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Abstract

Silicon particles are created via anodic or platinum catalyzed etching of bulk

silicon. A peroxide and HF etchant provides uniform surface termination, and

results in discrete stable sizes for particles below 3 nm in size. The smallest

of these are 1 nm silicon particles, which is amenable to first principles quan-

tum calculations of the structure, electronic levels, and ionic interactions.

The vibrational modes of several candidate structures of the 1 nm particles

are calculated at the Hartree-Fock level, and compared to previously acquired

Raman spectra to determine the structure. The vibrational modes are also

compared to the vibrational structure in low temperature photo-luminescence

to indicate surface reconstruction bonds play a role in the fluorescence. The

fluorescence mechanism is explored further with calculations of the excited

state potential energy surface using time dependent density functional theory,

which show radiative traps accessible via direct excitation at the band edge

of the ground state geometry. The self-trapped excitons proposed by Lannoo

et al. [1, 2] are found to be unstable for the Si29H24 structure, with the

outer-well leading to non-radiative recombination via conical intersection of

the excited state with the ground state. Absorption measurements indicate

the silicon nanoparticles may form charge complexes with iron ions in aque-

ous solutions. Calculations including solvation effects provide a proposed

structure for the complex, with a binding energy of 0.49 eV. The binding

mechanism is quite general and suggests many other ions could form charge

complexes with the silicon particles in aqueous solutions, potentially leading

to new applications.
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Chapter 1

Introduction

Crystalline silicon is the workhorse material for modern electronic devices.

Continual increases in the capability to use silicon efficiently in manufacturing

integrated circuits has lead to an exponential growth in the density of active

components in devices for over half a century now [3]. This drive for ever

smaller components has led to an increased need to understand the properties

of silicon in nanostructued form.

A significant deviation from bulk properties was found in 1990 when L.

T. Canham noticed visible photoluminescence in porous silicon he produced

via chemical etching of bulk silicon [4]. This was unexpected as bulk silicon is

an indirect gap material, which means the lowest energy electronic transition

requires not only a photon but also a change in crystal momentum with a

phonon produced or absorbed. Therefore efficient recombination of electron

hole pairs, and hence photo-absorption or emission, are suppressed by the

momentum selection rule. Since the etched pores and resultant networks of

silicon structures were on the nanometer scale, Canham hypothesized that

the structures were small enough to allow quantum size effects to significantly

affect the band structure of the silicon. This discovery has since generated

considerable interest in the physics of confined semiconductor structures.

One important length scale in semiconductor materials is the radius of

the Bohr exciton, where an electron excited to the conduction band is bound

to the positively charged hole left in the valence band, in analogy to a hy-

drogen atom with the vacuum replaced by the crystal field. For bulk silicon

this length is about 4.3 nm [5]. Therefore investigating structures of silicon

approaching this length scale should intuitively lead one to find marked devi-

ations of electronic properties from bulk. Such deviations are often referred

to in the literature as ‘quantum confinement effects’.

Since the first observation of strong luminescence in porous silicon, the

search for confinement effects in nanostructured silicon have led to several
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interesting discoveries which are already being exploited to make improved

devices. In effectively ‘1-dimensional’ silicon nanowires the thermo-electric

properties have been found to be greatly enhanced and have been proposed

for use toward efficient conversion of electricity from waste heat [6] [7]. In ‘2-

dimensional’ silicon thin films, dependence of the optical band gap on silicon

phase and composition allow improvements in photo-voltaic devices [8]. This

work will be focusing on effectively ‘0-dimensional’ silicon nanocrystals below

the bulk exciton size.

The study of these effects in porous silicon was complicated by the ran-

domness of the etching and the sponge like network connecting the smallest

structures in the porous silicon. The non-uniformity of the etching on the

small scale is what allowed the porous silicon to form in the first place.

However this very same effect also made it difficult to discuss the local con-

figuration of the smallest structures, where the greatest confinement effects

should occur, for many different configurations would result from the etch.

Additionally, the thin network in the sponge itself may exhibit confinement

effects.

In 1992, Heinrich et al. used sonication to remove nanocrystals of silicon

from the porous network[9]. By applying ultrasonic waves to the porous

silicon while immersed in a solvent, he could break off nanoparticles and

suspend them in the solvent. This is a ‘from bulk’ method in contrast to

other popular means of producing silicon nanoparticles which are ‘bottom

up’, such as creating particles via laser ablation where particles condense

from a plume of ablated atoms[10], induced growth from silane gas [11],

silicon ion implantation in oxides or PECVD growth of Si rich oxides followed

by annealing [12], or even wet chemistry techniques involving reduction of

silicon salts in solution [13]. However these processes incorporated silicon

dioxide or other impurities into the particles including structural defects

producing non-crystalline particles. The ‘from bulk’ method of Heinrich et

al. had the advantage that the particles were etched from bulk and thus

retained their crystalline structure. Additionally, the hydrofluoric acid based

etching used to form the porous silicon should produce a hydrogen passivated

surface, which was confirmed with FTIR spectroscopy. The disadvantage

was that the excessive sonication necessary, along with the non-uniformity of

the porous silicon etching process, led to a very wide range of particle sizes

(from sub-nanometer to greater than a micron). To improve the situation,
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this distribution can be narrowed by various size selection methods. While

there will still be a distributions of sizes, the configurations could now be

approximated as spherical with some average size to allow a more detailed

study of their band structure and emission properties.

In addition to the size distribution, another issue of importance was that

while the particles had a chemically pure termination on the surface, their

surface structure varied. Mono-, di-, and tri-hydride terminations were all

present according to FTIR. In 1997, a new etching procedure involving hy-

drogen peroxide was developed by the Nayfeh group at the University of

Illinois which left mono-hydride terminated surfaces [14]. In addition, fur-

ther investigation showed that this produced spherical particles of preferred

sizes [15].

The smallest of these particles is 1 nm and fluoresces blue [16], and will

be the focus of this work. The other methods of silicon particle production

previously mentioned either cannot produce particles this small, or do not

provide these discrete sizes nor uniformity of the interior (crystallinity) or the

surface. This enhanced uniformity of our particles provides a great advantage

for studying the electronic structure and fluorescence mechanisms of silicon

nanocrystals.

In principle, any interactions of the particles with the environment can

be used to manipulate the particles or sense details of the environment. The

1 nm silicon nanocrystals produced by our group have already been incor-

porated into interesting devises. The interaction of the 1nm nanoparticles

with UV light has lead to developing the optoelectronic properties into a sil-

icon based UV photo-detector [17]. The charging energy of the particles was

used to create charge memory with advantages over that of floating polysili-

con gates in normal flash memory [18]. Recent experiments in our group and

that of collaborators have shown particular promise for interactions with ions

in solutions. They have demonstrated that such interactions can be used to

pattern thin films of particles via electro-plating them in the presence of salts

[19]. Also of note is an electrochemical device capable of using the particles

to sense glucose in the presence of the particles, demonstrating the potential

of these silicon nanocrystals in bio-sensing applications [20].

Despite the success of existing applications, these devices were made with

little understanding of the underlying interactions with the particles. Fur-

thermore, it is clear that these devices have only begun to touch upon the full
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variety of interactions with the environment that can occur. More knowledge

of the chemical and electronic structure of these particles is crucial to allow

greater diversity of applications and better selectivity in sensing devices. The

remaining sections of work will be devoted to discussing computational mod-

elling work and comparisons to light absorption, fluorescence, and scattering

experiments performed on the 1 nm silicon nanoparticles. The work pre-

sented will investigate the molecular structure of the particles, dynamics in

the excited state, and look at the ion interactions with the structure.
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Chapter 2

Fabrication of Silicon
Nanocrystals

The silicon nanocrystals studied in our group are obtained through two differ-

ent methods, both of which can produce particles on the order of a nanometer

in size. The methods are similar in that both start with crystalline silicon

and involve etching in a mixture of aqueous hydrofluoric acid, methanol,

and hydrogen peroxide. The porous silicon is then sonicated in a solvent of

choice, resulting in a suspension of silicon nanoparticles. These particles can

then be studied directly in solution, or dispersed on a substrate for further

investigation.

To provide background information for comparison, first a discussion of

previous methods for porous silicon fabrication will be presented. Then the

two methods used by the Nayfeh group will be presented. The first method

is the most directly related to previous methods as it uses current driven

anodization. The second method is an electrodeless method involving a plat-

inum catalyst.

2.1 Porous silicon in previous methods

When strong fluorescence was first observed in porous silicon by Canham,

the method of fabricating samples was an anodic cell in aqueous or ethanoic

HF [4]. He found formation of fluorescent porous silicon could be obtained

in all dopings from n+, n-, p-, and p+ if the etching conditions produced

high density porosity. The fluorescence was not observed in material with

porous structure too large for one to expect quantum confinement effects, nor

was it observed in material made amorphous by defect concentration with

ion implantation before anodization. Therefore if fluorescence is desired, a

porous silicon fabrication technique can be largely judged by the crystallinity

and size scale of the resulting structure.

Investigations into the formation of porous silicon by Beale et al. used
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cells in which a 3 inch silicon wafer formed a seal against a chamber of etchant,

and the entire exposed wafer surface was used as an electrode through which

current was driven [21]. This was to promote as uniform etching across the

surface as possible. They found the formation of porous silicon would only

occur under anodized conditions, which corresponds to forward biasing with

a positive electrode on p-type silicon and negative biasing of n-type silicon.

Anodizing was found to occur much easier with p-doped materials.

The dependence of the etching rate on current density reported by Beale

et al. found that there is an ideal range. At very high current densities the

etchant would uniformly etch and polish, but at low current non-uniform

etching would occur creating a rough anodized surface. This may go against

intuition, for in many chemical reactions a higher surface area leads to greater

area for the chemical process to proceed and therefore increased reactivity.

Therefore one may naively expect the increased surface area of the porous sil-

icon to react faster, therefore leading to polishing in slow etching and porous

silicon to form only in the non-uniformities that may appear during the driven

non-equilibrium conditions in rapid etching. From current and voltage mea-

surements during etching, Beale et al. find evidence that the actual chemistry

is most likely quite complex but luckily it appears the etching is determined

almost solely by the semiconductor properties and electrolyte interface. The

current-voltage measurements indicate that the silicon surface in depleted

of carriers. Therefore initial etching pits have a small electrical resistance

advantage, which leads to preferred current flow through the electrolyte into

the tips of pores and thus etching further into the substrate. Comparing the

mass density of the resulting porous film vs current density during etching, it

is found that there is less silicon per volume for larger current until it starts

etching fast enough to polish instead of form porous silicon. So to get the

smallest silicon structures there is an ideal range, with the current density

as large as possible before starting to switch to a polishing regime.

In addition to the doping and current density parameters, the final pa-

rameter to discuss is the choice of orientation for the single crystal wafers.

On a (100) oriented wafer pores form perpendicular to the surface and etch

downward [4]. As etching continues these pore enlarge and sometimes branch,

forming a sponge like material [21]. The anodic etching appears to have ad-

ditional dependencies on the crystallographic directions, with Beale et al.

noticing crazing along the (110) directions as currently densities were in-
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creased to near that of polishing conditions. A systematic study of orienta-

tion dependence found that pore growth is preferred in the (100) direction,

and conversely the (111) surfaces most resistant to etching [22].

2.2 Current driven method

An improved anodization method to fabricate nanometer scale silicon par-

ticles has recently been developed [15]. The process starts with a 4 inch

diameter prime grade p-type Silicon wafers polished on one side. The wafer

has a (100) surface orientation and boron doped to 4-8 Ω-cm. The wafer is

then scored with a diamond tip and broken into strips 14 x 17 mm in size.

To ensure good electrical contact the wafers are cleaned with acetone, iso-

propanol, de-ionized water, and then soaked in dilute HF (50:1, de-ionized

H2O to standard 49% concentrated HF ) to remove surface oxidation. The

strips are then loaded into a teflon array which clamps to each strip a plat-

inum wire firmly along the top long edge of the polished side.

The array is then loaded into a custom built etching system (Figure 2.1).

The array sits in the top block which rests on lugs attached to a threaded

rod. When the rod is turned by a stepper motor, the top block is lowered.

This allows one to lower the silicon strips further into the etchant bath in a

teflon basin at a controlled rate.

Etching generates heat so the bottom of the basin is very thin and sits on

a heat exchanger. A small bore hole was placed on the side of the basin to

a depth that left only a thin teflon separator. This allowed a thermocouple

to be placed close to the bath to monitor its temperature. The heat sink is

formed from two metal blocks with a serpentine channel cut in it for coolant

to flow through. Initially a peltier cooler was placed under the bath to draw

heat from the etchant bath to the tap water cooled heat sink. However the

heat load the peltier could handle was small and when etching just a few

strips, the temperature could swing over 20 deg C. Another issue was the

peltier coolers were run near their limit and would eventually fail, which

required them to be changed periodically. So the design was updated by

removing the peltier cooler entirely, and instead of cold tap water a refrig-

erated coolant system with a pump was used. The heat sink is now pressed

directly against the bottom of the basin with thermal grease.
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Figure 2.1: Diagram of the etching system. An array of silicon wafer strips is
placed in the top block. A stepper motor lowers the strips at a controlled rate
into an etching bath in the basin. Refrigerated coolant is pumped through a
metal block to remove heat from the bath during etching.

The chilled coolant consists of an ethylene glycol and water mixture to

allow safely cooling near the freezing point of water. Common running pa-

rameters were: 60-65 mA per silicon strip, coolant running at 2 deg C, with

the thermocouple reading of the bath reporting 15-20 deg C during etching.

With this enhanced heat exchange capability 5 strips could be etched at the

same time with the thermocouple reading increasing only about 5 deg C

during an hour of etching.

The chemical bath and electrical configuration for the anodization is sum-

marized in Figure 2.2. The etchant is a solution of hydrofluoric acid, meth-

anol, and hydrogen peroxide in a ratio HF : CH3OH : H2O2 = 1:2:3 by volume

of standard commercially available concentrations (while the methanol can

be purchased pure, non-fuming aqueous HF has a standard concentration of

49% HF , and hydrogen peroxide was purchased as an aqueous solution of

30% H2O2 ). A current source is attached to the silicon strip and a plat-

inum electrode in the etchant bath, with the positive voltage terminal on the

p-doped silicon. The dopant level of the silicon is low enough that its resis-

tivity is less than the etchant solution. This means the current is strongly
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Figure 2.2: Simplified view of etching setup. Current is driven through a
silicon strip, then the etching solution, to a platinum electrode also in the
solution. The solution is a 1:2:3 ratio of HF : CH3OH : H2O2 which has a
lower resistivity than the silicon, so the current and etching is focused on the
meniscus.

focused at the meniscus of the solution. This allows current densities of

∼100 mA/cm2 to be achieved [23].

The purpose of lowering the strips into the etchant bath at a controlled

rate is to slowly sweep this etching across the surface of the silicon strip

producing a uniform etch. Typically an etch would be performed for 60-90

minutes with the strips lowered at a rate of 3 mm/hr. Etching longer than

this starts reducing the smaller structures in the porous silicon eventually

giving a mostly polished surface. After the etching is complete the array

of strips is removed, rinsed in de-ionized water, then isopropanol and dried.

The strips are then placed in a solvent of choice and sonicated for 10 minutes.

Large chunks of porous silicon will settle to the bottom leaving a suspension

of nanocrystalline silicon in the solvent. Samples are passed through 50 nm

filters to ensure the removal of any larger pieces.

The peroxide is a strong oxidizer and increases the etching rate by par-

tially oxidizing the bulk silicon surface, which is quickly removed by the

hydrofluoric acid [24]. The peroxide also increases the pH, reducing the avail-

able hydrogen ions in solution. While the detailed kinetics of the reaction are

unclear, the peroxide/HF etchant preferably leaves behind mono-hydride ter-

minated surfaces. This is evidenced in FTIR spectra by a strong increase in

the mono-hydride vibrational modes along with an almost complete elimina-

tion of the di- and tri-hydride vibrational modes [14]. The primary purpose

of the methanol is to reduce surface tension and bubbling during etching.
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Figure 2.3: A high resolution TEM image obtained by Osama Nayfeh et
al. of particles created by the anodization system described here using a
peroxide and HF etching solution [26]. A lattice fringe spacing of 3.14 Å is
visible which corresponds to the spacing of Si (111) planes.

In measuring the resultant particle size distribution using a TEM, it was

discovered that the peroxide with HF etching solution produced spherical

particles with preferred sizes [15]. Below about 3 nm the size distribution

became peaked in discrete sizes of 1 nm, 1.7 nm, 2.2 nm, 2.9 nm. The

smallest size exhibits fluorescence in the blue (410 nm), with the emission

wavelength increasing for the larger particles through green, yellow, and red

(650 nm).

The distribution can be tuned by changing the current source during

etching [25]. Larger currents shift the distribution toward the smaller sizes.

While this does not allow precise enough control to obtain just one inter-

mediate value, at larger currents it is possible to obtain predominantly the

smallest of the discrete sizes: the 1 nm particles.

Figure 2.3 shows particles created with this etching method which Osama

Nayfeh et al. dispersed on a carbon TEM grid [26]. These particles were cre-

ated at a lower current to obtain primarily 2.7 nm particles suspended in

isopropanol . The particles have low defect density as the lattice fringing

can clearly be seen, with no obvious oxide capping visible. Previous studies

have shown via x-ray photo-spectroscopy in a TEM that oxygen is nearly
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Figure 2.4: Overview of particle fabrication with Pt catalyst. A strip of
silicon is first treated in a solution of hexachloroplatinic acid, then etched in
a solution of hydrogen peroxide and HF, and finally sonicated in a solvent of
choice.

absent on the particles, and shown lattice fringing clearly visible on parti-

cles down to 1.7 nm in size with 1 nm particles being slightly too small to

clearly discern internal structure [27]. So crystallinity and the hydrogenated

surface is stable enough to last over times necessary to handle and perform

experiments. When illuminated by a handheld UV lamp, the fluorescence of

samples is still visible to the naked eye after months, indicating the particles

created with this method are quite stable and robust in solution.

2.3 Electrode-less platinum catalyst method

The external electrodes of the previous method provided an advantage by

allowing the current, and thus etching, to be narrowly focused on the menis-

cus. This however also causes the disadvantage of requiring a sweep across

the surface and the additional machinery to make such a procedure reliably

repeatable. It would be beneficial if intense etching could be focused without

the need of externally driven current.

A method has recently been developed that uses a platinum catalyst

instead of externally driven current [28]. Any piece of crystalline silicon can

be used in this method, however it is convenient to use strips of the same

wafers used in the previously discussed method. An overview of the process

is shown in Figure 2.4. The process involves three steps: a step which plates

platinum on the surface, a step which creates porous silicon, and the final step
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of sonicating in a solvent of choice to create a silicon nanoparticle suspension.

