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Abstract

Synchronization of coupled simple harmonic oscillators is a well-studied problem in advanced

undergraduate mechanics courses and the solution amounts to solving an eigenvalue problem.

Synchronization of populations of auto-oscillators is a comparatively new �eld of study.

The �rst scientists to consider such problems were mathematical biologists, but applied

mathematicians and physicists have made signi�cant contributions as well. The chief model

of synchronization of distinct auto-oscillators is due to Kuramoto. The most striking feature

of the model is the presence of a phase transition from an unsynchronized to a partially

synchronized state at a critical value of the inter-oscillator coupling. Also, in spite of being a

microscopic model that describes the interactions between individual oscillators, Kuramoto's

model can be recast exactly as a mean �eld model. A great deal of work has focused on

predicting the behavior of the mean �eld.

The �rst part of this dissertation describes my work exploring the Kuramoto model.

Most physicists have approached the problem by analyzing the behavior of in�nitely sized

systems. I focus instead on making precise predictions for speci�c, �nitely sized populations

of oscillators. In particular, I demonstrate that the assumption of a constant mean �eld leads

to surprisingly good self-consistent predictions for the mean �eld, particularly if the frequency

of synchronization is made a tunable parameter. However, I �nd that the discontinuities in

the self-consistent predictions do not exhibit critical scaling, in contradiction with the known

critical behavior exhibited by the Kuramoto model.

The second part of this dissertation describes laboratory work and modeling of a mechan-

ical system that exhibits synchronization. I examine the synchronization of 16 cell-phone
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vibrators coupled through a resonant plate. In light of the Kuramoto model, the interactions

between the motors and the plate give somewhat unexpected results including bistability as

well as ranges of frequencies in which the system never synchronize. I show, by starting with

a �rst-principles model of the motors interacting with the plate, that the motors' interaction

is similar to Kuramoto's model with two key di�erences: frequency-dependent coupling and

a frequency-dependent phase delay.



To my parents

iv



Acknowledgments

I would not be in the position of writing this dissertation were it not for my adviser, Richard

Weaver. His wellspring of ideas coupled with an unending patience and a perpetually open

door gave me the support and freedom to transition from being a student to being a scientist.

I owe a great deal to Karin Dahmen and her group members Braden Brinkman, Georgios

Tsekenis, and Nir Friedman for teaching me how to prepare and study a scaling collapse.

Their guidance made an otherwise confusing concept straightforward. Tyler Earnest, also

in Professor Dahmen's group, helped me overcome a hurdle in automating my experimental

system, and is a good friend.

The �rst paper is the hardest to write, and I wish to thank Nick Wol� for making a

careful reading of my paper and giving helpful feedback. His feedback and encouragement

helped me �nish and submit a paper which took longer than I would have liked.

I have reached the upper echelons of academia because my parents and my grandparents

have always impressed upon me the importance of a good education. My family has always

encouraged the pursuit of excellence and knowledge and this dissertation is the culmination

of that pursuit.

Finally, I appreciate the love, support, and patience, of my �ancée Katherine, especially

as I prepared this dissertation. It took longer than we had hoped, but it is �nally done!

v



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

I The Finite Kuramoto Model . . . . . . . . . . . . . . . . . . . 6

2 Self-consistent Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Direct Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Approximation of Average Mean Field . . . . . . . . . . . . . . . . . . . . . 13

2.3 Unentrained Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 The full scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Critical Behavior in the Simple Scheme . . . . . . . . . . . . . . . . . . . . 32

3.1 Method for Finding Avalanches in the Scheme . . . . . . . . . . . . . . . . . 34

3.2 Avalanching in the self-consistent scheme . . . . . . . . . . . . . . . . . . . . 36

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

II Resonant Coupling . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Synchronization with Resonant Coupling . . . . . . . . . . . . . . . . . . . 43

4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Behavior of a Single Motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Many Motors on a Resonant Plate . . . . . . . . . . . . . . . . . . . . . . . . 52

vi



CONTENTS vii

Behavior versus Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Behavior versus Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Modeling Resonant Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1 Basic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Analytic solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Numerical solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Approach to the steady-state . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Numerical solutions for swept natural motor speeds . . . . . . . . . . . . . . 70

Spectral power density and lasing transition . . . . . . . . . . . . . . . . . . 73

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78



Chapter 1

Introduction

Synchronization is ubiquitous. The human sleep-wake cycle synchronizes to the rising and

setting of the sun, leading to a wave of alarm clocks going o� at nearly the same time every

morning. After getting up, some of those people will hop on a treadmill or hit the road and

go for a run, which is only possible if their limbs operate in a synchronized fashion. Later,

as they commute to work, some of those people will enjoy the synchronized rhythms and

frequencies of the music coming from their radios. Some of that music may come from a CD,

which utilizes the synchronized light from a laser in order to read the contents of the disc.

