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Abstract

Learning a suitable graph is an important precursor to many graph signal process-

ing (GSP) tasks, such as graph signal compression and denoising. Previous graph

learning algorithms either make assumptions on graph connectivity (e.g., graph spar-

sity), or make individual edge weight assumptions such as positive edges only. In

this thesis, given an empirical covariance matrix C̄ computed from data as input, an

eigen-structural assumption on the graph Laplacian matrix L is considered: the first

K eigenvectors of L are pre-selected, e.g., based on domain-specific criteria, and the

remaining eigenvectors are then learned from data. One example use case is image

coding, where the first eigenvector is pre-chosen to be constant, regardless of avail-

able observed data. It is first proven that the subspace H+
u of symmetric positive

semi-definite (PSD) matrices with the first K eigenvectors being {uk}Kk=1 in a defined

Hilbert space is a convex cone. Then, an operator is constructed which projects a

given positive definite (PD) matrix L to H+
u , inspired by the Gram-Schmidt proce-

dure. Finally, an efficient hybrid graphical lasso / projection algorithm is designed to

compute the most suitable graph Laplacian matrix L∗ ∈ H+
u given C̄. Experimental

results show that given the first K eigenvectors as a prior, this algorithm outperforms

competing graph learning schemes using a variety of graph comparison metrics.
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Chapter 1

Introduction

Large modern datasets often exhibit underlying correlation structures. For example,

temperature measurements collected by a distribution of wireless sensors in a rain

forest are correlated if the sensors are close in physical distance. These correlation

structures can be conveniently described by graphs. A graph is composed of nodes and

edges. Each node is associated with a datum or measurement (e.g., temperature at a

particular sensor), and each edge contains a weight that conveys pairwise relationship

between the two connected nodes (e.g., distance between two sensors, or conditional

correlation between two random variables). One can find examples of datasets with

underlying correlation structures in many real-world settings, such as social networks,

wireless sensor networks, transportation networks, and biological networks.

Armed with a graph that accurately describes the underlying correlation structure,

computational tools can be designed to process observed data on top of the graph

for various signal processing tasks—compression, denoising, interpolation, etc [5,10].

This is the new and fast-growing field of graph signal processing (GSP). Practical

GSP applications include image compression [2,11–13], image denoising [14–17], image

deblurring [18], point cloud denoising, matrix completion, etc [19–21]. However, often
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the most suitable graph structure for a dataset is not directly available a priori for

GSP tools to exploit. As such, an appropriate graph must be first estimated. This

thesis focuses on the problem of graph learning from data.

There are three general approaches to learning graphs from data: (i) statistical

models, (ii) physically-motivated models and (iii) GSP-based models. From the sta-

tistical perspective, the structure of the graph provides a probabilistic description

(e.g., joint probability distribution) of the observed data entities, e.g., columns of a

data matrix. A classical example is Gaussian Markov Random Field (GMRF) [22],

where the pairwise correlation information encoded in a graph also implies the prob-

ability distribution function. Hence, in the case of GMRF, learning the graph is

equivalent to learning a factorization of a joint probability distribution of these ran-

dom variables. Potential applications are numerous and broad in scope. For example,

one can infer interactions between genes using gene expression profiles, or examine

the relationships between different politicians given their voting records [23].

Physically-motivated models, however, make assumptions (e.g., sparsity) based on

an underlying physical phenomenon or a process on a graph. For example, physically-

based methods are used to understand the flow of information within online social

networks [24], or to make time-sensitive observations about epidemic spread over a

network of people [25].

Finally, GSP-based methods are constructed from the signal representation per-

spective, placing a strong and specific emphasis on the relationship between the graph

topology and the representation of signal on the graph. These methods typically as-

sume that the observations are low graph frequency signals, where frequency compo-

nents are eigenvectors of the adjacency or graph Laplacian matrix [26]. GSP-based
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methods often make nodal domain assumptions, such as specific graph connectiv-

ity or overall sparsity of the graph. These methods can be used in applications that

are not based on well-defined physical phenomena or processes. Example applications

include image coding and compression, brain signal analysis and political voting anal-

ysis [2, 27–29].

None of the above categories of graph learning methods make assumptions about

the eigen-structure of the graph Laplacian matrix. In this thesis, explicit eigen-

structure assumptions on the graph Laplacian matrix L are introduced into a graph

learning framework. Specifically, it is assumed that the first K eigenvectors of L are

pre-selected or computed based on domain-specific criteria. Consider the example

of image compression, where one can deduce from domain knowledge that the most

common pixel block is the constant signal, and thus should be the first eigenvector

regardless of (possibly limited) training data. Consider also political voting records,

where the most common pattern is voting along party affiliations in a two-party

political system, and thus the first eigenvector should be piecewise constant (i.e.,

nodes of one political party are assigned 1, while nodes of the other party are -1).

There are also practical cases where the first K eigenvectors can be pre-chosen for fast

computation. For example, one can use fast graph Fourier transform (FGFT) [30] to

construct a set of K sparse eigenvectors based on Givens rotation matrices, so that

the first K transform coefficients can be computed speedily.

This thesis proposes an optimization strategy where a graph Laplacian matrix

L is learned optimally from data, while restricting the first K eigenvectors to be

those chosen ahead of time. It is first proven that the subspace H+
u of symmetric

positive semi-definite (PSD) matrices with the first K eigenvectors taken from a
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given set {uk}Kk=1 is a convex cone. A projection operator is next constructed to

project a given positive definite (PD) matrix L to H+
u , inspired by the Gram-Schmidt

procedure [31]. Finally, an efficient hybrid graphical lasso (GLASSO) / projection

algorithm is designed to compute the most suitable graph Laplacian matrix L∗ ∈ H+
u

given input empirical covariance matrix C̄. Experiments show that using the first

K eigenvector prior, the proposed algorithm can produce a more accurate graph

inference given limited observed data compared to existing schemes.

The thesis structure is as follows. Chapter 2 reviews necessary graph signal pro-

cessing (GSP) and Hilbert space concepts, and different techniques in the graph learn-

ing literature. The proposed projection operator is defined in Chapter 3. Chapter 4

describes the proposed graph learning algorithm. Experimental results and conclusion

are presented in Chapter 5 and 6, respectively.
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Chapter 2

Related Works

This chapter provides an introduction of important concepts in graph signal process-

ing (GSP) in Section 2.1. Definitions needed to define Hilbert space and projection

are presented in Section 2.2. In Section 2.3, a brief review of transform coding is

provided. In Section 2.4, an overview of different approaches and methods in graph

learning is presented.

2.1 Graph Signal Processing Definitions

The field of Digital Signal Processing (DSP) studies discrete signals on regular data

kernels. For example, DSP contains computational tools to process a digital audio

signal on a regularly sampled timeline, or a digital image on a 2D grid. The field of

Graph Signal Processing (GSP), in contrast, studies signals on irregular data kernels

described by graphs [10, 19, 32]. Definitions of graphs and graph signals are first

provided in Section 2.1.1. Graph spectrum interpretation and graph construction are

then reviewed in Section 2.1.2 and 2.1.3, respectively.
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2.1.1 Graph Definitions and Graph Signals

A graph is a mathematical structure encoded with pairwise relations between data

entities. A graph consists of nodes, or vertices, which are connected by edges. The

edges can be weighted or unweighted. In a weighted graph, a scalar value is assigned

to each edge, while in an unweighted graph, all edges have weights equal to 1.

Formally, a graph can be expressed in the form G = {V , E ,W} with a finite set

of nodes V of size |V| = N , a set of edges E , and an adjacency matrix W ∈ RN×N .

Assuming that graph G is weighted, an edge (i, j) ∈ E connects nodes i and j with

weight wij ∈ R, where Wij = wij. Wij = 0 if (i, j) /∈ E . W may include self-loops

Wii’s.

A graph can be directed or undirected. In an undirected graph, an edge (i, j)

implies traversal from node i to node j as well as j to i, and Wij = Wji. Thus, an

undirected graph implies a symmetric W. On the other hand, in a directed graph,

edges (i, j) and (j, i) may have different edge weights. W is not symmetric for an

undirected graph in general.

There are different ways to define the weight of an edge connecting nodes i and

j. Generally, the definition of an edge between two nodes i and j varies with applica-

tions. Edges can represent pairwise similarities, dissimilarities, or distances between

distinct feature vectors. Edge weights can also represent statistical quantities such as

conditional correlations, which will be discussed in Section 2.4.1.

A graph signal x on G is a discrete signal of dimension N , where each signal

sample xi ∈ R is assigned to a corresponding node i in V . Thus, a graph signal

can be represented as a vector x ∈ RN . The meaning of a graph signal depends

on application, such as measurements (e.g., temperature or image pixel intensity) or
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label information.

2.1.2 Graph Spectrum

Given an adjacency matrix W for an undirected graph, the diagonal degree matrix

D is defined as follows:

Dii =
∑
j

Wij. (2.1)

The combinatorial graph Laplacian matrix L [32] is then defined as follows:

L = D−W. (2.2)

Based on the above definition, L is symmetric, so it can be eigen-decomposed via

the Spectral Theorem as follows [19]:

L = UΛU>, (2.3)

where Λ is a diagonal matrix with eigenvalues λk on the diagonal, and U is a matrix

composed of orthogonal eigenvectors as columns. Assuming that all edge weights are

positive in W, it can be proven that L is positive semi-definite (PSD), i.e., eigenvalues

of L are non-negative [19]. Eigenvalues can be interpreted as graph frequencies, and

their corresponding eigenvectors can be interpreted as graph Fourier modes. The set

of eigenvectors U> collectively define the graph Fourier transform (GFT) [10]. Specif-

ically, graph signal x can be converted to its frequency representation via GFT using
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the equation α = U>x. GFT can be considered as a generalization of known discrete

transforms such as the discrete cosine transform (DCT) [33]. Further discussion on

DCTs can be found in Section 2.3.2.

There exist different variants of the graph Laplacian matrix, each with distinct

properties. Ln = D−1/2LD−1/2 is called a normalized graph Laplacian, which is a

symmetric normalized version of L. Lr = D−1L is a random walk graph Laplacian,

which is an asymmetric normalized version of L. Finally, to properly account for self-

loops, a generalized graph Laplacian is defined as Lg = L + diag(W). Each variant

also has its own unique spectral properties. For example, Ln and Lr have the same

eigenvalues 0 ≤ λk ≤ 2. Ln and L are both symmetric, but Ln does not have the

constant vector as a first eigenvector.

