit 4722fe7 in Cassandra linked to the JIRA issue CASSANDRA-7245:

Out-of-Order keys with stress + CQL3. There are 16 identified bug-inducing commits for the fix

commit 4722fe7. Out of 218 studied bug fix commits, we found that 126 of them have three

or more identified bug-inducing commits. It seems unlikely that so many commits can cause one

specific bug in the system. Therefore, some of these commits may be false positive bug-inducing

commits da Costa et al. (2017). Falsely identified positive bug-inducing commits may occur be-

cause the SZZ approach still has room for improvement da Costa et al. (2017); S. Kim et al. (2006).

Prior studies show that it is unlikely that all of the modifications made in a bug-fixing change are

actually related to the bug-fix (e.g., it may contain an opportunistic refactoring) da Costa et al.

(2017); Davies et al. (2014); S. Kim et al. (2006). Furthermore, fixes to non-functional bugs, in-

cluding performance bugs may be scattered across the source code and might be separate from their

bug-inducing locations in the source code, making it impossible for the SZZ approach to locate

bug-inducing commits by tracing back.
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Because there is no verified ground truth for performance bug-inducing commits, we further

verify the 899 commits identified through the SZZ approach. We do this manually to determine the

reliability of the raw results obtained through the original dataset.

The steps performed in this thesis for the manual analysis of bug-inducing commits are as fol-

lows:

• Step 1A: The reviewers look at the description of a bug fix commit issue JIRA.

• Step 1B: The reviewers examine the code from the mentioned bug fix commit corresponding

to the JIRA issue.

• Step 1C: For each of the commits identified as bug-inducing commits by the SZZ approach,

the reviewers examine the code in the commit and determine if it induced the bug identified

in Step 1A based on their knowledge after studying the code.

Two reviewers perform this task separately and in parallel. Following the manual analysis,

the Cohen’s Kappa scores of the agreement of the two reviewers is calculated, ensuring moderate

levels of agreement. The reviewers later met together to discuss disagreements until consensus was

reached for all disagreements on whether an identified commit is bug-inducing or not.

The above mentioned steps are individually completed by all reviewers for all bugs remaining in

the dataset. All reviewers must have the same classification (i.e., bug-inducing or not bug-inducing)

for a identified commit, otherwise this is marked as a disagreement. All agreements and disagree-

ments are recorded and used to calculate the Cohen’s Kappa score, a robust statistic useful for either

interrater or intrarater reliability testing McHugh (2012). Cohen’s Kappa score is a standardized

score, where 0 represents the amount of agreement that can be expected from random chance, and

1 represents perfect agreement between raters McHugh (2012). Afterwards, the reviewers meet and

discuss any of the disagreements to reach a consensus for all identified bug-inducing commits.

The disagreements are resolved as follows:

• Step 2A: The reviewers re-read the JIRA issue description, the bug fix, and the bug-inducing

commit in question.
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• Step 2B: Each reviewer states the reason why they think the identified commit is bug-inducing

or not bug-inducing.

• Step 2C: The reviewers discuss until all two agree on a final decision.

4.2 Case Study Results

4.2.1 RQ1: How well can JIT models predict performance bug-inducing commits?

Motivation.

Because previous studies indiscriminately evaluate the SZZ approach on both functional and

non-functional bugs without distinction, we seek a clear comparison between performance bugs

and non-performance bugs. Zaman et al. found that developers spend more time fixing performance

bugs rather than fixing non-performance bugs Zaman et al. (2011). Because performance bugs are

a type of non-functional bug, an approach with a purpose such JIT models using the SZZ approach

would be useful in helping developers locate where to fix a bug in the source code which can help

fix future bugs that are similar to prior identified bugs. In this RQ, we evaluate the JIT models on

their ability to predict bug-inducing commits identified by the SZZ approach.

Approach.

In order to evaluate the SZZ approach and the impact on JIT models with respect to performance

bugs, we must first obtain a source of known performance bugs. Furthermore, we must have enough

information for each bug to accurately determine the root causes for the bugs. We first find the

corresponding bug fixing and bug-inducing changes for the bugs using the SZZ approach on our

chosen datasets. Figure 4.2 provides an overview of our approach.

Using the JIRA issue IDs, we go through all commits in each subject repository, provided by

Commit Guru Rosen et al. (2015). We do this to find linked commits that we assume are fix commits

for those issues. We do this by creating a script where for each commit, if the commit message

contains at least one of the JIRA performance issues from the list, we choose these commits as our

bug fixing commits. In order to find the bug-inducing commits, we input the bug fixing commits

into the SZZ approach, and we then identify the commits that the approach outputs as bug-inducing
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Figure 4.2: An overview of our approach to evaluate the impact of falsely identified performance
bug inducing changes in JIT defect prediction models.
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commits.

We perform 10-fold cross validation and evaluate the data of the JIT models for performance

data and non-performance data on their recall, precision, F1, and AUC values. Since for this RQ

(RQ1) as well as RQ2 we perform 10-fold cross validation, every single one of the commit in-

stances are in the testing set exactly once. We evaluate all of the non-performance and performance

classifications independently as a means to compare the models’ power to predict performance and

non-performance bug-inducing commits.

We use a default threshold of 0.5 to classify whether a commit is bug-inducing or not, where

if the model-predicted probability of a bug-inducing commit is greater than 0.5, then the commit

is classified as defect inducing; otherwise, it is classified as non-bug inducing Guo, Zimmermann,

Nagappan, and Murphy (2010); Gyimothy et al. (2005); Kamei et al. (2013). Once all testing

instances are evaluated, we then aggregate the results of all testing instances. We do this four

times, experimenting with four sampling strategies: original (i.e., without any additional sampling

strategy), downsampling Tantithamthavorn et al. (2020), upsampling Tantithamthavorn et al. (2020),

and SMOTE DMwR (n.d.). We also explore alternative models that may be used other than a random

forest model: logistic regression modelling, SVM, and decision trees in combination with SMOTE

as summarized in Table 4.3.

Upon performing the manual analysis described in Chapter 4.1, we found that there are 899

identified performance bug-inducing commits: 327 from Cassandra and 572 from Hadoop shown in

Figure 4.2. The 899 performance bug-inducing commits were identified through the SZZ approach,

however, SZZ’s assumptions about bug introduction (where removed line in a bug-fixing commit

had introduced the bug) might not always be valid for performance bugs. These bug-inducing

commits may or may not be truly bug-inducing commits, some of them may be false positives.

Since prior bug-inducing changes are the data that is fed into JIT defect prediction models to

predict future bugs, it is important to determine whether or not the past changes are correctly labelled

as bug-inducing or not bug-inducing. In this RQ we evaluate the performance of JIT models when

using a manually verified dataset of performance bug-inducing commits as the training data. We

first evaluate the JIT models on the performance related data output by the SZZ approach. However,

because this data can contain errors we then re-evaluate the results after a manual analysis of the
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test dataset. We consider true positive detections in cases where our JIT models correctly identify

non-performance and performance bug-inducing commits.

Results.

We find 120 and 83 JIRA issues related to performance issues for Cassandra and Hadoop respec-

tively. For these issues, we find 179 and 80 commit fixes for Cassandra and Hadoop respectively.

