
Number of occurrences of powers in strings

Maxime Crochemore, Szilard Zsolt Fazekas, Costas S. Iliopoulos, Inuka

Jayasekera

To cite this version:

Maxime Crochemore, Szilard Zsolt Fazekas, Costas S. Iliopoulos, Inuka Jayasekera. Number of
occurrences of powers in strings. International Journal of Foundations of Computer Science,
World Scientific Publishing, 2010, 21 (4), pp.535–547. <10.1142/S0129054110007416>. <hal-
00693448>

HAL Id: hal-00693448

https://hal-upec-upem.archives-ouvertes.fr/hal-00693448

Submitted on 13 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Ecole des Ponts ParisTech

https://core.ac.uk/display/48341214?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal-upec-upem.archives-ouvertes.fr/hal-00693448


Number of occurrences of powers in strings

Maxime Crochemore1,2, Szilárd Zsolt Fazekas3⋆,
Costas Iliopoulos1, Inuka Jayasekera1⋆⋆

1 King’s College London, U.K.
2 Université Paris-Est, France

3 Rovira i Virgili University, Tarragona, Spain

Abstract. We show a Θ(n log n) bound on the maximal number of oc-
currences of primitively-rooted k-th powers occurring in a string of length
n for any integer k, k ≥ 2. We also show a Θ(n2) bound on the max-
imal number of primitively-rooted powers with fractional exponent e,
1 < e < 2, occurring in a string of length n. This result holds obviously
for their maximal number of occurrences. The first result contrasts with
the linear number of occurrences of maximal repetitions of exponent at
least 2.

1 Introduction

The subject of this paper is the evaluation of the number of powers in strings.
This is one of the most fundamental topics in combinatorics on words not only
for its own combinatorial aspects considered since the beginning of last century
by the precursor A. Thue [18], but also because it is related to lossless text com-
pression, string representation, and analysis of molecular biological sequences,
to quote a few applications. These applications often require fast algorithms to
locate repetitions because either the amount of data to be treated is huge or
their flow is to be analysed on the fly, but their design and complexity analysis
depends on the type of repetitions considered and on their bounds.

A repetition is a string composed of the concatenation of several copies of
another string whose length is called a period. The exponent of a string is in-
formally the number of copies and is defined as the ratio between the length of
the string and its smallest period. This means that the repeated string, called
the root, is primitive (it is not itself a nontrivial integer power). We consider
two types of strings: integer powers—those having an integer exponent at least
2, and fractional powers—those having a fractional exponent between 1 and 2.
For both of them we consider their maximal number in a given string as well as
their maximal number of occurrences.

It is known that all the occurrences of integer powers in a string of length n
can be computed in time O(n log n) (see three different methods in [2], [1], and

⋆ Supported by grant no. AP2004-6969 from the Spanish Ministry of Science and
Education of Spain. Partially supported by grant. no. MTM 63422 from the Ministry
of Science and Education of Spain.

⋆⋆ Supported by a DTA Award from EPSRC



[14]). Indeed these algorithms are optimal because the number of occurrences of
squares (powers of exponent 2) can be of the order of n logn [2].

The computation of occurrences of fractional powers with exponent at least 2
has been designed initially by Main [13] who restricted the question to the detec-
tion of their leftmost maximal occurrences only. Eventually the notion of runs—
maximal occurrences of fractional powers with exponent at least 2—introduced
by Iliopoulos et al. [8] for Fibonacci words, led to a linear-time algorithm for
locating all of them on a fixed-sized alphabet. The algorithm, by Kolpakov and
Kucherov [9, 10], is an extension of Main’s algorithm but their fundamental con-
tribution is the linear number of runs in a string. They proved that the number
of runs in a string of length n is at most cn, could not provide any value for
the constant c, but conjectured that c = 1. Rytter [16] proved that c ≤ 5, then
c ≤ 3.44 in [17], Puglisi et al. [15] that c ≤ 3.48, Crochemore and Ilie [3] that
c ≤ 1.6, and Giraud [7] that c ≤ 1.5. The best value computed so far is c = 1.029
[4] (see the Web page http://www.csd.uwo.ca/ ilie/runs.html). Franek et
al. showed a lower bound of 0.927...n in [6], which was improved to 0.944565n by
Matsubara et al. in [11] and to 0.944575n by Puglisi and Simpson. (see the Web
page http://www.shino.ecei.tohoku.ac.jp/runs/). These lower bounds also
point in the direction of Kolpakov and Kucherov’s conjecture.