The plating solution contains hexachloroplatinic acid, hydrofluoric acid,

and de-ionized water. A stock solution of hexachloroplatinic acid, initially

obtained as a salt, is prepared by mixing 1 gm per 100 mL of water resulting

in about a 0.025 M mixture. Then a plating solution is made by mixing in

the volume ratio 3:10:27 = H2PtCl6:HF:H2O from the stock platinic solution

and 49% concentration HF.

Like the current driven method described previously, the etchant solution

contains hydrofluoric acid, hydrogen peroxide, and methanol. However the

concentrations are different. This etching mixture is HF:CH3OH:H2O2:H2O

= 2:4:3:3 by volume (again using 49% HF, and 30% peroxide stock solutions).

The full etching procedure starts with a cleaned silicon strip. Then it is

soaked in the plating solution for 10-15 min. The strip is then removed and

rinsed in water to remove any residual acid. Then it is placed in the etching

solution bath for 30 sec. At this point the solution bubbles rapidly indicating

etching is occurring. At the end of etching the strip is removed and rinsed in

water to remove residual etching solution and stop the reaction. The strip is

then rinsed in the solvent desired for the particle suspension, and placed in

a vial of the solvent. The vial is sonicated for 10 minutes which breaks up

the porous silicon releasing nanoparticles into the solvent. Big porous silicon

pieces will settle out, and the remaining solution will be pushed through

a 50 nm filter to ensure larger pieces are removed. The resulting silicon

nanoparticle solutions fluoresce strongly in the orange and red spectrum,

indicating this process succeeds in producing silicon structures small enough

to observe quantum confinement effects.

The mechanism of this etching is illustrated in Figure 2.5. During the

plating step a spontaneous electrochemical reaction reduces the platinic acid

to platinum on the silicon surface. The thermodynamics of the platinum leads

to formation of small spherical platinum deposits instead of a uniform layer

on the surface. Hydrogen peroxide dissociates on the surface of many metals,

including platinum. Therefore when this surface is placed in the etchant

solution, rapid dissociation of the peroxide occurs causing the bubbling seen

during this step as well as oxidation of the silicon near the platinum deposits.

This oxide is continually etched and removed by the hydrofluoric acid, overall

allowing the deposits to burrow into the silicon. The rapid oxidation and

etching near the platinum causes porous silicon to form on the surface of the
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Figure 2.5: The etching mechanism of the Pt catalyst is summarized as fol-
lows: peroxide dissociates on the surface of platinum particles, which oxidizes
the surrounded silicon, and the oxide is in turn removed by the hydrofluoric
acid. This process allows the platinum particles to effectively ‘eat’ into the
silicon.

pores as the platinum randomly eats through the underlying substrate.

The process of the platinum burrowing into the silicon can be seen in SEM

images taken of the surface of a sample which was etched for only a couple

seconds (Figure 2.6). Many bright platinum deposits can be seen sitting in

rounded pits which they have already started etching into the silicon surface.

The platinum deposits vary greatly in size from below 0.2 microns to about

1.3 microns. In Figure 2.7 a higher magnification is used to reveal the smallest

platinum deposits are about 100 nm in size. After allowing etching for 30

seconds the silicon surface becomes riddled with etching pits (Figure 2.8).

Porous silicon forms on the walls of the pits where the dissociated peroxide

and HF caused rapid oxidation and etching. In essence, the platinum deposits

create intense focused etching, and in this sense plays the role of the current

focused on the meniscus in the anodization method.

In order to analyze the resulting nanoparticle sizes, samples created with

the Pt catalyzed method were deposited on Cu TEM grids with a formvar

support structure. One such grid was prepared via placing a small drop of

nanoparticles solution on it and allowing it to dry. As the size of the particles

is actually smaller than the thickness of the support structure, achieving

good contrast in bright field imaging was difficult. So dark field imaging in

a scanning transmission electron microscope (STEM) was used. A detector

placed off of the bright field path detects electron scattering as the beam

is swept across the sample. As scattering is highly Z dependent this helps
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Figure 2.6: An SEM image showing the platinum catalyzed etching, with the
platinum deposits burrowing into the silicon surface.
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Figure 2.7: An SEM image at higher magnification to highlight some of the
smaller platinum deposits.
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Figure 2.8: An SEM image showing the silicon surface after 30 seconds of
etching, resulting in a highly pitted surface covered in porous silicon.
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Figure 2.9: STEM image of Si particles created with the Pt catalyst method
and drop dried onto a TEM grid. The brighter spots indicate more electron
scattering, while dark indicates less.

increase contrast. In Figure 2.9 particles appear predominantly spherical in

shape with particles ranging in size from about 6.5 nm down to about 1.6

nm which is near the resolution limit that could be obtained in this image.

Further investigation with a grid having a thinner support structure would

be necessary to fully investigate the size distribution.

The size distribution using this platinum catalyzed method currently can-

not be controlled very well. Therefore to obtain the 1 nm particles studied

in the further chapters, the anodization method was used. However the plat-

inum catalyzed method shows promise for a couple reasons. First, it is much

quicker than the anodization method. Secondly, because no electrodes are
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needed, it can be performed on any crystalline silicon including the silicon

dust which is currently just a waste product when cutting wafers from silicon

boules [28]. This indicates that the catalyzed etching method may prove to

be the best route to manufacturability if silicon nanoparticles are to be used

in large quantities in future devices or applications.
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Chapter 3

Molecular Structure of 1nm
Nanocrystals

The discovery of preferred sizes in the fabrication of nanoparticles leads to

the natural question of what makes these sizes preferred, and what is the

actual structure of these particles. As discussed in the previous chapter, an-

odic etching in HF preferentially etches (100) hydrogenated silicon surfaces

over (111) hydrogenated silicon surfaces [22]. This indicates the di-hydride

termination on the (100) surface is more reactive to the etchant, while the

mono-hydride termination on the (111) surface is relatively resistant. Fur-

thermore, the addition of hydrogen peroxide to the etchant was found to in-

crease this selectivity to create porous silicon with near ideal mono-hydride

termination [14]. This selectivity is most likely the key to the preferred sizes,

for if a spherical chunk of silicon was carved out of a bulk single crystal, every

two layers of silicon added to the sphere would result in the surface atoms

having predominantly only one dangling bond (in etching, these of course

are terminated with hydrogen).

The small size of nanocrystals lends itself well to computational methods.

The structure and electronic properties of silicon clusters have been previ-

ously studied by numerous methods including tight-binding[29, 1], empirical

pseudo-potentials[30], GW-Bethe Salpeter (GW-BSE)[31, 32], density func-

tional theory (DFT) [33, 34, 35], and quantum Monte Carlo (QMC) [36, 37].

However it has been noted that while significant progress has been made in

matching computational models with experimental data for clusters larger

than 2 nm, there remains difficulty interpreting properties in the smaller

regime where the surface atoms become a significant portion of the volume

[38]. Indeed previous work has noted that experimentally determined energy

levels of particles larger than 2 nm can be fit well even with a simplified

‘quasi-particle in a box’ confinement model, while smaller silicon nanocry-

stals do not [27]. This indicates that below 2 nm the molecular nature of

the particles becomes increasingly important. Therefore when discussing the
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Figure 3.1: Si29H36 - ‘bulk configuration’ 1 nm silicon particle. The silicon
atoms (purple) have position similar to that in bulk, with surface bonds
terminated with hydrogen atoms (light blue).

smallest of the preferred sizes, the 1 nm silicon particle, an understanding of

the surface structure and composition are crucial.

A good starting point for investigating the structure of the 1 nm sili-

con particle is taking a spherical cut out of bulk and replacing any dangling

bonds with hydrogen. The resulting structure, Si29H36, will be referred to

as the bulk configuration and is illustrated in Figure 3.1. The particle has

a tetrahedral core of 5 silicon atoms, surrounded with 24 silicon on the sur-

face of which 12 have single termination and the other 12 have di-hydride

termination.

It was argued earlier that there is a strong indication the preferred sizes

come from the preference for mono-hydride termination. In the bulk con-
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Figure 3.2: Surface reconstruction dimers. For each pair of di-hydride ter-
minated silicon atoms in the Si29H36 ‘bulk configuration’, two hydrogen are
removed and the silicon atoms are bonded. This bond is referred to as a
dimer.

figuration, the 1 nm particle has just as many mono-hydride and di-hydride

surface terminations. This may therefore not appear to be very stable in light

of the mono-hydride preference. Compare this however to the structure cre-

ated by adding just one more layer of silicon atoms to the bulk configuration,

which would have 12 di-hydride and 24 tri-hydride terminations.

While there is no spherical cut out of the bulk that will leave only mono-

hydride surface atoms, it is possible via surface reconstruction of the bulk

configuration to obtain a 1 nm silicon particle with only mono-hydride ter-

mination. The 12 di-hydride silicon atoms in the bulk configuration sit such

that they form 6 pairs. If two hydrogen are removed from each silicon pair

and a bond between them is added, the surface now only has mono-hydride

termination. This is similar to a (100) Si surface reconstruction dimer, so

such reconstructed bonds are referred to in literature as a dimer (to avoid

confusion, please note the reconstructed surface bonds here do not have a

double bond nature like in the (100) dimer case, because here the atoms

each have a single hydrogen termination as well). This suggested reconstruc-

tion is illustrated in Figure 3.2.
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To compare possible structures for the 1 nm silicon particle, previous

calculations have primarily made predictions and comparisons with the ex-

perimental absorbance measurements. In particular, the absorption edge at

the ‘band gap’ energy has been particularly focused on. This band gap was

experimentally determined to be 3.5 eV [37].

For the bulk like configuration Si29H36 with no surface reconstruction,

Delerue et al. [39] calculated a gap ∼ 5 eV using a tight binding (TB)

method. Using fixed-node diffusion quantum Monte Carlo (QMC) methods,

Mitas et al. [37] and Williamson et al. [40, 41, 42] also found the bulk

configuration had a band gap larger than the experimental value. Mitas et

al. calculated a gap of 4.8 eV, while Williamson et al. reported 5.3± 0.1 eV.

Time dependent density functional theory (TDDFT) has also been employed

by Vasiliev and Martin to predict an absorption edge of 4.2 eV [43].

These initial calculations found the band gap of the bulk configuration

to be significantly greater than the experimental value, so various changes

in the structure were proposed. It was found that either double bonded

Si=O surface oxidation or bridging Si-O-Si oxidation will reduce the band

gap according to tight binding [44, 45, 46] and TDDFT [47, 48] calculations.

Also surface reconstruction via the formation of one or more dimers will also

reduce the band gap according to TB [2, 44], QMC [37], and TDDFT [49, 43].

However there is disagreement in literature over which structure fits best

with the experimental evidence. After comparing structures Martin et al.

[50] and Mitas et al. [37, 38] conclude the fully reconstructed Si29H24 with 6

dimers fits the data best. However more recent reports in 2005 by Lehtonen

et al. [51] and in 2008 by Zhanpeisov et al. [52] provide calculations and

interpret structures with only bulk configuration and hydrogen termination

to be best fits to the data. And most recently in 2009, Garoufalis et al.

consider the purely hydrogenated bulk configuration structures to be ruled

out although note that surface oxygen in addition to dimers may play a role

[49].

To resolve these debates over surface reconstruction, it would be advan-

tageous to turn away from band-gap or absorption predictions and measure-

ments, and use instead a technique which could give a more direct finger print

of the surface state itself. If the particles are quite homogeneous in not just

size but also molecular structure, it is possible to use Raman spectroscopy

of the particles in solution to provide information on vibrational modes of
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Figure 3.3: Raman Stokes scattering: Incoming light of frequency ω scatters
off of a material, exciting a vibrational mode of frequency ω′. The resulting
scattered light has a frequency ω − ω′.

the particles. Such an experiment was successfully carried out by Satish Rao

[23], providing measurements of the frequency of Raman active modes and

the polarization of light scattering by these modes.

In this chapter, vibrational modes of several potential 1 nm silicon particle

structures containing surface reconstruction dimers or surface oxidation will

be calculated at the Restricted Hartree-Fock (RHF) level with a 6-311G(d,p)

atomic basis. The symmetry of the vibrational modes will be used to deter-

mine if they are Raman active, and whether scattering will be unpolarized.

Comparison to the Raman measurements of Rao can then indicate which 1

nm structure is preferably created in our etching system.

3.1 Raman scattering

Raman scattering is an inelastic scattering process where light scattering off

a molecule transfers energy to or from vibrational modes of the material.

If the molecule is excited to a higher vibrational energy, this is referred

to as Stokes scattering (Fig. 3.3). At non-zero temperature, even before

any external interaction with light, not all of the molecules will be in the

vibrational ground state. For the population in an excited vibrational state,

it is also possible for the light to inelastically scatter by gaining a quantum

of vibrational energy from the molecule while the molecule transitions down

one level in vibrational energy. This scattering is referred to as Anti-Stokes

scattering.

Raman scattering can be measured by focusing a laser on a solid or liquid

sample, and collecting scattered light away from the transmitted or reflected
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beam. The scattered light is collected onto a diffraction grating to separate

the much larger elastic scattering signal still at the source laser frequency.

The diffracted light then falls on a CCD camera allowing measurement of

the intensity of the scattered light versus frequency. Because the equilibrium

ground state population of the molecules will always be non-zero at any tem-

perature, the Stokes scattering will always be larger and therefore scattered

light with lower energy than the laser stimulation is recorded.

The difference in energy between the recorded scattering peaks and laser

line therefore provide the energy of vibrations in the molecule. So Raman

scattering gives an experimental insight in the molecular structure. In ad-

dition to the peak position, by placing polarizers in front of the incident

light as well as the scattering detector the degree of polarization that is re-

tained during scattering can provide information about the symmetry of the

vibrational mode. However, not all vibrations are Raman active. So before

discussing calculations of vibrational modes of different potential nanopar-

ticle structures, first a overview of the theory of Raman scattering will be

presented.

Light scattering from a molecule can be adequately treated as an external

classical perturbation for our purposes here. With an external oscillating

electric field

E = E0 cosω0t (3.1)

this field will induce a dipole µ in the molecule according to the polarizability

tensor α.

µ = α · E = α · E0 cosω0t (3.2)

Since the induced dipole is oscillating it will radiate, which describes the

scattered light. Now if the molecule is classically vibrating along a normal

mode such that the atomic displacements are given by:

qn = An cosωt (3.3)

then if vibrational motion of the molecule affects the polarization tensor,

classically we can consider separating it into a static term α0 and a term

oscillating with the vibrational motion

α = α0 + α1 cosωt (3.4)
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where

α1 =
∑
n

∂α

∂qn

∣∣∣∣
qn=0

An (3.5)

Putting this all together yields

µ =(α0 + α1 cosωt)E

=(α0 + α1 cosωt)E0 cosω0t

=α0E0 cos(ω0t) + α1E0
1

2
[cos(ω0 − ω)t+ cos(ω0 + ω)t]

(3.6)

The first term is just elastic scattering which is referred to as Rayleigh scat-

tering. The ω0 + ω and ω0− ω terms are the Raman Anti-Stokes and Stokes

scattering respectively. The coefficient α1 as defined above is equal to the

amplitude of the vibrational motion times the derivative of the polarization

tensor along the normal mode. The Raman scattering selection rule is there-

fore: a vibrational mode is Raman active if it changes the polarization of the

molecule.

The polarization of the scattered light provides additional information

about the vibrational modes. If the incident laser light is polarized, and the

scattered light is detected in the plane perpendicular to this polarization,

it is possible for the resulting scattering to become depolarized (Fig. 3.4).

By placing a polarizer in front of the detector, the scattering intensity I‖

parallel to the initial polarization and the perpendicular intensity I⊥ can be

measured. Because the molecular orientation cannot be controlled and the

absolute scattering cross section is uninteresting here, the spatial average

given by the depolarization ratio ρ = I⊥/I‖ is the important resulting factor.

To discuss the polarization of the scattered light, it is convenient to look at

the components of the derivative of the polarization tensor along a vibrational

mode Q

α′ =
∂α

∂Q

∣∣∣∣
Q=0

=

 α′xx α′xy α′xz

α′yx α′yy α′yz

α′zx α′zy α′zz

 (3.7)

Because the polarization tensor α is symmetric, so is the polarization deriva-

tive α′. This means it is always possible to appropriately choose axes to

diagonalize the tensor. These coordinate axes are referred to as the princi-

ple axes. The tensor can also be decomposed into a fully symmetric term
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Figure 3.4: Depolarization in Raman scattering: Here light initially linearly
polarized in the ẑ direction scatters off of material at the origin. The light
scattered along the y-axis can have a component of polarization along the
original ẑ direction and a component perpendicular in the x̂ direction. The
intensity of light in these polarizations are referred to as I‖ and I⊥ respec-
tively, and the depolarization ratio is defined as ρ = I⊥/I‖.

proportional to the identity and the remaining anisotropic part.

α′ = α′iso + α′aniso (3.8)

In the principle axes coordinate system the isotropic part has a magnitude

a =
1

3
(α′xx + α′yy + α′zz) (3.9)

while the anisotropic part is characterized by the value

γ2 =
1

2

[
(α′xx − α′yy)2 + (α′yy − α′zz)2 + (α′zz − α′xx)2

]
. (3.10)

After spatial averaging the depolarization ratio ρ is found to be [53]

ρ =
I⊥
I‖

=
3γ2

45a2 + 4γ2
(3.11)

Therefore the depolarization ratio is restricted to the range 0 ≤ ρ ≤ 3/4.

It should be noted that the previous classical analysis may give a mis-

leading impression of Raman scattering in the quantum mechanics treatment.

The main issue is the discussion of vibration itself. The classical analysis al-
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lows useful insight and correctly gives details on selecting which vibrational

modes are Raman active as well as the range of depolarization ratios. How-

ever in quantum mechanics, the different energy levels of a harmonic well is

described by a stationary state. There is no oscillating vibrational motion

as the expectation value of the nuclear positions is independent of time. Be-

cause the classical results are related to the quantum mechanics treatment

in the appropriate limit, it should not be surprising that we can obtain an

understanding of the scattering requirements and polarization relations from

studying the classical picture.

In the quantum treatment of emission or absorption, instead of the classi-

cal picture of an oscillating dipole, the relevant quantity is matrix elements of

the dipole operator. If there is a non-zero transition moment 〈f |µ̂|i〉 between

initial state i and final state f , then such a transition is ‘dipole allowed’ for

absorption and emission of photons. In analogy, for a quantum treatment

of Raman scattering, the polarizability derivative and vibrational motion of

classical treatment is replaced with a matrix element representing the polar-

ization transition moment 〈f |α̂|i〉.
The polarization operator α̂ can be built from a tensor product of the

dipole operator and thus the αxx component acts under symmetry opera-

tions the same way as the cartesian function xx (and αyz as yz, etc.) [54].

If one knows the symmetry of the initial and final state, it is then possi-

ble to predict whether a Raman scattering transition is allowed solely from

symmetry principles.

