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REVIEWS
A PEER REVIEWED FORUM

Somite Development in Zebrafish
HEATHER L. STICKNEY, MICHAEL J.F. BARRESI, AND STEPHEN H. DEVOTO*
Biology Department, Wesleyan University, Middletown, Connecticut

ABSTRACT A full understanding of somite
development requires knowledge of the molecu-
lar genetic pathways for cell determination as
well as the cellular behaviors that underlie seg-
mentation, somite epithelialization, and somite
patterning. The zebrafish has long been recog-
nized as an ideal organism for cellular and histo-
logical studies of somite patterning. In recent
years, genetics has proven to be a very powerful
complementary approach to these embryological
studies, as genetic screens for zebrafish mutants
defective in somitogenesis have identified over
50 genes that are necessary for normal somite
development. Zebrafish is thus an ideal system in
which to analyze the role of specific gene prod-
ucts in regulating the cell behaviors that under-
lie somite development. We review what is cur-
rently known about zebrafish somite development
and compare it where appropriate to somite devel-
opment in chick and mouse. We discuss the pro-
cesses of segmentation and somite epithelialization,
and then review the patterning of cell types within
the somite. We show directly, for the first time, that
muscle cell and sclerotome migrations occur at the
same time. We end with a look at the many questions
about somitogenesis that are still unanswered.
© 2000 Wiley-Liss, Inc.

Key words: somite; segmentation; somitogenesis;
dermamyotome; myotome; sclerotome;
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INTRODUCTION

Although there is underlying segmentation in the
trunk of all vertebrates, the segmented nature of fish
remains among the most obvious in the adult animal.
Even a cursory examination of the filets in a seafood
store reveals that the fish trunk is composed of reiter-
ated blocks of muscle, cartilage, and bone. These seri-
ally homologous mesodermal segments are derived
from somites that form during embryogenesis. Somite
formation and patterning have been studied in teleosts
and elasmobranchs for over a century because of inter-
est in the evolution of somite development as well as
interest in the development of fish muscle in the agri-
cultural industry. Somite development has been stud-

ied in elasmobranchs such as sharks, in fish of eco-
nomic importance such as herring, trout, carp, mullet,
plaice, sole, turbot, eel, tambaqui, anchovy, sea bass,
and sea bream, and in small freshwater fish from the
aquarium trade such as goldfish, rosy barb, and ze-
brafish that have experimental advantages over the
larger teleosts (for reviews, see Bone, 1978; Stoiber et
al., 1999). Recently, the zebrafish has emerged as a
model for vertebrate development, and the pace of dis-
coveries on the molecular and genetic basis of somito-
genesis in zebrafish has accelerated (Holley and Nus-
slein-Volhard, 2000). Important work in other fish
species is ongoing; in addition to intrinsic interest in
understanding fish other than zebrafish, this work is
extremely valuable for testing the generality of discov-
eries in zebrafish and for understanding the develop-
mental mechanisms that generate the diversity of
forms found among different species (Stoiber et al.,
1999). Much of what is known about myotome pattern-
ing in zebrafish has recently been confirmed in the
European Pearlfish (Stoiber et al., 1998).

A small tropical fish such as the zebrafish has many
advantages for studying somitogenesis. Two approaches
to understanding somite patterning in zebrafish have
proven to be especially fruitful. One approach, which
might be called neo-classical embryology, takes advan-
tage of their rapid external development and their
transparency. These advantages allow a cell’s behavior
to be observed by time-lapse microscopy (Roosen-
Runge, 1937; Wood and Thorogood, 1994), its fate to be
determined by microinjection of vital dyes (Kimmel
and Warga, 1987), its position to be manipulated by cell
transplantation (Ho and Kimmel, 1993), and its gene
expression to be altered by microinjection of mRNA
and DNA (Stuart et al., 1990). The other approach,
genetics, takes advantage of the ease of maintaining
large numbers of animals, the relatively short genera-
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tion time, and the large clutches of embryos that a
single pair of fish produce. These advantages, and work
by many labs, have led to the development of tech-
niques for mutagenesis, for the identification of mu-
tants (Chakrabarti et al., 1983; Mullins et al., 1994;
Solnica-Krezel et al., 1994; Riley and Grunwald, 1995;
Fritz et al., 1996; Gaiano et al., 1996), and for the
creation of genetic clones (Streisinger et al., 1981),
haploid embryos (Streisinger et al., 1981; Corley-Smith
et al., 1996), and a genetic map (Postlethwait et al.,
1994). More recently, a high-density genetic map con-
taining many types of molecular markers has been
developed (Shimoda et al., 1999). This map, along with
genomic libraries with large inserts (Amemiya et al.,
1999), facilitates relatively rapid positional cloning of
novel genes (Talbot and Schier, 1999).

OVERVIEW

The overall process of somite development in ze-
brafish is similar to that in amphibians, birds, and
mammals (see Kimmel et al., 1995). In zebrafish, gas-
trulation is first visible when the shield is established
on the dorsal side of the embryo (Fig. 1). Shield cells are
functionally equivalent to the organizer of amphibians
and Hensen’s node cells in chick (Oppenheimer, 1936;
Shih and Fraser, 1996). These cells give rise to the
notochord and prechordal plate, and they exert pro-
found patterning influences on surrounding tissues
(Mullins, 1999). The paraxial mesoderm develops from
cells around the margin of the early gastrula, which
converge toward the dorsal side, forming paraxial me-
soderm adjacent to the axial mesoderm that is derived
from the shield. This convergence of cells toward the
future notochord contributes to the anteroposterior ex-
tension of the embryo (Kimmel et al., 1990). During
this convergent extension the notochord precursors be-
gin to express signaling molecules such as Sonic hedge-
hog, which exert patterning influences on the paraxial
mesoderm. The first somite forms shortly after the end
of gastrulation. As somitogenesis continues, the trunk
begins to lift off of the yolk and the tail extends. At the
end of the first day of development, somite formation is
complete and somite patterning nearly so (Fig. 1).

Genetic approaches have identified several genes
that are required in zebrafish and other species for the
establishment of paraxial mesoderm, for the conver-
gence and extension movements within the paraxial
mesoderm, and for the global anterior-posterior pat-
terning of paraxial mesoderm into trunk and tail.
These processes have been reviewed elsewhere (Schier
and Talbot, 1998; Holder and Xu, 1999; Kodjabachian
et al., 1999; Mullins, 1999; Solnica-Krezel, 1999) and
will not be discussed here. We start by discussing the
process of segmentation and the formation of somites,
then discuss the patterning of cell types within the
somite, and conclude with a discussion of major ques-
tions for future research.

SOMITE FORMATION

The first somites in a zebrafish embryo appear ap-
proximately 10.5 hr after fertilization. Cells in the ex-
treme rostral region of the presomitic mesoderm (psm)
alter their adhesive properties and undergo mesenchy-
mal to epithelial transitions, forming epithelia around
loosely organized mesenchymal cells (Fig. 2). Addi-
tional somites are produced in a similar fashion at 30
min intervals in a bilaterally symmetric, anterior to
posterior wave until a total of about 30 somite pairs
bracket the notochord (24 hr; Fig. 1).

A Molecular Clock?

The highly controlled, reiterative nature of somite
formation in zebrafish is also characteristic of somite

Fig. 1. Overview of zebrafish embryogenesis. These drawings show
the stages of embryogenesis during which segmentation and patterning
of the paraxial mesoderm takes place. Significant events in each stage
are indicated.
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formation in other vertebrate species, and a number of
models have been proposed to account for the precise
regulation of this process. Several of these models
(Cooke and Zeeman, 1976; Meinhardt, 1982, 1986; Key-
nes and Stern, 1988; Schnell and Maini, 2000) posit the
existence of a molecular clock or oscillator that func-
tions with a temporal periodicity. This molecular clock
would translate a smooth maturational or positional
gradient present in the psm into a spatially periodic
pattern, allowing somitogenesis to occur at regular in-
tervals in successive, uniformly sized blocks of cells.
The recent descriptions of the expression patterns of
c-hairy1 in chick, lunatic fringe in chick and mouse,
and her1 in zebrafish offer support for these models
(Palmeirim et al., 1997; Forsberg et al., 1998; McGrew
et al., 1998; Aulehla and Johnson, 1999; Holley et al.,
2000). First, the expression of each of these genes os-
cillates in cells in the psm, cycling on and off, with a
periodicity equal to the formation time of one somite.
Second, at least in the case of c-hairy1 and lunatic

fringe, this dynamic expression seems to be an auton-
omous property of each cell.