Runs capture all the repetitions in a string but without discriminating among
them according to their exponent. For example, the number of runs is not easily
related to the number of occurrences of squares. This is why we consider an or-
thogonal approach here. We count and bound the maximal number of repetitions
having a fixed exponent, either an integer larger than 1 or a fractional number
between 1 and 2. We also bound the number of occurrences of these repetitions.

After introducing the notations and basic definitions in the next section,
Section 3 deals with fractional powers with exponent between 1 and 2. It is
shown that the maximum number of primitively-rooted powers with a given
exponent e, 1 < e < 2, in a string can be quadratic as well of course as their
maximum number of occurrences. In Section 4, we consider primitively-rooted
integer powers and show that the maximum number of occurrences of powers
of a given exponent k, k ≥ 2, is Θ(n log n). This latter result contrasts with
the linear number of such powers. We also present an efficient algorithm for
constructing the strings in question.

2 Preliminaries

In this section we introduce the notation and recall some basic results that will
be used throughout the paper. All results stated in this section are reported from
[12]. An alphabet A is a finite non-empty set. We call the elements of A letters.
The set of all finite words over A is A∗, which is a monoid with concatenation
(juxtaposition), where the unit element is ǫ, the empty word, whereas the set
of non-empty words is A+ = A∗ − ǫ. The length of a word w is denoted by |w|;
|ǫ| = 0. Without loss of generality, we can assume that our alphabet is ordered
and hence we have an ordering on words. The one we will use is called the



lexicographical order and is defined by the following relation:

x ≤ y ⇔ (xisaprefixofy or (x = uavandy = ubwanda < b))

where a, b ∈ A and u, v, w ∈ A∗.
For words u, v, w ∈ A∗, with w = uv, we say that u is a prefix and v is a

suffix of w. For a word w and an integer n ≥ 0, the n-th power of w is defined
inductively as w0 = ǫ, wn = wwn−1. Extending this definition we can talk about
non-integer powers too. Take n = k

l
> 1 with gcd(k, l) = 1. We say that a word

w is an n-power if both of the following conditions apply:

– |w| = m · k for some integer m > 0,
– m · l is a period of w.

The prefix of length m · l of w is a root of w.
When w 6= ǫ, w3 is called a cube, with root w. A word w is called primitive

if there is no word u and integer p ≥ 2 such that w = up. We say that w′

is a conjugate of w if there exist u, v ∈ A∗ such that w = uv and w′ = vu. A
Lyndon word is a (primitive) word which is the lexicographically smallest among
its conjugates.

Let uv be a primitive word such that vu forms a Lyndon word and v is
nonempty. In the cube (uv)3, we call central Lyndon position the position |uvu|
For two non-empty words u and v it is known that uv = vu implies u, v ∈ z+

for some z ∈ A∗, therefore every word has a unique Lyndon position.
If a word w can be written as w = uv = vz, for some words u, v, z ∈ A+,

then we say that w is bordered (v is a border of w). If a word w is bordered,
then there exists u ∈ A+, v ∈ A∗ such that w = uvu, that is, a bordered word w
always has a border of length at most half the length of w. Moreover, it is easy
to see that a bordered word uvu cannot be a Lyndon word, because then either
uuv (if u < v) or vuu (if v < u) is lexicographically smaller than uvu.

