
INTEGRATED CIRCUITS AND SYSTEMS FOR A 

FULLY-FLEXIBLE WIRELESS AMBULATORY EEG 

MONITORING AND DIAGNOSTICS HEADBAND 

ALIREZA DABBAGHIAN 

A THESIS SUBMITTED TO 

THE FACULTY OF GRADUATE STUDIES 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR THE DEGREE OF  

MASTER OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 

GRADUATE PROGRAMME IN COMPUTER SCIENCE AND 

ELECTRICAL ENGINEERING 

YORK UNIVERSITY 

TORONTO, ONTARIO 

AUGUST 2019 

© ALIREZA DABBAGHIAN, 2019 
 



 

 ii 

ABSTRACT 

This thesis presents the design, development, and experimental characterization of 

wireless integrated circuits and systems built for ambulatory electroencephalography 

(EEG) monitoring and diagnostics. Two prototypes are presented.  

The first one is a 3×4 mm2 integrated circuit (IC), designed and fabricated in a 

130nm CMOS technology, and integrates eight recording channels. A novel analog circuit 

is employed in each channel that detects and removes motion artifacts during amplification, 

resulting in a clean EEG prior to digitization. The idea prevents the amplifier saturation 

and removes the need for post processing of the digitized signals using artifact pattern 

recognition algorithms.   

The second prototype is an integrated system in the form of a fully-flexible 

wearable wireless medical device. It integrates eight motion-resilient, active-electrode 

recording channels, with inter-digitated non-contact electrodes embedded into each of 

them, all implemented on a 4-layer polyimide flexible substrate, yielding the smallest form 

factor reported for a wearable EEG device. The flexible main board is connected to a 13×17 

mm2 rigid printed circuit board that hosts a low-power FPGA and a BLE 5.0 transceiver, 

which add diagnostic capability and wireless operation features to the device, respectively. 

The entire wearable solution with the battery weighs 9.2 grams.  
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Chapter 1  

 

 

 

 

Introduction 

 

 

1.1 Objective 

Approximately 10% of patients admitted to the emergency departments (ED) present with 

altered mental status or seizures, with the most common cause being neurologic [1]–[6]. 

Due to the wide range of manifestation of such conditions and the lack of a specific 

diagnosis, many of these patients remain undiagnosed hours to days after admission, which 

leads to a disproportionately higher rate of death relative to other conditions [7]. For 

example, severe traumatic brain injury (TBI) has a mortality rate of over 40%. Studies 

show that up to 50% of these patients experience post-TBI non-convulsive (absence) 

seizures that could lead to an increase in the intracranial pressure and long-term damages 

to the neural system [8]. Conducting medical-grade electroencephalography (EEG) on 
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these patients allows for early detection of such neurological abnormalities and prevent 

further damages to the brain, consequently decreasing the alarming mortality rate.  

Despite the clear motivation, a full conclusive EEG recording is not part of the 

standard tests conducted upon the admission of patients presenting with altered mental 

status. This is mainly because such a test requires (a) Equipment: data acquisition boxes, 

computers with EEG recording, analysis, and display software, and a large number (>20) 

of electrodes with connector cables; (b) Setup: careful placement of the electrode array on 

predefined locations of the scalp and applying an adhesive conductive gel to each electrode, 

all done by a trained technician; and (c) Interpretation: review and analysis of the entire 

recording by a trained technician under the supervision of an epilepsy specialist for 

detection of any abnormal activity or an indicator of a brain dysfunction. Such a demanding 

and time-consuming process has resulted in EEG monitoring to be excluded from the 

routine checks in the emergency departments. It has also resulted in a long wait time for 

the patient in the cases that an EEG test is prescribed [9]. 

 Motivated by this, the development of small-form-factor wearable wireless devices 

has been investigated over the past decade. Such a solution is envisioned to enable EEG 

recording and analysis with medical-grade quality, while minimizing the time and 

staff/equipment resources required. A general top-level block diagram of such a device is 

shown in Figure 1.1. As shown, the system typically includes an array of recording 

(amplification and digitization) channels followed by a digital signal processing block for 

diagnostic purposes. Communications with the external (benchtop or hand-held) modules 
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is done through a wireless link that is used by the wearable device to transmit the recorded 

data and receive configuration commands. 

 

Figure 1.1 : Block diagram of a generic multi-channel wireless wearable EEG monitoring device. 

Depending on their application, the wireless wearable devices for neuro-

physiological monitoring and event detection can be divided into two main categories of 

"patient-specific" and "cross-patient" solutions. For an application such as the emergency 

room that was described above, the neurological event (e.g., seizure) detection must be 

done in a cross-patient manner where the algorithm does not require a long period of 

learning the specifications of each patient's brain neuronal activity. Authors in [10] have 

reported a seizure detection recurrent convolutional neural network (RCNN) algorithm 

capable of detecting seizures with 85% sensitivity and 0.8 false positives per hour. While 

such performance is certainly acceptable for a screening device in an emergency room, 

deep learning algorithms such as RCNN require substantial computational power 

(approximately an order of magnitude more than typical supervised learning algorithms 
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[10]), typically not available on a wearable device. Therefore, for the cross-patient 

diagnostic devices, raw EEG recordings must be communicated wirelessly to a mobile or 

stationary computer where the computationally expensive signal processing can be 

conducted. 

The second category of applications is referred to ones that require a patient-

specific solution. An example of this category are patients who are already diagnosed with 

epilepsy. A majority (near two-third) of these patients can be treated with pharmacological 

solutions. However, the optimal values for drug dosage and frequency of use is different 

from patient to patient and is currently decided based on an interview between the patient 

and the physician. Such a practice has the obvious shortcomings of (a) missing the seizures 

that are not sensed by the patient (e.g., happened during sleep), (b) missing the severity of 

absence seizures where there is no physical manifestation visible to the caregivers, and (c) 

inapplicability to younger patients during their infancy. A wearable device that could be 

worn by the patient to log the frequency and severity of their seizure episodes could 

improve the efficacy of this type of treatment significantly. Such a device is trained over a 

period of a few days to a couple weeks and after that can perform seizure detection with 

sensitivities as high as 95 to 100% [11]–[13]. 

 For the approximately one-third of epileptic patients who cannot be treated with 

drugs, neurosurgery and implantable electrical neuro-stimulators are the only two available 

options. Patients who are considered to be candidates for surgery must undergo a pre-

surgical monitoring test where they are connected to EEG recording equipment for many 
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hours. During this test, physicians hope to record at least one seizure to be able to judge 

the location of the seizure origin on the brain. In an effort to reduce the test time under a 

reasonable limit (e.g., one day), different methods such as sleep deprivation and photic 

stimulation are used that could artificially trigger seizures in cost of a significant amount 

of discomfort imposed on the patient. A wearable multi-channel EEG recording device 

capable of logging the frequency and duration of seizures with a reasonable spatial 

resolution allows the pre-surgical monitoring to be conducted outside of the hospital and 

with a natural pace as the patients go about their normal day-to-day activities. 

1.2 Design consideration 

1.2.1 Application-level 

From the application-level point of view, using a wearable device while conducting 

everyday activities requires the solution to be minimally-obstructive. This includes having 

a small form factor, light weight, and reasonable aesthetics. Only with these criteria, several 

wearable EEG devices in the market that are too bulky and/or heavy are excluded from 

being considered for ambulatory EEG recording. Additionally, a basic requirement for 

medical-grade EEG recording is proper skin-electrode physical contact. Considering that 

several ambulatory EEG recording devices (e.g.,[14] and [15]) have the electrodes built 

into the device framework, and given that patients have different scalp size and curvature, 

lack of chassis flexibility in these devices results in major performance degradation to 

complete failure of the device in signal acquisition. Furthermore, the contact point of the 

device should be made of a material that does not have any harmful effect on the patient's 
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skin. Since ambulatory EEG is typically considered as an outpatient care solution, 

mounting (i.e., start-up) and use of the device should be a straightforward process without 

any need for technician intervention. 

1.2.2 System-level 

From the system-level point of view, a sufficient number of recording channels 

must be integrated onto the device to capture the brain neural activity with a reasonable 

spatial resolution. Multi-channel recording is also required for multi-variate algorithms that 

use signals from different locations on the brain to perform seizure detection. In addition, 

to add diagnostic capability to the solution, the wearable device should be equipped with a 

signal-processing unit that could be programmed with cross-patient or patient-specific 

diagnostic algorithms, depending on the application. Wireless communication is also an 

unavoidable feature that needs to be included in the system. Wireless link specifications 

such as the link throughput and being omni- or bi-directional are decided based on the 

application and the size of data that needs to be transmitted/received in real time, and 

whether or not certain aspects of the system needs to be reconfigured wirelessly. As it is 

discussed in details in [16], embedding signal processing on the device results in a 

significant reduction in decision-making latency and removes the need for a power-hungry 

high-throughput data transmitter that otherwise would be required to communicate raw 

EEG signals. However, it has the disadvantage of limited available computational power, 

which could lead to sacrificing seizure detection performance. Generally, unless the device 

is meant to be used for a short period (e.g., <1-to-2 hours), a significant portion of signal 
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processing (e.g., data compression, feature extraction and seizure detection) is conducted 

on an embedded processor, and only the signal processing results are communicated 

wirelessly. All the system-level modules (i.e., recording channels, signal processing, 

wireless transceiver) must be connected to each other using the least number of wires 

possible to realize a minimal form factor for the device. From a system-level point of view, 

this means using serializers/deserializers at the interface point of these modules to time-

multiplex multi-bit data that is being communicated. Furthermore, to ensure that the 

solution is fully self-contained, all the necessary DC bias voltages and clock waveforms 

required for the operation of the integrated analog and digital circuits must be generated 

using on-device components such as digital-to-analog converters (DACs), voltage 

regulators, and crystal oscillators. 

1.2.3 Circuit-level 

From the circuit-level perspective, each recording channel should be able to amplify and 

digitize surface EEG signals with a typical amplitude range of 10µV to a few mV and 

frequency content of up to 300Hz. The sensing front-end circuit must have (a) a differential 

architecture, (b) an input-referred noise that does not add substantially (i.e., more than 

10%) to the noise that already exists at the recording electrodes (10µVrms) [5], (c) input 

impedance that is orders of magnitude larger than the electrode-tissue interface impedance, 

(d) a reasonably high voltage gain, (e) a mechanism to avoid amplifier saturation due to 

the artifacts induced by the electrode physical motion, and (f) a mechanism for rejecting 
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large (up to 100s of mVs) DC offset between the recording and reference electrodes. The 

input signal dynamic range demands a minimum ADC resolution of 10 bits. 

