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ABSTRACT

This thesis aims to develop new numerical and computational tools to study

electrochemical transport and diffuse charge dynamics at small scales. Pre-

vious efforts at modeling electrokinetic phenomena at scales where the non-

continuum effects become significant have included continuum models based

on the Poisson-Nernst-Planck equations and atomic simulations using molec-

ular dynamics algorithms. Neither of them is easy to use or conducive to

electrokinetic transport modeling in strong confinement or over long time

scales. This work introduces a new approach based on a Langevin equa-

tion for diffuse charge dynamics in nanofluidic devices, which incorporates

features from both continuum and atomistic methods. The model is then

extended to include steric effects resulting from finite ion size, and applied to

the phenomenon of double layer charging in a symmetric binary electrolyte

between parallel-plate blocking electrodes, between which a voltage is ap-

plied. Finally, the results of this approach are compared to those of the

continuum model based on the Poisson-Nernst-Planck equations.
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CHAPTER 1

INTRODUCTION

Recent advances in microfabrication technologies have enabled engineers and

scientists to design and manufacture ever smaller fluidic devices to meet new

engineering challenges and tackle new applications [1–3]. These new break-

throughs in manufacturing have generated much interest over the last few

years owing to their potential applications in a variety of fields and specif-

ically for the miniaturization of chemical and biological assays [4–6]. Yet

more recently, efforts have focused on further scaling these devices down to

the nanoscale, opening a new realm of physical phenomena [7]. The emer-

gence of micro- and nanofluidics and of lab-on-chip technology has enabled

the development of numerous novel devices achieving various functions, such

as cell separation and sorting [8], chemical and biochemical separations [9],

biochemical detection and analysis [10], logic gates [11,12], and many others.

These developments have brought about a wealth of new design and mod-

eling challenges, as the physics that govern these systems differ significantly

from their macroscale counterparts [1]. In particular, fluid flows in micro-

and nanodevices are characterized by the complete absence of inertia, which

makes them reversible and renders mixing difficult. Also, they are often

dominated by interfacial effects owing to the large surface-to-volume ratio

at these length scales. Thermal, electric and chemical effects are also often

present and intimately coupled, leading to a broad spectrum of new phe-

nomena for which a good theoretical understanding and accurate models are

often lacking.

Of particular interest has been the use of electric fields and electrokinetic

phenomena in these devices as an efficient and low-cost means for transport-

ing fluid and manipulating particles [13] or macromolecules [14]. Most solid

surfaces possess a native charge resulting from chemical reactions with the

surrounding electrolyte [13, 15, 16]. These charged surfaces in turn attract

ions of opposite charge in the liquid, which accumulate near the boundary
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creating an electrical double layer. When subjected to an electric field, this

double layer exerts a body force on the fluid near the surface, which can drive

fluid or particle motion. This technique for manipulating fluid and particles

is especially useful in small devices and typically preferred to pressure-driven

flow owing to its low cost and high efficiency as well as its ability to reduce

particle or solute dispersion. A number of recently developed technological

applications utilize electrokinetic phenomena as a way to either transport

fluid or particles or macromolecules, such as the separation of DNA oligonu-

cleotides by electrophoresis in straight nanochannels [9].

While these phenomena are used ubiquitously in many micro- and nanoflu-

idic devices, their precise modeling is highly complex owing the nontrivial

coupling between electrical, chemical and mechanical effects, and is typically

limited to relatively simple settings in which simplifying assumptions such as

weak field, thin Debye layer, etc. apply. For more complex problems in which

these assumptions break down, detailed or accurate models are often still

lacking. This is especially true at the nanoscale, where non-continuum effects

sometimes become significant, and as the characteristic thickness of the elec-

trical double layers becomes of the same order as the geometric length scales

of the device. Previous approaches to tackle this have included continuum

models based on the Poisson-Nernst-Planck equations [16], and atomic sim-

ulations using molecular dynamics algorithms [17]. While both approaches

have their merits, neither of them is easy to use or performs particularly well

in applications requiring the modeling of electrokinetic transport in strong

confinement and over long time scales.

1.1 Overview

This thesis details the development of a model based on a Langevin equa-

tion for diffuse charge dynamics in nanofluidic devices, which incorporates

features from both continuum and atomistic methods. The approach, which

is presented in detail in chapter 2, can be applied to model both electroos-

motic flows in nanochannels and through nanopores, as well as electrophoretic

transport of particles or macromolecules. Chapter 3 shows the results of ap-

plying the Langevin equation to simulate the model problem of double layer

charging in a symmetric binary electrolyte between blocking electrodes that
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apply a voltage. Chapter 4 summarizes the results of chapter 3 and draws

conclusions based on these findings. The rest of this chapter provides some

background on electrokinetic phenomena at small scales and the methods

used to model them.

