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ABSTRACT

We propose a fast parallel algorithm for reconstruction of 3-Dimensional

point clouds of insects from binocular stereo image pairs using a hierarchical

approach for disparity estimation.When considering the large collections of

insects Entomologists analyze,it becomes difficult to physically handle the en-

tire collection and share the data with researchers from across the world.With

the method presented in this thesis Entomologists can create an image data

base for the collection and use the 3D models for studying the shape and

structure of the insects.With our approach it is also easy to maintain and

modify the collections. Feedback collected shows that the reconstructed 3D

models are representative of the actual insects and help Entomologists iden-

tify & analyze important features of the insects like shape,size, color & tex-

ture patterns on the exoskeleton.Experimental results show the algorithm to

be robust and accurate with an error of less than 0.5 cm between the di-

mensions of the original objects and the reconstructed models. We further

optimize our results to incorporate multiview stereo which produces better

overall structure of the insects.We also present some reconstruction results

for faces.
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To Mom, Dad & Apsra-the beautiful lady
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APSRA

Apsra ( a Hindi word) translates to ‘a beautiful celestial maiden’ in English

Image Courtesy [1]
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CHAPTER 1

INTRODUCTION

Stereo Vision is a branch of Computer Vision which involves extracing 3D

information from images.It is similar to the biological process of Stereop-

sis.Wikipedia defines Stereopsis as-“ The process in Visual Perception leading

to the perception of depth from the two slightly different projections of the

object on the retina of the eyes” [2].Evidence suggests that there are special

cells in the brain(visual cortex) which are senstitive to horizontal mismatch

in two images and act as detectors[2].While viewing the same object differ-

ent images are formed on the retina but are fused into one due to a property

known as ‘Singleness of Vision’.

1.1 History

Figure 1.1: Wheatstone’s Stereoscope.Courtesy Bill Gamber and Ken
Withers

Stereopsis dates back to 1838 when Charles Wheatstone observed that the
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slightly different views of objects from the two eyes act as an effective depth

cue and create a perception of depth .He used this principle to invent the

stereoscope.In 1850,William Brewster invented the Lenticular Stereoscope .

Queen Victoria was impressed by the stereoscope displayed at the Crystal

Palace Exposition in 1851.Commercial production followed soon & the Lon-

don Stereoscopic company sold over half a million stereoscopes in less than

two years.Stereoscopes also became popular as means of virtual travel.Popular

sites included the pyramids of Egypt, European countrysides and scenic views

of New York ,London and Chicago.

Figure 1.2: Stereograph of The Great pyramid of Gizeh.Courtesy
Underwood & Underwood

The popularity of the stereoscopes reduced towards the beginning of the

20th century with the advent of movies and half-tone images but they were

popularized again around the latter half of the 20th century with the inven-

tion of ViewMaster,Random-dot Stereograms,Auto-Stereograms etc. among

others[2].TIME magazine ranked ViewMaster as one of the ’All Time 100

Greatest Toys’[3].

In recent times Stereo Vision has been used in various projects by NASA.One

such example is the use in Mars Rover to produce the elevation maps of

the terrain [4].It is also used in the entertainment industry for movie mak-

ing.Other applications of Stereo Vision include Robotic navigation, modelling

of human organs and teleconferencing.
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1.2 Problem Statement

Entomologists study insects.They have large collections of insect samples that

are used for identification, description and classification of the samples into

various groups.Study involves documenting & differentiating species based

on their features into various parts of the ‘tree of life’ .It is a hierarchical

structure recording the evolutionary history and classifying all of living or-

ganisms mapping the genetic links between them.When the insect samples

are prepared they contain labels documenting their features, the location

where they were collected from etc. which help build a distribution map of

the insects. This can then be used to find out which insects feed on which

plants, animals etc.

Applied areas of this research involve differentiating insects which feed on

various economically important crops like rice & wheat, insects which feed

on animals & others which transmit diseases etc from the harmless ones.This

classification is critical for industries manufacturing pesticides, medicines etc

and often acts as a tool for them to produce superior and more effective

products.

The Illinois Natural History Survey - a research institute recording Illi-

nois’ biological history located at the University of Illinois Urbana Cham-

paign(UIUC) is a premier institute in this field. It contains close to 7 million

samples and is the tenth largest collection of its kind in North America.One

of the biggest problem faced by the researchers in this field is getting access

to the data from geographically different locations.The current way to share

information involves transporting the actual samples .This involves a lot of

time and money.

Also, some of these samples are very rare.Few of the samples in the Illinois

Natural History museum are 150 years old and the native vegitation that

they were collected from no longer exists.As such any loss or damage to the

actual specimen is irreplacable.Also physically moving the insect drawers and

analyzing each sample everytime a study is performed increases the chances

of wear and tear of the samples as well as maintainence costs.

Digitizing such samples would help create a virtual repository of the speci-

mens.Also if we have high resolution images and reconstruction of such sam-

ples we can apply image processing techniques to automatically identify and

search for specimens.
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1.3 Proposed Solution

The motivation behind this work is to make use of the stereo vision tech-

niques to create a virtual collection of insect samples that is representative

of the actual insects but easier to maintain, modify,share and analyze.We

propose making use of latest stereo reconstruction algorithms to reconstruct

3D models from stereo images of the insect samples.

Reconstruction of 3D point clouds from captured images is a well re-

searched problem in Computer Vision and employs both active and passive

techniques. Active techniques involve using lasers to yield depth informa-

tion . These methods are generally more accurate but are bulky and ex-

pensive.Passive techniques involve vision algorithms and camera geometry

for reconstruction.They have a comparitvely less expensive setup.Active sys-

tems are usually better at doing reconstruction of scenes at a longer distance

compared to passive stereo which works better at shorter distances.