In addition to the above design specifications that are roughly the same for implantable 

EEG recording front ends, wearable devices have an important requirement that is mainly 

attributed to their large size where signals could travel up to 10cm between different 

modules. This makes the signals prone to various types of noise and interference from the 

environment and from neighbor components on the device. One effective way to avoid this 

is to employ a distributed (as opposed to centralized) architecture for the device where all 

the circuitry of a single recording channel (e.g., amplifier, filters, ADC, etc.) are placed 

right at the electrode contact locations (also known as active electrodes). Using this 

approach, weak surface EEG signals are first amplified and digitized locally before being 

routed along the device. 

1.3 State-of-the-art 

Table 1.1 summarizes some of the recently reported academic and commercial 

wireless monitoring headsets that aim to provide medical-grade EEG signals. Looking at 

these devices, it seems that the designs are either performance-oriented at the cost of 

sacrificing some of the application-level concerns (e.g., ease of use, comfort, lightweight, 

quick setup time, etc.), or user-oriented at the cost of reducing the system-level capabilities. 

For example, the device presented in [17] meets the channel count, noise, bandwidth, and 

wireless connectivity requirements. The device is also designed to be adjustable to different 

scalp shapes and sizes. However, the weight and bulkiness of the device makes its use 
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limited to in-lab tests and inappropriate for ambulatory EEG recording. Also the device 

does not feature a mechanism for removing artifacts due to the physical motions of the 

patient, which could significantly degrade the recording quality as it will be discussed 

in 2.3. An example of the other end of spectrum is the Muse headband [15]. While this 

solution features a small form factor and lightweight, it only has 4 recording channels and 

uses passive electrodes for recording and integrates all the active circuitry on one side of 

the device, causing significant susceptibility to different types of noise and interference 

sources. Overall, none of these devices is ideal to be used as a quickly-mountable 

medically-relevant ambulatory EEG monitoring and analysis headset for the applications 

described in the previous section.  

Table 1.1: Summarizes some of the recently reported academic and commercial wireless monitoring 

headsets that aim to provide medical-grade EEG signals. 

Specification [14] [18] [17] [17] [15] 

# of channels 8 5 6 30 4 

Signal Processing Yes Yes Yes Yes No 

BW (Hz) 0.5-100 0.5-100 <262 <262 N/R 

Wireless Tech BT 2.1 BT 2.1 BT 4.0 BT 4.0 BT 2.1 

Motion Artifact removal Digital Digital No No No 

Weight (grams) 200 N/R 110 610 61 

1.3.1 Previous works in motion artifact removal 

One of the most challenging problems in ambulatory bio-signal recording is motion 

artifact, specially in case of low amplitude signals like EEG. In order to overcome this 

obstacle, most of the works attenuate the effect of motion artifact in digital signal 

processing domain[19][20][21]. For example, in [20] authors used the information from a 
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multi-channel ECG recording front-end to calculate the motion artifact signal in digital 

backend and remove the effect of this artifact under the assumption that this motion artifact 

is an uncorrelated signal from the actual ECG. One of the main problems of removing 

motion artifact in digital domain is that the ADC require a large dynamic range to avoid 

saturation, since the ADC should be able to digitize the motion artifact signal which may 

have an order of magnitude higher amplitude than the target bio-signal.  

In [22] the motion artifact signal is recorded by measuring the impedance of 

electrodes-tissue interface. As shown in Figure 1.2, the ETI block measures the impedance 

by injecting a current to the electrodes. Then the contaminated signals and measured 

impedance are fed to the digital back-end. The digital back-end calculates the motion 

artifact signal and converts the result to an analog signal using a digital to analog converter 

(DAC) and subtract it from the input signal. Subtracting the motion artifact before feeding 

the recorded signal to the ADC can relax the requirements on the ADC dynamic range but 

as it is shown in the Figure 1.2 adding DAC and ADC increases the design complexity and 

power consumption. Furthermore, in [23] it is mentioned that accuracy of this method is 

not sufficient at all frequencies. 
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Figure 1.2: Conceptual representation of the motion artifact suppression method presented in [22]. 

In other design presented in [24], authors tried to measure the impedance of 

electrodes-tissue interface without injecting extra current to the tissue. Figure 1.3 shows 

the schematic of the front-end design, where the two passes are supposed to have similar 

motion artifact duo to the special design of the electrodes.  Two parallel RC with known 

different impedances are deliberately placed at the input stage of the buffers. This known 

unbalance in the input stage results in different gain and therefore, different voltage at the 

output of buffers. Based on these two output voltages, the digital back-end calculates the 

interface impedance and ECG signal. In this method, in order to decrease the effect of 

parasitic capacitance at the input of the buffers the impedance value of Zin1 and Zin2 should 

be less than CP that results in attenuating the input signal. Another problem of this method 

is that for the low amplitude input signals the accuracy of this method decrease, which 

makes this approach inappropriate for the EEG recording systems. 
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Figure 1.3: Conceptual representation of the motion artifact suppression method presented in [24]. 

In our proposed method, we tried to record the motion artifact and compensate its 

effect in the recorded signal in the analog domain, which is suitable to record low amplitude 

signals like EEG and is needless of injecting any current to the tissue. 

1.4 Technical gap 

As we discussed, reported wireless EEG recording headsets are either too bulky 

that are not suitable for long-term EEG monitoring [17], [18] or could not meet the medical-

grade EEG recording requirements [15]. In terms of physical properties of the EEG 

recording device, in order to have more comfortable devices, researchers tried to add some 

level of flexibility to the system by adding some flexible components such as, using flexible 

wire connection [25] or adding flexible electrodes [26]. However, there has not been any 

prototype reported to date where the entire system is fabricated on a fully flexible substrate. 
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Furthermore, several researches are focusing on addressing the effect of motion-induced 

artifacts on quality of recorded EEG. The majority of these works are focusing on solving 

the problem in the digital domain, which has shown some success but the problem is that 

with large artifacts the signal recording circuit might get saturated which does not allow 

any data to be recorded. There are also some efforts to solve the problem in the mixed-

signal domain, but either they comes at the cost of increasing the complexity and power 

consumption of the recording channel [19], [22] or they present poor motion detection 

performance for low amplitude bio-signals such as EEG [20], [21].  

We noticed that an important reason for the lack of a low power motion artifact 

detection and removal method that is suitable for EEG signals is actually the lack of 

information on how the electrode-tissue interface is actually affected by relative movement 

of electrode and skin.  

 In this work, we tried to fill these gaps by investigating the origin and effects of 

motion artifact, on EEG recording and electrode-skin interface. Then our goal was to 

design and fabricate a comfortable EEG recording headband, capable of tolerating motion 

artifact and practical for long term monitoring.  

Based on the above, there is still a need for a light-weight, small form-factor 

ambulatory EEG recording device suitable for long term brain monitoring that can meet all 

the clinical-grade requirements while being capable of detecting and compensating the 

effect of motion-induced artifacts. In doing so, we present a novel analog-based circuit for 

detection and removal of motion-induced artifacts in the front-end circuit, without 
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negatively affecting the performance of the recording channel in terms of noise and power 

consumption. Prior to designing the proposed idea, we conducted a study on the motion- 

affected electrode-skin interface impedance, and we use the result in designing the 

recording channel architecture as well as the motion detection and removal circuitry.  

1.5 Thesis organization 

Chapter 2 presents characterization results of electrode-tissue interface impedance 

for dry EEG contact and non-contact recordings. The effect of random electrode motions 

on the recorded EEG signals as well as the noise contributions for both types of electrodes 

are studied. Using statistically-significant experimental measurement results, a model 

describing the motion-induced interface impedance variations of a dry electrode is 

developed. At the end of chapter, existing analog front-end circuits for surface EEG 

recording are reviewed, followed by a theoretical circuit analysis discussing the effect of 

electrode movements on the performance of these circuits. 

Chapter 3 presents an 8-channel SoC designed, fabricated, and tested for recording 

surface EEG signals in the presence of motion artifacts. Each recording channel utilizes a 

novel mixed-signal (i.e., analog and digital) architecture capable of extraction and removal 

of motion-induced artifacts while amplifying the EEG signals.  Various experimental tests 

have been conducted on the SoC to evaluate its performance in recording EEG signals 

contaminated by artifacts. The measurement results are presented and compared with the 

state of the art. 
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Chapter 4 presents a 9.2-gram fully-flexible wearable EEG recording system with 

8 active-electrode active-shielded recording channels, a low-power digital signal 

processing backend, and a BLE 5.0 transceiver for wireless communications. The system-

level schematic and physical design considerations are discussed and experimental 

measurement results are presented and compared with the state of the art. 

Chapter 5 concludes the thesis and discusses possible future directions for this 

research work. 
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Chapter 2  

 

Motion-Affected Electrode-Skin Interface 

Characterization in Surface EEG Recording 

 

 

 

As mentioned in the previous chapter, EEG recording in hospitals is predominantly 

done by wet electrodes. These electrodes benefit from an adhesive conductive gel injected 

between the metallic plate and the skin to ensure a mechanically-stable and electrically-

low-impedance interface. Use of such electrodes is not practical for ambulatory wearable 

EEG monitoring devices as they require post-recording wash-up, could cause discomfort 

and skin reactions in long term, and lead to a significant increase in the physical form factor 

of the device. Therefore, the majority of wearable EEG headsets (e.g., all devices presented 

in Table 1.1) use different variations of dry (i.e., gel-free) electrodes. Despite their benefits, 

a clear yet important problem using these electrodes is the mechanical instability of their 

contact with the skin due to the inexistence of an adhesive material, such as the gel used in 

wet electrodes. 
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This chapter presents a comparison between different types of dry electrodes (e.g., contact, 

non-contact, etc.) in terms of their electrical characterization such as impedance, noise and 

their response to motion. In addition, it provides an analytical explanation of how motion 

artifacts are generated, and presents a conceptual solution on how to translate the effect of 

motion to an electrical signal that could be used for artifact cancellation, the 

implementation of which will be described in later chapters. 