Using the SZZ approach on those fixes, we find that there are 327 and 572 identified bug-inducing

commits for Cassandra and Hadoop respectively, associated with the 148 out of 179 and 70 out

80 commit fixes identified by the SZZ approach shown in Figure 4.2. For the remaining 41 bug

fixes, there were no identified bug-inducing commits by the SZZ approach because the bug fixes

only contained either changes to non-Java files or only additions.

Manual analysis: For some performance fix commits, there are several corresponding identi-

fied bug-inducing commits. For example, the commit: 4722fe7 in Cassandra linked to the JIRA

issue CASSANDRA-7245, has 16 identified bug-inducing commits. Upon manual analysis, only

eight of the 16 identified bug-inducing commits were truly bug-inducing changes. We show an ex-

ample of a falsely identified bug-inducing commit: 84c0657 in Figure 4.3. The commit message

is: RefCount native frames from netty to avoid corruption bugs patch by tjake; reviewed by bes for

CASSANDRA-7245 and the JIRA issue is Out-of-Order keys with stress + CQL3. The removed line

in the fix commit flags commit 84c0657 as bug-inducing, as that line was introduced in a change

in the commit history. The added and removed lines are snippets of code changes that are unrelated

to the bug fix commit message and the JIRA issue description. Since the only code overlap that the

fix commit 4722fe7 has with the identified inducing commit 84c0657 is the snippet removed

shown in Figure 4.3 which is unrelated to the bug issue description, we rule it out as a false positive

for introducing a bug in the context of CASSANDRA-7245.

For the manual examination of the identified bug-inducing commits, there were a total of 328

and 572 identified bug-inducing commits, and 141 and 92 disagreements from Cassandra and

Hadoop, respectively. To quantitatively evaluate how often the reviewers agreed during manual

evaluation, we use the Cohen’s Kappa score McHugh (2012). The Cohen’s Kappa score was

0.48 - a moderate level of agreement for Cassandra, and 0.43 - a moderate level of agreement

for Hadoop McHugh (2012). Having a high Cohen’s Kappa score reduces potential bias of a single

51



- List<AbstractWriteResponseHandler> responseHandlers =

- new ArrayList<AbstractWriteResponseHandler>(mutations.size());

+ List<AbstractWriteResponseHandler> responseHandlers =

+ new ArrayList<>(mutations.size());

Figure 4.3: Simplified example of code changes in a fix commit that are unrelated to the bug de-
scription.

reviewer by hanging multiple reviewers, which is beneficial for producing reproducible results. The

majority of the disagreements were due to either one of the reviewers misinterpreting the code, or

not being sure whether the identified commit that contained a bug introduced the bug at the time or

was a commit that retained a bug from a prior bug-inducing commit. Because the agreement score

only ranked as moderate, each of the 233 disagreement was carefully re-examined and discussed

until a consensus was reached between all reviewers.

Upon discussion between the two reviewers, it was found that 129 out of the 327 Cassandra

commits and 244 out of the 572 Hadoop bug-inducing commits were manually verified to be truly

bug-inducing commits. There are therefore 198 and 328 falsely identified bug-inducing commits

from the SZZ approach for Cassandra and Hadoop, respectively. It should be noted that some

commits were identified as bug-inducing commits for more than one bug. On the other hand, as

mentioned earlier, for some performance fix commits, there are several corresponding identified

bug-inducing commits. If the manually verified bug-inducing commit was a bug-inducing commit

for more than one of the bugs (i.e., 1:N), we say it is a bug-inducing commit because it introduced

a bug at the time of the commit In particular, 192 commits out of the 899 identified bug-inducing

commits in our dataset (21.4%) were identified to induce more than one bug.

Our results upon performing 10-fold cross validation, on the JIT models are shown in Table 4.2

in the Raw data column.

The results of using raw SZZ data as JIT model input (i.e., the RQ1 Raw data column

of Table 4.2) shows that the JIT models have worse prediction results when predicting non-

performance bug inducing commits than the performance ones. However, this data is unvetted

and may contain errors. Similar to RQ1, we find that the AUC scores and F1 scores for using

SMOTE outperform the other three sampling strategies (i.e., when no sampling strategy is applied,
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downsampling, and upsampling) for both performance bugs and non-performance bugs.

After establishing a manually vetted ground truth, we actually find that the models are

more accurate for non-performance commits rather than performance commits, shown by

the F1 scores and AUC values of Table 4.2, column RQ1 Verified data. We correct the testing

data used in RQ1, by using the ground truth of identified bug-inducing commits through manual

analysis and re-build the models, as shown in Table 4.2 in the column Verified data. Note that both

the RQ1 Raw data and RQ1 Verified data columns use the same model, which we will call Unverified

Data Model. After establishing a ground truth through our manual analysis, rather than the initial

one made up of the results directly provided by the SZZ approach, we re-evaluate our models on

the correctly classified performance commits. Once again, we generally find that the AUC scores

and F1 scores for using SMOTE outperforms the other three sampling strategies (i.e., no sampling

strategy, downsampling, and upsampling), for performance and non-performance bugs.

The differing nature of performance bugs makes the SZZ approach a sub-optimal approach

for identifying bug-inducing changes for performance bugs. Upon establishing a manually vetted

ground truth, we find that the models are more accurate for non-performance commits rather than

performance commits. Our training data contained raw data from the SZZ approach in terms of

labelled bug-inducing commits that included falsely labelled performance bug-inducing commits.

Since manual analysis is effort consuming, it will be valuable to determine whether manually vali-

dated data makes a significant difference for training models to classify performance bug-inducing

commits, which we explore in RQ2.

Upon manual analysis of the identified bug-inducing commits, we find that 61.6% of them do

not contain bug-inducing changes, yet were used in the JIT models. Our findings show that

when using an established ground truth, the JIT model performs better in classifying non-

performance commits, rather than performance commits.

4.2.2 RQ2: How does correcting falsely identified performance bug-inducing changes

impact JIT models?

Motivation.
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Just-In-Time models are used to identify bug-inducing code changes, and are trained using

techniques that assume past bug-inducing changes are similar to future bug-inducing changes. In

RQ1, our training data contained raw data from the SZZ approach in terms of labelled bug-inducing

commits. The trained model may be biased by the errors introduced by the SZZ approach. Since

manual analysis is time-consuming, in this RQ, we want to determine whether verified data makes

a significant difference in training a better model to classify performance bug-inducing commits. In

RQ1, we train the models on unverified data, while in this RQ, we train the models on verified data,

in terms of performance related commits.

Approach.

In this RQ, we evaluate the JIT models on the performance related data output by the SZZ

approach, correctly labelled by reviewers through a manual analysis. Similar to RQ1, we perform

10-fold cross validation on our training dataset, which now contains a verified ground truth mix

of non-performance related data as well as correctly identified performance related bug-inducing

commit instances. We call this the Verified Data Model. We consider a true positive detection

in cases where our JIT models correctly identify non-performance and performance bug-inducing

commits. For each repository (i.e., Cassandra and Hadoop), we create one model and evaluate

non-performance and performance classifications independently. Upon performing 10-fold cross

validation after correcting the performance commits manually, we find the recall, precision, F1, and

AUC values of performance commits and non-performance commits.

