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ABSTRACT 

Biofuels have a great potential to alleviate our dependence on non-renewable fossil fuel 

products; however the beneficial effects of substituting biomass for fossil fuel is reduced if the biofuel 

crops also emit large amounts of greenhouse gases (GHGs), such as carbon dioxide (CO2) and nitrous 

oxide (N2O) during their production. Most crops require nitrogen (N) fertilization to maximize 

productivity, but the amount of N fertilizer Miscanthus x giganteus might need is currently not known. 

Because M. x giganteus is highly efficient in its N use, it is a great potential energy crop because it has 

had large yields even at low N inputs from fertilizers (including no additions of N fertilizer). Therefore, it 

is critical to determine the response of M. x giganteus to N fertilizer rates and determine the effect of 

fertilization on GHG emissions. The main objective of this study was to examine the effect of N 

fertilization rates (0, 60 and 120 kg N ha-1 of urea) on GHG emissions from production of M. x giganteus 

on a central Illinois Mollisol. The study had twelve, 10x10 m plots organized in four replicate rows with 

each of the three N fertilizer treatments placed randomly in each row. Gas samples to determine N2O 

and CO2 fluxes were taken near noon throughout the year (March-November) when soil temperatures 

were warm enough to support microbial activity. In addition, soil moisture and soil temperature were 

continuously measured, and soils were regularly sampled for inorganic N to make specific inferences 

about abiotic factors affecting the GHG emissions. Furthermore, inorganic N leaching was assessed using 

resin lysimeters buried at 50 cm in each plot; the lysimeters placed in the soil in April of each year and 

excavated the following April. M. x giganteus biomass was measured on each plot, along with N and C 

concentrations in the harvested material. At the end of 2009 cumulative N2O and CO2 emissions did not 

have a significant response due to fertilization. However, at the end of 2010, cumulative N2O emissions 

significantly increased with fertilizer additions (0.35, 0.77, and 2.91 kg N ha-1 for the 0, 60, and 120 kg N 

ha-1 fertilizer treatments, respectively). Carbon dioxide emissions did not respond to fertilization in 2010. 

Larger NO3
- concentrations were significantly related with larger N2O emissions. Greater temperature 
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and greater soil moisture at 10 cm were significantly related to larger N2O emissions. Higher 

temperature at 10 cm was significantly related to larger CO2 emissions; conversely, soil moisture was 

not related to CO2. In 2010, several large precipitation events occurred following fertilization, leading to 

greater N2O emissions due to greater soil moisture. This study shows the potential for large N2O releases 

in fertilized M. x giganteus when rates were greater than 60 kg N ha-1, but this response is dependent on 

precipitation and resulting soil moisture status following fertilizer application. Soil CO2 emissions were 

unaffected by N fertilization. During the first year of the study, NO3
- leaching was not significantly 

affected by fertilization, but by the second year, the treatment plots had significantly different NO3
- 

leaching at 50 cm soil depth (8.9, 15.3, and 28.9 kg N ha-1 yr-1, for the 0, 60, and 120 kg N ha-1 fertilizer 

treatments, respectively). Yield data the first year of the study showed no significant difference among 

treatments and were quite small, likely due small to the previous crop failure during the establishment 

year and replanting (1.1, 4.1, and 4.0 Mg ha-1, for the 0, 60, and 120 kg N ha-1 treatments, respectively). 

After the second year, biomass was much larger for all the treatments, but was still not significantly 

different due to fertilization with N (14.9, 15.8, and 17.0 Mg ha-1, for the 0, 60, and 120 kg N ha-1 

treatments, respectively). The amount of N removed from harvesting the biomass was significantly 

larger with additional fertilizer in year 2; therefore, fertilization removed more N while yielding relatively 

the same biomass. Overall, fertilization of M. x giganteus can lead to important N2O releases, which 

reduces the overall favorable GHG balance; increased fluxes of inorganic N (primarily NO3
-) through the 

soil profile; and increases in harvested N without a significant increase in biomass. 
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INTRODUCTION 

Global greenhouse gas (GHG) emissions are inherently large and, prior to human intervention, 

carbon (C) absorbed from the atmosphere each year from photosynthesis was roughly balanced by soil 

and plant respiration (Dondini et al., 2009a). This balance has been disturbed by changing land use and 

fossil fuel combustion and this has led to global climate change and warming trends (Hughes et al., 

2010). Therefore, governmental and political trends towards renewable energy resources have led to 

many recent studies on biofuel crops. The Intergovernmental Panel on Climate Change reported that 

even though agriculture is one of the largest sources of atmospheric GHG emissions, it also provides 

several innovative possibilities for GHG reduction (Solomon et al., 2007). The main policy driver is the 

goal of an overall net reduction in atmospheric emissions of carbon dioxide (CO2), the major GHG 

emitted from the combustion of fossil fuels.  

Fast growing plant species have the potential to be serious contenders for reducing GHG 

emissions compared to burning fossil fuels. Two categories of plants being examined in current research 

programs in the United States are fast growing woody species, such and willow and poplar (also known 

as coppice) and perennial rhizomatous grasses (PRGs), such as switchgrass (Panicum virgatum L.), reed 

canary grass (Phalaris arundinacea L.), and Miscanthus (Miscanthus x giganteus) (Clifton-Brown et al., 

2007). The advantage of PRGs compared with trees is PRGs can be established more quickly and also 

produce an annual biomass with low moisture content (Clifton-Brown et al., 2007). Substituting plant 

biomass for fossil fuels is beneficial because plant-derived biomass is termed a CO2 neutral fuel because 

the only CO2released from utilizing the biomass is what was photosynthetically fixed from the 

atmosphere during growth (Christian et al., 2008). However, the benefits of using energy crops to 

replace fossil fuels would be dramatically reduced if they also emit GHGs during production (Jørgensen 

et al., 1997). In addition, new agricultural practices aimed at alleviating the global food demand has 

dramatically disrupted the nitrogen (N) cycle and has led to many environmental problems including the 
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potent GHG, N2O (Canfield et al., 2010). For this reason, it is critical to develop crop management 

systems that have the least potential for N2O and CO2emissions from soil per unit of energy produced 

(Jørgensen et al., 1997). 

Assessments of global sources of N2O using modeling indicate that agricultural activities have 

been responsible for more than 70% of the increase in atmospheric concentrations of N2O occurring 

since 1850 (Kroeze et al., 1999). Fixen and West (2002) also found that from 1960 to 2000, the use of 

fertilizers containing N has increased by around 800%; wheat, rice and corn accounted for near 50% of 

the current fertilizer use. With N use efficiencies below 40%, these crops can cause fertilizer runoff, 

nitrification and denitrification depending on soil conditions. From 1990 to 2005, global agricultural N2O 

emissions increased 17% (USEPA, 2006) and more importantly, the Food and Agriculture Organization 

projects a 35-60% increase in global agricultural N2O emissions by 2030 (Bruinsma, 2003). With the 

development and research on cellulosic biofuel, Melillo et al. (2009) project even greater N2O emissions 

from such systems due to the reliance on N fertilizer to facilitate crop yields. As with any production, the 

costs of synthetic N fertilizer have been rising and this overuse is not only costly, but has severe 

environmental consequences (Galloway et al., 2008). For this reason, N2O is a major contributor to 

atmospheric pollution. 

The global warming potential of N2O per molecule has been estimated at about 300 times 

greater than that of CO2 (Solomon et al., 2007); it is the single most important ozone-depleting 

compound and expected to remain so throughout the 21st century (Ravishankara et al., 2009). The 

demand for more fuel has caused a need for either increased imported fossil fuel or substantial growth 

in biofuel production (Crutzen et al., 2008). Biofuel crops are used as substitutes for combusting fossil 

fuels to reduce the net CO2 emission, but agricultural practices, such as fertilization that manipulate the 

plant-soil system, implies that N2O emissions can be a potential risk.  
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 During the past 25 years agricultural impacts on N2O emissions have been studied. Results have 

shown that management practices such as fertilizer (type, timing, and application), crop tillage, residue 

management, and water (precipitation, irrigation) influence N2O emissions from agricultural soils (Parkin 

and Kaspar, 2006). The flux of N2O between the soil and the atmosphere depends on the N2O 

production and consumption by denitrification (conversion of nitrate to nitrous oxide and N gas) and 

nitrification (conversion of ammonia to nitrate and nitrous oxide) in the soil. The N2O flux is directly 

influenced by abiotic factors such as the concentration of inorganic N and temperature; the N2O flux 

also requires a low oxygen environment for the microbial production of N2O, which is largely 

determined by soil water content (Aulakh et al., 1992). Since nitrification can also emit N2O as an 

intermediate step in the N cycle, agricultural systems represent large sources of N2O pools to the 

atmosphere (Mosier et al., 1998). Crutzen et al. (2008) estimated that agricultural systems are 

responsible for 80% (4.3-5.8 Tg N2O yr. -1) of current annual global anthropogenic emissions. 

Atmospheric CO2, like N2O, is a GHG; the dominant GHG to be precise. The atmospheric 

concentration of CO2 is currently increasing at a rate of 1.4 ppmv yr-1 (Solomon et al., 2007). Agriculture 

presents itself as a major source of CO2 and GHG emissions alike because fossil-derived CO2 is emitted as 

a result of cultivating, planting and harvesting crops, and of manufacturing agrochemicals (Christian et 

al., 2008). The manufacturing of N fertilizer often represents the largest emission of CO2 due to the 

intensive energy requirement in the Haber-Bosch process; emissions of 0.86 kg CO2-C per kg N have 

been calculated (Polwson et al., 2005). In addition, agriculture inherently manipulates the soil-plant 

ecosystem which has dramatic implications to the environment because the soil reserve is the largest 

pool of C on land (Schlesinger, 1997). The idea of using soil organic carbon (SOC) to sequester 

atmospheric CO2 is not a viable solution to the global CO2 and climate change issue because SOC 

increases at only an annual rate of 0.9±0.3 Pg C yr-1, while the atmospheric concentration of CO2 will 
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continue to increase at the rate of 2.0-2.6 Pg C yr-1, even if C sequestration with SOC is implemented 

(Lal, 2004). Therefore it is critical to develop other methods to sequester C.  

Just as agriculture is one of the major sources in emitting GHG, it could be an important solution 

to the problem. With the advent of bioenergy crops such as M. x giganteus, switchgrass and other 

potential biofuel crops, the global climate change problem could be mitigated by the cultivation of these 

novel crops. M. x giganteus utilizes N efficiently which makes it a great potential energy crop because it 

sustains large yields even at low N fertilizer inputs. Several studies have confirmed that M. x giganteus 

has no significant yield response to fertilizer treatments (Christian and Riche, 1998, Christian et al., 2008, 

Heaton et al., 2008a, Lewandowski et al., 2000, Miguez et al., 2008). Because agriculture is a major 

contributor of N2O and CO2, several studies have focused on GHG emissions from production of M. x 

giganteus (Jørgensen et al., 1997; Christian et al., 2006, 2008), but none in the U.S. Midwest where 

much of the best soils in the world are located. 
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OBJECTIVES 

The overall, general objective of this study was to examine the effect of N fertilization on GHG 

emissions from production of Miscanthus x giganteus on a central Illinois Mollisol. 

Questions specifically addressed include: 

1. Will N fertilization rate affect the emissions of soil CO2 and N2O from production of M. x 

giganteus?  

2. Does precipitation and N fertilizer application timing affect soil N2O flux from M. x 

giganteus? 

3. How do soil N2O and CO2 gas fluxes relate to other abiotic parameters, such as soil moisture 

and temperature as well as soil inorganic N concentrations? 

