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Abstract

In the first part of this thesis [S1] we generalize a theorem of Kiming and Olsson concern-

ing the existence of Ramanujan-type congruences for a class of eta quotients. Specifically,

we consider a class of generating functions analogous to the generating function of the par-

tition function and establish a bound on the primes ℓ for which their coefficients c(n) obey

congruences of the form c(ℓn + a) ≡ 0 (mod ℓ). We apply this result to obtain a complete

characterization of the congruences of the same form that the sequences cN(n) satisfy, where

cN(n) is defined by
∑∞

n=0 cN(n)q
n =

∏∞
n=1

1
(1−qn)(1−qNn)

. This last result answers a question

of H.-C. Chan.

In the second part of this thesis [S2] we explore a natural analog of D. Calegari’s result

that there are no hyperbolic once-punctured torus bundles over S1 with trace field having a

real place. We prove a contrasting theorem showing the existence of several infinite families

of pairs (−χ, p) such that there exist hyperbolic surface bundles over S1 with trace field hav-

ing a real place and with fiber having p punctures and Euler characteristic χ. This supports

our conjecture that with finitely many known exceptions there exist such examples for each

pair (−χ, p).
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Chapter 1

Background and Preliminaries

1.1 Hyperbolic Geometry

Let n ≥ 2. A hyperbolic n-manifold is a Riemannian n-manifold of constant sectional

curvature −1. Hyperbolic n-space is the unique simply connected hyperbolic n-manifold and

is written as Hn. This space can be identified with the upper half-space

{(x1, x2, ..., xn) ∈ Rn | xn > 0} together with the Riemannian metric ds2 = dx1
2+dx2

2...+dxn
2

x2
n

.

This space has a large group of isometries owing to its homogeneity. When n = 2 or n = 3

this group has an especially simple description. The group Isom+(H2) is the same as the

group of orientation preserving automorphisms of the upper half plane. This is the group

of linear fractional transformations {z → az+b
cz+d

| a, b, c, d ∈ R and ad − bc 6= 0} which is in

turn isomorphic to PSL2(R). The group Isom+(H3), the group of orientation-preserving

conformal automorphisms of the Riemann sphere. This is the the group of linear fractional

transformations {z → az+b
cz+d

| a, b, c, d ∈ C and ad−bc 6= 0} which is isomorphic to PSL2(C).

In what follows we write SL2(R) and SL2(C) instead of PSL2(R) and PSL2(C); while using

the former pair of groups introduces redundancy, doing so also simplifies notation. Let Γ be

a discrete subgroup of Isom+(Hn). Then the quotient space Hn/Γ is hyperbolic n-orbifold.

If in addition Γ is torsion-free then Hn/Γ is a hyperbolic n-manifold. Conversely, every

hyperbolic n-orbifold and n-manifold arises in this fashions. Hyperbolic n-manifolds may be

compact, noncompact but of finite volume, or of infinite volume. In this thesis we will be

concerned with finite volume hyperbolic n-manifolds for n = 2, 3. Almost every topological

surface arises as a hyperbolic 2-manifold in the sense that all but finitely many topological

1



surfaces have negative Euler characteristic and every 2-manifold of negative Euler charac-

teristic arises as a hyperbolic 2-manifold. In dimension 3 there are many infinite families of

finite volume 3-manifolds which are not hyperbolic but hyperbolic 3-manifolds nevertheless

play a prominent role in the study of 3-manifolds in general [Thu1]. There are several impor-

tant differences between hyperbolic 2-manifolds and hyperbolic 3-manifolds. The hyperbolic

structure on a compact orientable hyperbolic 2-manifold M relaxes to a complex structure

on M and by the Riemann Roch theorem one can realize this complex 1-manifold as an

essentially unique algebraic curve. There is no analog of this fact for hyperbolic 3-manifolds

as one can see from the fact that complex algebraic varieties have even real dimension. An-

other important difference concerns “flexibility” vs. “rigidity” of hyperbolic manifolds. The

hyperbolic structure on a surface of negative Euler characteristic other than the 3-punctured

sphere can be “deformed” which is to say that are slight perturbations of the corresponding

Isom+(H2) that remain discrete and give the same topological surface, so that there are

uncountably many nonisometric hyperbolic surfaces of a given topological type. By way

of contrast, the Mostow-Prasad rigidity theorem states that if two finite volume hyperbolic

3-manifolds are topologically equivalent then they are isometric.

There are many differential geometric invariants attached to a finite volume hyperbolic

n-manifold. It is interesting to note that by the Mostow-Prasad rigidity theorem these

differential geometric invariants are also topological invariants of M . In Chapter 3 we con-

sider a differential geometric invariant of M = H3/Γ called the trace field of M defined by

Q(tr(Γ)) = Q({tr(γ) : γ ∈ Γ}). Mostow-Prasad rigidity and Weil-Garland rigidity imply

([MR] Chapter 3) that the trace field of M is a finite extension of Q.

The trace field of a hyperbolic 3-manifold is not an abstract number field, but a concrete

subfield of the complex numbers, that is, a pair (K, σ) where K is an abstract field and

σ : K → C is nonzero ring homomorphism. A short argument shows that σ(K) 6⊂ R since

otherwise Γ could not have finite covolume [MR]. However, it can happen that there is some

other ring homomorphism σ′ : K → C that σ′(K) ⊂ R. If this is so then we say that K
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has a real place. The condition that K has a real place is the same as the condition that a

minimal polynomial for K over Q has a real root.

A natural question is:

Question 1.1.1. Is every pair (K, σ) with σ(K) 6⊂ R the trace field of some hyperbolic

3-manifold?

W. Neumann has conjectured that the answer is yes, but the question is still open. An

adjacent question is whether there are restrictions on the trace fields that arise from natural

families of hyperbolic 3-manifolds. We explore this question for certain classes of hyperbolic

3-manifolds and certain classes of trace fields in Chapter 3.

1.2 Surface Bundles

Here we describe the classes of 3-manifolds that we study in Chapter 3. These classes

of 3-manifolds are the surface bundles of type S where S is a surface with negative Euler

characteristic other than the thrice punctured sphere.

A simple construction that produces many 3-manifolds is as follows. Let S = S(−χ, p) be

the orientable, connected surface of Euler characteristic −χ with p punctures. Let ψ : S → S

be an orientation preserving homeomorphism. The mapping torus of the pair (S, ψ) is

M = S × [0, 1]/ ∼, where ∼ identifies S × {0} with S × {1} via ψ. A 3-manifold is called a

surface bundle over S1 with fiber S(−χ, p) if it arises from this construction. If ψ and ψ′ differ

by a homeomorphism isotopic to the identity map, then the associated mapping cylinders are

homeomorphic. Hence M depends only on the class that ψ represents in the mapping class

group Mod(S) := Homeo+(S)/Homeo0(S). Here Homeo+(S) is the group of orientation

preserving homeomorphisms of S and Homeo0(S) is the group of homeomorphisms of S that

are isotopic to the identity. The mapping class group of a surface is generically an infinite

nonabelian group, each element of which gives a different surface bundle, so the construction

described does indeed give many 3-manifolds.
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In view of the remarks in Section 1.1 about most 3-manifolds being hyperbolic it is natural

to ask when these surface bundles are hyperbolic. W. Thurston showed that a mapping torus

M is a hyperbolic 3-manifold if and only if ψ is pseudo-Anosov [Thu3]. Since empirically

almost all elements of a generic mapping class group are pseudo-Anosov, Thurston’s theorem

is an indication that almost all surface bundles with a given fiber are hyperbolic. Recently

J. Maher [Mah] has rigorously proved that if g is the genus of a surface S with Euler

characteristic χ(S) = 2 − 2g − p < 0 and (g, p) 6= (0, 3), then almost all mapping classes

ψ ∈ Mod(S) are pseudo-Anosov (in the sense that there’s a natural ordering of elements

in the mapping class group by complexity of the element such that there are finitely many

elements of a given complexity, the fraction of elements of bounded complexity that are

pseudo-Anosov tends toward 1 as the upper bound goes to infinity).

One motivation for studying hyperbolic surface bundles over S1 is that Thurston has

conjectured that every hyperbolic 3-manifold is a finite quotient of such a bundle.

1.3 Modular Forms

A special family of discrete groups of isometries of H2 is given by the congruence subgroups

of SL2(Z), in particular the subgroups

Γ0(N) = {M = ( a bc d ) | and c ≡ 0 (mod N)} and

Γ1(N) = {M = ( a bc d ) |c ≡ 0 (mod N) and a, d ≡ 1 (mod N)}.

Quotienting out H2 by these subgroups and compactifying them in the natural way gives

surfaces X0(N) and X1(N) which are moduli spaces of elliptic curves with extra structure.