If this hypothetical day were on June 10, 2000, some of those people may have tuned

into the nightly news to see crowds of pedestrians walking across the newly opened London

Millennium Footbridge in lock-step [1]. The bridge's unexpected behavior led to its closure

for nearly two years. The work that I present here focuses on synchronization of this sort:

spontaneous synchronization of many similar phase oscillators.

To make the problems tractable, while still being applicable to real-world systems, I

have focused my attention on the synchronization of phase oscillators. A phase oscillator is

a system described by a single degree of freedom: its phase. The gait of an individual is

periodic and unless the person changes gait from a walk to a run, the amplitude of the gait is

relatively constant. Another example of a phase oscillator is a ball tied to the end of a string

being swung in a circle. If the length of the string is �xed, the ball's motion can be described

simply in terms of the angular phase of the ball. Replacing the string with a spring would

lead to an oscillator with two degrees of freedom: the distance of the ball from the center

of rotation and the angular phase of the ball. Others have considered even more complex
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CHAPTER 1. INTRODUCTION 2

systems, such as the synchronization of chaotic oscillators. However, in many systems that

exhibit synchronization, the dynamics of individual elements can be well approximated by

phase oscillators, giving a simple model that still exhibits fascinating collective behavior.

Although I could focus on the synchronization of two oscillators, I chose to study the

collective phenomena found in large systems. Experiments on the Millennium Bridge found

that large amplitude oscillations in the bridge and synchronous walking only arose when more

than 160 people walked across it at the same time [2]. The smallest population I consider is

the collection of 16 motors in the experimental work that makes up the second half of this

thesis, but in simulations I consider the behavior of anywhere from 100 to 100,000 oscillators.

Analytical treatments for more than a few interacting oscillators become intractable unless

the system under consideration is large enough to make statements about collective behavior.

Human walking rates vary, as do the natural speeds of the motors in my experiments.

Therefore, I concentrate on systems of interacting oscillators that are similar but not iden-

tical. The di�erential equations describing the dynamics of each oscillator match, di�ering

only in oscillator-speci�c parameters such as the oscillator's natural velocity. Some people

naturally walk with faster or slower gaits than others. The only disorder in the systems I

study comes from the disorder in the natural speeds (as well as the initial positions, which

are usually randomized), and in particular I do not consider the e�ects of adding noise to

the system [3]. In short, the disorder in my systems is quenched.

Just as the e�ect of one person's footfall on the Millennium Bridge transmitted forces to

every other person on the bridge, I consider oscillators whose coupling is global in one sense

or another. Many have considered systems with local coupling and discovered interesting

behavior. Systems with circular boundary conditions and �nite-range coupling exhibit a

partially-entrained state dubbed the `chimera' state [4, 5, 6, 7, 2]. Two-dimensional systems

on a lattice give rise to vortices [8]. Local coupling leads to fascinating behavior that may

apply tangentially to some of the work I present here, but I focus on global coupling.

Populations of coupled phase oscillators of the sort I have described were �rst studied by
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Winfree [9], who considered a very general model with the form

θ̇i = ωi +
K

N

N∑
j=1

P (θj)R (θi) . (1.1)

The function P (θj) represents an oscillator's phase-dependent in�uence on other oscillators

while R (θi) represents an oscillator's phase-dependent sensitivity to other oscillators' in�u-

ence. The speci�c forms for P and R are unspeci�ed and the magnitude of K governs the

strength of the coupling between the oscillators. Using purely geometric arguments, Winfree

argued that populations of oscillators coupled as described synchronize only when K exceeds

some (typically nonzero) threshold value.