4. Does N fertilization rate affect inorganic N leaching and yield production of M. x giganteus? 
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LITERATURE REVIEW 

Miscanthus x giganteus 

The genus Miscanthus comprises perennial grasses originating from the tropical, subtropical, 

and temperate regions of Southeast Asia ranging from the Pacific islands to the mountain regions of 

Japan and the Himalayas (Greef and Deuter, 1993; Heaton et al., 2010). The hybrid, Miscanthus x 

giganteus, used in most biofuel experiments is a naturally occurring sterile hybrid with parents M. 

sacchariflorus and M. sinensis (Greef et al., 1997). Miscanthus x giganteus is a triploid hybrid that can 

grow vigorously and tolerate some stress, but cannot produce a viable seed, so it poses no risk for weed 

invasion (Jorgensen and Muhs, 2001); it is environmentally adaptable and can photosynthesize over a 

wide range of temperature regimes due to its C4 physiology (Beale et al., 1996). The C4 photosynthetic 

pathway, which helps reduce respiration during the hot and dry summer months, is also shared by corn. 

The C4 pathway results in high water use efficiency, and M. x giganteus needs only about half as much 

water input as cereal crops and a third of coppice, such as willows or poplar, per unit of biomass 

(Lewandowski et al., 1995). Moreover, the C4 pathway inherently has high N-use efficiency and also C4 

plants store N in the rhizomes (Brown, 1978). Miscanthus x giganteus, like other perennial grasses, can 

retranslocate nutrients from aboveground to belowground storage organs for overwintering and thus 

may provide cleaner biomass feedstock than annual crops that do not directly cycle nutrients (Heaton et 

al., 2009, 2010).  

In addition, M. x giganteus can obtain N from sources other than fertilizer (Christian and Riche, 

1998); some N, between 20-46%, is provided by mobilization of N stored in roots and rhizomes, (Himken 

et al., 1997). Christian and Riche (1998) indicate that other sources of N are likely to be from 

mineralization of soil organic matter and decomposition of leaf litter. Nitrogen deposition at 

Rothamsted, England, where Christian and Riche (1998) conducted their study, was estimated to 
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contribute 35-40 kg N ha-1 yr-1 (Goulding, 1990). In addition, significant decreases in aboveground N 

content between August and December indicate further evidence of N used by M. x giganteus (Davis et 

al., 2010).  

The C4 physiology also helps maintain high photosynthetic rates over a wider temperature range 

(Beale et al., 1996), helping it exploit a longer-than-average growing season (Heaton et al., 2008a; 

Dohleman et al., 2009). Therefore, the C4 physiology in M. x giganteus increases nutrient, water, and 

solar radiation use efficiencies (Himken et al., 1997). This leads to twice the biomass compared to 

switchgrass (22 Mg ha-1 vs. 10 Mg ha-1) (Heaton et al., 2004b). Similarly, Clifton-Brown et al. (2000) 

estimated an average of 33 t dry mass ha-1 over the state of Illinois predicted by an agro-climactic 

computer model using actual climatic data, with yields ranging from 20-40 Mg dry mass ha-1. 

In addition to the C4 pathway aiding in the high N use efficiency of M. x giganteus, a recent study 

conducted by Davis et al. (2010) hypothesized that M. x giganteus has the ability to biologically fix N. 

Modeling exercises conducted by Davis et al. (2010) indicated that N fixation was an important 

component of the overall N budget, providing up to 250 kg N ha-1 y-1. Miscanthus x giganteus produced 

more standing aboveground C and soil C than switchgrass, prairie, and corn, which could be attributed 

to the ability to host N fixing bacteria. This hypothesis was supported by their results that confirm 

nitrogenase (N fixing) activity in M. x giganteus rhizomes and in bacteria isolated from M. x giganteus 

(Davis et al., 2010). N fixation may also explain the at least two times greater C yield and plant N uptake 

compared to switchgrass when grown on the same soils without fertilizer (Heaton et al., 2008a). It is 

likely that rates of N fixation will vary geographically and could account for the variations in yields 

outside Illinois. However, another study indicated that M. x giganteus yields were maintained after 

repeated harvests that inherently removed N (Christian et al., 2008) and the grass responded to little or 

no N fertilization (Miguez et al., 2008).  
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As previously written, M. x giganteus is a highly efficient N-use crop making it a potential energy 

crop because of high energy output even at low N fertilizer inputs (Heaton et al., 2010). Studies by 

Christian and Riche (1998) and Christian et al. (2008) found that there was no significant yield response 

to N fertilizer. Likewise, Miguez et al. (2008) found that considerably high yields can be obtained with 

little N fertilizer because the difference in the response to N fertilizer between 0 and 100 kg N ha-1 was 

small compared with more typical row crop responses. Heaton et al. (2008a) found similar results. In a 

review of several studies compiled by Lewandowski et al. (2000), numerous field trials at different 

locations in Austria, Germany, and Greece confirmed that M. x giganteus showed no significant 

response to N fertilizer from the second or third year onwards. This phenomenon was due to several 

different characteristics: soil type, previous cropping system, the plant’s C4 photosynthetic pathway and 

the natural recycling of N and other minerals from the stems and leaves into rhizomes at senescence 

(Christian et al., 2008; Lewandowski and Kicherer, 1997).  

Miscanthus x giganteus is harvested annually when the stems have senesced and mineral 

nutrient content is at its lowest due to re-mobilization to rhizomes and natural weathering. Even though 

M. x giganteus has yield reductions of 30-50% dry matter when harvested after winter (Jørgensen, 

1997), field drying reduces the mineral and water content of the crop, which allows for cleaner fuel and 

allows nutrients to remain in the field (Lewandowski et al., 2003). When compared to other 

lignocellulose plants, the low mineral concentrations (Cl, K, N, S, and ash) and water content at M. x 

giganteus harvest is advantageous for biomass thermal conversion because it minimizes the impact on 

combustion efficiency and lowers stack emissions (Christian et al., 2008; Lewandowski and Kicherer, 

1997). Miscanthus x giganteus specifically has low N and sulfur (S) content in its biomass which results in 

lower N2O and sulfur dioxide emissions during combustion (Lewandowski et al., 1995). Also, it reduces 

mineral removal in the harvested biomass which could lower future input costs and improve production 

sustainability (Christian et al., 2008).  
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The physiology of M. x giganteus makes it an ideal biofuel crop and when compared to maize, 

switchgrass, and prairie grasses (Heaton et al., 2010). However, the current US ethanol fuel source is 

corn-based (Zea mays, or maize) and the US is also the major producer of maize ethanol (Heaton et al., 

2008a). The Advanced Energy Initiative (AEI) recommends the conversion of 30% of the 2005 petroleum 

use in the transportation sector to domestically grown renewable bioethanol in the coming future 

(Milliken et al., 2007). Unfortunately, maize production in the US cannot meet the renewable fuel target 

because it supplied less than 2% of the 2004 transportation energy demand (Davis and Diegel, 2004). 

And more importantly, maize is an annual crop which requires large annual energy and financial inputs: 

tillage and planting, energy intensive N fertilizer, herbicides, and pesticides (Heaton et al., 2008a). Due 

to this, ethanol from maize grain has only a small net positive C balance at best because GHG emissions 

from ethanol made from conventionally grown corn can be slightly more or slightly less than from 

gasoline per unit of energy, but ethanol requires much less petroleum inputs (Farrell et al., 2006). 

Therefore, ethanol produced from cellulosic material, switchgrass or M. x giganteus, reduces both GHGs 

and petroleum inputs substantially (Farrell et al., 2006). This interest in GHG emissions, specifically N2O 

and CO2, is of paramount interest in the understanding and growing of biofuel crops, such as M. x 

giganteus. Nonhebel (2002) determined that for a plant to be considered a potential energy crop, the 

bioenergy yield must be produced with minimal inputs of energy, so as to have a positive energy 

balance.  

Biomass energy is near ‘carbon neutral’ because all the combusted C released to the 

atmosphere was fixed by the plant during its growing cycle, rather than emitting C that has been stored 

in the earth for millions of years (Dondini et al., 2009b; Hughes et al., 2010). The biomass produced from 

biofuel crops can be used as a substitute for fossil fuels and may help to reduce the dependence on 

imports of such fossil fuels and also can help reduce CO2 emissions and even sequester C (Smeets et al., 

2009; Dondini et al., 2009b). Miscanthus x giganteus is an ideal bioenergy crop which can be used to 
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generate heat, power and fuel, and alleviate CO2 emissions (Heaten et al., 2004a). Miscanthus x 

giganteus has a reported energy output in comparison to input to be approximately 15-20:1 

(Lewandowski and Kircherer, 1997). The energy content of M. x giganteus harvested from just one 

hectare was approximately 20 tons of dry matter, which corresponds to the energy content in 12 tons of 

hard coal; for each gigajoule of hard coal, 96.6 kg of CO2 are emitted during combustion, but by 

combusting M. x giganteus instead of hard coal, 90% of the CO2 emissions are alleviated (Lewandowski 

et al., 1995). If M. x giganteus were combined with coal in a 50% blend, it would avoid the net emission 

of 39 million tons of CO2 to the atmosphere each year, based on replacement of coal with the C neutral 

M. x giganteus (Heaton et al., 2004a). Miscanthus x giganteus also produced an average maximum 

annual biomass of 20 Mg ha-1 compared with 10 t ha-1 of switchgrass (Heaton et al., 2004b). Heaton et 

al. (2008a) showed that M. x giganteus could provide 260% more ethanol per hectare than maize grain 

and, if grown on land currently devoted to maize ethanol, M. x giganteus would meet the 35 billion 

gallon US biofuel goal for 2016; it would take 24.4% of total agricultural land for corn and 26.5% for 

switchgrass to meet that same goal, while only 9.3% for M. x giganteus to meet the 2016 goal. In 

addition, M. x giganteus appears to be profitable even without government subsidies, unlike the 

traditional corn/soybean rotation; much of the expense is in planting the M. x giganteus. Since it is a 

perennial species, subsequent years require limited maintenance, and therefore, the stand will be highly 

profitable if maintained for 10 years (Heaton et al., 2004a).  

Carbon Dioxide 

Biofuel crops possess a variety of environmental benefits, one of the most attractive being the 

reduction of CO2 emissions produced when substituting biomass for fossil fuel combustion 

(Lewandowski et al., 1995). Simulations conducted by Hughes et al. (2010) reveal that by replacing fossil 

fuel consumption with M. x giganteus biofuel, CO2 concentrations could be lowered by up to 323 ppmv 
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by the end of the current century. The CO2balance shows that CO2 emissions can be reduced by as much 

as 90% compared to hard coal combustion; combustion of M. x giganteus emits 2 Mg C-CO2 

(Lewandowski et al., 1995). The CO2balance is highly dependent on efficient N fertilizer application; N 

fertilizer contributes about 43% of the CO2emissions (Lewandowski et al., 1995). Likewise, Powlson et al. 

(2005) found that for winter wheat, N fertilizer accounts for about 60% of the total CO2emissions. 

Fertilizer rate application affects soil emissions of CO2 and N2O and tends to increase during the first few 

weeks following fertilization (Phillips et al., 2009). This emphasizes the importance of using N fertilizer 

efficiently and minimizing losses (Powlson et al., 2005). Clifton-Brown et al. (2007) found that when M. x 

giganteus is harvested and combusted instead of coal, the grass mitigates 3.6-4.8 Mg C ha-1 yr-1 in 

emissions and C sequestration in the soil, potentially removing 0.5 Mg C ha-1 yr-1 from the atmosphere. 

In addition, M. x giganteus had the greatest aboveground C content compared with switchgrass, maize 

and prairie and up to four times as much biomass due to its N use efficiency (Davis et al., 2010).  