To obtain a fair comparison, we further evaluate the differences between the classifications made

in RQ1’s Unverified Data Model and RQ2’s Verified Data Model. We can do this because both the

Unverified Data Models and Verified Data Models use the same ground truth of correctly labelled

bug-inducing commits through the manual analysis step performed in RQ1. We compare the results

shown in Table 4.2 in the columns Verified Data of RQ1 and Verified Data of RQ2. We evaluate

the AUC Fawcett (2006) for performance commits and non-performance commits for each project

(i.e., Cassandra and Hadoop). Furthermore, we use Wilcoxon’s signed-rank test McDonald (2014)

and Cohen’s d Sawilowsky (2009) to compare the differences in results using the model produced

in RQ1 and the one produced in RQ2.

Similar to RQ1, we explore alternative models that may be used other than a random forest
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model: logistic regression modelling, SVM, and decision trees.

Results.

Similar to RQ1, we find that the AUC scores and F1 scores for using SMOTE outperform the

other three sampling strategies (i.e., no sampling strategy, downsampling, and upsampling) for both

performance and non-performance bugs, shown in Table 4.2. Therefore, we include SMOTE as a

sampling strategy step for further model building.

The results are summarized in Table 4.3 in the Verified Data Model data column. Similarly to

RQ1, our threshold to classify whether a commit is bug-inducing or not is 0.5. We base our results

off the random forest model, as it outperforms the logistic regression modelling, SVM, and decision

trees models.

Performance bug-inducing commits: By using manually verified performance data in the

training data to build the models, we find that there is no statistical difference on the mod-

els’ classification power. We find that there are overlapping correctly identified bug-inducing

commits from both the Unverified Data Model and Verified Data Model. We find that for perfor-

mance bug-inducing commits, the Unverified Data Model and Verified Data Model have the correct

and same classification for 212 performance related commit instances in Cassandra and 110 of the

same performance related commit instances in Hadoop. As shown in Figure 4.4, in Cassandra, the

Unverified Data Model was able to correctly classify 11 more performance commit instances that

the Verified Data Model was not able to classify, while the Verified Data Model correctly classified

13 more performance commit instances that the Unverified Data Model was not able to classify as

summarized in Figure 4.4. Additionally, as shown in Figure 4.4, in Hadoop, the Unverified Data

Model was able to correctly classify 5 more performance commit instances that the Verified Data

Model was not able to classify, while the Verified Data Model correctly classified 9 more perfor-

mance commit instances that the Unverified Data Model was not able to classify. Therefore, based

on the various non-overlapping results of both models, we believe that having correctly identified

performance bug-inducing commits in the training data of JIT models can help correctly classify

other performance bug-inducing commits.

Non-performance bug-inducing commits: We find that for non-performance bug-inducing

commits, the models in Unverified Data and Verified Data have the correct and same classification
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Table 4.2: Comparison of results of bug-inducing commit classification based on verified and un-
verified SZZ input data using 10-fold cross-validation, using four different sampling strategies in
combination with random forest.

Original RQ1 RQ2
Training data Raw data Raw data Verified data
Testing data Raw data Verified data Verified data
Project Cassandra Hadoop Cassandra Hadoop Cassandra Hadoop

Performance
bugs

Recall 48.9% 62.5% 49.2% 71.9% 42.6% 71.1%
Precision 100.0% 100.0% 43.0% 45.3% 43.2% 46.0%
F1 65.7% 76.9% 45.9% 55.6% 42.9% 55.8%
AUC 0.745 0.812 0.502 0.578 0.503 0.584

Non-performance
bugs

Recall 29.7% 45.3% 29.7.0% 45.3% 23.1% 42.4%
Precision 54.5% 64.3% 54.5% 64.3% 58.2% 65.6%
F1 38.5% 53.1% 38.5% 53.1% 33.1% 51.5%
AUC 0.631 0.682 0.631 0.682 0.604 0.673

Downsampling RQ1 RQ2
Training data Raw data Raw data Verified data
Testing data Raw data Verified data Verified data
Project Cassandra Hadoop Cassandra Hadoop Cassandra Hadoop

Performance
bugs

Recall 48.8% 62.5% 48.4% 71.9% 42.2% 71.1%
Precision 100.0% 100.0% 42.4% 45.3% 42.6% 46.0%
F1 65.6% 76.9% 45.2% 55.6% 42.4% 55.8%
AUC 0.744 0.812 0.496 0.578 0.498 0.854

Non-performance
bugs

Recall 29.9% 45.5% 29.9% 45.5% 22.9% 42.6%
Precision 54.7% 64.4% 54.7% 64.4% 58.1% 65.6%
F1 38.7% 53.3% 38.7% 53.3% 32.9% 51.6%
AUC 0.633 0.683 0.633 0.683 0.603 0.674

Upsampling RQ1 RQ2
Training data Raw data Raw data Verified data
Testing data Raw data Verified data Verified data
Project Cassandra Hadoop Cassandra Hadoop Cassandra Hadoop

Performance
bugs

Recall 49.3% 62.8% 49.2% 72.7% 42.2% 71.1%
Precision 100.0% 100.0% 42.7% 45.6% 42.6% 46.0%
F1 66.0% 77.1% 45.7% 56.0% 42.4% 55.8%
AUC 0.746 0.814 0.469 0.582 0.498 0.584

Non-performance
bugs

Recall 30.0% 45.4% 30.0% 45.4% 22.9% 42.6%
Precision 54.7% 64.4% 54.7% 64.4% 57.8% 65.6%
F1 38.7% 53.2% 38.7% 53.2% 32.8% 51.6%
AUC 0.633 0.683 0.633 0.683 0.603 0.673

SMOTE RQ1 RQ2
Training data Raw data Raw data Verified data
Testing data Raw data Verified data Verified data
Project Cassandra Hadoop Cassandra Hadoop Cassandra Hadoop

Performance
bugs

Recall 87.7% 90.9% 91.4% 89.8% 90.6% 93.4%
Precision 100.0% 100.0% 73.8% 56.9% 86.7% 82.1%
F1 93.4% 95.2% 81.7% 69.7% 88.6% 87.4%
AUC 0.939 0.955 0.518 0.486 0.647 0.787

Non-performance
bugs

Recall 87.0% 86.2% 87.0% 86.2% 88.2% 86.7%
Precision 79.6% 86.7% 79.6% 86.7% 81.2% 87.0%
F1 83.1% 86.5% 83.1% 86.5% 84.6% 86.9%
AUC 0.842 0.869 0.842 0.869 0.845 0.869

56



Table 4.3: Comparison of results of bug-inducing commit classification based on verified and un-
verified SZZ input data using 10-fold cross-validation, using four different models in combination
with SMOTE.