Winfree's pioneering work came �rst, but the canonical model for coupled phase oscilla-

tors is the Kuramoto model [10]. Kuramoto re�ned Winfree's work by restricting his model

to a very speci�c form for the coupling between the oscillators�the sine of the di�erence of

the phases:

θ̇i = ωi +
K

N

N∑
j=1

sin (θj − θi) . (1.2)

The oscillators are generally attracted to each other: an oscillator lagging behind another

gets a boost since θj − θi > 0, whereas an oscillator leading another gets pulled back since

θj − θi < 0. The speci�c form of the coupling makes Kuramoto's model far less general

than Winfree's,1 but surprisingly well suited to analytic treatment. Whereas Winfree used

geometric arguments to show that a transition occurred at nonzero coupling, Kuramoto

was able to explicitly calculate the strength of the critical coupling. Because important

characteristics can be obtained analytically, the Kuramoto model provides an analytical

framework for generalizations.

The Kuramoto model is a mean �eld model. To see this, consider the following trick.

De�ne the quantity

r eı ψ ≡ 1

N

N∑
j=1

eı θj . (1.3)

1It might be tempting to think of Kuramoto's model as representing the �rst term in a Fourier series
expansion of P (θj)R (θi). However, Crawford [11] showed that additional harmonics lead to very di�erent
behavior, which unfortunately limits the scope of applicability of the Kuramoto model.
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This quantity can be interpreted as the phasor average of all the oscillators and using it I

can rewrite Kuramoto's model:

θ̇i = ωi +K =
{

1

N

N∑
j=1

eı θj−ı θi

}
(1.4)

= ωi +K =
{
e−ı θi

1

N

N∑
j=1

eı θj

}
(1.5)

= ωi +K =
{
e−ı θir eı ψ

}
(1.6)

= ωi + r K sin (ψ − θi) . (1.7)

Each oscillator interacts exclusively with the phasor average, making it a mean �eld. Fur-

thermore, the coupling has the same form as the pairwise coupling: oscillators that lead (lag)

the mean �eld are slowed-down (sped-up) relative to their natural speeds. Put di�erently,

synchronized oscillators whose natural speeds are slower (faster) than the synchronized speed

typically lag (lead) the mean �eld.

Kuramoto's model undergoes a phase transition, as predicted by Winfree, and charac-

teristics of the transition can be solved explicitly in the large-N limit. The phasor average

serves not only as a mean �eld but also as an order parameter for the model. If the natural

speeds ωi are sampled from a Lorentzian distribution with full-width-half-maximum γ, the

order parameter has the following form:

r =


√

1− Kc
K

K > Kc = 2γ

0 K < Kc

(1.8)

Other symmetric unimodal velocity distributions show similar behavior, though the critical

value of the coupling Kc depends upon the distribution g (ω) as

Kc =
2

π g (0)
. (1.9)

(Note that I will use g (ω) throughout the �rst part of this dissertation to denote the distri-

bution from which I sample the oscillator speeds.) For a Lorentzian distribution Kc = 2γ,
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and for a Gaussian distribution, Kc ≈ 1.5957σ. Kuramoto derived a closed expression for

r (K) for a Lorentzian distribution; the Lorentzian distribution was the only one for which

closed expressions were obtained until the recent work of Ott and Antonsen [12].

The Kuramoto model serves as the theoretical and conceptual backdrop for this disser-

tation, which is split into two parts. The �rst part, Chapters two and three, detail my

theoretical and numerical work exploring �nite-size e�ects in the Kuramoto model. The

second part, Chapters four and �ve, detail my experimental observations and modeling of a

laboratory system that exhibits synchronization. The model that I develop in Chapter �ve

shows that only a slight extension to the Kuramoto model leads to predictions that closely

match the experimental measurements.

The Kuramoto model�the canonical model for spontaneous synchronization of many

interacting phase oscillators�is over 30 years old. However, many aspects of and extensions

to that model remain unexplored. In the remainder of this dissertation, I will explain the

contributions I have made to this �eld.



Part I

The Finite Kuramoto Model
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Introduction to the First Part

In contrast to the second part, in which I focus on my experimental �ndings, this �rst part

of the dissertation covers my numerical and theoretical work on the Kuramoto model. In

Chapter 2 I develop and analyze a complicated numerical scheme for predicting the behavior

of the Kuramoto model based on the assumption that the order parameter r is approximately

constant and rotates at a constant rate Ω. The predictions work very well for population-

speci�c predictions, either agreeing with high accuracy or failing in an easily identi�ed way.