We adopt the passive approach and create a setup of two calibrated cam-

eras in a well-lit studio.Our approach would involve taking stereo images

of the whole collection only once.After that we do not need to analyze the

actual drawers again-instead we now retrieve reconstructed 3D models from

the database.

1.4 Organization

This thesis is divided into 7 major parts.We introduced the problem in this

section .In the next chapter we will be talking about the related work and

some of the research already done in this area . Chapter 3 looks at the

background for our work.Here we define the theoretical concepts used in

the thesis and necessary to understand our solution.Chapter 4 forms the

backbone of the thesis and discusses our implementation in detail.It also

provides the mathematical models and the pseudo code we use in the solu-

tion.Optimizations to our solution are discussed as part of Chapter 5.It shows

the process of parallelization of the existing serial code to achieve better tim-

ing.Results are presented in Chapter 6 and we conclude with the possibilities

for future work in Chapter 7.
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CHAPTER 2

RELATED WORK

3D reconstruction algorithms from stereo-images are one of the most well re-

searched topics in the vision community.One of the seminal research papers

in this area is by Debevec et al. which used still images for reconstructing

architecture[5].Kolmogorov and Zabih addressed this problem using graph

cuts.They use multiple cameras to take different images from known points

of view and then used energy minimization[6].An automatic approach to con-

structing 3D models from single images was presented by Hoiem et al.[7].

An algorithm to compute a panoramic depth map was presented in [8].Shum

and Szeliski developed methods to produce depth maps from large collection

of images[9].Several other papers by Szeliski have made notable contribu-

tion to this area.[10, 11, 12].[13] talks about reconstructing occluded sur-

faces.Maitre et al. presented an approach for multiview stero reconstruction

from planar camera arrays[14].

Work has also been done in the area of Urban Scene reconstruction [15,

16].A comprehensive survey of the stereo vision algorithms is presented in

[17]. With the recent interest in this area an online repository of stereo images

and corresponding results is maintained to serve as a benchmark[18].We will

compare our results using some images from this dataset.

In SIGGRAPH 2010 Beeler et al. presented a modern passive stereo

reconstruction system for face capture[19].This is one of the best modern

techniques for stereo reconstruction of facial geometry.It is an inexpensive

and reliable system which is able to produce high detail facial reconstruc-

tions.Results are calculated with an accuracy of upto a millimeter and pore-

scale geometry is reproduced.We use the algorithms from this paper as the

basis for our solution.One of the shortcomings of this approach is that it

takes close to 20 minutes to produce the output.This is quite a long period of

time.Although we do not implement all of the techniques in the given paper

(We employ the basic algorithms to generate and refine the disparity map)we
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do introduce a new approach by parallelizing the algorithms for speedup.

Other work in this area includes passive facial reconstructions by Martin

Klaudiny [20].This paper combines the global approach based on graph cut

with a local approach.A stereo face collection is maintained at [21] for re-

search purposes. A good reference on recovering depth and reducing errors

is [22].

Application of stereo vision methods to recover 3D models of insects is

fairly new and this area has substantial potential for research.Lot of interest

in this approach is being shown by various history museums that want their

collections to be digitized. The paper by Jianqiang [23] talks about such an

application for agricultural pests using binocular stereo vision .It uses PS-15

II lamp and bionic cameras to collect the pest images.Jianqiang discusses a

background difference algorithm to separate the pest objects from the images

.Feature matching is applied to recover 3D reconstruction of the pests.The

results report an error of less than 1.5 %.

However the paper does not show any reconstructed models.It only presents

a novel view.Also there is no mention of the time taken for reconstruction in

the paper.This thesis on the other hand does show the reconstructed mod-

els of the insects which are realistic and we also apply parallelization to the

algorithm -a technique which is not implemented in [23].
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CHAPTER 3

BACKGROUND

This chapter discusses stereo vision in detail and provides a theoretical back-

ground to understand the concepts used in the solution.

3.1 Stereo Vision

Stereo Vision deals with the problem of generating a 3D model of the object

given its 2D images from different viewpoints.The underlying goal is thus to

perceive depth of the object. Generally the setup consists of two or more

cameras.

Before we discuss stereo vision further we need to introduce epipolar ge-

ometry .Consider two cameras taking a picture of the same scene from two

different points of view as shown in the Figure 3.1 below:

Figure 3.1: Epipolar Geometry.Courtesy Wikipedia

The cameras look at a point X in space.Each of these cameras capture
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a 2D image of the 3D world.This conversion is known as the perspective

projection.OR and OL are the focal points of right and left cameras respec-

tively.Here are a few terminologies associated with the figure above :

• Epipole: A projection of the focal point of one camera on the image

plane of the other camera.eL is an epipole in Figure3.1.

• Epipolar Plane: A plane passing through the centers of projection and

the point in the scene.The plane defined by X,OL and OR in Figure

3.1(colored in green).

• Epipolar Line: A line formed by the intersection of the image plane

with the epipolar plane.eR-XR is an epipolar line in Figure 3.1.(colored

in red)

• Disparity:The distance between the matching points in the two im-

ages.A map containing the disparities of all the points in the image is

known as the disparity map.

• Baseline: This is the distance between the left and the right centers of

projection.The distance OL-OR in Figure 3.1.