3 A bound on repeats with exponent e, 1 < e < 2

In this section, we show that the maximal number of distinct repetitions with
exponent e, 1 < e < 2, is lower bounded by Θ(n2). We do this by looking at
the number of such repetitions that can start at a position in words of the form

akba
k

e−1
−1, where k is any positive integer such that c|k, where e = c+d

d
and

gcd(c + d, d) = 1.
First we consider an example with e = 3

2 and k = 9, i.e. w = a9ba17 (see Fig 1).
At the first position in this word, we can have 5 repetitions of exponent 3

2 , namely
a9ba5, a9ba8, a9ba11, a9ba14 and a9ba17. Moving on to the second position, we
have only 4 repetitions of exponent 3

2 , namely a8ba6, a8ba9, a8ba12 and a8ba15.
In the third position also, we have the repetitions a7ba7, a7ba10 and a7ba13.
However, now we have one extra repetition as we can also have a7ba4. It is clear
that at every other position in the word, as we get closer to the occurrence of
b, we have an extra repetition. The numbers of primitively-rooted repetitions of



exponent 3
2 at each position are 5, 4, 4, 3, 3, 2, 2, 1, 1 (see Fig. 1). The total number

of repetitions can now be summed up to ((5 ∗ 6)/2) + (((5− 1) ∗ 5)/2) = 25. We
generalise this example in the next theorem.

Theorem 1. The maximal number of distinct repetitions of exponent e, with
1 < e < 2, in a word of length n is Θ(n2).

Proof. The upper bound is trivial because no factor of the string can be counted
twice as an e-power for given e, so let us turn to proving the lower bound.
We shall count the number of repetitions starting at each position in a word.
For an exponent e, 1 < e < 2, we consider a word, w, formed as shown in Fig.

2. Here, we concatenate a repetition of exponent, e, with root akb and a
k

e−1
−1,

where k is any positive integer such that c|k, where e = c+d
d

and gcd(c+d, d) = 1.
(e − 1)|k.
length of our string is k · e

e−1 .

a a a a a a a a a b a a a a a a a a a a a a a a a a a

Fig. 1. Repetitions of exponent 1.5 in a9ba17

a ... aba ... a

k
k

e−1
− 1

Fig. 2. Structure of word, w

For e-powers starting at the first position, the end positions can be (k+1)(e−
1), (k + 1)(e − 1) + (c + d), (k + 1)(e − 1) + 2 · (c + d), etc.
From here we get that the number of e-powers starting at the first position is

|w| − (k + 1)(e − 1)

c + d
+ 1 =

k · e
e−1 − (k + 1)(e − 1)

c + d
+ 1



Substituting c+d
d

for e in the formula above we get that the number of e-powers
starting at the first position is:

k ·
d − c

d · c
−

1

d
+ 1

This formula proves useful because by substituting k − i for k and taking the
integer part of the result (since we are talking about the number of occurrences)
we get the number of e-powers starting at position i + 1. Now let us sum up the
number of e-power occurrences starting at any one of the first k positions:

k
∑

i=1

⌊i ·
d − c

d · c
−

1

d
+ 1⌋

For any positive n its integer part ⌊n⌋ is greater or equal than n − 1. As we
are trying to give a lower bound to the number of occurrences, it is alright to
subtract 1 from the formula instead of taking its integer part:

k
∑

i=1

(

i ·
d − c

d · c
−

1

d

)

= k · (k + 1) ·
d − c

2d · c
−

k

d

This means that the number of e-powers in our string is quadratic in k. At the
same time the length of the string, as we mentioned in the beginning, is k · e

e−1 ,

so for a given e, the number of e-powers in a string of length n is Θ(n2).
It is easy to see that every occurrence of an e-power in this string is unique and
this concludes the proof. ⊓⊔

4 A bound on primitively-rooted cubes

After considering powers between 1 and 2, we have look at powers greater than
2. First, we show that it is possible to construct strings of length n, which have
Ω(n log n) occurrences of cubes. We can extend the method to all integer powers
greater than 2, and this, together with the O(n log n) upper bound implied by
the number of squares (see [2]) leads us to the Θ(n log n) bound. Finally, we will
prove that the sum of all occurrences of powers at least 2 (including non-integer
exponents) is quadratic.

Lemma 1. The maximal number of primitively-rooted cubes in a word of length
n is Θ(n log n).

Proof. Let us suppose there are two primitively-rooted cubes (uv)3 and (xy)3 in
w such that their central Lyndon positions uvu.vuv and xyx.yxy are the same.
First let us look at the case where the cubes have to be of different length.
Without loss of generality we can assume |uv| < |xy|. In this case vu is at
the same time a prefix and suffix of yx. Hence, yx is bordered and cannot be
a Lyndon word contradicting the assumption that x.y is a Lyndon position.



