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LATE again, with defiers

Clément de Chaisemartin∗ Xavier D’Haultfœuille†

April 2012

Abstract

We show that the Wald statistic still identifies a causal effect if instrument mono-

tonicity is replaced by a weaker condition, which states that the potential propensities

to be treated with or without the instrument should have the same distribution, con-

ditional on potential outcomes. This holds for instance if the slippages between these

potential propensities and the average propensity are independent of potential out-

comes. In this framework, the Wald statistic identifies a LATE on a population which

comprises both compliers and always takers.

1 Introduction

Since the seminal work of Imbens & Angrist (1994), the use of instruments for identify-
ing causal effects has been thought of as depending on two crucial assumptions: random
assignment and monotonicity. Random assignment states that the instrument is assigned
to individuals independently of their potential outcomes and treatments. Monotonicity
means that the effect of the instrument on the treatment should go in the same direction
for all observations in the sample.

This latter condition may be problematic in some applications. Barua & Lang (2010) argue
that quarter of birth, used as an instrument for school entry age, violates this monotonicity
condition, because of heterogenous strategic behavior of parents when choosing the entry
date at school of their child. Another potential example is the use of sibling-sex composition
as an IV when studying the effect of childbearing on labor supply (see Angrist & Evans,
1998). In this paper, it appears that the share of parents who have a third child is 7
∗Paris School of Economics and CREST, chaisemartin@pse.ens.fr.
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percentage points higher when their first two children have the same sex than when they
have different sex, which implies that some parents have a preference for diversity. But
the authors also find that the share of parents who have a third child is approximately
1.5 percentage points higher when their first two children are girls than when they are
boys, which implies that some parents have a preference for boys. This suggests that
monotonicity might be violated. Parents with a preference for diversity will be more likely
to have a third child if their first two children are males, whereas parents with a preference
for males might decide not to have a third child in such circumstances.

The aim of this note is to show that actually, the Wald statistic still identifies a local
average treatment effect (LATE) under a weaker condition than instrument monotonicity.
As shown by Vytlacil (2002), monotonicity is equivalent to assuming a single index model
for selection into treatment. In this threshold model, the unobserved term does not depend
on the instrument. This means that the "taste" for treatment of an individual should be the
same whether he receives the instrument or not. This is equivalent to a rank invariance
assumption: the rank of an individual in the distribution of taste for treatment should
not change with the instrument. What we show is that we can actually make the taste
for treatment depend on the instrument, which implies that there may be some defiers.
However, the unobserved terms with or without the instrument should have the same
marginal distribution, conditional on potential outcomes. In other words, we show that we
can replace the rank invariance condition embedded in Vytlacil’s model by a rank similarity
condition (see Chernozhukov & Hansen, 2005).

This rank similarity condition is substantially weaker than monotonicity. Indeed, it will
be verified if for each value of the instrument, individuals’ departure from their mean taste
for treatment is independent of their potential outcomes, conditional on their mean taste
for treatment. In Angrist & Evans (1998)’s context, this basically means that conditional
on the average propensity to have a third child, the specific preference of parents for boys
should be independent of mother’s participation to the labor market.

The issue of whether monotonicity is necessary for identifying local average treatment
effects has received attention recently. Small & Tan (2007) replace monotonicity by the
assumption that basically, there are more compliers than defiers. In such a case, the
standard Wald parameter does not identify a causal effect anymore, but satisfies the no
sign reversal property (namely, its sign would be positive if the treatment effect is positive
with probability one). Klein (2010) considers “local” violation of monotonicity, and shows
that the bias of the Wald parameter can be well approximated if such violations are small.
Finally, Huber &Mellace (2012) show that it is possible to identify average treatment effects
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on compliers, defiers or both if monotonicity only holds conditional on potential outcomes.
In contrast with these papers, we show here that it is possible to relax monotonicity while
keeping a causal interpretation of the Wald parameter.

This note is organized as follows. In the second section, we introduce our assumption
and discuss its link with monotonicity. In the third section, we prove the main result
that the Wald parameter still identifies a LATE in our framework. Then, we give in the
fourth section a necessary and sufficient condition for our rank similarity assumption to be
rejected in the data.

2 Rank similarity versus monotonicity

Our framework is the same as the one of Imbens & Angrist (1994). Let Y (0) and Y (1)

denote the potential outcomes with and without treatment. Let Z be a binary instrument
which affects the treatment, and let D(z) denote the potential treatment when Z = z. We
only observe D = D(Z) and Y = Y (D). The first assumption in Imbens & Angrist (1994)
is that the instrument is exogenous.

Assumption 2.1 (Instrument exogeneity) We have (Y (0), Y (1), D(z)) ⊥⊥ Z for z ∈ {0, 1}.

Imbens & Angrist (1994) also suppose that the instrument has a monotonous effect on Z.