2.1 Electrode-tissue electrical impedance model   

Figure 2.1 shows the electrical models of electrode-tissue impedance for dry 

contact and non-contact electrodes. As shown, for contact electrodes, direct connection 

between the ionic solution (skin) and the electrode’s metallic conductor results in 

polarization, which leads to a half-cell potential that could be in the order of hundreds of 

millivolts. In the case of a non-contact electrode, the skin is isolated from the recording 

front-end, typically by layers such as fabric, hair, and air (gap). While the polarization 

voltage removal is not a concern anymore, the extra layers form a very high-impedance 

electrode-tissue interface, which could result in a weaker signal at the input of the front-

end amplifiers. 
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Figure 2.1 : Electrical models of electrode-tissue impedance for dry contact and non-contact 

electrodes. 

Figure 2.1 also shows typical values for the resistors and capacitors in the presented 

electrical models. These numbers vary by the interface-insulating layer, as well as the 

electrode physical dimensions and material. For our experiments, we used a contact 

electrode with a surface diameter of 0.9cm and silver material.  

Spatial resolution of EEG signals at the skin surface is about 1cm [27] so placing 

more than eight electrodes on the forehead does not give us any benefit in terms of 

resolution. We want the electrode to be as big as possible to experience as big capacitance 

as possible. Therefore, we tried to maximize the size of electrodes while eight of them 

could be placed on the forehead. Since fabricating the electrodes and analog circuitry on 

the same substrate, results in a small form-factor device, which is easily scalable, we 

decided to use standard FR4 for manufacturing the electrodes. Therefore, for non-contact 
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electrode, a custom design electrode was used with the diameter of 1.7cm, insulation layer 

and thickness of epoxy liquid and 0.9mil, respectively, and surface material of immersion 

gold.  

It should be mentioned that any changes in the electrodes material or size of them 

that can change the range of interface capacitance is tolerable in our design by simply 

adjusting the value of some passive components.               

Figure 2.2(a) shows the schematic of a simple circuit used for electrode-tissue 

impedance characterization. A test sinusoidal is applied to the skin by the first electrode, 

causing charges to flow through the electrode-tissue interface, while, the second electrode 

with the distance of 10 cm from the first electrode is attached to the skin. Current is 

integrated on the feedback capacitor, and the magnitude and the phase of the output 

sinusoidal are used to calculate the interface impedance. To verify the functionality and 

accuracy of this circuit for impedance measurement, a dummy test cell with a known 

impedance is used (Figure 2.2 (b)). Figure 2.2(c) shows that the measurement results using 

the proposed impedance characterization circuit are in a very good agreement with the 

known impedance of the dummy cell both for the real and imaginary parts. 
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Figure 2.2 : (a) Schematic of the circuit used for electrode-tissue impedance measurement. (b) 

Dummy test cell used for characterization circuit validations. (c) Experimental test-cell 

characterization results in comparison with actual impedance values. 

The circuit described above is used to characterize the actual impedance of the 

contact and non-contact electrodes used in this work. Figure 2.3 shows the magnitude and 

phase of the electrode-tissue interface admittance for the dry contact electrode when no 
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motion exists. The figure also shows what capacitance the interface admittance could be 

translated into. 

 

Figure 2.3 : The Admittance magnitude, phase, and equivalent capacitance of the electrode-tissue 

interface for the dry contact electrode. 

As shown, the interface capacitance for the frequency range of 1 to 1000Hz varies from 

one to 11nF, which is in agreement with the typical values shown in the electrical model 

of Figure 2.1 . Figure 4 shows the similar results for the non-contact electrode. The 

interface capacitance is in the range of 10 to 200pF. 



 

 22 

 

Figure 2.4 : Admittance magnitude, phase, and equivalent capacitance of the electrode-tissue 

interface for the dry non-contact electrode. 

An electrode motion, which could occur due to the subject’s random movements or 

respiration, results in a change in electrode-tissue interface impedance. For a dry electrode, 

these changes could be quite significant due to the lack of any adhesive material at the 

interface. Therefore, there is a very high possibility that a dry contact electrode loses its 

direct connection to the skin, leading to an additional capacitor (due to the gap) in the order 

of a 10-to-100pF in series with the rest of the model. This could increase the impedance 

seen by the analog front-end circuit by a factor of 1000, resulting in a large artifact in the 



 

 23 

recorded EEG. On the other hand, an air gap and an insulating layer already exist for a non-

contact electrode, resulting in motion-induced impedance variations at the same scale of 

the pre-motion interface impedance. 

 

Figure 2.5 : Experimental results of 10,000 interface capacitance measurements of a non-contact 

electrode in the presence of various types of motions. 

The custom-designed non-contact electrode was placed on the skin (with the 

insulating layer separating the electrode conductive material and the tissue) and the 

interface equivalent impedance was measured while an imitation of various facial gestures 

due to speaking, frowning, blinking, etc. that could result in a motion artifact were applied. 

Over the course of the experiment, 10,000 impedance measurements were conducted at 

100Hz and the results are presented in Figure 2.5, which shows an average and standard 

deviation of 284pF and 122pF, respectively. 

 We tried to investigate the effect of motion artifact on electrode-tissue interface 

impedance. With the same setup shown in Figure 2.2(a) we applied a sine wave with the 

amplitude of 100mv(amplitude should be large enough to remove the effect of 60Hz noise) 
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and frequency of 100Hz(in this frequency our electrode is purely capacitive) through the 

first electrode. As described earlier, the second electrode is used as the input of the Op-

Amp to record the value of the current generated by the sine wave. We tried to imitate any 

kind of movement that the electrode could experience due to the patients routine activities 

such as chowing, running and speaking, which is basically a combination of horizontal and 

vertical movements. We tried to cover the entire range and as we were moving the 

electrode, we were sampling the output of the Op-Amp with 1.33 kS/sec. This experiment 

has been conducted for 15 seconds, which resulted in 20000 data points. Figure 2.6 

illustrates the translation of this data point to the capacitance value of the electrode- tissue 

interface.  
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Figure 2.6 : Experimentally-measured electrode-skin capacitance variations due to (a) horizontal and 

(b) vertical movements of the electrode on the skin. (c) Distribution of the interface capacitance 

values during horizontal and vertical motions (20,000 measurements). 
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2.2 Electrode-tissue interface noise 

Figure 2.7 shows a simplified electrical model of first stage of the electrode-tissue interface 

together with a simple voltage follower circuit. As it exhibits, a large input impedance as 

well as a unity gain, which leads to the amplifier not being saturated by the large motion 

artifacts [18], [28] We used this circuit to evaluate the effect of different components of 

the electrical model in the overall input-referred noise of the recording circuit. The input 

impedance of the voltage follower circuit is assumed infinite in our analysis, and finite 

(20GΩ) in the simulations. 

 

Figure 2.7 : Simplified electrical noise model of the electrode-tissue interface with a simple voltage 

follower circuit. 

For the circuit shown in Figure 2.7, noise power spectral density (PSD) at the output is 

 𝑆𝑛,𝑜𝑢𝑡(𝑓) = 4𝐾𝑇𝑅𝑒

1

1 + (2𝜋𝑅𝑒𝐶𝑒𝑓)2
 (2.1) 

Which results in an integrated (over the neural bandwidth of interest) noise power 

of 𝑓𝐿 (low cut-off frequency) and 𝑓𝐻(high cut-off frequency) that is, 

 𝑝𝑛,𝑜𝑢𝑡 = ∫ 4𝐾𝑇𝑅𝑒

1

1 + (2𝜋𝑅𝑒𝐶𝑒𝑓)2

𝑓𝐻

𝑓𝐿

𝑑𝑓 (2.2) 
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=
2𝐾𝑇

𝜋𝐶𝑒
tan−1(2𝜋𝑓𝐻 . 𝑅𝑒𝐶𝑒) − tan−1(2𝜋𝑓𝐿 . 𝑅𝑒𝐶𝑒) 

This equation shows that, electrodes with either a very large or very small values 

for Re×Ce result in a very small integrated noise at the output. It should be noted that Eq. 

(2.2) only considers the resistive thermal noise generated at the interface and does not 

include other non-white noise sources such as what is discussed in [29]. The same is true 

about our noise simulations. We ignored other noise sources, simply because they either 

were too small compared to the thermal noise, or were similar for contact and non-contact 

electrodes, therefore, not impacting our comparative analysis. Figure 2.8 shows the 

simulated input-referred noise of the circuit shown in Figure 2.7, for an electrode with a 

capacitance of Ce=100pF and a resistance of Re=20GΩ (nominal Re and Ce values of a ~1 

cm2 dry electrode). For the simulations, the input node of the ideal opamp is biased through 

a 10 GΩ resistor. Compared to wet electrodes, the ReCe product is significantly increased, 

leading to a noise power spectral density that is an order of magnitude larger.     
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Figure 2.8 : Simulated input-referred noise of the circuit shown in Figure 2-6, for an electrode with a 

dry  2and Ce values of a ~1 cmcapacitance of Ce=100pF and a resistance of Re=20GΩ (nominal Re 

electrode). 

Figure 2.9 shows the simulation result of input referred noise for electrodes with different 

Re×Ce. The figure confirms what was predicted by equation (2.2) and as it shows that wet 

electrode with (Re=100kΩ, Ce=20nF) and near purely capacitive electrode (Re=100kΩ, 

Ce=20nF) have the lowest input referred noise in EEG signal bandwidth (0.1Hz-1kHz).        
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Figure 2.9 : Noise contribution of different types of electrodes to the noise power density of the input 

terminal of the recording front-end circuit. 

2.3 Motion artifact 

The characterized impedance variations at the electrode tissue interface demand for neural 

recording front-ends that can detect and compensate consequent artifacts induced by 

motion. For the typical EEG bandwidth of DC to 500Hz, the motion-induced 10-to-400pF 

range of variations in the interface capacitance results in hundreds of MΩ to a few GΩ 

variations in the impedance magnitude. This calls for an extremely high input impedance 

of the recording frontend amplifier in the order of TΩ. Figure 2.10 shows two of the most 
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common front-end architectures reported in the literature for dry-electrode EEG recording. 

To achieve the TΩ-range input impedance magnitudes, various impedance-boosting 

techniques have been reported in the literature [18],[28]. While the extremely high Zin 

ensures nearly no loss of AC signal even with a varying interface impedance (at the cost of 

additional power of impedance boosting module), it cannot prevent the large DC drifts 

caused by motion. 

 

Figure 2.10 : Conventional analog front-end circuits used for EEG recording. 