2.1.3 Graph Construction

Different applications of GSP use different methods to define pairwise similarities

(edge weights) between nodes to construct a graph [9, 34, 35]. In a temperature

sensing system, for example, each sensor has a known physical 2D location [34]. In

this case, pairwise similarities between nodes of a graph can be defined in terms of

physical distances in space between pairs of sensors. In machine learning applications,

however, each data entity, represented by a graph node i, may be endowed with a

feature vector fi ∈ RK of dimension K. In this instance, pairwise similarities are

defined given a notion of distance between vectors fi in feature space. More generally,

an edge weight wij between nodes i and j in a graph can be computed based on the
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distance between two nodes, dij, and a Gaussian kernel with parameter σ:

wij = exp

(
−
d2
ij

2σ2

)
. (2.4)

The bilateral filter [36, 37] is one distance notion commonly used in image pro-

cessing. It is defined as follows:

wij = exp

(
−‖li − lj‖2

2

2σ2
l

)
exp

(
−|xi − xj|

2
2

2σ2
x

)
, (2.5)

where σl and σx are parameters, and li and xi are the respective location and pixel

intensity of pixel (node) i on the image grid. Some works in image processing [16] also

use the simpler form of (2.5), where only pixel intensities are considered to compute

edge weights:

wij = exp

(
−|xi − xj|

2

2σ2
x

)
. (2.6)

(2.6) means that an edge weight is small when two pixels have a large difference in

intensity, such as pixels on two different sides of an object boundary.

In [8, 27], a statistical notion of edge weight is used, which will be discussed in

greater detail in Section 2.4.1. Special attention will be paid to Gaussian Markov

Random Fields (GMRFs) [38, 39]. Assuming a GMRF probabilistic model, the pre-

cision matrix can be learned such that it has the form of a graph Laplacian [27].
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2.2 Hilbert Spaces

The following terminologies from [5] are used to define a Hilbert space. These defini-

tions are necessary to construct a projection operator in Chapter 3.

The definition of a vector space is presented in Section 2.2.1. The definitions for

inner product and orthogonality (Section 2.2.2), norm (Section 2.2.3), Hilbert space

(Section 2.2.4), and linear and adjoint operators (Section 2.2.5) are discussed next.

Finally, a projection operator is defined in Section 2.2.6.

2.2.1 Vector Space

A vector space, over a field of scalars R, is a set of vectors V together with operations of

scalar multiplication and vector addition. A vector space has the following properties:

(Given x,y, z ∈ V and scalars α, β ∈ R)

x + y = y + x (Commutativity)

(x + y) + z = x + (y + z) and (αβ)x = α(βx) (Associativity)

α(x + y) = αx + αy and (α + β)x = αx + βx (Distributivity)

(2.7)

Furthermore, a vector space has the following properties:

∃0 ∈ V s.t. x + 0 = x, ∀x ∈ V (Additive identity)

∃ − x ∈ V s.t. x + (−x) = 0, ∀x ∈ V (Additive inverse)

1 · x = x, ∀x ∈ V (Multiplicative identity)

(2.8)

A nonempty subset S of a vector space V is a subspace when it is closed under
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the operations of scalar multiplication and vector addition:

∀x,y ∈ S, x + y ∈ S (2.9)

∀x ∈ S and α ∈ R, αx ∈ S (2.10)

2.2.2 Inner Product and Orthogonality

An inner product is a function with real values defined on a vector space V with the

following properties: (∀x,y, z ∈ V and α ∈ R)

〈x + y, z〉 = 〈x, z〉+ 〈y, z〉 (Distributivity)

〈αx,y〉 = α〈x,y〉 (Linearity in the first argument)

〈x,y〉? = 〈y,x〉 (Hermitian symmetry)

〈x,x〉 ≥ 0, and 〈x,x〉 = 0 iff x = 0 (Positive definiteness)

(2.11)

An inner product can endow a space with some geometric properties such as

orthogonality. Vectors x and y are said to be orthogonal (i.e., x ⊥ y) when 〈x,y〉 = 0.

2.2.3 Norm

A norm is a function which allocates size (e.g., length) to vectors. More specifically,

a norm is a real-valued function defined on a vector space V over R with the following

properties: (∀x,y ∈ V and α ∈ R)

‖x‖ ≥ 0, and ‖x‖ = 0 iff x = 0 (Positive definiteness)

‖αx‖ = |α|‖x‖ (Positive scalability)

‖x + y‖ ≤ ‖x‖+ ‖y‖ (Triangle inequality)

(2.12)
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When a norm operation exists in a vector space, the vector space is a normed

vector space. In a normed vector space, the metric, or distance, between two vectors

x and y is the norm (e.g., the size) of their difference:

d(x,y) = ‖x− y‖. (2.13)

A subspace S of a normed vector space V is said to be closed when it contains

all limits of sequences of vectors in S. Subspaces of normed vector spaces with finite

dimensions are always closed.

2.2.4 Hilbert Space

Formally, a sequence of vectors x1, . . . in a normed vector space V converges to v ∈ V

when limk→∞ ‖v−xk‖ = 0. Specifically, given any ε > 0, there exists a Kε such that:

‖v − xk‖ < ε, ∀k > Kε. (2.14)

Given (2.14), the meaning of convergence depends on the definition of the norm in

each subspace.

A sequence of vectors x1, . . . in a normed vector space is called a Cauchy sequence

when, given any ε > 0, there exists a Kε such that

‖xk − xm‖ < ε , ∀k,m > Kε. (2.15)

For sequences with real value, a Cauchy sequence must converge.

Completeness means convergence exists in a subspace. More formally, a complete

12



space is a normed vector space V in which every Cauchy sequence in V converges to a

vector in V . A Hilbert space is an inner product space with the additional requirement

of completeness. Figure 2.1 shows the relationships among different types of spaces

and provides examples of standard spaces.

Figure 2.1: Different types of vector spaces [1].

2.2.5 Linear Operator and Adjoint Operator

A function A : H0 → H1 is called a linear operator from Hilbert space H0 to Hilbert

space H1 when, for all x,y in H0 and α in R, the following properties hold:

A(x + y) = Ax + Ay (Additivity)

A(αx) = α(Ax) (Scalability)
(2.16)
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When the domain H0 and the co-domain H1 are the same, A is also called a linear

operator on H0.

The linear operator A∗ : H1 → H0 is called the adjoint of the linear operator

A : H0 → H1 with the following property:

〈Ax,y〉H1 = 〈x,A∗y〉H0 , ∀x ∈ H0,∀y ∈ H1. (2.17)

When A = A∗, the operator A is said to be self-adjoint or Hermitian.

2.2.6 Projection Operator

An idempotent operator P is an operator such that:

P2 = P. (2.18)

A projection operator is a bounded linear operator that is idempotent. An or-

thogonal projection operator is a projection operator that is self-adjoint. An oblique

projection operator is a projection operator that is not self-adjoint.

2.3 Transform Coding

Transform coding [40] is one of the most popular approaches for image and video

compression. Many compression codecs such as JPEG, HEVC and H.26x [41–43]

divide an image into non-overlapping blocks of pixels (e.g., 8 × 8 pixels) and then

transform-encode individual blocks in sequence. This so-called block-based transform

coding projects each block using a chosen transform. Different transforms are used in

image and video coding literature [11,44]. The Discrete Cosine Transform (DCT) and
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the Asymmetric Discrete Sine Transform (ADST) [33, 45] are two of the transforms

that are widely used in image compression systems.

Section 2.3.1 provides a review of some related works in transform coding and

image coding. The two most popular transforms in image and signal processing—

DCT and ADST—are described in Section 2.3.2 and 2.3.3, respectively.

2.3.1 Image Coding

In transform coding [40], an image is divided into non-overlapping blocks of pixels,

then a chosen transform is applied to each block. Next, the computed transform coef-

ficients are quantized and entropy-coded into a bitstream for storage or transmission.

At the decoder, entropy decoding, inverse quantization and inverse transform are

performed to reconstruct the block. To achieve the best compression performance,

selecting a transform that promotes sparsity in signal representation is necessary. It

means that there are few non-zero transform coefficients remaining following signal

transformation and quantization.

JPEG [41] was the first widely adopted image coding standard. The first step of

JPEG compression is the division of an image into non-overlapping 8×8 blocks. Next,

an individual DCT transform [33] is applied on every pixel block before employing

quantization and entropy coding using Huffman code [46]. Huffman code is a simple

variable-length-coding (VLC) algorithm used to encode sequences of symbols with

different probabilities into a binary string via a Huffman tree.

Contemporary compression methods, such as a coding algorithm in [11] for piece-

wise smooth images like depth maps, utilize more general GFTs for transform coding

of images. Recall that a GFT is effectively a matrix containing eigenvectors of a
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graph Laplacian matrix. The algorithm in [11] specifies a GFT by designating an un-

derlying graph. This is possible through parameterization of either a weighted or an

unweighted graph. The key point in this work is that the compression cost of coding

quantized GFT coefficients are weighted against the overhead of describing a graph

for correct GFT decoding at the decoder. It is also shown that the derived GFT

approximates the ideal Karhunen-Loève Transform (KLT) [47]. KLT is composed of

eigenvectors of the covariance matrix of the input process (i.e., pixel data), and it

is similar to principal component analysis (PCA) [48]. Unlike common transforms

such as DCT [33], KLT is a signal-adaptive transform. Signal adaptivity allows the

derived transform to match against the time-varying statistics of the input signal.

However, a disadvantage of KLT is that the transform matrix must be known to both

the encoder and decoder. Thus, using KLT can slow down the compression process.

To compensate for this, KLT should be approximated to allow for fast computation.

A revised algorithm [2] improved upon the performance of [11] by using generalized

GFT (GGFT) optimized for intra-prediction residues. GGFT is defined based on the

orthogonal eigenvectors of the generalized graph Laplacian matrix. A novel clustering

method is also proposed to identify different correlation types (i.e., strong correla-

tion, weak correlation and zero correlation) between pixel pairs. Figure 2.2 illustrates

subjective quality comparison among three compression methods using DCT, GFT

and GGFT in their coding scheme.