Heat shock experiments provide additional evidence
for the existence of a clock in zebrafish (Kimmel et al.,
1988; Roy et al., 1999). Roy et al. (1999) observed that
a single heat shock led to periodic disturbances in
somite formation in about 15% of the zebrafish em-
bryos they examined, with boundary defects found in
approximately every fifth somite. A somitogenic molec-
ular clock with a temperature sensitive phase can ac-
count for this result.

Given these data, a function for some type of clock in
vertebrate somitogenesis is now widely accepted. Little
is known, however, about the nature of this clock. The
oscillation in her1, c-hairy1, and lunatic fringe expres-
sion seems to be an output of the clock; these genes do
not themselves constitute the clock. In addition, little is
known about how the activity of the clock controls
somite formation. In most vertebrates, including ze-
brafish, somite formation seems to occur through the

Fig. 2. Overview of segmentation. (A) Scanning electron micrograph
of a 19 somite embryo. Shortly after somites form, they change from a
cuboidal to a chevron shape. Reproduced from Waterman and McCarty
(1977) with permission of Scanning Microscopy International. (B) Live,
lateral view of somitogenesis in a 20 somite embryo. The notochord is out
of focus, medial to the somites and presomitic mesoderm. (C–F) Time
lapse views of an embryo undergoing somitogenesis, as observed from
dorsal. The notochord, in the center, is flanked on either side by paraxial
mesoderm. Arrowheads indicate the positions of somitic furrows. Somitic
furrows are first visible in the lateral part of the paraxial mesoderm. (C)

Six somites have formed; arrowheads bracket somite 6. (D) The furrow
on the right side between somite 6 and the future somite 7 has begun to
form in the lateral presomitic mesoderm. (E) The furrow between somite
6 and the future somite 7 is nearly complete on both sides and a new
furrow between somites 7 and 8 has begun to form. (F) Somite 7 has fully
separated from the presomitic mesoderm. (G) Horizontal section through
a 20 somite embryo at the level of the notochord. Epithelial boundaries
and loosely packed central cells are visible in several of the somites.
Reproduced with permission, from Waterman (1969). Scale bars 5 100
mm (A); 50 mm (B); 25 mm (C–F); 25 mm (G).
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metameric grouping of cells in the psm followed by the
epithelialization of those groups of cells. A number of
zebrafish genes, which we discuss below, have been
implicated in these events, but the nature of the regu-
latory link between the activity of these genes and the
molecular clock is unclear.

Segmentation of the Paraxial Mesoderm

In zebrafish, like in most other vertebrates, segmen-
tation, the subdivision of the psm into uniformly sized
blocks of cells, occurs before the formation of morpho-
logically distinct somites. Metameric patterns of paired
bilateral transverse stripes or bands of transcripts
have been observed for a number of zebrafish genes,
including deltaC, deltaD, ephrin-B2, EphA4, mesp-a,
and mesp-b (Fig. 3A; Dornseifer et al., 1997; Durbin et
al., 1998, 2000; Haddon et al., 1998; Takke et al., 1999;
Sawada et al., 2000), and clearly indicate that cells in
the anterior psm are allocated to specific somites before
epithelial somite boundaries appear. Recent evidence
suggests that the Notch signaling pathway, which has
been implicated in mouse and chick somitogenesis,
plays a role in the specification of this molecular
prepattern in zebrafish.

Notch is a large transmembrane receptor protein
that can bind the Delta and Serrate families of trans-
membrane proteins. Ligand binding causes Notch to be
proteolytically cleaved, resulting in the translocation of
its cytoplasmic domain to the nucleus. The cleaved
Notch protein can then, with the help of a conserved
transcription factor (Suppressor of Hairless in Dro-
sophila), activate bHLH genes in the hairy-Enhancer of
split (E(spl)) family. In Drosophila, the proteins en-
coded by these bHLH genes complex with a nuclear
protein called Groucho to repress transcription of
downstream targets (for a review of the Notch signal-
ing pathway, see Artavanis-Tsakonas et al., 1995; see
also Struhl and Adachi, 1998).

A number of homologs of components in the Notch
pathway have been identified in zebrafish, including
four notch homologs (Bierkamp and Campos Ortega,
1993; Westin and Lardelli, 1997), four delta homologs
(Dornseifer et al., 1997; Haddon et al., 1998) and six
members of the hairy-e(spl) family (the her genes; von
Weizsäcker, 1994, as cited by Müller et al., 1996). One
of the notch homologs, notch1a, is expressed at high
levels throughout the tailbud and psm (Fig. 3A;
Bierkamp and Campos Ortega, 1993) and seems to be
involved in prepattern specification. Embryos injected
with RNA encoding a constitutively active form of
Notch1a exhibit no sign of segmentation: no morpho-
logically distinct somite boundaries can be seen, myoD
expression (normally restricted to the posterior domain
of somites) is diffuse in the somitic region, and, in
22–24 hr fish, muscle fibers extend through areas
where boundaries should have developed (Takke and
Campos-Ortega, 1999). Misexpression of constitutively
active notch1a also results in the transcriptional acti-
vation of her1 and her4 throughout the regions in

which they are normally expressed in discrete bands
(Takke and Campos-Ortega, 1999; Takke et al., 1999).

Coinjection of her1 and her4, like injection of RNA
encoding constitutively active Notch1a, results in the
complete absence of somite borders, diffuse myoD ex-
pression, and perturbation of muscle fiber organization
(Takke and Campos-Ortega, 1999). This result, in con-
junction with the observed ectopic activation of her1
and her4 transcription by overexpression of constitu-
tively active Notch1a, suggests that Her1 and Her4
function downstream of Notch1a in the regulation of
psm segmentation (Fig. 3B). Injection of either her1 or
her4 alone causes less severe disruption of somite de-

Fig. 3. (A) Expression patterns of genes thought to be involved in
segmentation and boundary formation. Drawings depict a dorsal view of
gene expression in the posterior paraxial mesoderm and are based on
published descriptions. Anterior is to the top. The presomitic mesoderm
and the five most recently formed somites are shown; adaxial cells are
not represented. Shading indicates only gross differences in transcript
intensity within the expression pattern of each gene. her1 oscillates in the
psm; the drawing depicts the expression pattern at one moment in time.
(B) A working hypothesis for a hierarchy of genes involved in somite
formation. Dashed arrows are based upon published data (references in
parentheses) and are intended to depict only the direction of influence;
interactions may be positive or negative and direct or indirect. Dashed
arrows with question marks denote speculated interactions (1: Müller et
al., 1996; 2: Takke and Campos-Ortega, 1999; 3: Sawada et al., 2000; 4:
Takke et al., 1999; 5: Bierkamp and Campos-Ortega, 1993; 6: Westin and
Lardelli, 1997; 7: Haddon et al., 1998; 8: Dornseifer et al., 1997; 9: Durbin
et al., 2000; 10: Durbin et al., 1998).
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velopment (Takke and Campos-Ortega, 1999), indicat-
ing that her1 and her4 have at least partially distinct
roles in the segmentation of the psm.

How is this signaling pathway activated? Two ze-
brafish homologs of the Drosophila Notch ligand Delta,
DeltaC and DeltaD, are expressed in the tailbud, in the
somites, and in paired bilateral bands in the anterior
psm (Fig. 3A; Dornseifer et al., 1997; Haddon et al.,
1998). They are obvious candidates for a Notch1a li-
gand, and loss of deltaD function in after eight (aei)
mutants, which have a mutation in their deltaD gene,
results in the loss of oscillation in her1 expression
(Holley et al., 2000). However, neither overexpression
of deltaC nor overexpression of deltaD, affects the ex-
pression of either her1 or her4 (Dornseifer et al., 1997;
Takke and Campos-Ortega, 1999).