If we look at Figure 3.1 a point along the epipolar line eR-XR can project

back to one of the points X1,X2 ...XN .These points however project onto

the same point XL in the left image.This means that the points along the

epipolar line in an image correspond to a unique point in the other image.This

is known as the epipolar constraint.This constraint is of great use since we

now need to search only along the epipolar line to find possible matches for

a point.Hence the problem is reduced to a single dimension.

Triangulation- This is the method used to recover depth of the points

from the disparity using camera parameters.Triangulation is based on basic

Trigonometry and uses the angles defined to a point from the points at the

end of the base of the triangle to find the depth.If we know the baseline and

the two points on it we can easily calculate the third point of the triangle.The

figure below shows the details:

In the Figure 3.2 L and R represent the left and right cameras respec-

tively.P projects to M in the left image and N in the right image.Notice in

the above case the image planes denoted by lM and rN are parallel.Let the
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Figure 3.2: Triangulation

3D coordinates of P as seen from left camera be (Lx,Ly,Lz).Consider the tri-

angles APL and lML .

By similarity of triangles

f

Lz

=
XL

Lx

(3.1)

On the RHS consider the triangles BPR and rNR .By similarity of triangles

f

Rz

=
XR

Rx

. (3.2)

Rearranging equations we get

XL =
fLx

Lz

. (3.3)

XR =
fRx

Rz

. (3.4)

But from the figure 3.2 we know

Lz = Rz = Z (3.5)
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and

Lx = Rx + b (3.6)

where b denotes the baseline(distance between the two camera centers).

Subtracing equation 3.4 from equation 3.3 we get

XL − XR =
f(Lx − Rx)

Z
(3.7)

XL − XR =
fb

Z
(3.8)

XL-XR is the disparity .Hence we get the formula

Disparity =
fb

Z
(3.9)

We will use equation 3.9 later in Chapter 4 to recover the 3D coordinates

of the points.

We now introduce two basic problems of the stereo reconstruction process:

• Correspondance problem-It involves finding corresponding points of the

first image in the other image.By corresponding here we mean that

both correspond to the same physical point.The epipolar constraint

that we discussed earlier helps us reduce the search space for finding

corresponding matches.

Table 3.1: Correlation Methods

Correlation Methods
Name Definition

Squared Difference
∑

x′,y′(A(x′, y′) − B(x + x′, y + y′))2

Normalized Square Difference
P

x′,y′
(A(x′,y′)−B(x+x′,y+y′))2√

(
P

x′,y′
A(x′,y′)2)(

P

x′,y′
(B(x+x′,y+y′)2))

Cross Correlation
∑

x′,y′(A(x′, y′).B(x + x′, y + y′))

Normalized Cross Correlation
P

x′,y′
(A(x′,y′).B′(x+x′,y+y′))√

(
P

x′,y′
A(x′,y′)2)(

P

x′,y′
(B(x+x′,y+y′)2))

where

B′(x+x′, y+y′) = B(x+x′, y+y′)− 1
width∗height

.
∑

x′′,y′′ B(x + x′′, y + y′′)

Basic Methods to solve this include correlation and feature based ap-
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proaches.Correlation based approach uses templates for matching and

finds out the region having maximum correlation score.Table 3.1 shows

few commonly used correlation methods.A denotes the template and B

denotes the image .It works better in images which have texture.Window

/Template sizes are usually varied.

Feature based methods involve extracting features consistent in both

the images.Matching is based on a criteria (eg: orientation) of these

detected features.Edges, corners, line segments are commonly used fea-

tures.One of the problems of this approach is that it gives sparse re-

constructions.

In our solution we use a correlation based solution to the problem. The

method that we use is Normalized Cross Correlation(NCC).

• Reconstruction problem-This problem involves finding the 3D coordi-

nates of A given two corresponding points a and a’.Given the corre-

sponding points we can find the associated disparity.This disparity can

then be converted to the 3D coordinates using the camera parameters

as shown earlier in this Chapter.For recovering camera parameters we

need to calibrate the cameras which we discuss in the next section.

3.2 Camera Calibration

In this section we are going to describe the process of camera calibration.

Camera Calibration is the process of finding parameters specific to the cam-

era.Calibration results are required for various methods including the recon-

struction of 3D coordinates from the image disparity map and help us get an

accurate representation of the real world.The parameters of the camera are

divided into two categories

• Intrinsic Parameters-They are the parameters responsible for relating

the pixel coordinates of the image to the coordinates in the camera’s

reference frame.These include parameters like the focal length and the

principal point.

• Extrinsic Parameters-They are the parameters responsible for relating

the camera coordinates to a set of world coordinates.Determining ex-

11



trinsic parameters involves finding out the translation vector and the

rotation matrix to align both the frames.

For camera calibration in our solution we use Jean-Yves Bouguet’s camera

calibration toolkit for MATLAB[24]. We can also use similar methods in

OpenCV for camera calibration.A checkerboard pattern is used for calibra-

tion .The cameras take the images of the checkerboard pattern in different

orientations.Figure 3.3 shows two such stereo image pairs.

Figure 3.3: Stereo Image Pairs (L-R) used for Calibration

While calibrating the camera it is important to note that the entire pattern

must appear in both the images.Initially,all the image pairs are read in.First

step is the extraction of the grid corners.User is asked to enter the size of the

12



boxes on the checkerboard .In some cases it is possible that wrong number of

squares are calculated due to distortions.In such a case the user can manually

enter the values to correct the output.System is then able to extract the grid

corners.

We then repeat this procedure with several images.Usually 8-10 image pairs

suffice.If the guessed corners are not close to the actual corners the user can

correct the results by guessing the distortion factors.Figure 3.4 shows the

extracted corners.