Assumption 2.2 (Instrument monotonicity) Almost surely, D(1) ≥ D(0) or D(0) ≥
D(1) .

As shown by Vytlacil (2002), 2.1 and 2.2 are equivalent to the following threshold model:

Assumption 2.3 (Threshold model with rank invariance) For z ∈ {0, 1}, there exists
v(z) ∈ R and V a random variable such that D(z) = 1{v(z) ≤ V } almost surely and
(Y (0), Y (1), V ) ⊥⊥ Z.

Instead of this threshold model with rank invariance, we consider here a threshold model
where the propensity to be treated satisfies a rank similarity condition. We use hereafter
the symbol ∼ to denote equality in distributions.

Assumption 2.4 (Threshold model with rank similarity) For z ∈ {0, 1}, there exists
v(z) ∈ R and V (z) random variables such that D(z) = 1{v(z) ≤ V (z)} almost surely,
(Y (0), Y (1), V (z)) ⊥⊥ Z and V (0)|Y (0), Y (1) ∼ V (1)|Y (0), Y (1).
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Finally, we also consider the following assumption.

Assumption 2.5 (Threshold model) For z ∈ {0, 1}, there exists v(z) ∈ R and V (z) ran-
dom variables such that D(z) = 1{v(z) ≤ V (z)} almost surely, (Y (0), Y (1), V (z)) ⊥⊥ Z

and (V (0), V (1)) are exchangeable.1

We prove the following representation result, which generalizes the one of Vytlacil (2002)
and clarifies the relationship between all those Assumptions.

Proposition 2.1 (i) Assumptions 2.1 and 2.5 are equivalent.

(ii) Assumptions 2.1 and 2.2 together are equivalent to Assumption 2.3.

(iii) Assumption 2.3 ⇒ Assumption 2.4 ⇒ Assumption 2.5.

Proof: Let us show i). That Assumption 2.5 implies Assumption 2.1 is trivial. Now,
assume that Assumption 2.1 holds. We have to build (V (0), V (1)) exchangeable and sat-
isfying D(z) = 1{v(z) ≤ V (z)}. Let v(z) = P (D(z) = 0). We suppose without loss
of generality that P (D(0) = 0) ≥ P (D(1) = 0). Otherwise what follows would still
hold, simply by reverting P (D(0) = 0) and P (D(1) = 0). Since the shares of compli-
ers and defiers are respectively equal to P (D(0) = 0) − P (D(0) = 0, D(1) = 0) and
P (D(1) = 0) − P (D(0) = 0, D(1) = 0), this implies that there are more compliers than
defiers. Before building formally the joint distribution of V (1) and V (0), let us consider
Figure 1 which represents its support graphically. Defiers must verify V (0) ≥ P (D(0) = 0)

and V (1) < P (D(1) = 0) which means that part of the support of (V (0), V (1)) should be
in [t3, 1]× [0, t2]. Since (V (0), V (1)) should be exchangeable, this means that another part
of the support of (V (0), V (1)) must lie in [0, t2]× [t3, 1]. This corresponds to a population
of compliers of same size than defiers. Finally, for all other observations (never takers, the
remaining part of compliers, and defiers), we set V (0) = V (1). Note that when there is no
defier, t1 = t2 and t3 = t4, and we get V (0) = V (1), as in Vytlacil (2002).

Formally, let ti be as in Figure 1 and consider (W0, ...,W4, B), mutually independent
and also independent of (Y (0), Y (1), D(0), D(1), Z). Take Wi uniform on [ti, ti+1] and
B Bernoulli with probability (t2 − t1)/(t3 − t1). This ratio is simply the proportion of
defiers divided by the proportion of compliers. Then let

V (0) = (1−D(0))(1−D(1))W0 + (1−D(0))D(1)(BW1 + (1−B)W2) +D(0)(1−D(1))W3

+D(0)D(1)W4,

V (1) = (1−D(0))(1−D(1))W0 + (1−D(0))D(1)(BW3 + (1−B)W2) +D(0)(1−D(1))W1

+D(0)D(1)W4.

1V (0) and V (1) are exchangeable if and only if (V (0), V (1)) has the same distribution than (V (1), V (0)).
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Note : the support of (V(0),V(1)) includes the thick lines and the dashed squares. 

We let here Pr(NT) = Pr(D(0)=0, D(1)=0)  and  Pr(AT) = Pr(D(0)=1, D(1)=1).

Figure 1: Construction of (V (0), V (1).