Td E 8C3 3C2 6S4 6σd
A1 1 1 1 1 1 x2 + y2 + z2

A2 1 1 1 -1 -1
E 2 -1 2 0 0 (2z2 − x2 − y2, x2 − y2)
T1 3 0 -1 1 -1 (Rx, Ry, Rz)
T2 3 0 -1 -1 1 (x, y, z) (xy, xz, yz)

Table 3.1: The character table for the Td symmetry point group. The five
irreducible representations are listed in the first column, and the effect of
the symmetry operations of the group listed on the top row are signified by
character values in the table. Some Cartesian functions and rotations are
given in the last columns to denote their irreducible representation in this
point group.

The nuclear positions of Si29H24 and Si29H36 have Td point group symme-
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try. This symmetry is summarized in Table 3.1. Just as in the simple case

that the integral over space of an even function times an odd function will be

zero, the integral representing the matrix element |〈1|α̂ij|0〉|2 can be non-zero

only if the irreducible representation products of the final state, polarization

tensor, and initial state

Γ(ψ∗1)⊗ Γ(αij)⊗ Γ(ψ0) (3.12)

contains the irreducible representation of the identity. This representation is

A1 as seen in the table by all the characters equalling one. The ground state

will also be in the same irreducible representation as the identity, A1. The

final states after Stokes Raman scattering will have one quanta of vibrational

energy more than this ground state. The final state will therefore be in the

irreducible representation of the vibrational mode under consideration. Since

the components of the polarization tensor transform like binary products of

the cartesian coordinates, in Td symmetry they are represented by A1, E,

and T2.

The only tensor products of two irreducible representations which con-

tain the identity are the product of each irreducible representation with itself.

Therefore the only vibrational modes which will be Raman active in Td sym-

metry are represented by A1, E, and T2. Furthermore, since A1 modes have

the same symmetry as the cartesian function (x2 + y2 + z2) this means the

components of the polarization transition moment will give a depolarization

ratio ρ = 0 because γ = 0. Conversely, modes of E and T2 symmetry will

produce maximally depolarized Raman scattering with ρ = 3/4 because the

isotropic component is zero.

3.2 Hartree-Fock

Hartree-Fock theory is an ab initio quantum chemistry method. The starting

point is the following Hamiltonian (cast into a dimensionless equation using
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atomic units for simplicity)

H =−
Ne∑
i=1

1

2
∇2
i −

Nn∑
A=1

1

2MA

∇2
A

−
Ne∑
i=1

Nn∑
A=1

ZA
riA

+
Ne∑
i=1

Ne∑
j>i

1

rij
+

Nn∑
A=1

Nn∑
B>A

ZAZB
rAB

(3.13)

Ne is the number of electrons, Nn the number of nuclei, and i, j refer to

electrons while A,B refer to nuclei. Note that the Hamiltonian does not in-

clude any magnetic interactions. Furthermore, this is non-relativistic, so it is

necessary to add the additional requirement that the electron wavefunctions

are anti-symmetric to exchange. Solving for the eigenfunctions and eigen-

values of this using analytical methods is intractable. Therefore a series of

approximations are necessary to allow solving this in an efficient manner.

The melectron � mnuclei (even for hydrogen melectron
mnucleus

< 10−3). So the

electrons will have much larger velocities than the nuclei. To good approxi-

mation we can consider the electrons being able to adjust fast enough that

at any point in time the electron wave function is the same as if the nuclei

were fixed in position. This is the Born-Oppenheimer approximation, and

decouples the electron and nuclear wavefunction. That is

ψ = ψelectronψnuclear (3.14)

where ψelectron still depends parametrically on the nuclei coordinates, but

only explicitly on the electron coordinates.

The next approximation is the use of the variational method to approxi-

mate the ground state. The wavefunction is written as a ‘trial wavefunction’

depending not only on the electron positions, but also several parameters.

The parameters are then varied to minimize the expectation value of the

Hamiltonian. As the actual eigenfunctions of the Hamiltonian form a com-

plete set, minimizing the trail function expectation value can be seen as re-

ducing the coefficients of excited states in the actual eigenfunction expansion.

The wavefunction obtained using this method is the best approximation to

the ground state using the chosen trial wavefunction parameterization. In the

limit of an infinite and complete parametrization, the ground state solution

is exact.
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In practice, a finite parameterization of the ground state wavefunction is

of course necessary. The Hartree-Fock approximation, also called the molec-

ular orbital approximation, is to build a trial wavefunction from a slater

determinant of molecular orbitals

ψ(x1,x2, . . . ,xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
φ1(x1) φ2(x1) · · · φN(x1)

φ1(x2) φ2(x2) · · · φN(x2)
...

...
...

φ1(xN) φ2(xN) · · · φN(xN)

∣∣∣∣∣∣∣∣∣∣
. (3.15)

The molecular orbitals themselves are parameterized as a linear combination

of atomic orbitals (LCAO). Often the atomic orbitals are further built from a

linear combination of gaussians times cartesian functions in order to simplify

integrations. The slater determinant structure guarantees the wavefunction

is anti-symmetric to exchange of electron coordinates.

This choice of wavefunction with a product of individual molecular or-

bitals has no spatial correlation between electron coordinates. So the Hartree-

Fock approximation deals with inter-electron interactions by essentially av-

eraging over the molecular orbital. Now each orbital is decoupled in a sense,

anf the variational principle leads to the Hartee-Fock equation which is an

eigenvector equation for each molecular orbital individually [55].

Fφi = εiφi (3.16)

Where φi is the ith molecular orbital, and εi is its associated energy. The

Fock operator F is defined as

Fφi =

[
1

2
∇2
i −

∑
A

ZA
riA

+
∑
j 6=i

(Jj −Kj)

]
φi (3.17)

Where J is the coulomb operator and K is the exchange operator defined as

Jjφi(r1) =

[∫
d3r2 φ

∗
j(r2) r−1

12 φj(r2)

]
φi(r1) (3.18)

Kjφi(r1) =

[∫
d3r2 φ

∗
j(r2) r−1

12 φi(r2)

]
φi(r1) (3.19)

Since the Fock operator itself depends on the molecular orbitals, the
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equation is non-linear and must be solved iteratively. Some ‘initial guess’

molecular orbitals are used, the Fock operator is calculated, and then the

eigenvectors are solved for with standard linear algebra methods. These new

molecular orbitals are used and the process is repeated until it hopefully

converges (ie. the orbitals used to build the Fock operator are the same as

the resulting eigenvectors). For this reason, the method is called the SCF

(Self-Consistant Field) method.

There are more advanced techniques that, instead of using the new eigen-

vectors directly, use the results of the current iteration along with past results

to predict where the final answer is. This greatly reduces the number of SCF

iterations necessary. While the math behind these ‘convergers’ is more com-

plicated, the basic idea behind the method remains the same.

The Hartree-Fock ground state for an N electron system is just the slater

determinant of the N lowest energy molecular orbitals.

ψHF−GND = |φ1φ2...φN〉 (3.20)

The energy of this ground state is not just the sum of the orbital energies.

This is because each orbital energy accounts for the interaction of that orbital

with all other filled orbitals. So adding them together double counts the

electron-electron interactions.

Hartree-Fock ground state (and all individual slater determinants made

from the orbitals) have no electron correlation effects. In reality the electrons

don’t just feel an ‘averaged effect’ from another electron’s orbital. Their

positions can be correlated to rarely be near each other, and thus reduce the

total energy. This energy is called the correlation energy.

At the level of the Hartree-Fock approximation, the orbital energies do

have a physical meaning. For the filled orbitals, the orbital energy is the

vertical ionization potential for that electron from the HF ground state. For

the unfilled ‘virtual orbitals’, the orbital energy is the vertical electron affinity

(adding an electron to the HF ground state). Note that this is only true for

adding or removing one electron, beyond that would be adjusting a state that

is not the HF ground state (to get the correct answer it would be necessary

to recalculate the orbital energies with one more (or less) electron in the

system). The electron affinities calculated this way are however not very

accurate as correlation effects are very important in reducing the energy
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in negatively charged systems. Comparatively, the HF vertical ionization

potential predictions are much better, especially when the ground state is a

neutral molecule.

While the absolute energies of the HF ground state itself are not very

accurate, the differences in energy between two similar configurations are

useful for experimental predictions. As in all levels of multi-electron the-

ory, any question about molecular properties are best phrased in terms of

differences between structures. Even minimal atomic basis sets can achieve

predictions that on average only deviate from experiment 0.05 Å for bond

lengths and ±10◦ for bond angles [56].

Predictions of molecular properties at the HF level can be improved by

adding additional freedom to the atomic basis by splitting the valence func-

tions into multiple pieces and adding higher order polarization functions. The

double or triple split valence functions gives extra freedom basically allowing

the valence functions to contract or expand slightly during application of

the variational method. Additional polarization functions, such as p orbitals

for hydrogen and d functions for oxygen or silicon, allow better description

of the resulting bonds. A triple valence basis with polarization functions

can obtain improvements to experimental predictions, bringing bond lengths

within 0.02 Å and bond angles to ±3◦ on average. Improvement beyond this

accuracy cannot be achieved with larger basis sets, but instead require using

methods beyond Hartree-Fock which include electron correlation effects [56].

Once the Hartree-Fock wavefunction is obtained for a particular nuclear

position, the gradient of the energy with respect to the nuclear position can be

calculated analytically. The equilibrium ground state geometry can then be

calculated through an iterative process of calculating the gradient, adjusting

the nuclear positions, and repeating until the energy change and nuclear

gradient is less than some threshold. If needed, the nuclear wavefunction can

be given as a harmonic well approximation of the nuclear position potential

energy surface around this minimum.

In quantum chemistry the second derivative of the energy with respect to

the nuclear positions is referred to as simply the Hessian. This can be cal-

culated analytically for small molecules, but for larger molecules a numeric

differentiation is necessary. This is done by calculating the energy in the

equilibrium position, and then for each atom, performing a gradient calcu-

lation at a structure with that atom displaced slightly along each cartesian
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direction. This provides a straight forward estimate of the Hessian

∂2E

(∂qi)(∂qj)
≈ 1

d

[
∂E(qi)

∂qj
− ∂E(0)

∂qj

]
(3.21)

where qi are the nuclear coordinates, E(qi) is the energy of the structure

with the qi coordinate displaced by d, and E(0) is energy of the undisplaced

structure. This may not produce a Hessian symmetric in i, j and due to finite

displacement, the results can also depend on the direction of the displace-

ment.

To improve accuracy, usually a calculation for each of a positive and neg-

ative displacement in each cartesian direction is done. Therefore to calculate

the Hessian, the gradients are calculated for a total of 6N geometries, where

N is the number atoms in the structure. The result is:

∂2E

(∂qi)(∂qj)
≈ 1

4d

[
∂E(+qi)

∂qj
− ∂E(−qi)

∂qj
+
∂E(+qj)

∂qi
− ∂E(−qj)

∂qi

]
. (3.22)

The Hessian is now symmetric by design, and the effects of anharmonic

terms are reduced. If the equilibrium geometry has non trivial symmetry,

it is possible to reduce the number of calculations further by only doing

displacements of symmetry unique atoms.

Errors in the calculation of the vibrational energies from the Hessian

come from both mis-calculation of bond strength and the anharmonicity of

the potential well [57]. First, Hartree-Fock is known to overestimate the

strength of a bond given by the change in energy from stretching a bond.

Second, since the energy is quantized and the expectation of x2 increases

with the harmonic mode, the nuclear positions necessarily ‘sample’ a finite

region on the potential energy surface. The anharmonic terms can effect the

true frequency.

Comparing calculated harmonic results to experiment shows the error

can be largely handled with a systematic scaling factor. A comprehensive

study found that the scaling factor for Hartree-Fock calculations is consistent

with 0.90, with minimal dependence on the choice of basis set [58][59]. The

National Institute of Standards and Technology (NIST) maintains a Compu-

tational Chemistry Comparison and Benchmark Database (CCCBDB) which

can be used to check the accuracy of vibrational predictions of several com-

putational methods. As an example of a hydrogenated silicon molecule, for
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Si2H6 calculations performed using Hartree-Fock with a triple-split valence

basis set with polarization functions on the hydrogen and silicon (basis set

6-311G(d,p)) gave predictions for the vibrations with only a rms deviation of

33 cm−1 from experiment [60]. A large part of this deviation is from the Si-H

stretching modes ∼2100 cm−1 , while all the remaining modes are below 950

cm−1 . So a more appropriate comparison of the error may be the percent

deviation. The mean magnitude of the percent deviation is about 2.5% for

all modes as well as for just the subset of modes below 950 cm−1 , indicating

this may be a better measure of the error.

3.3 Calculations

Along with the bulk configuration Si29H36 and the structure with full surface

reconstruction Si29H24, four other potential structures for the 1 nm silicon

particle were considered. These six structures are illustrated in Fig. 3.5. As

discussed earlier in this chapter, oxidation or surface reconstruction dimers

have been predicted to give 1 nm structures a band gap close to experimental

measurements. So the structures were chosen to give a variety in the number

of dimers and oxygen included. Four structures give a range of surface recon-

struction with 6 dimers (Si29H24), 5 dimers (Si29H26), 1 dimer (Si29H34), and

no dimers with the bulk configuration (Si29H36). These can either be viewed

as ‘missing dimer’ defects from the reconstructed structure or dimer defects

from the bulk configuration.

Oxidation was considered by addition of bridging Si-O-Si (siloxane) bonds

in place of dimers. Other types of oxidation are potentially possible, how-

ever the stability of siloxane bonds lends them to being a likely candidate.

Another possibility are Si=O (silanone) bonds which have been studied theo-

retically on 1 nm silicon particles [46, 47], but these were not considered here

due to their reactivity. Unlike carbon one row up in the periodic table, silicon

does not easily form double bonds. In fact silanone has such high reactivity

that the difficulty in preparing stable species with a silanone group has inhib-

ited detailed study of them [61]. Another possible oxidation route are Si-OH

(silanol) groups which are much more stable than silanone. However silanol

groups are reactive with each other, as this is the basis of silicone polymer

production reactions. While silanol species in very dilute solution may rarely
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interact, they can react with the surface of glass vials leading to the coating

of a glass surface [62]. Therefore when considering stable solutions of silicon

particles, siloxane bonds are a likely oxidation method.

The equilibrium geometries for all structures were calculated with RHF

(Restricted Hartree Fock) theory using the quantum chemistry computa-

tional package GAMESS (General Atomic and Molecular Electronic Struc-

ture System) [63, 64, 65] using the 6-311G(d,p) basis set. Restricted Hartree

Fock only adds the requirement that every molecular orbital is doubly occu-

pied (closed shell). Since all structures have an even number of electrons, this

is reasonable. The 6-311G(d,p) basis set is built from a product of gaussians

and cartesian function with a triple split valence set with p-type polarization

functions added to hydrogen atoms and d-type polarization functions added

to all other atoms. Technically the ‘official’ 6-311G basis [66] is not defined

for atoms beyond Ne, so for silicon it is understood to mean a similarly de-

fined (and standard) basis called MC (McLean/Chandler ‘triple split’ basis)

[67].

From the equilibrium geometries, the Hessian was then calculated through

numerical differentiation of analytic gradients. To obtain vibrational frequen-

cies the Hessian must first be converted to ‘mass-weighted’ coordinates before

diagonalizing to get the normal modes. Classically the Hessian can be viewed

as the force constant matrix Kij for springs between the nuclei. If the dis-

placement of nuclear coordinate from equilibrium are collected into a vector

x, the force on the particle and direction corresponding to xi is

Fi = −Kijxi = Mij
d2

dt2
xi (3.23)

where summation over repeated indices is implied and Mij is just a diagonal

matrix with Mii equal to the mass of the nuclei corresponding to coordinate

xi. After taking the Fourier transform this becomes the matrix equation

−Kx = −ω2Mx (3.24)

This equation can be cast into an eigen value problem by reforming it as

(M−1/2KM−1/2)(M1/2x) = ω2(M1/2x) (3.25)
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Figure 3.5: Candidate structures for 1 nm silicon particles. The small atoms
on the surface with one bond are hydrogen (light blue). The atoms with
two bonds are oxygen (red). The largest atoms, with four bonds, represent
silicon (purple).
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The matrix M−1/2KM−1/2 is usually referred to as the Hessian in ‘mass

weighted’ cartesian coordinates. Because the masses are positive and M was

diagonal, this matrix is still Hermitian. It is now possible to diagonalize the

mass-weighted Hessian to solve for eigen values and eigen vectors to obtain

the vibrational normal modes and their associated frequencies.

To determine whether a mode can be Raman active and obtain predic-

tions of the polarization of scattering from such modes, it is then necessary

to determine the irreducible symmetry of each mode. Three of the structures

being considered have Td symmetry (Si29H24, Si29H36, Si29H24O6), while the

remaining three have C2v symmetry (Si29H26, Si29H34, Si29H24O). As the Hes-

sian is Hermitian, the eigenvectors will form a complete basis for describing

motion of the nuclei. Therefore if a symmetry operation is written as a ma-

trix C acting on the original cartesian basis of nuclei coordinates, this can be

transformed into the vibrational basis. In this new basis the matrix C will

be block diagonal relating only modes forming an irreducible representation.

For example in the Td point group symmetry, the representations A1, E, T1

are 1,2, and 3 dimensional representations respectively and so 1,2, and 3

modes respectively can be mixed during a symmetry operation. The N ×N
sub-matrix block C ′ from the block-diagonal C relating modes within one N

dimensional irreducible representation fully determines the effect of the sym-

metry operation on that representation. The trace of C ′ gives the character

of that operation for the representation. If the character is determined for

each symmetry operation, the representation can then be read directly off

the character table.

C2v E C2 σv(xz) σv(yz)
A1 1 1 1 1 z (x2, y2, z2)
A2 1 1 -1 -1 Rz xy
B1 1 -1 1 -1 (x,Ry) xz
B2 1 -1 -1 1 (y,Rx) yz

Table 3.2: The character table for the C2v symmetry point group. The four
irreducible representations are listed in the first column, and the effect of
the symmetry operations of the group listed on the top row are signified by
character values in the table. Some Cartesian functions and rotations are
given in the last columns to denote their irreducible representation in this
point group.
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This process of identifying the irreducible representation each vibrational

mode corresponds to is greatly simplified for C2v symmetry. The character

table for the C2v point group symmetry is given in Table 3.2. Because each

irreducible representation is one dimensional, there is no need to take the

extra step of block diagonalizing the symmetry operation matrix to obtain

the dimension of the representation and the corresponding sub-matrix op-

erating on it. Instead each symmetry operation will only have the effect of

multiplying the mode by 1 or -1.

In C2v symmetry, every irreducible representation is Raman active. Also,

every mode can have depolarized scattering. However representations A2, B1,

andB2 can only have maximally depolarized scattering. While representation

A1 can have depolarized scattering, it is the only representation allowing

perfectly polarized scattering with ρ = 0.