Random Forest RQ1 RQ2
Training data Raw data Raw data Verified data
Testing data Raw data Verified data Verified data
Project Cassandra Hadoop Cassandra Hadoop Cassandra Hadoop

Performance
bugs

Recall 87.7% 90.9% 91.4% 89.8% 90.6% 93.4%
Precision 100.0% 100.0% 73.8% 56.9% 86.7% 82.1%
F1 93.4% 95.2% 81.7% 69.7% 88.6% 87.4%
AUC 0.939 0.955 0.518 0.486 0.647 0.787

Non-performance
bugs

Recall 87.0% 86.2% 87.0% 86.2% 88.2% 86.7%
Precision 79.6% 86.7% 79.6% 86.7% 81.2% 87.0%
F1 83.1% 86.5% 83.1% 86.5% 84.6% 86.9%
AUC 0.842 0.869 0.842 0.869 0.845 0.869

Logistic Regression RQ1 RQ2
Training data Raw data Raw data Verified data
Testing data Raw data Verified data Verified data
Project Cassandra Hadoop Cassandra Hadoop Cassandra Hadoop

Performance
bugs

Recall 86.4% 88.0% 88.1% 89.1% 88.1% 91.4%
Precision 100.0% 100.0% 77.3% 57.3% 85.5% 69.0%
F1 92.7% 93.6% 82.4% 69.7% 86.8% 78.7%
AUC 0.932 0.940 0.503 0.507 0.490 0.547

Non-performance
bugs

Recall 79.6% 77.2% 79.6% 77.2% 82.6% 77.6%
Precision 85.4% 80.3% 85.4% 80.3% 72.9% 75.4%
F1 82.4% 78.7% 82.4% 78.7% 77.4% 76.5%
AUC 0.770 0.761 0.770 0.761 0.769 0.763

SVM RQ1 RQ2
Training data Raw data Raw data Verified data
Testing data Raw data Verified data Verified data
Project Cassandra Hadoop Cassandra Hadoop Cassandra Hadoop

Performance
bugs

Recall 87.6% 89.7% 88.5% 91.4% 89.3% 93.4%
Precision 100.0% 100.0% 74.5% 57.6% 83.7% 68.3%
F1 93.4% 94.6% 80.9% 70.7% 86.4% 78.9%
AUC 0.938 0.948 0.502 0.523 0.513 0.562

Non-performance
bugs

Recall 83.5% 79.3% 83.5% 79.3% 84.3% 80.9%
Precision 85.6% 80.7% 85.6% 80.7% 73.9% 76.3%
F1 84.5% 80.0% 84.5% 80.0% 78.7% 78.5%
AUC 0.777 0.772 0.777 0.772 0.781 0.780

Decision Trees RQ1 RQ2
Training data Raw data Raw data Verified data
Testing data Raw data Verified data Verified data
Project Cassandra Hadoop Cassandra Hadoop Cassandra Hadoop

Performance
bugs

Recall 90.1% 87.8% 92.2% 90.6% 94.1% 94.5%
Precision 100.0% 100.0% 75.3% 54.2% 83.5% 62.4%
F1 94.8% 93.5% 82.9% 67.8% 88.4% 75.2%
AUC 0.950 0.939 0.521 0.516 0.541 0.533

Non-performance
bugs

Recall 86.2% 79.0% 86.2% 79.0% 88.3% 80.6%
Precision 84.2% 78.1% 84.2% 79.1% 72.6% 72.0%
F1 85.2% 78.5% 85.2% 78.5% 79.7% 76.0%
AUC 0.777 0.749 0.777 0.749 0.785 0.747
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Table 4.4: Comparison of results of bug-inducing commit classification based on verified SZZ input
data using 10-fold cross-validation with Random Forest, using three different classification thresh-
olds: 0.4, 0.5, and 0.6.

Threshold 0.4 0.5 0.6
Project Cassandra Hadoop Cassandra Hadoop Cassandra Hadoop

Performance
bugs

Recall 93.4% 96.1% 90.6% 93.4% 86.3% 89.8%
Precision 89.1% 79.6% 86.7% 82.1% 90.5% 81.0%
F1 91.2% 87.1% 88.6% 87.4% 88.4% 85.2%
AUC 0.647 0.787 0.647 0.787 0.647 0.787

Non-performance
bugs

Recall 90.7% 92.3% 88.2% 86.7% 81.8% 79.6%
Precision 80.1% 83.3% 81.2% 87.0% 86.5% 89.9%
F1 85.1% 87.6% 84.6% 86.9% 84.1% 84.4%
AUC 0.845 0.869 0.845 0.869 0.845 0.869

for 2,374 non-performance bug-inducing commit instances in Cassandra and 4,782 same classifi-

cation for non-performance bug-inducing commit instances in Hadoop. For Cassandra, the Unver-

ified Data Model was able to correctly classify 196 more non-performance bug-inducing commit

instances that the Verified Data Model was not able to classify, while the Verified Data Model cor-

rectly classified 242 more non-performance bug-inducing commit instances that the Unverified Data

Model was not able to classify. For Hadoop, the Unverified Data Model was able to correctly clas-

sify 429 more non-performance bug-inducing commit instances that the Verified Data Model was

not able to classify, while the Verified Data Model correctly classified 453 more non-performance

bug-inducing commit instances that the Unverified Data Model was not able to classify. The results

are summarized in Figure 4.4.

For performance commits, the results of RQ2’s Verified Data Model are higher than those for

RQ1’s Unverified Data Model as shown by the AUC values in Table 4.2. When comparing the

results of both models for performance commits, although the results are statistically different

for Hadoop (p-value = 0.00051), the effect size is classified as small (Cohen’s d = 0.437) Saw-

ilowsky (2009), additionally the results are not statistically different for Cassandra (p-value =

0.068). Similarly, as shown in Table 4.3, RQ2’s Verified Data Model has higher AUC values than

those for RQ1’s Unverified Data Model for the SVM and Decision Trees models. The logistic re-

gression model presents an AUC score for RQ1’s Unverified Data Model that is statistically higher
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Figure 4.4: Top: Comparison of correctly classified performance bug-inducing commits, before
and after manual correction. Bottom: Comparison of correctly classified non-performance bug-
inducing commits, before and after manual correction.

than RQ2’s Verified Data Model. However, when comparing the results of both models for perfor-

mance commits, we find that for both Hadoop and Cassandra the results of the Logistic Regression,

SVM, and Decision Trees models are not statistically different.

For non-performance commits, the results of the Verified Data Model are slightly higher than

those for the Unverified Data Model as shown by the AUC values in Table 4.2. However, when

comparing the results of Verified Data Model and Unverified Data Model for non-performance

commits, the results are not statistically different for both Cassandra (p-value = 0.291) and Hadoop

(p-value = 0.464). Similarly, as shown in Table 3, RQ2’s Verified Data Model has higher AUC

values than those for RQ1’s Unverified Data Model for the Logistic Regression and SVM models.

The AUC score for RQ1’s Unverified Data Model is higher than that of RQ2’s Verified Data Model,

when comparing the Decision Tree models. We find that the results are significantly different for

the Logistic Regression models for Cassandra (p-value = 0.001) and the Decision Trees models for

Hadoop (p-value = 0.003). However, both effect sizes are classified as trivial: a Cohen’s d value of
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0.068 for Cassandra, and a Cohen’s d value of 0.004 for Hadoop.

These results indicate that manually verifying the results of SZZ to produce JIT models

generally does not impact the models’ classification power, and when it does (i.e., in the case

of Cassandra performance and Hadoop non-performance) the changes only have a negligible

to small effect on the classification power of these models. However, the changes in the models

brought about by manual verification of performance commits do add new information that was

not present in the original, non-verified model as shown in Figure 4.4. This indicates that includ-

ing correct performance bug-inducing commits in Just-In-Time training data can help with

identifying other previously unidentified bug-inducing commits as well as classifying non-bug

inducing commits. Further insight into the classification power could benefit future model building.

We investigate this further in RQ3.