This proves that should there be more cubes which have their central Lyndon
position identical, they all have to be of the same length. Naturally, the first
and last position of a word cannot be central Lyndon to any cube and this gives
us the bound n − 2 if we disregard cubes of the same length which have their
central Lyndon positions at the same place (see Fig. 3). It is easy to see, that
because of the periodicity theorem the only string of length n, for which n − 2
different positions are central Lyndon ones to some cube, is an.

1 k+1 2k+2 3k+3 4k+3

a a a a a a a a a a a a a a a a a

...

... ... ... ...

} 4k + 1
cubes

Fig. 3. Cubes of word a4k+3

Now take the word a4k+3. According to our previous argument it has at
most 4k + 1 cubes. However, if we change a’s into b’s at positions k + 1,2k + 2
and 3k + 3 we get that the number of primitively-rooted cubes in this word is
4k + 1 − 9 + (k + 1) = 5k − 7. This is because by introducing each b we lose
three cubes but in the end we gain another k + 1 cubes of the form (ajbak−j)3

with 0 ≤ j ≤ k (see Fig. 4). Note that these latter cubes all have their central
Lyndon position after the first b (assuming a < b).

We introduced three b’s in the previous step but of course we can repeat the
procedure for the four block of a’s delimited by these b’s and then in turn for
the new, smaller blocks of a’s that result and so on. In the second step, however,
we need to introduce 12 b’s - that is, 3 for each of the 4 blocks of a’s - not to
disrupt the cubes of length 3k + 3. This way we lose 12 · 3 = 36 cubes and we
gain (⌊(k − 3)/4⌋+ 1) · 4 new ones. Performing the introduction of b’s until the
number of cubes we lose in a step becomes greater or equal to the ones we gain,
gives us a string with the maximal possible number of cubes for its length. If k

1 k+1 2k+2 3k+3 4k+3

a a a a a a b a a a a b a a a a b a a a a a a... ... ... ...

... }

}

added
k + 1
cubes

removed
3 ∗ 3
cubes

Fig. 4. Cubes of word akbakbakbak



equals 4j, 4j + 1 or 4j + 2 for some j then according to the formula above the
number of cubes we gain is 4j. Note that if k = 4j +3 than the number of cubes
we gain in the second step is 4j + 4 = k + 1, i.e. the same as in the first step.
However, together with the delimiting b’s introduced before we would get a big
cube which is not primitively-rooted anymore, so we need to move the newly
introduced b’s 1, 2 and 3 positions to the left, respectively. This gives us that in
this case too the number of newly formed cubes will be 4j. The smallest length
at which introducing the b’s does not induce less cubes is 35 that is with k = 8.
Summarizing the points above we get that for a string of length n the maximum
increase in the number of cubes for the ith (i > 1) consecutive application of
our procedure is:

(n − 3)

4
− 9 · 4i−1

To be able to sum these increases we have to know the number of steps performed.
This is given by solving for i the equation:

n − 3

4
= 9 · 4i−1

From here we get that the number of steps performed is #steps = ⌊log4
n−3

9 ⌋,
where by ⌊x⌋ we mean the integer part of x.
Hence the number of cubes for length n ≥ 39 is:

n − 2 + 1 +

#steps
∑

i=1

(

n − 3

4
− 9 · 4i−1

)

= n − 1 +
(n − 3)⌊log4

(n−3)
9 ⌋

4
−

9(1 − 4⌊log4

n−3

9
⌋)

−3

= n + 2 +
(n − 3)⌊log4

(n−3)
9 ⌋

4
− 3 · 4⌊log4

n−3

9
⌋

The plus one after n − 2 comes from the first application of the insertion of b’s
where we get (n − 3)/4 + 1 cubes instead of (n − 3)/4. For strings shorter than
39 therefore the count is one less. ⊓⊔

Since the first paragraph of the proof is valid for any integer power, we can
extend the proof by giving the construction of the strings that prove the lower
bound in general for a string of length n and power k (see Fig. 4).