1.2 Background

The phenomenon of electroosmosis has been known for a long time and is

illustrated in figure 1.1. [16, 18, 19].

E

Figure 1.1: Electroosmotic flow near a charged surface

In a micro- or nanochannel, channel walls typically possess a native charge,

which attracts ions of opposite sign (counterions) in the neighboring elec-

trolyte. These ions accumulate near the charged surface, resulting in the

formation of a diffuse charge cloud, also knnown as a Debye layer or electri-

cal double layer (EDL). When an electric field E0 is applied, the net excess

charge in the EDL is subject to an electric force which drives the motion of

the fluid relative to the fixed surface. In a channel, this phenomenon results

in a so-called electroosmotic (EO) flow. The characteristic thickness λD of

the Debye layer, which is determined by the balance between ion attraction

by the charged surface and ion diffusion, is typically of the order of 10− 100

µm in aqueous solutions. When this thickness is much less than the channel

width (as is typically in the case of microchannels), the effect of the electric
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force inside the EDL on the flow outside the EDL is well captured by an ef-

fective slip velocity us, given by the Helmholtz-Smoluchowski equation [20]:

us = (ε0ζ/µ)E0, where ε0 and µ are the permittivity and viscosity of the

fluid, and ζ is the zeta-potential or potential drop across the EDL, and is

considered a material constant. This slip velocity can then be shown to drive

a potential flow outside of the EDL, which is a plug flow in a unidirectional

microchannel [16].

When the Debye thickness λD is of the same order as the characteris-

tic geometric scale of the device, as is the case typically in nanochannels,

the Helmholtz-Smoluchowski equation is no longer valid and the exact ionic

distribution in the channel must be determined in order to evaluate the cor-

responding force distribution acting on the fluid [21–23] . The classical ap-

proach for obtaining this distribution is by solution of the Nernst-Planck

equations, which model the ionic conservation (under the effects of diffusion,

convection and electromigration), and of the Poisson equation for the deter-

mination of the elctric potential in the solution. Knowledge of the excess

charge distribution then allows one to obtain the resulting flow velocity field

from the Stokes equations including an electric body force. While models

based on Poisson-Nernst-Planck (PNP) equations manage to capture qual-

itative trends in nanochannels, they often fail at providing quantitative re-

sults that agree with experiments [21–23]. This is especially true in highly

confined environments in which EDLs from opposite walls overlap. Several

reasons can be invoked for the breakdown of these models. Specifically, the

PNP equations are not able to capture discrete effects, which become more

important at very small scales. For instance, steric effects due to the finite

size of ions in electrolytes can become significant inside double layers as has

been shown in previous studies [24–26], and are not typically accounted for in

continuum models, which can often predict ionic concentrations well beyond

the close packing limit.

One approach to capture the precise structure of the double layers is obvi-

ously molecular dynamics (MD) simulations [17], in which the exact motions

of solvent molecules and salt ions are solved for using Newton’s equations of

motion. MD simulations have been applied successfully to simulate electroki-

netic flow in nano-channels, e.g. [27–31]. The advantage of this approach is

that it provides detailed information on the structure of the double layers in-

side the channels down to molecular length scales, and naturally accounts for
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noncontinuum effects such as steric effects, structuring of the fluid near the

walls, etc. Such simulations, however, are extremely costly owing to the very

large number of degrees of freedom and to the very short time scales that

need to be resolved. As a result, only very thin and short channels with sim-

ple geometries have been simulated, over time scales that are typically much

shorter than the relevant dynamic time scales in problems involving particles

or macromolecules. The next chapter describes a new approach to model

electrokinetic flows in highly confined environments based on a Langevin de-

scription of the excess charge dynamics, that incorporates features from both

the PNP and MD models.

5



CHAPTER 2

THEORY

This chapter briefly outlines the continuum dilute solution theory that is

traditionally used to describe the electro-diffusion of ions and electrokinetic

phenomena. The Langevin approach is detailed in section 2.3, and the setup

for the model problem simulated in this study is described in section 2.4. It

is assumed for simplicity that we are dealing with a symmetric binary (z:z )

electrolyte.

2.1 The Poisson-Boltzmann equation

The standard model of electro-diffusion is based on the assumption that the

ions of a species i in a dilute solution are in quasi-thermal equilibrium with

a Boltzmann distribution [32,33]:

ci = c0i e
−zieφ/kT (2.1)

where c0i is a reference concentration, z is the valence, e is the elementary

charge, and kT is the thermal energy of the liquid. The electrostatic potential

φ is given (in a mean-field approximation) by Poisson’s equation:

ε0∇
2φ = −

∑

i

zieci (2.2)

Together, we get the Poisson-Boltzmann equation,

∇2φ = −
∑

i

ziec
0
i e

−zieφ/kT . (2.3)

Equation 2.3 must be solved numerically except when linearized under the

assumption that the potential is much lower than the thermal voltage (|φ| ≪
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kT/zie). In the linearized limit, for a symmetric binary (z:z ) electrolyte in a

one-dimensional geometry, the Poisson-Boltzmann (PB) equation was solved

analytically by Gouy and Chapman for a semi-infinite electrolyte near a

charged surface [32, 33]. (This describes the most common conditions under

which an electrical double layer forms.) The PB equation reduces to ε0
∂2φ
∂x2 =

2zec0 sinh(
zeφ
kT

). The characteristic width of the diffuse double layer, obtained

by nondimensionalizing the PB equation,

λD =

√
ε0kT

2z2e2c0
(2.4)

is called the Debye screening length.