The hyperbolic structures on these (oriented) surfaces induce complex structures on these

surfaces and by the Riemann-Roch theorem these surfaces can be realized as algebraic curves.

These algebraic curves have canonical models over number fields owing to their interpretation

as moduli spaces and this endows them number theoretic significance. For example, if E is

an elliptic curve over Q with conductor N then the famous modularity theorem by Andrew
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Wiles and collaborators is that there is a nonconstant morphism X0(N) → E; this implies

Fermat’s Last Theorem and is the starting point for the only known results on the Birch

and Swinnerton Dyer conjecture.

In another (not unrelated) direction, analytic functions called modular forms defined on

H2 which transform “nicely” under congruence subgroups of SL2(Z) and have Fourier ex-

pansions and form finite dimensional vector spaces with bases consisting of functions with

integer Fourier coefficients. Many arithmetic sequences arise as the Fourier coefficients of

such functions. As a consequence, modular forms have been used to study sequences such

as p(n) (the number of partitions of n) and r4(n) (the number of representations of n as a

sum of 4 squares).

To be more precise, let f(z) be a holomorphic function on the upper half plane. Given a

matrix M ∈ SL2(R) and an integer k > 0, define the slash operator of weight k corresponding

to M by

f(z)|kM = (cz + d)−kf

(
az + b

cz + d

)
. (1.3.1)

We say that f(z) is a modular form of weight k for Γ0(N) if f(z)|kM = f(z) for all M ∈

Γ0(N) and if f(z) is bounded. Since z → z + 1 is in Γ0(N), if f(z) is a modular form of

weight k for Γ0(N) then the invariance of f(z) under the slash operator gives f(z) = f(z+1)

so that f(z) has a Fourier expansion in powers of q = e2πiz. The requirement that f(z) is

bounded guarantees that the Fourier expansion of f(z) has no negative powers of q (because

otherwise f(z) would tend toward ∞ exponentially as =z →∞). The definition of modular

forms of weight k for Γ1(N) is identical to the above definition save for Γ0(N) being replaced

by Γ1(N)

As indicated previously, modular forms of weight k for a congruence subgroup of SL2(Z

form finite dimensional vector spaces over R. If the congruence subgroup in question is

Γ0(N) or Γ1(N) one can obtain explicit formulas for the dimensions of these vector spaces
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as a function of N using the Riemann Roch theorem ([DS] Chapter 2).

There is a theory of (mod `)reductions of modular forms with integer coefficients for

SL2(Z) which was developed by Serre and Swinnerton-Dyer to investigate congruences

modulo primes for the coefficients of the modular form of weight 12 for SL2(Z) given by

∆(z) = q
∏∞

n=1(1− qn)24. Serre and Swinnerton-Dyer developed this theory by utilizing an

explicit characterization of the graded algebra of modular forms for SL2(Z). However, this

sort of explicit characterization seems to be absent for Γ0(N) and Γ1(N) for N sufficiently

large. Arithmetic algebraic geometers soon developed a notion of “modular forms (mod `)

which coincided with (mod `) reductions of modular forms with integer coefficients but was

susceptible to advanced tools from arithmetic algebraic geometry. This allowed facts from

the theory of Serre and Swinnerton-Dyer to be extended to modular forms for Γ1(N) [Gr].

We use these facts in Chapter 2.
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Chapter 2

Ramanujan congruences for a class of
eta quotients

2.1 Introduction

Some of Ramanujan’s most influential results are his congruences for the partition function

p(n) (mod 5), (mod 7) and (mod 11). For n ≥ 1, the function p(n) is defined to be the

number of ways of writing n as a sum of positive integers in non-increasing order. By

convention, one sets p(0) = 1 and p(n) = 0 for n < 0. Ramanujan discovered that for any

n ∈ Z, we have


p(5n+ 4) ≡ 0 (mod 5)

p(7n+ 5) ≡ 0 (mod 7)

p(11n+ 6) ≡ 0 (mod 11).

(2.1.1)

He proved the congruences in (2.1.1) starting from the fact that
∏∞

n=1
1

1−qn =
∑∞

n=0 p(n)qn.

The congruences in (2.1.1) have inspired much research in q-series, combinatorics and mod-

ular forms. For a short survey of this work, we refer the reader to [AO].

One noticeable feature of the congruences listed above is that that they all take the form

p(`n + a) ≡ 0 (mod `) where ` is prime. It is natural to ask whether p(n) satisfies any

other congruences of the same form. In [AB], Ahlgren and Boylan showed that Ramanujan’s

congruences are the only congruences of this form: if ` is prime, 0 ≤ a ≤ ` − 1 and

p(`n+ a) ≡ 0 (mod `), then (`, a) ∈ {(5, 4), (7, 5), (11, 6)}.

In [HCC], H.-C. Chan defined a sequence r(n) by the formula
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∞∏
n=1

1

(1− qn)(1− q2n)
=
∞∑
n=0

r(n)qn

and proved that r(3n+ 2) ≡ 0 (mod 3). The form of this last congruence parallels Ramanu-

jan’s three congruences listed above: it is of the form r(`n + a) ≡ 0 (mod `) for ` prime.

In [HCC2], Chan asked if there are any other congruences of the same form. In this paper

we answer his question in the negative as a consequence of Theorem 2.2.1 below. Define a

Ramanujan congruence for a sequence c(n) to be a congruence of the form c(`n + a) ≡ 0

(mod `) for all n ∈ Z with ` prime. Without loss of generality we can take 0 ≤ a ≤ `− 1.

Theorem 2.1.1. Let N > 1. Define cN(n) by

∞∏
n=1

1

(1− qn)(1− qNn)
=
∞∑
n=0

cN(n)qn.

Let ` be prime, 0 ≤ a ≤ `− 1 and suppose that

cN(`n+ a) ≡ 0 (mod `)

for all n. Then 2 < ` ≤ 11. Moreover,

� ` = 3 if and only if N = 2 and a = 2,

� ` = 5 if and only if N ≡ 0 (mod 5) and a = 4,

� ` = 7 if and only if N ≡ 0 (mod 7) and a = 5,

� ` = 11 if and only if N ≡ 0 (mod 11) and a = 6.

Theorem 2.1.1 gives a complete characterization of Ramanujan congruences for the family

of sequences cN(n). The reader should note that when cN(n) satisfies a sufficient condition

for the existence of a Ramanujan congruence (mod `), ` = 5, 7 or 11, the congruence follows
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trivially from the known congruences for p(n), so that the effect of Theorem 2.1.1 is that the

sequences cN(n) obey no Ramanujan congruences other than Chan’s and those that come

from the Ramanujan congruences for p(n) in a trivial way.

We prove Theorem 2.1.1 using a more broadly applicable theorem which we now state.

Theorem 2.1.2. Let S = (a1, a2, . . . , aj) be a sequence of positive integers with j even and

define c(n) by
∞∏
n=1

j∏
i=1

1

(1− qain)
=
∞∑
n=0

c(n)qn. (2.1.2)

Let N = lcm(a1, a2, . . . , aj). Then if c(n) obeys a Ramanujan congruence (mod `), then

`|N or ` ≤ max(5, j + 4).

It follows that if c(n) obeys a Ramanujan congruence (mod `), then ` ≤ max(N, 5, j + 4).

This finiteness result contrasts with Treneer’s result [Tre] that there are infinitely many

congruences of the form c(An + B) ≡ 0 (mod M) where A,M ∈ N are allowed to be

arbitrary. Treneer’s result is a broad generalization of the celebrated theorem of Ono [Ono1]

showing the existence of infinitely many congruences for the partition function p(n) and its

extension by Ahlgren [Ahl]. These results are quite a bit sharper than we indicate here; we

refer the reader to the original sources for more information.

Upon taking ai = 1 for each i, Theorem 2.1.2 reduces to a result of Kiming and Olsson

[KO] that there is an explicit bound on those ` for which there is a Ramanujan congruence

(mod `) for the coefficients of an even power of the generating function of the partition

function. Our method of proof is essentially that of Kiming and Olsson but we do not follow

their exposition in detail. Kiming and Olsson used the theory of modular forms (mod `) for

SL2(Z) = Γ1(1). To generalize their results we use certain facts about the ring of modular

forms (mod `) for Γ1(N) which were provided by Gross [Gr].

The upper bound on ` implied by Theorem 2.1.2 is very close to being sharp in j and is

sharp inN : this follows from the unexceptional congruences for even powers of the generating

function for p(n) reported on in [KO], the exceptional Ramanujan congruences (mod `) for
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coefficients of odd powers of the generating function of p(n) as reported on in [Boy] and a

line of elementary algebra to use the latter Ramanujan congruences to produce Ramanujan

congruences for c(n) with j even.