In Chapter 3, I interpret the discontinuities predicted by the numerical scheme as avalanches

and analyze the scaling behavior of the avalanches, comparing the results with other �nite-

size results for the Kuramoto model and for the Ising model.
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Chapter 2

Self-consistent Scheme

The Kuramoto model, which I introduced already, is this:

θ̇i = ωi + r K sin (ψ − θi) , r eı ψ ≡ 1

N

N∑
j=1

eı θj . (2.1)

I sample the speeds of the oscillators ωi from a normalized distribution g (ω), which satis�es

g (ω) > 0 ∀ω (2.2)ˆ ∞
−∞

g (ω) = 1 (2.3)

The classical analysis of the Kuramoto model typically follows these steps: (1) assume that

g (ω) is unimodal and symmetric, such as a Gaussian or a Lorentzian distribution. Next,

note that the degree of synchronization should depend on the details of the distribution of

the speeds of the oscillators, but not the average oscillator speed. In other words, if I shift the

mean of the distribution of the oscillators g (ω) → g (ω − ω̂), the speed of the synchronized

state ωs may change to ωs + ω̂, but the degree of the synchronization will not. As such, (2)

assume the distribution is centered at zero. (Assumptions 1 and 2 together imply that g (ω)

is an even function.) When the system becomes synchronized (i.e., K > Kc), the degree

of synchronization will exhibit �uctuations that scale inversely with the population size.

In the asymptotic limit N → ∞, the �uctuations become negligible. As such, (3) assume

the magnitude of r is constant. Since the large-N limit applies, (4) replace sums over the

population with integrals over probability distributions. With a fair amount of mathematics

that I will not detail here [13], all of this leads to the following implicit expression for the

order parameter r:

r = r K

ˆ π/2

−π/2
cos2 θ · g (r K sin θ) dθ. (2.4)

8



CHAPTER 2. SELF-CONSISTENT SCHEME 9

Many illuminating results can be drawn from equation 2.4, the most important of which is

the phase transition already discussed.

Only the second step in the classical analysis of the Kuramoto model is general. The

�rst, third, and fourth steps are approximations. The combination of the �rst and fourth

assumptions in particular makes equation 2.4 unsuitable for studying �nite-size e�ects since

�nite samplings have no guarantee of even sampling and probability distributions can smear

�nite-size e�ects. Simulations of the Kuramoto model for �nite population size [speci�c,

�nite samplings from g (ω)] show considerable variation across populations. By assuming

that all samplings from g (ω) behave the same, equation 2.4 ignores the e�ects of �nite

sampling.

In the coming sections I motivate and then explain an analysis that parallels the classical

analysis of the Kuramoto model but which does not completely suppress �nite-size e�ects.

The literature contains variations on this analysis. My contribution di�ers from previous

work by giving full consideration to the unentrained oscillators, including a proper inter-

pretation of the resulting imaginary contributions to the order parameter, and by making a

detailed comparison between the predictions and numerical simulations.

2.1 Direct Numerical Simulations

Useful theory must make testable predictions. Before delving into the theory, I �rst intro-

duce the numerical methods I use to test my predictions and the techniques I utilize to

visualize the behavior of the Kuramoto system. I compactly visualize my simulation results

by constructing color density plots; the simulations themselves are a CUDA implementation

of a fourth-order Runge-Kutta method to perform direct numerical simulations of equa-

tion 2.1 on populations of N = 512 oscillators. The variation in behavior of four distinct

populations�four samplings from the same underlying Gaussian distribution�demonstrate

that the classical analysis has room for improvement.
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Figure 2.1: The method for building color density plots. Histograms are created from time
series of r(t) for �xed K. The histograms are normalized, making them probability distribu-
tions, and displayed consecutively as gray-scale columns in the color density plot.
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Throughout this dissertation I make regular use of color density plots, though they rep-

resent slightly di�erent information in each of the two Parts. Figure 2.1 depicts how I

create such plots for the Kuramoto simulations. For a given population, I set random initial

positions and run the system for a transient period at a low coupling. I take a lengthy

measurement of r (t) at that coupling, increase the coupling slightly, and let the system run

for another transient period before measuring again. By repeating this procedure for many

values of K, I build up a collection of time series {ri, ti}K . Ignoring the time dependence, I

examine the set {ri}K and construct the probability distributions P (r|K). Displaying each

of these distributions as gray-scale columns and laying them out sequentially leads to the

full color density plot. Although I describe a direction-dependent process (slowly increasing

K), performing the simulation in the other direction nearly always gives the same behavior

within the K-resolution of the numerics. I have not observed meaningful di�erences between

directions for any simulation of N = 512 oscillators.