2.2 The Poisson-Nernst-Planck equations

When the assumption of quasi-thermal equilibrium cannot be made, such as

in electrolytes subject to time-dependent applied voltages, the Boltzmann

distribution no longer holds, and the description must now include a conser-

vation equation for each species of ion.

The classical description comes from the Poisson-Nernst-Planck equations,

which consist of Poisson’s equation (2.2) and mass conservation laws for the

ions:

∂ci
∂t

+∇ · (−µicize∇φ− µicikT∇ log ci + u) = 0 (2.5)

where µi is the mobility of species i and u is the local fluid velocity. This

equation holds as long as the flux of species i remains proportional to the

gradient of its chemical potential, i.e., while

vi = −Di(∇ci +
zie

kT
ci∇φ) (2.6)

where vi is the flux of species i. Di is the diffusivity, related to the mobility

through Einstein’s relation [32], µi = DikT .

These continuum models are often used to model the diffuse layer at large

applied potentials, but have limited applicability due to the exponential sen-

sitivity of counterion concentration to voltage. For instance, there exists a

maximum possible concentration of ions near a surface in the “close packing”
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limit, and the Poisson-Boltzmann equation overpredicts the concentration at

applied voltages that are just a few times the thermal voltage (kT/zie).

2.3 The Langevin approach

As discussed in chapter 1, existing models for electroosmotic flow in highly

confined devices suffer from several limitations. Continuum models based on

the PNP equations are highly complex and difficult to solve even numerically,

and fail to capture a number of phenomena which result from the discrete

nature of the electrical double layers. Atomistic models based on MD simu-

lations provide excellent resolution but are extremely costly and only allow

the simulations of very small devices with simple geometries over short time

scales.

The basis for the proposed methodology is the observation that the so-

lution of the Nernst-Planck equations is strictly equivalent to an ensemble

average over a collection of charged Brownian particles (representing the ionic

species in the EDL) undergoing a stochastic motion satisfying an appropri-

ate Langevin stochastic differential equation. Specifically, the Nernst-Planck

equation (2.5) rewritten for the positively and negatively charged ion densi-

ties c± is:
∂c±
∂t

+∇ · (c±v±) = 0 (2.7)

where the flux velocities v± are given by:

v± = ∓µze∇φ− kTµ∇ log c± + u, (2.8)

where µ is the mobility of an ion in the solvent and u is the local fluid

velocity. The electric potential φ is obtained by solving Poisson’s equation

(2.2) modified for a symmetric binary electrolyte:

∇2φ = −
(c+ − c−)ze

ε0
(2.9)

Because equation (2.7) is simply an advection-diffusion equation, its solution

is equivalent to an ensemble average over trajectories of Brownian particles

obeying the following Langevin equation, for instance for a positively charged
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ion of index n with position x+
n :

dx+
n = (−µze∇φ+ u)dt+

√
2kTdt

µ
n (2.10)

where n is a random Gaussian variable with zero mean and unit variance.

The electric potential now satisfies a discrete version of Poisson’s equation:

∇2φ = −
ze

ε0

∑

n

±δ(x− x
±
n ) (2.11)

where the sum is now over all the ions in the solution and δ denotes the Dirac

delta function.

This formulation can be used to simulate double layer formation as follows.

First, the charge distribution in the electrolytes is determined by Brownian

dynamics simulations. Electric interactions between ions are modeled either

directly as Coloumb interactions between point charges, or from a mean-field

description of the induced field obtained by extrapolating the excess charges

to a grid. The Langevin equation is then used to advance the charges.

2.4 The model problem

The simulation carried out in this study is of double layer charging in a

symmetric z:z binary electrolyte between parallel plate blocking electrodes

that suddenly apply a voltage at t = 0. The local fluid velocity u is assumed

to be zero everywhere. This model problem helps provide easy comparisons

between the different approaches discussed above.

Two parallel blocking electrode plates are maintained a distance L apart,

where L is much smaller than the extent of the electrodes along their other

dimensions. The space in between is filled with a symmetric binary z : z

electrolyte that has no excess charge to begin with. At t = 0, a voltage V is

applied across the elctrodes, causing the formation of electrical double layers

near both electrodes.