2.3.2 Discrete Cosine Transform

Discrete cosine transform (DCT) [33] is the most commonly used transform for image

and video coding in the literature [41–43]. DCT is derived from standard Laplacian

16



(a) (b) (c)

Figure 2.2: Compression result via (a) DCT (b) GFT (b) GGFT [2].

matrices in discrete domain, and hence it can be interpreted as a GFT, discussed

in Section 2.1.2. Specifically, DCT is the GFT for a line graph with equal edge

weights. A line graph with N nodes can represent N pixels along a pixel row. Edge

weights between all adjacent pixels are 1. The graph signal that corresponds to this

graph would be the image intensity at each of those pixels. The combinatorial graph

Laplacian for this graph when N = 8 is

L =



1 −1 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 0

0 0 −1 2 −1 0 0 0

0 0 0 −1 2 −1 0 0

0 0 0 0 −1 2 −1 0

0 0 0 0 0 −1 2 −1

0 0 0 0 0 0 −1 1



. (2.19)
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GFT of this Laplacian is called DCT-2. There are four different types of DCTs, which

correspond to different Laplacian matrices. The Laplacian matrix for DCT-1 is

L =



2 −2 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 0

0 0 −1 2 −1 0 0 0

0 0 0 −1 2 −1 0 0

0 0 0 0 −1 2 −1 0

0 0 0 0 0 −1 2 −1

0 0 0 0 0 0 −2 2



. (2.20)

The Laplacian matrix for DCT-3 is

L =



2 −2 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 0

0 0 −1 2 −1 0 0 0

0 0 0 −1 2 −1 0 0

0 0 0 0 −1 2 −1 0

0 0 0 0 0 −1 2 −1

0 0 0 0 0 0 −1 2



. (2.21)
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The Laplacian matrix for DCT-4 is

L =



1 −1 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 0

0 0 −1 2 −1 0 0 0

0 0 0 −1 2 −1 0 0

0 0 0 0 −1 2 −1 0

0 0 0 0 0 −1 2 −1

0 0 0 0 0 0 −1 3



. (2.22)

As shown in these matrices, the differences among the four types of DCTs are due

to different boundary conditions [33]. DCT-2 and DCT-4 are mostly used in image

processing tasks. All the mentioned types of DCTs are 1D DCTs, and they can be

extended to two-dimensional DCTs, which is discussed next.

Formally, if X is an N ×N block of pixels and UDCT is the DCT matrix, then the

block after applying transform is as follows [3]:

Y = U>DCTXUDCT (2.23)

where U>DCT applies the DCT to the columns of X, while UDCT does the same thing

for the rows of X. In other words, 2D DCT is a separable transform, separable into

1D x- and y-directions.
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2.3.3 Asymmetric Discrete Sine Transform

The asymmetric discrete sine transform (ADST) is motivated by intra-prediction and

residual encoding [45]. First, images are divided into blocks without overlaps. In

classical intra-prediction, decoded pixels from a neighboring block i.e., boundary pix-

els, are used to predict pixels in the present block i.e., predicted pixels [2]. This

basically changes the resulting residual block statistics in the encoding process. For

example, after intra-prediction, the constant signal is not the most likely signal any-

more for the residues, since the pixel at the prediction boundary tends to be closer

to zero than the others. [45] showed that ADST outperforms DCT for these kind of

residual blocks. ADST is the “generalized” GFT of a line graph with the following

“generalized” graph Laplacian:

L =



2 −1 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 0

0 0 −1 2 −1 0 0 0

0 0 0 −1 2 −1 0 0

0 0 0 0 −1 2 −1 0

0 0 0 0 0 −1 2 −1

0 0 0 0 0 0 −1 1



. (2.24)

The only difference between ADST and DCT in (2.19) is changing 2 to 1 in entry

(1, 1) of the Laplacian matrix. This is equal to adding a self-loop to the first and left-

most node in the line graph. This results in changing the eigenvector corresponding
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to the lowest frequency, so that it is no longer a constant vector. Specifically, the

difference between ADST and DCT can be illustrated by comparing their basis vectors

in Figure 2.3. As shown, for ADST, the value for the left-most node becomes smaller,

particularly for the first basis.

2.4 Graph Learning Techniques

As discussed in Chapter 1, previous graph learning methods can be divided into

three main categories. In this chapter, first, previous approaches that address the

graph learning problem from the statistical or physical perspective are overviewed in

Section 2.4.1 and 2.4.2, respectively. Next, recent GSP-based approaches are reviewed

in Section 2.4.3, showing how additional constraints can be deduced from the GSP

perspective, so that an appropriate graph can be learned robustly, even with a small

dataset.

2.4.1 Statistical Models

From the statistical perspective, let the columns of the data matrix X be data ob-

servations generated from a same probability model. Using X , one can estimate

parameters of a statistical model, represented by a graph G. Such models are known

as probabilistic graphical models [8,22,23,49,50], where the edges in the graph encode

conditional dependencies between the random variables on the nodes of the graph.

These models have two main types. First one is based on undirected graphical

models, also known as Markov random fields (MRFs). In this section, approaches for

learning MRFs are overviewed. These approaches compute a most probable probabil-

ity model given observations. They are also further extended in GSP-based methods.
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(a)

(b)

Figure 2.3: (a) Discrete cosine transform (DCT) basis for vectors of dimension 8.
(b) Asymmetric Discrete sine transform (ADST) basis for vectors of dimension 8. These
vectors are ordered (left to right, top to bottom) by their frequency [3].

MRF with respect to a graph G = (V , E), where V denotes the node set and E

denotes the edge set, is a set of discrete random variables x = {xi : i ∈ V} that satisfy
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the Markov property. Specifically, the pairwise Markov property is defined as follows:

(i, j) 6∈ E ⇐⇒ p(xi|xj,x \ {xi, xj}) = p(xi|x \ {xi, xj}). (2.25)

(2.25) states that two variables xi and xj are conditionally independent given the

knowledge of the rest of the nodes, if there exists no edge between their corresponding

nodes i and j in the graph G.

One frequently used example of MRFs is Gaussian graphical models or Gaussian

MRFs (GMRFs) [38, 39]. The joint probability of a zero-mean GMRF for random

vector x ∈ RN is defined as follows:

p(x|Θ) =
|Θ|1/2

(2π)N/2
exp

(
−1

2
x>Θx

)
(2.26)

where Θ is the precision or inverse covariance matrix. Learning the precision ma-

trix Θ, which contains pairwise correlation of variables, is equivalent to learning the

underlying graph structure.

The second type of graphical models are based on directed models, also known

as Bayesian networks or belief networks (BNs). The focus of this thesis is restricted

only to learning of undirected graphs. More detailed comparison between MRFs and

BNs is provided in [22,51].

There are different ways to learn GMRFs in the literature. In [52], the authors

proposed to learn a covariance matrix by introducing zero entries in the inverse of

the sample covariance matrix. This method basically learns a covariance matrix

by thresholding small values in the inverse covariance matrix. However, it is not

applicable when the sample size is smaller than the number of variables, in which
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case the sample covariance matrix is not invertible.

In [49], the authors introduced a regression method using Lasso [53]. Specifically,

this method individually approximates each variable as a sparse linear combination of

the observations of other variables given n i.i.d. observations X = (X1, ...,Xn). This

method can be interpreted as a standard regression problem with `1 regularization

and can be solved via Lasso individually for each node in the graph.

For example, to estimate the first variable x1, a Lasso regression problem [53] can

be formulated as:

min
β1

‖X1 −X\1β1‖2
2 + λ‖β1‖1 (2.27)

where X1 (i.e., a transpose of the first row of X) is the observations on variable x1 and

X\1 is the observations on variables except x1, λ is a regularization parameter, and

β1 ∈ RN−1 is a vector of coefficients for x1. In (2.27), the first term is the negative log

likelihood, and the second term, i.e., the `1 norm, is a prior used to enforce sparsity

of β1. A connection between a pair of nodes vi and vj in a graph exists if either

βij, βji or both are nonzero. Note that βij and βji are not directly related to the

corresponding entries in the precision matrix.

The estimation of a sparse inverse covariance matrix was then studied in several

works [49,54,55]. In one seminal work, Friedman et al. formulated the sparse inverse

covariance estimation problem in a regularization framework, and developed the pop-

ular Graphical Lasso algorithm for the optimization problem [8]. Graphical Lasso

(GLASSO) aims to solve the following problem:

max
Θ

log det Θ− Tr(ΣΘ)− ρ ‖Θ‖1 (2.28)
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where Θ is the sought precision matrix, Σ is the input sample covariance matrix,

and ρ > 0 is a weight parameter for the sparsity term. The first two terms together

can be interpreted as the log likelihood under a GMRF. The entry-wise `1-norm of

Θ is added to promote sparsity of graph connections. The major difference between

the method in [49] and GLASSO is that the optimization in the first method is

independent for each node, while in GLASSO, joint optimization is used, which is

crucial for robustness against noise.

In [56], the precision matrix is further constrained to be in the family of M-matrices

[57]. M-matrices are positive definite and symmetric matrices with non-positive off-

diagonal entries. Graph Laplacian matrix for a positive graph is one example of

M-matrices. These M-matrices result in attractive GMRFs which are defined in [56].

Specifically, if the precision matrix is an M-matrix, then all the pairwise correlations

are non-negative, and the corresponding GMRF is called attractive.

One example of learning graph Laplacian is [58]. The authors used the formulation

in (2.28) in addition to a constraint that forces the precision matrix to be a Laplacian

matrix as follows:

max
Θ,σ2

log det Θ− Tr(
1

m
XX>Θ)− ρ ‖Θ‖1, (2.29)

s.t Θ = L +
1

σ2
I, L ∈ L (2.30)

where m is the number of observations, L is a set of eligible Laplacian matrices that

are PSD and symmetric, I is the identity matrix, and σ2 > 0 is the variance parameter

that can be interpreted as the a priori feature variance [59]. Further extensions of

GLASSO are presented in [23, 60], and some computationally efficient methods are
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discussed in [61,62].

2.4.2 Physically-motivated Models

These models address the graph learning problem by taking a physically-motivated

approach. In such cases, the observations are interpreted as the results of some phys-

ical phenomenon on the graph, and the graph learning problem includes capturing

natural structure from the physics of the observed data.