The algorithm above produces strings which have O(n log n) occurrences of
k-th powers. Note, that if we perform the procedure the other way around, we
only need O(log n) cycles and we can eliminate the recursion:

Theorem 2. Algorithm ConstructStrings2 (see Fig. 4) produces a string of
length n that has Ω(n log n) occurrences of primitively-rooted cubes.



Algorithm ConstructStrings1 (n, k)
Input: n ≥ 0, k ≥ 0
Output: A string which proves the lower bound of the number of occurrences of integer

powers.
1. ℓ = n
2. string = aℓ

3. power(1, ℓ)
4. Procedure: power( start, end)
5. ℓ = end - start
6. if ℓ < k3 + k2 + k
7. then return
8. else string[start + ⌊ℓ/(k + 1)⌋] = b
9. string[start + 2 · ⌊ℓ/(k + 1)⌋] = b
10. . . .
11. string[start + k · ⌊ell/(k + 1)⌋] = b
12. for i ←0 to k
13. power(start + i · ℓ/(k + 1), start + (i + 1) · ℓ/(k + 1))

Algorithm ConstructStrings2 (n, k)
Input: n ≥ 0, k ≥ 0
Output: A string which proves the lower bound of the number of occurrences of integer

powers.
1. ℓ = n
2. while ℓ ≥ k3 + k2 + 3k + 2
3. do ℓ= ℓ−k

k+1

4. string = (ak2+1 + b)k + a(k+1)·ℓ−k3
−k

5. delimiter = b
6. while length(string) ∗ (k + 1) + k < n
7. do string = (string + delimiter)k + string
8. if delimiter = b
9. then delimiter = a
10. else delimiter = b
11. (∗ changing the delimiter is needed to stay primitive ∗)
12. string = string + an−length(string)



Proof. Before entering the second while loop, the length of string and the num-
ber of k-th power occurrences in it are both c = (k + 1) · ℓ + k. Now we will
show by induction on i that after the i-th iteration of the second while loop the
length of string will be (k + 1)i · (c + 1) − 1 and the number of occurrences of
k-th powers will be (k + 1)i · c + i · (k + 1)i−1(c + 1).
Note that if the length of string was m and the number of k-th power occur-
rences was p after the previous cycle, then concatenating k + 1 copies of string
delimited by k copies of delimiter we get (k + 1) · p + m + 1 powers in the new
string, which will have length (k + 1) ·m + k. Therefore, after the first cycle the
length of string will be

(k + 1) · c + k = (k + 1) · c + (k + 1) − 1 = (k + 1)1 · (c + 1) − 1

At the same time the number of k-th powers will be

(k + 1) · c + c + 1 = (k + 1)1 · c + 1 · (k + 1)0 · (c + 1)

so our statement holds for i = 1. Now suppose it is true for some i ≥ 1. From
here we get that for i + 1 the length of string will be:

(k + 1) · ((k + 1)i · (c + 1) − 1) + k = (k + 1)i+1 · (c + 1) − 1

whereas the number of k-th powers is:

(k + 1) · ((k + 1)i · c + i · (k + 1)i−1 · (c + 1)) + ((k + 1)i · (c + 1) − 1) + 1

= (k + 1)i+1 · c + i · (k + 1)i · (c + 1) + (k + 1)i · (c + 1)

= (k + 1)i+1 · c + (i + 1) · (k + 1)i(c + 1)

Now let us look at the running time of the algorithm. In the first while loop
we divide the actual length by k + 1 and we do it until it becomes smaller than
k3 +k2 +k therefore we perform O(log n) cycles. The second while loop has the
same number of cycles, with one string concatenation performed in each cycle,
hence substituting log n for i in the formula above concludes the proof.

⊓⊔

Corollary 1. In a string of length n the maximal number of primitively-rooted
k-th powers, for a given integer k ≥ 2, is Θ(n log n).

Proof. We know from [5] that the maximal number of occurrences of primitively-
rooted squares in a word of length n is O(n log n). This implies that the number
of primitively-rooted greater integer powers also have an O(n log n) upper bound,
while in Theorem 2 we showed the lower bound Ω(n log n). ⊓⊔

Remark 1. The first part of the proof is directly applicable to runs so we have
that in a string of length n the number of runs of length at least 3p − 1, where
p is the (smallest) period of the run is at most n − 2. Unfortunately we cannot
apply the proof directly for runs shorter than that because we need the same
string on both sides of the central Lyndon position.