We use as our domain a cube of side L, enforcing periodic boundary con-

ditions on all “open” sides. Considering N ions (particles) of either polarity

in the domain, the Langevin equation from the previous section that applies

to each of them is
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x=L

0 y=
L

z=L

Figure 2.1: The domain of simulation in section 2.4

dx+
i = −µze∇φdt+

√
2kTdt

µ
n (2.12)

At each time step, each particle is advanced in accordance with equation

2.12. The potential then needs to be solved for using a suitable Poisson’s

equation.

Two approaches to finding the potential are considered here:

• It can be found in terms of the mean field induced by extrapolating the

charges to a grid and using the discrete Fourier transform to solve for

the potential on the grid, or

• It can be solved for by modeling the ions as point charges together with

an efficient particle-mesh algorithm, in this case, a smooth particle-

mesh Ewald (SPME) algorithm.

In the first case, the relevant Poisson’s equation is simply ε0∇
2φ = −ρ,

where ρ is the interpolated charge density. In the second case, the relevant

Poisson’s equation is given by equation 2.11.

Once the potential has been found, the particle positions are updated

again.

10



When suitably nondimensionalized, there is only one parameter, the ratio

of the Debye screening length (equation 2.4) to the length scale of interest,

in addition to the applied voltage. The scaling involved and nondimensional

forms of the governing equations may be found in appendix A.2.

2.5 Solving Poisson’s equation

2.5.1 Mean field solution using the discrete Fourier transform

This section describes the solution of Poisson’s equation:

ε0∇
2φ = −ρ (2.13)

over the unit cube 0 ≤ x < 1, 0 ≤ y < 1, 0 ≤ z ≤ 1, with periodic boundary

conditions in the x and y directions, and Dirichlet boundary conditions at

z = 0 and z = 1, φ(z = 0) = v1, φ(z = 1) = v2.

In general, the solution may be sought as the superposition of two poten-

tials φh and φ. φh satisfies Laplace’s equation on the unit cube, is periodic

in x and y with period 1, and satisfies the given boundary conditions on

z = 0, 1. φ satisfies Poisson’s equation on the unit cube, periodic boundary

conditions along x = 0, 1, y = 0, 1, and vanishes at z = 0, 1. φh is easily

solved for analytically, while φ is solved for below.

Since the potential φ is periodic along x and y, we can write φ as a super-

position of Fourier modes along these directions. Further, since the potential

vanishes at the bottom and top walls, we can write φ as a superposition of

sines of various wavelengths along z. That is,

φ(x, y, z) =
∞∑

k=1

∞∑

i=−∞

∞∑

j=−∞

Φijke
2πI(ix+jy) sin(πkz) (2.14)

where I2 = −1. The density ρ can be similarly decomposed into its Fourier

modes:

ρ(x, y, z) =
∞∑

k=1

∞∑

i=−∞

∞∑

j=−∞

Rijke
2πI(ix+jy) sin(πkz) (2.15)

Substituting these expressions into Poisson’s equation we get, after some
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algebra,

ε0

∞∑

k=1

∞∑

i=−∞

∞∑

j=−∞

(
−4π2i2 − 4π2j2 − π2k2

)
Φijke

2πI(ix+jy) sin(πkz) =

−
∞∑

k=1

∞∑

i=−∞

∞∑

j=−∞

Rijke
2πI(ix+jy) sin(πkz) (2.16)

Invoking the property of orthonormality of the complex exponentials and the

sines, we can find the amplitude of any mode of φ (corresponding to a given

i, j, k) as:

Φijk =
Rijk

ε0π2 (4i2 + 4j2 + k2)
(2.17)

And the solution φ can be reconstructed in accordance with equation 2.14.

In practice, with ρ(x, y, z) known only at a finite number of grid points in

the domain, the discrete Fourier and Sine transforms need to be used, which

provide only a finite number of modes equal to the number of grid points.

Nevertheless, the use of Fast Fourier Transform algorithms (FFTs) makes

solving for the potential an efficient and fast process.

2.5.2 Solution using SPME

This section derives the solution of Poisson’s equation:

ε0∇
2φ = −

∑

n

qnδ(r − rn) (2.18)

with a periodic distribution of N point charges using a Smooth Mesh Particle

Ewald (SPME) method [34,35]. The domain is a cell of volume τ0 = L3, with

the same boundary conditions that apply to the model problem: periodic

boundary conditions along x and y (with period L), and φ(z = 0) = v1, φ(z =

L) = v2.

The potential Φ is treated as the superimposition of three potentials, Φ =

φh + φ+ φb, where

1. φh satisfies Laplace’s equation with periodic boundary conditions along

the x, y faces of the cell and with φh(z = 0) = v1, φh(z = L) = v2,
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Figure 2.2: Breakup of Φ for solution using SPME, section 2.5.2

2. φ satisfies Poisson’s equation (2.18) with periodic boundary conditions

at all boundaries, and

3. φb satisfies Laplace’s equation that satisfies periodic boundary condi-

tions along the x, y faces of the cell, and satisfies φb(z = 0) = φb(z =

L) = −φ(z = 0) = −φ(z = L). (The last equality holds automatically

from the boundary conditions on φ.)