The reader may wonder why Theorem 2.1.2 is stated for even j. We suspect that there

is an explicit bound on ` in for odd j as well, however, rigorously establishing an upper

bound on ` for odd j appears to be substantially more difficult than doing so for even j.

Indeed, even if we take ai = 1 for all i, in contrast to the Kiming and Olsson bound on ` for

even j, it appears that there is no established bound on ` for an arbitrary odd j (but see

[Boy] for substantial partial results on this matter). The results of Sections 2.3 and 2.4 hold

independent of the parity of j; these results may be of use in establishing a generalization

of Theorem 2.1.2 that includes the case with j odd.

In Section 2.2 we state the facts that we need about the ring of modular forms (mod `)

for Γ1(N). In Section 2.3 we use Lemma 2.4.1 to determine determine a if c(`n + a) ≡ 0

(mod `) and ` is larger than an explicit bound. In Section 4 we prove Lemma 2.4.1 which

we use in Section 2.5 to prove Theorem 2.1.2. In Section 2.6 we use Theorem 2.1.2 to prove

Theorem 2.1.1. In Section 7 we conclude with comments and open questions.

2.2 Modular Forms (mod `) for Γ1(N), N ≥ 4

Throughout this section we assume that ` does not divide N Before stating the facts that

we need about modular forms (mod `) for Γ1(N), we define the filtration, the operator θ

and the Eisenstein series for SL2(Z).

Given an element f(z) ∈ Mk(Γ1(N)) ∩ Z[[q]] and a prime ` ∈ Z, reducing the Fourier

expansion of f(z) (mod `) gives an element f̃ ∈ F`[[q]]. We call such a series a “modular

form (mod `) for Γ1(N).” We want a notion of “weight” for such a series. At first blush

one might attempt to define the weight of such a series as the weight of the preimage

under the reduction map, but there are many preimages of any such series and not all
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have the same weight. This motivates the definition of the filtration of a modular form

f ∈Mk(Γ1(N)) ∩ Z[[q]], f 6≡ 0 (mod `) which is defined as follows:

w`(f) := min{k′ : f̃ ∈ M̃k′(Γ1(N))

where

M̃k′(Γ1(N)) = {f̃ : f(z) ∈Mk′(Γ1(N)) ∩ Z[[q]]}.

We mildly abuse notation and given f̃ a modular form (mod `) with w`(f) = k, we also call

the preimages of f̃ under the reduction map “modular forms (mod `) with filtration k.”

Given f(z) =
∑∞

n=0 c(n)qn where q = e2πiz, define

θf :=
1

2πi

df

dz
=
∞∑
n=0

nc(n)qn.

The Eisenstein series for SL2(Z) of weight 2k is

E2k(z) = 1− 4k

B2k

∞∑
n=1

σ2k−1(n)qn

For k > 1, E2k(z) is a modular form for SL2(Z) of weight 2k. For k = 1, E2k(z) is not

a modular form for SL2(Z) but rather a quasi-modular form. Given a complex analytic

function f(z) defined on the upper half plane, an integer k > 0 and M =
(
a b
c d

)
∈ SL2(Z),

as usual define the slash operator of weight k by

f(z)|kM = (cz + d)−kf

(
az + b

cz + d

)
. (2.2.1)

Though the slash operator depends on k we often omit the subscript k to avoid cumbersome

notation. Returning to our comment about E2(z), as mentioned on pg. 18 of [DS], if M is
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as above we have

E2(z)|2M = E2(z)− 6ic

π(cz + d)
. (2.2.2)

If f is a modular form of weight k for Γ1(N) then 12θf − kE2f is a modular form of weight

k+2 for Γ1(N). This is Lemma 3 of [SwD] for N = 1 and is proved for arbitrary N in exactly

the same way as for N = 1: by unpackaging the definitions and using (2.2.2). Theorem 2a)

from [SwD] is that E`−1 ≡ 1 (mod `) and E`+1 ≡ E2 (mod `). Putting these results together

we obtain Lemma 2.2.1.

Lemma 2.2.1. If f ∈Mk(Γ1(N)) ∩ Z[[q]], then defining R to be

R =

(
θf − k

12
E2f

)
E`−1 +

k

12
E`+1f, (2.2.3)

R is a modular form of weight k + ` + 1 such that R ≡ θf (mod `). In particular, θf

is a modular form (mod `) for Γ1(N). It follows that if f̃ 6≡ 0 (mod `), then w`(θf) ≤

w`(f) + `+ 1.

With Lemma 2.2.1 and the preceding setup in mind we cite the remaining facts that we

need about modular forms (mod `) for Γ1(N).

Lemma 2.2.2. Let N ≥ 4, let f, g ∈M(Γ1(N)) ∩ Z[[q]], and let ` ≥ 5 be prime. Then

(i) We have w`(θf) = w`(f) + `+ 1 if and only if w`(f) 6≡ 0 (mod `).

(ii) If f and g have weights k1 and k2 respectively and f̃ ≡ g̃ 6≡ 0 (mod `), then k1 ≡ k2

(mod `− 1).

(iii) For i ≥ 0, w`(f
i) = i · w`(f).

For a proof of Lemma 2.2.2, see Section 4 of [Gr].

If f(z) =
∑∞

n=0 c(n)qn where q = e2πiz, define f |U` by

f |U` :=
∞∑
n=0

c(`n)qn.
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A crucial elementary fact is that if f ∈ Mk(Γ1(N)) ∩ Z[[q]], then there is a relationship

between θf and f |U`:

(f |U`)` ≡ f − θ`−1f (mod `).

It follows that

f |U` ≡ 0 (mod `) ⇐⇒ θ`−1f ≡ f (mod `). (2.2.4)

2.3 Determination of a if c(`n + a) ≡ 0 (mod `)

Let δ` = `2−1
24

and as usual let ∆(z) = q
∏∞

n=1(1 − qn)24. In this section we prove the

following.

Lemma 2.3.1. Let c(n), j, a1, ..., aj and N be as in Theorem 1.2, and let ` > max(5, j+ 3)

be a prime such that ` - N .

(i) Then c(`n+ a) ≡ 0 (mod `) if and only if d(`n+ b) ≡ 0 (mod `), where d(n) is defined

by

∞∑
n=0

d(n)qn = {
j∏
i=1

∆(aiz)}δ` , (2.3.1)

and b is defined by 24a ≡ 24b+ (
∑j

i=1 ai) (mod `).

(ii) In part (i) we have b ≡ 0 (mod `) so that 24a ≡ (
∑j

i=1 ai) (mod `).

The specific tool that we use is a modified form of Proposition 3 from [KO]. One modifi-

cation is the addition of an additional hypothesis which is implicitly assumed in the proof

of Proposition 3 and not explicitly stated. The other modification is that we replace the

space Mk(Γ1(1)) in Proposition 3 with Mk(Γ1(N)) for N ≥ 4. This yields a true statement

because the proof of Proposition 3 given in [KO] is the same word for word for any N for

which Lemma 2.2.1 and Lemma 2.2.2 of Section 2.2 are true.
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Proposition 2.3.2. (After Proposition 3 in [KO]) Let ` ≥ 5 be prime and N ≥ 4, ` - N .

Suppose that f(z) ∈ Mk(Γ1(N)) has `-integral Fourier coefficients, w`(f(z)) 6≡ 0 (mod `),

and θ(f(z)) 6≡ 0 (mod `). Suppose further that w`(θ
mf(z)) ≥ w`(f(z)). Then if the Fourier

coefficients d(n) of f(z) satisfy d(`n + b) ≡ 0 (mod `), one of the following is true: b = 0,

w`(f(z)) ≡ (`+ 1)/2 (mod `) or w(f(z)) ≡ (`+ 3)/2 (mod `).

The hypothesis that is implicitly assumed in the proof of Proposition 3 of [KO] is that

w`(θ
mf(z)) ≥ w`(f(z)).

Proof of Lemma 2.3.1. Since ` > 3, we have 24|(`2 − 1). Write −1 = −`2 + (`2 − 1). Then

we have

∞∑
n=0

c(n)qn =

j∏
i=1

∞∏
n=1

(1− qain)−1 =

j∏
i=1

∞∏
n=1

(1− qain)−`
2

(1− qain)`
2−1

=

j∏
i=1

∞∏
n=1

{
(1− qain)−`

2

q
−ai(`

2−1)

24 ((qai/24)(1− qain))`
2−1

}

=

{
j∏
i=1

∞∏
n=1

(1− qain)

}−`2 { j∏
i=1

q−ai·δ`∆(aiz)δ`

}
.