Figure 3.4: Extracted Corners

After the corner extraction the main calibration step is performed.It con-

sists of an initialization step and then optimization of the initial result.The

initialization part calculates the solution without assuming any distortion.It

is based on the paper by Zhang [25].

The optimization step involves minimizing the reprojection error by repeta-

tive gradient descent. The reprojection error can be visualized and recompu-

tations can be done to refine the results.Using this information system is able

to solve for the rotation and translation vectors that relate the left and right

cameras and also the intrinsic parameters.Figure 3.5 shows the extrinsics

based on a set of 5 sample images.

13



Figure 3.5: Extrinsic Parameters

3.3 Rectification

Image Rectification involves projecting the images on a common plane such

that the epipolar lines get aligned horizontally.The benefit of rectification is

that the search space for finding correspondances is reduced to a horizontal

line in the rectified image.Figure 4.1 below shows the various steps involved-

(a) is the raw image,in (b) distortion has been removed,(c) has been rectified

and (d) is obtained after cropping.

First step is to apply rotation matrices such that both the cameras become

coplanar.Next part involves making the epipoles align horizontally.

14



Figure 3.6: Image Rectification .Courtesy Bradski & Kaehler

In our case we have a parallel camera setup.This means that the left and

right camera planes are aligned .Although , theoretically in this case we do

not need to rectify the images but achieving 100% alignment is not practially

possible(and there is always some lens distortion).Therefore for practical im-

plementation purposes and reducing the error we recitfy the images.

For this we use existing methods in OpenCV which can be used to both

calibrate the camera and rectify the images.First we use cvFindChessboard-

Corners.This finds the corners from the images and stores them.Then we

run cvFindCornerSubPix on all the corners extracted.It refines the corner

locations to sub-pixel accuracy thereby improving calibration.Then we run

cvStereoCalibrate.This method uses all the corners extracted from the cali-

bration images to find the fundamental matrices of the cameras( M1 & M2)

and it also finds the radial distortion coefficients ( D1 & D2).
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Then we run cvStereoRectify which creates the matrices for rectification

using the Fundamental Matrix we found before.Next we use cvInitUndis-

tortRectifyMap to create the undistorted rectification maps using the recti-

fication transformation.Finally we run cvRemap to rectify and undistort the

images.
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CHAPTER 4

IMPLEMENTATION

This chapter of the thesis describes the entire implementation starting from

capturing the images to reconstructing the 3 Dimensional model. The basic

algorithms in this chapter are based on [19].We use Point Grey Research’s

Bumblebee XB3 cameras for image acquisition.The specifications of the cam-

era are:

Table 4.1: Bumblebee XB3 Specification

Specifications
Name Value

Sensor 3 Sony ICX445 1/3’ progressive scan CCDs
Baseline 12cm
Frame Rates 16,7.5,3.75,1.875 FPS
Gamma 0.5 to 4.00
Resolution 1280 X 960

It comes with a serial driver and software tools which are proprietary.This

limits the usefulness of the system.Hence,we use OpenCV library to develop

the models which makes the system open source and also makes it easier to

parallelize the operations.

The flowchart in the Figure 4.1 below shows the overview of the whole pro-

cess.We begin with the camera calibration step.This step has been already

described in section 3.2.This gives us the set of intrinsic and extrinsic param-

eters of the camera which we will use in the triangulation step.Next step is

image acquisition from the bumblebee cameras.The distortion is removed &

images rectified before we solve for corresponding points.Details of the same

have been discussed under section 3.3.
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Figure 4.1: Flowchart of the Implementation

4.1 Pixel Matching

We perform matching between the two images to estabish dense matches

between them.After obtaining an undistorted and rectified image pair we

subsample it by a factor of two each time( using Gaussian subsampling) to

generate various levels of a pyramid .The lowest resolution usually goes till

20x20 but can be varied.The lowest resolution layer of the pyramid is then

processed first .For this we use Normalized Cross Correlation(NCC) as a

metric to find corresponding matches.A match for a given point is searched

along the epipolar line in the other image and one with the highest NCC

value is retained.It is a robust method for image matching when the light-

ing conditions can vary.The cross correlation of a template A(x,y) with the
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subimage B(x,y) is

(
1

n − 1
)

∑

x, y(B(x, y) − B′)(A(x, y) − A′)

SASB

(4.1)

where n is the number of pixels , A’ is the average of A, SA is the standard

deviation of A and similarly for B.

In our implementation we use a 5X5 window for matching.For doing the ac-

tual matching we use OpenCV’s cvMatchTemplate function with the method

being CV TM CCORR NORMED.This means the result is R(x,y) is defined

as :

R(x, y) =

∑

x′, y′(T (x′, y′).I ′(x + x′, y + y′))
√

(
∑

x′, y′T (x′, y′)2).(
∑

x′, y′I(x + x′, y + y′)2)
(4.2)

where I and T denote the image and the template respectively.Summation

is done over the width and height.Matches are returned using the MinMaxLoc

function.This returns integer disparity.Using integer values in reconstruc-

tion limits the accuracy of the 3D model.Hence we compute the disparity

to a sub-pixel accuracy.We use interpolation between known values to do

this.Parabola fitting is performed.The equation of a parabola is

y = ax2 + bx + c (4.3)

In our case we use y as the NCC values and x as the disparity values.We note

the NCC value and the disparity value (d) returned by the cvMatchTemplate

function.We now find the NCC assuming disparity to be d-1 and d+1.This

gives us 3 equations and we have 3 unknowns a,b and c to solve for.This

system can be easily solved and we now have the approximating parabola.We

find the maximum value of NCC and return the disparity corresponding to

it which now has sub pixel accuracy.