If the regulation of DeltaD activity in the posterior
psm is post-transcriptional, then this would explain
why the loss of deltaD leads to a loss of her1 oscillation
and segmentation whereas the overexpression of
deltaD has no effect on her1 oscillation or segmentation
(although deltaD overexpression does affect the later
process of epithelialization, see below). In this scenario,
overexpression of deltaC and deltaD mRNA would not
be expected to have any effect on the regulation of her1
or her4 transcription as the injected RNA would be
subject to normal post-transcriptional regulation. A
mutation in the deltaD gene, on the other hand, should
affect her1 and her4 transcription as no normal DeltaD
protein could be made. The fact that endogenous
deltaC and deltaD transcripts are not detected in the
posterior psm supports a post-transcriptional regula-
tory mechanism. If transcription of deltaC and deltaD
is not occurring in cells in the posterior psm, any reg-
ulation of DeltaC and DeltaD activity there has to be
post-transcriptional. The DeltaC and DeltaD proteins
required by those cells for Notch activation are likely
generated when the cells are located in the tailbud and
transcribing deltaC and deltaD RNA.

A number of questions regarding the involvement of
the Notch signaling pathway in the subdivision of the
psm have yet to be answered. Do DeltaC and DeltaD in
fact act as Notch1a ligands in prepattern specification?
What genes lie upstream of the Notch pathway? What
genes lie downstream of Her1 and Her4? her1 does not
seem to be expressed in the primordia of the first four
segments. How is this tissue segmented? Does the
Notch signaling pathway play a role?

Formation of Morphologically Distinct Somites

The second and final step in somite formation is the
creation of morphologically distinct somites (i.e., the
epithelialization of the presomitic segments). This step
seems to involve anteroposterior regionalization within
the presumptive and formed somites, as the juxtaposi-
tion of two anterior or two posterior somite halves in
chick results in extensive cell mixing, whereas a
boundary is generated between anterior and posterior
somite halves (Stern and Keynes, 1987). In zebrafish,

the expression patterns of a number of genes, including
notch5, deltaC, deltaD, and notch6, clearly demon-
strate that anteroposterior subdivisions are present in
presumptive and formed somites (Fig. 3A; Dornseifer
et al., 1997; Westin and Lardelli, 1997; Haddon et al.,
1998). Moreover, early epithelial somite boundaries are
not generated in fss-type (fused somites) mutants, a
group of mutants with a seemingly normal segmental
prepattern but disrupted anteroposterior segment
identity (van Eeden et al., 1996, 1998; Durbin et al.,
2000; Sawada et al., 2000). Boundary formation in
embryos mutant in the fused somites (fss) gene, in
which the mesoderm of each segment is posteriorized,
can be rescued by transplantations of clusters of cells
expressing EphA4, a gene expressed in the anterior of
each segment (Durbin et al., 2000). It is likely that cells
in the anterior and posterior regions of each segment
differ in adhesive properties and that this difference
contributes to boundary formation between the poste-
rior cells of the newly formed somite and the anterior
cells of the segmental plate.

Recent evidence indicates that two bHLH transcrip-
tion factors in the zebrafish Mesp family, Mesp-a and
Mesp-b, function in the specification of anterior and
posterior identity within each segment. mesp-b is ex-
pressed in the anterior halves of the three most ante-
rior presumptive somites and seems to confer anterior
identity, as expression of the posterior markers myoD
and notch5 are reduced in embryos injected with
mesp-b whereas transcripts of FGFR1, papc, and
notch6, all normally expressed in the anterior region of
each somite, are uniformly distributed (Sawada et al.,
2000). The expression pattern of mesp-a is similar to
that of mesp-b, with two exceptions: mesp-a expression
does not persist as long as mesp-b, so only two bands of
expression are observed, and the more posterior mesp-a
expressing band occupies the entire somite primor-
dium rather than just the anterior half (Fig. 3A;
Durbin et al., 2000; Sawada et al., 2000). Durbin et al.
(2000) suggest that the pattern of mesp-a expression
may indicate that anterior and posterior identity
within each segment is established approximately 60
min before epithelialization (the time to form two
somites).

The expression of a number of zebrafish Notch and
Delta homologs is restricted to either the anterior or
posterior half of presumptive and formed somites (Fig.
3A; Westin and Lardelli, 1997; Takke and Campos-
Ortega, 1999; Sawada et al., 2000), indicating that the
Notch signaling pathway may play a role in somite
epithelialization in addition to its role in prepattern
specification (Fig. 3B). There is some evidence to sup-
port a later function. First, misexpression studies indi-
cate that DeltaC and DeltaD may function down-
stream, as well as upstream, of her1. Overexpression of
her1, her4, or RNA encoding a constitutively active
form of Notch1a causes defects in the expression pat-
terns of deltaC and deltaD in the anterior psm (Takke
and Campos-Ortega, 1999). Also, somite boundaries
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are disrupted in embryos injected with deltaC or
deltaD although, as discussed previously, her1 expres-
sion is not affected (Takke and Campos-Ortega, 1999).
Second, overexpression of mesp-b causes the downregu-
lation of notch5 expression and the upregulation of
notch6 (Sawada et al., 2000), suggesting that those two
genes have an activity downstream of mesp-b activity
(Fig. 3B).

The function of the Notch signaling pathway in the
translation of the segmental prepattern into epithelial
somites is not yet clear. Loss of function studies involv-
ing mouse homologs of Delta and Fringe (a Drosophila
protein known to be involved in Notch signaling in the
wing margin) suggest that the Notch signaling path-
way is involved in the anteroposterior regionalization
of segments (Hrabe de Angelis et al., 1997; Evrard et
al., 1998; Kusumi et al., 1998; Zhang and Gridley,
1998; Barrantes et al., 1999). In zebrafish, Notch sig-
naling could act to maintain the regionalization within
the somites through a mechanism similar to that em-
ployed in the establishment of wing margins of Dro-
sophila (Takke and Campos-Ortega, 1999; Rawls et al.,
2000). Briefly, in Drosophila wing margins the Notch
ligand Delta is expressed in ventral cells, activating
Notch in dorsal cells, whereas Serrate (another Notch
ligand) is expressed in dorsal cells, activating Notch in
ventral cells. The Notch signal is then interpreted dif-
ferently in the two compartments. Delta and Serrate
each enhance the expression of the other, and a posi-
tive feedback loop is formed between the dorsal and
ventral cells that presumably acts to strengthen and
maintain the boundary between the two populations of
cells. Because zebrafish deltaC, notch5, notch1a, and
notch1b are expressed in the posterior half of presump-
tive and formed somites and deltaD and notch6 in the
anterior, DeltaC and DeltaD could act in a manner
analogous to the Drosophila Delta and Serrate (Dorn-
seifer et al., 1997; Westin and Lardelli, 1997; Haddon
et al., 1998; Sawada et al., 2000). In such a scenario,
DeltaC would activate Notch6 whereas DeltaD acti-
vated Notch5, Notch1a, or Notch1b.

Alternatively, the Notch signaling pathway could be
directly involved in the epithelialization of the somites
rather than in the maintenance of anteroposterior
identity within the segment. The analysis of the phe-
notypes resulting from mutations in the Drosophila
genes Notch, Delta, and Enhancer of split suggests that
in Drosophila embryonic tissues these genes are in-
volved in the acquisition or maintenance of an epithe-
lial state (Hartenstein et al., 1992), providing prece-
dence for a Notch function in the epithelialization of
zebrafish somites.