It follows that

q−(δ`·
Pj
i=1 ai)

{
j∏
i=1

∆(aiz)

}δ`

=

{
j∏
i=1

∞∏
n=1

(1− qain)

}`2 { ∞∑
n=0

c(n)qn

}
. (2.3.2)

Multiplying (2.3.1) by q−a, applying the operator U` and recalling the definition of d(n) gives

∞∑
n=0

d

(
`n+

(
δ` ·

j∑
i=1

ai

)
+ a

)
qn =

{
j∏
i=1

∞∏
n=1

(1− qain)

}`{ ∞∑
n=0

c(`n+ a)qn

}
.
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It follows that

∞∑
n=0

d

(
`n+

(
δ` ·

j∑
i=1

ai

)
+ a

)
qn ≡ 0 (mod `) ⇐⇒

∞∑
n=0

c(`n+ a)qn ≡ 0 (mod `).

This completes the proof of Lemma 2.3.1(i).

In view of Lemma 2.3.1(i), to prove Lemma 2.3.1(ii), it suffices to show that if d(`n+b) ≡ 0

(mod `), then b ≡ 0 (mod `). The point is that we can show that b ≡ 0 (mod `) using the

theory of modular forms (mod `) for Γ1(N). Indeed, it is a standard fact that ∆(aiz) is a

modular form for Γ0(ai) so that ∆(aiz) is a modular form for Γ1(ai) and

F`(z) = {
j∏
i=1

∆(aiz)}δ`

is a modular form for Γ1(N) where N = lcm(a1, a2, . . . , aj).

To apply Proposition 2.3.2, we treat F` as a modular form on Γ1(N
′) where N ′ = N

if N > 3 and N ′ = 6 if N ≤ 3. We now verify that F`(z) satisfies the hypotheses of

Proposition 2.3.2. Clearly F`(z) has `-integral Fourier coefficients. By Lemma 2.4.1 below,

w`(F`) = j(`2−1)/2 6≡ 0 (mod `). Since F` 6≡ 0 (mod `), θF` 6≡ 0 (mod `). Also by Lemma

2.4.1, w`(θ
mF`) ≥ w`(F`).

Applying Proposition 2.3.2, we see that if b 6= 0, either w`(F`) = j(`2−1)/2 ≡ `+1
2

(mod `)

or w`(F`) = j(`2 − 1)/2 ≡ `+3
2

(mod `), but neither possibility occurs since ` > j + 3 by

hypothesis. So b = 0 as claimed.

2.4 A lemma about ΘmF` (mod `)

In this section we prove a lemma which we used in the proof of Lemma 2.3.1 and which

we will use further in the proof of Theorem 2.1.2.
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Lemma 2.4.1. If m ≥ 1 and ` > 3 is a prime, then

w`(θ
mF`) ≥ w`(F`) =

j(`2 − 1)

2
.

Lemma 2.4.1 appears in [KO] for N = 1. The situation is more subtle for a general N

than it is for N = 1. While to prove Lemma 2.4.1 for N = 1 suffices to consider the Fourier

expansion of F` (mod `) at ∞, for a general N , Γ1(N) has multiple cusps and we find it

necessary to consider the Fourier expansions of F` at each cusp of Γ1(N).

Enumerate the cosets of Γ1(N) in SL2(Z) with {i}i=1,...2dN . Let Mi be a representative of

the ith coset. Let αi be the cusp that Mi sends to ∞. Denote the minimal period of F`|Mi

by ti. Then F`|Mi has a Fourier expansion in powers of qti = e
2πiz
ti . The order of vanishing

of F` at αi is then defined to be the index of the first nonvanishing Fourier coefficient of F`

in powers of qti and is denoted ordαi(f(z)).

The Fourier expansions of F` about cusps other than ∞ need not have coefficients in Z,

but by the q-expansion principle, for N ′ > 4 if the Fourier expansion of a modular form f for

Γ1(N
′) about∞ has integer coefficients, then the Fourier coefficients of f about another cusp

must lie in Q(ζN) where ζN is a primitive N ’th root of unity and have bounded denominators

(see section 12.3 of [DI]). To apply this property we view F` as a modular form for Γ1(N
′)

where N ′ = N if N > 4 and N ′ = 12 if N ≤ 4.

Before proceeding, we make a remark about the first few paragraphs of Section 2.2. Rather

than considering an element f of Mk(Γ1(N))∩Z[[q]] and reducing f (mod `) for some rational

prime ` we can consider elements g of Mk(Γ1(N)) ∩ L[[q]] where L is an algebraic number

field and reduce g (mod v) for any prime v such that the v-adic valuation of g is 0. This

defines the notion of a “modular form (mod v)” and allows us to define the filtration wv

for nonvanishing modular forms (mod v) in the obvious way. Define the v-adic valuation

of a power series with coefficients in L to be the minimum of the v-adic valuations of the

coefficients of the power series (this minimum exists by the bounded denominator property).
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If we modify the statement of Lemma 2.2.1 by replacing Z[[q]] by L[[q]] and replace the

modulus of reduction by v where v is a prime above ` such that the v-adic valuation of f

is 0, then the modified Lemma 2.2.1 is true. We use these facts with L = Q(ζN). Define

õrdαi(f(z)) to be the order of vanishing of f (mod v) at the cusp αi.

As a preliminary to the proof of Lemma 2.4.1 we prove the following.

Lemma 2.4.2. Let m ≥ 1 be an integer and let v be a prime in Z[ζN ] such that v - 2, 3, N .

Let f(z) be a modular form for Γ1(N) such that f(z)|Mi has coefficients in Q(ζN) and v-adic

valuation 0. Let αi be a cusp of Γ1(N). Then

õrdαi(θ
mf) ≥ õrdαi(f).

Proof of Lemma 2.4.2. By induction it suffices to prove the claim for m = 1. Since R in

(2.2.2) satisfies R ≡ θf (mod v) for v - 2, 3 it suffices to show that õrdαi(R) ≥ õrdαi(f).

Take Mi to be as in the discussion preceding the statement of Lemma 2.4.1. Let k be the

weight of f(z). Applying the slash operator |Mi of weight k + `+ 1 to both sides of (2.2.3),

we obtain

R|Mi =

((
θf − k

12
E2f

)
E`−1

)
|Mi +

(
k

12
E`+1f

)
|Mi

=

(
(θf)|Mi −

k

12
(E2|Mi)(f |Mi)

)
(E`−1|Mi) +

k

12
(E`+1|Mi) (f |Mi) . (2.4.1)

In the second line of (2.4.1) and in what follows, the slash operators applied to θf , E2, f ,

E`−1 and E`+1 are of weights k + 2, 2, k, `− 1, and `+ 1 respectively. Now since E`−1 and

E`+1 are modular forms for SL2(Z), equation (2.4.1) becomes

R|Mi =

(
(θf)|Mi −

k

12
(E2|Mi)(f |Mi)

)
E`−1 +

k

12
(E`+1) (f |Mi) . (2.4.2)

Next we find an alternate expression for (θf)|Mi. Applying θ to both sides of the equation
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(2.1) gives

(θf)|Mi = θ(f |Mi) +
kc

2πi
(cz + d)−1(f |Mi). (2.4.3)

Replacing (θf)|Mi in (2.4.2) by the righthand side of (2.4.3) and replacing E2|Mi in (2.4.2)

by the righthand side of (2.2.2), after simplification (2.4.2) becomes

R|Mi =

(
θ(f |Mi)−

k

12
E2 · (f |Mi)

)
E`−1 +

k

12
(E`+1)(f |Mi).

Since v - N and f |Mi has v-adic valuation 0, the Fourier expansion of θ(f |Mi) has v-adic

valuation 0. It is clear from the definition of θ that the index of the Fourier first coefficient

of θ(f |Mi) that is nonvanishing (mod v) is no smaller than the first Fourier coefficient of

f |Mi that is nonvanishing (mod v). But then the index of the first Fourier coefficient of

R|Mi that is nonvanishing (mod v) is no smaller than the first Fourier coefficient of f |Mi

that is nonvanishing (mod v). This completes the proof.

Proof of Lemma 2.4.1. First we prove that w(F`) = j(`2−1)
2

. Consider the functions F`|Mi

for i ∈ {1, ..., 2dN}. Since the v-adic valuation of each F`|Mi is finite, for each i there exists

βi ∈ Q such that (βiF`)|Mi has v-adic valuation 0. Now consider

G(z) :=

2dN∏
i=1

(βiF`)|Mi.

Since F` is a modular form of weight j(`2−1)
2

for Γ1(N) and the Mi’s are a complete set of

representatives of cosets of Γ1(N) in SL2(Z), G(z) is a modular form of weight dNj(`
2 − 1)

for SL2(Z). Let v be a prime above ` in Z[ζN ].