Upon comparing the four models, we choose to use random forest models in combination with

SMOTE for building future models, as it ranks the highest in terms of F1 and AUC scores for

performance and non-performance bugs in both Hadoop and Cassandra, depicted by Table 4.3.

While we do select the random forest model due to its higher predictive power, the overall trends

uncovered are mostly model agnostic. The models present similar patterns, where the AUC scores

for non-performance bugs is always higher than those of performance bugs.

We find that there is valuable knowledge present in non-performance bug-inducing commits

that was not present in our sample of truly performance bug-inducing commits. Unfortunately, our

truly performance bug-inducing commits sample is simply too small to contain all of the project’s

knowledge. We believe that performance bug localization would strongly benefit from large datasets

of performance bugs.

Including manually verified bug-inducing data in the training data has minimal impact on the

models overall classification power. Despite the low impact, we find that Unverified and Veri-

fied Data Models contain exclusive knowledge, which they show through exclusively correctly

classified commit instances for performance related commits as well as non-bug inducing com-

mits.
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4.2.3 RQ3: Does only using the correct performance inducing changes as training

data improve the JIT models when predicting other performance inducing

changes?

Motivation.

In RQ2, we find that including verified performance bug-inducing commits in JIT training data

can properly identify other bug-inducing commits as well as classify non-bug inducing commits,

indicating that including correctly performance bug-inducing commits in Just-In-Time training data

can help with identifying other bug-inducing commits as well as classifying non-bug inducing com-

mits. If performance and non-performance bug-inducing commits have different characteristics, a

model only based on performance bugs can better label performance bug-inducing changes. In this

RQ, we evaluate Just-In-Time models solely on the manually verified performance commits iden-

tified by the two reviewers in RQ1, by using four different combinations of training data shown in

Figure 4.2. Of the model combinations, we include one where the training data is only comprised

of manually labelled bug-inducing commits, to see whether we need a separate model for predicting

performance bugs. With the results of this RQ, we seek to determine how different training data

influences the models’ power to predict performance bug-inducing commits.

Approach.

We evaluate four JIT models with manually verified bug-inducing commits for each subject

system to find what combination of training data is best suited for predicting performance related

bug-inducing commits. We use ‘X’ to denote the variable number of bug-inducing commits, shown

in detail in Figure 4.2, for each subject system to evaluate the models below:

• Model PERF+NON-PERF: The training data is comprised of X-1 performance bug-inducing

commits, the non-performance bug-inducing commits, and both all non-bug-inducing com-

mits. The testing data is solely comprised of the one verified performance bug-inducing

commit excluded from the training data. This split is repeated X times, and once all instances

are evaluated. We then aggregate the results of all repetitions.

• Model NON-PERF: The training data is comprised of non-performance bug-inducing com-

mits, and all non-bug-inducing commits. The testing data is comprised of the X verified
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Table 4.5: Evaluation results of four JIT models with manually verified performance bug-inducing
commits per subject system. The amount of true positive performance bug-inducing commits clas-
sified by each of the models is shown.

Cassandra Hadoop
Model PERF+NON-PERF 210 110
Model NON-PERF 201 111
Model PERF 185 94
Model BALANCED 209 102
Total 244 128

performance bug-inducing commits.

• Model PERF: The training data is comprised of X-1 performance bug-inducing commits,

and all non-bug-inducing commits. The testing data is solely comprised of the one veri-

fied performance bug-inducing commit excluded from the training data. Similarly to Model

PERF+NON-PERF the split is repeated X times, and all evaluation data is aggregated.

• Model BALANCED: The training data is comprised of X-1 performance bug-inducing com-

mits, the non-performance bug-inducing commits, and all non-bug-inducing commits. The

testing data is solely comprised of the one verified performance bug-inducing commit ex-

cluded from the training data. This split is repeated X times, and once all instances are

evaluated. We then aggregate the results of all repetitions. Our performance bug-inducing

commits sample is simply too small to contain all of the project’s knowledge. Therefore,

we produce this model to test the effect of a more balanced dataset. Contrary to Model

PERF+NON-PERF, an extra balancing step is done to account for the imbalance in perfor-

mance and non-performance related commits. We use the balancing approach outlined in the

data preparation chapter of this thesis (i.e., Chapter 4.1).

For each of the four models described above, each of the performance bug-inducing commits

are tested on, exactly once.

Results.

Model PERF performs the worst, while Model PERF+NON-PERF performs the best.

Moreover, the difference between Model PERF+NON-PERF and Model PERF is that Model PERF+NON-

PERF also trains on the non-performance bug inducing commits in addition to all commits except
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one performance bug-inducing commits and non-bug inducing commits. The single excluded per-

formance bug-inducing commit is the one that the JIT model predicts on. Similarly to RQ1 and

RQ2, our threshold to classify whether a commit is bug-inducing or not is 0.5. Including the non-

performance bug-inducing commits in the training data increased the classification of truly perfor-

mance bug-inducing commits by 10.2% in Cassandra and 12.5% in Hadoop, as shown in Table 4.5.

This indicates that it is better for JIT model classification to include all commit types, possibly due

to the small size of the performance bug data compared to non-performance bug data. The small

performance bug data sample is not providing sufficient predictive power. This difference in inter-

nal knowledge is what allows Model PERF+NON-PERF to use information from non-performance

bug-inducing data, which seems to have overlapping knowledge in terms of similar characteristics

to performance bugs, helping with the classification of performance bugs.

The effect of truly performance bug-inducing commits (PB in Figure 4.2) Although the per-

formance bug data alone may not be enough to accurately detect other performance bug-inducing

commits, as shown by Model PERF performing worse than Model PERF+NON-PERF, it is still

better to include them in the training data, as it still gives new information, show in Figure 4.5. Ex-

cluding the non-performance commits has a larger effect than excluding performance bug-inducing

commits as shown in Table 4.5. This is likely because there are many more non-performance

bug-inducing commits than performance bug-inducing commits. However, performance bug-

inducing commits do contain unique knowledge that is not contained within non-performance

bug-inducing commits as shown in Figure 4.5. By the same logic, this explains why Model

PERF+NON-PERF performs the best out of the four models, since it contains both performance

bug-inducing commits and non-performance bug-inducing commits. More data included in the

training data has positive results on the models’ classification power. As a future work, we propose

enlarging the amount of training instances of performance bug-inducing data to determine if this

can further improve the JIT models.

The results are summarized in Figure 4.5. The data shows that there is knowledge present in

non-performance bug-inducing commits that was not present in our sample of truly performance

bug-inducing commits. This is likely due to the sheer size difference between our non-performance
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Figure 4.5: Comparison of Model PERF+NON-PERF, Model NON-PERF, and Model PERF of
Cassandra (left) and Hadoop (right) of correctly classified performance bug-inducing commits.

bug-inducing commits and truly performance bug-inducing commits samples. Our truly perfor-

mance bug-inducing commits sample is simply too small to contain all of the project’s knowledge.

Including correct performance bug-inducing data is therefore valuable to predict on other perfor-

mance bug-inducing commits.