One example is in the network tomography field, which generally uses physically-

based assumptions to estimate network structures from implicit observations [63].

Network tomography is most often used in the telecommunication networks, where

the expected inferred information may contain network routes or features such as

available bandwidth or reliability of each link in the network. For example, in [64] the

graph structure was modeled as a tree, and it was assumed that information packets

are sending from one source to multiple destinations. In contrast, the topology used

in [65] was based on the assumption that information packets were sent from multiple

sources to the same destination.

Another example is information propagation models that have been implemented

to infer underlying biological, social, and financial networks based on observations of

epidemics, or other signal diffusion over them [4, 24, 66, 67]. Given a known graph

structure, epidemic processes over graphs have been well-studied, where nodes are

vulnerable and can be infected (and subsequently healed) [68]. However, when the

structure is unknown in advance, a graph can be estimated from the evolution of a

contagion over the graph nodes.

One of the popular physical models to represent propagation over time is cascade.
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Formally, a fully-observed cascade can be defined by the sequence of {(v′p, vp, tp)}Pp=0

where P ≤ N . This sequence means that node v′p infected its neighbor vp at time tp.

Figure 2.4 [4] illustrates a possible direction of diffusion in the graph and observations

of cascade over the graph.

(a)

(b)

Figure 2.4: (a) Directed graph showing possible directions of propagation.
(b) Observations of cascades spreading over the graph [4, 5].

Graph learning methods that use information cascades to compute solutions are

classifying into two different categories: homogeneous or heterogeneous models. Ho-

mogeneous methods assume cascades propagate in the same way statistically on all
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edges. For example, in [66], it is assumed that element wij of the adjacency matrix

is equal to conditional probability that node i infects j, if i is already infected.

Heterogeneous methods have more relaxed requirements and assume that cascades

can propagate with different rates over different edges. In [4], this type of method is

used in an algorithm called NETRATE. NETRATE is an efficient inference algorithm

that uses stochastic convex optimization to compute online estimates of the edges and

transmission rates.

2.4.3 GSP-based models

In this group of techniques, the graph learning problem is posed assuming that ob-

served signals fit some pre-defined graph frequency properties. As discussed in Sec-

tion 2.1, graph frequencies are typically derived from eigen-structure of the adjacency

or graph Laplacian matrix that fully characterizes the combinatorial graph [26]. GSP-

based graph learning is popularly used for many recent graph spectral signal restora-

tion schemes, including image denoising, dequantization, deblurring, and contrast

enhancement [18,69–72].

A digital image naturally resides on a regular 2D grid, but can be interpreted

as a signal on a graph, where each pixel is represented by a graph node, and an

edge reflects inter-pixel similarity between two adjacent pixels. The crux in graph

construction for an image thus lies in the estimation of these inter-pixel similarities

to establish edge weights, given only corrupted and/or partial image observations.

Beyond image processing applications, graph learning approaches in GSP literature

have been applied to a wide range of applications [73–77].

Some applications in GSP require directed graphs to more suitably describe the
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datasets. In this type of graphs, the directions of edges may be interpreted as causal

relationships between variables that the nodes represent. For instance, in brain sig-

nals, graph connections can convey additional information about the causal depen-

dencies between brain regions [28]. GSP-based graph learning approaches have also

been applied to derive graphs that represent urban traffic flows, patterns of news

spread on social media [78], inter-region political relationship, and similarities among

animal species from evolutionary aspects [6]. The variety of these areas has proven

the capability of applying GSP-based graph learning methods to discover hidden re-

lationships behind data observations in real world applications.

In this section, two classes of graph learning models in GSP are discussed in detail.

First, in Section 2.4.3.1, an overview of recent papers in GSP that use the Graph

Laplacian Regularizer (GLR) in their graph learning framework is provided. Next,

in Section 2.4.3.2, papers that use the same optimization framework as GLASSO are

introduced [6, 7].

2.4.3.1 Models based on GLR

Smoothness of signal x on a graph G is commonly defined using the Graph Laplacian

Regularizer (GLR) [15, 16, 20, 70, 79]. One way to learn a graph (or equivalently its

Laplacian matrix L), is to minimize the signal variation or GLR on the graph, i.e.,

to minimize x>Lx. GLR is defined as follows:

x>Lx =
∑

(i,j)∈E

wi,j(xj − xi)2 =
N∑
k=1

λkαk
2 (2.31)

where λk’s are the eigenvalues of L, and αk’s are the GFT coefficients of signal x. A

signal x is smooth if its GLR is small [16,58]. In the nodal domain, GLR of signal x is
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small when the nodes connected by large edge weights have similar signal intensities.

In the graph frequency domain, GLR of x is small when the energy of high graph

frequencies is small. Note that GLR is a measure for global signal smoothness on G.

Thus, a small GLR means a small signal variation over all edges in the graph, and

the energy of the signal is concentrated in the low-frequency components in the graph

spectral domain. Consequently, minimizing (2.31) means low-pass filtering.

The approach of minimizing GLR or its variants with powers of L has been studied

in several existing GSP articles, such as [58, 80]. In another example, in [75, 81] the

authors proposed a method to learn a graph for weather stations using the same GLR

model.

In [9], the following optimization problem is proposed, inspired by [82]:

min
L,Y
‖X−Y‖2

F + αTr(Y>LY) + β‖L‖2
F , s.t. Tr(L) = N, L ∈ L (2.32)

where X is a data matrix, and ‖.‖F is the Frobenius norm of a matrix. α and β

are regularization parameters, and L is a set of valid Laplacian matrices which are

PSD and symmetric. (2.32) seeks a solution Y that is close to data matrix X, while

ensures that Y is smooth on the graph represented by its Laplacian matrix L. The

trace constraint acts as a normalization factor, and the Frobenius norm of L helps

control the distribution of the edge weights i.e., the uniformity of the connection

weights, which is motivated by [83].

2.4.3.2 Models based on GLASSO

In this class of models, the proposed algorithms use the same objective function as

GLASSO, but with additional constraints to ensure the obtained inverse covariance
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matrix has specific properties [6, 7]. For example, in [6], the authors used additional

constraints to guarantee that an inverse covariance matrix in a solution is also a

generalized graph Laplacian (or diagonally dominant generalized graph Laplacian

or combinatorial graph Laplacian) matrix corresponding to a positive graph. The

optimization problem to estimate a generalized graph Laplacian (GGL) matrix is

formulated as follows:

min
Θ

Tr(ΘK)− log det Θ subject to Θ ∈ Lg(A) (2.33)

where K = S + H, H is the regularization matrix, S is the data statistic, A is the

connectivity matrix, and the set of constraints Lg(A) leads to Θ being a GGL matrix.

Similarly, the diagonally dominant generalized graph Laplacian (DDGL) estima-

tion problem is formulated as:

min
Θ

Tr(ΘK)− log det Θ subject to Θ ∈ Ld(A) (2.34)

where there is an additional constraint (i.e., Θ1 ≥ 0) in Ld(A), which ensures that

all node weights are non-negative, and therefore the optimal solution is a diagonally

dominant matrix.

Finally, the combinatorial graph Laplacian (CGL) estimation problem is formu-

lated as:

min
Θ

Tr(ΘK)− log |Θ| subject to Θ ∈ Lc(A) (2.35)

where the objective function includes the pseudo-determinant term (i.e., log |Θ|),

since the solution matrix Θ is singular. The pseudo-determinant term makes the
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optimization problem hard to solve, so (2.35) can be reformulated as follows:

min
Θ

Tr(Θ(K + J))− log det(Θ + J) subject to Θ ∈ Lc(A) (2.36)

where J = u1u
>
1 and u1 is the eigenvector corresponding to the zero eigenvalue of

CGL matrix. There is also an additional constraint (i.e., Θ1 = 0) in Lc(A), which

guarantees that the solution is a CGL matrix.

The main idea in their work is to generalize the classical GLASSO formulation

to identify GMRF models such that the precision matrix has the form of a graph

Laplacian. Estimation of diagonally dominant generalized graph Laplacians (DDGLs)

is studied for the first time in [6]. Their method to estimate combinatorial graph

Laplacians (CGLs), which is obtained from the novel formulation for the objective

function in (2.36), has significant improvement comparing to methods in [9, 58, 84].

They also developed efficient block-coordinate descent (BCD) algorithms to solve their

optimization problem extended from the algorithm in [85].

In [7], assumptions on spectral properties—i.e., eigenvalues of graph Laplacian—is

introduced in their graph learning algorithm. Like GLASSO, their problem formula-

tion learns a graph Laplacian matrix, with addition constraints related to eigenvalues

of L. Specifically, their optimization framework is as follows:

max
Θ

log gdet(Θ)− Tr(ΘS)− αh(Θ), s.t. Θ ∈ SΘ, λ(Θ) ∈ Sλ (2.37)

where gdet(Θ) is the generalized determinant [39], defined as the multiplication of

the non-zero eigenvalues of Θ. S is the sample covariance matrix obtained from data,

SΘ is the Laplacian matrix structural constraint, λ(Θ) is the set of eigenvalues of Θ,
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and Sλ is the set of spectral constraints on the eigenvalues.

Different choices of Sλ are introduced to enforce learned graphs to have specific

structures. For example, k-component graph is a graph with a nodes set that can

be divided into k separate subsets, such that any two nodes are not connected if

they do not belong in same subset. The eigenvalues of these kind of matrices can be

represented as follows:

Sλ = {{λj = 0}kj=1, c1 ≤ λk+1 ≤ ... ≤ λp ≤ c2} (2.38)

where c1, c2 are constant parameters depending on the graph edges [86, 87], and k is

the number of connected components in the graph.

Further, k-component d-regular graph is a k-component graph, where all vertices

have degrees equal to d. This also means that the diagonal entries of matrix Θ equal

to d. Thus, to enforce the graph to be k-component d-regular, the following constraint

is needed:

Sλ = {{λj = 0}kj=1, c1 ≤ λk+1 ≤ ... ≤ λp ≤ c2}, diag(Θ) = d1. (2.39)

Finally, learning a connected sparse graph is critical for many applications, since

promoting sparse connections can lead to a disconnected graph [88, 89]. To learn

connected sparse graphs, the following constraints are used:

Sλ = {λ1 = 0, c1 ≤ λ2 ≤ ... ≤ λp ≤ c2} (2.40)

where c1, c2 > 0 are constant parameter, and sparsity is enforced in the nodal domain
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in addition to constraints on eigenvalues in the spectral domain.