The Eph receptor tyrosine kinases and their Ephrin
ligands have, like the Mesp family members and Notch
signaling pathway, been implicated in the formation of
epithelial somites. ephrin-A-L1, ephrin-B2, and the
Eph receptor ephA4 are expressed in the psm and de-
veloping somites of zebrafish in a metameric pattern,
and interference with their signaling as well as over-

expression of full-length ephrin-B2 disrupts somite de-
velopment but not prepattern specification: metameric
bands of her1 expression are still observed (Fig. 3A;
Durbin et al., 1998). The anteroposterior regionaliza-
tion of each segment also seems to be unaffected by the
disruption of Eph signaling, as FGF-8 and myoD are
still restricted to the anterior and posterior of the
somites, respectively (Durbin et al., 1998). Given that
transcripts of ephA4 and ephrin-B2 are normally re-
gionally restricted in the somites and anterior psm (see
Fig. 3A), Eph receptors and Ephrins seem to function
downstream of anteroposterior regionalization. Fur-
thermore, their activity seems to be necessary for the
downregulation of her1 and deltaD expression in the
anterior psm (Fig. 3B; Durbin et al., 1998).

Ephrins and Eph receptors are thought to function
intercellularly as repulsive factors. Because EphA4 can
function as a receptor for Ephrin-B2 and bands of
EphA4 and ephrin-B2 expression alternate in both the
somites and the psm in zebrafish (Fig. 3A; Durbin et
al., 1998), it seems highly likely that these two proteins
engage in repulsive intercellular signaling. Such repul-
sive signaling could function directly in the formation
of epithelial boundaries between somites, but it is un-
clear how this signaling would affect the regulation of
her1 and deltaD transcription.

Two other genes, snail1 and par1, may also be in-
volved in the formation of morphologically distinct
somites. par1 encodes a zebrafish homolog of the bHLH
transcription factor Paraxis, that in mouse is required
for the formation of epithelial somites, but not for seg-
mentation or the establishment of cell lineages (Bur-
gess et al., 1996). It is reasonable to think the same
might be true in zebrafish, as high levels of par1 tran-
scripts are detected throughout newly formed somites
and in the psm posterior to the last formed somite,
approximately in the region where the next two
somites will form (Shanmugalingam and Wilson,
1998). snail1 encodes a zinc finger protein whose Dro-
sophila homolog is required for mesoderm formation.
In zebrafish, snail1 expression is detected at low levels
throughout the psm but is restricted to the anterior
and posterior epithelial borders of newly formed
somites (Hammerschmidt and Nusslein Volhard, 1993;
Thisse et al., 1993). The shift from diffuse distribution
in the psm to localized distribution at somitic bound-
aries begins before the somitic borders actually form,
suggesting a possible function for snail1 in the epithe-
lialization of cells at the somite boundaries (Thisse et
al., 1993).

Mutants in Somite Formation

A genetic approach to understanding segmentation
and somite formation powerfully complements molecu-
lar approaches. Mutations in the genes mentioned
above can allow specific hypotheses about the function
of known genes to be tested. For example, the identifi-
cation of the aei mutation as deltaD demonstrated that
DeltaD is required upstream of her1 (Holley et al.,
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2000). In addition, a genetic approach can identify
novel, or previously unsuspected, genes that are re-
quired for somite development. A number of other ze-
brafish mutants with defects in somite formation, fused
somites (fss), beamter (bea), deadly seven (des), and
mind bomb (mib), have been identified. These mutants,
including aei, form paraxial mesoderm but do not es-
tablish early somite boundaries. The fss mutation af-
fects all somites; the bea mutation interrupts boundary
formation posterior to the third or fourth somite; the
aei, des, and mib mutations disrupt boundary forma-
tion posterior to somites 7–9 (van Eeden et al., 1996).

Some type of segmental prepattern seems to be es-
tablished in all of these mutants, as they eventually
develop irregular somite boundaries and segmented
vertebrae (van Eeden et al., 1996). The regulation of
her1 expression, however, is disturbed in these mu-
tants. her1 expression in the rostral psm of fss mutants
decays earlier than normal, reducing the number of
bands observed at every stage, whereas the paired
bands of her1 expression are completely lost in bea, aei,
and des, mutants (van Eeden et al., 1998). Interest-
ingly, mib mutant embryos have approximately normal
her1 expression early on, but by the ten somite stage
resemble aei, des, and bea mutants (van Eeden et al.,
1998).

Anteroposterior segment polarity is also disturbed in
all of the fss-type mutants. The anterior half of pre-
sumptive segments in fss mutants is posteriorized, and
cells in the anterior psm of bea, des, and aei mutants
concurrently express markers of anterior and posterior
identity. Regional anteroposterior identity seems to be
lost in mib mutants as well (Durbin et al., 2000).

SOMITE PATTERNING

Somites give rise to the axial skeleton and the skel-
etal muscle of the trunk. Zebrafish, supported by the
buoyancy of water and their swim bladder, have no use
for the robust skeleton needed to support the bigger,
drier vertebrates. Instead, they require large muscles
to locomote through their relatively viscous aquatic
environment. The fish somite is thus predominantly
myotome, with sclerotome a relatively minor compo-
nent. As a result, although the sclerotome lies ventral
to the myotome in the somites of both fish and am-
niotes, the position of each relative to other trunk tis-
sues differs. For example, in amniotes the cells adja-
cent to the notochord at the time of somite formation
form sclerotome, whereas in zebrafish these cells form
myotome. Despite these differences in anatomy, simi-
lar cellular interactions are implicated in fish and am-
niote somite patterning.

In vertebrates, the sclerotome is first recognizable in
the ventral portion of the somite (Lewis and Bremer,
1927), and gives rise to the vertebrae and the ribs
(Dockter, 2000). Zebrafish sclerotome can be identified
morphologically shortly after somite formation as a
cluster of cells on the ventromedial surface of the
somite. pax9 and twist are expressed in this cluster of

mesenchymal cells (Nornes et al., 1996; Morin-Ken-
sicki and Eisen, 1997), many of which will migrate
dorsally to encircle the spinal cord and notochord,
forming the vertebrae (Fig. 4C, F).

In the adult, zebrafish muscle fibers can be subdi-
vided into two broad classes (for a review of fish muscle
fiber types, see Bone, 1978). Slow muscle fibers, which
are specialized for slow swimming, are found in a
wedge-shaped triangle on the lateral surface of the
adult myotome (Fig. 8). Fast muscle fibers, used during
bursts of rapid swimming, are located in the deep por-
tion of the myotome. Slow fibers are smaller, darker,
and more heavily vascularized than fast fibers.

Precursors to adult slow and fast muscle fibers can
be identified very early in development. At the end of
the segmentation period (24 hr), fast muscle fibers are
found in the deep portion of the myotome, whereas slow
muscle fibers form a superficial monolayer on the sur-
face of the myotome (Fig. 4D,E). The embryonic slow
muscle population can be subdivided into pioneer slow
muscle and non-pioneer slow muscle fibers (Fig. 4D).
Pioneer slow muscle fibers were first characterized by
Waterman (1969) and by the group of van Raamsdonk
et al. (1978, 1982) as early developing muscle fibers
that differentiate adjacent to the notochord at the level
of the future horizontal myoseptum. Much later, these
cells were found to express Engrailed proteins (Hatta
et al., 1991), and were named muscle pioneers (Felsen-
feld et al., 1991) by analogy with cells of the same name
in grasshopper, which play a role in organizing both
the musculature and its innervation. Available evi-
dence indicates that zebrafish muscle pioneers are re-
quired for neither axon guidance (Melançon et al.,
1997), nor the proper development of other muscle
fibers (Blagden et al., 1997), although they may play a
role in the development of the horizontal myoseptum
(Halpern et al., 1993). We use the terms “muscle pio-
neer” and “pioneer slow muscle” interchangeably. As
their name indicates, these are a subset of the embry-
onic slow muscle fibers, and are likely to develop into
slow muscle fibers of the adult (Devoto et al., 1996).
The three types of embryonic muscle fibers (non-pio-
neer slow muscle, pioneer slow muscle, and fast mus-
cle) can be unambiguously identified in the zebrafish
somite by position, by morphology, and by the expres-
sion of specific molecular markers.