The physiology of M. x giganteus, and agricultural practices associated with its cultivation, 

supports a large potential for soil C sequestration (Dondini et al., 2009b). Miscanthus x giganteus, like 

any energy crop, takes in CO2 from the atmosphere for photosynthesis; when the crop is burned for 

energy, the CO2 released was previously taken out of the atmosphere in the recent past, unlike fossil 

fuels that have been sequestered for millions of years (Hughes et al., 2010). Hillier et al. (2009) found 

that on average M. x giganteus sequesters more C in the soil in comparison with annuals (winter wheat 

and oilseed rape). In addition, Schneckenberger and Kuzyakov (2007) indicated that the amount of SOC 

derived from M. x giganteus was higher than that of maize; a higher contribution of M. x giganteus 

derived C to SOC in the deeper soil layers compared to maize indicates the possibility of belowground C 

sequestration by planting the perennial grass. Therefore, it is believed that M. x giganteus accumulates 

stored C in the soil due to its extensive below ground biomass and rootstock, as well as enhanced 

organic matter content (Dondini et al., 2009a). Using changes in stable C isotope ratios, Hansen et al. 
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(2004) observed that a large fraction of the SOC pool was C derived from M. x giganteus; after 9 and 16 

years, 13% and 31%, respectively, of the SOC present at 0 – 20 cm soil depth originated from M. x 

giganteus. Hansen et al. (2004) also indicated that M. x giganteus increased soil C by 14 t ha−1, 

representing 29% of the C input after 16 years. Simulated levels of soil C for several biofuel crops 

indicated that M. x giganteus accumulates soil C at a faster rate than other species due to the greater 

litterfall and belowground plant growth (1041-1194 g C m-2 y-1) (Davis et al., 2010). This leads to 

enhanced soil organic matter as result of M. x giganteus losing its leaves and top shoot in autumn and 

winter; the biomass retains residues on the soil surface to keep the humidity in the top soil and supply C 

to the soil for growth in the spring (Lewandowski et al., 2000; Kuzyakov and Domanski, 2000; Clifton-

Brown et al., 2007).  

 In addition to C and nutrient cycling, Clifton-Brown et al. (2007) found that M. x giganteus 

grown on previously arable land in the absence of conventional farming practices resulted in lower 

decomposition rates and increased soil C stabilization. Miscanthus x giganteus systems that typically 

receive little or no N fertilizer inherently have a higher C:N ratio resulting in a slower decomposition rate 

of plant residue (Schneckenberger and Kuzyakov, 2007). Dondini et al. (2009b) found that throughout 

the whole soil profile, the total soil organic C content under M. x giganteus is significantly higher than 

under an arable crop (unidentified C3 crops; 131.3 vs. 105.8 Mg C ha-1). The results from Dondini et al. 

(2009b) suggest that the potential of soil C storage under M. x giganteus largely depends on the land 

that it is replacing; arable lands provide the largest potential as a C sink. Smith et al. (2000) confirm that 

arable soils are often depleted in soil C and therefore have a great potential to store large quantities of 

C; furthermore, Hillier et al. (2009) found that replacement of arable and grassland by perennial crops 

leads to GHG savings. 
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Nitrous Oxide 

In a study by Jørgensen et al. (1997), fertilizer was applied before the plants began growing and 

also when the soil water content was highest, so this provided ample condition for N2O emissions to 

occur. In addition, as soil water content and concentration of inorganic N in the fertilized M. x giganteus 

decreased, so did the N2O emissions. Therefore, rainfall is a major regulator on N2O fluxes; events of 

heavy rainfall during the early growing season soon after fertilization result in high fluxes in fertilized M. 

x giganteus. This was seen by in the study by Jørgensen et al. (1997), where peak N2O fluxes were 

recorded in mid-July after a temporary rainfall event. The reasoning behind the N2O fluxes after rain 

events is most likely because the water filled the soil pore space and supplied the best anaerobic 

conditions for microbial production of N2O by nitrification and denitrification. In addition, other authors 

have recorded similar events; Groffman and Tiedje (1998) observed a pulse of N2O when the soil is re-

wetted after a dry period due to an increase in nutrient availability for microbes. This was probably the 

reason for the N2O peaks in the autumn after the dry summer period recorded by Jørgensen et al. 

(1997). Phillips et al. (2009) also found that the magnitude of GHG emissions is likely to vary with 

temperature and timing of N fertilizer application since microbial respiration is strongly related to 

temperature. Therefore applying N at the start of the growing season may be unnecessary and could 

result in N losses and consequently N2O emissions (Christian et al., 2008). Only 38% of 15N-labeled 

fertilizer applied in the spring to a one-year-old crop was taken up by the plant; however, recovery of 

15N-labeled fertilizer on a more established crop was greater (Christian et al., 2006).  

Crutzen et al. (2008) found that when biofuel crops are grown in replacement for fossil fuel 

consumption, harmful emissions of N2O can offset the intended benefits of growing the biofuel crop in 

the first place. Depending on the N use efficiency of the crop being grown, N2O emissions can be large 

enough to cause climate warming instead of the intended climate cooling due to “saved fossil CO2” 
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(Crutzen et al., 2008). The underlying factor for growing biofuel crops is the agricultural practices 

associated with the specific crop. Stehfest and Bouwman (2006) found that soil N2O emissions are best 

influenced by N application rate, N source, crop type, soil pH, soil texture, climate, and soil organic 

matter (SOM). The easiest factor to control without disrupting crop rotations or other agricultural 

practices or without crop yield reduction is the N-application rate (Hoben et al., 2011). The N-application 

rate was tested in a study by McSwiney and Robertson (2005). They analyzed variable N fertilizer rates 

applied to maize; maize grain yields in their three year study increased in response to N additions from 0 

to 101 kg-N ha-1 and then leveled off at larger additions of N fertilizer. They found that at greater 

additions of N fertilizer, no significant yield gain was observed, but N2O did increase with excess N 

fertilizer rates. A similar study by Hoben et al. (2011) confirmed their findings that N2O emissions 

increased exponentially with increasing N fertilizer amount and yield reaches a plateau just as the N2O 

response sharply increases. Providing farmers an incentive to apply N at rates where maximum yield is 

achieved with no excess N added, could offer a unique opportunity for mitigating N2O emissions from 

agricultural soils and also lowered leaching of N from the soil. 

Inorganic Nitrogen 

In addition to N2O and CO2 emissions, N can leave the system via leaching of nitrate (NO3
-) 

through drainage tiles. Since plant yields are influenced greatly by the N content in the soil and removal 

of that biomass through modern agricultural techniques removes much of the organic N, natural 

supplies of N are supplemented by fertilizer to maximize plant productivity. The form of N that is most 

susceptible to losses is NO3
-, which is a combination of N from fertilizer and soil mineralized N. Over-

fertilization and inappropriate timing of fertilizer application can lead to NO3
- enriched soil water 

solution and the result is leaching of that NO3
- to ground and surface water (Christian and Riche, 1998). If 

fertilization occurs before the crop can incorporate the N, large amounts of NO3
- can be leached in short 
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periods of time around precipitation events (David et al., 1997). Likewise, when M. x giganteus replaces 

a managed agriculture field with previously high inorganic N mineralization (long-term grass with 

incorporation of bean residues), as seen in Christian and Riche (1998), significantly higher NO3
- leaching 

is possible; Christian and Riche (1998) go on to indicate that this would not be the case if M. x giganteus 

replaces arable land, low in inorganic N, and they also report that M. x giganteus has NO3
- losses 

comparable to forests and natural areas even when fertilized. 

The inappropriate timing of fertilizer application was indicated by Gentry et al. (2009), when 

spring tile NO3
- concentrations were large due to 50% of N fertilizer applied the prior fall. This leaching of 

NO3
- began when tile drainage was introduced to the United States; most importantly, tile drainage 

changed the hydrology of the Midwestern United States resulting in large quantities of NO3
- leaching 

from agricultural fields to streams and rivers (David et al., 1997; McIsaac and Hu, 2004; Gentry et al., 

2009). Results from an intensive study of the N balance from a highly agricultural watershed in East-

Central Illinois indicated the risk of NO3
- leaching occurs mostly during the winter and spring with very 

large NO3
- leaching concentrations bound to high flow events. To further emphasize this, Gentry et al. 

(1998) found that in a study on maize over three years, record rainfall in only one month can contribute 

to 75% of the NO3
- loss for an entire year, as much as 148 kg N in one day and concentration of 49 mg N 

L-1; this is an excellent example of high fertilization rates and large precipitation events leading to very 

large NO3
- losses. In contrast, David et al. (1997) found that NO3

- concentrations in late summer and early 

fall showed almost no NO3
- concentrations due to denitrification in the stagnant water caused by no tile 

inputs; this emphasizes the fact that NO3
- leaching is a direct result of agricultural practices and 

precipitation events. These results show that agricultural land is the source of nearly all the NO3
- in this 

particular watershed, rather than urban inputs, with leached NO3
- through tile drainage accounting for 

25-85% of the field N balance (David et al., 1997).  
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The reason NO3
- is a major concern is that it causes drinking water problems and eventually 

leads to hypoxia in the Gulf of Mexico as it is transported down the Mississippi River; the hypoxic zone in 

the northern Gulf of Mexico occurs annually and, since 1950, has increased significantly. Anthropogenic 

activities such as deforestation, channelization, wetland drainage, loss of riparian zones, and large 

increases in N fertilizer application have caused the increase in the Gulf of Mexico hypoxic zone 

(Rabalais et al., 2002). The area intended to grow ethanol biofuel is projected to increase due to 

increased demand for “clean energy”, which if used to grow maize – the current main biofuel crop, 

harmful water quality consequences could ensue due to increased NO3
- leaching from N fertilizer losses 

(Simpson et al., 2008). However, if perennial grasses, such as M. x giganteus, were substituted for maize 

grown on the same land devoted to solely for ethanol production, it could provide 260% more ethanol 

per hectare. Even more promising is the fact that M. x giganteus is a highly efficient N use crop even at 

low to no inputs of N fertilizer (Lewandowski et al., 2000; Christian et al., 2008; Heaton et al., 2008a; 

Miguez et al., 2008; Dohleman and Long, 2009) and could have reduced NO3
- losses as well (Powlson et 

al., 2005).  

A study by McIsaac et al. (2010), found that in each year of the study, the corn-soybean system 

was dominated by NO3
- losses and were statistically greater than then losses of switchgrass or M. x 

giganteus; therefore, total inorganic N losses from corn-soybean were on average 7.5 times greater than 

switchgrass and 9 times greater than M. x giganteus. McIsaac et al. (2010), did indicate that first-year M. 

x giganteus had a high amount of NO3
- losses (154 kg N ha -1 yr-1), but then quickly decreased to 8 and 3 

kg N ha -1 yr-1 in years 2 and 3, respectively. In another Illinois field study, Mitchell et al. (2000) indicated 

that NO3
- losses from an unfertilized, unharvested, perennial grass field was 3.8 kg N ha-1 yr-1, which is 

similar to the study by McIsaac et al. (2010). Miscanthus x giganteus is typically harvested during the 

dormant season, which may increase soil evaporation in the spring, and in turn, would reduce drainage 

and leaching of NO3
- (McIsaac et al., 2010). Also, harvesting an unfertilized M. x giganteus crop removes 
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between 5-40 kg N ha -1 yr-1, which may also reduce NO3
- leaching by N removal (Heaton et al., 2009; 

McIsaac et al., 2010). Their findings indicate that well-managed perennial grasses have considerable 

potential for lower N leaching compared with corn-soybean systems because perennial grasses have 

more extensive root systems, a longer growing season, and can supply additional C to the soil to 

promote immobilization. However, perennial grasses do influence the hydrological cycle by either flood 

reduction, which would benefit the ecosystem, or prolonged low stream flow, which could be a possible 

detriment to the ecosystem (McIsaac et al., 2010). 
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MATERIALS AND METHODS 

Site Description 

 This study was conducted on experimental plots located at the Department of Energy funded M. 

x giganteus plots on the University of Illinois Bioenergy Farm located approximately 3 km south of the 

University of Illinois at Urbana-Champaign (-88.19W, 40.06 N), between April 2009 and November 2010. 

The mean annual temperature is 10.8°C and the mean annual precipitation is 104 cm (data from long-

term weather station located at the Energy Biosciences Institute farm where plots reside). Mean 

maximum and minimum temperatures from April to November are 22.4°C and 10.8°C, respectively (ISWS 

Official Data 1971-2000). The precipitation total for 2009 was 106 cm and for 2010 was 81 cm (Data 

from long-term weather station located at the Energy Biosciences Institute farm where plots reside). 