We have seen that the number of k-th powers for a given k(≥ 2) in a string
of length n is Θ(n log n), but what happens if we sum up the occurrences of k-th
powers for all k ≥ 2?

Remark 2. The upper bound of the sum of all occurrences of k-th powers with

primitive root, where k ≥ 2, in a word w with |w| = n is n·(n−1)
2 . Moreover, the

bound is sharp.

Proof. First consider the word an, for some n > 0. Clearly, taking any substring
ak, with 2 ≤ k ≤ n, we get a k-th power, so the number of powers greater or
equal to two is given by the number of contiguous substrings of length at least

two, that is n·(n−1)
2 . Now we will show that this is the upper bound. Let us

suppose that any two positions i and j in the string delimit a k-th power with
k ≥ 2, just like in the example above. We need to prove that the same string
cannot be considered a k1-th power and a k2-th power at the same time, with
k1, k2 ≥ 2 and k1 6= k2. Suppose the contrary, that is there are 1 ≤ m < ℓ ≤ j−i

2
so that both m and ℓ are periods of w[i, j]. Since j − i > m + ℓ − gcd(m, ℓ) the
periodicity lemma tells us that w[i, j] has a period p smaller than m with p|m
and p|ℓ, and this, in turn, means w[i, i + ℓ] is not primitive. ⊓⊔

Theorem 3. The number of distinct k-th powers, for a fixed integer k ≥ 3, in
a string of length n is at most n

k−2 .

Proof. We will show the upper bound by considering the last occurrences of
every k-th power. The proof is split into two parts. We will prove the statement
for cubes by considering their starting positions while for higher exponents we
will look at their root positions (see below).

Let us start with the case k = 3. Suppose the last occurrence of two different
cubes u3 and v3 with |u| < |v| start at the same position i in the string. By a
simple argument we will arrive at a contradiction by looking at the two cases
shown in Figure 5.

First let us look at the case when |u3| ≤ |v2|. In this case there is another
occurrence of u3 starting at position i + |v| contradicting our assumption of the
previous occurrence being the last.
Now we are left to treat the case when |v2| < |u3| < |v3|. The overlap between
the two cubes in this case is at least 2 · |v| which is greater than |v| + |u| and
from this, Fine and Wilf’s theorem tells us it has a period of length gcd(|u|, |v|).
Therefore, there exists some w such that u = wm and v = wn, for some integers
m < n. It is easy to see then that in |w3n| the last occurrence of |w3m| starts at
position i + 3 · (m − n) · |w| contradicting our assumption again.
We showed that there can be no two different cubes which have their last occur-
rence starting at the same position. This implies the bound n for higher distinct
powers as well. However, we can prove something stronger, as we claim in the
theorem. To achieve that result, we will look at root positions. In a power uk

starting at position i, with the smallest period of u being p, we will call position
i+ p the second root position, i+2p the third root position and so on. We show
that for the last occurrences of two 4-th powers u4 and v4, with |u| < |v|, u4



|u3| < |v2|

v v v

u u u

u u u

|v2| < |u3| < |v3|

w w w w w w w w w w

v v v

u u u

Fig. 5. Cubes u3 and v3 beginning at the same position i.



starting at position i and v4 starting at position j, the following positions cannot
coincide:

1. the second root position of u and the second root position of v:
– if 3|u| < 2|v| then u4 occurs at i + |v|, contradiction;
– if 2|v| ≤ 3|u| then according to Fine and Wilf’s theorem v has period k ·p,
for some k and then u4 occurs at i + p, contradiction.

2. the second root position of u and the third root position of v:
– if 3|u| ≤ |v| then u4 occurs at i + |v|, contradiction;
– if |v| < 3|u| ≤ 2|v| then again Fine and Wilf’s theorem gives us u4 occur-
ring at i + p, contradiction;
– if 2|v| < 3|u|: if this is the case then similarly as before u and v are powers
of the same word and hence v4 occurs at j + p, contradiction;

3. the second root position of v and the third root position of u:
– if 3|u| < |v| then u4 occurs at i + |v|, contradiction;
– if |v| ≤ 3|u| then u4 occurs at i + p, contradiction.