Since F` is zero-free on H, F`|Mi is zero-free on H, so G(z) is zero-free on H and the

zeros of G(z) all occur at ∞. So G(z) must be a nonzero constant multiple of ∆(z)e where

e = dN j(`
2−1)

12
. Moreover, by our choice of βi, this constant must be nonvanishing (mod v).
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So wv(G(z)) = 12e. But then wv(F`) = j(`2−1)
2

and since F` ∈ Z[[q]], w`(F`) = j(`2−1)
2

. So we

need only show that w`(θ
mF`) ≥ j(`2−1)

2
. Since G is a nontrivial multiple of ∆e, it must be

that õrd∞(G) = e. Since õrdαi is defined in terms of powers of qti while õrd∞ is defined in

terms of powers of qt1 we have õrd∞(βiF`|Mi) =
gordαi (βiF`)

ti
. From the definition of G we see

that
∑2dN

i=1

gordαi (βiF`)

ti
= õrd∞(G(z)). So

2dN∑
i=1

õrdαi(βiF`)

ti
= e.

Now consider

H =

2dN∏
i=1

(βiθ
mF`)|Mi.

Then H is a modular form (mod v) for SL2(Z). We have

õrd∞(H) =

2dN∑
i=1

õrdαi(βiθ
mF`)

ti
≥

2dN∑
i=1

õrdαi(βiF`)

ti
= e,

where the inequality is a consequence of Lemma 2.4.2.

The definition of the βi forces (βiθ
mF`)|Mi 6≡ 0 (mod v), so H 6≡ 0 (mod v). By Sturm’s

theorem [Stu], wv(H) ≥ 12e. But then we see that wv(θ
mF`) ≥ j(`2−1)

2
. Since θmF` ∈ Z[[q]],

we deduce that w`(θ
mF`) ≥ j(`2−1)

2
, completing the proof.

2.5 Proof of Theorem 2.1.2

Let ` > max(5, j + 4), ` - N . By Lemma 2.3.1, to prove Theorem 2.1.2 it suffices to

show that d(`n) ≡ 0 (mod `) leads to a contradiction. Note that it follows from (2.2.3) that

d(`n) ≡ 0 (mod `) implies θ`−1F` ≡ F` (mod `). We analyze the consequences that this has

for the sequence w`(θ
if), i ∈ {1, 2, . . . , ` − 1}. We will see that the congruence θ`−1f ≡ f

(mod `) leads to the existence of an m violating the conclusion of Lemma 2.4.1
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To proceed, we need information about the possible sequences w`(θ
iF`),

i ∈ {1, 2, . . . , `− 1} in terms of w`(F`). Proposition 2 of [KO] is false as stated in [KO] (see

appendix) but is true when an additional hypothesis is added to the statement of Proposition

2 and the proof in [KO] is valid once the hypothesis is added. The proof of this modified

Proposition 2 carries through without modification when SL2(Z) is replaced by Γ1(N) for

any N for which Lemma 2.2.1 and Lemma 2.2.2 hold. For context recall Lemma 2.1 and

Lemma 2.2.

Proposition 2.5.1. (After Proposition 2 of [KO]) Let ` ≥ 5 be prime and N ≥ 4, ` - N .

Suppose that f(z) ∈ Mk(Γ1(N)) has `-integral Fourier coefficients, w`(f(z)) 6≡ 0 (mod `)

and θ(f(z)) 6≡ 0 (mod `). Suppose further that w`(θ
mf(z)) ≥ w`(f(z)). Let i1 < i2 <

. . . < iv be those i with 0 ≤ i ≤ ` − 1 for which w`(θ
if) ≡ 0 (mod l). Write w`(θ

ij+1f) =

w`(θ
ijf) + (` + 1) − sj(` − 1). Write k = w`(f) and let k0 ∈ {1, 2, . . . , ` − 1} be such that

k ≡ −k0 (mod `). Then one of the four cases below holds:

� (I) k ≡ 1 (mod `), v = 1, i1 = `− 1, and s1 = `+ 1

� (II) k ≡ 2 (mod `), v = 1, i1 = `− 2, and s1 = `+ 1

� (III) k 6≡ 1 (mod `), v = 2, (i1, i2) = (k0, `− 1), and (s1, s2) = (k0 + 1, `− k0)

� (IV) k 6≡ 1 (mod `), v = 2, (i1, i2) = (k0, `− 2), and (s1, s2) = (k0 + 2, `− k0 − 1)

We have w`(f) = w`(θ
`−1f) if and only if case (II) or case (IV) holds.

The necessary hypothesis that is missing in the statement of Proposition 2 of [KO] is that

w`(θ
mf) ≥ w`(f). For a counterexample to the original statement, let f(z) = ∆(z) and

take ` = 5. By Lemma 2.2.1, there exists a modular form g(z) ∈ M18(Γ1(N)) such that

g ≡ f (mod 5). By the equality in Lemma 2.4.1, w5(f) = 12. Applying Lemma 2.2(i) then

gives w5(θf) = 18, w5(θ
2f) = 24 and w5(θ

3f) = 30. Applying w5 to both sides of θ5f ≡ θf

(mod `) forces w5(θ
4f) = 12, so that v = 1 for f(z) which implies v = 1 for g. The function
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g satisfies the hypotheses of the original Proposition 2, but w5(g) = 18 ≡ 3 (mod 5) so that

if the conclusion of Proposition 2 is true for g(z) then v = 2 for g(z), and as we just saw

this is not the case.

Now we prove Theorem 2.1.2. We verified that F` satisfies the hypotheses of Proposition

2.5.1 in our proof of Lemma 2.3.1. Taking f = F` in Proposition 2.5.1 we see that θ`−1F` ≡ F`

(mod `) implies that we are in case (II) or case (IV) of Proposition 2.5.1. Actually, we cannot

be in case (II) of Proposition 2.5.1 since Lemma 2.4.1 shows that w`(F`) = j(`2 − 1)/2

and ` > j + 4, so we are in case (IV) of Proposition 2.5.1. This implies that if we take

k0 ≡ −(j)(`2− 1)/2 (mod l), then w`(θ
k0+1F`) = w`(F`) + (`+ 1)(k0 + 1)− (k0 + 2)(`− 1) =

w(F`) + 2k0 + 3 − `. We can determine k0 as follows: we have 2k0 ≡ j (mod `) so since j

is even and ` > j, it must be that k0 = j/2. So w`(θ
k0+1F`) = w(F`) + j + 3− ` and since

` > j + 3, we have w(θk0+1F`) < w(F`), contradicting Lemma 2.4.1 and proving Theorem

2.1.2.

2.6 Proof of Theorem 2.1.1

Let cN(n) be as in the statement of Theorem 2.1.1, and assume that cN(`n + a) ≡ 0

(mod `). Then by Theorem 2.1.2, we may assume that ` ≤ 5 or ` | N . First suppose that

`|N . Write

∞∑
n=0

p(n)qn =
∞∏
n=1

1

1− qn
=

(
∞∑
n=0

cN(n)qn

)(
∞∏
n=1

(1− qNn)

)
.

Since `|N we can write
∏∞

n=1(1− qNn) =
∑∞

n=0 y(n)q`n so that (2.5.1) becomes

∞∑
n=0

p(n)qn =

(
∞∑
n=0

cN(n)qn

)(
∞∑
n=0

y(n)q`n

)
. (2.6.1)
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Multiplying (5.1) by q−a and applying U` to both sides gives

∞∑
n=0

p(`n+ a)qn =

(
∞∑
n=0

cN(`n+ a)qn

)(
∞∑
n=0

y(n)qn

)
.

Since y(0) = 1, we have cN(`n + a) ≡ 0 (mod `) if and only if p(`n + a) ≡ 0 (mod `) from

which it follows that (`, a) ∈ {(5, 4), (7, 5), (11, 6)} by the result from [AB] quoted in the

Section 2.1. This establishes Theorem 2.1.1 assuming that `|N . So we need only establish

Theorem 2.1.1 assuming that ` ≤ 5.

If ` ≤ 5 then since cN(n) = p(n) for n ≤ N a short computation shows unless N is as in

the bulleted portion of the conclusion of Theorem 2.1.1, N ≤ 5. Another short computation

together with Chan’s result for N = 2 show that Theorem 2.1.1 holds for ` ≤ 5.

2.7 Conclusion

In light of our results it is natural to ask:

Question 2.7.1. Let c(n) be given by
∏∞

n=1

∏j
i=1

1
(1−qain)

=
∑∞

n=0 c(n)qn where j is odd.

Are there only finitely many ` for which there is a Ramanujan congruence (mod `) for c(n)?

Can one give an explicit bound on ` if this is so?