The sum of the three potentials Φ then satisfies equation (2.11) with the

correct boundary conditions (figure 2.2).

φh can be solved for analytically, since v1 and v2 are constants. φ is solved

for using the Smooth Mesh Particle Ewald method described below, and φb

is solved using the discrete Fourier transform.

Finding φ using SPME

The expression
∑

n qnδ(r − rn) has a Fourier series expansion given by:

1

τ0

∑

k

∑

n

qne
−2πI(k·(r−rn))

where k is the tuplet of wavenumbers (k1, k2, k3) and the term
∑

k
is assumed

to mean the triple sum
∑

k1

∑
k2

∑
k3
.

Assuming the Fourier series expansion
∑

k
φke

−2πIk·r for the potential φ

and substituting these forms for the potential and the density into Poisson’s

equation, we get
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ε0∇
2

[∑

k

φke
−2πIk·r

]
= −

∑

k

∑

n

(qn/τ0)e
−2πI(k·(r−rn))

4π2ε0
∑

k

k2φke
−2πIk·r =

∑

k

∑

n

(qn/τ0)e
−2πI(k·(r−rn))

where k2 = k · k. Invoking the orthogonality of modes corresponding to

distinct wavenumbers, we get

φk =
1

4π2ε0τ0

∑

n

qne
2πIk.rn

k2
, k 6= 0

φ(r) =
1

4π2ε0τ0

∑

n

(
qn
∑

k 6=0

e−2πIk·(r−rn)

k2

)
(2.19)

The case of k = 0 simply gives
∑

n qn = 0, implying charge neutrality. (In

the absence of charge neutrality, Poisson’s equation with a periodic distribu-

tion of point charges does not have a finite solution.)

Now consider

1

k2m
=

πm

Γ(m)

∞∫

0

e−πk2ββm−1dβ

σmn =
∑

k 6=0

e−2πIk·(r−rn)

k2m
=

πm

Γ(m)

∑

k 6=0

∞∫

0

e−πk2β−2πIk·(r−rn)

so that the potential φ is simply

φ(r) =
1

4π2ε0τ0

∑

n

qnσ1n

=
1

4π2ε0τ0

∑

n

qn
π

Γ(1)

∑

k 6=0

∞∫

0

e−πk2β−2πIk·(r−rn)dβ (2.20)

We now introduce a parameter α, the Ewald coefficient, by way of splitting

the integral above:
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∞∫

0

e−πk2β−2πIk·(r−rn)dβ =

α∫

0

e−πk2β−2πIk·(r−rn)dβ

+

∞∫

α

e−πk2β−2πIk·(r−rn)dβ

Next, we apply Ewald’s θ-transformation formula (derived by applying

Poisson’s summation formula to the Gaussian e−π(r−rn)2/β):

∑

k 6=0

e−πk2β−2πIk·r =
τ0
β3/2

∑

l

e−
π(r−rl)

2

β (2.21)

to the integral from 0 to α. We get:

∑

k 6=0

∞∫

0

e−πk2β−2πIk·(r−rn)dβ =

∞∫

0

(
τ0
β3/2

∑

l

e−π(r−rn−rl)
2/β − 1

)
dβ

+
∑

k 6=0

∞∫

α

e−πk2β−2πIk·(r−rn)dβ (2.22)

Effectively, the infinite sum over k is split into two sums, one carried out in

real space and the other in Fourier space as before.

Defining the incomplete Gamma function ψn(x) =
∞∫
1

tne−xtdt, and writing

the above integrals in equation (2.22) in terms of ψ−1/2 and ψ0 respectively,

we get

σ1n =
πα

Γ(1)

[
τ0α

−3/2
∑

l

ψ−1/2

(
π(r − rn − rl)

2

α

)]

+
πα

Γ(1)

[∑

k 6=0

e−2πIk·(r−rn)ψ0(παk
2)− 1

]
(2.23)

Substituting this expression in equation 2.20, we get an expression for the
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potential φ:

φ(r) =
πα

4π2ε0τ0

[
τ0α

−3/2
∑

n

∑

l

qnψ−1/2

(
π(r − rn − rl)

2

α

)]

+
πα

4π2ε0τ0

[∑

k 6=0

(∑

n

qne
−2πIk·(r−rn)

)
ψ0(παk

2)−
∑

n

qn

]
.