The source of such DC drifts could be explained by the current equation of a 

varying capacitor 

 𝑖𝐶 = 𝐶
𝑑𝑉

𝑑𝑡
+ 𝑉

𝑑𝐶

𝑑𝑡
 (2.3) 
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Where V is the voltage across the capacitor. The second term of the Equation 1 

(𝑉
𝑑𝐶

𝑑𝑡
 ) means that the DC-decoupling property of capacitors is only valid as long as their 

capacitance is constant. In fact, a large DC voltage difference between the skin and the 

electrode could generate a current that is orders of magnitude larger than what is generated 

by the EEG signals (𝐶
𝑑𝑉

𝑑𝑡
 ). This current is multiplied by the boosted input impedance of 

the front-end and appears as a large slow drift on top of the recorded signal. Therefore, not 

only the impedance boosting adds to the complexity and power consumption of the 

recording circuit, but also it becomes a disadvantage when there is an interface impedance 

variation due to the motion. Looking at the biopotential recordings reported in [22], [24], 

[30] such a slow drift is evident. Figure 2.11 shows the measurement results of our 

experiment, further confirming the above analysis. 

 

Figure 2.11 : Manifestation of motion artifacts as large DC drifts on top of the EEG recording. 
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Solving the above issue requires cancellation of the 𝑉
𝑑𝐶

𝑑𝑡
  term. Since the 

capacitance variations are unavoidable, the only way to do this is to ensure the same DC 

voltage for the electrode surface and the skin. This requires a front-end design that allows 

for control of the electrode DC voltage, hence, capacitively-coupled architecture may not 

be used. However, a modified version of this architecture, where the non-contact interface 

capacitance is used as the input capacitor could be employed, as shown in Figure 2.12.  

 

Figure 2.12 : A drift-less front-end circuit with artifact-modulated voltage gain for noncontact EEG 

recording. 

This architecture allows for full control of the electrode DC potential as well as the 

skin, resulting in the full removal of the 𝑉
𝑑𝐶

𝑑𝑡
  term. Using this architecture, the front-end 

voltage gain is linearly dependent on the value of the interface capacitance. This means 

that the motion manifests itself as amplitude scaling instead of a large DC drift. Our 

experimental results shown in Figure 2.13 confirms such a behaviour.  
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The waveform shown in Figure 2.13 is a mixture of both EEG recordings (a.k.a, 

the signal of interest) and the motion-induced artifacts (in the form of voltage gain scaling). 

Based on these results, it could be imagined that if the scalings could be extracted from the 

EEG signal and applied inversely to their mixture, a relatively artifact-free amplified 

version of the EEG could be obtained. Such method does not rely on specific motion 

artifact patterns to be recognized and removed by a digital signal processing backend. It 

also avoids any amplifier output saturation. The details of solid-state circuit 

implementation of such circuit and various system and circuit-level considerations in its 

design are discussed in Chapter 4.  

 

Figure 2.13 : Motion artifact manifestation in the recordings of the proposed analog front-end, 

showing gain scaling linearly proportional to the imitated motion. 
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Chapter 3  

 

An 8-Channel 12 mm2 EEG Recording IC with 

Mixed-Signal Motion Artifact Detection and 

Removal 

 

 

 

 

In this chapter, we will present an 8-channel SoC with a novel channel architecture, 

capable of real-time detection and removal of motion artifacts. The VLSI circuit 

implementation and characterization results are presented. Compared to the state of the art, 

the most fundamental advantages of the presented system are (a) performing the motion 

detection and removal in the analog domain and before signal amplification, which 

prevents the risk of amplifier saturation, (b) being effective for any type of artifact, 

independent of their manifestation in the EEG signal (i.e., no need for digital pattern 

recognition), and (c) needless of injecting any current or voltage pulse into the skin for 

interface characterization. 
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Figure 3.1: conceptual block diagram of the presented EEG recording channel architecture. 

First, we will describe the system-level architecture and how motion is detected and 

removed conceptually and analytically. Next, individual modules employed in the 

presented design are described in details. A detailed noise analysis of the presented design 

together with its comparison with the conventional architectures is also presented. The 

chapter ends with presenting the on-chip physical design and implementation of the 

presented work, as well as experimental characterization results. 

3.1 Channel architecture     

Figure 3.1 shows the conceptual block diagram of the presented EEG recording channel 

architecture. As shown, the signal acquired at the electrode contains both neural activities 

and motion artifacts. As discussed in Chapter 2, the effect of motion is basically modulating 

of the amplitude of the EEG recordings by the physical motion magnitude. The presented 

architecture conducts motion removal in two stages. In the first stage, one of the two 

parallel paths (the upper one in Figure 3.1) extracts the effect of motion from the 

contaminated signal and outputs a waveform with a magnitude that is proportionate to the 

range/severity of physical motions. We will call this waveform the "motion signal”, as 
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indicated in the figure. At the same time, the lower parallel path amplifies the signal 

acquired from the electrode with a small voltage gain that is proportionate to the motion 

range. The small gain assures that the amplifier's output won't be saturated, and the motion-

affected variable gain will be equalized in the next stage.  

In the second stage, the motion signal magnitude is used to set the voltage gain of 

the second amplification stage (motion removal) in an inverted manner (i.e., the higher the 

magnitude, the smaller the gain). By doing so, the first stage gain variations caused due to 

physical motions are fully compensated, and the output of the second stage amplifier 

(motion removal) will be a clean EEG signal that is amplified with a constant gain at all 

times, with or without physical motions.  

It should be noted that all of the above must be implemented without a substantial 

increase in the power consumption or area of the recording channel, and the final design 

must meet the basic requirements of an EEG recording front-end circuit, which are low 

input-referred noise to achieve a high signal-to-noise ratio (SNR), high input impedance 

(to avoid signal loss and achieve high common-mode signal rejection), high voltage gain, 

and sufficient frequency bandwidth (typically, 300-to-500 Hz, depending on the 

application). The circuit-level implementation of the presented design is discussed in the 

next sections.   
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3.2 Recording Front-End Architecture 

For recording bio-signals from electrodes with a large impedance (e.g., dry electrodes), 

there are generally two main approaches: (a) using an analog front end (AFE) with an 

extremely high input impedance to avoid signal attenuation at the input of the amplifier 

(voltage-follower amplifier) or (b) using an AFE with near zero input impedance to draw 

all the output current of the electrode (transimpedance amplifier). The main features of 

these two structures are compared in the following paragraphs and the suitable design for 

non-contact EEG recording in the presence of motion is concluded.  

Figure 3.2 presents the circuit schematic for the voltage follower amplifier 

(buffered amplifier) and transimpedance amplifier. Reviewing the literature, different 

variations of the voltage follower circuit shown in Figure 3.2 (a) seem to be popular for 

surface EEG front-ends. This is mainly due to its extremely high input impedance 

compared to more conventional neural amplifiers such as the capacitively-coupled 

architecture proposed in [31]. The importance of the high input impedance of this circuit 

is because its output voltage is equal to Zin / (Zin+Zelec). Therefore, a very high input 

impedance guarantees that any large variations of the electrode-tissue interface impedance 

is not going to affect the amplitude of the voltage at the output of this circuit. The main 

issue with this configuration is that it requires an extremely large resistor to bias the input 

terminal of the OpAmp. The resistance is in parallel with the input impedance of the 

OpAmp, so it should large enough (e.g. > 100GOhm) to ensure that the input impedance 

of the front-end circuit remains very large. Implementation of such a large resistance on 
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the chip is impractical. Also, it cannot be implemented using a pseudo-resistor circuit such 

as the one proposed in [31] as we don’t have control on the voltage of both sides of the 

resistor. 

 

Figure 3.2 : Circuit schematic of (a) voltage follower amplifier, and (b) transimpedance amplifier. 

The charge amplifier circuit (Figure 3.2 (b)), which was also discussed in the 

previous chapter (Figure 2.12) is a modification of the conventional capacitively-coupled 

neural amplifier (Figure 2.10(b)) that is considered to be the most popular front-end 

architecture in the literature. For a capacitively-coupled amplifier, the voltage gain is equal 

to the ratio of input capacitor to the feedback capacitor. Assuming that the electrode-tissue 

interface impedance for a non-contact electrode could be modeled as a simple capacitor (as 

discussed in Chapter 2), then the voltage gain of the circuit presented in Figure 3.2 (b) will 

be the ratio of the interface capacitance over the feedback capacitance. Additionally, since 

we know that the interface capacitance is linearly and directly proportional to the range of 

physical motions, then we can claim that the voltage gain of the charge amplifier presented 

in Figure 3.2 (b) is directly modulated by the physical motions. 
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Figure 3.3 : Front-end noise model for (a) voltage follower amplifier, and (b) transimpedance 

amplifier. 

3.2.1 Noise analysis 

Noise analysis in these structures is divided in two different source of noise as presented 

in Figure 3.3. The first noise source we want to investigate is the noise generated by the 

electrode-tissue interface. As presented in section 2.2 the contribution of electrode-tissue 

interface noise in the power spectral density of the input-referred noise in buffered 

amplifier structure is calculated as,  

 𝑆𝑛,𝑖𝑛(𝑓) = 4𝐾𝑇𝑅𝑒

1

1 + (2𝜋𝑅𝑒𝐶𝑒𝑓)2
 (3.1) 

The contribution of the electrode-tissue interface noise in the output noise PSD for 

the case of the transimpedance amplifier structure is,  

 𝑆𝑛,𝑜𝑢𝑡(𝑓) =
4𝐾𝑇

𝑅𝑒 . (2𝜋𝐶𝑓𝑓)2
 (3.2) 

which makes its input-referred noise PSD equal to, 
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 𝑆𝑛,𝑖𝑛(𝑓) =
4𝐾𝑇

𝑅𝑒 . (2𝜋𝐶𝑓𝑓)2
×

(2𝜋𝑅𝑒𝐶𝑓𝑓)
2

1 + (2𝜋𝑅𝑒𝐶𝑒𝑓)2
 (3.3) 

= 4𝐾𝑇𝑅𝑒

1

1 + (2𝜋𝑅𝑒𝐶𝑒𝑓)2
 

 

Based on the above equations the electrode-tissue interface noise has the same 

contribution to the input-referred noise in both structures.   

Second comparison is the noise of the biasing structures which means the feedback 

resistor in the transimpedance amplifier and the biasing resistor at the OpAmp’s positive 

terminal of the buffered amplifier. Equation (3.4) illustrates the feedback resistor noise 

contribution to the input-referred noise PSD of the buffered amplifier structure. 