Although sclerotomal and myotomal cells are the
only cells that have been characterized in the zebrafish
somite thus far, other cell types are likely to exist. For
example, zebrafish somite cells contribute to blood ves-
sels (Morin-Kensicki and Eisen, 1997), as do chick
somite cells (Brand-Saberi and Christ, 2000). The chick
somite also contains the dermatome, which gives rise
to the dermis of the skin. The dermatome develops
from the most superficial cells of the dermamyotome in
chick. Nothing is known about the zebrafish der-
matome, it is not even clear that a dermatome exists.
Waterman (1969) identified a few cells on the surface of
the myotome in a 24 hr fish that he called external
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Fig. 4. The zebrafish somite has four characterized cell types. De-
picted in this figure are the starting and final positions for cells expressing
markers of sclerotome (twist), slow muscle (S58, F59) and fast muscle
(ZM4). (A–C) Cross-sections of zebrafish embryos at 13 hr. (A) Sche-
matic cross-section through the anterior psm, showing the relative posi-
tions of fast muscle precursors (lateral presomitic), twist expressing cells
(sclerotome?), slow muscle precursors (adaxial). (B) Adaxial cells ex-
press myoD (red) while still adjacent to the shh-expressing notochord
(blue) in the segmental plate. (C) twist expressing cells (blue) are initially
ventral to the myotome and are separated from the notochord by the

medial-most adaxial cells that give rise to slow muscle fibers (brown,
F59). Dark blue staining directly beneath the notochord is twist labeling of
the hypochord. (D–F) Cross-sections of zebrafish embryos at 24 hr.
(D) Schematic cross-section through a 24 hr zebrafish embryo, showing
the positions of the four characterized cell types. (E) Slow muscle cells
(green) form a superficial monolayer whereas fast muscle cells (red)
remain deep. (F) twist expressing cells (blue) at 24 hr are found ventral
and medial to the myotome, such that expression is directly adjacent to
the notochord and ventral spinal chord. Dorsal is to the top. Scale bar 5
100 mm (B,C,E,F).

Fig. 5. Slow muscle development is disrupted in several zebrafish
mutants with defects in either notochord signaling or the Hh pathway.
This figure presents immunolabeling for slow muscle using the S58
antibody in a number of mutants at 24 hr (see also Lewis et al., 1999).
(A) Wild-type embryo. (B,C) Notochord mutants. no tail (ntl) (B) and
floating head (flh) (C) mutants have a loss of axial mesoderm but show
early Hedgehog expression and have reduced numbers of slow muscle
fibers in the posterior trunk as compared with the more anterior somites.
(D–F) Hedgehog signaling mutants. Mutants in sonic-you (syu) (D), that
encodes the zebrafish homologue of Shh, show partial defects in slow
muscle throughout the trunk. slow-muscle-omitted (smu) (E) and you-too

(yot) (F) mutant embryos possess the greatest deficiency in slow muscle
fibers as compared with all other known you-type mutants. yot encodes
the zebrafish homologue of Gli2, a downstream transcription factor in the
Hedgehog pathway, smu is proposed to encode zebrafish Smoothened,
a transmembrane protein in the Hedgehog receptor complex. (G–I) Pu-
tative mutants in Hedgehog signaling. you (G), chameleon (con) (H),
iguana (igu) (I) all exhibit lesser deficiencies in the number of slow muscle
fibers. Reduction in slow muscle is seen throughout the trunk, though the
defect tends to be worse in the posterior. Anterior is to the left and dorsal
is to the top. Scale bar 5 100 mm (A–I).
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cells, but whether these are dermatome cells or some
other cell type remains to be determined.

Myotome Development

Patterning of the zebrafish paraxial mesoderm be-
gins with the specification of slow muscle precursors
before the onset of somitogenesis. Slow muscle precur-
sors can be identified in the segmental plate immedi-
ately adjacent to the notochord (Fig. 2C). These cells,
which were named adaxial cells by virtue of their po-
sition, demonstrate a myogenic identity very early, as
indicated by their expression of myoD and myogenin
(Fig. 4B; Weinberg et al., 1996). A few of the adaxial
cells per somite develop into pioneer slow muscle fibers
(Devoto et al., 1996). The more lateral paraxial meso-
derm does not express detectable levels of myoD and
myogenin transcripts until the time of somite forma-
tion. Some of the lateral presomitic cells can contribute
to both muscle and sclerotome (E. Melançon and SHD,
unpublished observations), suggesting that the earliest
lineage restriction in zebrafish is between slow muscle
and “not slow muscle,” and that the latter population is
later subdivided into fast muscle and sclerotome.

Shortly after somite formation, adaxial cells undergo
a remarkable morphological change and migration;
they begin as a sheet of about 20 cuboidal cells all
adjacent to the notochord and end as a monolayer of
muscle fibers on the surface of the somite (Devoto et al.,
1996). The migration of adaxial cells can be divided
into two phases: one in which they move dorsally and
ventrally while remaining on the medial surface of the
somite, and another in which they migrate radially
toward the lateral surface of the somite (see Fig. 6B–E
for example). Adaxial cells elongate while still located
medially, changing their shape from plump cubes into
skinny rods (see Fig. 7A,B for illustration). This elon-
gation-driven shape change might be sufficient to dis-
place the adaxial cells dorsally and ventrally. The sec-
ond phase of adaxial cell migration is the movement of
non-pioneer slow muscle fibers radially through the
somite. This early movement of mesodermal cells from
a medial position to a more lateral position is unusual,
although it shares some features with the lateral mi-
gration of single-minded (sim) expressing muscle pre-
cursor cells in Drosophila (Lewis and Crews, 1994;
Zhou et al., 1997). Interestingly, the sim-expressing
cells are also dependent on midline signaling (see be-
low).

At about the time that somites form, fast muscle
precursors begin to express abundant levels of myoD
and myogenin. This expression is first detectable as
segmental bands in the posterior of each somite (Wein-
berg et al., 1996). These initially lateral myotomal cells
differentiate to form the deep part of the myotome as
the adaxial cells migrate laterally past them (Devoto et
al., 1996; Blagden et al., 1997). Fast muscle fibers can
be distinguished from slow muscle fibers by labeling
with several fast-specific antibodies, including zm4
(Fig. 4E; Barresi et al., 2000), 12/101 (Devoto et al.,

1996) and BA-D5 (Blagden et al., 1997), and by the lack
of labeling with slow-specific antibodies, including S58
(Fig. 4E, Fig. 5; Devoto et al., 1996) and EB165 (Blag-
den et al., 1997). F59 is another muscle antibody that
preferentially labels slow muscle but also labels fast
muscle faintly in zebrafish (Figs. 4C, 6B–E; Devoto et
al., 1996).

Patterning of the Myotome

Cell fate in the somite depends on the cellular envi-
ronment in which the cell is located. The amniote der-
mamyotome is patterned by signals from the noto-
chord, the surface ectoderm, the dorsal neural tube,
and the lateral plate (Borycki and Emerson, 2000). In
zebrafish, the position of slow muscle precursors adja-
cent to the notochord suggests that notochord signaling
might induce slow muscle fate. Support for this hypoth-
esis comes from the characterization of three zebrafish
mutants, floating head (flh), no tail (ntl), and bozozok
(boz), that exhibit defects in notochord development. In
addition to the loss of notochord, mutant embryos have
variable deficiencies in early adaxial myoD expression,
muscle pioneers, and horizontal myosepta (Halpern et
al., 1993; Talbot et al., 1995; Odenthal et al., 1996;
Blagden et al., 1997). Furthermore, muscle pioneers
are rescued in mutant embryos containing trans-
planted wild-type notochord cells (Halpern et al.,
1993).