3.4 Comparison to experiment

Raman scattering of 1 nm silicon particles suspended in solution were re-

ported by Satish Rao in 2007 [68]. Solvent Raman peaks restricted the fre-

quency range that the silicon peaks could be clearly distinguished, but four

peaks not matching known solvent scattering were observed. Comparing sep-

arately fabricated samples in iso-propanol, benzene, and THF, and control

samples of just solvent showed that the peaks were repeatable, independent

of the solvent, and not a systematic artifact of the measuring setup or quartz

cuvettes used to hold the samples.

The four peaks are in the region 250 cm−1 - 500 cm−1 which the calcula-

tions indicate correspond to Si-Si stretching modes. This therefore will allow

comparison of all the candidate structures. The summary of the measured

peak locations, line widths, and depolarization ratios are given in Table 3.3

from Ref [23].

Without the aid of the vibrational calculations, the relatively strong peak

at 485 cm−1 could be taken as evidence of oxidation for the Si-O-Si symmet-

ric stretch which is known to be strongly Raman active and lie in the range

450-550 cm−1 [69, 70]. To assist in assignment of the modes, the Chemcraft

[71] molecular visualization tool was used to animate the vibrational modes.

In Si29H24O there was a single Si-O-Si symmetric stretching mode which oc-
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curred at 510 cm−1 with A1 representation. In Si29H24O6 there were six total

modes, collected into representations E, T2, A1 which frequencies 531, 532,

535 cm−1 respectively. So Raman scattering is symmetry allowed from all of

these Si-O-Si modes. At a difference of 25 cm−1 the calculated vibrational

frequency for the singly oxidized structure may be consistent with assigning

the experimental 485 cm−1 peak to the Si-O-Si stretch. However, for the Td

symmetric structure Si29H24O6 the difference in experimental peak from the

calculated oxygen modes is > 45 cm−1 ruling out this assignment.

As argued by Satish Rao et al. [68], the 485 cm−1 peak is most likely

associated with Si-Si vibrations similar to that in the main strong Raman

peak from bulk silicon. In bulk silicon the only first order allowed Raman

transitions provide a strong peak at 521 cm−1 . In amorphous silicon, a

broad peak at 480 cm−1 also becomes Raman allowed [72]. So there are Si-Si

vibrations which are strongly Raman active and it is reasonable to expect

one of the resolved peaks for 1 nm silicon particles to be assigned to such

vibrations. Theoretical considerations show that the 521 cm−1 TO mode

peak in silicon should shift to lower energies for nanocrystalline material

[73, 74]. Rao found the peak for 2.2 nm silicon particles to shift down to

502 cm−1 , and argued the 485 cm−1 peak in the 1 nm particles is a further

red shift of this mode as the size was reduced, thus assigning this mode to

a vibration similar to the TO silicon mode [68]. As a Si-Si peak is strongly

expected in this region, and the Raman measurement data for the 1 nm

particles shows no other peaks in the 450-550 cm−1 region, this assignment

is the most straight-forward of the four observed peaks.

With the 485 cm−1 peak assigned to an Si-Si mode, the lack of other

peaks in the 450-550 region rules out a strong Si-O-Si symmetric stretching

peak according to the calculated vibrational predictions. Therefore even

Peak center(cm−1) FWHM(cm−1) ρ
267 17 0.63
292 7 0
315 13 0
485 8 0.74

Table 3.3: Summary of Raman measurements for 1 nm silicon particle from
ref [23]. The measured peak positions, width, and depolarization ratio is
given for the four resolved peaks.
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before proceeding to further peak assignments, the oxidized structures are

disfavored by this data.

As a comparison for all the peaks, for each structure the calculated vibra-

tional modes within 40 cm−1 of the measured peaks, and which also have a

representation in the symmetry group allowing Raman scattering, are shown

in comparison to the experimental data in Fig. 3.6 for the Td symmetric

structures. The frequency of each vibrational mode is illustrated with a

Lorentzian peak of width 5 cm−1 to aid visualization. In both point group

symmetries only the A1 representation can provide polarized Raman scat-

tering, therefore these modes are denoted differently with a black Lorentzian

curve as opposed to a grey lorentzian.

In the Td symmetric case, there are few enough vibrations that can scat-

ter the light without depolarization, that the assignment assuming a partic-

ular structure is straightforward. Because the symmetry arguments only tell

which modes are symmetry allowed to Raman scatter, and not the intensity

of the Raman scattering, the calculated vibrational modes listed do not need

to each show up in the measured data. Indeed it is clear that each struc-

ture has more depolarized Raman allowed vibrational modes than measured

peaks in the region. It is likely that these vibrational modes have low Ra-

man scattering amplitude, such that they are below the noise level of the

experimental measurement.

The bulk configuration for the 1 nm silicon particle (Si29H36) is lacking

a polarized peak near the measured 292 cm−1 peak. The other measured

polarized peak at 315 cm−1 does not line up well either. The configuration

with full surface reconstruction (Si29H24) fits the spectrum much better, with

the only peaks in the 445-525 cm−1 region lining up almost perfectly with

the measured 485 cm−1 peak.

If for each Td structure the closest depolarized peaks to the measured

peaks are chosen in order to represent a best fit, the comparison of fit cal-

culated frequencies to the experimental data is summarized in Table 3.4. It

is clear that even in this idealized fit, the bulk structure is disfavored by the

data. The oxidized structure fits these four peaks well, but as previously

discussed is ruled out due to the experimental data lacking the Si-O-Si peak

at 535 cm−1 .

For comparison of the vibrational modes in the C2v symmetric structures,

each calculated vibrational mode within 40 cm−1 of the measured peaks are
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Figure 3.6: Raman active modes calculated for Td symmetric structures.
The experimental data from ref [23] is shown for comparison at the top, with
light gray indicating the scattering of that peak is depolarized, while black
indicates polarized peaks. The calculated vibrational modes with symme-
try allowed Raman activity are indicated with Lorentzians shaded gray for
depolarized and black for polarized peaks.
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Figure 3.7: Raman active modes calculated for C2v symmetric structures.
The experimental data from ref [23] is shown for comparison at the top, with
light gray indicating the scattering of that peak is depolarized, while black
indicates polarized peaks. The calculated vibrational modes with symme-
try allowed Raman activity are indicated with Lorentzians shaded gray for
depolarized and black for polarized peaks.
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shown in comparison to the experimental data in Fig. 3.7. The representation

table for the C2v point group symmetry shows that all representations are

symmetry allowed to Raman scatter. Therefore every mode is shown, which

in addition to the spread of modes due to these ‘defects’ breaking the Td

symmetry of the bulk or reconstructed structure, makes the illustration of

these modes crowded. As an artifact of the number of possible peaks, if only

the calculated modes located by the measured peaks were active, all three

structures could fit the spectrum well. However this is unlikely, and the lack

of extra peaks in the 445-525 cm−1 region makes these structures disfavored

in comparison with the data. As noted previously the calculated 510 cm−1

peak for Si29H24O is a Si-O-Si symmetry stretching mode which should be

strongly Raman active. Additionally, the Si-Si related modes around 480

cm−1 are expected to be strongly active as well. As the 485 cm−1 peak is

assigned to an Si-Si mode, and amorphous silicon has a broad Raman peak

at 480 cm−1 , it is unreasonable to expect only one (or a few which happen

to lie on top of each other) of the calculated modes in the 480 cm−1 ‘band’

to be active while the others are not despite the vibrations being of a similar

nature.

Furthermore, the measured polarization of the peaks indicates the C2v

structures are unlikely. The A2, B1, B2 representations can only scatter with

maximal depolarization with depolarization ratio ρ = 3/4. While the A1

mode is the only mode that can have perfectly polarized scattering (ρ = 0),

it can also have any depolarization ratio up to ρ = 3/4. In light of this, the

Experiment Si29H24 ∆ Si29H36 ∆ Si29H24O6 ∆
267 275 8 245 -12 270 3
292 299 7 254 -38 275 17
315 346 31 340 25 331 16
485 485 0 493 8 466 -19

avg |∆| 12 21 14
rms ∆ 16 24 15

avg |%∆| 3.8% 7.7% 4.0%

Table 3.4: Experimental Raman peaks compared to best fit computed modes
of Td symmetric structures. All frequencies are in units of cm−1 . Differences
between theory and experiment are included, as well as average magnitude of
the deviation (avg |∆|), the root mean square deviation (rms ∆), and mean
percent deviation (avg |%∆|).
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measured depolarization ratio of 0 for both the 292 and 315 cm−1 peaks is

anomalous, and more naturally explained by the higher symmetry Si29H24

structure whose modes of A1 representation guarantee via symmetry that

the depolarization ratio ρ = 0.

In conclusion, of the six structures considered, the Raman measurements

when compared to the calculated vibrational modes indicate Si29H24 as the

most likely structure for the 1 nm silicon particle. With the surface fully re-

constructed with 6 dimers and only mono-hydride termination on the surface,

this matches with expectations of the fabrication procedure which involves

an etchant that leaves preferably mono-hydride terminated surfaces. Of the

six structures the vibrational modes of the bulk configuration Si29H36 were

the worst fit to the measured peaks. This provides independent validation

of the claims that Si29H24 is the more likely structure compared to Si29H36

based on comparison of measured absorption to a calculated spectra.
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Chapter 4

Fluorescence Mechanism

In a semiconductor material there is an energy gap between the conduction

bands and the valence bands. Electrons excited into the conduction band

will predominantly occupy the states near the bottom of the band, while the

holes left in the valence band will collect near the top of the valence band.

In a direct gap semiconductor these states have the same crystal momentum,

which allows radiative recombination in which an electron in the conduction

band annihilates a hole in the valence band with the energy difference released

in the form of a photon.

In an indirect gap material such as silicon, the lowest energy conduction

band state has a different crystal momentum than the highest energy valence

band state. Therefore radiative recombination in indirect gap materials re-

quire a phonon to be absorbed or emitted in the process in order to conserve

momentum. The necessity of a phonon at a particular momentum suppresses

this process in indirect gap materials, and the dominate recombination pro-

cess is non-radiative. This is why most commercial optoelectronics such as

light emitting diodes (LED) are currently made with direct gap III-V mate-

rials such as Gallium-Arsenide, Gallium-Phosphide, Indium Gallium Nitride,

etc.

When Canham reported strong fluorescence in porous silicon in 1990, he

interpreted this as the quantum confinement effects turning nanostructured

material into a more direct gap like material [4]. This appears plausible for

the 1 nm silicon particles which have an absorption band edge of about 3.5

eV [50, 37], while the direct band gap of bulk silicon is 3.4 eV [75]. In this

description, the quantum confinement can be visualized as both lifting up

the indirect gap of the conduction band and relaxing the selection rules of

radiative recombination, increasingly making the material more direct gap

like and thus making the silicon able to interact with light more effectively.

It has been argued the momentum selection rules are relaxed by quantum
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confinement causing a spread in momentum due to the finite size and the

Heisenberg uncertainty principle [76, 77]. In the smallest particles the mo-

mentum spread may become large enough that the radiative recombination

can occur without a phonon at all.

Since Canham’s discovery of fluorescence in porous silicon, more recent

reviews of silicon nanostructures point out that the increased radiative recom-

bination rate is actually largely due to a decrease in the non-radiative process,

without any large increase in the intrinsic radiative rate itself [78, 79, 80, 81].

In bulk silicon at room temperature kT is greater than the binding energy

of the exciton, so electrons and holes are more mobile. This can lead to

non-radiative recombination through defect traps in the material. Auger in-

teractions involving an electron hole pair plus an additional hole or electron

is the dominant non-radiative pathway in near defect free crystalline silicon

[80, 79]. In silicon nanocrystals, the electrons and holes are spatially confined

and multiple excitations in a single structure are unlikely therefore greatly

reducing the three-body Auger recombination. Additionally while a defect in

bulk silicon can cause non-radiative recombination of any excitons that can

wander to the trap within its lifetime, a defect on an individual nanocrystal

will not cause trapping of excitons created in the other nanocrystals, thereby

reducing its effect.

While quantum confinement effects increase the oscillator strength in in-

direct gap materials, the absorption and emission rates in silicon nanoparti-

cles remain below those of direct gap materials [82]. Radiative lifetimes in

direct gap particles can be on the order of picoseconds [79], while the silicon

particles even at the size of 1 nm have a fluorescence lifetime of 3 nanosec-

onds [83] and large nanocrystals can have a radiative lifetime on the order of

microseconds to milliseconds [81]. Therefore it has been argued that silicon

and other indirect gap materials, retain a sense of their ‘indirect gap’ nature

even as small nanostructures [82, 78, 79, 80, 81].

With the non-radiative transition rate in silicon nanoparticles greatly

reduced compared to bulk, the quantum efficiency of radiative recombination

can be on the order of 1. This means nanostructured material can potentially

provide a path to efficient optoelectronics compatible with current silicon

processing [84, 85].

The fluorescence of silicon nanoparticles has also gained considerable in-

terest as a new probe for biological applications [86, 87]. Silicon quantum dots
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can be fabricated to provide a range of emission wavelengths [15], are more

stable against photo-bleaching than dyes [88], have exceptionally bright flu-

orescence [89] with twice the brightness of fluorescein (which has a quantum

efficiency of about 90%) under the same excitation conditions [90]. Silicon is

also expected to be more biologically compatible than direct gap materials

with metallic elements like Cadmium, Zinc, or Arsenic. For example Zinc

Sulfide nanocrystal have been studied for use as anti-bacterial agents [91].

Even CdSe particles with the surface capped to reduce release of Cadmium

were found to be more toxic than silicon particles [92].

The 1 nm silicon particle is ideal for investigating the details of how

small silicon nanocrystals fluoresce. As discussed in the previous chapter,

the structure of this particle has been the most studied and the predominate

molecular configuration created during fabrication has been determined from

absorption and Raman scattering measurements. Also it is small enough that

the molecular properties can be modelled directly with quantum mechanics

methods.

Modelling the 1 nm particle as a molecule should be more appropriate

than descriptions in terms of bulk condensed matter such as ‘indirect gap’ and

momentum conservation with phonons. The energy levels of silicon particles

larger than 2 nm has been found to match well with a confined exciton model

using averaged descriptions of the silicon such as permittivity, and effective

electron and hole masses. However this description didn’t fit the data for

particles below 2 nm [27]. It has also been argued in the study of Raman

activity in silicon nanoparticles that the discussion of crystal momentum for

particles as small as 1 nm is beyond the appropriate applicable scale for

treating nanostructures as a perturbation from bulk [23].

In this chapter, first a brief review of molecular fluorescence will be pre-

sented. This is followed by describing a fluorescence mechanism due to

the surface reconstruction dimers on silicon particles proposed by Lannoo,

Deleue, and Allan. Time dependent density functional theory (TD-DFT)

calculations will be presented which investigate this dimer method for the

Si29H24 nanoparticle. Lastly, to investigate the relaxation of the molecule in

the excited state a more detailed study of the excited state potential energy

surface will be presented.
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4.1 Molecular fluorescence

The discussion using the bulk approach in the previous discussion can be

largely rephrased to the molecular picture by introducing some molecular

terms. The top of the ‘valence band’ is called the highest occupied molecular

orbital (HOMO), while the bottom of the ‘conduction band’ is referred to

as the lowest un-occupied molecular orbital (LUMO). The direct or indirect

band gap energy is therefore referred to as the HOMO-LUMO gap. Since

there is no translational symmetry anymore, the notion of crystal momentum

no longer applies and electronic states are labelled by their symmetry and

energy but not momentum. The radiative recombination of a hole and elec-

tron is now seen as a transition between total energy states of the molecule

which results in the emission of a photon.

Photoluminescence is the excitation of a substance by absorbing light and

the subsequent re-radiation during de-excitation. The details of this process

are illustrated in Fig. 4.1. The absorption of a photon will transition a

molecule from the ground state to an excited electronic level of the same

spin. This process is a vertical transition, meaning that the nuclear coor-

dinate do not change since according to the Franck-Condon principle the

electronic transitions are essentially instantaneous relative to the time scale

of nuclear motions. In most cases after excitation the excited molecule will

transition through the relatively closely spaced excited states to the lowest

excited singlet state. This transition to the S1 state is called internal con-

version, and occurs quickly on the time scale of 10−12 seconds [93]. Internal

conversion results in Kasha’s Rule [94] which states that the fluorescence

emission spectra will be largely independent of the excitation wavelength.

The molecule will remain in the lowest singlet excited state until either a

non-radiative radiative process transitions the molecule in a lower state, or

fluorescence occurs which results in vertical transition to the ground state

with an emission of a photon. Possible non-radiative processes include a

resonant energy transfer to another molecule via dipole-dipole interactions,

dynamic collisional quenching, charge transfer to another molecule, or inter-

system crossing which leaves the molecule in a triplet state.

The transition from a triplet state to a singlet state is a spin forbidden

process as it violates the ∆S = 0 selection rule. Therefore the triplet state

is usually long lived. This transition is not completely forbidden though,
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Figure 4.1: Absorption and emission processes. The labels S0, S1, S2, T1 rep-
resent the singlet ground state, first and second singlet excited states, and
the first triplet excited state respectively. The multiple light grey lines corre-
spond to the nuclear vibrational states in each electronic level. After absorp-
tion of a photon, internal conversion will predominantly bring the state to
the lowest singlet state. The state can evolve by transitioning to the ground
state and emitting a photon (fluorescence), or transition to a triplet state
(intersystem crossing) which can then emit a photon (phosphorescence).
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eventually allowing the emission of a photon and a transition to the ground

state. This emission is referred to as phosphorescence. Intersystem crossing

and phosphorescence is facilitating by the presence of heavy atoms which

have larger spin-orbit coupling terms.

Because the absorption and emission processes are vertical transitions,

the change in state will rarely occur between the minimum vibrational states

of each electronic level unless the minimums on the nuclear potential en-

ergy surface happen to occur at close to the same nuclear coordinates. An

excited state is usually created in a molecule by exciting an electron to an

anti-bonding molecular orbital, thus intuitively fitting the picture of the ex-

cited molecule being slightly less ‘bound’. It is common for the molecular

equilibrium nuclear coordinates to be different in the excited state. While

small compared to a dissociation event, the change is large enough to make

the most likely transitions for absorption to be an increase in vibrational

state as well as the electronic level.

Like absorption, the emission transition is also nearly instantaneous rel-

ative to the time scale of nuclear motions, and thus is a vertical transition

as well. This means the brightest fluorescence transition is often not to the

lowest vibrational state in the ground level. The full cycle of this process

of interacting with a photon and eventually returning to the initial state is

illustrated in Fig. 4.2. The molecule will absorb a photon, relax in the ex-

cited level, then emit a photon, and relax in the ground level. The difference

between the excitation frequency and the emission frequency is called the

Stokes shift, and is due to the relaxations after each vertical transition.