The experimental plots were initially thought to be located on deep loess Mollisols with 4-7% 

organic matter in the top 30 cm like much of east-central Illinois, and the soil was originally classified as 

being 76% Dana silt loam (Fine-silty, mixed, superactive, mesic Oxyaquic Argiudolls) for the northern 

portion of the plots and 24% Drummer silty clay loam (Fine-silty, mixed, superactive, mesic Typic 

Endoaquolls) for the southern portion of the plots using the Web Soil Survey. But after further 

investigation, the soil included a fine cap of sandy loam sediments throughout the top 30 cm and was 

classified into the Wyanet series (Fine-loamy, mixed, active, mesic Typic Argiudolls). See Table 1 for 

further soil profile descriptions. The site was in row crop production prior (1993-2005) to M. x giganteus 

planting (Figures 1-3). 
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Figure 1. Aerial map view of the experimental DOE site in 1993, with plots marked by the pin.  
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Figure 2. Aerial map view of the experimental DOE site in 1998, with plots marked by the pin. 
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Figure 3. Aerial map view of the experimental DOE site in 2005, with plots marked by the pin. 
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Figure 4. Aerial map view of the DOE M. x giganteus plots in 2010 with an expanded plot design layout. 
Replicate plots are fertilized in kg N ha-1, were randomly assigned, and 10x10m. 



23 
 

Experimental Design and Crop Management 

Twelve, 10 m x 10 m plots of M. x giganteus were planted in July 2008 using greenhouse 

produced plants grown in 2 cm square pots using commercially available soilless potting mix. The study 

had four replicates each with three N fertilizer treatments arranged in a randomized complete block 

design. Each plot was planted with 100 M. x giganteus plants spaced 1 m apart. The plots received 0, 60, 

or 120 kg N ha-1 using urea fertilizer once each growing season, applied on June 23, 2009 and May 6, 

2010. Approximately 80% of the grasses failed to survive the 2008-2009 winter because of mid-summer 

planting in July 2008 and severe winter conditions. The dead plants were removed and replanted in 

spring, 2009, thus 805 of the plants were first-year plants in 2009 and 20% were second year plants. The 

plots were hand weeded as necessary during the summer of 2009 and sporadically during 2010 to 

reduce weed competition. The plots were also irrigated during the summer of 2009 to ensure 

establishment. 

Sampling Procedures 

Nitrous Oxide Measurement 

 Nitrous oxide measurements were sampled following the GRACEnet chamber-based trace gas 

flux measurement protocol (Baker et al., 2003). Beginning in late April 2009, two 0.031m2 Polyvinyl 

chloride (PVC) chamber bases were installed on the west half and east half of each of the twelve plots 

prior to sampling to allow for settling. A total of 24 chamber bases were used in the experiment 

following the vented chamber technique. The chamber tops were made of reflective, white PVC, had a 

vent tube, sampling ports, and insulation foam to make an air-tight seal with the chamber bases. The 

chamber bases were left in place for the entire trial except for the final biomass harvest. 



24 
 

Nitrous oxide fluxes were measured near noon, when the temperature was near the average for 

the day. Chambers were located between rows and did not include any plants. Before gas sampling, 4 

chamber offsets were taken with a ruler, recorded, and averaged in order to calculate head space and 

then flux. Nitrous oxide measurements were taken by placing the closed chamber tops on the chamber 

bases and taking 15 mL samples of air using a PrecisionGlide® Needle syringe at 0, 10, 20, and 30 minute 

intervals through the 20 mm Pharma-Fix® Butyl septa sealed with 20mm Alum Tops. The samples were 

then injected into 10 mL vials and placed in a plastic bag and to be processed on a gas chromatograph 

machine with an electron capture detector (ECD), (Shimadzu® GC 2014 with AOC-5000). Standards were 

prepared using Scott Specialty Gas® in the laboratory directly before being analyzed on the gas 

chromatograph. Standards include: 0.1, 0.32, 0.65, 0.98, and 1.98 ppm N2O. Around fertilization periods, 

additional standards of 3.65 ppm and 7.46 ppm were used to ensure that the standard concentrations 

encompassed the samples taken in the field for a more accurate regression line. Nitrous oxide emission 

was calculated using the regression coefficients obtained from N2O-N concentrations against sampling 

time. In addition to collecting N2O emissions, soil temperature at 10 cm and air temperature was 

recorded during the 30-minute interval for each of the 24 rings. 

Carbon Dioxide Measurement 

Using the same chamber bases and offsets described in the previous section, a LI-COR LI-8100 

device (Lincoln, NE, USA) was used to measure the CO2 fluxes. Carbon dioxide measurements were 

taken at the same time as the N2O measurements and during the first year, twice a week for much of 

the growing season. The LI-COR® was placed on each chamber base for a time of 90 seconds and CO2 

flux was recorded; in addition, the LI-COR® also measured soil temperature at 5 cm using an attached 

temperature probe. The LI-8100 was equipped with a Wi-Fi card to enable communication with a PalmTM 

LifeDriveTM handheld PDA. 
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Soil Moisture and Soil Temperature 

Twelve Decagon® Em5b data loggers were installed to measure soil temperature using ECH2O® 

ECT temperature sensors, at 10 cm, and also soil moisture using ECH2O® EC-5 moisture sensors, at 10 

(two sensors placed in opposite directions), 30, and 50 cm continuously (once every hour) for the entire 

study period. The ECH2O® EC-5 determines volumetric water content (VWC) by measuring the dielectric 

constant of the media using capacitance/frequency domain technology with a 70 MHz frequency 

(Decagon®, 2010). A measurement from the five sensors was taken every hour for the duration of the 

project.  

Soil Analysis 

Before the M. x giganteus in the plots was established, two separate soil cores were taken from 

each of the twelve plots using a Giddings probe hydraulic soil sampling and coring machine mounted to 

the back of a truck. Soil cores (2 cm in diameter) were 100 cm long, and divided into 0-10, 10-20, 20-30, 

30-50, and 50-100 cm sections. Each plot’s soil characteristics were averaged into the respective 

corresponding fertilizer treatment and then summarized (Table 1). Soil samples were sent to Brookside 

Laboratories, Inc., New Knoxville, OH, where soil pH, extractable P, and C to N ratio (C:N) were 

determined. Soil pH was determined using a 1:1 H2O solution. Extractable P was determined following 

the Mehlich III soil test extractant. Total C and N were determined by combustion (Brookside 

Laboratories, Inc., 2000). Soil texture for determining sand, silt, and clay percentages was conducted at 

the Pedology Laboratory at the University of Illinois Urbana-Champaign. Soil samples were first air dried 

and ground to pass through 2 mm and 50 μm sieves to retrieve all the sand sized particles, leaving only 

the silt and clay particles. The silt and clay particles were then determined using the hydrometer method 

(American Society for Testing and Materials, 2000). 
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In addition to initial soil sampling, two soil cores (0-10 cm depth) were collected from each plot 

during every other gas sampling, composited, and NH4-N and NO3-N concentrations determined. Soil 

bulk density was also determined for each sample to allow the content of soil NH4-N and NO3-N per kg 

of soil area to be determined. 

Inorganic Nitrogen Leaching 

Fields fertilized with N will inherently lead to some inorganic N leaching, especially in soils with a 

low C:N ratio as is common with east-central Illinois Mollisols; therefore it is critical to quantify the 

inorganic N leaching from the agricultural system. Four ion exchange resin lysimeters were installed in 

each of the twelve plots following the design and methods described in Susfalk and Johnson (2002) and 

Langlois et al. (2003). The lysimeters were constructed with a 5.1 cm diameter PVC pipe and a coupling 

section that were a total of 7 cm long. Nitrate and NH4
+ were absorbed by a layer of ion exchange resin 

placed between two layers of washed sand and held in the lysimeter with a permeable nylon 

membrane. The lysimeters were installed at a depth of 50 cm under undisturbed soil. Water draining 

though the soil profile above the lysimeter carries NO3
- and NH4

+ dissolved in the soil water solution, 

which is then captured and adsorbed onto the resin in the lysimeter. After a year in the soil, the 

lysimeters are removed and replaced with new lysimeters containing fresh resin and allowed to remain 

in the soil for another year; the same process is conducted each next year. The mass of NO3
- and NH4

+ 

absorbed on the year-old resin was extracted using 1M KCl. Nitrate-N and NH4
+-N concentrations in the 

extract were measured colormetrically by flow injection analysis with a Lachat QuickChem 8000 (Lachat, 

Loveland, CO). The mass of the NO3
- and NH4

+ absorbed on the resin was determined by multiplying the 

concentrations by the extract volume [procedure was the same as in McIsaac et al. (2010)]. Due to the 

small surface area of the resin lysimeters, individual lysimeters could produce highly variable data. 

Therefore, to lessen the influence of individual lysimeters, outliers were trimmed and means calculated. 
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To calculate the trimmed means, the maximum and minimum observations were excluded from the 

calculation. 

Yield and biomass 

 At the end of each season, final yield data was calculated following the DOE Sun Grant 

procedure. Harvest date was noted, fresh weight was measured, percent moisture was determined, and 

dry biomass yield was calculated in Mg ha-1. To determine which M. x giganteus plants would be 

harvested, 1 m2 quadrats were constructed out of PVC pipe and placed randomly around a M. x 

giganteus plant, preferably not during wet conditions and not on the border row of the plot. Then the 

M. x giganteus plant and all tillers within the 1 m2 quadrat were clipped at 10 cm above the ground. 

Only the standing residue within the quadrat was taken, none of the fallen litter on the ground was 

used. After the first quadrat was sampled, the quadrat was flipped to the north and harvested. The 

same procedure was used again in each plot, so as to take a total of 4 plants from each of the 12 plots 

(Figure 5.). Next, the entire fresh sample was weighed on a field scale to determine wet biomass weight. 

After determining the fresh weight of each subsample, 5 randomly selected stems from each subsample 

were used to determine % moisture by drying them at 60°C for at least 48 hours. Percent moisture from 

these 5 dried tillers was used to determine dry biomass yield in Mg ha-1
 for each large subsample. Total C 

and N were determined using an Elemental Analyzer (EAS 4010, Costech). 

Data Analysis 

To calculate annual N2O and CO2 fluxes, field sampled fluxes were extrapolated to predict Flux 

(F) at one-hour intervals for the entire year based on measured soil temperature (T) at 10 cm. We 

assumed that F varied with temperature in the same manner as CO2 efflux, as described using a 

standardized Boltzmann- Arrhenius equation (e.g., (McCoy and Gillooly, 2008): 
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퐹 = 퐹 ∗ 푒
∗

 

Here, 퐹  and 푇  are the reference (measured) flux and temperature (in Kelvin), E is a the average 

activation energy of heterotrophic soil respiration (0.65 eV) (Allen et al., 2005), and k is Boltzmann’s 

constant (8.62x10-5 eV K-1). Between 0 and 30 °C, this temperature relationship roughly equates to 

Q10=2, which is a widely used standard for describing the temperature dependence of biological 

processes (Davidson and Janssens, 2006). We choose to use the Arrhenius equation, as opposed to Q10, 

because of its grounding in physical chemistry and the fact that it correctly predicts the observed decline 

in Q10 with increasing temperature (Davidson and Janssens, 2006). 

Statistical analyses were performed using SAS v9.2 (SAS Institute Inc., 2011). Dependent 

variables were analyzed for a significant response due to fertilizer treatment using regression analysis. 