To compare this method with the method in [6] and GLASSO, the perceptual

graphs of animal connections are illustrated in Figure 2.5 from [7], where nodes rep-

resent animals, and edge weights encode similarity among them.

Figure 2.5: (a) GGL [6], (b) GLASSO, and (c) SGL (proposed method) with components
number k = 1, and (d) SGL with components number k = 5 [7].
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Chapter 3

Convex Cone Projection Operator

In this chapter, a projection operator that projects a positive definite (PD), real

and symmetric matrix to a convex set of matrices sharing the first K eigenvectors

is proposed. In Section 3.1, definition of a Hilbert space for the posed problem is

presented. In Section 3.2, the subspace of symmetric positive semi-definite (PSD)

matrices that share a common ordered set of first K eigenvectors is defined, and it

is proven that this subspace is a convex cone. In linear algebra, a convex cone is a

subset of a vector space that is closed under linear combinations with non-negative

coefficients [90]. In Section 3.3, an optimization problem to project a PD matrix to

the defined convex cone is formulated. Finally, in Section 3.4, the proposed projection

operator, inspired by the Gram-Schmidt procedure, [31] is discussed.

3.1 Hilbert Space

Following terminologies in Section 2.2.4, denote by X a vector space of real, symmetric

matrices in RN×N . Note that X is closed under addition and scalar multiplication.

Next, based on the definition in Section 2.2.2, the standard inner product [40] 〈·, ·〉
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for matrices P,Q ∈ X is defined as:

〈P,Q〉 = Tr(Q>P) =
∑
i,j

PijQij. (3.1)

This definition of inner product induces the Frobenius norm:

〈P,P〉 = ‖P‖2
F =

∑
i,j

P 2
ij ≥ 0. (3.2)

A Hilbert space H in X is now defined as a space of real, symmetric matrices endowed

with an inner product 〈·, ·〉 : (H,H) 7→ R. Further, the set of positive semi-definite

(PSD) matrices is defined as

H+ = {P ∈ H |P � 0}. (3.3)

We state formally and prove H+ is a convex cone.

Lemma 1. H+ is a convex cone.

Proof. Consider matrices P1,P2 ∈ H+ and non-negative, real scalars c1, c2 ∈ R where

c1, c2 ≥ 0. Consider the linear combination P = c1P1 + c2P2 and its quadratic form:

x>Px = x> (c1P1 + c2P2) x (3.4)

= c1

(
x>P1x

)
+ c2

(
x>P2x

) (a)

≥ 0, ∀x ∈ RN (3.5)

where (a) is true since P1 and P2 are PSD, and hence x>P1x ≥ 0 and x>P2x ≥ 0 for

any x ∈ RN . Thus, one can conclude that P ∈ H+, and H+ is a convex cone [90].
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3.2 Subspace of Matrices with Common First K Eigenvector

Denote by H+
u ⊂ H+ the set of PSD matrices that share the first K eigenvectors

{uk}Kk=1, assumed to be orthonormal, i.e.,

u>j uk = δj−k, ∀j, k ∈ IK (3.6)

where IK = {1, . . . , K}, and δi is the discrete impulse function that evaluates to 1

if i = 0, and 0 otherwise. H+
u can be defined using the Rayleigh quotient and the

min-max theorem [91] as

H+
u =

{
L ∈ H+ | uk = arg min

x |x⊥uj ,∀j<k

x>Lx

x>x
, k ∈ IK

}
. (3.7)

where x>Lx
x>x

is the Rayleigh quotient for vector x.

It can be shown that, for a given real symmetric matrix, the Rayleigh quotient

reaches its minimum value λmin (the smallest eigenvalue of L) when x is vmin (the

corresponding eigenvector) [92].

We show next that H+
u is also a convex cone.

Lemma 2. H+
u is a convex cone.

Proof. This lemma can be proven by induction. For the base case when K = 1, let

L1,L2 ∈ H+ be two matrices that share the first eigenvector u1. Consider a linear

combination L = c1L1 + c2L2, where c1, c2 ≥ 0. The smallest eigenvalue λmin(L) of L
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can be expressed using the Rayleigh quotient again, i.e.,

λmin(L) = min
x

x>Lx

x>x
= min

x

x> (c1L1 + c2L2) x

x>x
(3.8)

(a)

≥ c1

(
min

x

x>L1x

x>x

)
+ c2

(
min

y

y>L2y

y>y

)
(3.9)

(b)
= c1 λmin(L1) + c2 λmin(L2). (3.10)

The inequality at (a) is true since the right-hand side (RHS) has more degrees of

freedom than the left-hand side (LHS) to minimize the two non-negative terms (L1

and L2 are PSD matrices in H+). (b) is true by definition of Rayleigh quotient for L1

and L2, with u1 being the minimizing argument for both terms by assumption. Thus,

the argument that minimizes the Rayleigh quotient for L is also u1, and therefore

u1 is the first eigenvector of L. Since this analysis is true for all c1, c2 ≥ 0, H+
u is a

convex cone for K = 1.

Consider next the inductive step, where it is assumed that the K = Ko case is

true, and the Ko+1 case is examined. Let L1,L2 ∈ H+ be two matrices that share the

first Ko + 1 eigenvectors {uk}Ko+1
k=1 . Consider a linear combination L = c1L1 + c2L2,

where c1, c2 ≥ 0. By the inductive assumption, L also shares the first Ko eigenvectors

{uk}Ko
k=1. For the (Ko+1)-th eigenvector, consider the (Ko+1)-th eigenvalue λKo+1(L)

expressed again using the Rayleigh quotient as:

λKo+1(L) = min
x|x⊥{uk}Kk=1

x>Lx

x>x
= min

x|x⊥{uk}Kk=1

x> (c1L1 + c2L2) x

x>x
(3.11)

≥ c1

(
min

x|x⊥{uk}Kk=1

x>L1x

x>x

)
+ c2

(
min

y|y⊥{uk}Kk=1

y>L2y

y>y

)
(3.12)

= c1 λKo+1(L1) + c2λKo+1(L2). (3.13)
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Since the argument that minimizes the Rayleigh quotient for both L1 and L2 is

uKo+1, this is also the argument that minimizes the Rayleight quotient for L. Thus,

the (Ko + 1)-th eigenvector for L is also uKo+1. Therefore, it can be concluded that

L has {uk}Ko+1
k=1 as its first Ko + 1 eigenvectors. Since both the base case and the

inductive step are true, H+
u is a convex cone.

3.3 Projection to Convex Cone H+
u

To project a PD matrix P ∈ H+ to convex cone H+
u , the focus is on the inverse

C = P−1 instead. The reason is that it is easy to first ensure that u1 of the known

eigenvector set {uk}Kk=1 is the argument that maximizes the Rayleigh quotient of C,

then u2 is the argument that maximizes the Rayleigh quotient while being orthogonal

to u1, and so on until uK .

Consider first the maximization of the Rayleigh quotient of C with argument u1.

First, define the subspace spanned by rank-1 matrix U1 = u1u
>
1 with scalar α as

follows:

Ω = {αU1, α ∈ R}. (3.14)

Projection of any real symmetric matrix M ∈ H onto 1-dimension subspace Ω is

ProjΩ(M) = 〈M,U1〉U1 (Example 2.22 in [1]). It is easy to verify that 〈M,U1〉U1

is a linear operator (satisfying distributivity and linearity in the first argument of

the inner product) that is idempotent, and thus 〈M,U1〉U1 is a projection. One

can also prove that 〈M,U1〉U1 is self-adjoint, and thus 〈M,U1〉U1 is an orthogonal

projection.

Denote by Ω⊥ the orthogonal subspace in H so that H = Ω⊕Ω⊥; Ω is the range
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R(ProjΩ(·)) of projection operator ProjΩ(·), and Ω⊥ is the null space N (ProjΩ(·))

of ProjΩ(·). This is called subspace decomposition, which is always possible using a

projection operator (Theorem 2.32 in [1]).

First, C is written as its projection onto Ω plus its orthogonal component, i.e.,

C = 〈C,U1〉U1 + CΩ⊥ , (3.15)

where CΩ⊥ is the component of C in subspace Ω⊥, orthogonal to component 〈C,U1〉U1

in Ω. (3.15) is called an orthogonal decomposition of C ∈ H (Definition 2.31 in [1]).

It can be shown that given C is PD, inner product 〈C,U〉 for any outer product

U = uu> is non-negative. This is formalized in the following lemma.

Lemma 3. If C ∈ H is PD and U = uu>, then 〈C,U〉 ≥ 0.

Proof. Since C ∈ H is real and symmetric and is PD by assumption, without loss of

generality, C = BB> can be written via Cholesky factorization [93]. Then, based on

the definition of inner product in Section 2.2.2, 〈C,U〉 can be rewritten as:

〈C,U〉 = Tr(U>C) = Tr
(
(uu>)>BB>

)
(3.16)

= Tr
(
uu>BB>

) (a)
= Tr

(
u>BB>u

)
= Tr

(
(B>u)>B>u

)
= 〈B>u,B>u〉 = ‖B>u‖2

F ≥ 0

where (a) is true since trace of a sequence of product terms is invariant to cyclic

permutation of the terms. The last term is a Frobenius norm ‖B>u‖2
F ≥ 0.

Define µ1 = 〈C,U1〉 ≥ 0. Ω⊥ can be expressed as the span of mutually orthogonal

rank-1 matrices U2, . . . ,UK and VK+1, . . . ,VN , each of which is orthogonal to U1,

40



where Uk = uku
>
k , Vi = viv

>
i and ‖vi‖2 = 1. Thus, rank-1 matrices {Uk}Kk=1 and

{Vi}Ni=K+1 collectively form an orthonormal basis for Hilbert space H (Definition

2.38 in [1]). Hence, by Theorem 2.39 in [1], we can write C as an orthonormal basis

expansion of these bases, i.e.,

C =
K∑
k=1

〈C,Uk〉Uk +
N∑

i=K+1

〈C,Vi〉Vi. (3.17)

Suppose that uk’s and vi’s are successive arguments that maximize the Rayleigh

quotient, i.e.,

uk = arg max
u

u>Cu

u>u
, s.t. u>j u = 0, ∀j ∈ {1, . . . , k − 1}

vi = arg max
v

v>Cv

v>v
, s.t.

 u>j v = 0, ∀j ∈ {1, . . . , K}

v>j v = 0, ∀j ∈ {K + 1, . . . , i− 1}
. (3.18)

(3.18) implies that {uk}Kk=1 and {vi}Ni=K+1 are the eigenvectors of C.