We therefore create a model called BALANCED, as shown in Table 4.5 where we use the R

SMOTE function DMwR (n.d.) as described in Chapter 4.1, to balance the non-performance com-

mits and the performance commits. As shown in Figure 4.6, we find that for performance related

commits, Model PERF+NON-PERF and Model BALANCED have the correct and same classifica-

tion for 192 performance related commit instances in Cassandra and 94 of the same performance

related commit instances in Hadoop. As shown in Figure 4.6, balanced datasets (BALANCED) and

large datasets (PERF+NON-PERF) each yield good, and slightly different results. Therefore, we

suggest that JIT models aim for large and balanced training datasets.

When limited to not having enough performance commit related data, we find that using all

commit data, i.e., truly performance bug-inducing commits, non-performance bug-inducing com-

mits, and non-bug-inducing commits in the training data, still gives the best results. The rationale

behind this result stems from the limited amount of performance bug-inducing commit data in our

case study. It appears that more data, no matter the bug-type, is still superior to less data of a spe-

cific bug type (i.e., performance). Hence, in the absence of sufficient performance regression data,

a “blind” model with all the bug-inducing commits still performs reasonably well.
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Additionally, prior work shows that cross-prediction models Fukushima, Kamei, McIntosh, Ya-

mashita, and Ubayashi (2014), where combining the data of several other projects to produce a

larger pool of training data, works well in JIT defect prediction, which can be explored in future

work for performance-related bugs. Leveraging other projects’ labelled performance data would be

able to enlarge the amount of training instances of performance bug-inducing data.

18 17192

Model PERF+NON-PERF Model Balanced

(a) Cassandra

16 894

Model PERF+NON-PERF Model Balanced

(b) Hadoop

Figure 4.6: Comparison of Model PERF+NON-PERF and BALANCED of Cassandra (left) and
Hadoop (right) of correctly classified performance bug-inducing commits.

Our findings show that it is better for JIT model classification to include all commit types, due to

the small size of the performance bug data compared to non-performance bug data. Moreover, our

results for Model BALANCED, indicate that larger samples of correct performance bug-inducing

data are more valuable for predicting other performance bug-inducing commits. For future work, we

propose enlarging the amount of training instances of performance bug-inducing data to determine

if this can further improve the JIT models.

Compared to the amount of functional bugs, it is typical that the amount of performance bugs are

relatively small in software projects Ding et al. (2020); Jin et al. (2012); Nistor et al. (2013); Radu

and Nadi (2019). Therefore, the lack of data to build JIT bug prediction models for performance

bugs may become a common challenge in practice. On the other hand, research has shown that

transfer learning techniques can be used to leverage data from other projects in order to enlarge the

training data for modeling and prediction Catolino et al. (2019). Therefore, future research may

consider enlarging the amount of training instances of performance bug-inducing data by transfer

learning techniques to further improve the JIT models.

65



Using correctly labelled performance bug-inducing commits in the training data doesn’t result

in an optimal model. We find that using all commit data: truly performance bug-inducing com-

mits, non-performance bug-inducing commits, and non-bug-inducing commits in the training

data results in better predicting performance bug-inducing commits.

4.3 Threats to Validity

In this section we discuss the threats to the validity of our research.

External validity.

Threats to external validity are concerned with the extent to which we can generalize our results.

Although our study only focuses on 121 performance issues, the scale of our study is comparable

to prior research on performance issues Zaman et al. (2012). We attempt to mitigate these issues by

establishing our benchmark of performance issues based on an existing, manually verified dataset

used in prior research Ding et al. (2020). Our findings might not be generalizable to other sys-

tems, therefore, for our future work, we propose increasing the quantity of training instances of

performance bug-inducing data.

Construct validity.

Threats to construct validity are concerned with the validity of our conclusions within the con-

straints of the dataset we used. Very few of the projects have an issue tracking system, and so for

many, looking for bug reports for that have keywords relating to performance in the system was

inapplicable. In order for us to mitigate the constraints of drawing conclusions, the dataset we

employed from prior work Ding et al. (2020) contains two Java projects: Cassandra and Hadoop,

which are both highly concerned with performance and have been studied in prior research in min-

ing performance data Chen and Shang (2017); Chen et al. (2014); Ding et al. (2020); Syer et al.

(2017).

Internal validity.

Threats to internal validity are concerned with how our experiments were designed. Our manual

analysis of the candidate bug-inducing commits for known bug fixing commits were subject to
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our own opinion and could therefore be biased by the opinion of the experimenter. In order to

mitigate the risk of bias, we included two other reviewers in parallel, following with Cohen’s Kappa

to measure agreement between the reviewers. After reviewing separately, the reviewers later met

together to discuss disagreements. These measures taken allow for us to mitigate and measure the

internal bias of our manual study.

While the existence of non-performance bug-inducing commits in the training data may have

an effect on classifying performance bug-inducing commits, it is also possible that performance

bug-inducing commits in the training data may have an effect on classifying non-performance bug-

inducing commits. For the purpose of the thesis, we focus on the impact of having non-performance

related data on classifying performance bugs. We may focus on the effect that performance bug-

inducing commits have on classifying non-performance commits as a future work.

We use 0.5 as a threshold of probability to classify whether a commit is bug-inducing or not.

Since the choice of a threshold may bias our findings, we experiment with threshold values of 0.4

and 0.6 in Table 4.4. We notice that from the threshold values of 0.5 to 0.6, the precision and recall

values cross each other, except for Hadoop performance bugs. Since we value both precision and

recall equally, we choose 0.5 by default. We find that when changing the threshold, the recall and

precision values change slightly, however the conclusions still hold, indicating that JIT performance

bug prediction is not impacted substantially by the threshold.

4.4 Chapter Summary

In this thesis we present a study to highlight the nature of performance bugs, and its impact on

Just-In-Time defect prediction models. Due to their nature, these bugs may be scattered across the

source code and might be separate from their bug-inducing locations in the source code. This scat-

tering may cause unreliable data to be fed into Just-In-Time defect prediction models. We conduct

an empirical study on the results of the SZZ approach used for JIT defect prediction, concentrating

on the use of JIT defect prediction to identify the inducing changes of the performance related bugs

in Cassandra and Hadoop.

We find that in the data fed into the Just-In-Time models, for more than 57% of fix commits,
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there are several commits identified as bug-inducing. As shown in prior studies, it is unlikely that

all bug fixing-changes are related to the bug-fix so we suspect some of the identified bug-inducing

changes are unlikely to be correct. This is likely due to nature of performance bugs, which makes

the SZZ approach a sub-optimal approach for identifying bug-inducing changes for performance

bugs. Through manual analysis of 899 identified bug-inducing commits, we find that 372 of them

are correctly identified, while the remaining 528 do not contain bug-inducing changes accounting

for 61.6%, which are fed into the JIT models.

Although the SZZ approach does give incorrect results, due to the small number of perfor-

mance bugs in the population of total bugs, this has little impact on the overall predictive power of

the models. Our findings show that there is knowledge present in non-performance bug-inducing

commits which was not present in our sample of truly performance bug-inducing commits. Our

truly performance bug-inducing commits sample is simply too small to contain all of the projects’

knowledge.

Our findings show that it is better for JIT model classification to include all commit types,

possibly due to the small size of the performance bug data compared to non-performance bug data.