The notochord patterns surrounding tissues in ver-
tebrates through the secretion of Sonic hedgehog (Shh),
a vertebrate homologue of the Drosophila segment po-
larity protein Hedgehog (Hh). In the zebrafish somite,
all evidence suggests that Hh proteins induce slow
muscle fates. First, the notochord expresses both shh
and echidna hedgehog (ehh). Second, overexpression of
hh mRNA in wild-type embryos results in a dramatic
expansion of slow muscle at the expense of fast muscle
and presumably sclerotome fates, and slow muscle de-
velopment in notochord mutants can be rescued by
overexpression of shh mRNA (Hammerschmidt et al.,
1996; Blagden et al., 1997; Du et al., 1997). The number
of pioneer slow muscle cells increases in shh injected
embryos as well, though the cells are still generally
localized to the middle of the somite. Third, embryos in
which the Hh signaling pathway has been disrupted
exhibit defects in slow muscle development. Overex-
pression of constitutively active PKA, which blocks Hh
signaling, results in a loss of slow muscle fibers, as does
the hyperactivation of endogenous PKA via treatment
with forskolin (Du et al., 1997; Barresi et al., 2000).
Moreover, overexpression of Patched, which inhibits
Hh signaling, also eliminates slow muscle fibers (Lewis
et al., 1999). Mutations in genes encoding components
of the Hh pathway lead to defects in slow muscle as
well. Null mutations in syu, the zebrafish homolog of
shh, result in partial deficiencies in slow muscle devel-
opment (Fig. 5; Schauerte et al., 1998; Lewis et al.,
1999). This partial phenotype may be the result of
redundancy, as ehh expressed in the notochord and
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twhh expressed in the floor plate may compensate for
the loss of shh. Mutations in both you-too, the zebrafish
homologue of gli2 and a downstream component of the
Hedgehog pathway, and slow-muscle-omitted, which
we have proposed encodes the zebrafish homologue of
Smoothened (a part of the Hh receptor complex), lead
to an almost complete loss of embryonic slow muscle
fibers (Fig. 5; Lewis et al., 1999; Barresi et al., 2000).

Several other mutants display phenotypes similar to
syu. These mutants are termed the you-type mutants
because their somites have a U-shape instead of the
wild-type chevron shape (van Eeden et al., 1996). As
illustrated in Figure 5, mutations in many of the you-
type genes such as you (you), chameleon (con), and
iguana (igu) show variable deficiencies in slow muscle
development (Fig. 5; Lewis et al., 1999; Barresi et al.,
2000). In addition, many of these mutants can be res-
cued by overexpression of Hh signaling (Schauerte et
al., 1998). Together these results suggest that the you-
type genes may encode components of the Hedgehog
pathway (Schauerte et al., 1998).

The pioneer slow muscle fate may be determined by
competing influences between one or more Hh proteins
expressed in the midline and one or more BMP proteins
expressed near the dorsal and ventral portions of the
somite. As discussed above, muscle pioneers develop
from a subset of adaxial cells, remaining adjacent to
the notochord while the remainder of the adaxial cells
migrate radially to the surface (Fig. 4D). We have
speculated that these cells receive a longer dose of Hhs
and that this additional exposure may be involved in
the induction of the muscle pioneer fate (Du et al.,
1997). However, if the notochord ectopically expresses
dorsalin-1, which encodes a BMP4 related protein,
adaxial cells adjacent to the notochord are inhibited
from developing into muscle pioneers (Du et al., 1997).
Because BMP4 related genes are expressed in the dor-
sal and ventral portions of the myotome, where muscle
pioneers do not normally develop (Rissi et al., 1995), it
seems likely that the activities of TGF-b family mem-
bers oppose the action of Hh on muscle pioneer fate.

Despite the emergence of this elegant story for slow
muscle and muscle pioneer cell induction, a number of
questions remain unanswered. Although the Hh path-
way is clearly involved in slow muscle induction, the
link between Hh signal transduction and slow muscle
fate is not yet known. Furthermore, wnt11, a member
of a family of secreted proteins that has been impli-
cated in vertebrate myotome patterning (reviewed by
Sumoy et al., 1999), is expressed in adaxial cells
throughout their migration to the lateral surface (Ma-
kita et al., 1998). prox1, a vertebrate homolog of the
Drosophila prospero gene, is also expressed in adaxial
cells as the cells migrate (Glasgow and Tomarev, 1998).
The functions wnt11 and prox1 perform are unknown.
The remarkable migration of the slow muscle cells is
also poorly understood. What causes the cells to mi-
grate? What prevents or delays the muscle pioneers
from migrating to the surface of the myotome?

In addition, little is known about fast muscle devel-
opment. It is possible that Hh and TGF-b signaling are
involved in specifying fast muscle fate. Meng et al.
(1999) have recently identified a novel zebrafish zinc-
finger protein, terra, that is expressed in the lateral
presomitic mesoderm and in the last 2–3 newly formed
somites, but not in adaxial cells (Meng et al., 1999).
This expression domain suggests terra may play a role
in fast muscle development, especially because Hh
overexpression results in the reduction or absence of
both fast muscle and terra expression (Meng et al.,
1999). terra expression is also eliminated in embryos
with mutations in swirl, the zebrafish homolog of
bmp2, indicating that BMP2 is necessary for terra ex-
pression (Meng et al., 1999). It is conceivable that
BMP2 acting through Terra induces a fast muscle fate,
but much more research needs to be done. It is also
possible that fast muscle is a default state, i.e., cells
develop into fast muscle after somite formation if they
have not earlier received signals directing them toward
a slow muscle or sclerotomal fate.

Sclerotome Development

In amniotes, the ventromedial portion of the epithe-
lial somite undergoes a mesenchymal transition and
migrates ventromedially away from the dermamyo-
tome. These mesenchymal cells make up the scle-
rotome population of the somite and eventually mi-
grate around the notochord and neural tube, giving rise
to cartilage and then bone. In zebrafish, like in chick,
the ventromedial portion of the somite gives rise to
sclerotome cells, that migrate dorsally to surround the
notochord and neural tube (Morin-Kensicki and Eisen,
1997). Sclerotomal cells in the anterior portion of the
somite migrate before those in the posterior (Morin-
Kensicki and Eisen, 1997). Interestingly, some cells in
the posterior of the ventromedial cell cluster give rise
to muscle fibers (Morin-Kensicki and Eisen, 1997), fur-
ther suggesting that the cell fate decision between fast
muscle and sclerotome is a late one in zebrafish.

The migration of sclerotome dorsally and toward the
notochord correlates very closely in time with the mi-
gration of adaxial cells away from the notochord. In
zebrafish, cells of the ventromedial cell cluster as well
as migrating sclerotome cells express twist (Morin-
Kensicki and Eisen, 1997). twist encodes a bHLH tran-
scription factor that in mouse is expressed in the scle-
rotome (Wolf et al., 1991) and represses the myogenic
program (Hebrok et al., 1994; Rohwedel et al., 1995;
Spicer et al., 1996; Hamamori et al., 1997). As illus-
trated in Figure 4A,C, twist expressing cells are re-
stricted to the ventral most region of the somite, sepa-
rated from the notochord by slow muscle cells. These
two cell types undergo a dynamic migratory pattern
simultaneously, such that slow muscle begins to move
laterally while the more ventral twist-expressing cells
move dorsomedially against the ventral notochord (Fig.
6B,C; Devoto et al., 1996; Morin-Kensicki and Eisen,
1997). When muscle pioneer cells are adjacent to the
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notochord, twist expressing cells are consistently ven-
tral to the muscle pioneers (Fig. 6D). When muscle
pioneer cells move away from the notochord, however,
twist expressing cells can be found at the same level
and dorsal to the muscle pioneer cells (Fig. 6E).
Whether muscle pioneer cells block or attract scle-
rotome cells or whether sclerotome cells are pushing
muscle pioneers away from the notochord remains to
be determined. The timing and patterns of tissue in-
teractions within the somite are depicted in Figure 7,
such that the migration of sclerotome, adaxial cells,
motor neurons, and neural crest are illustrated.