Figure 2.2 shows the behavior of four di�erent populations with speeds sampled from a

centered Gaussian distribution

g0 (ω) =
1√

2π σ2
e−

(ω−ω̄)2

2σ2 (2.5)

with width σ = 1 rad/s. For each population, a histogram indicates the actual distribution

of the natural speeds ga (ω), gb (ω), etc., in contrast to the original Gaussian g0 (ω). I

constructed populations (a) and (b) so that for each oscillator ωi, the population contains

another oscillator ωj = −ωi. For this reason, I call populations (a) and (b) symmetric, and

populations (c) and (d) unsymmetric. The accompanying r vs K color density plots show

the behavior of the direct numerical simulations. I run these simulations by starting at

low coupling and with the oscillators in random initial positions, then slowly increasing the

coupling as already described. For the symmetric populations, I tried both symmetric and

unsymmetric initial conditions and the results do not show any observable di�erence. Each

of the simulations cover 501 K-values from 1.2 to 2.0 and 400 r-values ranging from 0 to

1. The transient for each K value lasted 1000s, and the measurement period lasted 20,000s.
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Figure 2.2: Four examples illustrating the range of behaviors possible for identically sized
samplings of the same distribution g0 (ω) (in this case, a Gaussian distribution). For these
and all other �gures in this Chapter, N = 512.
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To perform the time-stepping, I use a fourth-order Runge-Kutta method implemented in

CUDA, with time steps of ∆t = 0.125s.

Although the behavior of all four populations in �gure 2.2 show substantial upward

trends in the vicinity of the critical coupling Kc = 1.6, they also exhibit a wide variety of

behavior, in spite of having the same parent distribution g0 (ω). Populations (b) and (c)

exhibit substantial jumps in the degree of synchronization whereas populations (a) and (d)

are comparatively smooth. Furthermore, the K value for the jumps in populations (b) and

(c) do not agree, and population (c) does not show the curtain-like e�ect found in population

(b) below K = 1.55. The speci�c populations agree in the basics but disagree in the speci�cs.

The remainder of this Chapter details my work at predicting these speci�cs.

2.2 Approximation of Average Mean Field

The order parameter for a �nite-sized population �uctuates, but for most values of K the

order parameter appears to have a well-de�ned average. I will take this as my starting point:

that r is well approximated by a constant value, and that it rotates at a constant rate Ω.

For reasons that will hopefully become clear over the course of the discussion, I will

keep the de�nition of r in equation 2.1 but I will work with Sakaguchi's generalization of

Kuramoto's model [14]:

θ̇j = ωj + r K sin (ψ − θj − α) . (2.6)

Adding the phase o�set α has two e�ects: it decreases the degree of synchronization for a

given population and value of K, and it causes the synchronized velocities to become skewed.

To get results particular to Kuramoto's model I need only set the phase o�set α to zero.

Furthermore, I will consider the dynamics that describe how each oscillator varies from the

mean �eld, ∆θi ≡ θi − ψ − α:

∆θ̇i = ωi − ψ̇ + r K sin (ψ −∆θi − ψ + α− α) (2.7)

= ωi − ψ̇ − r K sin (∆θi) . (2.8)
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Figure 2.3: A phase portrait for an individual oscillator with natural speed ω interacting with
a mean �eld of magnitude r and a speed Ω. (In these �gures I set α to 0.) If |ω − Ω| < rK,
as in (a), the oscillator has a stable �xed point with respect to the mean �eld as marked by
the dot. If Ω+r K < ω, as in (b), or ω < Ω−r K, as in (c), the oscillator always moves with
respect to the mean �eld, but it slows down when it is π/2 out of phase with the �eld. The
slowest points for both of these scenarios are marked with dots. The sub�gures correspond
to an entrained oscillator (a), a fast oscillator (b), and a slow oscillator (c).