One source of the relaxation after a vertical transition has already been

discussed, internal conversion to lower vibrational states. Another source is

due to the surroundings of the molecule when it is in a solvent. An excited

state of the molecule will often have a different charge distribution and dipole

moment than the ground state. After a vertical transition the average sol-

vent arrangement around the molecule will relax to a lower energy state in

response to the change in charge distribution. This relaxation will occur in

all solvents, but can be enhanced in solvents with large permittivity or of

polar nature.
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Figure 4.2: Vertical excitation from the ground state is followed by relaxation
in the excited state, due to internal conversion and solvent rearrangement.
After emission, relaxation will then occur in the ground state. This causes the
emission frequency to be lower than the absorption frequency, the difference
of which is referred to as the Stokes shift.
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4.2 Proposed surface dimer role in

fluorescence mechanism

Allan, Delerue, and Lannoo proposed a mechanism for fluorescence in silicon

nanocrystals that involves the surface reconstruction dimers playing a pri-

mary role [2, 1]. They argued that while the calculated band gaps for silicon

nanocrystals are in agreement with experimental data, the large Stokes shift

(about 1 eV for 1.5 nm particles) suggests a deep trap aids radiant recom-

bination. In particular they investigated a model where a weakened bond

in the excited state permits a new local minimum in a stretched state. In

this outer-well they postulate the exciton will become localized on this bond,

which they call a self trapped exciton (STE). The localized nature of this

excitation will lead to an increase in the radiant recombination rate.

The surface reconstruction dimer bond moves the surface atoms closer

together than their position in the bulk configuration. In the limit that the

bond is dissociated, the atoms should return to a longer separation equilib-

rium close to the bulk value. So the dimer bond is a likely candidate for the

type of ‘outer-well’ minimum on the excited state potential surface to allow

for a self trapped exciton.

In the molecular orbital picture, an isolated system of two atoms with

a single covalent bond can be represented by σ bonding orbital filled with

two electrons and an empty σ∗ anti-bonding orbital. Optical absorption will

promote one electron to the σ∗ anti-bonding orbital, leaving the atoms with

essentially no binding. This bond weakening can lead to dissociation. How-

ever, if the atoms were part of a cluster, the remaining bonds will prevent

dissociation if the bond is weakened or even broken. Therefore it is predom-

inantly the other atoms in the cluster that shape the outer-well.

For the excitation to become localized or ‘self trapped’ this outer-well

must become stable. The possibility of this trapping, is shown schematically

in Fig. 4.3. The excited state will have a minimum in a nuclear coordinate

configuration similar to the ground state. For illustration purposes if this

is represented with a harmonic well, and the weakened bond outer well is

also represented with a parabola, then the bond length at which these two

parabolas cross will represent the point at which the nature of the bond

is changing. How these curves intersect determines if a stable outer-well is
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Figure 4.3: The band gap increases in nanoparticles compared to bulk, raising
the excited state level from Ebulk to Enano. If there is an outer equilibrium
position when the bond is sufficiently weakened or stretched, and the excited
state level is raised enough, it is possible to form an a double well in the
excited state. This allows the formation of a ‘self trapped’ exciton.
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possible. As shown in the figure, in bulk it is possible that the transition

point only appears as a kink (relatively quick change in slope) in the excited

state potential energy surface. If the band gap is raised sufficiently high by

quantum confinement effects, the transition point in the bond nature can

become a saddle point in the excited state surface, with the formation of a

new local minimum in the outer well.

Allan et al. investigated this proposal on the 1 nm silicon nanoparticle

Si29H34. This structure is the bulk configuration with one pair of hydrogen

removed to create a single surface reconstruction dimer. For a given dimer

length, they optimized the geometry by allowing the other nuclear coordi-

nates to relax. The ground and excited states were calculated with Local

Density Approximation (LDA) density functional theory and by tight bind-

ing calculations. A double well structure was found (Fig. 4.4). It is known

that LDA underestimates the excited state energy by a consistent amount,

so the LDA results include a 0.6 eV energy shift to compensate [1]. Despite

the empirical nature and parameter optimization for much larger structures,

and the tight binding calculations match the LDA calculations very well.

One can also observe a kink in the ground state curve, which likely indicates

where the bond nature transitions. It is only in the excited state that an

outer well forms.

The formation of an outer well is encouraging, but for the proposal to

work the radiative rate must also increase. Allan et al. calculated the ra-

diative lifetimes of the excited state at varying dimer lengths for a 1.67 nm

hydrogenated nanocrystal with 123 silicon atoms. Again a double well was

found in the excited state and the lifetime varies by several orders of magni-

tude along this coordinate path (Fig. 4.5). A sharp increase in the radiative

rate is seen near the transition point as well as an increase near the minimum

of the outer-well.

A potential difficulty in this proposed mechanism is the height of the

barrier connecting the two wells, which is about 0.5 eV for both the 1 nm

and 1.67 nm silicon particles considered. Using the energy curves of the 1

nm silicon particle calculated by Allan et al., the transition to the outer well

due to thermalization or tunnelling was studied by Nayfeh et al. [95]. The

thermal activation time was calculated to be on the order of microseconds.

However, due to the outer well actually being lower in energy for the 1 nm

particle, there is no vibrational mode that is fully localized on the inner
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Figure 4.4: Dimer mechanism in Si29H34 from ref [2]. The ground state
and excited state are calculated using LDA (�) and tight binding (�), as
a function of dimer bond length d (a = 5.4 Å). The inset images show a
schematic view of the surface in the ground state (G), and self trapped exciton
state (STE) with ◦ = hydrogen, • = silicon.
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Figure 4.5: Dimer mechanism in 123 Si atom nanocrystal from ref [2]. Tight
binding energies of the ground state (�) and excited state (◦) are shown,
with the calculated radiative lifetime (×).
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well. Therefore a vertical excitation will bring the nuclear wave-function

into a superposition of several double well states to start localized in the

inner well. If these superpositions remain coherent, the ‘tunnelling’ due to

the vibrational modes causing an oscillation between the wells is quite long

from milliseconds to seconds for the first few levels. Nayfeh et al. argue

that it is unlikely for coherence to remain in experimental conditions, and

estimate thermalization between vibrational levels will bring the population

the bottom of the outer well on a time scale of picoseconds [95].

For the larger 123 silicon atom particle, the outer-well is of higher energy.

This allows vibrational states to be constrained to the inner well. Therefore

this mechanism becomes truly efficient only for particles with the outer-well

lower than the inner well, which is estimated to occur in particles below 70

silicon atoms corresponding to a diameter of about 1.4 nm [95].

4.3 Density functional theory (DFT)

Electrons are fermions which requires their description in a wavefunction to

be antisymmetric to exchange of any two electrons. The wavefunction de-

scription of the many-body problem with N electrons depends on 3N spatial

coordinates, and quickly becomes intractable. Since the electrons are indis-

tinguishable from each other, it may appear that we shouldn’t be labelling

them in the first place and then requiring a symmetry under exchange of

these labels. Density functional theory is based on the surprising result that,

in principle, it is possible to calculate the properties of a multi-electron sys-

tem as just a functional of the ground state density n(~r). Since the density

is related to the normalized wavefunction Ψ by

n(~r) = N

∫
d3r2

∫
d3r3 · · ·

∫
d3rNΨ∗(~r, ~r2, . . . , ~rN)Ψ(~r, ~r2, . . . , ~rN) (4.1)

density functional theory means that in some sense the wavefunction has

so much redundant information, that integrating over all but one coordinate

does not actually reduce the amount of information we have about the ground

state. Instead of dealing with a function of 3N coordinates, it is ideally

possible to deal with just one function of 3 coordinates.

Density functional theory was proposed in 1927 by Thomas [96] and Fermi

[97], which gave the kinetic energy as a local functional of the density by as-
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signing a kinetic energy density at each point equal to that of a homogeneous

electron gas of the same density. The potential energy was then given in terms

of the classical electrostatic interaction. This was extended by Dirac [98] to

include a local approximation for the exchange energy in an electron gas. In

atomic units the resulting Thomas-Fermi-Dirac functional is [99]

ETFD[n] =

∫
d3r Vext(r)n(r) +

1

2

∫
d3r d3r′

n(r)n(r′)

|r− r′|

+
3

10
(3π)2/3

∫
d3r n(r)5/3 − 3

4

(
3

π

)1/3 ∫
d3r n(r)4/3

(4.2)

where Vext is the external potential, usually taken to be the electric potential

from a static set of nuclei. The first two terms are the classical external

potential energy and the inter-electron electrostatic energy respectively. The

third term is the local approximation to the kinetic energy, and the final term

is the local exchange.

These original attempts at calculating the energy with the density were

approximations with no strong theoretical backing, and missed some of the

physics such as correlation energy. Density functional theory was put on a

solid foundation in 1964 when Hohenberg and Kohn proved two important

theorems [100]. First, that given the unique (ie. a non-degenerate system)

ground state density n0(r) of a Hamiltonian with the form

Ĥ = − ~2

2me

∑
i

∇2
i +

∑
i

Vext(ri) +
1

2

∑
i 6=j

e2

|ri − rj|
(4.3)

that the external potential Vext(r) is determined uniquely up to a constant.

Schematically this can be represented as

Vext(r)
HK⇐= n0(r)

⇓ ⇑
Ψi({r}) =⇒ Ψ0({r})

Starting with the external potential Vext it is possible, in principle, to solve

for all the eigen functions and their energies. With the eigen functions and

energies, it is trivial to select the ground state as the one with the lowest

energy. And with the ground state wavefunction it is likewise trivial to

calculate the ground state density. What Hohenberg-Kohn proof added is
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from the ground state density, the external potential is uniquely determined.

This amazing fact closes the circle, allowing in principle all properties of the

system to be determined just from the ground state density.

Second, Hohenberg-Kohn proved that there exists a universal functional

for the energy E[n] in terms of the density. By universal it is meant that all

terms are independent of the external potential, except for one explicit term∫
d3r Vext(r)n(r) just like in Thomas-Fermi, and the functional E[n] is valid

for any external potential. For a given potential, the density which minimizes

the functional is the ground state density, and the global minimum value of

this functional is the ground state energy.

When solving the many body-problem for electrons in a material, the

external potential is the Coulomb potential from the nuclei. The decoupling

of the nuclei and electronic wavefunction by the Born-Oppenheimer, is what

allows considering the nuclei as ‘external’. More simply the nuclei are usually

treated as classical fixed point charges defining a potential for the electrons.

If necessary, the energy of the system at different nuclear positions can be

used to define a potential energy surface for the nuclei.

The functional for a system of electrons and fixed nuclei is

EHK[n] = FHK[n] +

∫
d3r Vext(r)n(r) + EII (4.4)

where the term EII is the classical interaction energy of the nuclear point

charges, and Vext is the coulomb potential from the nuclear as well as any

externally applied potential to the system. The Hohenberg-Kohn functional

FHK[n] accounts for all internal, kinetic, and potential energies of the in-

teracting electron system. It can be further split into kinetic energy and

interaction energy functionals

FHK[n] = T [n] + Eint[n]. (4.5)

The proofs presented by Hohenberg-Kohn show that this functional is

universal, in that it applies to any multi-electron system regardless of the

number of electrons or the external potential. In this sense, density functional

theory is just as ‘fundamental’ as the wavefunction approach. Unfortunately

however, their proof is an existence proof and not a constructive proof. So

the exact functional is not known. However, as in the case of Thomas-Fermi
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density functional theory, approximations to the functional can be made.

The Hohenberg-Kohn proofs have since been extended to include degen-

erate systems, and even potentials where a time dependence is turned on.

It can also be extended to include different types of particles by including

multiple densities. Of particular interest is a systems with unpaired electrons

(‘open shell’ in molecular orbitals terms). The functional can be written in

terms of both a total electron density

n(r) = n↑(r) + n↓(r) (4.6)

and a spin density

s(r) = n↑(r)− n↓(r). (4.7)

The ‘spin density functional’ E[n, s] can be used to describe spin polar-

ized molecules, and solids with magnetic order [101]. As this is a relatively

straight-forward extension, these methods are still referred to as DFT. Note

however that for external coupling beyond a scalar potential, such as vec-

tor potential coupling like magnetic field interactions with orbital angular

momentum, extensions to ‘current density functional’ theory are required

[102].

Density functional theory is currently one of the most widely used ap-

proach for electronic structure calculations, due to the simplifying method

proposed by Kohn and Sham in 1965. What they proposed was an ansatz

which in principle allows exact calculations of interacting many body systems

by relating it to a system of non-interacting particles. In practice this method

has led to functional approximations which have shown to be successful in

modelling multi-electron system properties.

The Kohn-Sham ansatz relies on two assumptions [103, 99].

1. There exists an ‘auxiliary’ system of non-interacting particles in which

the ground state has the same density as the ground state for the

interacting system. The class of problems which have such an auxiliary

system is called “non-interacting-V-representability”.

2. The Hamiltonian for the auxiliary system has the usual kinetic energy

operator and an effective potential V σ
eff acting on electrons of spin σ.

While not required, this potential is taken to be local.
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While there is no rigorous proof that any useful real systems are in the class

of “non-interacting-V-representability”, as this is an ansatz the usefulness of

this approach is demonstrated by the resulting ability to model systems.

The Hamiltonian of the auxiliary non-interacting system is (in atomic

units)

Ĥσ
aux = −1

2
∇2 + V σ

eff(r). (4.8)

Without specifying details of the potential yet, it is clear that given a poten-

tial it is in principle possible to solve for the the eigen functions and values.

Since these orbitals are non-interacting, now a slater determinant is actually

an exact solution of this. In terms of the occupied orbitals, the density and

kinetic energy of this system is

n(r) =
∑
σ

Nσ∑
i=1

|φσi (r)|2 (4.9)

Ts = −1

2

∑
σ

Nσ∑
i=1

〈φσi |∇2|φσi 〉 =
1

2

∑
σ

Nσ∑
i=1

∫
d3r |∇φσi (r)|2 . (4.10)

From Hohenberg-Kohn, there is a universal functional for kinetic energy, so

the kinetic energy of the auxiliary system can also be written as Ts[n] a

functional of the density.

There is only one energy functional for the interacting system, as shown

by Hohenberg-Kohn, so the Kohn-Sham method is to rewrite the functional

as

EKS[n] = Ts[n] +

∫
d3r Vext(r)n(r) + EHartree[n] + EII + Exc[n] (4.11)

where the Hartee energy is just the classical Coulomb interaction energy of

an electron density n

EHartree[n] =
1

2

∫
d3rd3r′

n(r)n(r′)

|r− r|
(4.12)

and the exchange-correlation energy Exc is defined to make the functional

match Hohenberg-Kohn. This gives the exchange-correlation functional as

Exc[n] = (T [n]− Ts[n]) + (Eint[n]− EHartree[n]). (4.13)
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Written this way the advantage of the Kohn-Sham method is much more

clear. By explicitly taking the difference of the kinetic energy for the inter-

acting and non-interacting case, as well as the difference in the long range

interaction terms, the resulting exchange-correlation functional should be a

nearly local functional and be much more amenable to approximation.

In practice, instead of varying the density directly to find the ground state

energy, it is computationally more straightforward to use a basis set and solve

for the eigen functions (the orbitals) of the non-interacting auxiliary system.

The ground state density of the auxiliary system is then, by design of the

Kohn-Sham ansatz, the same as the density for the interacting system. So

the total energy in the interacting system can be calculated with the density.

Requiring the variation of the Kohn-Sham energy functional (eq. 4.11)

with respect to changes in the orbitals while maintaining the orthogonaliza-

tion constraint between the orbitals, results in eigen value equation [99]

(Hσ
KS − εσi )φσi = 0 (4.14)

with

Hσ
KS = σaux = −1

2
∇2 + V σ

eff(r) (4.15)

V σ
eff(r) = Vext(r) +

δEHartree

δn(r, σ)
+

δExc
δn(r, σ)

= Vext(r) + VHartree(r) + Vxc(r)

(4.16)

While the particles are formally non-interacting, the Veff depends on the

orbitals. So we don’t know Veff to allow direct solving of the eigen value

problem. As in the Hartree-Fock case, through iteration this is solved self

consistently. It should be stressed that the resulting ground state wave-

function in the auxiliary basis is not equal to the wavefunction in the real

life interacting case. This method gives the total energy and density of the

ground state, but not the wavefunction.

The only piece remaining is to approximate the exchange-correlation func-

tional. There are currently a multitude of functionals with different approx-

imations to choose from. The first widely used functional was the local

density approximation (LDA). The exchange and correlation were given lo-

cally as the same value in a homogeneous gas. The exchange is given by

the same result Dirac calculated and added to the pre-Kohn-Sham attempts
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at density function theory by Thomas and Fermi (eq. 4.2). The correlation

energy came from quantum Monte Carlo calculations by Ceperley and Alder

in 1980 which provided essentially exact results for a homogeneous electron

gas [104]. This was then fit to analytical functions resulting in two widely

used correlation functionals due to Perdew and Zunger (PZ) [105] and Vosko,

Wilkes, and Nusair (VWN) [106].

Improvements beyond LDA include generalized gradient approximations

(GGA) which provide corrections to the exchange-correlation functionals

based on the local gradient of the density. Exchange energy is often treated

with a GGA introduced in 1998 by Becke (B88) [107]. For correlation energy,

a commonly used GGA is the Lee-Yang-Parr (LYP) functional [108].

Among the most accurate functionals for calculating the energy of struc-

tures are hybrid functionals. Because the orbitals are already calculated in

the Kohm-Sham approach, it is possible to use these directly in a combination

of an orbital dependent functional and a pure density functional. The func-

tional used in this work is the 3 parameter Becke hydrid functional B3LYP,

which consists of an exchange functional built from 0.8 LDA+0.72 B88+0.2

Hartree-Fock and a correlation functional built from 0.19 LDA(VWN) +

0.81 LYP.

Excited state properties such as energies, oscillator strengths, and nu-

clear gradients can be calculated by looking at the response of the system

to a time dependent perturbation. Runge and Gross proved the extension

to time dependent density functional theory (TDDFT) in principle allows

response properties to be calculated without approximation in finite systems

[109]. The properties can be calculated by starting with a ground state

and solving the Kohn-Sham equations in time steps allowing the density to

evolve. Taking the Fourier transform of this explicit time response can give

the resonant modes (excited states) and their oscillator strengths [99].

Another means to obtain excited state properties is to look at only the

linear response to a perturbation

χ(r, r′) =
δn(r)

δVext(r′)
. (4.17)

This can be rewritten as

χ =
δn

δVeff

δVeff

δVext

=
δn

δVeff

[
δVext

δVext

+
δVint

δVext

]
=

δn

δVeff

[
1 +

δVint

δn
χ

]
. (4.18)
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Noting the response of the non-interacting system is just

χ0 =
δn

δVeff

(4.19)

solving for the linear response gives

χ =
χ0

1− χ0K
, where K =

δVint

δn
. (4.20)

It is clear from this form that there can be poles in the response.