By construction, D(z) = 1{v(z) ≤ V (z)} almost surely, so it suffices to check that
(V (0), V (1)) are exchangeable. This amounts to check that their joint density fV (0),V (1) is
a symmetric function. For x < y, fV (0),V (1)(x, y) = 0 except when (x, y) ∈ [t1, t2]× [t3, t4].
In this latter case,

fV (0),V (1)(x, y) = P (D(0) = 0, D(1) = 1)P (B = 1)fW1(x)fW3(y)

= P (D(0) = 1, D(1) = 0)fW3(y)fW1(x)

= fV (0),V (1)(y, x).
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This proves i).

ii) follows from Vytlacil (2002). Finally, let us prove iii). That Assumption 2.3 implies
Assumption 2.4 is trivial. Assumption 2.4 implies Assumption 2.1 which is equivalent to
Assumption 2.5. This completes the proof. �

Following Vytlacil (2002), the second part of Proposition 2.1 shows that Assumption 2.4
is weaker than exogeneity and monotonicity, since both together imply a threshold model
with rank invariance. The first part of the lemma shows that compared to the exogeneity
assumption alone, we only add the fact that V (0) and V (1) should have the same distri-
bution conditional on potential outcomes, not only marginally. A sufficient condition for
this to hold is that departures from mean taste for treatment induced by the instrument
should be independent of potential outcomes, as the following proposition shows.

Proposition 2.2 Suppose that Assumption 2.5 holds. Let V = (V (0) + V (1))/2, ε(z) =
V (z)− V , and assume that for every z ∈ {0; 1},

ε(z) ⊥⊥ (Y (0), Y (1))|V . (2.1)

Then Assumption 2.4 holds.

Proof: for any random variables S and T , let fS|T denote the density of S conditional on
T with respect to an appropriate measure. Let P V |Y (0),Y (1) denote the probability measure
of V conditional on Y (0) and Y (1). We have

fV (0)|Y (0),Y (1)(v|y0, y1) =

∫
fV (0)|Y (0),Y (1),V (v|y0, y1, v)dP V |Y (0),Y (1)(v|y0, y1)

=

∫
fV (0)|V (v|v)dP V |Y (0),Y (1)(v|y0, y1)

=

∫
fV (1)|V (v|v)dP V |Y (0),Y (1)(v|y0, y1)

=

∫
fV (1)|Y (0),Y (1),V (v|y0, y1, v)dP V |Y (0),Y (1)(v|y0, y1)

= fV (1)|Y (0),Y (1)(v|y0, y1).

The second equality holds because of (2.1). The third follows from the fact that V (0) and
V (1) are exchangeable and V is symmetric in V (0) and V (1) �

Proposition 2.2 shows that it is sufficient to assume that conditional on the mean taste
for treatment (V ), departures from mean taste for treatment induced by the instrument
(V (z) − V ) are independent of potential outcomes, and that Assumptions 2.1 holds, to
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obtain our rank similarity condition. Note that Condition 2.1 trivially holds under mono-
tonicity, because in this case we can choose V (0) = V (1), yielding V (1)− V = 0.

To illustrate condition (2.1), consider the example of Angrist & Evans (1998). Treatment
is having a third child or not, while the outcome is participation to the labor market. To
simplify the discussion, consider only couples whose first two children are boys, and those
whose first two children have different sex. Therefore, the instrument Z is equal to 1 if the
first two children are boys and to 0 if they have different sex. Taste for a third child might
depend on the instrument because some parents may have preferences for boys or girls.
In this context, ε(z) can be interpreted as the departure from the average propensity to
have a third child induced by preference for boys. For instance, couples who have a strong
preference for boys will be less prone to have a third child when Z = 1, so that their ε(1)
will be negative. Assumption 2.4 holds if this departure from the average propensity to
have a third child is independent of potential participations to the labor market, conditional
on the average propensity to have a third child. This is still a strong assumption, but, in
this particular context, it is more credible than the standard monotonicity assumption.

3 Identification of treatment effects under similarity

We show now that under Assumption 2.4, the Wald parameter still identifies a LATE
within the subpopulation satisfying V (1) ∈ [v(1), v(0)). It comprises some compliers but
also some always takers, because under Assumption 2.4 we can have simultaneously V (1) ∈
[v(1), v(0)) and V (0) ≥ v(0)). Of course, it reduces to compliers under the rank invariance
condition V (1) = V (0). We also obtain a result on the distribution functions of potential
outcomes within this subpopulation which generalizes the result obtained in Imbens &
Rubin (1997) under monotonicity. We suppose hereafter that P (D = 1|Z = 1) > P (D =

1|Z = 0) but the result also holds when P (D = 1|Z = 1) < P (D = 1|Z = 0), by simply
reverting v(0) and v(1) in (3.1) and (3.2).