 

𝑆𝑛,𝑖𝑛(𝑠) = 4𝐾𝑇𝑅𝑏 |
𝑧𝑒

𝑧𝑒 + 𝑅𝑏
|

2

|
𝑧𝑒 + 𝑅𝑏

𝑅𝑏
|

2

 

=
4𝐾𝑇

𝑅𝑏

|𝑧𝑒|2                        

(3.4) 

  

Also, equation (3.5) shows the biasing resistor noise contribution to the input-referred noise 

PSD of the charge amplifier structure.  

 

𝑆𝑛,𝑖𝑛(𝑠) = 4𝐾𝑇𝑅𝑓 |
1

1 + 𝑅𝑓𝐶𝑓
|

2

|
1 + 𝑅𝑓𝐶𝑓

𝑅𝑓
|

2

|𝑧𝑒|2 

=
4𝐾𝑇

𝑅𝑏

|𝑧𝑒|2                        

(3.5) 
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The input-referred noise PSD of the two structures are also is plotted in Figure 3.4, which 

also confirms that biasing resistor has the same noise contribution in both amplifier 

structures. Although, noise level for both structure is equal, transimpedance amplifier has 

a greater voltage gain that relaxes the design of next stage in terms of the noise requirement 

as the noise contribution of the next stages will be divided by the gain of the first stage. It 

should be mentioned that the OpAmp is the other source of noise but has a negligible effect 

in comparison with the other two sources (as shown in Figure 3.4), hence, it is not 

discussed.  

 

Figure 3.4 : Input referred noise for (a) voltage follower amplifier, (b) transimpedance amplifier 
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3.2.2 Front-End Implementation  

Based on the above discussions, it seems that the charge amplifier is a good choice for the 

front-end stage as it exhibits a voltage gain that is linearly modulated by the motion while 

also having benefits in terms of noise performance. 

Figure 3.5 presents transistor-level implementation of the OpAmp employed in the 

recording front-end that its block diagram was depicted in Figure 3.2 (b). Using the circuit 

presented in Chapter 2, we measured the electrode-skin interface capacitance variations to 

be in the range of 30 to 200pF. Therefore, to have a voltage gain that is greater than one, 

capacitance of feedback path is chosen to be 10p (although smaller values yield a higher 

gain, which increases the risk of output saturation). Considering the significant low-

frequency components of the EEG signals, the amplifier should be designed in a way that 

it is operational down to sub-Hz frequencies. The lower frequency limit of the selected 

charge amplifier is set by the two passive components in the feedback path as 𝑓𝐿 =
1

2𝜋𝐶𝑓𝑅𝑓
. 

Given that the feedback capacitor was selected to be 10pF, a 1Hz high-pass pole requires 

the feedback resistor to be at least 160 GΩ. This is resulted in a huge resistor of 160 GΩ. 

To implement such a huge resistor structure pseudo-resistor with two NMOSs is used. This 

structure was based on what was first proposed in [31] and discussed in details in [32], 

[33]. As mentioned in [32], the actual resistance of such structure might go beyond the 

simulation results predicted by the foundry models. Therefore, the current drew from the 

negative input of OpAmp can change the DC operating point of the output, which in the 
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worst case it can result in output saturation. In order to solve this problem, the gate voltage 

of the NMOSs are connected to an adjustable DC input. 

The high cut-off frequency of this structure can be determined by gm of the input 

transistors the output capacitance. Therefore, so capacitor CH is chosen in a way that high 

cut-off frequency becomes 200Hz. 

 

Figure 3.5 : Transistor-level implementation of the OpAmp used in the body of the presented 

recording front-end. 

As presented in Figure 3.6, the post-layout simulation results for the magnitude and 

phase response of the OpAmp shown in Figure 3.5, confirming its voltage gain and 3-dB 

bandwidth. Table 3.1 reports the sizing information for the transistors of the OpAmp shown 

in Figure 3.5. Figure 3.7 illustrates the experimentally measured input referred noise for 

the first stage.  
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Table 3.1: Sizing information for the transistors of the OpAmp used in the body of the presented 

recording front-end. 

Transistor M1 M2 M3 M4 M5 M6 M7 

W/L 
4.2µ

900𝑛
 

4.2µ

900𝑛
 

1.8µ

900𝑛
 

1.8µ

900𝑛
 

1.8µ

900𝑛
 

1.8µ

900𝑛
 

4µ

900𝑛
 

Transistor M8 M9 M10 M11 M13 

W/L 
4µ

900𝑛
 

2.4µ

900𝑛
 

2.4µ

900𝑛
 

1.35µ

350𝑛
 

4.8µ

900𝑛
 

 

 

Figure 3.6: Simulation result for frequency response of the input stage of the recording channel. 
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Figure 3.7: Experimentally measured input referred noise. 

3.3 Motion extraction 

Considering the linear relationship between the motion-induced amplitude scaling and the 

interface capacitance, the motion artifacts could be extracted using analog techniques. As 

shown in Figure 3.1, the first stage of our proposed channel architecture is by two parallel 

paths. 

The only difference between the two paths is a large DC offset applied to the input 

terminal of one of them compared to the other one. Using this configuration, by biasing the 

skin DC voltage in the proximity of the electrode to be equal to the input DC bias of the 

lower path, the current of lower path will be equal to 𝐶𝐼𝑁𝑇𝐸𝑅𝐹𝐴𝐶𝐸
𝑑𝑉𝐸𝐸𝐺

𝑑𝑡
  (that is, the second 

term of the current, 𝑉
𝑑𝐶

𝑑𝑡
  will be zero as we have made the voltage across the CINTERFACE 

to be equal to zero). Therefore, the lower path output voltage will be the integration of this 
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current, 𝑉𝐸𝐸𝐺
𝐶𝐼𝑁𝑇𝐸𝑅𝐹𝐴𝐶𝐸

𝐶𝑓
 which will look like Figure 2.13. On the other hand, the upper path 

output voltage will be equal to 
1

𝐶𝑓
∫ 𝑉𝐶𝑇𝑅𝐿

𝑑𝐶𝐼𝑁𝑇𝐸𝑅𝐹𝐴𝐶𝐸

𝑑𝑡
+

1

𝐶𝑓
∫ 𝐶𝐼𝑁𝑇𝐸𝑅𝐹𝐴𝐶𝐸

𝑑𝑉𝐸𝐸𝐺

𝑑𝑡
.  

 Motion-induces artifacts frequency is typically in the range of below 1Hz to 10 Hz 

[34]. The amplitude and frequency of EEG signal is lower than 100µV and 300Hz 

respectively. Based on these ranges, we chose VCTRL as 50mV that results in the second 

term of the above expression to be negligible compared to the first term, hence, making the 

result signal the representation of motion-induced artifact. It should be noted that this VCTRL 

could be adjusted to address any effect of Op-Amp offset on the motion extraction.  

 

Figure 3.8 : Simplified circuit schematic of the first stage of the presented EEG recording channel 

architecture. 
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Once we perform the integration, the upper path (a.k.a. the motion detector) output 

voltage will be equal to  𝑉𝐶𝑇𝑅𝐿
𝛥𝐶𝐼𝑁𝑇𝐸𝑅𝐹𝐴𝐶𝐸

𝐶𝑓
 , showing that it is proportional to the variations 

of the interface capacitance, therefore, representing the motions. The term 

𝛥𝐶𝐼𝑁𝑇𝐸𝑅𝐹𝐴𝐶𝐸shows that motion detector output is proportional to the variation of the 

electrode capacitor and not its absolute value. It is important because the absolute value of 

capacitance of the electrode determines the gain of first stage. For signal recording path, 

absolute value of voltage is not important because this structure blocks the DC of the VEEG 

and just variation of signal is important.       

In order to have absolute value of the capacitance of the electrode at motion detector 

output, initial value of the capacitance should be measured for a pre-determined period. To 

do this, we have designed the circuit shown in Figure 3.9, which is a modified version of 

the circuit shown in Figure 3.8 that is capable of recording absolute value of capacitance. 

Figure 3.9 (a) and (b) show two operating modes of this circuit. First, switch S1 is closed, 

which sets the voltage of the non-inverting side of OpAmp to VBIAS. In this stage feedback, 

capacitor is discharged. During the second mode of operation, feedback switch is opened, 

which charges the positive input terminal of the OpAmp to VCTRL + VBIAS. Therefore, a 

charge of 𝑉𝐶𝑇𝑅𝐿
𝐶𝐼𝑁𝑇𝐸𝑅𝐹𝐴𝐶𝐸

𝐶𝑓
 is transferred to the feedback capacitor, which makes the output 

voltage equal to (𝑉𝐶𝑇𝑅𝐿 + 𝑉𝐵𝐼𝐴𝑆) + 𝑉𝐶𝑇𝑅𝐿
𝐶𝐼𝑁𝑇𝐸𝑅𝐹𝐴𝐶𝐸

𝐶𝑓
 . The first term is a predetermined 

known voltage that can be easily removed. Figure 3.10 shows the relative error in 
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capacitance measurement by the motion detection stage for the entire range of possible 

values for the interface capacitance. 

Based on the above description the proposed setup for measuring the interface 

capacitance could also account for any difference in electrode-tissue interface capacitance 

due to the system-to-system variation.  

 

Figure 3.9 : Two operating modes of the motion detector circuit that is used in the body of the 

recording channel. 
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Figure 3.10: The relative error in capacitance measurement by the motion detection stage for the 

entire range of possible values for the interface capacitance. 

3.4 Artifact removal 

As mentioned, the second stage of the proposed recording channel architecture is 

responsible for motion artifact removal. As it was discussed in details in Chapter 2, and 

was illustrated in Figure 2.13 , the effect of motion on the output voltage of the charge 

amplifier circuit presented in the previous section will be in the form of amplitude 

variations proportional to physical motions. 
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Figure 3.11 : A conceptual block diagram of the employed motion artifact removal circuit. 

Here we try to compensate for these amplitude variations using the information 

extracted by the motion detector circuit described in the previous section. One of the 

choices to implement the voltage controlled variable gain was using a varactor. However, 

due to nonlinearity and capacitance variation range of the varactor which has been 

discussed in [35], varactor-based VCG was not a suitable solution in our application.  

As it is shown in Figure 3.11 the magnitude of the "motion signal" is translated into 

pulse widths of a pulse train (i.e. pulse-width modulation), and next, the pulse-width 

modulated signal is used to control the gain of an amplification stage in an inverted fashion. 