Patterning of the Sclerotome

Although Hh from the notochord seems to play a key
role in sclerotome induction in amniotes (Murtaugh et
al., 1999; Dockter, 2000), little is known about the
factors that regulate sclerotome development in ze-
brafish. During early somitic patterning in amniotes,
sclerotomal precursors are adjacent to the notochord
and neural tube. In zebrafish, the adaxial cells, a myo-
tomal cell type, are adjacent to the notochord whereas
the sclerotome is found ventrolateral to adaxial cells
(Fig. 4). This positional difference might lead to differ-
ences in the exposure of cells to inductive signals em-
anating from the notochord and neural tube and raises
the question of whether the induction of sclerotome is
regulated by Hh in zebrafish as it is in chick.

There is some evidence to suggest that Hh signaling
plays a role in sclerotome development in zebrafish. If
the Hh pathway is moderately attenuated by treat-
ment with pertussis toxin, sclerotome expands and
muscle pioneers fail to form (Hammerschmidt and Mc-
Mahon, 1998). A stronger block of the hedgehog path-
way with constitutively active PKA results in a reduc-
tion of sclerotome cells, however, as does hyper-
activation of the pathway with Hh overexpression
(Hammerschmidt and McMahon, 1998). Whether these
effects are a direct action of Hh on sclerotome or the
result of an indirect action of Hh on other cell types is
unknown.

Several other molecules have been identified that
potentially regulate sclerotome development in ze-
brafish. Tenascin-W, Peripheral myelin protein 22, and
Mindin2 are expressed in zebrafish sclerotome and
may play a role in sclerotome differentiation or migra-
tion (Higashijima et al., 1997; Weber et al., 1998; Wulf
et al., 1999). Further characterization of these genes
and the identification of sclerotome mutants will pro-
vide insights into sclerotome patterning in zebrafish
and in amniotes.

Somitic Interactions With Other Cells

We have discussed cell-cell interactions between
slow muscle, fast muscle, and sclerotome. In addition,
there are several other cell types, such as motor neu-
rons, neural crest cells, and lateral line, that interact
with somite cells. Motor neuron growth cones and neu-
ral crest cells both move along the medial surface of the

somite shortly after somite formation, each with a dif-
ferent destination. The three primary motor neurons
send their axons along very stereotyped pathways: one
grows dorsally within the somite, one grows ventrally,
and one arborizes in the middle (Fig. 7; Eisen et al.,
1986). Several observations suggest that these axons
detect differences between dorsal and ventral popula-
tions of cells. First, motor neurons will find their ap-
propriate target region even if placed into a novel loca-
tion (Gatchalian and Eisen, 1992). Second, the absence
of either sclerotome or muscle pioneers does not per-
turb axon pathfinding, suggesting that axons are not
simply detecting cell-type differences (Melançon et al.,
1997; Morin-Kensicki and Eisen, 1997). Third, if the
somite is rotated along the dorsal-ventral axis, the
pattern of axon outgrowth is disrupted (Beattie and
Eisen, 1997). Neural crest also migrates on the somite
(Fig. 7; Raible et al., 1992). Crest cells migrate on the
lateral as well as the medial surface of the somite,
contributing to pigment stripes, dorsal root ganglia,
and the enteric nervous system (Raible and Eisen,
1994; Kelsh and Eisen, 2000). Pigment patterning is
disrupted when muscle pioneer cells are missing, sug-
gesting that as in chick, neural crest cells respond to
the somitic environment in which they find themselves.
The lateral line primordium migrates along the lateral
surface of the somites in an anterior to posterior direc-
tion adjacent to the muscle pioneers (Metcalfe et al.,
1985). In the absence of muscle pioneers, this migra-
tion is disturbed (Metcalfe and Graveline, 1991), sug-
gesting that the primordium of the lateral line uses
somitic cues for its migration. Further understanding
of the mechanisms by which motor axons, neural crest,
and lateral line primordium cells distinguish between
different regions of the somite are likely to illuminate
new aspects of somite patterning.

PERSPECTIVES AND FURTHER QUESTIONS

Although our understanding of zebrafish somites has
vastly increased since they were first characterized
(Waterman, 1969), much remains unknown. As a rela-
tive newcomer to model organism status, some simple
questions have yet to be answered in zebrafish. We
have mentioned some of these above. Larger questions
about zebrafish somite development are similar to the
major questions about chick and mouse somitogenesis,
and we address these below.

Questions of Timing

We have discussed zebrafish mesoderm segmenta-
tion, somite epithelialization and somite patterning as
if they are distinct processes. This is a very useful
conceptual distinction in understanding somite devel-
opment, and some of these processes can be separated
experimentally. For example, mutations or experimen-
tal treatments that eliminate somite epithelialization
do not disrupt medio-lateral or dorso-ventral somite
patterning, and mutations or treatments that disrupt
the medio-lateral patterning of the paraxial mesoderm
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Fig. 6. Correlation between slow muscle migration and sclerotome
migration. This figure shows double labeling of slow muscle stained with
F59 (brown) and twist mRNA (blue) to illustrate the timing of slow muscle
radial migration and the apparent movement of twist expressing cells
dorsally. (A) Lateral view of a whole mount in situ on a 21 hr wild-type
embryo. Anterior is to the right. The sclerotome in more mature segments
has migrated dorsally to the notochord. (B–E) Representative cross
sections corresponding to lines B–E in A. (B) In the tail region, slow
muscle cells have begun their dorsal and ventral migration but remain

adjacent to the notochord. twist expressing cells are positioned ventral to
the slow muscle and notochord. (C) As slow muscle begins to move away
from the midline, twist expressing cells are medial to the ventral-most
slow muscle fibers but still ventral to the notochord. (D) In a more anterior
section, twist expressing cells surround the ventral notochord and abut
the muscle pioneer cells, that are still adjacent to the notochord. (E) Only
when muscle pioneer cells have begun to separate from the notochord
are twist expressing cells around the notochord and dorsal to the muscle
pioneers. Scale bars 5 100 mm (A); 100 mm (B–E).

Fig. 7. Multiple populations of cells move at similar times.
(A–C) Schematic views of a developing posterior trunk somite. Neural
crest cells are in orange, motor neurons in green, slow muscle cells in
red, sclerotome in blue. The clear, 3-dimensional space in the somite
represents fast muscle cells. (A) At 12 hr, neither neural crest cells nor
motor neuron axons have entered the somite. Adaxial cells are positioned
adjacent to the notochord medial to both fast muscle and the sclerotome.
(B) At about 18 hr, slow muscle cells are migrating toward the surface
with fast muscle precursors positioned both medial and lateral to them.

Muscle pioneer cells, however, remain adjacent to the notochord. At this
point, neural crest, motor axons, sclerotome converge in the middle of the
somite above and below the muscle pioneer cells. (C) Muscle pioneer
cells become separated from the notochord at about 24 hr. Neural crest
and sclerotome can be seen dorsal and ventral to the middle of the
notochord, motor axons extended into the myotome. Neural crest cells
can also be seen migrating along their ‘lateral pathway’ (Raible et al.,
1992). Fast muscle is completely medial to the slow muscle fiber mono-
layer.
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do not disrupt segmentation and epithelialization. In
the embryo, however, there is a very tight linkage
between segmentation and epithelialization, and be-
tween epithelialization and somite patterning. The mo-
lecular and cellular basis for these linkages is an im-
portant area for future research.

We have pointed out some of the suggestive links
between the output of the segmentation clock (e.g.,
her1) and gene products that are likely to be involved
in events downstream of the segmentation clock (e.g.,
Notch). Much work remains before the molecular
basis of segmentation is fully understood. Moreover,
we are far from understanding how the events of
segmentation lead to epithelialization. Epithelializa-
tion is a result of a nearly simultaneous change in
the adhesive properties of large numbers of segmen-
tal plate cells. This change in adhesion must involve
a change in cell or matrix adhesion molecules, but
whether some of the molecules we have discussed
above, such as Ephs and Ephrins, play a role is
unclear. In addition, the mechanism by which seg-
mentation genes regulate the expression or function
of adhesion molecules is unknown. Many of the genes
defined by mutations that disrupt somitogenesis in
zebrafish are likely to play a role in the process of
somite formation. Learning the identity of the genes
affected by these mutations is likely to provide valu-
able insights into the links between segmentation
and somite formation.