This is the first step in disparity calculation at a given level in the image

pyramid.We next perform a constraint check on the disparity values .
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4.2 Constraint Checking

In order to refine and improve the values that we obtained from the previous

step we run a constraint check on these values.There are 3 major constraints

that we check as described in [19].

• Smoothness Constraint -The aim of this constraint is to ensure that

the value at a pixel is consistent with its neighbors.For this constraint

to pass more than half of the neighbors in the 5X5 window must have

a disparity difference not greater than one.

• Uniqueness Constraint -This constraint implies that the match for the

left pixel in the right image should be the same as the match for the

right pixel in the left image.We allow them to differ by atmost a pixel.

• Ordering Constraint-This constraint ensures that the match does not

overstep neighboring pixel matches.In effect, disparity at a pixel does

not exceed the disparity of its right neighbour by more than 1.

The disparity values are considered correct only if it passes all the three

constraints.Otherwise we use the average of the pixels in the 5X5 neighbor-

hood that passed as the disparity at that pixel.

4.3 Disparity Refinement

Next step involves iteratively improving the depth map by photometric con-

sistency (dp-based on NCC gradient of disparity neighbours) and surface

consistency (ds-based on a curvature weighted filter to preserve features but

smooth noise).We use the techniques discussed in [19] to achieve the refin-

ment.

To find dp we use the formula :

dp =











m − n − 0.5 if N -1 < N0, N1

m − n + 0.5 if N1 < N -1 ,N0

m − n + 0.5((N -1-N1)/(N-1+N1-2N0)) if N0 < N -1 ,N1
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where m and n are the corresponding pixels in the images and Nk= (1-

NCCk)/2 .The subscripts -1,1 indicate the left and right neighbors of n.

Similarly we calculate ds as

ds =
wx(d(x − 1, y) + d(x + 1, y)) + wy(d(x, y − 1) + d(x, y + 1))

2(wx + wy)
(4.5)

where wx= exp(−(|d(x − 1, y)− d(x, y)| − |d(x + 1, y) − d(x, y)|)2)

Finally we get updated disparity as d’ which is defined as :-

d′ =
wpdp + wsds

wp + ws

(4.6)

ws is user specific and wp is as desribed in [19].Refinement can be done for

a number of iterations.We usually carry out around 15-20 iterations.

At this point we get the disparity at a level and it is used as an initial guess for

the next level.This helps to restrict the search at the new level.This procedure

is subsequently continued at each level till it reaches the highest level i.e. the

original resolution of the image.By this point we have sufficiently reduced the

search space and have also taken local disparity into account.The output of

this stage in the form of a disparity map is passed on to the next step which

is 3D reconstruction. .

4.4 3D Points Reprojection

Reprojecting 2-D points from a set of images to 3-D points is done using

disparity values of the pixel and the camera parameters.Each pixel re-projects

to a point (X,Y,Z) in world coordinates. We use the triangulation formulae

to recover depth from the disparity values.We have already discussed the

derivation in detail in Chapter 3. In particular we have:

Z =
FB

d
(4.7)

Y =
vB

d
(4.8)

X =
uB

d
(4.9)
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where F is the focal length ( in pixels), B is the baseline ( in units of

length)and d is the disparity( in pixels). u and v are horizontal and vertical

coordinates w.r.t to the principal point of the image. This means

u = col − centerColumn (4.10)

v = row − centerRow (4.11)

Using these formulae we can easily reproject the disparity to a point cloud

set.

4.5 Pseudo Code

This section gives the pseudo code of the algorithm we use :

Algorithm for Disparity Calculation
for all image pairs do

for all pyramid levels do

for height = 2 → imageheight − 2 do

Create a 5 by imagewidth ROI of both left and right images

for width = 2 → imagewidth − 2 do

Create a 5 by 5 window of the left ROI and find match in the

right ROI

Create a 5 by 5 window of the right ROI and find match in the

left ROI

Disparity=width-match

Perform sub-pixel interpolation

end for

end for

Assign disparity to edge pixels using approximation from neighbors

for height = 0 → imageheight − 1 do

for width = 0 → imagewidth − 1 do

Check smoothness, uniqueness & ordering constraints

end for

end for

for height = 0 → imageheight − 1 do

for width = 0 → imagewidth − 1 do

22



Assign disparity of neighbors to pixels which failed the constraints

end for

end for

for height = 0 → imageheight − 1 do

for width = 0 → imagewidth − 1 do

Check uniqueness constraint

end for

end for

for i = 1 → numberofiterations do

Refine disparity at each pixel

end for

end for

end for
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CHAPTER 5

OPTIMIZATION

In this chapter we discuss a few improvements that were made to the basic

algorithm implemented in the previous chapter and based on [19].

5.1 Parallelization

After implementing a serial reference version of the algorithm we parallelize

it to obtain speedup. For parallelization we use Intel’s Thread Building

Block(TBB) library. We parallelize various tasks including subsampling the

images & constraint checking.However the main candidate for parallelization

is the function which performs template matching in the left and the right

images to calculate the disparity.