4. the third root position of u and the third root position of v:
– if 2|u| ≤ |v| then u4 occurs at i + |v|, contradiction;
– if |v| < 2|u| then u4 occurs at i + p.

We can apply the same argument for 5-th powers looking at the second, third
and fourth root positions and so on for greater powers as well, getting the desired
bound.

5 Conclusion

In conclusion, we have proven the following bounds on repetitions in words:

(i) The maximal number of distinct repetitions of exponent, e, with 1 < e < 2,
in a word of length n is Θ(n2).

(ii) The maximal number of primitively-rooted k-th powers in a word of length
n is Ω(n log n).

We have also described an O(m log n) algorithm which can be used to con-
struct strings to illustrate these bounds. Here O(m) is the time complexity of
concatenating two strings of length n.

References

1. A. Apostolico and F. P. Preparata. Optimal off-line detection of repetitions in a
string. Theoret. Comput. Sci., 22(3):297–315, 1983.

2. M. Crochemore. An optimal algorithm for computing the repetitions in a word.
Inf. Process. Lett., 12(5):244–250, 1981.

3. M. Crochemore and L. Ilie. Maximal repetitions in strings. J. Comput. Syst. Sci.,
2007. In press.



4. M. Crochemore, L. Ilie, and L. Tinta. Towards a solution to the “runs” conjec-
ture. In P. Ferragina and G. M. Landau, editors, Combinatorial Pattern Matching,
LNCS. Springer-Verlag, Berlin, 2008. In press.

5. M. Crochemore and W. Rytter. Squares, cubes and time-space efficient string-
searching. Algorithmica, 13(5):405–425, 1995.

6. F. Franek, R. J. Simpson, and W. F. Smyth. The maximum number of runs
in a string. In M. M. . K. Park, editor, Proc. 14th Australasian Workshop on

Combinatorial Algorithms, pages 26–35, 2003.
7. M. Giraud. Not so many runs in strings. In C. Martin-Vide, editor, 2nd Interna-

tional Conference on Language and Automata Theory and Applications, 2008.
8. C. S. Iliopoulos, D. Moore, and W. F. Smyth. A characterization of the squares in

a Fibonacci string. Theoret. Comput. Sci., 172(1–2):281–291, 1997.
9. R. Kolpakov and G. Kucherov. Finding maximal repetitions in a word in linear

time. In Proceedings of the 40th IEEE Annual Symposium on Foundations of

Computer Science, pages 596–604, New York, 1999. IEEE Computer Society Press.
10. R. Kolpakov and G. Kucherov. On maximal repetitions in words. J. Discret.

Algorithms, 1(1):159–186, 2000.
11. K. Kusano, W. Matsubara, A. Ishino, H. Bannai, and A. Shinohara. New lower

bounds for the maximum number of runs in a string. CoRR, abs/0804.1214, 2008.
12. M. Lothaire. Applied Combinatorics on Words. Cambridge University Press, Cam-

bridge, UK, 2005.
13. M. G. Main. Detecting leftmost maximal periodicities. Discret. Appl. Math.,

25:145–153, 1989.
14. M. G. Main and R. J. Lorentz. An O(n log n) algorithm for finding all repetitions

in a string. J. Algorithms, 5(3):422–432, 1984.
15. S. J. Puglisi, J. Simpson, and W. F. Smyth. How many runs can a string contain?,

2007. Personal communication, submitted.
16. W. Rytter. The number of runs in a string: Improved analysis of the linear upper

bound. In B. Durand and W. Thomas, editors, STACS, volume 3884 of Lecture

Notes in Computer Science, pages 184–195. Springer, 2006.
17. W. Rytter. The number of runs in a string. Inf. Comput., 205(9):1459–1469, 2007.
18. A. Thue. Über unendliche Zeichenreihen. Norske Vid. Selsk. Skr. I Math-Nat. Kl.,

7:1–22, 1906.