Suppose also that the inner products of C with the orthogonal components,

〈C,Uk〉, 〈C,Vi〉, are within range [0, µ1], ∀k, i. This means that the respective

Rayleigh quotients are no larger than µ1:

Tr(u>k Cuk) = Tr(Cuku
>
k ) = 〈C,Uk〉 ≤ µ1, ∀k ∈ {2, . . . , K}

Tr(v>i Cvi) = Tr(Cviv
>
i ) = 〈C,Vi〉 ≤ µ1, ∀i ∈ {K + 1, . . . , N}. (3.19)

Given these conditions, then u1 is surely the last eigenvector of C corresponding to

largest eigenvalue µ1. More generally, one needs to approximate C’s projection CΩ⊥

to Ω⊥ as ĈΩ⊥ to satisfy these conditions, in order to ensure u1 is indeed the last
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eigenvector of an approximation Ĉ = 〈C,U1〉U1 + ĈΩ⊥ , while minimizing approx-

imation error ‖C − Ĉ‖2
F . A greedy algorithm is proposed for this approximation

next.

3.4 Gram-Schmidt-inspired Algorithm

The greedy algorithm is inspired by the Gram-Schmidt procedure [31] that iteratively

computes a set of orthonormal vectors given a set of linearly independent vectors.

Similarly, this algorithm iteratively computes one orthogonal eigen-component µkUk

or µiVi at a time. Note again that Vi = viv
>
i must be computed, while Uk = uku

>
k

is known a priori.

Consider iteration t = 2. From (3.15), the residual signal is first defined as:

E1 = C− 〈C,U1〉U1. (3.20)

Consider first the case where K ≥ 2, and thus rank-1 matrix U2 = u2u
>
2 orthogonal

to U1 is known. The only requirement for eigen-component µ2U2 is that the inner

product µ2 = 〈Ĉ,U2〉 of approximation Ĉ and U2 is no larger than µ1. Thus, µ2 can

be set as

µ2 =

 〈E1,U2〉, if 〈E1,U2〉 ≤ µ1

µ1, o.w.
. (3.21)

Note that 〈E1,U2〉 ≥ 0. Lemma 5, to be formalized later, describes the more general

case 〈Ei,Ui+1〉 ≥ 0, for 1 ≤ i ≤ K − 1.

Consider next the case where K = 1, and a new rank-1 matrix V2 = v2v
>
2 must be
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computed—one that is orthogonal to U1—to reconstruct Ĉ. In this case, to minimize

approximation error ‖C−Ĉ‖2
F , a V2 “most aligned” with residual signal E1 is sought,

i.e.,

max
v2

〈E1,v2v
>
2 〉, s.t.

 〈v2v
>
2 ,U1〉 = 0

‖v2‖2 = 1
. (3.22)

Essentially, (3.22) seeks a rank-1 approximation 〈E1,V2〉V2 of matrix E1, while con-

straining V2 to be orthogonal to U1. The objective is equivalent to Tr((v2v
>
2 )>E1) =

Tr(v2v
>
2 E1) = Tr(v>2 E1v2) = v>2 E1v2, which is quadratic in v2 for a maximization

problem. It can be shown that v>2 E1v2 is always convex, i.e., E1 is PSD. This is

formalized as Lemma 4 later in the section for the general case where Et is shown to

be PSD. This means (3.22) is a non-convex optimization problem.

To convexify the problem, one can first perform approximation E1 ≈ ee>, where

e is the last eigenvector1 of E1, and ee> is the best rank-1 approximation of E1.

Then, the norm equality constraint can be relaxed, and optimization (3.22) can be

reformulated as

max
v2

e>v2, s.t.

 v>2 u1 = 0

‖v2‖2
2 ≤ 1

. (3.23)

Optimization (3.23) is now convex and solvable in polynomial time, using algorithms

such as proximal gradient (PG) [95].

Having computed V2 = v2v
>
2 in (3.23), one can project E1 onto V2 and threshold

1Extreme eigenvectors of sparse symmetric matrices can be computed efficiently using Locally
Optimal Block Preconditioned Conjugate Gradient (LOBPCG) [94].
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its inner product to within [0, µ1] as done in the K ≥ 2 case, i.e.,

µ2 =

 〈E1,V2〉, if 〈E1,V2〉 ≤ µ1

µ1, o.w.
. (3.24)

Note that 〈E1,V2〉 ≥ 0. Lemma 5, to be formalized later, describes the more general

case 〈Ei,Vi+1〉 ≥ 0, for K ≤ i ≤ N − 1.

The projection of E1 on V2 is thus µ2V2. New residual signal E2 can then be

computed as:

E2 = E1 − µ2V2. (3.25)

Given residual E2, one can compute a rank-1 matrix V3 = v3v
>
3 —orthogonal to V2

and U1—that is most aligned with E2, and compute projection of E2 to V3, and so

on.

More generally, at each iteration t ≤ K, the inner product is thresholded as

µt+1 = min(〈Et,Ut+1〉, µt). (3.26)

Then, the next residual signal is computed as

Et+1 = Et − µt+1Ut+1. (3.27)

On the other hand, at each iteration t ≥ K + 1, rank-1 approximation Et ≈ ee>

is first computed, where e is the last eigenvector of Et. Then an optimal vt+1 is
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computed via convex optimization

max
vt+1

e>vt+1, s.t.


v>t+1uk = 0 , i ∈ IK

v>t+1vτ = 0 , τ ∈ {K + 1, . . . , t}

‖vt+1‖2
2 ≤ 1

. (3.28)

The inner product is then thresholded as

µt+1 = min(〈Et,Vt+1〉, µt) (3.29)

where Vt+1 = vt+1v
>
t+1. The next residual signal is computed as

Et+1 = Et − µt+1Vt+1. (3.30)

This procedure is repeated until the last eigen-component µNVN is computed, and

the approximation of C is Ĉ =
∑K

k=1 µkUk+
∑N

i=K+1 µiVi. Collectively, the iterative

procedure forms the projection operator ProjH+
u

(P) for PD matrix P into cone H+
u ,

albeit it operates entirely on inverse matrix C = P−1.

Having described the iterative procedure, lemma stating residual energy Et is PSD

is now formalized.

Lemma 4. Residual energy Et is PSD, for t ∈ {1, . . . , N}.
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Proof. First, one can write

Et = Et−1 − µtUt (3.31)

= Et−2 − µt−1Ut−1 − µtUt (3.32)

= C−
t∑
i=1

µiUi. (3.33)

Recall that µ1 = 〈C,U1〉 and µt+1 = min(〈Et,Ut+1〉, µt) for t ≥ 1. Denote

by Ω the subspace in H spans by t orthogonal rank-1 matrices {Ui}ti=1, i.e., Ω =

{M |M =
∑t

i=1 αiUi, ∀αi ∈ R}. Denote by Ω⊥ the subspace in H orthogonal to Ω,

where H = Ω⊕Ω⊥. One can now write C ∈ H as

C =
t∑
i=1

γiUi + CΩ⊥ (3.34)

where γi = 〈C,Ui〉, and CΩ⊥ is the projection of C to orthogonal subspace Ω⊥.

Thus, one can now write

x>Etx = x>

(
C−

t∑
i=1

µiUi

)
x (3.35)

= x>

(
t∑
i=1

(γi − µi)Ui

)
x + x>CΩ⊥x (3.36)

(a)
=

t∑
i=1

(γi − µi)|u>i x|2 + x>CΩ⊥x (3.37)

where (a) is true since x>Uix = x>uiu
>
i x = |u>i x|2. Thus, one can show Et is PSD

by showing i) γi ≥ µi,∀i ∈ {1, . . . , t}, and ii) CΩ⊥ is PSD.
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Because µi = min(〈Ei−1,Ui〉, µi−1) and γi = 〈C,Ui〉, we can write

µi
(a)
= min(〈C−

i−1∑
j=1

µjUj,Ui〉, µi−1) (3.38)

(b)
= min(〈C,Ui〉, µi−1) (3.39)

= min(γi, µi−1) ≤ γi (3.40)

where (a) follows from (3.33), and (b) is due to the orthogonality of {Ui}Ki=1.

To show CΩ⊥ is PSD, note first that Ω⊥ can be expressed as the span of orthogonal

Ut+1, . . . ,UK and VK+1, . . . ,VN . Thus, CΩ⊥ ∈ Ω⊥ can be written as:

CΩ⊥ =
K∑

k=t+1

〈C,Uk〉Uk +
N∑

i=K+1

〈C,Vi〉Vi (3.41)

From Lemma 3, given C is PD, 〈C,Uk〉 ≥ 0,∀k and 〈C,Vi〉 ≥ 0,∀i. Thus, for any

x ∈ RN ,

x>CΩ⊥x =
K∑

k=t+1

〈C,Uk〉x>Ukx +
N∑

i=K+1

〈C,Vi〉x>Vix (3.42)

(a)
=

K∑
k=t+1

〈C,Uk〉|u>k x|2 +
N∑

i=K+1

〈C,Vi〉|v>i x|2
(b)

≥ 0 (3.43)

where (a) is true since x>Ukx = x>uku
>
k x = |u>k x|2, and (b) is true since each term

in each of the two summations is non-negative.

Lemma showing the general case of 〈Et,Ut+1〉 ≥ 0 and 〈Et,Vt+1〉 ≥ 0 is now

formalized.

Lemma 5. The inner product of signal residual Et with rank-1 matrix Ut+1 or Vt+1
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is non-negative, i.e.,

〈Et,Ut+1〉 ≥ 0, ∀t ∈ {1, . . . , K − 1} (3.44)

〈Et,Vt+1〉 ≥ 0, ∀t ∈ {K, . . . , N − 1}. (3.45)

Proof. Consider first the case t < K and (3.44). By definition, Et’s for t < K are

E1 = C− µ1U1, µ1 = 〈C,U1〉

E2 = E1 − µ2U2, µ2 = min(〈E1,U2〉, µ1)

...