These poles in the linear response denote an excitation energy. So by ex-

panding in terms of the orbitals the condition for a pole in the linear response

to a frequency perturbation, will allow solving for the excitation energies and

excitation ‘vectors’ without explicitly solving for the time dependence. The

excitation vectors provide information on the combination of empty (also

called virtual) and occupied orbitals which are having their populations os-

cillated at the pole. This resulting equation for the orbitals, is an eigen value

equation for the excitation vectors [110]

(Λ− Ωn∆)|Xn, Yn〉 = 0 (4.21)

where Ωn is the excitation energy, |Xn, Yn〉 is the excitation vector in the

linear space L = Lvirt × Locc ⊕ Locc × Lvirt, and

Λ =

[
A B

B A

]
,∆ =

[
1 0

0 1

]
. (4.22)

The tensors A and B called the “orbital rotation Hessians”, which can be

written in terms of the orbitals and given in explicit form in ref [110]. Oper-

ators acting on the excitation vector can give the transition dipole moment

(and thus the oscillator strength), magnetic transition moment, and other

properties.

Of particular importance here is that this method of finding excitation

properties without explicitly solving the time dependence also allows the

calculation of nuclear gradients to the excited state energy [111]. The excited

state properties calculated in this manner have been found to be of better

quality than calculations by configuration interaction singles (CIS) and time

dependent Hartree-Fock (TDHF) methods.
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4.4 Dimer calculations for Si29H24, Si29H26,

Si29H34

The calculations of Delerue et al. [2, 1] of a 1 nm silicon particle with a

single dimer used local density approximation (LDA) density functional the-

ory (DFT) and an empirical tight-binding method. Here we investigate the

dimer mechanism further by using a hybrid functional to provide improved

calculations of the 1 dimer Si29H34 structure. We will also explore how the

dimer mechanism works with structures containing multiple dimers. Of par-

ticular interest is the 6 dimer Si29H24 structure, which has been shown to be

the most likely structure of the 1 nm particles from comparisons to calcu-

lated absorption and Raman scattering. Finally a particle with five dimers,

Si29H26, is considered to give information on the trend as dimers are added.

The equilibrium ground state geometries for all structures were obtained

using DFT with the B3LYP hybrid functional using the quantum chemistry

computational package GAMESS (General Atomic and Molecular Electronic

Structure System) [63, 64, 65] using the 6-311G(d,p) basis set. Given any

position for the nuclei, even if not at the minimum of the ground state poten-

tial energy surface, time dependent density functional theory (TDDFT) can

be used to obtain excited state energies and oscillator strengths. A series of

calculations at different nuclear coordinates can therefore provide the excited

state potential energy surface along a slice.

The radiative lifetime τ , the transition matrix element, and the Einstein

coefficient A21 for spontaneous decay from the excited state 2 to state 1, can

be obtained from the oscillator strength fosc using the relations

fosc =
2mω12

~
|〈ψ2|~r|ψ1〉|2 (4.23)

1/τ = A21 =
2e2ω3

12

3ε0hc3
|〈ψ2|~r|ψ1〉|2

τ ≈ 29.7 picosecond

(
Hartree

~ω12

)2
1

fosc

(4.24)

The oscillator strengths obtained from TDDFT therefore allow mapping the

radiative rate at each point on the excited state potential energy surface, to

determine which regions emission are most likely to occur from.

At the time these calculations were performed GAMESS did not have
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the capability to provide nuclear gradients for excited states, so it was not

possible to relax structures in the excited state. DFT calculations were also

limited to densities represented by closed shell slater determinants (RHF),

or high spin opens shells using the slater determinants of restricted open

shell Hartree-Fock (ROHF, which requires double occupied orbitals to use

the same spatial function for both the spin up and spin down electron) and

unrestricted Hartree-Fock (UHF, where the spatial orbitals can differ based

on spin). This prevented the possibility of doing a ground state calculation

with a singlet state in a different irreducible representation to take advantage

of the symmetry of the molecules to obtain information about the excited

state surface without using TDDFT. As the dimension of the excited state

potential energy surface is 3N where N is the number of nuclei, the nuclear

position freedom is prohibitively large to scan the surface with many single

point calculations. A careful choice of a ‘reaction path’ to measure the excited

state energies is required.

Constrained optimizations in the ground state were used to construct a

reaction path. One dimer would be chosen in the structure, and stretched to

a set value while allowing the rest of the nuclear coordinates to relax. This

was repeated at multiple dimer lengths and the coordinates of the resulting

structures were used as the reaction path to investigate a slice of the excited

state energy surface. For all three molecules considered, the coordinates

maintained C2v point group symmetry along this path.

The lowest excitation of the single dimer Si29H34 structure along this

reaction path displayed the characteristic double well of the dimer model

(Figure 4.6). The excited state has a B2 irreducible representation, which

is antisymmetric to inversion across the plane perpendicular to the dimer.

This is the correct representation if the excited electron is in an orbital of

σ∗ anti-bonding nature for the dimer bond. The bad gap of 4.4 eV obtained

with B3LYP is significantly larger than the 3.5 eV band gap obtained by

Allan et. al using LDA [2]. For comparison a B3LYP-TDDFT calculation

was done on the bulk configuration Si29H36 structure with no dimers, which

yielded a band gap of 4.5 eV. Therefore at this level of theory, the band gap

is only reduced slightly by a single dimer.

Possibly due to the increased band gap according to B3LYP versus LDA,

the peak barrier in the single dimer structure is found to be much smaller,

only 0.17 eV as opposed to 0.5 eV with LDA. Additionally, the outer-well
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Figure 4.6: Radiative lifetime (+) of the lowest excited state as the dimer
is stretched for Si29H34 (only has 1 dimer). The ground state (�) and ex-
cited state (•) energies relative to the ground state minimum are shown for
reference.
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minimum shifted outwards to ∼ 3.6 Å whereas LDA calculations indicated

3.24Å . A drastic decrease in radiative lifetime from about 25 microseconds to

about 15 nanoseconds is seen as the barrier is reached and crossed, validating

the expectations of the dimer model.

The Si29H24 structure with a fully reconstructed surface (6 dimers, and

no remaining di-hydride terminations), has Td point group symmetry. In

addition to simplifying the calculations, this high symmetry makes many of

the electronic states degenerate, therefore allowing calculation of much higher

energy states. The first 28 excited states, with their energies, irreducible

representation and oscillator strengths are listed in Table 4.1. There is a

band of states from 3.3-3.6 eV and then a gap until 4.0 eV.

When the structure is broken to C2v symmetry by stretching the dimer,

the B2 states will arise from Td representations splitting into C2v representa-

tions as follows: T1 → A2 + B1 + B2 and T2 → A1 + B1 + B2. As seen from

Table 4.1, the lowest state is no longer a B2 representation. Only T2 repre-

sentations are dipole allowed, so the lowest B2 excited state, which originates

from T1, is not even dipole allowed.

To identify which states participate in the dimer mechanism in this 6

dimer structure, the lowest two states of each C2v representation were calcu-

lated at several dimer lengths. Again it is the B2 state which plays a primary

role, indicating the simple picture of a σ bonding and σ∗ anti-bonding or-

bitals for a single dimer may still hold even though there are several dimers

on the surface. The B2 state crosses the other states to becomes the lowest

excited state along the majority of this reaction coordinate. This occurs both

when expanding or contracting the dimer length. When the dimer length is

stretched even longer, the B2 state separates in energy forming a gap from

the other states which remain closely spaced (Figure 4.7). The outer well

now goes lower than the inner well.

With the active state verified, more points along the dimer stretch coordi-

nate path are calculated. The resulting slice of the potential energy surface,

and radiative lifetimes are presented in Figure 4.8. Because the lowest B2

state is dipole forbidden right at the ground state equilibrium, the first B2

dipole allowed state is used at that point. This gives a better indication

of the oscillator strength trends, and as seen in Figure 4.7 the two states

have very similar energies with a separation of only 9 meV. At this small

separation, it is possible the energy level ordering is incorrect.
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Symmetry eV nm Oscillator strength
A2 3.3034 375.32 0
T1 3.3178 373.69 0
E 3.3188 373.58 0
T2 3.3262 372.75 0.0000442
T1 3.4757 356.72 0
T2 3.5458 349.66 0.0002496
T1 3.5557 348.7 0
T2 3.5765 346.66 0.0016496
E 3.5996 344.44 0
A1 3.6267 341.87 0
T1 3.9524 313.69 0
T1 4.0645 305.04 0
A2 4.1197 300.96 0
T1 4.1388 299.57 0
E 4.1686 297.43 0
T2 4.1687 297.41 0.0009384
T2 4.196 295.48 0.0095007
E 4.2159 294.09 0
T1 4.2164 294.05 0
T2 4.2318 292.98 0.0011087
T2 4.2606 291 0.0017732
T1 4.2866 289.23 0
A1 4.3285 286.44 0
E 4.3318 286.22 0
T1 4.3387 285.77 0
T2 4.3401 285.67 0.0144434
T2 4.3802 283.06 0.0005031
T1 4.3906 282.38 0

Table 4.1: B3LYP TDDFT results for excited states of Si29H24 in the ground
state equilibrium geometry. Irreducible representation in Td point group
symmetry is given, along with energy in electron volts (eV) and corresponding
photon wavelength (nm).
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Figure 4.7: The lowest two excited levels of each irreducible representation
of C2v point group, at different dimer lengths. As the dimer stretches one B2

state lowers in energy, separating from the other excited states which raise
in energy and remain closely spaced.
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Figure 4.8: Radiative lifetime (+) of the lowest excited state of B2 irreducible
representation as one dimer is stretched for Si29H24 (has 6 dimers total).
The ground state (�) and excited state (•) energies relative to the ground
state minimum are shown for reference. At the ground state minimum this
structure has higher symmetry (Td point group symmetry), and the lowest
B2 excited state is actually dipole forbidden. At that one point the second B2

excited state is used instead (whose energy almost coincides with the lowest
energy state at this scale).
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Figure 4.9: Radiative lifetime (+) of the lowest excited state of B2 irreducible
representation as one dimer is stretched for Si29H26 (has 5 dimers total). The
ground state (�) and excited state (•) energies relative to the ground state
minimum are shown for reference.
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As in the single dimer case, there is a drastic decrease in the radiative

lifetime as the dimer length approaches and crosses the barrier. Before the

barrier the maximum lifetime is about 55 microseconds and after the barrier

reaches a minimum of about 100 nanoseconds. The inner well minimum

corresponds with the ground state minimum, and the barrier is now decreased

to about 60 meV. While the outer well now goes significantly below the inner

well minimum, it no longer appears to have a local minimum.

Attempts to go to longer dimer distances resulted in the hydrogens on the

dimer atoms to move to the inside of the dimer, and a smooth transition was

not found. Increasing the length further led to the triplet state running into

the singlet ground state, making it an unstable reference for TDDFT. This

could be interpreted as escape to the outer well resulting in a non-radiative

process of returning to the ground state. However this could be an artifact of

how the reaction coordinate path was obtained, and may not be appropriate

at these longer lengths. A further study using relaxation in the excited state

will be needed to conclude where, or if, a local minimum in the outer well

occurs.

As an intermediary case, the five dimer Si29H26 structure was also studied.

The band gap is found to be 3.5 eV. Like the 6 dimer case, it also didn’t

have a B2 state as the lowest energy state at the ground state equilibrium.

Moving along the reaction coordinate the B2 state again crosses the others

and forms a substantial gap as the dimer length is increased. The barrier is

only about 85 meV, larger than the 6 dimer case but still much below the

single dimer case. Again the double well structure doesn’t appear to have an

outer minimum (Figure 4.9). In agreement with the other structures with a

surface reconstruction dimer, the radiative lifetime decreases several orders

of magnitude as the barrier is approached.

The dimer model appears quite robust showing a double well structure

and decrease in radiative life time with all the structures studied. The band

gap is found to decrease with an increasing number of dimers, while the

barrier height decreases. These calculations estimate a lifetime on the order of

100 ns for states near the barrier. As the sharp increase in oscillator strength

occurred near the barrier top, it is possible that crossing over the barrier

to achieve strong fluorescence in not fully necessary and merely being in a

state that reaches near the barrier may be enough. Either way, the B3LYP-

TDDFT calculations show that the barrier height is much more accessible
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than the 0.5 eV barrier calculated using LDA.

4.5 Vibrational structure in low

temperature photoluminescence

At low temperatures the measurement of the fluorescence can reveal a struc-

ture in the spectrum due to vibrational coupling with the excited state.

Satish Rao obtained fluorescence measurements of 1 nm silicon particles at

120 K that had resolvable peaks on the usually broad emission spectra [23].

The background subtracted resolved peaks are shown in Figure 4.10.

The results show at least three groupings of peaks with an even spacing.

One group has a spacing of 40 meV, while the other two groups have a

spacing of 33 meV. These repeated spacings correspond to the energy of a

vibrational mode which is coupled to the emission process in some manner.

Of the normal modes previously calculated, there is a mode at 320 cm−1

which corresponds to 40 meV. This mode is triply degenerate, and is of

T2 irreducible representation. Each of these degenerate modes involves a

different pair of surface dimers. The pair of dimers are opposite of each

other on the particle, and are involved in an anti-symmetric stetching motion.

When one dimer expands the other contracts and vice versa. The remaining

four dimers just rock back and forth during this motion, and the other silicon

atoms are relatively stationary. The vibrational mode is illustrated in Figure

4.11 in a series of snapshots of the nuclei displaced (exaggeratedly) along the

normal mode.

There is also a mode at 282 cm−1 (35 meV) which involves an anti-

symmetric dimer stretch and is within the calculation accuracy of the 33 meV

experimental value. This mode is also triply degenerate and of T2 irreducible

representation. Each mode is again an opposite dimer pair stretching anti-

symmetrically, but now it is the four silicon atoms attached to each of those

dimers that moves in tandem. When a dimer contracts, its four adjacent

silicon atoms ‘pinch’ in simultaneously with it.

The anti-symmetric dimer modes fit well with the proposed dimer role in

fluorescence. The dimers are each under ‘stress’ in the sense that if a dimer

bond was removed the other dimers would relax to a shorter length. As an

example, in the Si29H26 structure studied earlier, the dimers are all shorter in
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length than in Si29H24. Therefore an anti-symmetric dimer stretching mode

probably corresponds with the initial direction of the coordinate path leading

over the minimum barrier to the outer well.

Figure 4.10: Vibronic structure in low temperature photoluminescence of 1
nm silicon nanoparticles, from ref [23].
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Figure 4.11: Vibrational modes which primarily involve dimer stretching.
Snapshots of the particle undergoing exaggerating motion along a vibrational
mode are shown to illustrate the movement. The Si atoms of 4 of the dimers
are highlighted. In both vibrations the top dimer stretches while the bottom
contracts and vice versa in an anti-symmetric stretch. a) Dimer stretch and
rocking, 320 cm−1 = 40 meV. Two dimers stretch while the others rock
back and forth. b) Dimer stretch and pinch, 282 cm−1 = 35 meV. Due to
orientation the ‘pinch’ can best be seen on the bottom dimer. When the
bottom dimer expands, the four silicon atoms attached to it expand out,
when it contracts they pinch in.
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4.6 Excited state potential energy surface

The calculation of the double well in the excited state energy in the previous

section 4.4 used structures optimized in the ground state. Relaxation of the

nuclear coordinates to minimize the energy in the excited state gives paths on

the excited state potential energy surface which are more relevant to emission,

as this relaxation contributes to the Stokes shift. This also allows answering

the question of the existence and stability of the outer well minimum which

could not be determined with relaxation in the ground state. Additionally,

knowledge of how much the barrier between the two wells can be reduced by

relaxation in the excited state determines if direct excitation over the barrier

is energetically allowed.

Calculation of the excited state potential energy surface of Si29H24 was

done at the TD-DFT level using the B3LYP functional with the TURBO-

MOLE quantum computational package [112]. The TZVP basis was used

which is a triple split valence basis with polarization functions added for

each atom [113, 114, 115]. The excited state energy gradients with respect

to the nuclear positions are available, allowing excited state geometry relax-

ation.

The minimum ground state energy structure was found with this new

codebase and atomic orbital basis. The excitation energies are slightly lower

compared to the GAMESS 6-311G(d,p) calculation, with the lowest dipole

allowed state (T2 representation) 3.29 eV above the ground state. However

the representations of the energy levels are in the same order at least up to

the the 3.6 eV state, which is the last level below the ‘gap’ to the next band

of energy levels.

To improve on the previously shown Si29H24 double well curve, the path on

the excited state surface was chosen now by minimizing the energy of the first

excited state geometry with one dimer constrained to a given length. This

should be a more representative slice of the potential energy surface since

the geometries are relaxed in the excited state instead of the previous path

which was obtained by relaxing in the ground state. To allow a more direct

comparison with the previous calculation, the structure was also constrained

to C2v symmetry.
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The comparison of the energies for the ground state optimized and excited

state optimized structures are shown in Figure 4.12. All energies are relative

to the minimum ground state energy, therefore allowing easy comparison and

calculation of the Stokes shift. Absorption is a vertical excitation process

from the ground state energy minimum to the excited state of that same

geometry. The structure can then change to one of lower energy in the excited

state, where emission occurs to the ground state of this new structure. The

relaxation decreased the inner well excited state 0.28 eV, and also increased

the ground state 0.30 eV for an overall ∼ 0.6 eV Stokes shift for emission

from the inner well. In the entire inner well and at the barrier the energy

difference between the excited state and ground state remains close to 2.7

eV. Emission at the barrier would be 2.73 eV (455 nm).

The barrier height between the inner and outer well is now 3.25 eV (rel-

Figure 4.12: The ground and excited state energies calculated with struc-
tures relaxed in the ground state (�), compared to the ground and excited
state energies with structures relaxed in the excited state (•). All energies
are relative to the ground state minimum. The structures were calculated
with one dimer constrained to a given length and the structure having C2v

symmetry. Absorption (excitation) proceeds vertically from the ground state
minimum, the emission energy reduction is the Stokes shift which is due both
to a decrease in the excited state energy and an increase in the ground state
energy at the relaxed geometry. After emission the structure can then relax
back to the ground state minimum.
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ative to the minimum ground state structure). As the minimum excitation

energy is 3.29 eV, this means direct excitation over the barrier is energetically

allowed. Beyond the barrier in the outer well the ground state optimized and

excited state optimized energies converge, showing that the ground state op-

timized geometry is a good approximation for the excited state optimized

geometry in the outer well.

The resulting energies and radiative lifetimes along this C2v path are

shown in Figure 4.13. The first two energy levels shown are of B2 irreducible

representation. At the inner well minimum, these are the lowest two excited

states. This is one advantage of calculating the energy of the C2v symmetric

structures. The high symmetry makes it clear that these B2 levels can cross

the other levels without an avoided crossing. These levels originate from the

T1 and T2 representations of Td symmetry after the symmetry is broken to

C2v during relaxation in the excited state.