Moreover, including performance bug-inducing commits in the Just-In-Time models’ training data

increases the percentages of correctly labelled performance bug-inducing commits, indicating that

correct performance bug-inducing data is valuable for predicting on other performance bug-inducing

commits. For future work, we propose enlarging the amount of training instances of performance

bug-inducing data by transfer learning techniques in order to further improve the JIT models.
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Chapter 5

Conclusion

5.1 Major topics addressed

Chapter 3 focuses on the impact of the SZZ approach on the non-functional bugs in the NFBugs

dataset, and the performance bugs in Cassandra, and Hadoop. We manually examine whether each

identified bug-inducing change is indeed the correct bug-inducing change. Our manual study shows

that a large portion of non-functional bugs cannot be properly identified by the SZZ approach.

We uncover root causes for false detection that have not been previously found, and evaluate the

identified bug-inducing changes based on criteria from prior research. Our results may be used

to assist in future research on non-functional bugs, and highlight the need to complement SZZ to

accommodate the unique characteristics of non-functional bugs.

Chapter 4 performs an empirical study to evaluate model performance for JIT models by using

them to identify bug-inducing code commits for performance related bugs. Our findings show that

JIT defect prediction classifies non-performance bug-inducing commits better than performance

bug-inducing commits. However, we find that manually correcting errors in the training data only

slightly improves the models. In the absence of a large number of correctly labelled performance

bug-inducing commits, our findings show that combining all available training data yields the best

classification results.

69



5.2 Thesis contributions

The contributions of this thesis are as follows:

(1) To the best of our knowledge this is the first study to focus exclusively on the use of the SZZ

approach to identify the inducing commits of non-functional bugs.

(2) We manually verified the validity of the SZZ approach on non-functional bugs, and deter-

mine potential problems with the approach in dealing with them, and make the data readily

available.

(3) We augmented the NFBugs dataset by including bug fix descriptions that contain the commits

where the true bug-inducing changes reside.

(4) To the best of our knowledge this is the first study to focus exclusively on performance bug-

inducing changes in the context of Just-In-Time defect prediction models.

(5) We manually verified the validity of the SZZ approach on performance bug-inducing changes

and make the data readily available.

(6) We evaluated the results of the Just-In-Time model bug prediction before and after our mod-

ifications after manually checking whether a commit that is labelled as bug-inducing is truly

bug-inducing.

5.3 Future research

For the purpose of our work, we focus on the impact of having non-performance related data on

classifying performance bugs. We may focus on the effect that performance bug-inducing commits

have on classifying non-performance commits as a future work.

Our findings show that it is better for JIT model classification to include all commit types,

possibly due to the small size of the performance bug data compared to non-performance bug data.

Moreover, including performance bug-inducing commits in the Just-In-Time models’ training data

increases the percentages of correctly labelled performance bug-inducing commits, indicating that
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correct performance bug-inducing data is valuable for predicting on other performance bug-inducing

commits. For future work, we propose enlarging the amount of training instances of performance

bug-inducing data by transfer learning techniques in order to further improve the JIT models.

Additionally, prior work shows that cross-prediction models, where combining the data of sev-

eral other projects to produce a larger pool of training data, works well in JIT defect prediction,

which can be explored in future work for performance-related bugs. Leveraging other projects’ la-

belled performance data would be able to enlarge the amount of training instances of performance

bug-inducing data.

71



References

Agrawal, A., & Menzies, T. (2018). Is ”better data” better than ”better data miners”? on the benefits

of tuning smote for defect prediction. In Proceedings of the 40th international conference

on software engineering (p. 1050–1061). New York, NY, USA: Association for Computing

Machinery. Retrieved from https://doi.org/10.1145/3180155.3180197 doi:

10.1145/3180155.3180197

Apache. (2019, Dec). apache/cassandra. Retrieved from https://github.com/apache/

cassandra

Apache hadoop. (n.d.). Retrieved from https://hadoop.apache.org/

Borg, M., Svensson, O., Berg, K., & Hansson, D. (2019). Szz unleashed: An open implementation

of the szz algorithm - featuring example usage in a study of just-in-time bug prediction for

the jenkins project. In Proceedings of the 3rd acm sigsoft international workshop on ma-

chine learning techniques for software quality evaluation (p. 7–12). New York, NY, USA:

Association for Computing Machinery. Retrieved from https://doi.org/10.1145/

3340482.3342742 doi: 10.1145/3340482.3342742

Bryant, R. E., & O’Hallaron, D. R. (2015). Computer systems: A programmer’s perspective (3rd

ed.). Pearson.

Catolino, G. (2017, 05). Just-in-time bug prediction in mobile applications: The domain matters!.

doi: 10.1109/MOBILESoft.2017.58

Catolino, G., Di Nucci, D., & Ferrucci, F. (2019). Cross-project just-in-time bug prediction

for mobile apps: An empirical assessment. In 2019 ieee/acm 6th international confer-

ence on mobile software engineering and systems (mobilesoft) (p. 99-110). doi: 10.1109/

72

https://doi.org/10.1145/3180155.3180197
https://github.com/apache/cassandra
https://github.com/apache/cassandra
https://hadoop.apache.org/
https://doi.org/10.1145/3340482.3342742
https://doi.org/10.1145/3340482.3342742


MOBILESoft.2019.00023

Chen, J., & Shang, W. (2017). An exploratory study of performance regression introducing code

changes. In 2017 ieee international conference on software maintenance and evolution (ic-

sme) (p. 341-352). doi: 10.1109/ICSME.2017.13

Chen, J., Shang, W., & Shihab, E. (2020). Perfjit: Test-level just-in-time prediction for performance

regression introducing commits. IEEE Transactions on Software Engineering, 1-1. doi: 10

.1109/TSE.2020.3023955

Chen, T.-H., Shang, W., Jiang, Z. M., Hassan, A. E., Nasser, M., & Flora, P. (2014). Detect-

ing performance anti-patterns for applications developed using object-relational mapping. In

Proceedings of the 36th international conference on software engineering (p. 1001–1012).

New York, NY, USA: Association for Computing Machinery. Retrieved from https://

doi.org/10.1145/2568225.2568259 doi: 10.1145/2568225.2568259

Correlation (pearson, kendall, spearman). (n.d.). Retrieved from https://

www.statisticssolutions.com/correlation-pearson-kendall

-spearman/

da Costa, D. A., McIntosh, S., Shang, W., Kulesza, U., Coelho, R., & Hassan, A. E. (2017).