Detailed implementation of these blocks are provided in the remaining of this section.  

3.4.1 PWM block  

Figure 3.12 shows the simplified picture of a sigma delta pulse width modulator (PWM) 

block. It generates pulses from zero to VDD with the duty cycle proportional to the 

amplitude of the motion signal.  
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Figure 3.12 : Internal block diagram of the pulse width modulation circuit implemented in each 

recording channel. 

The detailed implementation of the integrator and the 1-bit DAC of the PWM are 

shown in Figure 3.13. The delta sigma structure and OTA feedback force the inverting 

input terminal and the output voltages of the OTA to be close to VSet. The 1-bit DAC is 

implemented with an NMOS (
20×250n

250𝑛
) and a PMOS (

30×250n

250𝑛
) that are connected to VP1 

and VP2 respectively. VP1 and VP2 are the minimum and maximum voltage of motion 

detection output. Therefore, when PWM output (D) is zero, DAC output is VP2 and when 

PWM output is VDD, DAC output is VP1. Nodal analysis at the inverting input of the OTA 

results in an equation that shows the relationship between the duty cycle of PWM output 

(D) and the input voltage of PWM, Vin. 

 𝐷𝑉𝑃1 + (1 − 𝐷)𝑉𝑝2 + 𝑉𝑖𝑛 = 2𝑉𝑆𝑒𝑡 (3.6) 

𝐷 =
𝑉𝐼𝑛 + 𝑉𝑝2 − 2𝑉𝑆𝑒𝑡

𝑉𝑝2 − 𝑉𝑝1
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Figure 3.13 : Schematic of integrator and DAC. 

As it was shown in the previous section, the motion detector output voltage is equal 

to (𝑉𝐶𝑇𝑅𝐿 + 𝑉𝐵𝐼𝐴𝑆) + 𝑉𝐶𝑇𝑅𝐿
𝐶𝐼𝑁𝑇𝐸𝑅𝐹𝐴𝐶𝐸

𝐶𝑓
. In order to have a linear relationship between duty 

cycle of the PWM signal and the gain of the first stage (
𝐶𝐼𝑁𝑇𝐸𝑅𝐹𝐴𝐶𝐸

𝐶𝑓
), VSet is chosen in a way 

that 2𝑉𝑆𝑒𝑡 − 𝑉𝑝2 is equal to 𝑉𝐶𝑇𝑅𝐿 + 𝑉𝐵𝐼𝐴𝑆. If we replace these two terms in equation (3.6) 

we will have 

 𝐷 = 𝛼
𝐶𝐼𝑁𝑇𝐸𝑅𝐹𝐴𝐶𝐸

𝐶𝑓
 (3.7) 

where α is the ratio of VCTRL to the VP2-VP1.  

 The schematic of the OTA used in the circuit of Figure 3.13 along with the transistor 

sizing information, is shown in Figure 3.14. 
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Transistor M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 

W/L 4.2µ

900𝑛
 

4.2µ

900𝑛
 

1.8µ

900𝑛
 

1.8µ

900𝑛
 

1.8µ

900𝑛
 

1.8µ

900𝑛
 

4µ

900𝑛
 

4µ

900𝑛
 

2.4µ

900𝑛
 

2.4µ

900𝑛
 

4.8µ

900𝑛
 

Figure 3.14 : Circuit schematic of OTA in integrator. 

As shown in Figure 3.12 and Figure 2.11, the the integration of difference between 

the current input and digitized representation of the previous value of the input, this signal 

is compared to the voltage at negative input of comparator, VSet. As the comparator output 

is reset in each clock period, a D-type flip flop (DFF) is used after the comparator to prevent 

propagation of this reset event to the next stage. The DFF clock is delayed by 100ns 

(frequency of clock is 1MHz), which allows enough time for the comparator to make a 

decision. A strong-arm comparator similar to [36] is used in this design and to ensure the 

symmetry of the design a dummy DFF is used at the floating output of the comparator.  
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Figure 3.15 shows the measurement result of the PWM block, confirming the linear 

relationship between the motion signal’s magnitude and the pulse widths at the blocks 

output.  

 

Figure 3.15: Output of the PWM block to the input signal from motion-extraction stage. 

In order to check the linearity of the PWM block, we applied a ramp signal, between 

0.7V to 0.8V, which is the designed full-scale range of the PWM block, which is 

controllable through two control voltages (VP1 and VP2). Figure 3.16 illustrate the 

percentage of duty cycle for each level, which confirms the linearity of the PWM block.  
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Figure 3.16: Simulation results for testing the PWM linearity. 

3.4.2 PWM-Controlled Variable Gain Amplifier 

As mentioned in the beginning of this chapter, the second stage amplification should have 

a variable gain, with variations that are exactly the inverse of the gain variations of the 

front-end charge amplifier. Figure 3.17 shows the detailed implementation of this second 

amplification stage that is realized as a voltage-controlled variable gain amplifier (VCG). 

 

Figure 3.17: PWM-controlled variable gain amplifier. 

As shown, the feedback path is formed by a resistor in series with a switch SR. In [37] 

shown that equivalent resistor of switched resistor is equal to 
𝑅

𝐷
 ,where D is the duty cycle 
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of the control pulse of the switch. In addition, the gain of this structure is ratio of feedback 

resistor to the input resistor 
𝑅𝑓

𝐷.𝑅𝑖𝑛
. Therefore, if we control the gain of VCG with the output 

signal of the PWM block, it will be equal to 
𝐶𝑓.𝑅𝑓

𝐶𝐼𝑁𝑇𝐸𝑅𝐹𝐴𝐶𝐸 .𝑅𝐼𝑛
. Multiplying this gain expression 

by the first stage gain (
𝐶𝐼𝑁𝑇𝐸𝑅𝐹𝐴𝐶𝐸

𝐶𝑓
) results in an overall channel gain expression equal to 

𝑅𝑓

𝑅𝑖𝑛
, which is independent of the absolute value or variations of the interface capacitance, 

CINTERFACE. 

Additionally, to avoid saturating the OpAmp while the clocked-resistor’s switch is 

open, a capacitor Cfh is paralleled with the switched resistor. The high cut off frequency of 

this structure is equal to 
𝐷

2𝜋𝑅𝑓𝐶𝑓ℎ
. Accordingly, the Cfh is chosen in a way that for D > 0.01 

the cut-off frequency of the VCG is greater than the signal frequency bandwidth in order 

to prevent any attenuation of the neural signal. Figure 3.18 validates the functionality of 

the Voltage control gain block. In this setup, the input signal (blue waveform) is a 

sinusoidal waveform, modulated with a known signal (purple waveform) which is also fed 

to the PWM block. The VCG output (yellow waveform), controlled by the output of the 

PWM block, extract the clean sinusoidal input. 
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Figure 3.18: Measurement result validating the functionality of the PWM and VCG. 

 Figure 3.19 shows the power spectral density of modulated and cleaned signal, which 

confirms that the PWM-controlled variable gain amplifier can remove the extra tones 

resulted from motion. The signal that we fed to this block is a sinusoidal wave with 

frequency of 300 Hz (representing the input signal) which is modulated by another 

sinusoidal wave with frequency of 20 Hz (representing the motion artifact signal). The FFT 

plot of the input signal illustrate a tone at frequency of 300 Hz and two other tones at 

frequencies 280 Hz and 320 Hz, which are basically fInput+fMotion and fInput-fMotion . The FFT 

plot of the output signal illustrates that the two extra tones are removed, which means we 

have extracted the input signal and removed the effect of motion artifact and power of the 

extra tones representing the motion-induced artifacts has been reduced by 41.5dB.  
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Figure 3.19: Power spectral density of (up) input and (down) output of the PWM-controlled variable 

gain amplifier. 

3.4.3 Two-stage band-pass filter 

The described switching job in the VCG block causes undesired interference with 

frequencies higher than the signal bandwidth. Therefore, a two-stage band-pass filter as it 

is shown in Figure 3.20 is included in the channel design. Figure 3.21 shows the schematic 

of the fully differential OTA and the common mode feedback (CMFB) circuitry used in 

both stages of the band-pass filter. Table 3.2 Reports the sizing information for the 

transistors in the fully differential amplifier and the CMFB circuitry. Simulation results 

showing the frequency response of the two-stage for this two-stage band-pass filter is 

shown in Figure 3.22. 
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Figure 3.20: Two-stage band-pass filter used as the third and fourth stages of the presented channel 

architecture. 

 

Figure 3.21: fully differential OTA and the common mode feedback circuitry used in both stages of 

the band-pass filter. 

Table 3.2: Sizing of the transistors in the fully diffrential OTA. 

Transistor Mn Mp M1 M2 M3 M4 M5 

W/L 4.2µ

900𝑛
 

4.2µ

900𝑛
 

1.8µ

900𝑛
 

1.8µ

900𝑛
 

1.8µ

900𝑛
 

1.8µ

900𝑛
 

4µ

900𝑛
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Transistor M6 M7 M8 M9 M10 M11 M12 

W/L 4µ

900𝑛
 

2.4µ

900𝑛
 

2.4µ

900𝑛
 

2.4µ

900𝑛
 

2.4µ

900𝑛
 

4.8µ

900𝑛
 

4.8µ

900𝑛
 

 

 

Figure 3.22: Experimentally measured frequency response of two-stage the low-pass filter. 

3.5 Microchip Fabrication and Characterization 

Figure 3.25 shows the full 4-stage schematic of the presented channel architecture. An 8-

channel version of the presented EEG recording circuit was designed and fabricated using 

TSMC 130nm technology. The micrograph of the 3×4 mm2 integrated circuit is shown in 



 

 61 

Figure 3.23. Each recording channel is highlighted and the channel dimensions are 

annotated. Finally, Table 3.3 summarizes the overall specification of EEG recording SoC 

and Figure 3.24 illustrate the power and area breakdown of the EEG recording front-end. 

 

Figure 3.23: The chip micro-graph showing the placement of the eight recording channels and their 

dimensions. 