Each year of results were analyzed separately. Significance was set at either α = 0.05 or α = 0.01 

depending on statistical model; correlation coefficients are expressed as r. 
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Figure 5. Schematic for harvesting the M. x giganteus biomass in each plot. The schematic below 
represents 1 plot with 100 M. x giganteus plants spaced one meter apart with each “X” 
representing a M. x giganteus plant. 1a represents the first plant sampled and 1b represents the 
plant harvested to the north of the first selected M. x giganteus plant. 2a and 2b represent the 
replication sampled in each plot to give the total of 4 plants harvested in each 1 m2.  
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RESULTS 

Soil Characteristics 

 The Drummer soil series, which is typical of what is found in central Illinois and found close to 

the experiment site, normally has a depth to horizons with greater than 15 percent sand ranging from 

102 to 152 cm. The other soil series mapped near the experiment site is in the Dana soil series. It is also 

typical of soils in central Illinois; the depth to horizons with more than 20 percent fine sand or coarser 

ranges from 60 to 102 cm. The DOE plots contain greater than 50% sand in the surface 10 cm. This 

phenomenon can be explained by Fig. 1 that shows an aerial map of the DOE site in 1993. The site is 

under row crops, but a faint stream can be made out near where the DOE site is currently located; this 

stream break is most likely where the sandiness of the DOE plots originated. The soil series of the DOE 

plots therefore has to be the Wyanet soil series (Fine-loamy, mixed, active, mesic Typic Argiudolls) 

because it contains a cap of fine sandy loam sediments at the surface.  

The soil from each of the fertilizer treatments did not differ much in the percentages of sand, silt 

and clay (Table 1). For the most part, each plot had more than 50% sand in the upper 30 cm. The silt for 

the control plots was slightly higher in percentage compared to the fertilizer treatment plots. In each of 

the fertilizer treatment plots, the percentage of sand decreased when moving down the soil profile. The 

silt content in each of the fertilizer treatments increased with depth to approximately 50% in the 50-100 

cm depth. The clay content also increased with depth to approximately 35% in the 50-100 cm depth. In 

each of the fertilizer treatments, the soil pH increased with depth to 6.5 for all plots in the 50-100 cm 

depth. The soil pH at the top 0-10 cm was 5.7 in each of the fertilizer treatments. The extractable P was 

high in the surface soils with little in the deeper layers, no doubt from past fertilization. The C/N ratios 

were generally all around 10 and typically decreased with depth.  
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Table 1. Soil pH, extractable P, total C, total N and C/N ratio and soil texture by treatment before the 
study (n = 8) 

Treatment 
Soil Depth 

(cm) pH 
Extractable P 

(mg/kg) 

 Texture (%) 

Total C 
(g kg -1) 

Total N 
(mg kg-1) 

C/N Sand Silt Clay 

Control 0-10 5.7 34 1.1 0.11 10.4 53 32 16 

(0 kg ha-1) 10-20 5.9 40 1.1 0.11 10.2 51 32 17 

 20-30 6.0 30 1.0 0.10 10.1 47 35 18 

 30-50 6.0 8 0.7 0.08 9.8 29 45 26 

 50-100 6.5 1 0.4 0.04 10.3 8 55 37 

60 kg ha-1 0-10 5.7 45 1.1 0.11 10.1 58 27 15 

 10-20 5.8 50 1.1 0.11 10.0 57 28 15 

 20-30 5.9 44 1.1 0.11 10.5 57 29 15 

 30-50 6.2 12 0.7 0.08 9.5 46 37 18 

 50-100 6.5 1 0.4 0.05 8.1 8 55 37 

120 kg ha-1 0-10 5.7 38 1.2 0.11 10.2 55 30 16 

 10-20 6.0 52 1.1 0.12 9.9 55 31 15 

 20-30 6.1 40 1.1 0.11 9.5 51 32 17 

 30-50 6.0 11 0.7 0.08 8.9 35 49 22 

  50-100 6.5 1 0.4 0.04 9.1 15 50 35 
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Table 2. Average soil moisture and soil temperature taken hourly for the entire growing season (May 1 – 
October 31) for 2009 and 2010. 

  Treatment Soil Moisture (m³/m³ VWC) 
Soil Temperature 
(°C) 

Year (kg ha-1) @10 cm @30 cm @50 cm @10 cm 

2009 0 0.23 (0.02)‡ 
0.28 
(0.07) 

0.34 
(0.06) 20.1 (0.3)  

 
60 0.22 (0.01) 

0.27 
(0.02) 

0.30 
(0.06) 20.2 (0.4)  

 
120 0.22 (0.03) 

0.26 
(0.06) 

0.29 
(0.07) 19.6 (0.4)  

2010 0 0.21 (0.02)  
0.22 
(0.05) 

0.29 
(0.03) 18.9 (1.7) 

 
60 0.16 (0.02)  

0.21 
(0.03) 

0.27 
(0.08) 19.9 (0.5) 

  120 0.19 (0.02)  
0.21 
(0.04) 

0.25 
(0.07) 19.1 (0.8) 

‡ Values in parentheses are standard devia ons. 
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Soil moisture at any of the three depths, 10, 30 or 50 cm, during the growing season (May 1 – 

October 31) in 2009 were not  affected by fertilizer treatment (p = 0.5772, p = 0.5150, and p = 0.2470, 

respectively); likewise, soil temperature at 10 cm did not significantly respond to fertilizer treatment(p = 

0.0834) (Table 2). Soil moisture at 10 cm was not significantly affected by fertilizer treatment during the 

growing season in 2010 (p = 0.4157). Soil moisture at 30 and 50 cm also did not respond to fertilizer 

treatment (p = 0.6555, and p = 0.2969, respectively). Likewise, soil temperatures at 10 cm did respond 

to fertilizer treatment during the growing season in 2010 (p = 0.7674). 

Nitrous Oxide 

In 2009, mean cumulative N2O fluxes (Table 3) were not affected by fertilizer treatments. In 

2010, however, the cumulative nitrous oxide fluxes were significantly different (p = 0.0152, α = 0.05 for 

all statistical comparisons hereafter). In 2009, mean cumulative N2O fluxes ranged from 0.75 kg-N ha-1 in 

the control plots, to 1.30 kg-N ha-1 in the 60 kg N ha-1 treatment plots, to 1.35 kg-N ha-1 in the 120 kg N 

ha-1 treatment plots (p = 0.0859). In 2010 mean cumulative N2O fluxes ranged from 0.35 kg-N ha-1 in the 

control plots, to 0.77 kg-N ha-1 in the 60 kg N ha-1 treatment plots, to 2.91 kg-N ha-1 in the 120 kg N ha-1 

treatment plots. Mean daily N2O fluxes (Table 3) were calculated by taking the mean cumulative N2O 

flux and dividing the value by 365 to obtain a daily flux mean. The mean daily fluxes followed the same 

pattern as mean cumulative N2O fluxes in both years. In 2009, mean daily N2O fluxes ranged from 2.06 g-

N ha-1 day-1 kg-N ha-1 in the control plots, to 3.65 g-N ha-1 day-1 in the 60 kg N ha-1 treatment plots, to 

3.68 g-N ha-1 day-1 in the 120 kg N ha-1 treatment plots and observed no difference among treatments (p 

= 0.0859). In 2010, mean daily N2O fluxes ranged from 0.95 g-N ha-1 day-1 kg-N ha-1 in the control plots, 

to 2.12 g-N ha-1 day-1 in the 60 kg N ha-1 treatment plots, to 7.98 g-N ha-1 day-1 in the 120 kg N ha-1 

treatment plots. In 2010, mean daily N2O fluxes were different among treatment plots (p = 0.0152).  
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In 2009, cumulative N2O emissions across the treatment plots were lower than in 2010 despite 

having more precipitation in 2009 than in 2010. Precipitation in 2009 was 106 cm and in 2010 it was 81 

cm (data from long-term weather station located at the Energy Biosciences Institute farm where plots 

reside). Maximum air temperature was greater in 2009 compared to 2010; 32.7 and 27.0 °C respectively.  

Precipitation a week after fertilization was 0.13 cm in 2009 and 2.41 cm in 2010 (Figure 6). 

Average soil temperature at 10 cm was 27.6 °C in 2009 and 15.0 °C in 2010 during that week. Soil 

moisture in 2009 was on average 0.22 m3 m-3 VWC (volumetric water content) compared to 2010 where 

it was 0.23 m3 m-3 VWC (volumetric water content). Nitrous oxide emitted was 0.028, 0.033, and 0.051 

kg N2O-N ha-1 for treatments 0, 60, and 120 kg-N ha-1 in 2009 and 0.033, 0.076, and 0.203 in 2010 kg 

N2O-N ha-1 for treatments 0, 60, and 120 kg-N ha-1.  

Nitrous oxide emissions one month after fertilization were 0.101, 0.228, and 0.378 kg N2O-N ha-1 

for treatments 0, 60, and 120 kg-N ha-1 in 2009 and 0.126, 0.282, and 0.822 in 2010 kg N2O-N ha-1 for 

treatments 0, 60, and 120 kg-N ha-1 (Figure 6). Precipitation amounts were 11.2 cm in 2009 and 8.6 cm in 

2010, leading to soil moisture averages of 0.23 m3 m-3 VWC in 2009 compared to 2010, where it was 0.23 

m3 m-3 VWC. Average soil temperature at 10 cm was 24.1 °C in 2009 and 18.3 °C in 2010.  

Nitrous oxide produced three months following fertilization was 0.182, 0.437, and 0.599 kg N2O-

N ha-1 for the 0, 60, and 120 kg-N ha-1 treatments in 2009 and 0.201, 0.547, and 2.262 kg N2O-N ha-1 for 

the 0, 60, and 120 kg-N ha-1 treatments in 2010 (Figure 6). Precipitation had amounted to 25.2 cm in 

2009 and 31.4 cm in 2010 after three months; this corresponded to soil moisture average of 0.214 m3   

m-3 VWC in 2009, and similarly 0.216 m3 m-3 VWC in 2010. Soil temperature at 10 cm was 22.7 °C in 2009 

and 21.1 °C in 2010. 

Peak N2O values for individual sampling days were 25% lower in 2009 than in 2010 in the 120 kg 

ha-1 treatment plots, 0.087 compared to 0.403 mg N2O-N ha-1 hr-1, respectively. In 2009, peak N2O fluxes 
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on individual sampling days did occur after fertilization, but were not as dramatic as in 2010. In 2010, 

the peak N2O flux for on an individual sampling day was correlated to a large precipitation event and the 

larger fertilizer treatment of 120 kg N ha-1; the N2O flux was 0.403 mg N2O-N ha-1 hr-1 and following 4.47 

cm of precipitation on June 9th, 2010.  

In 2009, cumulative N2O fluxes increased gradually throughout the year, peaking about 39 days 

after fertilization, for the 60 and 120 kg ha-1 fertilizer treatment plots and not influenced as much by 

fertilization as in 2010, where immediately following fertilization, cumulative fluxes for the 60 and 120 

kg ha-1 fertilizer treatment plots were large and peaked 49 days following fertilization (Figure 6). Using 

the control plots as the base, in 2009 the 60 kg N ha-1 lost only 0.55 kg N2O-N ha-1 and the 120 kg N ha-1 

lost only 0.60 kg N2O-N ha-1. In 2010, the 60 kg N ha-1 lost only 0.42 kg N2O-N ha-1, while the 120 kg N  

ha-1 lost 2.56 kg N2O-N ha-1 (Table 3).  

Nonlinear increases in mean daily N2O fluxes were observed one year, 2010 (Figure 7). Mean 

daily fluxes were well described by the nonlinear model during 2010 (r2 = 0.41, p = 0.015); however, the 

corresponding standard deviation for each treatment plot was large in both models. Nitrous oxide 

emissions and soil temperature at 10 cm were significantly related (r = 0.16, p = 0.04). In addition, soil 

moisture at 10 cm and N2O emissions were also significantly related (r = 0.23, p = 0.0034) (Figure 9). 

Carbon Dioxide 

Cumulative CO2 fluxes were not affected by fertilizer treatment. No significant differences were 

observed in relation to either mean cumulative CO2 flux or mean daily CO2flux by fertilizer treatment; in 

fact, the CO2 emissions were similar across the three fertilizer treatments (Table 4). In 2009, mean 

cumulative CO2 fluxes ranged from 8.62 Mg-C ha-1 in the control plots to 9.11 Mg-C ha-1 in the  
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Table 3. Cumulative N2O flux during 2009 and 2010. Differences are only within the year and 
measurements. 