The second B2 level originates from the T2 to which the state is vertically

excited upon absorption. The ∼0.5 eV difference between the two B2 levels

found when relaxing in the lowest excited state makes it appear unclear

how the state can relax to the lowest singlet as expected from Kasha’s rule.

However this is clearified by attempting to relax the structure in the second

B2 excited state. When doing so the 0.5 eV gap disappears and the levels

become nearly degenerate.

Once the B2 levels become essentially degenerate, it is difficult to search

for a minimum energy on the potential surface where this occurs. The gra-

dient calculations do not handle this near degeneracy well, often leading to

sporadic steps when trying to minimize the energy of the second excited

state. One structure found had an energy of ∼3.24 eV (relative to the min-

imum ground state structure), which is close to the absorption energy. The

ground state energy of this structure was raised 0.34 eV, which would give a

fluorescence emission of about 2.9 eV (430 nm) if the fluorescence occurred

from this minimum. This corresponds to an overall Stokes shift of ∼0.4 eV.

However the excited state getting ‘stuck’ in the second B2 level is unlikely.

When the energy levels are not well separated relative to the vibrational en-

ergies, then the Born approximation allowing separation of the electronic and

nuclear wave functions begins to fail. Therefore the excited state relaxation

probably occurs via mixing of the B2 levels, and once in the lower B2 level

the state can relax to much lower energy. This in turn opens up the gap
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Figure 4.13: Geometries obtained by relaxing Si29H24 in the first excited
state with one dimer constrained to a given length and the structure having
C2v symmetry. Radiative lifetime (+) of the first excited state is given versus
dimer length. The ground state (�) and first two excited states (•,N) energies
relative to the ground state minimum are shown for reference.
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to the nearest excited state level, so the Born approximation becomes valid

again.

The C2v symmetric geometries were found to not be the minimum energy

structures. Relaxing the lowest excited state without symmetry constraints

resulted in a geometry with Cs symmetry. This inner well minimum was

verified to be a local minimum by numerically calculating the Hessian. A

new path was then calculated by ‘walking’ the structure along the excited

state potential energy surface by expanding the dimer length, allowing the

structure to relax in Cs symmetry while holding the dimer length fixed, and

repeating to obtain the path.

Surprisingly this path did not appear to be yielding a double well struc-

ture, and the oscillator strength remained low. At about 3.2 Å the geometry

relaxation resulted in a quite different structure, which lowered both the ex-

cited state and the ground state energies. Performing geometry relaxations

from this structure as the dimer was now shortened led to a different path

toward a different inner well minimum. These two paths are shown in Figure

4.14. Therefore the excited state energy surface must be fairly roughly with

several different ‘troughs’ in it. In the first trough the excited state energy

increased beyond 3.5 eV without a sign of a double well, beyond this the

trough must have become very shallow or unstable to allow the relaxation

into a different trough. Moving along the minimum energy structures in

this second trough gives a path with a larger oscillator strength as well as a

double well.

The double well path along the excited state surface for structures with

Cs symmetry is shown in Figure 4.15. The lower ground state energy of this

path reduces the Stokes shift. Also the barrier to the outer well is lowered

to about 3.15 eV (relative to the minimum ground state), making direct

excitation over the barrier energetically more favorable than seen in the C2v

path.

A small kink in the ground state energy is seen at about 3.0 Å along

these excited state optimized paths. This is due to the ‘direction’ in nuclear

coordinate space not being just a straight line. Near the barrier peak the

ground state energy briefly decreases even though the dimer is being stretched

further. This indicates that the outer well is closer to the ground state

minimized structure (at that dimer length) than the inner well structure is.

This seems to be a generic feature as this kink is seen in all the excited state
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Figure 4.14: Geometries obtained by relaxing Si29H24 in the first excited state
with one dimer constrained to a given length and the structure having Cs

symmetry. Two different structures were found. The ground state and first
excited state for the two paths (�,•) are shown with energies relative to the
ground state minimum.
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Figure 4.15: Geometries obtained by relaxing Si29H24 in the first excited
state with one dimer constrained to a given length and the structure having
Cs symmetry. Radiative lifetime (+) of the first excited state is given versus
dimer length. The ground state (�) and first two excited states (•,N) energies
relative to the ground state minimum are shown for reference.
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optimized paths.

Along the Cs double well path the lifetime drops several orders of mag-

nitude as the dimer length increases past the barrier length. The lifetime

minimum is on the order of 100 ns. Emission at the barrier would be 2.52

eV (490 nm), while emission from the structure on the path with the short-

est lifetime would be 1.95 eV (640 nm). The outer well was found to have

no minimum. The expected minimum can be estimated from the distance

of the Si atoms of the ‘missing’ dimer in the Si29H26 (5 dimer) structure

which was found to be 5.2 Å . However along the double well path, at about

5.2 Å the structure becomes unstable to relaxing with the excited state (A2

representation) running into the singlet ground state (A1 representation).

The dimer mechanism therefore demonstrates some of the correct qualita-

tive features. It provides a means for the fluorescent lifetime to be decreased

by several orders of magnitude. There is also a board range of emission en-

ergies which can have short lifetimes. The shorter lifetime can be reached by

direct excitation, either to the outer well, or just to a shallow inner well with

access to the top of the barrier is sufficient.

Now that the dimer mechanism has been explored in more detail, it is clear

there is still need for improvement. Adam Smith studied the fluorescence

lifetime of the 1 nm silicon nanoparticles and reported broad emission with

a peak at 410-430 nm (3-2.9 eV) with a tail to over 600 nm (2.1 eV) and

a lifetime of 3 ns independent of the emission wavelength [83]. The dimer

double well mechanism shown here allows for broad emission from the 1

nm silicon nanoparticles. However the Stokes shift from the outer well is

predicted to be too high for emission near 3 eV. Additionally, while the

predicted lifetime is fairly flat on the log scale in the outer well, it still varies

by a factor of two between the 490 nm and 640 nm emission.

The outer ‘well’ poses other difficulties as well. Instead of a minimum,

there is a conical intersection with the ground state. Therefore relaxation

after crossing the barrier leads to a method for non-radiative recombination

back to the ground state potential energy surface. Furthermore, as internal

conversion should happen on the order of picoseconds [93], which is orders

of magnitude faster than the radiative lifetime, relaxation in the outer well

would not result in the emission seen. The proposed ‘self-trapped’ exciton

does not exist as the outer well is not stable.

If the calculated energy curve was slightly incorrect and a shallow mini-
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mum in the outer-well did exist, there is another problem with stability. The

relaxation in the outer well results in a structure similar to the Si29H26, except

with two hydrogens replaced with dangling bonds. With a dimer bond disso-

ciated this far, and the dangling bonds on the two Si atoms protruding where

solvent can easily access it, this should not be chemically stable. However

the particles are experimentally found to be robust against photo-bleaching

[88].

These issues indicate that population of the outer well must actually be a

slow process for the dimers to play a vital role in the fluorescence mechanism

of the 1 nm silicon nanoparticle. The existence of the outer well is crucial

as it provides for orders of magnitude increase of the radiative rate near

the transition between the wells as well as the outer well. Thus it is only

necessary to be near the barrier, and not over the barrier to access the regions

of increased radiative rates. Furthermore, while direct excitation across the

barrier is energetically allowed, vertical excitation during absorption and the

large nuclear deformation required to go over the barrier should suppress

such transitions. It is emission near the barrier, not from the outer well,

which is the leading radiative process here.

The discovery of multiple troughs in the excited state potential energy

surface indicate even the inner well potential surface is likely to be rich in

structure. The double well path of Cs symmetric structures, gave an inner

well minimum only 130 meV below the barrier height. Such a shallow well is

only about twice the energy spacing of most of the silicon vibrations in the

particle. This is ideal for confining the particle in the inner well, but still

allowing access to the radiative regions near the barrier peak.

At the inner well minimum the ground state energy of the Cs double

well path is 50 meV lower than the C2v path. However the excited state

energies are nearly degenerate, with some portions of the Cs inner well lower

in energy than the corresponding dimer length structure of C2v symmetry

while other portions are slightly higher in energy. Therefore if the structure

relaxes into the ‘trough’ of the Cs double-well path, the C2v double-well path

is energetically accessible as well.

If there are many local minima in the excited state surface near the barrier

peak, the large change in the ground state energy (∼0.25 eV) between the two

known Cs troughs indicate such a scenario could help explain the large range

of Stokes shift. Direct excitation to these local minima ‘traps’ is guaranteed
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to be energetically allowed due to the barrier height itself being slightly less

than the absorption energy. As the local minima are in the inner well, this

is also more favorable than outer-well excitation due to vertical transition

during absorption.

The Cs double well barrier has an emission of 455 nm, and the C2v double

well barrier has an emission of 490 nm. There are N=53 nuclei in the 1

nm particle, so after removing translations and rotations the excited state

potential energy surface is a 3N-6=153 dimensional surface. Here we have

only focused on some symmetric paths on this surface. However the excited

state minimum energy geometry was found to have Cs symmetry. Therefore

the Cs symmetry double well path is expected to represent the minimum

energy path to the barrier, a saddle point. Likewise, the C2v symmetry path

is expected to be a higher order saddle point. Therefore while there are

many more paths across the barrier, these stationary points should give the

predominant energies in the emission. This predicts there are two broad

peaks in the emission at 490 and 455 nm.

These predictions can be compared to the experimental emission energy

of 1 nm silicon nanoparticles which were recently measured at the Daresbury

Synchrotron Radiation Source [116]. The particles were dried on a substrate,

placed in a vacuum, and cooled to 10 Kelvin. The emission in response to a

range of excitation energies is show in Figure 4.16. The emission spectra is

found to be largely independent of excitation energy from 4.6 eV up to 7.5

eV. The emission appears to be a peak near 435 nm with a shoulder in the

longer emission wavelengths.

The emission is fit well with two gaussians as shown in Figure 4.17. The

fitted peaks are at 435 and 480 nm, with full width-half max of 48 nm and

103 nm respectively. The fit error for the center location of the peaks is less

than 1 nm for the main 435 nm peak, and 6 nm for the broad 480 nm peak.

This fits the prediction of two peaks, although the predicted wavelengths

were overestimated by 20 and 10 nm respectively.

The view that the silicon nanoparticles retain a sense of their ‘indirect gap’

nature even as small nanostructures [82, 78, 79, 80, 81], fits conceptually with

the radiative rate increase at the edge of the inner well instead of the bottom.

Due to that indirect nature seen in this current study, it is suggested single-

point energy calculations are not well suited for discussing the fluorescence.

Furthermore the shallow inner well and importance of the region near the
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barrier illustrates that a harmonic calculation of the vibrational modes in the

excited state is insufficient as the strongly an-harmonic nature of the surface

cannot be ignored. Calculating the values along at least a couple paths has

been shown here to allow a description of the emission spectra.

87



Figure 4.16: Emission spectra of 1 nm particles under a range of excitation
energies. Spectra have been vertically offset for ease of comparison.

Figure 4.17: Emission of 1nm particles under 4.6 eV excitation, fit to two
gaussian peaks. The peak centers were found to be at 435 and 480 nm.
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Chapter 5

Interaction with Aqueous
Fe(II) Ion

In principle, any interactions of the silicon naonparticles with the environ-

ment can be used to manipulate the particles or sense details of the envi-

ronment. Recent experiments in our group and that of collaborators have

shown particular promise for interactions with ions in solutions. They have

demonstrated that such interactions can be used to pattern thin films of

particles via electro-plating them in the presence of salts [19]. Also of note

is an electrochemical device capable of using the particles to sense glucose

in the presence of the particles, demonstrating the potential of these silicon

nanocrystals in biosensing applications [20].

The success of existing applications is encouraging, however these devices

were made with little understanding of the underlying charge interactions

with the particles. Furthermore, it is clear that these devices have only

begun to touch upon the full variety of interactions with ions that can occur.

More knowledge of the electronic structure of these particles, and the effect

ion interactions can have on this structure is crucial to allow greater diversity

of applications and better selectivity in sensing devices.

In this chapter, first we will present experimental evidence of charge com-

plexes forming between 1 nm silicon particles and aqueous ferrous (Fe+2) ions.

Then density functional theory (DFT) calculations will be presented with a

proposed model of the charge complex structure. Solvation energies for the

ions will be included with the Conductor-like Screening Model (COSMO) to

estimate the stability of this complex in solution.
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5.1 Absorbance measurements of silicon

nanoparticle and ion solutions

Silicon nanoparticles were created with the anodization etching technique

previously described (Chap. 2) with a predominant size of 1 nm, and sus-

pended in isopropanol. The suspsension was then filtered with a 0.22 micron

filter. The resulting solution appeared clear to the eye in visible light and

fluoresced strongly blue under a UV lamp. Further filtering with a 50 nm

filter negligibly changed the concentration as indicated by fluorescence.

Five solutions were created for absorption measurements. A 1.1 mM

solution of ferrous chloride (FeCl2) and ferric chloride (FeCl3) were each

created by adding the corresponding salt to de-ionized water. After the

absorbance of an iron solution was measured, it was mixed 9:1 with the stock

silicon nanoparticle solution and the absorbance of the resulting mixture was

measured. A solution containing 9:1 de-ionized water to nanoparticle solution

was also created, to provide a solution with the same amount of water and

silicon nanoparticle solution as the previous mixtures.

While the proposed structure of the nanoparticles is non-polar, the 9:1

mixture of water and isopropanol resulted in no precipitation and appeared

stable. Water was chosen to be the predominant solvent for the ease in

obtaining solutions of metallic ions. The iron chlorides separate into iron and

chloride ions with solvation shells in water [117], while iron interactions with

isopropanol are comparitively weak, requiring strong anhydrous conditions

for isopropanol coordination with iron [118].

Absorbance measurements were recorded with a Varian Cary 5G spec-

trophotometer, with samples placed in a fused quartz cuvette. The back-

ground was corrected for dark counts and the spectra from a cuvette with

de-ionized water was subtracted as a blank. The result is show in Figure 5.1.

The dilute silicon nanoparticles absorb very little, although features at

225nm and 275nm can still be seen. This corresponds to the 4.5 and 5.5

eV peak seen by measurements previously reported of more concentrated

samples [37]. The FeCl2 solution containing Fe+2 ions is relatively featureless

in this range, while the FeCl3 (Fe+3 ions) absorbs strongly with a broad peak

at 290nm.

With both ions, mixing with the silicon nanoparticle solution significantly
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Figure 5.1: Absorbance of solution of 1 nm silicon particles (SiNP), Fe(II),
Fe(III), and combinations. The concentration of silicon nanoparticles are the
same in the three solutions containing them.
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affects the absorption spectra. Neither ion and particle mixture is a linear

combination of the absorbance of the parts, indicating a strong interaction

and possibly the formation of a charge complex. Furthermore, the features of

both mixtures have the same general feature. As the wavelength decreases,

the absorbance slowly increases until about 270 nm where a bend occurs in

the spectra with a faster increase in absorbance at lower wavelengths. This

may indicate the resulting structures are similar in each case.

5.2 COSMO solvation model

A general method of treating interaction with solvents are continuum solva-

tion models [119]. From the point of view of the solute, solvent molecules

will move stochastically presenting on average a continuum dielectric ma-

terial which locally polarizes in response to the charge distribution of the

solute. In the simplest models, the solute is placed in a spherical cavity sur-

rounded by dielectric medium. More realistic models form the cavity from

an enlarged Van der Waals sphere around each atom. The difficulty then

becomes solving for the resulting potential due to this complicated dielectric

surface.

The Conductor-like Screening Model (COSMO) simplifies this greatly by

treating the cavity as a conductor surface and then scaling the surface charge

to approximate a finite permittivity [120]. This works because the surface

charge density on a dielectric material of a given geometry in response to a

charge distribution will scale as [121]

f(ε) =
ε− 1

ε+ x
(5.1)

where ε is the relative dielectric permittivity, and 0 < x ≤ 2 depending on

the geometry [120]. The conductor screening limit is equivalent to ε → ∞
where f(ε) = 1. A solvent with a large permitivity is thus well approximated

by the conductor limit. The COMSO method solves for the conductor case,

and estimates x = 1/2 to scale the results to realistic dielectrics. For most

dielectric solvents, and particularly water, the relative error will be small as

the dependence on x is small. Weak dielectrics can have a larger relative

error, but the charging screening energy is small in this case and thus the

absolute error is small.
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A representation of the solvent cavity is created by denoting an excluded

radius for the solvent molecules from an atom, equal to the characteristic

radius of the atom plus the characteristic radius of the solvent ‘probing’. In

the COMSO method, a set of points are evenly distributed on such a sphere

from each solute atom. If the point is inside one of the other excluded vol-

umes, it is discarded. The remaining points are then collected into segments

of roughly equal area, and then a surface point charge assigned to the center

of the segment.

With the surface defined as a set of charges, solving the charge distri-

bution then becomes a boundary value problem for a conductor. If the

electrostatic potential at each surface location is collected in a vector Φ, the

vanishing of the potential at the conductor surface gives

Φtotal = Φsolute + Aq = 0 (5.2)

where the total potential is broken into the term due charge distribution of

the molecule in the cavity and a term due to the surface charges. This is

represented with q as a vector listing all the surface charges, and a matrix A

representing the Coulomb potential operation. The matrix A depends only

on the geometry and once calculated, can be inverted to solve directly for

the charges

q = A−1Φsolute. (5.3)

The solvent charges can therefore be solved for efficiently once the ge-

ometry is specified and A−1 is calculated. This is important because the

solution of the solute molecule charge distribution will depend on the solvent

polarization, and therefore this interaction is included in the self consistent

field (SCF) iterations when solving for the molecular orbitals. This can be

used at the Hartree-Fock or Kohn-Sham density functional level of theory.

5.3 Charging and aqueous energies of Si29H24

and Fe

The interaction of a silicon nanoparticle with metallic ions may result in a

redox type reaction resulting in two free charged species in water. It is also

possible that charge is transfered between the species even if a charge com-
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plex is formed. Because the bonds in a solvation complex are much more ionic

than covalent in nature, and the ligand bonds are usually longer than ordi-

nary single covalent bonds, the oxidation state of the metallic atom remains

a useful quantity when discussing charge complexes. Therefore knowledge of

the energies of various ions of the nanoparticle in solution compared to metal-

lic ions is helpful in narrowing the range of possible interactions. Here iron

is used as a test case, whose known ionizations and solvation energies allow

testing the accuracy of the calculation methods at each step. Additionally

iron is a first row transition metal, providing for easier computations.

Calculation of the charging energies of Si29H24 and Fe were done at the

UHF-DFT level using the B3LYP functional with the TURBOMOLE quan-

tum computational package [112]. The TZVP basis was used which is a

triple split valence basis with polarization functions added for each atom

[113, 114, 115]. The energy of the species in water were obtained with the

COSMO method of approximating the particles embedded in a continuum

dielectric of ε = 78.4 and using a solvent radius of 1.3 Angstrom.