In [Boy], Boylan treated many cases where j is odd and ai = 1 for all i. Boylan also

reported on the existence of several infinite families of pairs (j, `) such that the coefficients

of
∏∞

n=1
1

(1−qn)j
obey a Ramanujan congruence (mod `), but remarks that there are some

pairs (j, `) that do not fit into these families for which there is nevertheless a Ramanujan

congruence. A complete characterization of the pairs (j, `) for which there is a Ramanujan

congruence appears to be absent from the literature. So we ask the following:

Question 2.7.2. Can one give a complete characterization of all tuples (`; a1, a2, . . . , aj) for

which c(n) given by
∏∞

n=1

∏j
i=1

1
(1−qain)

=
∑∞

n=0 c(n)qn obeys a Ramanujan congruence (mod

`)?
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While it seems likely that the answer to both parts of Question 2.7.1 can be answered

in the affirmative, the extent of the phenomenon of there being only finitely Ramanujan

congruences for the Fourier coefficients of a modular form is quite unclear, motivating:

Question 2.7.3. Is there a characterization of those weakly holomorphic modular forms f(z)

for congruence subgroups of SL2(Z) with integer Fourier coefficients such that the Fourier

coefficients of f(z) obey only finitely many Ramanujan congruences?
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Chapter 3

Real Places and Surface Bundles

3.1 Introduction

One of the few known results relating the topology of a hyperbolic 3-manifold to its trace

field is D. Calegari’s intriguing theorem [Cal]. Calegari’s theorem is

Theorem 3.1.1. The trace field of a hyperbolic once punctured torus bundle has no real

places.

Here we consider whether Calegari’s result can be extended to hyperbolic surface bundles

with other fibers. We show that many surfaces occur as fibers of hyperbolic surface bundles

with trace field having real place.

Recall from Chapter 1 that we refer to the unique surface with p punctures and χ(S) = χ

as the surface of type (−χ, p), and a 3-manifold that can be realized as a surface bundle fiber

of type (−χ, p) as a surface bundle of type (−χ, p). We remark that the type of a surface

bundle is not in general uniquely determined, since a given manifold can fiber over S1 in

multiple ways.

In this language, Theorem 3.1.1 is that the trace field of a hyperbolic surface bundle of

type (1, 1) has no real places. Calegari’s proof does not readily generalize to surface bundles

of other types. Our goal is to substantiate

Conjecture. For each pair (−χ, p) with −χ > 1, there exists a hyperbolic mapping torus of

type (−χ, p) with trace field having a real place.
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Those surfaces with χ ≥ 0 and (−χ, p) = (1, 3) and are excluded since there are no

hyperbolic surface bundles with these as fibers, while the surface of type (1, 1) is excluded

by Theorem 3.1.1. Throughout the remainder of the paper we restrict ourselves to surfaces

with −χ > 1.

We were led to Conjecture 3.1 by utilizing existing software to collect data which led to

the following.

Observation 3.1.2. For each of the following pairs (−χ, p), there exists a hyperbolic map-

ping torus of that type with trace field having a real place:

−χ p

2 2, 4

3 1, 3, 5

4 0, 2, 4, 6

5 0, 1, 3, 5, 7

6 0, 2, 4

−χ p

7 1, 3, 5

8 0, 2, 4

9 1, 3

10 0, 2, 4

11 1, 3

−χ p

12 0

14 0, 2

15 1

16 0, 2

17 1

−χ p

18 0, 2

19 1

20 0, 2

21 1, 3

22 0, 2

We were not able to prove our conjecture in general, but were able to prove it for several

infinite families of surfaces.

Theorem 3.1.3. Conjecture 3.1 is true for mapping tori of type (−χ, p) if

a) p ≥ 4 and 2|(−χ)

b) p = 0

c) 5p ≤ −χ

We use a simple fact in the proof of Theorem 3.1.3.

Proposition 3.1.4. If M is a finite volume hyperbolic 3-manifold with trace field having

real place then any finite cover M ′ of M is a finite volume hyperbolic 3-manifold with trace

field having real place.
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The volume of M ′ is finite since Vol(M ′) = d ·Vol(M) where d is the degree of the covering

map M ′ →M . Since the trace field of a finite cover of a hyperbolic 3-manifold is a subfield

of the trace field of the base and a subfield of a field K ⊂ R is itself contained in R, the truth

of the Proposition 3.1.4 is immediate. So to show that Conjecture 3.1 is true for a surface

of type (−χ, p), it suffices to show that a mapping torus of type (−χ, p) covers a hyperbolic

3-manifold with trace field having real place.

In Section 3.2 we prove a special case of Theorem 3.1.3 (a) by combining J. Hoste and P.

Shanahan’s explicit determination of the trace fields of hyperbolic twist knots [HS] with the

constructions of fibered covers of hyperbolic twist knots due to G. Walsh [Wal]. In Section

3.3 we give a criterion for a surface bundle of type (−χ, p) to be covered by a surface bundle

of type (−χ′, p′) and use this to prove parts (a) and (b) of Theorem 3.1.3. In Section 3.4

we use properties of the Thurston norm on the cohomology of a 3-manifold to prove that a

particular 3-manifold with trace field having real place is a surface bundle of type (−χ, p)

for many pairs (−χ, p) and this gives a proof of Theorem 3.1.3 (c). In Section 3.5 we offer

empirical data substantiating Observation 3.1.2, discuss patterns that we observed and state

some open questions.

3.2 Fibered Covers of Twist Knots

In [HS] Hoste and Shanahan compute the trace fields of an infinite family of 3-manifolds,

namely the complements of the twist knots in S3. The twist knot Km is defined by Figure 1

for m > 0. When m = 2, Km is the trefoil knot and when m = 3, Km is the figure-eight knot.

For m ≥ 3, S3/Km is hyperbolic so that the trace field is well-defined. Hoste and Shanahan

found that if m ≥ 3 and m is even then the trace field of S3/Km is of odd degree over Q.

As a polynomial of odd degree has a real root, the trace field of such a knot complement

S3/Km has a real place.
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Every two-bridge knot is associated to a fraction p
q
, written in lowest reduced terms and

with q > 0. In [Wal], Walsh showed that the complement of such a knot is finitely covered

by surface bundle of type (q − 3, q − 1). As Figure 1 shows, Km is the two-bridge knot

associated to the rational number
1

2 + 1
m−1

= m−1
2m−1

. Since gcd(m− 1, 2m− 1) = 1, it follows

that S3/Km is a finitely covered by a surface bundle of type (2m− 4, 2m− 2).

By Proposition 3.1.4, the result in [HS] implies that this surface bundle has a real place if

m is even. This proves Conjecture 3.1 for surfaces of type (4n− 4, 4n− 2) for n ≥ 2. As we

will see in Section 3.3, by utilizing another method we can prove Theorem 3.1.3 (b) which

is a strictly stronger statement.

We remark that since Leininger [Lein] showed that the twist knot complements are virtu-

ally fibered by punctured torus bundles, one can use Leininger’s work in conjunction with

Hoste and Shanahan’s work to exhibit punctured torus bundles with trace field having real

place. However, though we have not checked this rigorously, it appears that following this

strategy can only prove Conjecture 3.1 for a subset of the family of surfaces in Theorem

3.1.3 (b).

3.3 Covers of Surface Bundles

In this section we prove Theorem 3.1.3 (a) and (b). First we prove

Theorem 3.3.1. A surface bundle of type (−χ, p) is finitely covered by a surface bundle of

type (−χ′, p′) if χ′/χ = d ∈ N and p ≤ p′ ≤ dp.

After doing this we exhibit surface bundles of types (2, 4) and (2, 0) with trace field having

real place. Parts (a) and (b) of Theorem 3.1.3 will then follow easily from Theorem 3.3.1.

To prove Theorem 3.3.1 we need a theorem of Massey [Mas] characterizing when one

punctured surface covers another.
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Figure 3.1: A depiction of Km for m = 4. Hoste and Shanahan’s Km is isomorphic to the
knot depicted with m− 1 crossings on the left hand side of the figure.
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Theorem 3.3.2. For the surface of type (−χ′, p′) to be a degree d cover of the surface of

type (−χ, p) it is necessary and sufficient that (i) −χ
′

χ
= d ∈ N and (ii) p ≤ p′ ≤ pd.

Massey’s proof proceeds by cut and paste arguments. In order to use our knowledge of

covers of surfaces of type (−χ, p) to pass to knowledge about covers of surface bundles of

type (−χ, p) we need another lemma.

Lemma 3.3.3. Suppose M is a surface bundle with fiber S and that S is finitely covered by

S ′. Then M has a finite cover M̃ which is a surface bundle with fiber S ′.

Proof of Lemma 3.3.3: Let ψ : S → S define a mapping torus homeomorphic to M , and let

ρ : S ′ → S be a covering map. After picking base points for fundamental groups, we have

the inclusion ρ∗(π1(S
′) ⊂ π1(S). The map ψ∗ : π1(S) → π1(S) is a bijection and so maps

index d subgroups to index d subgroups. Since the number m of degree d subgroups of π1(S)

is finite, (ψ∗)
m = (ψm)∗ fixes ρ∗(π1(S

′). Define M1 to be the degree m cover of M that is the

mapping torus defined by ψm, corresponding to “unwinding” M in the direction transverse

to the fiber m times. According to the lifting criterion (Prop. 1.33 of [Hat]) there exists a

lift ψ̃m of ψm so that the following diagram commutes.