Table 3.3: EEG recording SoC specification summary 

Technology 130 nm Gain 68.5dB 

Supply 1.2 V Bandwidth 3Hz-1kHz 

Area 12 mm2 Power/channel 55μW 

# of channels 8 Area/channel 0.45mm2 

  Input referred noise 12.3 μVrms 
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Figure 3.24: Area and power breakdown for the EEG recording front-end. 
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Figure 3.25: Block diagram of the 8-channel EEG recording SoC and the 4-stage circuit 

implementation of the proposed channel architecture. 
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3.6 Measurement setup 

Figure 3.26 illustrate a 6-layer PCB board that has been design for characterizing the 

presented SoC. The board is designed using Altium Designer software. An FPGA (544-

2464-ND, Altera CycloneIII ) has been implemented on the chip to provide the required 

clock signals. The FPGA also allows further digital signal processing to implement feature 

extraction algorithms.  

 

Figure 3.26: The PCB designed for characterizing the presented SoC. 
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Chapter 4  

 

Discrete implementation 

 

 

 

 

In this chapter, we present a fully-flexible wearable integrated system for ambulatory EEG 

recording with 8 actively-shielded recording channels, a low-power digital signal 

processing backend, and a BLE 5.0 transceiver for wireless communications. The system 

is planned to be a platform that hosts 8 of the ICs presented in Chapter 3. However, as an 

intermediate step, we first used off-the-shelf components to implement the exact channel 

architecture presented in Chapter 3, to form an early prototype that helps us validate 

system-level functionality of the wearable device. The discrete implementation is basically 

a proof of concept for the system-level and application level properties of our system, for 

example common-mode signal calculation, connection to the digital back-end board and 

wireless data transmission and we also wanted to make sure about the functionality of the 

flexible PCB substrate for the electrodes as well as the circuit connections . However, in 

the discrete implementation we are limited in terms of IC selection, which means we are 
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not able to have a customized design with smallest possible power and area consumption 

and an optimal noise performance, while an ASIC design would offer superior performance 

in terms of power consumption, noise level and switching performance.       

Toward this goal, we developed a 9.2-gram fully-flexible wearable device that is 

capable of recording EEG signals from 8 channels in a differential manner, each equipped 

with an active electrode (amplifier + ADC), active shielding, and analog motion artifact 

detection and removal. The device uses non-contact dry electrodes for recording that are 

integrated together with the electronics on the same flexible substrate. A 1.18-gram 

17×13mm2 rigid digital backend board hosting a low-power FPGA connects to the main 

flexible substrate and adds signal processing capability to the device, making it a diagnostic 

tool as well. The digital backend board also hosts a low-energy Bluetooth 5.0 transmitter 

that communicates the digitized EEG recordings at up to two Mbps rate.  

4.1 Design and implementation  

4.1.1 Top-level architecture 

Figure 4.1 shows a picture of the presented work on a head mannequin with pointers to the 

major blocks discussed in Figure 1.1. The picture illustrates the minimal form factor and 

adjustability to scalp shape. 
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Figure 4.1: Block diagram of the wireless wearable EEG monitoring device with a picture of the 

presented work mounted on a head mannequin. 

Figure 4.2 (a) shows the top-level block diagram of the presented system, as well 

as an actual picture of the complete wearable device and how different parts of it are 

connected to each other. As shown, the system is comprised of three main modules namely, 

the flexible recording board, the digital/wireless back-end board, and the battery. The front-

end board is implemented using a 4-layer flexible polyimide printed circuit board (PCB). 

The board length is 204 mm, which is long enough to cover the frontal and front-temporal 

lobes of an adult scalp, and its width is 23.6mm, making it easily fitted into a typical fabric 

headband. The physical flexibility of the substrate (demonstrated in Figure 4.2(b)) allows 

for the device to perfectly take the shape of the patient scalp, making it patient- and age-

universal (i.e., usable for infants, children, and adults). 

Figure 4.2 (a) also shows a simplified top-level block diagram of the device. The flexible 

board hosts nine (8 recording plus 1 reference in the middle) channels. The channels are 



 

 68 

implemented using off-the-shelf components that are populated on the top layer of the 

board. The bottom layer of the board is used to implement the dry EEG recording 

electrodes, which not only reduces the overall weight of the device but also makes the 

system self-contained and needless of wires connecting the electronic and the electrodes. 

More importantly, having the electrodes physically placed right under the front-end 

recording amplifiers (and on the same substrate) means that they could be connected 

through a via hole. This forms a perfect active electrode where almost no interference is  
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Figure 4.2 : (a) Top-level block diagram and pictures of the presented system showing its (b) weight 

and flexibility, (c) size relative to a 25-cent coin, and (d) mechanical/electrical connection of the front-

end and backend boards. 
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coupled onto the EEG signal before amplification. Additionally, to avoid bio-compatibility 

issues associated with certain metallic electrodes, the electrodes are covered with a non-

conductive material and the front-end is designed for non-contact recording based on the 

considerations described in [38]. 

Figure 4.2 (a) also depicts the block diagram of the circuit implemented on both 

boards. As shown, each channel contains multiple amplification and filtering stages and 

has dedicated modules for quantization and motion artifact removal. To 

compensate/remove the large motion-induced artifacts that appear on the recorded EEG 

due to the use of dry electrodes, we have employed a novel recording front-end architecture 

that (a) makes the signal's voltage gain directly proportional to the motion-induced skin-

electrode interface capacitance variations, (b) intentionally adds difference between two 

parallel near-identical paths to separate the signal from the motion, and (c) uses the 

extracted motion to compensate for the signal gain variations due to the physical motion. 

The above-mentioned design is implemented in each channel, including the reference 

channel, and the resulted artifact-free signals in each channel are subtracted from the clean 

(i.e., artifact free) reference signal to achieve a common-mode-free spatially-significant 

EEG recording. 

  Each channel also hosts a dedicated 12-bit ADC with a serial output. The outputs 

are sent to the FPGA in the backend board through the vertical connectors. The top and 

bottom views of the backend board is shown in Figure 4.3. As shown, the board hosts a 

programmable FPGA, a Bluetooth low-energy (BLE) 5.0 transceiver module (microchip + 
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antenna), as well as various voltage regulators and crystal oscillators for DC bias voltage 

and clock frequency generation, respectively. The board also hosts various connectors for 

electrical/mechanical attachment to the flexible board; test/debugging purposes, and 

programming the FPGA. 

The FPGA is used to collect and organize the data and send them to a 

microprocessor on a Bluetooth low-energy (BLE) transceiver module that allows for 

bidirectional communication with a desktop/handheld computer to send the recorded EEG 

signals and receive system reconfiguration commands. A control unit is also embedded 

into the FPGA that manages timing and mode-selection of the mixed-signal circuits on the 

main flexible board. This includes the reset and pulse-width modulation signal used for the 

motion artifact removal circuit (explained in section 3.4) as well as the timing signals for 

the ADCs operation. 
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Figure 4.3 : Top and bottom view of the digital backend board. 

 Additionally, the FPGA is selected to have a reasonable number of logic elements 

(Microsemi Igloo Nano AGLN250) that allows for uploading an algorithm onto it for 

online processing of the EEG data for detection of a neurological event such as epilepsy 

seizures or sleep states [39],[40] and [41]. In fact, the main purpose of including an FPGA 

in this design is for diagnostic applications. Deterministic or data-driven algorithms for 

detection of various neurological events could be programmed on the FPGA, which results 

in a much smaller latency and better energy efficiency compared to the case where a power-

hungry high-throughput transmitter is used to communicate raw EEG signals to a computer 

[16]. In [11] we have demonstrated successful implementation of a patient-specific 

epilepsy seizure detection algorithm in an energy efficient manner on this FPGA. Our 
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experimental results show a detection sensitivity and specificity of 92.5% and 80.1%, 

respectively, while consuming only 110µW. 

 To avoid the discrete electronic components at the top layer to induce noise on the 

recording electrodes at the bottom layer through capacitive coupling, an active shielding 

scheme is implemented using one of the middle layers. The low-impedance output of the 

recording amplifier which is a magnified replica of the recorded EEG signal is connected 

to a metal plate (same size and exactly on top of each electrode) implemented on the 

second-lowest layer of the flex PCB. The other internal later is used for routing and 

GND/VDD plane implementation. The flexible board weighs 5.11 grams. 

 A pair of vertical connectors (AXT420324 and AXT420124) shown in 

Figure 4.2(d) are used to connect the flexible board to the 17×13 mm2 rigid backend mini-

PCB. The vertical connectors between the two boards provide the means for (a) sending 

the serialized digital output of each channel to the backend digital board, (b) sending back 

the control and timing signals from the digital backend board to the quantization and 

motion artifact removal modules in each channel of the front-end flex board, (c) sharing 

the ground, vdd, and biasing voltages between the two boards, and (d) realizing a robust, 

yet miniature mechanical connection between the two boards. Table lists the major discrete 

components used in the making of the presented wearable device. 
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Table 4.1 : List of the major off-the shelf components used. 

Component Company Model 

Switch Analog device Inc ADG701LBRJZ 

PWM Linear Technology LTC6992CS6-2xTRMPBF 

Op Amp Texas Instruments OPA333AIDCKR 

Op Amp Texas Instruments OPA378AIDCKR 

Op Amp Texas Instruments OPA314AIDCKR 

ADC Texas Instruments ADS1018IDGSR 

Regulator-3.3 Analog device Inc ADP121-ACBZ33R7 

Regulator-1.2 Analog device Inc ADP121-ACBZ12R7 

Adj. regulator Linear Technology LT3020EMS8xPBF 

BLE Tx Rigado Inc BMD-350-A-R 

FPGA Microsemi AGLN250V2-CSG81 

XTAL 32kHZ ECS Inc ECS-.327-6-12-C-TR 

Oscillator 4MHz SiTime SIT8021AI-J4-XXS-4.0E 

Vertical Connector Panasonic AXT430124 

Vertical Connector Panasonic AXT430324 

FFC Connector Molex 5034801200 

4.2 Circuit implementation 

Detailed schematic of the circuit implemented on the flexible front-end board is depicted 

in Figure 4.4. As shown, each recording channel has two parallel path for sensing the 

surface EEG signals -- the "signal" path -- and for sensing the capacitance variations 

induced by a physical motion -- the "motion" path. Sensing amplifiers on both paths are 
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connected to two identical sections of an inter-digitated pie-shape electrode. The electrode 

is implemented using the bottom layer of the flexible PCB and is covered with a 0.9mil-

thick liquid epoxy insulator to realize a non-contact interface. The inter-digitated design 

will make sure that both half electrodes will experience identical skin-electrode interface 

capacitance value as well as motion-induced capacitance variation. 