Cell type specification within the paraxial meso-
derm is tightly linked in time to the process of somite
formation. In quail, this patterning occurs only after
somite formation, when cells become competent to
respond to Hedgehog (Borycki et al., 2000). In ze-
brafish, although slow muscle precursors are induced
long before segmentation, specification of other cell
types in the paraxial mesoderm occurs shortly after
segmentation, as in chicks. For example, slow muscle
and sclerotome migration, muscle pioneer differenti-
ation, and fast muscle differentiation all occur within
a few hours after somite formation. If the genes that
underlie cell differentiation and movement are reg-
ulated in part by the transcription factors that are
part of the segmentation process, this would ensure a
linkage between these different aspects of pattern-
ing.

Questions About Later Developmental Events

By about 24 hr of development, the subdivision of the
zebrafish somite is essentially complete: both slow and
fast muscle fibers are functional and innervated, and
sclerotomal cells are migrating to envelop the neural
tube. In many important respects, somite patterning is
complete. There will be tremendous growth in the myo-
tome and in the sclerotome, however, before the 24 hr
zebrafish reaches its adult size between 2 and 6 months
later (Fig. 8). The cross-sectional area of the myotome
increases by a factor of at least 300 and the length of
the trunk by a factor of at least 10, leading to at least

a 3,000-fold increase in the volume of somite-derived
tissue. This increase is comparable to the increase in
size that occurs in birds and mammals during fetal,
neonatal, and juvenile growth.

Muscle growth in all vertebrates occurs by a combi-
nation of hyperplasia, an increase in the number of
muscle fibers, and hypertrophy, an increase in the size
of existing fibers. In fish, as in birds and mammals,
hyperplasia plays a larger role in growth during the
larval/fetal period, whereas hypertrophy dominates
during juvenile and post-juvenile growth. Whereas in
amniotes hyperplasia ceases soon after birth, however,
in zebrafish hyperplasia continues to play a role during
the juvenile period of growth (Rowlerson et al., 1997).
The cells that contribute the nuclei necessary for this
growth derive from muscle satellite cells, which are
undifferentiated myogenic cells that lie between the
basal lamina and the membrane of differentiated mus-
cle fibers (Koumans and Akster, 1995). These cells
originate largely in the somite in chick, but it is not
clear when their precursors are set aside, or what cel-
lular or molecular factors regulate their development

Fig. 8. Somite growth. Cross-section of a 2-month-old zebrafish trunk
(approximately segment 12), stained to show muscle (F59). The slow
muscle is present as a more darkly stained triangle at the lateral edge of
the horizontal myoseptum. The inset shows the same segment at 24 hr at
the same scale, demonstrating the tremendous increase in size that
occurs during post-embryonic growth. Scale bar 5 300 mm.
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in the early embryo. The cellular resolution of fate
mapping that is possible in zebrafish will help deter-
mine the embryonic source of satellite cells.

In amniotes, cells of the lateral dermamyotome at
the level of limbs differentiate only after they migrate
out of the somite and into the developing limb. Ze-
brafish have two pairs of appendages that are homolo-
gous to the two pairs of limbs of tetrapods, the pectoral
and pelvic fins. The pectoral fins develop from fin buds
that are adjacent to somites 2–4 at 30 hr of develop-
ment. The musculature of the zebrafish fins develops in
the third day (SHD, unpublished observations), but if
and how this fin musculature is derived from the
somite remains to be seen. The fin is relatively simple
in comparison to amniote limbs, and thus may provide
a useful system in which to resolve outstanding ques-
tions about the development of limb muscle. For exam-
ple, single-cell labeling techniques in zebrafish will
provide a detailed fate map of individual muscle fibers,
such that it should be possible to determine when the
identity of specific muscle fibers or specific fiber types is
specified. Mutants that disrupt the patterning of the
non-muscle portion of the limb can be used to test
whether the muscle is intrinsically patterned, or de-
rives all of its patterning information from the local
environment of the limb.

Comparative Questions

In considering whether an increase in our under-
standing of zebrafish somite development can further
our understanding of amniote somite development, we
need to evaluate how fundamental the differences be-
tween the zebrafish and the amniote somite are. The
most obvious differences are anatomical: in zebrafish
the large myotome is adjacent to the notochord,
whereas in chick the large sclerotome is adjacent to the
notochord. In addition, myogenesis begins before
somite formation in fish whereas in chick it likely be-
gins after somite formation. It is not clear whether
these differences are a result of deep differences in the
mechanisms underlying somite patterning or relatively
superficial differences in proliferation and timing. Un-
derstanding the basis for the differences is likely to
increase our understanding of the developmental
mechanisms that underlie evolutionary change.

We choose to emphasize the similarities between fish
and amniotes. In both, the dermamyotome is specified
first (Devoto et al., 1996; Dockter and Ordahl, 2000),
and is dorsal to the sclerotome. In both, the medial
portion of the future myotome is the first to differenti-
ate (Ott et al., 1991; Pownall and Emerson, 1992; Wein-
berg et al., 1996). In both, these early myotomal cells
migrate away from the medial surface of the myotome
(Devoto et al., 1996; Kahane et al., 1998). In both,
engrailed is expressed in the dorsal-ventral middle of
the myotome (Hatta et al., 1991; Gardner and Barald,
1992). In both, Sonic hedgehog and BMP-like signaling
regulate myotomal cell fate (Du et al., 1997; Reshef et
al., 1998).

In the past five years it has become increasingly
clear that animals with diverse body plans have
many underlying conserved developmental mecha-
nisms, including, for example, the involvement of
BMPs in dorsoventral patterning in both insects and
vertebrates (Holley and Ferguson, 1997). As differ-
ences in somite patterning between amniotes and
zebrafish are relatively local ones, a reasonable hy-
pothesis is that the mechanisms that pattern the
somite in zebrafish will also be involved in pattern-
ing the somite in amniotes. For this reason it is
fortunate that the advantages and disadvantages of
studying somite development in chicks or mice are
not the same as those in zebrafish. The ability to do
targeted gene knockout in mice provides a very nice
“reverse” genetic approach that complements the
“forward” genetic approaches of zebrafish. The rela-
tively easy tissue fate mapping and transplantation
experiments possible in chick are complemented by
the relatively easy cellular fate mapping and trans-
plantation experiments possible in zebrafish. The
many tissue culture models of somite cell differenti-
ation in mouse and chick allow very refined molecu-
lar, in vitro approaches that complement the cruder,
but in vivo approaches that are possible in zebrafish.
Thus, questions that are difficult to address in one
system may be much easier to address in another.
Rapid progress in our understanding of somite devel-
opment in all vertebrates will be made in the coming
years by taking advantage of the opportunities that
each system offers.

ACKNOWLEDGMENTS

We thank Anne Burke, Joel D’Angelo, Laura Gra-
bel, Patricia Hernandez, and Michael Weir for help-
ful comments on the manuscript, and Lindsey
Durbin, Jose Campos-Ortega, and Hiroyuki Takeda
for comments on our gene expression schematic (Fig.
3A). We are grateful to Lisa Zackowski, Ron Gordon,
and members of the Wesleyan Animal Care facility
for their excellent animal care. This work was sup-
ported by a March of Dimes Basel O’Connor Award,
a Donaghue Foundation Investigator Award, and
NIH grant R01 HD37509.

REFERENCES

Amemiya CT, Zhong TP, Silverman GA, Fishman MC, Zon LI. 1999.
Zebrafish YAC, BAC, and PAC genomic libraries. Methods Cell Biol
60:235–258.

Artavanis-Tsakonas S, Matsuno K, Fortini ME. 1995. Notch signal-
ing. Science 268:225–232.

Aulehla A, Johnson RL. 1999. Dynamic expression of lunatic fringe
suggests a link between notch signaling and an autonomous cellu-
lar oscillator driving somite segmentation. Dev Biol 207:49–61.
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