S ′
gψm−−−→ Syρ yρ

S
ψm−−−→ S

Then the surface bundle M̃ with fiber S ′ and monodromy ψ̃m is a cover of M of degree

dm.

Proof of Theorem 3.3.1: This is immediate from Theorem 3.3.2 and Lemma 3.3.3.

Proof of Theorem 3.1.3 (a): Let S be the four-punctured sphere, that is, the surface of type

(2, 4). Let S ′ be a surface of type (−χ′, p′), where p′ ≥ 4 and 2|(−χ′), as in the statement of

Theorem 3.1.3 (a). Then since χ′ = 2−2g′−p′, p′ ≤ −χ′+2 so that by Theorem 3.3.1, to prove
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Figure 3.2: A depiction of the braids σ1 (on the left) and σ2 (on the right)

Theorem 3.1.3 (a) it suffices to exhibit an S-bundle with trace field having a real place. An S-

bundle can be specified by giving the mapping class [ψ] ∈ Mod(S). The subgroup of Mod(S)

fixing one of the four punctures is isomorphic to the braid group on three strands. This group

is generated by the braids σ1 and σ2 in Figure 2. We take M to be the S-bundle given by

the mapping class [ψ] corresponding to the braid σ1σ2
4σ1
−2σ2σ1σ2

−1σ1σ2. SnapPy [CDW]

computes a hyperbolic structure on the resulting S-bundle, and Snap [CGHN] rigorously

proves that the trace field ofM is generated by the roots of the polynomial x4−x3−2x2−x+1.

Since this polynomial has two real roots, the trace field of M has a real place.

Now Theorem 3.1.3 (a) follows from the existence of a surface bundle of type (2, 4) with

trace field having a real place and Theorem 3.3.1.

Proof of Theorem 3.1.3 (b): Let S be the closed surface of genus 2, that is, the surface of type

(2, 0). As above, we specify an S-bundle by specifying a mapping class in [ψ] ∈ Mod(S). The

group Mod(S) is generated by Dehn twists in 5 standard curves [Bir]. We order these curves

according to x value on pg. 169 of [Bir] as a, b, c, d and e. Let τα be the mapping class of

the Dehn twist about the curve α. Let M be the S-bundle corresponding to τa(τbτcτdτeτb)
−1.

Twister [Hal] generates a triangulation of M , and Snap [CGHN] rigorously proves that the

trace field of M is generated by the roots of the polynomial x8− 5x6 + 12x4− 9x2 + 2. Since

this polynomial has four real roots, the trace field of M has a real place.

Theorem 3.1.3 (b) follows from the existence of a surface bundle of type (2, 0) with trace
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field having a real place and Theorem 3.3.1.

3.4 A 3-Manifold Fibering In Many Ways

In this section we prove

Theorem 3.4.1. There is a hyperbolic 3-manifold with trace field having real place that is

a surface bundle of type (−χ, p) for every pair with 5p ≤ −χ coming from a surface except

for (5, 1).

Since according to Observation 3.1.2, Conjecture 3.1 is true for (−χ, p) = (5, 1); Theorem

3.4.1 implies Theorem 3.1.3 (c).

If a hyperbolic 3-manifold M fibers over S1, then the 1-form 1
2π
dθ on S1 pulls back to

a cohomology class φ ∈ H1(M ; Z), and we say that φ induces the fibration. In [Thu2],

Thurston provides an elegant characterization of all fibrations of M over S1. First Thurston

defines a norm || ∗ ||T (now called the Thurston norm) on H1(M ; R). We do not need the

definition of the Thurston norm here but will use the following consequence of the definition.

Proposition 3.4.2. If φ induces a fibration of a hyperbolic 3-manifold M over S1 with fiber

S then ||φ||T = −χ where −χ is the Euler characteristic of S.

In [Thu2] Thurston shows that the unit norm ball of || ∗ ||T is a convex polyhedron sym-

metric about the origin and with coordinates of the vertices in Q. We denote its unit norm

ball by BT . Setting b1(M) = dim(H1(M ; R)), we say that a face of BT is top dimensional

if its dimension is b1(M) − 1. For φ ∈ H1(M ; R), the ray from the origin to φ intersects

the interior of a unique face of BT , and we say that φ lies above that face. A face and its

reflection through the origin play the same role, so we abuse notation, referring to a pair of

opposite faces of the unit norm ball as a face. The main theorem of [Thu2] is:
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(3, 5)(3, 5)

(5, 1)(5, 1)

(5, 2)(5, 2)

Figure 3.3: The ordered pairs adjacent to each of the colored loops denote Dehn surgery
coefficients, with Dehn surgery convention as indicated in the lower lefthand corner.

Theorem 3.4.3. There is a collection of top dimensional faces of BT called the fibered faces

so that φ ∈ H1(M ; Z) induces a fibration of M if and only if φ lies over one of the faces in

this collection.

Thurston’s theorem is trivial for M if b1(M) = 1, but if b1(M) > 1, it shows that if M

is a surface bundle then there are infinitely many pairs (−χ, p) such that M is a surface

bundle of type (−χ, p). In this section we give an example of a hyperbolic 3-manifold M

with trace field having real place and b1(M) > 1, and work out the pairs (−χ, p) such that

M is a surface bundle of type (−χ, p).

For our manifold, we takeM as in Figure 3.3. We found this manifold in Morwen Thistleth-

waite’s recent census of cusped hyperbolic 3-manifolds that are gluings of 8 ideal tetrahedra.

Thistlewaite’s data has been incorporated into the most recent version of Snappy [CDW].

Snap [CGHN] computes that a minimal polynomial for the trace field of M is x6 − 2x4 +
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4x2 − 1. Since this polynomial has two real roots, the trace field of M has a real place. To

study the surfaces S such that M is a surface bundle with fiber S we need to compute BT

and determine which faces of BT are fibered. This will allow us to use Proposition 3.4.2 to

determine the Euler characteristics of the fibers. First we show:

Theorem 3.4.4. Let BT be the unit ball of the Thurston norm on H1(M ; R). Then all top

dimensional faces of BT are fibered.

Proof of Theorem 3.4.4: Stallings [Sta] gave an algebraic criterion for a class φ ∈ H1(M ; Z)

to induce a fibration of M over S1. Under the assumption that π1(M) is specified by a

presentation with two-generators and one-relator presentation, Brown [Br] gave an algorithm

for determining all φ ∈ H1(M ; Z) that satisfy the hypothesis of Stallings’ criterion. We use

Brown’s algorithm to apply Stallings’ criterion and determine all φ ∈ H1(M ; Z) that induce

fibrations of M . For a nice exposition of the perspective on these topics that we use here,

see sections 4 and 5 of [DT].

SnapPy [CDW] computes a presentation of π1(M) given by

< α, β | α2β3α2β−2α−3β−2α2β3 > .

Since this presentation is 2-generator and 1-relator, Brown’s criterion can be applied. Brown’s

criterion is stated in terms of a bounded path P in R2 consisting of horizontal and vertical

segments that can be produced from a presentation of a 2-generator 1-relation group G. The

path starts at the origin and is formed by reading the relator from left to right, drawing

a horizontal unit segment for each appearance of α and a vertical unit segment for each

appearance of β. We give a depiction of the path associated to the above presentation of

π1(M) in Figure 3.4.

Brown’s criterion is that φ = (c, d) ∈ H1(M ; Z) induces a fibration of M if and only if as

e varies over elements of R, the largest and smallest value of e for which the line Le given

by cx + dy = e intersects P each give a line which intersects P exactly once. Here Le is
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Figure 3.4: Path associated to presentation of π1(M). Defined only up to translation by a
lattice point.

considered to intersect P multiple times if P crosses over itself where it meets Le, but Le

is considered to intersect P only once if Le is horizonal (resp. vertical) and Le intersects

a single horizontal (resp. vertical) segment. Applying Brown’s criterion to Figure 4, it is

clear that the only pairs (c, d) ∈ H1(M ; Z) that do not induce fibrations of M are those lie

on the three lines that go through the origin and have slope 0, −1 and ∞. By Theorem

3.4.3, there cannot be any top dimensional faces of BT that are not fibered, completing the

proof of Theorem 3.4.4.

We can use Theorem 3.4.4 to determine the precise shape of BT .

Theorem 3.4.5. The unit ball of the Thurston norm BT is as pictured in Figure 3.5.