Et+1 = Et − µt+1Ut+1, µt+1 = min(〈Et,Ut+1〉, µt)

. (3.46)

〈Et,Ut+1〉 ≥ 0 in (3.44) is first proven.

Examining 〈Et,Ut+1〉,

〈Et,Ut+1〉
(a)
= 〈C−

t∑
i=1

µiUi,Ut+1〉 (3.47)

= 〈C,Ut+1〉 −
t∑
i=1

µi〈Ui,Ut+1〉 (3.48)

(b)
= 〈C,Ut+1〉

(c)

≥ 0 (3.49)

where (a) is due to (3.33), (b) is true since Ut+1 is orthogonal to {Ui}ti=1 by definition,

and (c) is true due to Lemma 3.
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Next 〈Et,Vt+1〉 ≥ 0 in (3.45) is proven. Similarly, one can write

Et = C−
K∑
i=1

µiUi −
t∑

i=K+1

µiVi. (3.50)

Examining 〈Et,Vt+1〉,

〈Et,Vt+1〉 = 〈C−
K∑
i=1

µiUi −
t∑

i=K+1

µiVi,Vt+1〉 (3.51)

= 〈C,Vt+1〉 −
K∑
i=1

µi〈Ui,Vt+1〉 −
t∑

i=K+1

µi〈Vi,Vt+1〉 (3.52)

(a)
= 〈C,Vt+1〉

(b)

≥ 0 (3.53)

where (a) is true since Vt+1 is orthogonal to {Ui}Ki=1 and {Vi}ti=K+1 by construction,

and (b) is true by Lemma 3.

Note that the constructed operator ProjH+
u

(·) is provably idempotent [1].

Lemma 6. Operator ProjH+
u

(·) is idempotent.

Proof. Given PD precision matrix P, operator ProjH+
u

(·) performs the aforementioned

algorithm on C = P−1 so that the output Ĉ can be written as a linear combination

of {Ui}Ki=1 and {Vi}Ni=K+1, i.e.,

Ĉ =
K∑
i=1

µiUi +
N∑

i=K+1

µiVi. (3.54)

By construction, {Ui}Ki=1 and {Vi}Ni=K+1 are mutually orthogonal. Also by con-

struction, µ1 = 〈C,U1〉, µt = min(〈Et−1,Ut〉, µt−1) for t ∈ {2, . . . , K}, and µt =

min(〈Et−1,Vt〉, µt−1) for t ∈ {K + 1, . . . , N}. Thus, when applying the algorithm
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again to output Ĉ, new coefficient µ′1 is

µ′1 = 〈Ĉ,U1〉
(a)
= µ1 (3.55)

where (a) is true due to (3.54) and by orthogonality of {Ui}Ki=1 and {Vi}Ni=K+1. Each

new coefficient µ′t for t ∈ {2, . . . , K} is

µ′t = min(〈Et−1,Ut〉, µt−1) (3.56)

(a)
= min(〈Ĉ−

t−1∑
i=1

µiUi,Ut〉, µt−1) (3.57)

(b)
= min(〈Ĉ,Ut〉, µt−1) (3.58)

(c)
= min(µt, µt−1)

(d)
= µt (3.59)

where (a) is true due to derivation for Et−1 in (3.33), (b) is true by orthogonality of

{Ui}Ki=1, (c) is true due to derivation for Ĉ in (3.54) and by orthogonality of {Ui}Ki=1

and {Vi}Ni=K+1, and (d) is true by definition of µt. A similar proof can show also

that each new coefficient µ′t for t ∈ {K + 1, . . . , N} equals to µt. Thus, Ĉ is left

unchanged. We conclude that ProjH+
u

(ProjH+
u

(P)) = ProjH+
u

(P).

The flow diagram of the proposed algorithm is shown in Figure 3.1, where it shows

the summary of stages that are needed to approximate C’s projection CΩ⊥ to Ω⊥ as

ĈΩ⊥ .
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Figure 3.1: Steps of our algorithm to construct the approximation of C’s projection into
H+

u .
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Chapter 4

Graph Laplacian Matrix Estimation

In this chapter, the proposed algorithm to estimate a sparse graph Laplacian from

an empirical covariance matrix with a prior on the first K eigenvectors is discussed

in detail. This algorithm is a graph learning method, which combines the formula-

tion from graphical Lasso [8] and the projection operator developed in Chapter 3.

More specifically, the algorithm in this chapter applies the projection operator from

Chapter 3 after each iteration of coordinate descent (BCD) in GLASSO, to compute

the most suitable graph Laplacian matrix L∗ ∈ H+
u given input empirical covariance

matrix C̄.

First, in Section 4.1, the optimization problem inspired by graphical Lasso is for-

mulated. Next, in Section 4.2, the hybrid algorithm to solve the optimization problem

is proposed.
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4.1 Optimization Problem

Given an empirical covariance matrix C̄ computed from data, a variant of GLASSO

[96] is posed to estimate a PD sparse graph Laplacian matrix L as follows:

min
L∈H+

u

Tr(LC̄)− log det L + ρ ‖L‖1 (4.1)

where ρ > 0 is a shrinkage parameter for the `1 norm. The only difference from

the original GLASSO formulation in (2.28) is that (4.1) has an additional constraint

L ∈ H+
u . Because H+

u is a convex set and the objective is convex, (4.1) is a convex

optimization problem.

4.2 Hybrid Graphical Lasso / projection Algorithm

(4.1) can be solved iteratively using the developed projection operator in Chapter 3

and a variant of the block Coordinate descent (BCD) algorithm in [85]. In a nutshell,

BCD minimizes the objective by optimizing one row and column of a desired solution

matrix at a time. Specifically, first the dual of GLASSO can be written as follows.

Note first that the `1 norm in (4.1) can be written as [29]:

‖L‖1 = max
‖U‖∞≤1

Tr(LU) (4.2)

where ‖U‖∞ is the maximum absolute value element of the symmetric matrix U.

Then, the dual problem of GLASSO that solves for an estimated covriance matrix
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C = L−1 is

min
C−1∈H+

− log det C, s.t. ‖C− C̄‖∞ ≤ ρ (4.3)

where C = C̄ + U implies that the primal and dual variables are related via L =

(C̄ + U)
−1

[29]. To solve (4.3), one row-column pair in C is updated in (4.3) in

each iteration. Specifically, first the rows / columns of C are reordered so that the

optimizing row / column are swapped to the last. Then C̄ and C can be partitioned

into blocks:

C =

C11 c12

c>12 c22

 , C̄ =

C̄11 c̄12

c̄>12 c̄22

 . (4.4)

[29] showed that the optimal c12 is the solution to the following linearly constrained

quadratic programming problem:

c12 = arg min
y
{y>C−1

11 y}, s.t. ‖y − c̄12‖∞ ≤ ρ. (4.5)

The objective is convex in (4.5) since C−1
11 is PSD based on Theorem 3 in [29].

The algorithm to solve (4.1) is thus as follows. Instead of the primal problem

(4.1), its corresponding dual (4.3) is solved instead—iteratively updating one row /

column of C using (4.5). (4.5) is a box-constrained quadratic program which is solved

using an interior point procedure in [29]. Specifically, they showed that solving (4.5)

is equivalent to solving the dual problem [8]:

min
β

{
1

2
‖C1/2

11 β − b‖2 + ρ‖β‖1
}

(4.6)
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where b = C
−1/2
11 c̄12. If β is the solution to (4.6), then c12 = C11β is the solution to

(4.5). (4.6) is a lasso regression problem that can be easily solved.

Each time one row / column of C is updated, L = C−1 is projected to convex

cone H+
u using the projection operator described in Chapter 3. The procedure of

iteratively updating row / column and projecting to H+
u is repeated till convergence.

Note that both steps are computed using estimated covariance C directly, and thus

inversion to graph Laplacian L = C−1 is not necessary until convergence, when a

solution is computed. The worst-case complexity of our algorithm is the same as the

computation time of GLASSO with BCD in [8] which is O(N3) where N is a number

of rows / columns of data matrix.

Algorithm 1 shows the pseudo-code to estimate a symmetric matrix C from an

empirical covariance matrix C̄ computed from data. Denote by Cjj a sub-matrix of

C by removing row j and column j. Denote by c̄j column j of C̄ with the diagonal

element C̄(j, j) removed.

Algorithm 1: GLASSO/Projection

1. Initialize: C(0) = C̄ + ρI.

2. Repeat the following steps till convergence (by cycling around the columns):

(a) Rearrange the rows/columns so that the target column is last.

(b) Let C(j−1) denote the current iterate. Solve the dual problem in (4.5):

ŷ := arg min
y
{y>(C

(j−1)
jj )−1y s.t. ‖y − c̄j‖∞ ≤ ρ}

(c) Update the row/column (off-diagonal) of the covariance: C(j) is C(j−1)

with row/column C(j) replaced by ŷ.

(d) Project C to the subspace with K desired last eigenvectors H+
u .

3. Check the convergence condition. If convergence is reached, the final result is
L = C−1.
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Chapter 5

Experiments

In this chapter, results of conducted experiments to test the proposed algorithm’s

performance are presented. In Section 5.1, experimental setup for synthetic datasets

is first described. In Section 5.2, results assuming the first K eigenvectors are known

are presented. Finally, in Section 5.3, results using eigenvectors computed using the

fast graph Fourier transform (FGFT) method [30] are provided.

5.1 Experiments Setups for Synthetic Datasets

Experiments were conducted using synthetic datasets to evaluate the performance

of the proposed method (Proj-Lasso) and of competing schemes: Graphical Lasso

(GLASSO) [8], graph Laplacian learning with Gaussian probabilistic prior (GL-SigRep)

[9] and diagonally dominant generalized graph Laplacian estimation under structural

and Laplacian constraints (DDGL) [6]. The convergence tolerance for these algo-

rithms was set to ε = 10−4, and the regularization parameter was ρ = e−6.