The term
∑

n qn is zero due to charge neutrality, so

φ(r) =
α

4πε0τ0

[
τ0α

−3/2
∑

n

∑

l

qnψ−1/2

(
π(r − rn − rl)

2

α

)]

+
α

4πε0τ0

[∑

k 6=0

(∑

n

qne
−2πIk·(r−rn)

)
ψ0(παk

2)

]
. (2.24)

The field acting on the charges is −∇φ(r), which can be calculated from

equation (2.24) and used directly in the Langevin equation (2.12). After

some algebra, we get

−∇φ(r) =E(r) =
∑

l

∑

n

A(α, r − rn − rl)qn

+
∑

k 6=0

e−2πIk·r
B(α,k)

(∑

n

qne
2πIk·rn

)
(2.25)

where A and B are given by:

A(α, r) =
1

2ε0α3/2
ψ1/2

(
π(r · r)

α

)
r

B(α,k) =
Iα

2ε0τ0
ψ0(παk

2)k

Finding φb using the DFT

We intend to solve ∇2φb = 0 with periodic boundary conditions along the x

and y faces, and with φb(z = 0) = φb(z = L) = −φ(z = 0).

Since φb is periodic along x and y, we can assume a Fourier series of the

16



form:

φb(r) =
∑

k

φb,k(z)e
−2πIk·R (2.26)

where vck is the 2-tuple (kx, ky) and R equals (x, y).

Substituting this form into Laplace’s equation and invoking the orthogo-

nality of modes corresponding to distinct wavenumbers yields an ordinary

differential equation:

d2φb,k

dz2
= k2φb,k(z) (2.27)

where k2 = k2x + k2y. This ODE has the solution:

φb,k = Ake
kz + Bke

−kz (2.28)

The boundary conditions at z = 0 and z = L can now be applied. Since

φ(z = 0) is known, its Fourier series expansion can be determined:

φ(z = 0) =
∑

k

φ0,ke
−2πIk·R

And invoking the orthogonality of distinct modes again, we get:

Ak + Bk = φ0,k

Ake
kL + Bke

−kL = φ0,k

So that Ak =
(1−e−kL)φ0,k

ekL−e−kL , Bk =
(ekL−1)φ0,k

ekL−e−kL , and φb(r) is given by:

φb(r) =
∑

k

φ0,k
ekz(1− e−kL) + e−kz(ekL − 1)

ekL − e−kL
(2.29)

Which is used to find the actual potential along with φ(r) determined

from the SPME method above. In practice, the Fourier series expansion of

φ(z = 0) is found in terms of a two-dimensional discrete Fourier transform.

2.6 Handling steric interactions

The assumption that the ions are point charges is a poor one at sufficiently

high concentrations. Such high concentrations are reached near the electrodes
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(or charged surfaces) even in otherwise dilute solutions at voltages that are

only a few times higher than the thermal voltage. In reality, there is a steric

limit to the concentration of ions that can be achieved in any double layer.

To model these steric effects, we consider our ions to be spherical particles

of effective size (radius) a that cannot overlap. In physical situations, a is

clearly no less than the ionic radius, of the order of 1Å.

Particles of finite size undergo collisions which need to be accounted for.

A contact algorithm that prevents overlaps is therefore used [36], the details

of which are as follows. At each time step ti, let δx
i
n be the displacement of

particle n over the next time step if potential overlaps are ignored. The set

of particles m (m = 1, 2, ..,M) that overlap with particle n in this time step

can be determined by checking whether |xi+1
n −xi+1

m | < 2a. For each particle

m that overlaps with n, the fraction of ∆t after which surface contact occurs

can be determined, assuming the particles move at constant speeds during

this time step. The fraction ∆tmn
c is given by the equation:

|xi
n − x

i
m + (δxi

n − δxi
m)∆t

mn
c /∆t|2 = 4a2

Only the root that lies in the interval [0,∆t] is chosen. The particles m =

1, ...,M are sorted in increasing order of ∆tmn
c , so that ∆t1nc ≤ ... ≤ ∆tMn

c .

Finally, the particle n is moved back to its original position xi
n, and for each

particle m = 1, ...,M , moved a fraction ∆tmn
c /∆t of the full time step in the

direction in which overlap would otherwise occur with particle m. In the

normal directions, it is moved a full time step. This is summarized in the

following expression, which can be verified to prevent all overlaps:

x
i+1
n = x

i
n +

M∑

m=1

R̂
i
mnR̂

i
mn ·

[
M−1∏

k=1

(
I − R̂

i
mkR̂

i
mk

)]
· δxi

n

+

[
M∏

m=1

(
I − R̂

i
mnR̂

i
mn

)]
· δxi

n (2.30)

where R̂
i
mn is the unit vector pointing from sphere n to sphere m. When

m = 1, the product over k is replaced by the identity tensor.