The energy of the silicon particle and iron atom in vacuum (or ‘gas phase’)

at various charging energies is given in Table 5.1. The electronic density used

for the density functional calculations is built from an unrestricted Hartree-

Fock (UHF) type slater determinant, which cannot correctly handle the de-

generacy of the iron orbitals. Instead of the electrons being shared equally

between the 5d atomic orbitals, the electrons are placed in the first unfilled

shell. The calculated ionization energies of iron are with-in 3% of the known

experimental results, showing the accuracy of this method. The spin state

of iron as well as its +2 and +3 ions are predicted as expected.

It is noted however that the calculation predicts the electronic struc-

ture of the Fe(+1) ion to be [Ar]3d7, while the known configuration is

[Ar]3d64s1 [122]. The DFT calculation with 3 unpaired spins had negligi-

ble spin contamination 〈S2〉 = 3.754, as did the 5 unpaired spins calculation

with 〈S2〉 = 8.752, so the calculations are converging appropriately. This

problem with the Fe(+1) spin has been commented on by other researchers,

noting however that DFT has displayed good performance with the proper-

ties of many transition metal compounds [123].

The neutral silicon nanoparticle initially has Td point group symmetry,

with a triply degenerate highest occupied orbital (HOMO). This provides

for the possibility that the doubly charged ion will be a triplet state. While
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the Td symmetry is broken in the charged states, the doubled charged state

retains enough symmetry for the triplet to be slightly lower than the singlet

at this level of calculation, having only a spacing of 4 meV.

The silicon particle ionization energy and electron affinity are found to be

7.29 eV and 1.46 eV respectively. This is much closer to the atomic values

of silicon (8.15 eV and 1.38 eV respectively) than to the crystalline bulk

silicon values of 4.05 eV and 5.17 eV. This further demonstrates the silicon

nanoparticle is most appropriately discussed in the molecular regime than

approximations from the crystalline condensed matter regime.

The energy of the silicon particle and iron atom in water at various charg-

ing energies is given in Table 5.2. The predicted spin state of the species is

not changed from the vacuum computation. As the dielectric screening is

only sensitive to the charge distribution, this indicates that the charge dis-

tribution of the different spin states is not sufficiently different to allow the

screening energy to change the spin level ordering.

The solvation energy is calculated as the drop in energy from the gas

phase to liquid phase energy. These values are known experimentally for the

ferrous and ferric iron ions, and the calculations provide a poor fit with close

to a 40% relative error. This indicates the interactions of iron with water are

not adequately represented here. The relative error is quite similar for the

two ions compared to experiment (Fe+2 and Fe+3), hinting that a common

interaction could resolve the discrepancy.

The inadequacy of the continuum solvent model for the transition metal

ion is due to a failure of the assumption that the solvent molecules will move

sufficiently randomly about the ion for a continuum average approximation

to be appropriate. Clearly the water molecules far from the ion will be

uncorrelated to the iron atom and therefore fit the approximation well, but

at short distance the lone pairs of the oxygen in water will interact with

the unfilled orbitals (weak ‘dangling bonds’) of iron to form a complex with

water.

The solvation shell is not made of strong covalent bonds, and the water

molecules still do rearrange with inner solvation shell exchanges occurring on

a time scale of about 10 nsec for Fe+2 ions [117]. The structure lasts long

enough to be studied via NMR, x-ray scattering, and neutron diffraction

which determined the first solvation shell of Fe+2 and Fe+3 (as well as most

transition metals) to contain 6 water molecules.
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1 nm silicon nanoparticle Si29H24

charge unpaired electrons energy (Hartree) eV (relative to neutral)
-1 1 -8409.20012 -1.462
0 0 -8409.14638 0
+1 1 -8408.8784 7.292
+2 0 -8408.53407 16.662

2 -8408.53422 16.658

Iron atom
charge unpaired electrons energy (Hartree) eV (relative to min)
Fe(0) 0 -1263.46682 3.531

2 -1263.56065 0.978
4 (lowest energy) -1263.59658 0

Fe(+1) 1 -1263.26616 8.991
3 (lowest energy) -1263.31269 7.725
5 -1263.30575 7.914

Fe(+2) 0 -1262.37438 33.258
2 -1262.64292 25.951
4 (lowest energy) -1262.70319 24.311
6 -1262.53584 28.864

Fe(+3) 1 -1261.35176 61.085
3 -1261.36543 60.713
5 (lowest energy) -1261.54936 55.708
7 -1259.19302 119.828

energy relative to neutral atom
calculated (eV) experimental value error %error

Fe(+1) 7.725 7.9024 -0.1774 -2.2
Fe(+2) 24.311 24.0901 0.2209 0.9
Fe(+3) 55.708 54.7421 0.9659 1.8

Table 5.1: Calculated ion energies of silicon nanoparticle and iron in vacuum.
Experimental values are from ref. [124].
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1 nm silicon nanoparticle Si29H24 in water
charge unpaired electrons energy (Hartree) eV (relative to neutral)
-1 1 -8409.23676 -2.314
0 0 -8409.15173 0
+1 1 -8408.95054 5.475
+2 0 -8408.73897 11.232

2 -8408.73911 11.228

Iron atom in water
charge unpaired electrons energy (Hartree) eV (relative to min)
Fe(0) 0 -1263.46914 3.484

2 -1263.56114 0.98
4 (lowest energy) -1263.59717 0

Fe(+1) 1 -1263.38399 5.801
3 (lowest energy) -1263.43046 4.536
5 -1263.42526 4.678

Fe(+2) 0 -1263.09697 13.611
2 -1263.11084 13.234
4 (lowest energy) -1263.17117 11.592
6 -1263.00512 16.111

Fe(+3) 1 -1262.4044 32.457
3 -1262.41824 32.086
5 (lowest energy) -1262.60196 27.081
7 -1260.24751 91.15

Iron solvation energy in water
calculated (eV) experimental value error %error

Fe(+2) 12.734 20.82 -8.086 -38.8
Fe(+3) 28.643 46.547 -17.904 -38.5

Table 5.2: Calculated ion energies of silicon nanoparticle and iron in water.
Experimental values for solvation energy are from ref. [117].
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Figure 5.2: Structure of ferrous ion (Fe+2) in hexa-aqua complex.

iron hexa-aqua solvation complex
energies in Hartree

Fe Fe(H2O)6 Fe(H2O)6 in dielectric
Fe(0) -1263.596579 -1722.239998 -1722.273072
Fe(+1) -1263.312692 -1722.100865 -1722.197558
Fe(+2) -1262.703186 -1721.786762 -1722.089763
Fe(+3) -1261.549362 -1721.175465 -1721.853877

energies in eV
relative solvation experiment %error

Fe(0) 0 1.293
Fe(+1) 2.055 6.964
Fe(+2) 4.988 20.616 20.82 -0.98
Fe(+3) 11.407 45.594 46.547 -2.05

Table 5.3: Calculated iron ion and solvation energies of ion in water. Exper-
imental values for solvation energy are from ref. [117].
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The gas phase hexa-aqua complex structure for ferrous iron (Fe+2) is

illustrated in Fig. 5.2. The oxygen attach as ligands in a cubic structure.

Hydroxide ions can also serve as a ligand, but the hexaaqua structure is the

preferred structure for ferrous ions in acidic as well as weak basic conditions

having a pH less than about 8 [125].

Higher order and weaker solvation shells of water will form around this

inner solvation complex due to hydrogen bonding with the inner shell water

molecules. While including the higher order complexes leads to some im-

provement, a combined first inner-cluster + external continuum model for

water has been found to account for the vast majority of the complex shell

interaction for Cu(+2) ions [126, 127] and has preformed will in studies with

iron ions [125, 128].

The hexa-aqua solvation complex with an iron atom was calculated with

the spin values previously determined. The results are summarized in Table

5.3. For the singly charged and neutral iron the hexa-aqua structures relaxed

away from the cubic like structure, especially for the neutral iron the water

molecules primarily are aligning to each other. In order to remain consistent

for comparison, six water molecules were used for the solvation of each of the

four iron atom charges considered here. The solvation energy was calculated

from the change in energy of the reaction

Fe+x
(gas) + 6 H2O(solv) −→ [Fe(H2O)6]+x

(solv) (5.4)

where the solvent phase energy of a single water molecule was found to

be -76.43816 Hartree (and a gas phase energy of -76.42592 Hartree). The

resulting solvation energies are now with-in 3% of the experimental values,

therefore bringing the calculation accuracy to the same level as the ionization

energies in vacuum.

In the explicit water complexes with iron, Mulliken or Loewdin population

analysis does not give a charge assignment matching the expected oxidation

state. The Loewdin charge ranges from -0.29 to 0.40 (atomic units), never

even reaching a full charge when the oxidation state is Fe(+3). The Mulliken

charge assignment doesn’t even demonstrate a monotonic increase with ox-

idation state. The inability to extract the oxidation state from population

analysis has been previously noted in literature, where charge assignments

were found to depend more heavily on the electro-negativity of the ligand
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[129]. However the spin density of Mulliken, Loewdin, and Natural orbital

population analysis all gave matching assignments of unpaired d-orbital elec-

trons on the iron atom. The unpaired electron assignments therefore provide

the best trend to allow identification of the iron oxidation state for these ion

complexes.

With vacuum surroundings, the charge in the silicon particle is distributed

quite uniformly over the particle. The dipole moment for the negatively

charged, neutral, singly positive charged, and the singlet state of the doubly

positive charged nanoparticle were all less than 0.01 Debye. Only the doubly

charged triplet state had significant non-uniform charge distribution, with a

dipole of 3.13 Debye.

Embedded in the aqueous dielectric, the dipole moment of the silicon

nanoparticle changed appreciably only for the singly positive charge (now

5.62 Debye) and the doubly charged triplet state (now 7.37 Debye). Unlike

the iron atom, the silicon particle does not have dangling unfilled orbitals for

solvation bonding with the lone pairs in the oxygen atoms of water. The sol-

vent interactions with the silicon atom are therefore expected to be modelled

adequately with the dielectric continuum model alone.

The calculated charging energies indicate a ferrous (Fe+2) ion cannot

be oxidized to Fe(+3) by the silicon nanoparticle in water due to energy

constraints. Furthermore an Fe+2 ion cannot strip one or two electrons from

a silicon nanoparticle in water and then freely separate. Therefore without

additional energy somehow supplied externally, the ion energies restrict the

interactions to those resulting in bound complexes.

If forming a complex with the nanoparticle, the iron will not have a

full hexa-aqua shell. Therefore in the complex the relevant charge transfer

energies for iron will be somewhere between the continuum dielectric alone

and the hexa-aqua complex. Therefore it may be energetically favorable to

transfer charge between a ferrous ion and a neutral nanoparticle in water,

resulting in each being singly charged and bound.

While the iron(+1) oxidation state is not common in complexes, there

are several known examples. One such complex is [Fe(H2O)5NO]+2 from the

well known ‘brown ring test’ used in organic chemistry, with both charged

species in the complex having a single positive charge (NO+1,Fe+1) [130,

131]. Another example is [(RS−)2Fe+(NO+)2]+ again involving other singly

charged species [132]. Monovalent iron is also known to occur in complexes
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with porphyrins [133].

This leaves three classes of interactions for Fe+2 and Si29H24 in aqueous

solutions. First, there is the possibility of no binding with the nanoparticle

if water complexing in strongly energetically favorable. Since a redox type

reaction resulting in charge transfer and free separate species is already ruled

out, this first case of no bound complex at all would mean there is no direct

reaction between the species. The second possibility is a charge complex

forms in which the iron ion retains its double charge. The third possibility is

a charge transfer between the species, and the interaction is strong enough

to form a stable complex preventing the two (now charged) species from dis-

sociating. A computational study of a proposed charge complex will provide

an indication of the most likely scenario.

5.4 Charge complex of Si29H24 and Fe(II)

The 1 nm silicon nanoparticle Si29H24 has no terminations on its surface with

lone electron pairs, such as an oxide or nitrogen group, which are commonly

found in the ligands of a charge complex. However the surface reconstruction

dimers pull to open up 4 hexagonal rings on the surface. A ferrous ion may

sit within one of these rings, reducing the energy by effectively spreading the

charge over a larger volume represented by the silicon nanoparticle. If the

particle can act as an ‘effective polarizable medium’ better than the water,

the charge complex may then be stable.

Structures were calculated at the UHF-DFT level with a TZVP basis set

and the B3LYP functional using the TURBOMOLE quantum computational

package [112]. The first structures were calculated without solvation models

to investigate if the polarization of the silicon particle was a sufficient re-

duction in energy to prevent each species just becoming singly charged and

separating due to Coulomb repulsion.

Initial attempts at placing the iron atom above the hexagonal silicon ring

resulting in the iron atom falling below the ring into the particle interior

during relaxation. A local minimum energy structure was found as shown

in Figure 5.3. This ‘interior’ minimum was calculated for 0, 2, 4, and 6 un-

paired electrons and found to exist in each case. The lowest energy structure

contained 4 unpaired electrons, and 〈S2〉 = 6.066 showing low spin contam-
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ination. Mulliken and Loewdin population analysis both gave 3 unpaired

electrons in the Fe d orbitals and none in the s and p orbitals. Considering

the electronic configuration predictions of Fe(+1), this is in agreement with

one charge transfered between the SiNP and the initial ferrous ion, leaving

each singly charged.

The energy of the complex in vacuum as a function of the iron distance

from the center of the silicon nanoparticle (the center nuclei) was calculated

for this structure. At each distance the structure was relaxed in the 4 un-

paired electron configuration. The inner local minimum was found to be a

0.09 eV deep well from the top of a transition point when moving through

the hexagonal ring. Outside the silicon nanoparticle a second minimum was

found (Figure 5.6). In this configuration the Fe atom rests on top of the

hexagonal silicon ring. The minimum of this well is 0.43 eV below the bar-

rier through the ring, and 1.90 eV below the energy of a distantly separated

Fe(+1) ion and a singly charged nanoparticle as calculated from the previ-

ously obtained ion energies.

The COSMO solvation model was used to calculate how the dieletric

screening energy of water affects this potential energy surface. The result

is shown in Figure 5.5. The inner equilibrium is now shallower, with the

barrier 0.07 eV above the inner minimum. The outer minimum is 0.57 eV

below the barrier through the ring, and 2.45 eV below the long distance

limit of a Fe(+1) ion and single charged nanoparticle in water. Near the

outer minimum, the structure was allowed to relax for a configuration with

2 unpaired electrons and 4 unpaired electrons. The 4 electron case was the

minimum energy, consistent with the silicon particle and iron atom each

having a single charge and remaining spin aligned.

To obtain a better estimation of the binding energy of this complex, the

first solvation shell of water around the iron atom must be included. When in

the equilibrium position above the hexagonal silicon ring, roughly half of the

iron atom is obscured from direct interaction with the solvent. So the silicon

nanoparticle must replace 3 of the 6 water molecules in the iron solvation

shell. The resulting structure is shown in Figure 5.4. The structure was

allowed to relax and the total binding energy was evaluated by considering

the dissociation reaction

[(Si29H24)Fe(H2O)3]+2 + 3 H2O −→ [Fe(H2O)6]+1 + [Si29H24]+1 (5.5)
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where all energies used the COSMO solvation model. The binding energy

was found to be 0.49 eV. So the proposed complex is predicted to be stable

against dissociation in water, despite the Coulomb repulsion due to each

species being charged.
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Figure 5.3: Complex of Fe(+2) and silicon nanoparticle, with ion sitting
inside of particle.

Figure 5.4: Proposed structure of complex of silicon nanoparticle, Fe(+2)
ion, and water.
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Figure 5.5: Energy of complex in vacuum versus Fe and center silicon atom
separation. The zero of the energy is taken to be the energy of Fe(+1) and
singly charged nanoparticle.

Figure 5.6: Energy of complex in water versus Fe and center silicon atom
separation. The zero of the energy is taken to be the energy of Fe(+1) and
singly charged nanoparticle.
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Chapter 6

Conclusion

A comparison of Raman spectra of 1 nm silicon nanoparticles to the Hartree-

Fock calculated vibrational modes of six different potential molecular struc-

tures found Si29H24 to be the most likely structure. This confirms previous

findings by Mitas et al. in 2001 based on comparison of absorption spectra

to calculated spectra [37], although disagrees with more a recent structure

assignment based primarily on emission energies by Lehtonen et al. [51]. The

Si29H36 bulk-like structure suggested by Lehtonen was also found to have a

band gap of 4.5 eV according to TD-DFT B3LYP, while the Si29H24 struc-

ture with surface reconstruction dimers had a band gap of 3.3 eV in better

agreement with experiment.

The calculated vibrational modes of the 1 nm particle were also compared

to vibrational structure seen in low temperature photoluminescence data.

The data indicated vibrational modes of 33 meV and 40 meV are coupled to

the emission. These vibrations were assigned to two anti-symmetric dimer

stretching modes calculated to be at 35 meV and 40 meV. This provides

support for the proposal by Lannoo et al. [1, 2] that the dimers have a

significant role in the fluorescence.

The double well of the dimer mechanism has been shown to exist, along

with the associated increase in radiative rate near the barrier between the

wells. With this mechanism fluorescent lifetimes are predicted to be ∼ 100

ns. The self-trapped exciton proposed by Lannoo et al. was found to be

unstable, with the outer well leading to non-radiative recombination with a

conical intersection between the ground state and excited state. To match the

peak emission seen in experiment as well as the robustness against photo-

bleaching, emission should predominantly occur at the barrier instead of

across it in the outer well.

The discovery of a complex excited state potential energy surface with

multiple local minima in the inner well is suggested to play a role in the
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fluorescence for the 1 nm silicon nanoparticle. The local minima can each

have different minimum paths to a barrier transitioning to the outer well.

They can also have different ground state energies, corresponding to different

Stokes shifts. Because these structures are in the inner well, direct excitation

populating these states should be efficient. The minimum barrier crossing

(Cs symmetry) and a higher order saddle point (C2v symmetry) predict emis-

sion of 490 and 455 nm respectively. These overestimate the experimental

measurements by 10 and 20 nm respectively.

Absorption measurements of 1 nm silicon particles and iron in water indi-

cate a strong interaction between the species. DFT with COSMO calculation

of the ionization energies of Si29H24 and iron in water show that it is ener-

getically forbidden to have a redox type reaction where charge is transfered

and the resulting ions then freely leave in solution. A bound charge com-

plex was found with the Fe atom sitting over a ring of silicon atoms on the

nanoparticle’s surface. The oxidation state of the iron is predicted to be +1,

indicating a charge transfer between the species even though they remain

bound. The structure is found to be stable with a minimum of 0.49 eV

required to dissociate the complex.
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