The details in this section are based on TBB’s tutorial[26]The simplest

option to introduce parallelism is to parallelize loops whose iterations are

independant of each other.To use the TBB library we have to first convert the

loop into a body object(a STL like object) which has a operator() operating

on a chunk.Below we show a simple example of converting a loop into a body

object based on the discussion in ( [26]). Given a simple loop :

f o r ( i n t i=0; i< iterations ;i++)

{

do something

}

This is converted to a body object as :

c l a s s Applyloop {

f l o a t * cons t my_argument ;

p u b l i c :

v o i d ope r a to r ()( cons t blocked_range < i n t >& range ) cons t {

f l o a t *arg = my_argument ;

f o r ( i n t i=range .begin (); i<range .end (); i++ )

do something

}

Applyloop ( f l o a t arg [] ) :
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my_argument (arg)

{}

}

The iteration space here is represented by range and is from 0 to iterations-

1.Here blocked range is use to iterate over a 1 dimensional space.We later also

use blocked range2d for iteration over 2 dimensional space. The body object

has a copy constructor which creates separate copies for each thread.

After converting the loop body into a body object we can invoke the tem-

plate function parallel for:

parallel_for(blocked_range < i n t >(0, numberofiterations),

Applyloop (arg ));

In the above example we have an iteration space going from 0 to number

of iterations-1.The constructor is specified as blocked range <T >(begin,

end,grainsize).Here we use a default grainsize of 1.This grain size can be se-

lected dynamically.We initially use the automatic chunking but later on turn

it off and use dynamic chunking instead.The grainsize and the partitioner

control the chunking of loop iterations.The following code shows a grain size

G introduced into the equation

parallel_for(blocked_range < i n t >(0, numberofiterations ,G),

Applyloop (arg), simple_partitioner ())

A simple partitioner ensures that

G

2
≤ chunksize ≤ G (5.1)

We could also just specify the grainsize for the range and use an auto parti-

tioner and affinity partitioner .These partitioners ensure that the chunk size

is always more than G/2.The following are some pieces of sample code which

show the parallelization being done:

f o r (i=0;i<NO_OF_RECTIFIED_IMAGES ;i+=2)

{

f o r (j= tot_pyramid_levels[i/2] -1;j>-1;j--)

{

image_height=min(image_pyramid[i][j]->height ,

image_pyramid[i+1][j]-> height );

i n t left_image_width= image_pyramid[i][j]->width;

i n t right_image_width= image_pyramid[i+1][j]->width;

parallel_for(blocked_range <size_t >(2, image_height -2,

image_height/2), ApplyBody (left_image_width ,right_image_width ,

i,j, image_pyramid), simple_partitioner ());

}
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}

v o i d Body( i n t left_image_width , i n t right_image_width ,

i n t curHeight , i n t i , i n t j,IplImage *** image_pyramid){

// create 5 by left_image_width ROI centered around curHeight

IplImage * leftImageROI=cvCreateImage(cvSize (left_image_width ,5),

image_pyramid[i][j]->depth , image_pyramid[i][j]-> nChannels );

f o r ( i n t ii=0;ii <left_image_width;ii++)

f o r ( i n t jj =0; jj <5 ;jj++)

{

CvScalar r = cvGet2D ( image_pyramid[i][j],curHeight -2+jj ,0+ ii);

cvSet2D (leftImageROI ,jj ,ii,r);

}

// create 5 by right_image_width ROI centered around curHeight

IplImage * rightImageROI = cvCreateImage(cvSize (right_image_width , 5),

image_pyramid[i+1][j]->depth ,image_pyramid[i+1][j]-> nChannels );

f o r ( i n t w = 0; w < right_image_width; w++)

{

f o r ( i n t h = 0; h < 5; h++)

{

CvScalar r = cvGet2D ( image_pyramid[i+1][j], curHeight -2+h, 0+w);

cvSet2D (rightImageROI , h, w, r);

}

}

//*Main candidates for parallelization below *

MatchLeftToRight(left_image_width ,right_image_width ,

leftImageROI ,rightImageROI ,i,j,curHeight );

MatchRightToLeft(left_image_width ,right_image_width ,

leftImageROI ,rightImageROI ,i,j,curHeight );

cvReleaseImage(& leftImageROI);

cvReleaseImage(& rightImageROI);

}

The code snippet above shows one of the main candidate tasks that we

parallelize.In the snippet below we show the code with the constraint checking

task parallelized.

v o i d checkConstraints( i n t image_height , i n t image_width ,

f l o a t ** disparity_map , f l o a t ** other_disparity_map , i n t ** checkarray ){

parallel_for(blocked_range2d <size_t >(0, image_height ,0, image_width ),

ApplyCC (image_height ,image_width ,disparity_map ,other_disparity_map ,

checkarray ));

}

In order to explore more parallelism in our code we use some of Intel’s tools

which are a part of Parallel Studio 2011. Among these are Advisor, Amplifier,

Inspector and Composer tools. Advisor helps us find out potential sites for

parallelism. Amplifier helps in finding out where the application is spending

its time so that we can optimize it. Composer provides support for various
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parallel models and highly optimized multicore capable libraries. Inspector

provides helpful information about the errors in multithreaded code.

The code below shows how to annotate tasks to find out possible gains by

parallelization:

ANNOTATE_SITE_BEGIN(MySite3 );

f o r ( i n t curHeight =2; curHeight <image_height -2; curHeight ++){

ANNOTATE_TASK_BEGIN(MyTask3 );

Body(left_image_width , right_image_width ,curHeight ,i,j, image_pyramid);

ANNOTATE_TASK_END(MyTask3 );

}

ANNOTATE_SITE_END(MySite3 );

To make the algorithms work in parallel we make sure that our individual

code portions are thread safe. In some cases we cannot use the default

functions of OpenCV and use our own methods instead to copy data to local

variables (to prevent changing the state of the source image).

5.2 Multiview Stereo

To improve the quality of the results we take multiple shots by placing camera

at different view points around the object and generate point clouds.We

get multiple point clouds which correspond to different parts of the same

object.We need to align these point clouds to obtain a better reconstruction

than a single view.For this we use the Iterative Closest Point (ICP) algorithm.