To simulate ground truth graphs, 20 nodes were first randomly located in 2D

space, and the Erdos-Renyi model [97] was used to determine their connectivity with

probability 0.6. Erdos-Renyi graph, G(n,p)
ER , is a graph with n nodes, where each node
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is connected to another with probability p. Edge weights were computed using a

Gaussian kernel, i.e., wij = exp (−d(i, j)2/2σ2), where d(i, j) is the Euclidean dis-

tance between i and j, and σ was set to 0.5. Edge weights smaller than 0.75 were

removed for sparsity. To introduce negative weights, the sign of each edge was flipped

with probability 0.5. The generalized graph Laplacian L = D −W + diag(W) was

computed. To generate data from L, covariance matrix K = (L + εI)−1 for ε = 0.5

was computed. Then dataset X = {xi}20
i=1 was generated from multivariate normal

distribution x ∼ N (0,K). An empirical covariance matrix C̄ was then computed

from X and used as input to different graph learning algorithms.

Three popular graph similarity metrics were employed to evaluate graph Laplacian

matrices learned: relative error (RE), DeltaCon and λ-distance [98–101]. The first

metric is RE, which computes the relative Frobenius norm of the error between the

ground truth Laplacian matrix Lo and the learned matrix L̂. Specifically, RE uses

the following equation:

RE(L̂,Lo) =
‖L̂− Lo‖F
‖Lo‖F

. (5.1)

DeltaCon similarity function compares the similarities between all node pairs in

the two graphs. It satisfies the general properties of other distances, while it also

satisfies some properties related to the impact of specific changes [98]. For example,

changes resulting in disconnectedness of graphs are penalized more in this function,

or changes are more important in sparse graphs than in dense graphs with equal size.

Moreover, in the case of weighted graphs, removing the edges with bigger weights has

greater impact on the DeltaCon function.

The last metric is λ-distance, which computes the eigenvalues’ distance between

57



two matrices as follows:

dλ(G1,G2) =

√√√√ k∑
i=1

(λ1i − λ2i)
2 (5.2)

where {λ1i}|V1|i=1 and {λ2i}|V2|i=1 are the eigenvalues of the matrices that represent G1 and

G2, and k is max(|V1|, |V2|) [100,101].

5.2 Results assuming the First K Eigenvectors

Table 5.1 shows the graph learning performance of different methods evaluated using

the aforementioned three metrics.

Metric GLASSO GL-SigRep DDGL
Proj-Lasso with different K’s

1 2 3
RE 0.9306 0.7740 0.7543 0.7295 0.5191 0.4005

DeltaCon 0.9422 0.9449 0.9407 0.9502 0.9495 0.9586
λ-distance 1e+03 8.7168 28.7918 9.0983 3.3768 2.7125

Table 5.1: Average RE, Deltacon and λ-distance for graph produced with 20 vertices and
20 signals on each node.

The proposed Proj-Lasso was executed using different K’s—the number of known

eigenvectors corresponding to the smallest K eigenvalues—which in the experiments

were the first K eigenvectors of the ground truth matrix L. As shown in Table 5.1,

using RE as metric, Proj-Lasso outperformed GLASSO, DDGL and GL-SigRep when

K = 1, and became even better as k increased. Using λ-distance as metric, Proj-Lasso

was always better than its competitors. Using DeltaCon as metric, all the methods

are comparable. One can observe that Proj-Lasso’s performance evaluated using RE

and λ-distance improved significantly as K increased, while the results of DeltaCon

metric were not sensitive to K.
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Visual comparisons of learned Laplacian matrices are shown in Fig. 5.1. One

can observe that Proj-Lasso had better performance than GLASSO and DDGL, i.e.,

Proj-Lasso was visually closer to the ground truth matrix. GL-SigRep has a visible

diagonal pattern, but the off-diagonal terms are overly uniform compared to ground

truth. Numerical results show Proj-Lasso is closer to ground truth than GL-SigRep.

(a) (b) (c)

(d) (e)

Figure 5.1: (a) Ground Truth Laplacian L with 20 nodes, (b) Proposed Proj-Lasso with
K = 1, (c) GLASSO [8], (d) DDGL [6] and (e) GL-SigRep [9] .

In an another experiment, the size of graph was increased to 30 nodes with the

same setup. The visual results for the proposed method and the competing methods

are shown in Figure 5.2. It can be observed that the result from Proj-Lasso is visually

closer to the ground truth than GLASSO and DDGL. This is particularly obvious for

the diagonal entries. Again, Proj-Lasso is closer to the ground truth than GL-SigRep

in numerical comparisons.

For the last experiment, in Figure 5.3 the results of different methods are shown via
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(a) (b) (c)

(d) (e)

Figure 5.2: (a) Ground Truth Laplacian L with 30 nodes, (b) Proposed Proj-Lasso with
K = 1 (RE = 0.5318), (c) GLASSO [8] (RE = 0.9077), (d) DDGL [6] (RE = 0.5525) and
(e) GL-SigRep [9] (RE = 0.6731).

graph embedding : each node was assigned a 2D coordinate so that the graph topology

can be visualized. The same experimental setup was used as earlier experiments,

except edge weights less than 0.3 were removed in this case. While the results from

GLASSO (b) and GL-SigRep (e) contain all the edges from the ground truth graph,

they also include many additional edges not present in the ground truth graph and

thus lack sparsity. In contrast, the result from DDGL (d) is too sparse and does not

include all of the edges found in the ground truth graph. The result from Proj-Lasso

(c), however, maintains sparsity without compromising accurate edge representation.
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(a) (b)

(c) (d)

(e)

Figure 5.3: (a) Ground Truth Laplacian L with 20 nodes using Erdos-Renyi model with
p = 0.6 and Gaussian kernel model with σ = 0.5. Edges with weights less than 0.3 are
removed and the sign of each edge is negative with probability 0.5., (b) visualized result
of GLASSO (RE = 0.8686) (c) visualized result of proposed Proj-Lasso with K = 1 (RE
= 0.5539), (d) visualized result of DDGL (RE = 0.6655), and (e) visualized result of
GL-SigRep (RE = 0.9391). Edges are coloured according to their weight.
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5.3 Results using Eigenvectors from Givens Rotation Method

[30] developed a method based on Givens rotation matrices to approximately diago-

nalize Laplacian L, i.e.,

L ≈ S1 · · ·SJΛ̂S>J · · ·S>1 (5.3)

where S1, . . . ,SJ are Givens rotation matrices that are both sparse and orthogonal,

and Λ̂ is a near-diagonal matrix. T = S>J · · ·S>1 can be interpreted as a fast Graph

Fourier Transform (FGFT) that approximates the original eigen-matrix of L. T is

sparse since each Sj is sparse, and thus computation of transform coefficients α = Tx

can be fast. J is a parameter to trade off the complexity of the transform T and the

GFT approximation error.

Metric K = 1 K = 2 K = 3 K = N
RE 1.3375 1.3585 1.3595 1.4224

DeltaCon 0.9295 0.9237 0.9323 0.9283
λ-distance 2.3943 2.4010 2.4010 2.5390

Table 5.2: Average relative errors of Proj-Lasso using different number of first K eigen-
vectors from Givens rotation method [30] as inputs.

In this experiment, given an estimated covariance matrix, first, sparse K eigen-

vectors were computed using the FGFT method, which were columns of the multi-

plications of Givens rotation matrices (i.e., the first K rows of T). These orthogonal

vectors were used as the first K eigenvector prior, and the remaining N−K eigenvec-

tors were estimated using the proposed algorithm. Parameter J for Givens methods

was set to J = 2000. Note that in this case, the first K orthogonal vectors were not

the actual first K eigenvectors of the target inverse covariance matrix, but that they
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were the preferred vectors for faster computation.

Table 5.2 shows the performance of Proj-Lasso using different numbers of rows

from T as prior eigenvectors (K = 1, . . . 3, and K = N). This table shows the

tradeoff between potential speedup in computing transform coefficients using sparse

eigenvectors and inverse covariance matrix estimation accuracy. One can observe that

Proj-Lasso has smaller errors for both metrics RE and λ-distance when K is smaller

i.e., when fewer computed eigenvectors from the FGFT method are used.
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Chapter 6

Conclusion

Computing a most suitable graph structure from available data observations via an

efficient graph learning algorithm represents a critical challenge in data science. The

emerging field of GSP provides a unique perspective for graph learning via signal

representations on the learned graph. Consequently, novel graph learning methods

inspired by GSP are capable of robustly estimating complex graph structures, from

small and possibly noisy datasets, suitable for real-world data such as those found in

brain and social network analysis. In this thesis, a novel GSP-based graph learning

algorithm (Proj-Lasso) is proposed.

Given observable signals to compute an empirical covariance matrix C̄, a new

graph learning method is proposed to estimate the most likely graph Laplacian ma-

trix L, where the assumption is that the first K eigenvectors of L are pre-selected

based on domain knowledge or an alternative criterion. First, it was proven that the

subspace H+
u of symmetric positive semi-definite (PSD) matrices sharing the first K

eigenvectors {uk}Kk=1 in a defined Hilbert space is a convex cone. Then, an operator,

inspired by the Gram-Schmidt procedure, is constructed to project a positive definite

(PD) matrix P into H+
u . Finally, an efficient algorithm to compute the most probable
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L ∈ H+
u given C̄, combining block coordinate descent (BCD) in GLASSO and the

proposed projection operator, is designed.

Experimental results show that the proposed algorithm outperformed competing

graph learning schemes when the first K eigenvectors are known. Proj-Lasso does not

require full matrix-decomposition—which is resource-intensive—to construct a pro-

jection operator. Additionally, optimizing the covariance matrix directly—instead

of using its inverse—in the estimation of a graph Laplacian results in further com-

putational benefits in implementation. To the best of our knowledge, the proposed

algorithm is the first in the literature that employs assumptions about eigenvectors

of graph Laplacian L.

Future work is possible in a number of different directions. First, the imple-

mentation of the current algorithm can be made more computation-efficient and

memory-efficient. More precisely, these improvements can be achieved by leverag-

ing fast sparse precision matrix estimation algorithms such as CLIME [102] instead

of GLASSO. Further, the optimization problem used in the projection operator can

be solved faster using alternating projections inspired by projection on convex sets

(POCS) [103]. Experimentally, real-world datasets from practical applications should

be used to generate new experimental results. Image processing (e.g., image and

transform coding), social networks (e.g., networks containing observations about vot-

ing behaviour), and neurological imaging (e.g., fMRI data) are candidate applications

that can provide interesting real-world datasets.
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