Year 
Treatment 
(kg N ha-1) 

Mean Cumulative N2O 
Flux (kg N ha-1)† 

2009 0 0.75 (0.06) ‡ ND)‡ ND 

 
60 1.30 (0.65) 

 
120 1.35 (0.41) 

2010 0 0.35 (0.09)* 

 
60 0.77 (0.39) 

  120 2.91 (2.08) 
† Cumula ve fluxes were calculated from measured 
fluxes corrected for temperature variations using a 
Q10 = 2. 
‡ Values in parentheses are standard devia ons. 
ND, means no difference among treatments within a 
given year (α = 0.05) . 
*Treatments are different within a given year (α = 0.05). 
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Figure 6. 2009 and 2010 sampling data: Precipitation (a), soil moisture at 10 cm (b), soil temperature at 
10 cm (c), individual N2O sampling dates (d), cumulative N2O emissions by date (e). 
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Figure 7. Mean daily N2O flux during 2009 and 2010. Error bars represent standard deviations of the 
treatment averages. 
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Table 4. Cumulative CO2 flux during 2009 and 2010. Differences are only within the year and 
measurements; however, there was no difference among any treatment or measurement.  

 

Year 
Treatment 
(kg N ha-1) 

Cumulative CO2 
Flux (Mg-C ha-1)† 

2009 0 8.62 (1.75)‡ ND 

 
60 9.11 (1.24) 

 
120 8.62 (1.14) 

2010 0 8.90 (0.85) ND 

 
60 9.16 (1.92) 

  120 8.96 (1.53) 
† Cumula ve fluxes were calculated from 
measured fluxes corrected for temperature 
variations using a Q10 = 2. 
‡ Values in parentheses are standard devia ons. 
ND, means no difference among treatments 
within a given year (α = 0.05). 
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Figure 8. 2009 and 2010 sampling data: Precipitation (a), soil temperature at 10 cm (b), individual CO2 
sampling dates (c,) Cumulative CO2 emissions (d).  
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Figure 9. CO2 emissions vs. soil temperature at 10 cm (a), N2O emissions vs. soil temperature at 10 cm 
(b), CO2 emissions vs. soil moisture at 10 cm (c), and N2O emissions vs. soil moisture at 10 cm 
(d). Significance level α = 0.05. 
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60 kg N ha-1treatment plots to 8.62 Mg-C ha-1 in the 120 kg N ha-1 treatment plots (p = 0.9984) (Table 4). 

In 2010, mean cumulative CO2 fluxes ranged from 8.90 Mg-C ha-1 in the control plots to 9.16 Mg-C ha-1 in 

the 60 kg N ha-1 treatment plots to 8.96 Mg-C ha-1 in the 120 kg N ha-1 treatment plots (p = 0.9546). 

Mean daily CO2 fluxes were calculated by taking the mean cumulative CO2 flux values and it by 365 to 

obtain a daily flux mean. In 2009, mean daily CO2 fluxes ranged from 23.6 kg-C ha-1 day-1 in the control 

plots to 25.0 kg-C ha-1 day-1 in the 60 kg N ha-1 treatment plots to 23.6 kg-C ha-1 day-1 120 kg N ha-1 

treatment plots (p = 0.9984). In 2010, mean daily CO2 fluxes ranged from 24.4 kg-C ha-1 day-1 in the 

control plots to 25.1 kg-C ha-1 day-1 in the 60 kg N ha-1 treatment plots 24.5 kg-C ha-1 day-1 in the 120 kg 

N ha-1 treatment plots (p = 0.9546). Carbon dioxide was significantly related to soil temperature at 10 

cm (r = 0.64, p < 0.0001). However, CO2 and soil moisture at 10 cm were not related (Figure 9).  

Soil Inorganic Nitrogen 

 In 2009, surface soil (0-10 cm) NH4
+ content was highest directly following fertilization in each of 

the treatment plots, with the 60 kg N ha-1 treatment being larger than 120 kg N ha-1 (59 and 22 mg N    

kg-1, respectively) (Figure 10). The next sampling revealed that the 120 kg N ha-1 was larger than the 60 

kg N ha-1 (56 and 30 mg N kg-1, respectively). Subsequent sampling following fertilization had decreasing 

NH4
+ concentrations for both fertilizer treatments in 2009. The same results were found in 2010, where 

the 60 kg N ha-1 treatment had larger peaks near fertilization (May 11th, 2010) than the 120 kg N ha-1 (27 

and 19 mg N kg-1, respectively). But even on May 13th, 2010, the 60 kg N ha-1 was still larger than the 120 

kg N ha-1 (38 and 33 mg N kg-1, respectively). As each year progressed following fertilization, soil NH4
+ 

decreased to almost zero in all plots, as it was nitrified and/or taken up by the plants. Soil NO3
- 

concentrations in 2009 reached a maximum concentration of 31 mg N kg-1 for the 120 kg N ha-1. In 2010, 

the maximum soil NO3
- concentration was 29 mg NO3-N kg-1 for the 60 kg N ha-1 and 59 mg N kg-1 for the  
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Figure 10. 2009 and 2010 sampling data: Precipitation (a), individual N2O sampling dates (b), soil nitrate 
concentration (c), soil ammonium concentration (d).  
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Figure 11. Individual N2O-N emissions vs. soil NO3-N concentrations for both 2009 and 2010. 
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Table 5. Trimmed mean annual leaching of nitrate, ammonium, and total inorganic nitrogen observed 
from the ion exchange resin lysimeters at 50 cm soil depth under M. x giganteus.  

Year 
Treatment 
(kg N ha-1) 

Leached NO3
- 

(kg N ha-1 yr-1) 
Leached NH4

+ 
(kg N ha-1 yr-1) 

Leached total Inorganic 
(kg N ha-1 yr-1) 

1 0 6.4 (3.2) ‡ ND 6.8 (0.8) ND 13.3 (2.8) ND 

 
60  7.1 (6.7) 5.6 (0.5) 12.6 (7.1) 

 
120 13.3 (7.0) 7.1 (1.3) 20.5 (8.0) 

2 0 8.9 (5.9)** 2.3 (2.1)ND 9.1 (7.3)** 

 
60 15.3 (7.1) 3.0 (1.9) 18.3 (7.9) 

  120 28.9 (6.1) 6.1 (4.3) 34.9 (8.5) 
‡ Values in parentheses are standard devia ons. 
ND, means no difference among treatments within a given year (α = 0.05). 
*Treatments are different within a given year (α = 0.05). 
**Treatments are different within a given year (α = 0.01). 
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Table 6. Yield and biomass C and N content of the harvested M. x giganteus. The 2009 growing season 
crop was harvested on January 10th, 2010, and the 2010 growing season crop was harvested on 
November 29th, 2010.  

  

Year Treatment 
(kg N ha-1) 

Yield (Mg ha-1) Biomass N 
(kg ha-1) 

Biomass C (kg ha-1) Biomass C/N 
(kg ha-1) 

2009 0 1.1 (0.7)† ND 
‡DNR 

 
60 4.1 (3.7) 

 
120 4.0 (2.2) 

2010 0 14.9 (2.9) ND 44.9 (9.0)** 6698 (1287) ND 153 (39) ND 

 60 15.8 (1.8) 53.5 (5.3) 7257 (851) 137 (24) 

  120 17.0 (1.4) 66.6 (1.3) 7796 (656) 117 (9) 

† Values in parentheses are standard deviations. 
‡ DNR, data not recorded. 

   ND, means no difference among treatments within a given year (α = 0.05). 
* Treatments are different within a given year (α = 0.05).  
** Treatments are different within a given year (α = 0.01).  
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120 kg N ha-1. Soil NO3
- concentrations in both the 60 and 120 kg N ha-1 treatment plots were greatest 34 

days after fertilization, the same day as the 4.47 cm of precipitation on June 9th, 2010. The greatest 

concentration of soil NO3
- corresponded to the largest N2O emissions from the 120 kg N ha-1 treatment 

plot. Following the maximum NO3
- concentration on June 9th, 2010, NO3

- in the 120 kg N ha-1 treatment 

decreased (26 mg N kg-1), but increased due to another precipitation event on June 29th, 2010 (39 mg N 

kg-1). Following the peak in the 60 kg N ha-1 the soil NO3
- in the 60 kg N ha-1 decreased steadily for the 

rest of the growing season. In the 120 kg N ha-1 plots following the June 29th, 2010 maximum, the soil 

NO3
- concentration decreased to near zero by the end of the growing season. The control plot 

experienced a small maximum concentration on June 16th, 2010 (11 mg N kg-1) following a series of 

rainfall events, but then steadily decreased to near zero by the end of the growing season (Figure 10).  

 Soil inorganic NO3
- concentrations were significantly related to N2O emissions (P < 0.0001) 

(Figure 11) for both years combined. 

Inorganic Nitrogen Leaching 

 The resin lysimeters removed from the 2009 M. x giganteus crop are represented by Year 1 

because they were buried from April of 2009 to April of 2010; year 2 represents resin lysimeters buried 

in April of 2010 to April of 2011 (Table 5). Mean values of NO3
- leached from 50 cm in the M. x giganteus 

in 2010 were not significantly different among the 0, 60, and 120 kg N ha-1; the values were 6.4, 7.1, and 

13.3 kg N ha-1 yr-1, respectively (p = 0.1189). Likewise, mean NH4
+ was not significantly different among 

treatments (p = 0.7093). Values for NH4
+ were 6.8, 5.6, and 7.1 kg N ha-1   yr-1 from the 0, 60, and 120 kg 

N ha-1 plots, respectively. Combining the NO3
- and the NH4

+ provides the total inorganic N leached from 

the plots. In 2010, total inorganic N was not statistically different among treatments (p = 0.1448); the 

values were 13.3, 12.6, and 20.5 kg N ha-1 yr-1 from the 0, 60, and 120 kg N ha-1 plots, respectively.  
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 Mean values of NO3
- leached in 2011 indicated that fertilizer treatment had an effect (p = 

0.0005). The NO3
- values from 2011 were 6.9, 15.3, and 28.8 kg N ha-1 yr-1 from the 0, 60, and 120 kg N 

ha-1 plots, respectively. Ammonium was not statistically different among treatment plots (p = 0.0954); 

the values for NH4
+ in 2011 were 2.3, 3.0, and 6.1 kg N ha-1 yr-1 from the 0, 60, and 120 kg N ha-1 plots, 

respectively. The total inorganic N leached in 2011 also showed an effect to N fertilizer treatment (p = 

0.0005); the values were 9.2, 18.3, and 34.9 kg N ha-1 yr-1 from the 0, 60, and 120 kg N ha-1 plots, 

respectively. 

Yield and Biomass 

Harvested M. x giganteus yields from the 2009 crop were on average 1.1, 4.1, and 4.0 from the 

0, 60, and 120 kg N ha-1 plots, respectively (p = 0.1380) (Table 6.). These values were much smaller 

compared to the 2010 crop, which were 14.9, 15.8, and 17.0 from the 0, 60, and 120 kg N ha-1 plots, 

respectively (P = 0.1698). Biomass C and N data from the harvested 2009 crop were unavailable because 

the M. x giganteus was in an early establishment period, so that measurements were not made. The 

biomass data from the 2010 crop had harvested N contents of 44.9, 53.5, and 66.6 kg N ha-1 from the 0, 

60, and 120 kg N ha-1 plots, respectively (Table 6); the N content from the harvested biomass in 2010 

showed an effect to N fertilizer (P = 0.0004). Carbon harvested from 2010 was 6698, 7257, and 7796 kg 

C ha-1 from the 0, 60, and 120 kg N ha-1 plots, respectively (P = 0.1218). By dividing the N from the C in 

biomass gives us the C:N ratios from the biomass, which were 153, 137, and 117 kg ha-1 from the 0, 60, 

and 120 kg N ha-1 plots, respectively (P = 0.0755).  
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DISCUSSION 

Soil Type 

Although M. x giganteus had low N2O emissions for both years for the 0 and 60 kg N ha-1 

treatment plots, the 120 kg N ha-1 plots did not have as low emissions. The soil present at the DOE site 

may contribute to its comparable N2O emissions when comparing N2O emissions from a corn-soybean 

rotation on similar sandy loam soils. In a study on corn under loamy and sandy soils, Hoben et al. (2011) 

observed cumulative N2O-N emissions ranging from 0.75 kg N2O-N ha-1 to 2.5 kg N2O-N ha-1 in 2007 and 

1 kg N2O-N ha-1 to 2 kg N2O-N ha-1 in 2008 for the 135 kg N ha-1 fertilizer treatment (which is the closest 

to the 120 kg N ha-1 used at the DOE site). The DOE plots from the 120 kg N ha-1 treatment had 1.35 and 

2.91 kg N2O-N ha-1, respectively. The soils at the DOE site contain a large amount of sand compared to 

what is typically found in central Illinois. In a study by De Wever et al. (2000), anaerobic soil incubations 

revealed that loamy sand soils produce an immediate and high amount N2O as long as nitrate is 

available. De Wever et al. (2000) also found that N2O production was higher under sandy soils compared 

to loamy soils. Hellebrand et al. (2003) found cumulative N2O emissions from fertilized (150 kg N ha-1) 

poplar (another proposed biofuel crop) were 1.04, 1.45, and 2.97 kg N2O-N ha-1 (averaged for the two 

poplar plots) for three consecutive years with varying precipitation under sandy soils. The data from 

Hellebrand et al. (2003) is comparable to the cumulative N2O emissions from the DOE site for the 120 kg 

N ha-1 fertilization plots. 