ICP is an algorithm which refines the rotation and translation between

two point clouds till the difference between them reaches a minimum.The

algorithm inputs the two point clouds with an initial guess for the trans-

formation.It relates a point in the object to the point in the model by the

nearest neighbor.Then it uses a mean square cost function to estimate the

transformation such that it reduces distance between corresponding points in

the model and object.This process is done repetatively till the cost function

is minimized or a required threshold is achieved[27].

We use the implementation present in MeshLab for our project.The fig-

ure 5.1 below shows 2 point clouds (without texture mapping) before and

after implmenting the ICP algorithm.Pink and blue represent the two point

clouds.As visible from the figure the point clouds on the left appear separated

but the ones on the right appear merged and are better aligned.
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Figure 5.1: Results of ICP on Sideview of a Face -Before(L) & After (R)

28



CHAPTER 6

RESULTS AND DISCUSSION

In this chapter we present reconstruction results for both a face and the in-

sects for the various stages of reconstruction. We get good reconstruction

results for both- well representative of the original objects.

At the end of this chapter we present a comparitive study of the original and

the reconstructed models .We reported an error of less than 0.5 cm between

the dimensions of the real object and the reconstructed model.We tested our

code on some of the images from the Middlebury dataset.It contains lots

of samples of stereo image pairs with associated disparities.It also contains

evaluation of various algorithms.This dataset is considered a benchmark for

stereo matching algorithms[18].Scharstein and Szeliski also published a paper

on the taxonomy of various stereo algorithms [28].

The first image pair shows the cones from the 2003 dataset [29] and the second

one shows the aloe from the 2006 dataset[30].The cones dataset was made

by Daniel Scharstein, Alexander Vandenberg-Rodes and Rick Szeliski.The

aloe dataset was produced by Brad Hiebert-Treuer, Sarri Al Nashashibi, and

Daniel Scharstein.The images below contain the original left image followed

by the original right image on its side.This is followed by the disparity map

of the corresponding stereo image pair.
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Image Courtesy [18]

Disparity Map
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Image Courtesy [18]

Disparity Map

We also present disparity maps of some general images that we used to

test our code.Shown below is one such pair along with the disparity map

produced.
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Image Courtesy [1]

Disparity Map

Next we present some of the results from the reconstruction of the face.
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The first screenshot above shows the reconstructed face from the front and

the next screenshot shows it from the side.Below is another view of the same

reconstruction taken from an angle.
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Next we present some of the reconstruction results for the insect sam-

ples.Images below show the original images and the corresponding disparity

maps.It is important to notice the bright white spot in the middle of these

images.It represents the pin holding the insects onto the drawers & hence the

closest point to the camera.
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Finally we present a few reconstructed 3D models of the insects from dif-

ferent angles.
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The screenshot above presents a reconstruction from different angles (

back,top and side ) [Specimen 1].The bump on the exoskeleton represents

the pin which held the insect.Below is the reconstruction of another such

specimen.[Specimen 2]
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The following table shows the comparison in the dimensions of the original

object and the reconstructed model.We first scale the model to the size of

the length of the real object and then compare the breadth and the depth.

Table 6.1: Comparison Between Actual Object & Reconstructed Models

Face of Chief Illiniwek
Length Breadth Depth

Original 8 cm 6.3cm 3.2cm
Reconstructed 8 cm 6.0 cm 3.2cm

Specimen 1
Length Breadth Depth

Original 5.5 cm 2 cm 1.9 cm
Reconstructed 5.5 cm 2.1 cm 2.3 cm

Specimen 2
Length Breadth Depth

Original 3.6 cm 0.5 cm 1.6 cm
Reconstructed 3.6 cm 0.6 cm 1.8 cm

The serial version of the implementation(without refinement) on a 250 x

250 image takes about 23 seconds.The parallel version of the same implemen-

tation takes less than 10 seconds. Hence we get a speed up of approximately

2.5.
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CHAPTER 7

CONCLUSION

We present in this thesis a method to produce novel 3D reconstructions of

insects to help Entomologists in their research.We also perform some other

facial reconstructions.Our algorithm is robust in terms of producing good

models and fast by virtue of parallelization.

Future work involves exploring more possibilities for parallelism and ob-

taining speedup such that the entire process can be made real time.There is

also scope for improvement by reducing noise in some of the reconstructed

models.Finally we intend to perform surface reconstruction on the point cloud

to generate a 3D surface.
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Yeah!That’s Me

43



REFERENCES

[1] “Stereo image pairs.” [Online]. Available: http://alfa.magia.it/Images/
ExamplesDirectStereo.htm

[2] Wikipedia, “Stereopsis,” 2011. [Online]. Available: http://en.wikipedia.
org/wiki/Stereopsis

[3] T. Magazine, “All time 100 greatest toys,” 2011. [Online].
Available: http://www.time.com/time/specials/packages/completelist/
0,29569,2049243,00.html

[4] L. Matthies, B. Chen, and J. Petrescu, “Stereo vision, residual image
processing and mars rover localization,” in Image Processing, 1997. Pro-
ceedings., International Conference on, vol. 3, oct 1997, pp. 248 –251
vol.3.

[5] P. E. Debevec, C. J. Taylor, and J. Malik, “Modeling and
rendering architecture from photographs: a hybrid geometry- and
image-based approach,” in Proceedings of the 23rd annual conference
on Computer graphics and interactive techniques, ser. SIGGRAPH
’96. New York, NY, USA: ACM, 1996. [Online]. Available:
http://doi.acm.org/10.1145/237170.237191 pp. 11–20.