Since the position of each particle needs to be checked against the position

of all the other particles at each time step, this is a computationally expensive

18



endeavor (O(N2)). The interaction between particles is very close range

(indeed, only at contact), so a cell list may be employed to significantly

speed up the bookkeeping involved [17]. The domain is divided into cells

and a frequently updated list of the contents of each cell is maintained. At

each time step, only the members of neighboring cells need to be scanned for

overlap, which significantly reduces the number of checks needed.

2.7 Boundary conditions

In general, the electrodes at z = 0, L will possess a thin layer of surface

charge that is comprised of ions adsorbed directly onto the surface. This

Stern layer may be accounted for by modifying the potential at z = 0, L

(originally v1, v2) [32]:

φ(z = 0) = v1 + λs

(
∂φ

∂z

)

z=0

φ(z = L) = v2 − λs

(
∂φ

∂z

)

z=L

where λs is an effective thickness for the Stern layer. For a simple dielectric

layer, this equals the actual thickness times the ratio ǫ/ǫs of dielectric con-

stants of the solvent, ǫ, and the Stern layer, ǫs. The Stern layer is always of

molecular dimensions, and in most microelectrochemical systems, the ratio

of the widths of the Stern layer to the Debye layer is vanishingly small [32].

The presence of the Stern layer thus does not affect the results of the simula-

tion in most cases, and the original boundary conditions discussed in section

(2.4) may be used without significant error.

There are multiple ways to enforce zero flux boundary conditions at the

walls [37]. The most commonly used method is to carry out specular reflec-

tions of particle trajectories at either wall. If xi
n is the position of particle n

at the current timestep i and xi+1
n = xi

n + ∆xn is the new position, where

the new z coordinate zin +∆zn /∈ [0, L], then

x
i+1
n = (I − 2n̂n̂) ·

(
x
i
n +∆xn

)

where n̂ is the unit vector normal to the boundary of interest.
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In addition, two other methods that have been proposed are:

• Rejection: The particle does not change its position in the current time

step, ∆xn = 0.

• Multiple Rejection: New increments are calculated until a ∆xn is found

such that zin +∆zn ∈ [0, L].

It is noted that only the specular reflection method correctly imposes the

zero flux boundary condition, and all other methods lead to incorrect con-

centration profiles in the immediate vicinity of the boundary [37].

2.8 Steady state solution of the PNP equations

To compare the results of the simulation driven by the Langevin formulation

of the governing equations to the classical PNP equations, it is helpful to con-

sider the one-dimensional version of the PNP equations. In one dimension,

these equations are:

∂c±
∂t

= −
∂

∂X

(
−D

∂c±
∂X

∓ µzec±
∂φ

∂X

)
(2.31)

−ε0
∂2φ

∂X2
= ze(c+ − c−) (2.32)

The electrodes at either end are blocking electrodes without Faradaic pro-

cesses, so the ionic fluxes (equation 2.6) must vanish there. The boundary

conditions are thus:

−D
∂c±
∂X

∓
zeD

kT
c±
∂φ

∂X
= 0 X = 0, L (2.33)

φ = V X = 0, φ = 0 X = L (2.34)

With a suitable change of variables, these reduce at steady state to a coupled

system of nonlinear ordinary differential equations that are easily solved nu-

merically (appendix A.1). The steady state density and potential can then

be compared to their values from the three dimensional simulation using the

Langevin formulation averaged at x− y cross-sections.
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CHAPTER 3

RESULTS AND DISCUSSION

3.1 Model parameters

As explained in section 2.4, there are only two parameters governing the

dynamics of the double layer formations. To emphasize the importance of

diffuse charge, we choose a value of λD/L = 0.025 that is fairly large. This

corresponds to, say, λD = 5nm,L = 200nm, which is fairly characteristic of

a micro-electrochemical system.

The other parameter is the (nondimensional) applied voltage (v = zeV/kT ).

We choose v = 0.1 and v = 2, corresponding to voltages of 2.5 and 25mV

respectively at room temperature for monovalent ions [38].

3.2 Comparison of results

Representative snapshots of the domain with 300 particles are shown at var-

ious time steps in the simulation in figure 3.1.

At steady state, the potential and density are averaged over each x − y

cross-section and over several timesteps. Comparisons of the obtained profiles

and the numerical solution of the one-dimensional PNP equations are plotted

in figures 3.2 and 3.3.

The profiles obtained by the averaged simulation results and by solution

of the one-dimensional PNP equations are found to agree.
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(a) τ = 1 (b) τ = 8

(c) τ = 20 (d) τ = 60

Figure 3.1: Snaps of the domain at various stages of double layer formation.
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Figure 3.2: Steady state density profile as a function of Z, as predicted by
the simulation and the PNP equations.
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Figure 3.3: Steady state potential as a function of Z, as predicted by the
simulation and the PNP equations.
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CHAPTER 4

CONCLUSIONS AND FUTURE WORK

The equivalence of the PNP equations and the Langevin formulation devel-

oped in chapter 2 has been tested for the case of double layer charging in a

symmetric binary electrolyte between parallel plate blocking electrodes. It

is observed that there are slight discrepancies in the predicted density at

the walls for the voltages considered. This can be attributed to the lim-

ited resolution afforded by the grid to which the electric charge and field are

interpolated.