Fertilization Rate and N2O Emissions 

 A response to fertilizer treatments was measured for the emissions of N2O, which is similar to 

the only other study focusing on N2O emissions from M. x giganteus (Jørgensen et al., 1997). The 

authors reported N2O emissions from two fertilization treatments, 0 and 60 kg ha-1 were 0.14 and 1.09 

kg N ha-1, respectively; these numbers were similar to the DOE study which were 0.75 and 1.30 kg N ha-1, 
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respectively in 2009, and 0.35 and 0.77 kg N ha-1, respectively in 2010. Results from several N2O 

emission studies on row-crop agriculture shows that N2O emissions correlate well with fertilizer N rate; 

in a review of several studies, Millar et al. (2010) indicated that as fertilizer N amount increased, 

resulting N2O emission rates increased as well. The observed exponential trend in N2O emissions from 

2010 (Figure 7) is in agreement with Hoben et al. (2011). They indicated that N2O increased 

exponentially with increasing N fertilization amounts. Similar results were observed by Grant et al. 

(2006), where these authors observed that N2O emissions increased exponentially with increasing 

fertilizer rates.  

Fertilization Rate and CO2 Emissions 

Unlike N2O emissions, cumulative CO2 emissions were not affected by fertilizer treatments (p = 

0.9984 and p = 0.9546 for 2009 and 2010 respectively). No published study was found that tested 

variable fertilizer N treatments on M. x giganteus and CO2 emissions, but one study on a wheat-corn-

soybean rotation showed no difference among tillage effects, N placement depth effects, soil water 

content effects, or tillage-N placement interactions with respect to seasonal CO2 emissions (Drury et al., 

2006). Drury et al. (2006) found that growing season (May 1st to October 31st) CO2 emissions in no till 

were 5.49 Mg C ha-1 in 2000, 5.91 Mg C ha-1 in 2001, and 5.37 Mg C ha-1 in 2002. This is similar to the 

DOE M. x giganteus study because the plots were also no till and the average was 7.49 Mg C ha-1 for the 

growing season in 2009 and 6.74 Mg C ha-1 for the growing season in 2010. Mielnick and Dugas (2000) 

observed the average annual soil CO2 flux in a tallgrass prairie in Texas was 17 Mg C ha-1. Their results 

were similar to annual fluxes at the Konza Prairie in Kansas of 13-21 Mg C ha-1 (Knapp et al., 1998). 

Mielnick and Dugas (2000) attribute the large annual CO2 fluxes to high annual precipitation (88 cm for 

the 84 year average) and even distribution of rainfall throughout the year; in addition, greater soil C 

contents could also explain the high CO2 emissions from the tallgrass prairie. The average cumulative 
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CO2 flux across all the DOE plots in 2009 and 2010 were smaller than from the tallgrass prairie studies; 

8.8 and 9.0 Mg CO2-C ha-1, respectively. This is most likely because the authors from the tallgrass prairie 

studies did not factor in hourly changes in temperature into their annual flux equations, which would 

most likely account for the larger fluxes because temperature is such a critical factor for CO2 emissions 

(Figure 9). Another likely reason for the smaller CO2 fluxes from the M. x giganteus is that it is young and 

still building soil C.  

Precipitation and Fertilizer Application Timing and Its Effects on N2O Production 

Soil water amounts in excess of field capacity will promote denitrification and can occur through 

a variety of circumstances; heavy rain or too much irrigation can lead to denitrification throughout the 

biologically active soil zone (Smith et al., 1997). In addition, fertilization timing can have an important 

role in determining the extent of N2O production (Smith et al., 1997). The peak in N2O emissions from 

the 120 kg N ha-1 treatment plots in 2010 on June 2th, 2010 (Figure 6) can also be attributed to the large 

precipitation event (4.47 cm of rain) that occurred the day before. This is due to rainfall reducing the O2 

content in the soil pore space, a requirement for the production of N2O by nitrification and 

denitrification (Jørgensen et al., 1997). In the only N2O emission study on M. x giganteus, Jørgensen et 

al. (1997) observed an immediate peak in N2O emission following a rainfall event in mid-July.  

Parkin and Kaspar (2006) also observed responses to precipitation events on fertilized corn 

plots; the largest peaks of N2O occurred in response to rainfall events after fertilizer was applied. In 

addition, Parkin and Kaspar (2006) also observed N2O fluxes from the soybean plots after rainfall, but to 

a lesser extent than the corn plots. Baggs et al. (2003) indicated large fluxes of N2O after fertilization 

following rainfall in fertilized rye and bean. Engel et al. (2010) found that for a canola (Brassica rapa L.), 

apart from fertilizer placement effects, N2O emissions were clearly driven by precipitation events, or the 

absence of such events. Groffman and Tiedje (1988) found that when soils are dried and then rewetted, 
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pulses of denitrification and its corresponding N2O emissions can be large and significant due to 

enhanced microbial activity. This phenomenon is likely the mechanism for the large N2O emission 

recorded at the DOE plots on June 9th, 2010. Groffman and Tiedje (1988) attribute the pulse in 

denitrification to reduced soil O2 levels from aerobic respiration rather than the increased substrate for 

the denitrifiers. The large precipitation event on June 9th, 2010 likely left the soil saturated with water. 

That lack of O2 for respiration led to the denitrification of the soil NO3
- supplied by fertilization earlier in 

the spring; the soil NO3
- concentration was 59 mg N kg-1 in the 120 kg N ha-1 plot. When the fertilizer was 

applied on May 6, 2010 rainfall had occurred a few times between the fertilization date and the large 

rainfall event, but not enough for the soil NO3
- to be fully converted to N2O and N2 through 

denitrification. The average soil moisture from May 6th, 2010 to June 7th, 2010 was 0.23, 0.28, and 0.33 

WC for 10, 30, and 50 cm, respectively. The soil moisture on June 8th, 2010 was on average 0.21, 0.26, 

and 0.33 VWC for 10, 30, and 50 cm, respectively, compared to 0.28, 0.31, and 0.36 on June 9th, 2010 

(Figure 6). The precipitation caused an increase in soil moisture, which provided the conditions for rapid 

denitrification of soil N. This rapid denitrification following rewetting of dry soils by a major precipitation 

event follows the results of Groffman and Tiedje (1988) and is consistent with Smith and Parsons (1985) 

who found that denitrification enzymes can persist under drying soils. Groffman and Tiedje (1988) also 

found that the pulse of denitrification following rewetting of soils can be relatively brief; this is 

consistent with the results from the DOE study in that the large N2O emission on June 9th, 2010, resulted 

in a quick decline of N2O emissions for the rest of the year, most likely because the NO3
- needed for 

microbial denitrification was exhausted. 

Greenhouse Gas Emissions and Abiotic Parameters 

Fertilizer application leads to an increase in soil N2O emissions by increasing the mineral N pool 

available for nitrification and denitrification (Engel et al., 2010). Therefore abiotic factors largely control 



53 
 

the amount and timing of N2O emissions. Temperature was significantly correlated to N2O emissions (p = 

0.04); therefore, the general trend observed in this study was as temperature increases, N2O emissions 

increased as well. Conversely, as temperature decreased, microbial activity also likely decreased, leaving 

little to no N2O emissions because it was simply too cold for microbial activity to allow for nitrification or 

denitrification. This is supported by Bouwman et al. (1993); the authors concluded that low winter 

temperatures in temperate regions limit N2O production. In addition Phillips et al. (2009) concluded that 

the magnitude of N2O emissions is likely to vary with temperature since microbial activity is strongly 

related to temperature.  

Similar trends can be observed for N2O and soil moisture at 10 cm. As soil moisture increases, 

N2O emissions generally increase also. As a result, soil moisture was significantly correlated to N2O (p = 

0.0034). At low soil moisture microbial activity is hindered, limiting the amount of N2O that can be 

produced. At high soil moisture complete denitrification could be taking place so all the N could be 

converted to N gas and could explain the low N2O emissions at high soil moisture content. Conflicting 

results like these were also observed by Groffman and Tiedje (1988); they concluded that denitrification 

rates do not have a constant relationship with water content. 

Drury et al. (2006) found that soil temperature was the driving factor for the difference in CO2 

emissions each year, meaning warmer years will have larger CO2 emissions than cooler years. This 

phenomenon is confirmed by the significant relationship between CO2 and soil temperature at 10 cm   (p 

< 0.0001, Figure 9.). In addition, Parkin and Kaspar (2003) observed that temperature is normally the 

strongest predictor of CO2 flux. Raich and Potter (1995) also found that temperature is the single most 

important variable for predicting the soil CO2 flux. Furthermore, Raich and Potter (1995) found that 

maximum CO2 emissions from soils occur during the summer (approximately May-September). The DOE 

plots also experienced this pattern because the summer months contributed larger CO2 emissions due 
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to increased temperatures. 2009 experienced larger maximums in temperature and, as a result, CO2 

emissions were larger compared to 2010 (Figure 8). Even though soil temperature and soil moisture was 

greater in 2009 compared to 2010, cumulative CO2 emissions were about the same in 2010 as 2009. 

These results further highlight the complexity involved with soil respiration especially because CO2 

emissions did not correlate at all with soil moisture at 10 cm. Parkin and Kaspar (2003) also found that 

soil water content affects CO2 flux, but was not a strong predictor of average diurnal CO2 flux patterns.  

 Woli et al. (2010) found that for central Illinois soils, soil type and fertilizer additions that 

increase the soil NO3
--N concentrations appeared to be the driving force in controlling the mole fraction 

of N2O on biofuel production soils. Peak N2O emissions soon after fertilization can be attributed to the 

addition of N to the system, especially for the 120 kg N ha-1 treatment in 2010; results were similar to 

Woli et al. (2010) and the N2O emissions following fertilization can be attributed to higher exchangeable 

soil NO3
--N and NH4

+-N concentrations. Both years, soil NH4
+-N was, as expected, at its largest 

concentration after fertilization because urea was the fertilizer used and is readily broken down by soil 

microbes into NH4
+-N. Engel et al. (2010) found that the delay in N2O emission peaks was likely tied to 

inhibition of urea hydrolysis and nitrification into NO3
-; however, some N2O is emitted as a result of 

nitrification (Smith and Cohen, 2004). Similar results were observed at the DOE plots because directly 

after fertilization, NH4
+-N concentrations were at their highest; then the NH4

+-N is nitrified into NO3
- by 

soil microbes, leading to the increased soil NO3
--N concentrations following fertilization. Recous and 

Machet (1999) found that after 7 days, only 10% of the applied urea was left in the form of NH4
+-N. They 

attribute this to quick nitrification of the applied urea. In all of the DOE plots, the C:N ratio is low, 

meaning that most of the N need by the M. x giganteus can be supplied from soil N; however at the 

detriment of the soil N reservoirs. Grant et al. (2006) indicate that a low C:N ratio allows for 

mineralization of SON. Therefore, fertilizer rates in excess of the crop need, if sustained over time, 

would cause greater accumulation of soil organic N (SON) and mineral N, and therefore more rapid 
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mineralization and nitrification, resulting in larger N2O emissions (Grant et al., 2006). This can be seen 

clearly with the rapid increase then decrease in NO3
--N following precipitation events over the growing 

season. The relationship between soil NO3
--N concentrations and N2O flux was significant (p < 0.0001) 

(Figure 11), meaning as soil NO3
--N concentrations increase N2O emissions increase as well. After the 

quick NH4
+-N nitrification, most of the excess N in the soil remains in the form of NO3

--N and is subject to 

microbial transformation to N2O when denitrification occurs. The flux of N2O and denitrification by soil 

NO3
--N amounts is well known (Aulakh et al., 1992; Mulvaney et al., 1997; Smith et al., 1997); Recous 

and Machet (1999) found that for winter wheat that as fertilizer N remains longer in the soil, more of 

the N is subject to other microbial processes (immobilization, gaseous emissions, etc.) instead of being 

taken up by the crop.  