Theorem 3.1 Suppose that Assumption 2.4 holds and P (D = 1|Z = 1) > P (D = 1|Z =

0). Then

E [Y (1)− Y (0)|V (1) ∈ [v(1), v(0))] =
E(Y |Z = 1)− E(Y |Z = 0)

E(D|Z = 1)− E(D|Z = 0)
(3.1)

FY (d)|V1∈[v(1),v(0))(y) =
P (Y ≤ y,D = d|Z = 1)− P (Y ≤ y,D = d|Z = 0)

P (D = d|Z = 1)− P (D = d|Z = 0)
(3.2)
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Proof: first, remark that for z ∈ {0, 1},

P (D = 1|Z = z) = P (D(z) = 1|Z = z) = P (V (z) ≥ v(z)) = P (V (1) ≥ v(z)),

where the second equality stems from the threshold model and V (z) ⊥⊥ Z, and the third
follows by rank similarity. Thus, P (D = 1|Z = 1) > P (D = 1|Z = 0) implies that
v(1) < v(0). Moreover,

E(D|Z = 1)− E(D|Z = 0) = P (D = 1|Z = 1)− P (D = 1|Z = 0)

= P (V (1) ∈ [v(1), v(0))). (3.3)

Similarly,

E(Y |Z = 1)− E(Y |Z = 0) = E(Y (1{v(1) ≤ V (1)}+ 1{v(1) > V (1)})|Z = 1)

−E(Y (1{v(0) ≤ V (0)}+ 1{v(0) > V (0)})|Z = 0)

= E(Y (1)1{v(1) ≤ V (1)}) + E(Y (0)1{v(1) > V (1)})

−E(Y (1)1{v(0) ≤ V (0)})− E(Y (0)1{v(0) > V (0)}))

= E(Y (1)1{v(1) ≤ V (1)}) + E(Y (0)1{v(1) > V (1)})

−E(Y (1)1{v(0) ≤ V (1)})− E(Y (0)1{v(0) > V (1)}))

= E [(Y (1)− Y (0))1{V (1) ∈ [v(1), v(0))}] , (3.4)

where the second equality follows by independence, the third by rank similarity and the
fourth by simply gathering the terms. The first result follows by combining (3.3) and (3.4).

We now turn to (3.2). We prove the result for d = 1 only, the reasoning being identical for
d = 0. We have

P (Y ≤ y,D = 1|Z = 1) = P (Y (1) ≤ y, V (1) ≥ v(1)|Z = 1)

= P (Y (1) ≤ y, V (1) ≥ v(1))

= P (Y (1) ≤ y, V (1) ≥ v(0)) + P (Y (1) ≤ y, V (1) ∈ [v(1), v(0)))

= P (Y (1) ≤ y, V (0) ≥ v(0)) + P (Y (1) ≤ y, V (1) ∈ [v(1), v(0)))

= P (Y (1) ≤ y, V (0) ≥ v(0)|Z = 0) + P (Y (1) ≤ y, V (1) ∈ [v(1), v(0)))

= P (Y ≤ y,D = 1|Z = 0) + P (Y (1) ≤ y, V (1) ∈ [v(1), v(0))),

where the first equality follows by the threshold model, the second by independence, the
fourth by rank similarity and the fifth by independence again. Equation (3.2) follows using
P (Y (1) ≤ y, V (1) ∈ [v(1), v(0))) = FY (d)|V1∈[v(1),v(0))(y)P (V1 ∈ [v(1), v(0))) and Equation
(3.3) �
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4 Testability

As shown in Kitagawa (2008), Assumptions 2.1 and 2.2 together are testable. Equation
(3.2) shows that similarly, Assumption 2.4 is also testable: the right-hand side of (3.2)
should be increasing, as a cumulative distribution function. The next theorem strengthens
this idea, by showing that basically this is the only testable implication of Assumption 2.4.

Theorem 4.1 The three following statements are equivalent:

(i) Assumption 2.4 can be rationalized by the data;

(ii) Assumptions 2.1 and 2.2 together can be rationalized by the data;

(iii) y 7→ P (Y ≤ y,D = 1|Z = 1) − P (Y ≤ y,D = 1|Z = 0) and y 7→ P (Y ≤ y,D =

0|Z = 0)− P (Y ≤ y,D = 0|Z = 1) are increasing.

Proof: because Assumptions 2.1 and 2.2 together imply Assumption 2.4, (ii) ⇒ (i). By
the previous theorem, (i) ⇒ (iii). Thus it suffices to prove that (iii) ⇒ (ii). For any Borel
set A, let Pd(A) = P (Y ∈ A,D = d|Z = 1) and Qd(A) = P (Y ∈ A,D = d|Z = 0).
(iii) implies that P1((y

′, y]) ≥ Q1((y
′, y]) for any y′ < y. Because P1 and Q1 are positive

measures, this implies that P1(A) ≥ Q1(A) for any Borel set A. Similarly, P0(A) ≤ Q0(A)

for all A. The result follows then by Proposition 1 of Kitagawa (2008) �

This result shows that DGP rejecting Assumption 2.4 are the same as those rejecting
Assumptions 2.1 and 2.2 together: those assumptions are observationally equivalent.
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