Proof of Theorem 3.4.5: We use Theorem 3.4.4 together with properties of the Alexander

norm on H1(M ; R). The Alexander norm || ∗ ||A on H1(M ; R) was introduced by McMullen

in [McM]. McMullen showed that if N is a 3-manifold and φ ∈ H1(N ; Z) then ||φ||A ≤ ||φ||T

where || ∗ ||T is the Thurston norm, and that equality holds if dim(H1(M ; R)) > 1 and φ
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(1/5, 0)

(0, -1/5)

(1/2, -1/2)

y

x

Figure 3.5: The unit ball BT of the Thurston norm on H1(M ; R)
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induces a fibration of N . Applying this result to M , ||φ||A = ||φ||T for each φ not lying

on the lines through the origin with slope 0, −1 and ∞. Since McMullen [McM] and

Thurston [Thu2] showed that their respective norms are linear on rays through the origin

and continuous on H1(M ; R), we must have ||φ||A = ||φ||T identically. So BT = BA where

BA is the unit ball of the Alexander norm on H1(M ; R).

The advantage of working with the Alexander norm is that it is easy to compute. Indeed,

the unit norm ball on H1(M ; R) is defined to be the dual of the Newton polytope of the

Alexander polynomial of N . The Alexander polynomial of M is

a5b5 + a5b4 + a4b5 + a4b4 − a3b3 + a2b2 − ab− a− b− 1

Thus, its Newton polytope has vertices (0, 0), (1, 0), (0, 1), (4, 5), (5, 4) and (5, 5). The

dual of this polytope has vertices given by (0, 1/5), (1/5, 0), (−1/2, 1/2), (−1/5, 0), (0,−1/5),

and (1/2,−1/2) (Figure 3.5). This completes the proof of Theorem 3.4.5 .

Using our computation of BT , the fact that the Thurston norm is linear on rays, and

Proposition 3.4.2, if φ induces a fibration of M then we can compute the Euler characteristic

of the corresponding fiber. To completely determine the fiber we need to be able to compute

the number of punctures of the fiber. To this end we prove:

Theorem 3.4.6. If ψ = (x, y) lies over a fibered face of BT then ψ induces fibration of M

of type (−χ, p), where p = |x+ y|.

Proof of Theorem 3.4.6: Since M is a one-cusped hyperbolic 3-manifold, removing a neigh-

borhood of the cusp of M gives a 3-manifold M ′ with boundary ∂M ′ consisting of a torus.

Pick φ inducing a fibration of M . Pick generators µ and λ of H1(∂M
′; Z) with intersection

number 1 such that i(µ) is transverse to the fiber and i(λ) is parallel to the fiber in the

fibration of M induced by φ. Then φ(µ) = p and φ(λ) = 0, where p is the number of

punctures of a fiber. In some sense this gives a formula for p, but this formula depends on
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a choice of generators of H1(∂M
′; Z) which is special to φ. A formula for p that does not

depend on generators of φ is given by

| gcd(φ(µ), φ(λ))| = p. (3.4.1)

To see that (4.1) is true, first note that it is true if µ and λ are generators that depend on

φ as above. Now, any choice of generators of H1(∂M
′; Z) ∼= Z2 differs from that of µ, λ by

an invertible linear change of coordinates, that is, an element of GL(2,Z). Since the gcd of

two numbers is invariant under
1 1

0 1
,

0 −1

1 0
, and

1 0

0 −1
and these matrices generate

GL(2,Z), equation (4.1) holds for any choice of generators of H1(∂M ; Z).

With its preferred choice of generators of H1(∂M
′; Z), SnapPy [CDW] computes that their

images in H1(M ; Z)/(torsion) to be µ = (−4,−4) and λ = (−5,−5). Writing φ = (x, y), we

have gcd(φ(µ), φ(λ)) = gcd(−4x− 4y,−5x− 5y) = x+ y. Thus Theorem 3.4.6 follows from

(4.1).

Proof of Theorem 3.4.1: We fix p > 0 and determine those χ such that M is a surface bundle

of type (−χ, p). By Theorem 3.4.6, such χ come from classes (x, y) with x+ y = ±p. Since

the classes (x, y) and (−x,−y) are the same up to orientation, there is no loss of generality

in restricting ourselves to those classes lying on the line x+ y = p. Since the Thurston norm

is symmetric about the lines y = x and x = 0 and those classes lying on these lines do not

induce fibrations of M , we can and do further restrict our attention to those classes (x, y)

with x > 0 and y > x. Of these classes, those on the line y = 0 do not induce fibrations

of M , but all others do. Recall that when a class induces a fibration, the Thurston norm

computes its Euler characteristic. The formula for the Thurston norm of (x, y) depends on

whether y < 0 or y > 0. Thus we divide our analysis into two cases.

Case 1 : Suppose y > 0. Then (x, y) lies over the face of BT determined by the two vertices
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(1/5, 0) and (0, 1/5), so in this case

||(x, y)||T = 5x+ 5y = x+ 5(p− x) = 5p.

So every class (x, y) with y > 0 such that y < x and x+ y = p gives a realization of M as a

surface bundle of type (5p, p). The pairs (−χ, p) such that there is a class (x, y) with y > 0

that induces a fibration of M of type (−χ, p) are those pairs (5p, p) for p ≥ 2.

Case 2 : Suppose y < 0. Then (x, y) lies in the cone over the face of the Thurston norm ball

determined by (1/5, 0) and (1/2,−1/2), so in this case

||(x, y)||T = 5x+ 3y = 5x+ 3(p− x) = 2x+ 3p.

In this case the condition y < x is automatically satisfied since x + y = p. The condition

y < 0 is equivalent to p < x which is in turn equivalent to

5p < 2x+ 3p = ||(x, y)||T

Recall that for any pair (−χ, p) that comes from a surface, p and χ have the same parity.

So for any pair (−χ, p) with 5p < −χ we can find a class (x, y) with y < 0 that induces a

fibration of M of type (−χ, p).

From our above analysis we see that M is a surface bundle of type (−χ, p) precisely when

5p ≤ χ and (−χ, p) 6= (5, 1) as claimed.
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3.5 Empirical Data and Open Questions

Here we give a table of cusped census manifolds with trace fields having real places which

are surface bundles of type (−χ, p) for various pairs (−χ, p). This table together with The-

orem 3.1.3 (a) and (b) substantiates Observation 3.1.2. We compiled it using N. Dunfield’s

data [Dun] and Snap [CGHN]. The manifolds are labelled by their labels in the cusped

census [CHW].

(−χ, p) Manifold

(2, 2) v2640

(3, 1) m036

(3, 3) s493

(3, 5) m043

(4, 2) v2677

(4, 4) s500

(−χ, p) Manifold

(4, 6) s147

(5, 1) m034

(5, 3) v0163

(5, 5) v0003

(5, 7) m172

(6, 2) v3212

(−χ, p) Manifold

(6, 4) s500

(7, 1) m078

(7, 3) v3238

(7, 5) v0022

(8, 2) m297

(8, 4) v3193

(−χ, p) Manifold

(9, 1) m011

(9, 3) v0170

(10, 2) m200

(10, 4) v1251

(11, 1) m019

(11, 3) v1721

(−χ, p) Manifold

(14, 2) s156

(15, 1) m070

(16, 2) s550

(17, 1) m044

(18, 2) s133

(−χ, p) Manifold

(19, 1) m055

(20, 2) s457

(21, 1) m064

(21, 3) v1609

(22, 2) v2603

While investigating the trace fields of the fibered manifolds in cusped census, we found that

the trace fields attached to hyperbolic surface bundles of type (−χ, p) for (−χ, p) 6= (1, 1)

do not appear to exhibit any regularities. We are thus led to ask
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Question 3.5.1. Suppose (−χ, p) 6= (1, 1). Is every pair (K, σ) with σ(K) 6⊂ R the trace

field of some hyperbolic surface bundle of type (−χ, p)?

Empirically, it seems that the trace field of a small volume cusped hyperbolic surface

bundle typically has about 1/3 as many real places as its degree over Q. Since a complex

place corresponds to a conjugate pair of nonreal roots of a polynomial, this observation

suggests the possibility that a “random” place of a “random” cusped hyperbolic 3-manifold

is real with probability 1/2. We therefore ask the following pair of questions:

Question 3.5.2. Is there a natural notion of “random number field” such that the expected

fraction of places of a random number field that are real is 1/2?

Question 3.5.3. Assuming that a notion of “random number field” as in the preceding

question is found, can one find a natural notion of “random cusped hyperbolic surface bundle”

such that the trace fields of such manifolds are modeled well by this notion of “random number

field” (with the restriction that such number fields have at least one complex place) and deduce

that the fraction of places of a“random cusped hyperbolic surface bundle” that are real is 1/2?
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