Inorganic Nitrogen Leaching 

In addition to N losses through N2O production, loss of N can occur through subsurface leaching; 

the most common form of N that is leached is NO3
-. Additions of N fertilizer are needed to maximize 

plant productivity, but also add to the N that can be leached from the system. In a study by McIsaac et 

al. (2010) comparing corn-soybean rotational systems to M. x giganteus and switchgrass, the corn-

soybean system experienced significantly greater losses of NO3
- and total inorganic N. Their study used 

the same resin lysimeter procedure conducted at the DOE plots. The M. x giganteus plots in the study by 

McIsaac et al. (2010) were not fertilized; their findings for unfertilized M. x giganteus were slightly 

smaller compared to the control and 60 kg N ha-1 treatment plots in 2010 and just the 0 kg N ha-1 

treatment plot in 2011. Their observed 4-year average losses from M. x giganteus were 3.0, 1.8, and 4.8 

kg N ha-1 yr-1 for NO3
-, NH4

+, and total inorganic N, respectively. In year 1 of the study, inorganic N 

leaching from the 120 kg N ha-1 plots was similar to the N losses from the corn-soybean rotation from 

the McIsaac et al. (2010) study. Losses were on a 5-year average 40.4, 2.4, and 43.0 kg N ha-1 yr-1 for 
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NO3
-, NH4

+, and total inorganic N, respectively. In 2011, N losses from all forms of N were larger than the 

corn-soybean rotation from McIsaac et al. (2010). Christian and Riche (1998) indicated that NO3
- losses 

from first year M. x giganteus was 154 kg N ha-1 yr-1, but then quickly decreased to 8 and 3 kg N ha-1 yr-1 

in years 2 and 3, respectively; NH4
+ losses under M. x giganteus in all years were less than 1 kg N ha-1    

yr-1.  

The loss of N from the 120 kg N ha-1 treatment plots in year 2 of the study are also within the 

range indicated by Gentry et al. (2009) that reported NO3
- losses from a nearby central Illinois corn and 

soybean watershed, ranging from 22.7 to 59.9 kg N ha-1 yr-1. The losses of NO3
- from the 120 kg N ha-1 

treatment plots in 2011 are slightly larger compared to a study by David et al. (1997) that observed N 

losses from drainage tiles near the DOE site ranging from 20.2 to 48.3 kg N ha-1 yr-1. McIsaac and Hu 

(2004) found NO3
- losses from tile-drained watersheds to range between 13.7 to 38.1 kg N ha-1 yr-1. 

Nitrate losses from the 120 kg N ha-1 treatment plots in 2011 were also larger compared to results from 

a study by Mitchell et al. (2000) that found NO3
- losses from corn-soybean to range between 14.0 to 

38.0. The 60 kg N ha-1 fertilization treatment plots in 2011 experienced smaller NO3
- losses compared to 

the 120 kg N ha-1 and were on the smaller end of the range of all the above mentioned corn-soybean 

studies and tile observations with an average NO3
- loss of 21.9 kg N ha-1 yr-1. Since the lysimeters were 

only at a depth of 50 cm, additional root uptake and/or denitrification could have been taking place 

deeper than the lysimeters were measuring; this deeper uptake or denitrification would reduce the 

amount of inorganic N reaching tile drains and streams (McIsaac et al., 2010). Even though the quantity 

of NO3
- leached under the DOE M. x giganteus was much greater compared to the studies by McIsaac et 

al. (2010) and Christian and Riche (1998), some of the characteristics of M. x giganteus suggest that it is 

capable of retaining N much better; the extensive rooting system, longer growing season, and addition 

of C to the soil all promotes the retention of NO3
- (McIsaac et al., 2010). 
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Yield and Biomass 

The productivity of M. x giganteus can be great, yielding a range between 5 and 55 Mg ha-1; this 

makes it one of the most productive land plants in temperate climates (Heaton et al., 2010). The yield 

data from the M. x giganteus grown at the DOE plots falls into the normal range of biomass yields from 

many other trials. However, the yield from the DOE trials was lower than other trials in the Midwest, 

most likely because the crop is still young (3 years old). Heaton et al. (2008b) observed average 

harvestable yields of M. x giganteus grown at three locations in Illinois of 30 Mg ha-1 without irrigation 

with only 25 kg N ha-1 fertilization in one season. Heaton et al. (2010) also indicated that most studies 

have found that M. x giganteus does not respond significantly to N fertilization. Khale et al. (2001) 

indicated that end of the year biomass harvested from M. x giganteus grown in Germany ranged from 

14.8 to 33.5 Mg ha-1 from plots fertilized with 0, 50, and 100 kg N ha-1. These high yields are 2-4 times as 

much as switchgrass; M. x giganteus produced an average maximum annual biomass of 22 Mg ha-1 

compared with 10 Mg ha-1 from switchgrass (Heaton et al., 2004b). Compared to corn, M. x giganteus is 

60% more productive due to its longer growing season (Dohleman and Long, 2009). In a review of 60 

observations on M. x giganteus, Cadoux et al. (2011) found that, at winter harvest (February), the 

median dry matter production was 15 Mg ha-1. In addition after reviewing numerous studies, Cadoux et 

al. (2011) gave three recommendations for three N fertilizer amounts; fertilization amounts of 49, 73.5, 

and 98 kg N ha-1 would yield 10, 15, and 20 Mg ha-1 of biomass at harvest, respectively. These fertilizer 

applications and corresponding yield amounts are similar to the results from the DOE study that saw 

14.9, 15.8, and 17.0 Mg ha-1 of biomass at harvest for 0, 60, and 120 kg N ha-1 fertilizer treatments. 

The average C:N ratio from a study by Heaton et al. (2009) was 143 from M. x giganteus 

fertilized at 25 kg N ha-1. This C:N ratio was similar to the C:N ratios observed at the DOE plots; C:N ratios 

of 153, 137, and 117 kg ha-1 were recorded from the 0, 60, and 120 kg N ha-1 plots, respectively. These 
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C:N ratios were greater than what was observed by Heaton et al. (2009) for switchgrass (96). Cadoux et 

al. (2011) also found that at winter harvest, N content in the biomass was 76 kg ha-1; their findings are 

comparable to the DOE N content at winter harvest in 2010 that had N contents of 44.9, 53.5, and 66.6 

kg ha-1 from the 0, 60, and 120 kg N ha-1 treatment plots. For the M. x giganteus grown in 2010, the N 

fertilizer significantly increased the N concentration in the 120 kg N ha-1 and therefore the mass of 

harvested N from that plot, but did not significantly raise the biomass or C harvested compared to the 

control and 60 kg N ha-1 treatment plots. As a result, the C:N ratios decrease with additional amounts of 

N fertilizer, but, ultimately, fertilization just removed more N but did not produce significantly more 

biomass.  
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CONCLUSIONS 

The beneficial effects of growing biofuel crops are well known: decreased fossil fuel emissions, 

decreased fertilizer use, C neutrality, and the use of annual cropping species. However, in order to fully 

understand the effects of growing biofuel crops, such as M. x giganteus, it is essential to assess the GHG 

emissions, notably CO2 and N2O, from producing M. x giganteus in an agricultural setting. In this study I 

examined the effects of three fertilizer treatments and the gaseous emissions of CO2 and N2O associated 

with abiotic factors and their associated biomass yield amounts. 

During the two-year study, N2O emissions in 2010 showed an effect from increased fertilizer N 

treatment compared to the control. Nitrous oxide emissions were low for both the 0 and 60 kg N ha-1 in 

both 2009 and 2010; the emissions were similar to the only study examining N2O emissions from M. x 

giganteus. The driving factors in the N2O emissions was primarily precipitation and, to a lesser extent, 

temperature. In 2010, a large pulse in N2O emissions occurred in response to a major rainfall event. This 

rainfall event supplied the needed anoxic conditions for denitrification to occur; therefore since the 120 

kg N ha-1 treatment had large concentrations of soil NO3
--N, a large flux of N2O was emitted.  

Carbon dioxide emissions were not affected by fertilizer treatment; emissions were significantly 

related to soil temperature at 10 cm. Conversely, soil moisture at 10 cm showed no significant 

relationship to CO2 emissions.  

In addition to gaseous N2O losses, some of the N applied to the experimental site was leached 

through the soil. In year 1 (spring 2009 to spring 2010) leached inorganic N was not significantly affected 

by fertilizer treatments. In year 2 (spring 2010 to spring 2011), the NO3
- and total inorganic N leached 

from the surface soils were significantly increased by fertilizer treatment. Between 74 and 88% of the 

inorganic N leached through the system and captured on the resin lysimeters was in the form of NO3
- 

throughout the study.  
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After the first year, 2009, biomass yield was low for all the crops due to the young M. x 

giganteus and previous crop failure. After the second year, 2010, biomass was much larger for all the 

treatment plots. No significant difference was found in response to fertilization. The larger yield from 

the 120 kg N ha-1 treatment plots did increase the amount of harvested biomass N, which was due to 

increased N fertilizer. The biomass yield and its corresponding C and N content from 2010, produced an 

interesting trend: as the fertilization amounts increased, the biomass did not significantly increase; 

however, the amount of N removed from harvest increased significantly with the additional fertilizer N, 

so that fertilization led to greater N removal while producing relatively the same biomass. 

This study shows the importance of N fertilization practices; fertilizer rate made a difference in 

the amount of soil N2O emissions and the amount of inorganic N that leached, but not necessarily on the 

amount of biomass that is produced under  fertilized conditions. Even though the N2O emissions from 

the M. x giganteus were relatively low compared to other conventionally grown crops, the large global 

warming potential of N2O means it cannot be ignored. Furthermore, the amount of inorganic N leached 

from the 120 kg N ha-1 plots was similar to conventionally grown crops without a significant increase in 

harvestable biomass. Whether this trend continues as the M. x giganteus matures needs further study. 

This study adds to our knowledge surrounding the potential of M. x giganteus to act as a new, novel 

biofuel crop, especially since no study has been published on the effects of fertilization rates on N2O 

emissions from M. x giganteus grown in Illinois.  

As with most scientific studies, there are often some questions that arise after observations and 

hypotheses are initially made. In future research on M. x giganteus grown in Illinois, I would ask: 1) How 

does urea volatilization affect the N2O emissions directly following fertilization? 2) How much would a 

90 kg N ha-1 treatment affect N2O emissions? 3) How does irrigation during the dry periods in the 

summer affect the pulse action of N2O that occurs when the soils are re-wetted after drying for a period 



61 
 

of time? 4) How does snowmelt and soil freezing-thawing affect the pulse of N2O during the winter here 

in Illinois? 5) How would a drought affect the N2O and CO2 emissions? 6) How would manuring the soils 

instead of fertilization affect the GHG fluxes and other abiotic factors? 7) How does liming affect the soil 

pH and what is its effect on GHG emissions?  
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