As discussed in chapter 2, an efficient way of calculating the electric interac-

tion between (effectively) point charges is to use the SPME algorithm, which

is based on a decomposition of the periodic Green’s functions for Laplace’s

equation. A natural extension of this approach is to apply the SPME al-

gorithm to the solution of Stokes equations as well, which will couple the

motion of the charges in the electric field to the flow of the electrolyte.

The SPME algorithm also implicitly assumes a periodic geometry and

does not directly account for interactions with solid boundaries. This was

accounted for in the special case of the model problem in section 2.4, but

more generally, the method needs to be modified to account for complex

geometries.

To account for interaction with boundaries, it is possible to use the method

proposed by Hernández-Ortiz et al. [39,40], which is compatible with the use

of accelerated algorithms such as SPME. In this method, interactions are

first calculated in periodic boundary conditions using the standard SPME

method, neglecting the presence of the boundaries. The solution obtained

for the Laplace and Stokes equations does not satisfy the appropriate bound-

ary conditions, but it can be corrected by means of an auxiliary solution. The

difference between the error made on the boundaries by using periodic bound-

ary conditions and te expected values is used as the boundary condition for

the auxiliary problem. This auxiliary problem is solved in the domain with-
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out the ions or particles using standard techniques for the solution of the

Laplace and Stokes equations. Because efficient techniques such as spec-

tral or multigrid methods may be used for obtaining the auxiliary solution,

the additional cost is minimal and the overall solution can be obtained in

O(N logN) operations.

Finally, steric interactions between particles can be included using the

algorithm specified in section 2.6.

The methods developed in this study are applicable to a wide range of

engineering problems involving electrokinetic flow in highly confined geome-

tries.
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APPENDIX A

SCALING OF THE GOVERNING

EQUATIONS

A.1 Scaling the one-dimensional PNP equations

The one-dimensional Poisson-Nernst-Planck equations governing the problem

in section 2.8 are:

∂c±
∂t

= −
∂

∂X

(
−D

∂c±
∂X

∓ µzec±
∂φ

∂X

)

−ε0
∂2φ

∂X2
= ze(c+ − c−)

with the boundary conditions:

−D
∂c±
∂X

∓
zeD

kT
c±
∂φ

∂X
= 0 X = 0, L

φ = V X = 0, φ = 0 X = L

and the initial condition c+ = c− = c0 at t = 0−.

We set τ = λDL
D
t, x = X/L, φ = kT

ze
φ, where λD is the Debye screening

length from equation 2.4, and kT/ze is the thermal voltage from before.

Further, we define c = c+−c
−

2c0
and ρ = c+−c

−

2c0
.

Nondimensionalizing, we get

∂c

∂τ
=
λD
L

∂

∂x

(
∂c

∂x
+ ρ

∂φ

∂x

)
(A.1)

∂ρ

∂τ
=
λD
L

∂

∂x

(
∂ρ

∂x
+ c

∂φ

∂x

)
(A.2)

−

(
λD
L

)2
∂2φ

∂x2
= ρ (A.3)

and the boundary condition on the potential changes to φ = zeV/kT on
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x = 0. Thus there are only two governing parameters, λD

L
and zeV

kT
.

A.2 Scaling the Langevin and Poisson’s equation

In dimensional variables, the relevant form of Poisson’s equation with N

positively and negatively charged ions is

−ε0∇
2φ = ρ =

∑

n

±zeδ(X −Xn) (A.4)

where δ(X −Xn) has units of inverse volume.

The Langevin equation is

dXn = µ(∓ze∇φ)dt+
√
2µkTdtn (A.5)

The same scaling as in appendix A.1 is applied to the above equations:

τ = λDL
D
t, x = X/L, φ = kT

ze
φ, and we define co = N/L3

Carrying out the nondimensionalization, Poisson’s equation reduces to:

− ε0
kT

zeL2
∇2φ =

∑

n

±ze
1

L3
δ∗(x− xn)

=⇒ −
ε0kT

2z2e2c0L2
∇2φ =

1

2N

∑

n

±δ∗(x− xn)

=⇒ −

(
λD
L

)2

∇2φ =
1

2N

∑

n

±δ∗(x− xn)

The Langevin equation (A.5) becomes

Ldxn =
D

kT
(±ze)

kT

zeL
∇φ

λDL

D
dτ +

√
2D

λDL

D
dτn

=⇒ dxn = ∓(
λD
L

)∇φdτ +

√
2
λD
L

dτn

Where the same boundary conditions as in section A.1 apply. As before,

the only free parameters are λD

L
and the boundary condition zeV

kT
.
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