[6] V. Kolmogorov and R. Zabih, “Multi-camera scene reconstruction via
graph cuts.” in ECCV (3)’02, 2002, pp. 82–96.

[7] D. Hoiem, A. A. Efros, and M. Hebert, “Automatic photo
pop-up,” in ACM SIGGRAPH 2005 Papers, ser. SIGGRAPH
’05. New York, NY, USA: ACM, 2005. [Online]. Available:
http://doi.acm.org/10.1145/1186822.1073232 pp. 577–584.

[8] Y. Li, H.-Y. Shum, C.-K. Tang, and R. Szeliski, “Stereo reconstruc-
tion from multiperspective panoramas,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 26, no. 1, pp. 45 –62, jan. 2004.

[9] H.-Y. Shum and R. Szeliski, “Stereo reconstruction from multiperspec-
tive panoramas,” in Computer Vision, 1999. The Proceedings of the
Seventh IEEE International Conference on, vol. 1, 1999, pp. 14 –21
vol.1.

44



[10] D. Scharstein and R. Szeliski, “Stereo matching with non-linear diffu-
sion,” in Computer Vision and Pattern Recognition, 1996. Proceedings
CVPR ’96, 1996 IEEE Computer Society Conference on, jun 1996, pp.
343 –350.

[11] R. Szeliski and P. Golland, “Stereo matching with transparency and
matting,” in Computer Vision, 1998. Sixth International Conference
on, jan 1998, pp. 517 –524.

[12] R. Szeliski, “Scene reconstruction from multiple cameras,” in Image Pro-
cessing, 2000. Proceedings. 2000 International Conference on, vol. 1,
2000, pp. 13 –16 vol.1.

[13] V. Vaish, M. Levoy, R. Szeliski, C. Zitnick, and S. B. Kang, “Recon-
structing occluded surfaces using synthetic apertures: Stereo, focus and
robust measures,” in Computer Vision and Pattern Recognition, 2006
IEEE Computer Society Conference on, vol. 2, 2006, pp. 2331 – 2338.

[14] M. Maitre, Y. Shinagawa, and M. Do, “Symmetric multi-view stereo re-
construction from planar camera arrays,” in Computer Vision and Pat-
tern Recognition, 2008. CVPR 2008. IEEE Conference on, june 2008,
pp. 1 –8.

[15] Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski, “Reconstructing
building interiors from images,” in Computer Vision, 2009 IEEE 12th
International Conference on, 29 2009-oct. 2 2009, pp. 80 –87.

[16] P. Mordohai, J. m. Frahm, A. Akbarzadeh, C. Engels, D. Gallup, P. Mer-
rell, C. Salmi, S. Sinha, B. Talton, L. Wang, Q. Yang, H. Stewnius,
H. Towles, G. Welch, R. Yang, M. Pollefeys, and D. Nistr, “Real-time
video-based reconstruction of urban environments,” in Proceedings of
3DARCH: 3D Virtual Reconstruction and Visualization of Complex Ar-
chitectures, 2007.

[17] H. Sunyoto, W. van der Mark, and D. Gavrila, “A comparative study of
fast dense stereo vision algorithms,” in Intelligent Vehicles Symposium,
2004 IEEE, june 2004, pp. 319 – 324.

[18] Scharstein and Szeliski, “Middlebury dataset.” [Online]. Available:
http://vision.middlebury.edu/stereo/

[19] T. Beeler, B. Bickel, P. Beardsley, B. Sumner, and M. Gross, “High-
quality single-shot capture of facial geometry,” ACM Trans. on Graphics
(Proc. SIGGRAPH), vol. 29, no. 3, 2010.

[20] “Stereoscopic face images matching.” [Online]. Avail-
able: http://www.cg.tuwien.ac.at/hostings/cescg/CESCG-2008/
papers/BrnoBUT-Klaudiny-Martin/index.html

45



[21] “Stereo face.” [Online]. Available: http://cvlab.epfl.ch/data/stereoface/

[22] W. Zhao and N. Nandhakumar, “Effects of camera alignment
errors on stereoscopic depth estimates,” Pattern Recognition, vol. 29,
no. 12, pp. 2115 – 2126, 1996. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0031320396000519

[23] J. Ren, “Algorithm for 3d reconstruction of agriculture field pests based
on binocular stereo vision,” in World Automation Congress (WAC),
2010, sept. 2010, pp. 101 –105.

[24] J.-Y. Bouguet, “Camera calibration toolbox.” [Online]. Available:
http://www.vision.caltech.edu/bouguetj/calib doc/

[25] Z. Zhang, “Flexible camera calibration by viewing a plane from unknown
orientations,” in in ICCV, 1999, pp. 666–673.

[26] Intel, “Tbb documentation.” [Online]. Available: http:
//threadingbuildingblocks.org/documentation.php

[27] Wikipedia, “Iterative closest point algorithm.” [Online]. Available:
http://en.wikipedia.org/wiki/Iterative Closest Point

[28] D. Scharstein and R. Szeliski, “A taxonomy and evaluation
of dense two-frame stereo correspondence algorithms,” Int. J.
Comput. Vision, vol. 47, pp. 7–42, April 2002. [Online]. Available:
http://portal.acm.org/citation.cfm?id=598429.598475

[29] D. Scharstein, “High-accuracy stereo depth maps using structured
light,” 2003, pp. 195–202.

[30] H. Hirschmller, “Evaluation of cost functions for stereo matching,” in
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2007.

46