The sensing front-end amplifiers design is a variation of a capacitive-feedback 

amplifier shown in Figure 2.12, where the input capacitance C1 is replaced with the 

electrode-skin interface capacitance (CESI). Both motion and signal paths are designed to 

have a direct control on the DC voltage at the input using OpAmps. For the motion path, 

an intentional large DC difference is applied across the CESI, causing the second term of 

Equation (2.3) to dominate the current flowing into this path. Periodic application of the 

DC voltage across CESI while the 100pF feedback capacitor is being reset at the same 

frequency results in the output of this stage (Vmotion) to have a linear relationship with the 

absolute value of the interface capacitance. 
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Figure 4.4 : Detailed circuit schematic of the active electrode used for EEG recording (amplification 

and quantization), the motion artifact detection and removal, and the interdigitated electrode design 

used for non-contact interfacing with the skin. 
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The circuit used in the signal path conducts somewhat the opposite of the motion 

path in the sense that it is designed to ensure that the current flowing into the sensing path 

is dominated by the first term of Equation (2.3) by enforcing the DC voltage across the CESI 

to zero. This way, the signal path first amplifying stage has a gain that is directly 

proportional to the interface capacitance value. 

In the second stage of the motion path, Vmotion, after being level shifted is fed to a 

voltage-controlled pulse-width modulator IC that sets the gain of a variable gain amplifier 

(VGA) stage using a duty-cycled resistor. By doing this, the motion-induced interface 

capacitance variations are sensed and inversely multiplied by the gain of the signal path. 

Therefore, after two stages of amplification, the overall gain of the signal path will be 

independent of the interface capacitance variations. 

The performance of the circuit described above is heavily dependent of the 

symmetry of the two paths to ensure the same interface capacitance variations for them. 

We experimentally measured the output of the two paths to evaluate the symmetry of our 

design. Figure 4.5 shows the capacitance values sensed by two parallel paths. While the 

results are more than satisfactory for our application, the errors could be made even smaller 

by increasing the number of inter-digitated sections of the electrodes. 
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Figure 4.5 : Experimentally measured variable skin-electrode interface capacitance from two parallel 

paths of the presented active electrode. 

The circuit described above is used for all the 8 recording channels as well as the 

reference channel. As shown in Figure 4.4, the artifact-free signal in each channel is 

subtracted from the artifact-free signal from the reference channel, essentially removing 

the common-mode component of the signal. The common-mode free output of this stage 

is low-pass filtered to remove the high-frequency noise coupled onto the signal, mainly 

due to the pulse-width modulation circuit. The analog output is then fed to a 12-bit ADC 

that is integrated in each channel/active electrode. 

Figure 4.6 shows the magnified picture of top and bottom views of one of the active 

electrodes implemented on the flexible PCB with all the discrete components used. As 

shown the circular electrode implemented on the bottom layer of the PCB has 6 

interdigitated sections, each of them shorted to two non-neighbour sections, constituting 
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two interdigitated electrodes. The presented design guarantees that the signals recorded by 

each of the parallel paths will record identical EEG signals and will experience identical 

motions, hence, exactly the same impedance variations. 

 

Figure 4.6 : Top and bottom view of one of the recording channels and the electrode implemented on 

the flex substrate. 

4.3 Measurement results 

The performance of different components of the system were validated experimentally in 

the lab.  Figure 4.7(a) shows the measured voltage gain of the recording channel versus 

frequency confirming the full 300-Hz bandwidth of the circuit required for local field 

potential recording. Signals were fed to the device through an aluminium conductive plate 

that was separated from the electrodes by an insulating layer (both air and fabric were 

used). Figure 4.7(b) shows the input-referred noise of the recording front-end, which is 

well below the required level for LFP recording. Figure 4.7(c) shows the measured CMRR 

of >70dB confirming excellent rejection of common-mode input signals and interference. 

The BLE 5.0 digital transceiver was also tested showing error-free transmission throughput 
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of 1Mbps for up to 5m distance. The power consumption of each recording channel and 

the entire digital backend are measured to be 1.5mW and 14mW, respectively, and the 

whole device with a coin battery weighs 9.2 grams. 

 

Figure 4.7 : Recording channel experimental measurement results: (a) gain bandwidth, (b) input-

referred noise, and (c) CMRR. 

Figure 4.8 (a) and (b) show sample recorded signals at the output of the first and 

second (i.e., motion artifact compensated) amplification stage in the "signal" path, 

respectively. The experiment is done by applying a sinusoidal signal into the living tissue 
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and recording the incident waves using the non-contact active electrodes described above, 

a few centimeters away. While recording for tens of seconds, various horizontal and 

vertical motions that could happen due to the patient's normal activities (e.g., speaking, 

frowning, breathing, talking, chewing) were applied to the electrode. 

 

Figure 4.8 : Sample recordings of the presented circuit before and after analog motion artifact 

removal. 

Figure 4.8(a) shows that while motions can generate large variations in the recorded 

signal, due to the use of presented novel recording architectures, the artifacts are manifested 

in the form of voltage gain variations rather than large DC drifts that have been observed 

using conventional recording circuits (Figure 2.6 (a), (b), [30] and [42]). Figure 4.8(b) 

shows the artifact-compensated signal at the output of the second stage of amplification. 

As shown, large voltage gain variations are compensated and the recorded signal is fairly 

artifact free. 
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Figure 4.9 : Normalized voltage gain of the recording circuit with and without motion artifact 

removal (MAR). 

Figure 4.9 presents the normalized voltage gain of the presented circuit for the first 

and second stages of amplification. The figure clearly illustrates the effectiveness of the 

presented analog motion artifact removal (MAR) in yielding a relatively constant gain for 

the EEG-recording active electrodes. Table 4.2 compares the presented work with the state 

of the art active electrodes in terms of system-level and circuit-level attributes. 
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Table 4.2 : State-of-the-art active electrodes designed for ambulatory surface EEG/ECG recording. 

 [5] [1] [2] [3] [4] This work 

Motion 

detection 

No No Yes No Yes Yes 

Method - 

- 

- 

- 

Current 

injection 

- 

- 

Current 

injection 

Parallel 

recording 

ETI Frequency - - 1KHz - 1KHz Same as 

EEG 

Motion 

removal 

No No Digital No Digital Analog 

Active 

shielding 

Yes - - No - Yes 

No. of wires - 4 6 4 5 4 

Interface Non-contact contact contact contact contact Non-contact 

VDD (V) 3.3 1.8 1.8 3 1.8 3.3 

Power/ch (W) 600 µ 20 µ 

(Amp only) 

82µ 360 µ 

(Amp only) 

105 µ 1.3m 

Channel Count - 8 8 - 16 8 

Voltage Gain 

(V/V) 

1000 3,10,100 11,51,10

1 

10 140,700,1200 260 

Input 

Impedance (Ω) 

- 100M 500M 100M 100M Charge Amp 

Bandwidth 

(Hz) 

100 - 200 - 300 300 

ADC 

Resolution 

(bits) 

Yes 

16 

No 

- 

Yes 

12 

No 

- 

Yes 

12 

Yes 

12 

Offset 

tolerance (mV) 

R-to-R R-to-R -

+250mV 

- -+350mV R-to-R 

*: No real wire as all the channels are on the same substrate. 

R-to-R: Rail to Rail 
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Chapter 5  

Conclusion and future works 

5.1 Conclusion 

Design, development, and experimental validation of integrated circuits and systems for 

ambulatory EEG monitoring and neurological disorder diagnostics were presented. A 

conclusive review and experimental analysis of the effect of physical motions on the signal 

quality acquired by various EEG electrodes were conducted prior to the design and 

development stage. Based on the review's outcome, a novel circuit architecture that 

employs inter-digitated dry non-contact electrodes together with mixed-signal circuit 

techniques for detection and removal of motion artifacts was designed and incorporated 

into both prototypes presented in this thesis. 

The first prototype which is an integrated circuit designed and fabricated in a 

130nm standard CMOS technology is an EEG recording system on a chip that integrates 8 

channels, each equipped with the above-mentioned architecture capable of motion artifacts 

detection and removal. The IC was tested in the lab and the measurement results show an 

average voltage gain of 70 dB, power consumption of 55 μW per channel, integrated input 

referred noise of 10 μVrms (integrated over 1-200 Hz) and 3-dB frequency bandwidth of 

3-1000 Hz. The IC's performance was also evaluated with motion-contaminated input 

signals and the measurement results were presented  
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The second prototype is a fully-flexible wearable EEG monitoring and diagnostic 

device. The system integrates 8 active-electrode recording and one reference channels, 

each equipped with the motion artifact detection and removal module described above, a 

dedicated ADC, and active shielding. The flexible substrate allows for the device to be 

indifferent to scalp shape and patient’s age, making it a suitable solution for ambulatory 

EEG monitoring and analysis. Dry non-contact inter-digitated electrodes are also 

integrated on the main flexible substrate, allowing for quick setup time, comfortable use, 

and avoiding bio-compatibility issues. The system top-level architecture and circuit 

implementation were described in details. The device was validated experimentally and 

measurement results were presented. 

5.2 Future directions 

To validate the functionality of the presented novel architecture for the analog front-end at 

the system level, the chip presented in Chapter 3, should replace the off-the shelf 

components of the EEG recording headband. Using the integrated system instead of the 

discrete components will improve performance in terms of noise and power consumption. 

Also it will decrease the number of components and connection on the substrate, hence 

improving the physical features such as size, weight, and flexibility. 

A natural next step for either prototypes presented in this thesis is clinical validation. 

Recording forehead EEG signals in a clinical setup will be the ultimate confirmation of the 

presented system's efficacy in ambulatory EEG monitoring.  
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Another direction would be investigating the efficacy of the presented systems as a 

diagnostic medical device. Our group has implemented a machine learning algorithm for 

patient-specific epilepsy seizure detection on the digital backend signal processing PCB 

presented in Chapter 4 of this thesis [11]. The algorithm uses only frontal-lobe EEG signals 

that the presented system in Chapter 4 is capable of recording. An experimental test 

showing both recording and signal processing done by the integrated system presented in 

this thesis will prove its diagnostic capabilities. 

The proposed method can extract motion independently could be used for application that 

needs motion recording.  

For the next generations of the ambulatory monitoring and diagnostic system, the 

prototype could be designed to be able to record signals from all over the scalp, instead of 

only from forehead. To improve detection accuracy and/or enable new applications, the 

next-generation device could also be turned into a multi-modal technology by integrating 

techniques such as functional near-infrared spectroscopy into it. 
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