A framework for evaluating the results of the szz approach for identifying bug-introducing

changes. IEEE Transactions on Software Engineering, 43(7), 641-657. doi: 10.1109/TSE

.2016.2616306

Davies, S., Roper, M., & Wood, M. (2014, 01). Comparing text-based and dependence-based

approaches for determining the origins of bugs. Journal of Software: Evolution and Process,

26. doi: 10.1002/smr.1619

Ding, Z., Chen, J., & Shang, W. (2020). Towards the use of the readily available tests from the

release pipeline as performance tests. are we there yet? In 42nd international conference on

software engineering, seoul, south korea. doi: 10.1145/3377811.3380351

Dmwr. (n.d.). Retrieved from https://www.rdocumentation.org/packages/DMwR/

versions/0.4.1/topics/SMOTE

Fan, Y., Xia, X., Costa, D., Lo, D., Hassan, A. E., & Li, S. (2019, 07). The impact of mislabeled

changes by szz on just-in-time defect prediction. IEEE Transactions on Software Engineering,

73

https://doi.org/10.1145/2568225.2568259
https://doi.org/10.1145/2568225.2568259
https://www.statisticssolutions.com/correlation-pearson-kendall-spearman/
https://www.statisticssolutions.com/correlation-pearson-kendall-spearman/
https://www.statisticssolutions.com/correlation-pearson-kendall-spearman/
https://www.rdocumentation.org/packages/DMwR/versions/0.4.1/topics/SMOTE
https://www.rdocumentation.org/packages/DMwR/versions/0.4.1/topics/SMOTE


PP, 1-1. doi: 10.1109/TSE.2019.2929761

Fawcett, T. (2006). An introduction to roc analysis. Pattern Recognition Letters, 27(8), 861-874.

doi: 10.1016/j.patrec.2005.10.010

Fukushima, T., Kamei, Y., McIntosh, S., Yamashita, K., & Ubayashi, N. (2014, 05). Studying

just-in-time defect prediction using cross-project models. Empirical Software Engineering,

21. doi: 10.1145/2597073.2597075

Ghotra, B., McIntosh, S., & Hassan, A. E. (2015). Revisiting the impact of classification techniques

on the performance of defect prediction models. In 2015 ieee/acm 37th ieee international

conference on software engineering (Vol. 1, p. 789-800). doi: 10.1109/ICSE.2015.91

Glinz, M. (2007, Oct). On non-functional requirements. In 15th ieee international requirements

engineering conference (re 2007) (p. 21-26). doi: 10.1109/RE.2007.45

Grubb, P., & Takang, A. (2003). Software maintenance - concepts and practice (2. ed.).

Guindon, C. (n.d.). Swt: The standard widget toolkit. Retrieved from https://www.eclipse

.org/swt/

Guo, P. J., Zimmermann, T., Nagappan, N., & Murphy, B. (2010). Characterizing and predicting

which bugs get fixed: An empirical study of microsoft windows. In Proceedings of the

32nd acm/ieee international conference on software engineering - volume 1 (p. 495–504).

New York, NY, USA: Association for Computing Machinery. Retrieved from https://

doi.org/10.1145/1806799.1806871 doi: 10.1145/1806799.1806871

Gyimothy, T., Ferenc, R., & Siket, I. (2005). Empirical validation of object-oriented metrics on open

source software for fault prediction. IEEE Transactions on Software Engineering, 31(10),

897-910. doi: 10.1109/TSE.2005.112

Hamill, M., & Goseva-Popstojanova, K. (2014, September). Exploring the missing link: An em-

pirical study of software fixes. Softw. Test. Verif. Reliab., 24(8), 684–705. Retrieved from

https://doi.org/10.1002/stvr.1518 doi: 10.1002/stvr.1518

Hassan, A. E. (2009). Predicting faults using the complexity of code changes. In Proceedings of

the 31st international conference on software engineering (p. 78–88). New York, NY, USA:

Association for Computing Machinery. Retrieved from https://doi.org/10.1109/

ICSE.2009.5070510 doi: 10.1109/ICSE.2009.5070510

74

https://www.eclipse.org/swt/
https://www.eclipse.org/swt/
https://doi.org/10.1145/1806799.1806871
https://doi.org/10.1145/1806799.1806871
https://doi.org/10.1002/stvr.1518
https://doi.org/10.1109/ICSE.2009.5070510
https://doi.org/10.1109/ICSE.2009.5070510


Jin, G., Song, L., Shi, X., Scherpelz, J., & Lu, S. (2012, June). Understanding and detecting

real-world performance bugs. SIGPLAN Not., 47(6), 77–88. Retrieved from https://

doi.org/10.1145/2345156.2254075 doi: 10.1145/2345156.2254075

Jpace. (n.d.). jpace/diffj. Retrieved from https://github.com/jpace/diffj

Kamei, Y., Shihab, E., Adams, B., Hassan, A. E., Mockus, A., Sinha, A., & Ubayashi, N. (2013). A

large-scale empirical study of just-in-time quality assurance. IEEE Transactions on Software

Engineering, 39(6), 757-773. doi: 10.1109/TSE.2012.70

Kim, M., & Lee, E. (2018). Are information retrieval-based bug localization techniques trust-

worthy? In Proceedings of the 40th international conference on software engineering:

Companion proceeedings (p. 248–249). New York, NY, USA: Association for Computing

Machinery. Retrieved from https://doi.org/10.1145/3183440.3194954 doi:

10.1145/3183440.3194954

Kim, S., & Whitehead, E. J. (2006). How long did it take to fix bugs? In Proceedings of the 2006

international workshop on mining software repositories (p. 173–174). New York, NY, USA:

Association for Computing Machinery. Retrieved from https://doi.org/10.1145/

1137983.1138027 doi: 10.1145/1137983.1138027

Kim, S., Zimmermann, T., Pan, K., & Whitehead, E. J. J. (2006). Automatic identification of

bug-introducing changes. In Proceedings of the 21st ieee/acm international conference on

automated software engineering (p. 81–90). USA: IEEE Computer Society. Retrieved from

https://doi.org/10.1109/ASE.2006.23 doi: 10.1109/ASE.2006.23

Kondo, M., German, D., Mizuno, O., & Choi, E. (2020, 01). The impact of context metrics on

just-in-time defect prediction. Empirical Software Engineering, 25. doi: 10.1007/s10664

-019-09736-3

Kotonya, G., & Sommerville, I. (1998). Requirements engineering: Processes and techniques (1st

ed.). Wiley Publishing.

LaToza, T. D., Venolia, G., & DeLine, R. (2006). Maintaining mental models: A study of developer

work habits. In Proceedings of the 28th international conference on software engineering

(p. 492–501). New York, NY, USA: Association for Computing Machinery. Retrieved from

https://doi.org/10.1145/1134285.1134355 doi: 10.1145/1134285.1134355

75

https://doi.org/10.1145/2345156.2254075
https://doi.org/10.1145/2345156.2254075
https://github.com/jpace/diffj
https://doi.org/10.1145/3183440.3194954
https://doi.org/10.1145/1137983.1138027
https://doi.org/10.1145/1137983.1138027
https://doi.org/10.1109/ASE.2006.23
https://doi.org/10.1145/1134285.1134355


Li, H., Shang, W., Zou, Y., & E. Hassan, A. (2017, August). Towards just-in-time suggestions

for log changes. Empirical Softw. Engg., 22(4), 1831–1865. Retrieved from https://

doi.org/10.1007/s10664-016-9467-z doi: 10.1007/s10664-016-9467-z

Liu Ping, Su Jin, & Yang Xinfeng. (2011, Dec). Research on software security vulnerability

detection technology. In Proceedings of 2011 international conference on computer science

and network technology (Vol. 3, p. 1873-1876). doi: 10.1109/ICCSNT.2011.6182335

Mahrous, H., & Malhotra, B. (2018, Aug). Managing publicly known security vulnerabilities in

software systems. In 2018 16th annual conference on privacy, security and trust (pst) (p. 1-

10). doi: 10.1109/PST.2018.8514187

McDonald, J. H. (2014). Handbook of biological statistics. In (Vol. 3, p. 186-189). sparky house

publishing Baltimore, MD.

McHugh, M. (2012, 10). Interrater reliability: The kappa statistic. Biochemia medica : časopis
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