By assuming that r is approximately constant and ψ̇ ≈ Ω, the dynamics for ∆θi reduce to

a set of uncoupled Adler equations [15] that depend only on the position of oscillator i:

∆θ̇i = ωi − Ω− r K sin (∆θi) . (2.9)

The phase portrait for the dynamics of ∆θi indicates that all oscillators with natural speeds

that satisfy −r K < ωi − Ω < rK approach a stable �xed point ∆θi:

sin ∆θi =
ωi − Ω

r K
, (2.10)

marked in �gure 2.3(a) by a dot. (The other zero in �gure 2.3(a) is a �xed point, but

it is unstable.) Oscillators whose natural speeds fall outside the range of stable speeds,

i.e. r K < |ωi − Ω|, do not synchronize but have phase-dependent speeds. The dots in

�gures 2.3(b)-(c) mark the phases corresponding with the slowest relative velocities, i.e. the
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positions where unentrained oscillators spend most of their time and are most likely to be

found.

Having obtained predictions for the positions of entrained oscillators and speeds for un-

entrained oscillators, the question naturally arises: is this distribution of positions consistent

with the assumed value of r? The de�nition for r and ψ was given as

r eı ψ ≡ 1

N

N∑
j=1

eı θj (2.11)

which I can rewrite in terms of the ∆θi as

r eı ψ =
1

N

N∑
j=1

eı∆θj+ı ψ+ı α (2.12)

=⇒ r e−ı α =
1

N

N∑
j=1

eı∆θj . (2.13)

I have assumed r is constant, but the unentrained oscillators will contribute to this sum in

a time-dependent way. What I really want is the average contribution of each oscillator. To

assist in the notation, I will use Θe to designate the set of entrained oscillators and Θu the

set of unentrained oscillators. In that case,

r e−ı α =
1

N

∑
θj∈Θe

eı∆θj +
1

N

∑
θj∈Θu

〈
eı∆θj

〉
(2.14)

where angle-brackets denote long-time averages. Since the entrained oscillators have �xed

positions, the �rst sum is easy to compute:

∑
θj∈Θe

eı∆θj =
∑
θj∈Θe

(cos ∆θj + ı sin ∆θj) (2.15)

=
∑
θj∈Θe

√
1− (ωj − Ω)2

r2K2
+ ı
∑
j

ωj − Ω

r K
. (2.16)

In taking the large-N limit, the classical analysis assumes Ω = ω̄ and neglects the imag-

inary terms (as well as the contributions from the unentrained oscillators) under the as-

sumption that they are negligible. For symmetric populations, that assumption is valid: the
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imaginary terms exactly cancel, leading to the prediction

rsym =
1

N

∑
θj∈Θe

√
1− (ωj − ω̄)2

r2K2
. (2.17)

In other words, if I discard the imaginary term in my expression, I have a population-speci�c

prediction for the order parameter. Before attempting the complicated calculations involved

in determining the contributions of the unentrained oscillators, I ought to examine how well

the current expression performs, both for symmetric as well as unsymmetric populations.

Figure 2.4 shows that for symmetric populations (a) and (b) the predictions either agree very

well or fail miserably, and the failures correspond to deep turn-arounds in the prediction. Put

di�erently, the failures are easy to identify from the predictions themselves, even without the

help of numerical simulations. Furthermore, the failures correspond to important changes in

the simulation's behavior. This gives me a tool to predict what the system will do generally

as well as where to look for interesting behavior.

Predictions for unsymmetric populations also show impressive agreement and impres-

sive failure, but �uctuate more substantially and fail more randomly than they do for the

symmetric populations. The failures for the unsymmetric populations are di�cult�if not

impossible�to identify from the predictions alone. For example, in population (c) the nu-

merics exhibit a rapid change near K = 1.72, but the scheme predicts a continuous drop

closer to K = 1.75. Unlike the failure for population (b), the scheme's predictions for pop-

ulation (c) do not give any hint that they might fail. For population (d), the scheme's

predictions for K > 1.75 deviates substantially more from the numerical mean than for the

evenly sampled populations and the substantial failure near K = 1.7 does not correspond to

any substantial change in behavior of the numerics.

Given the complicated �uctuations in some of the time series shown in �gure 2.1 (the

time series at K = 1.5 is not atypical), the simple numerical scheme performs quite well

for symmetric populations. Can a similar approach improve the predictions for the unsym-

metric populations? To answer that question, I calculate the average contributions that the
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Figure 2.4: Simulations and predictions of the order parameter for the populations shown
in �gure 2.2. The agreement between the predictions and the numerics for �gures (a) and
(b) are very good; these populations are symmetric. The agreement for �gures (c) and (d),
unsymmetric populations, are not as good.
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unentrained oscillators make to the order parameter prediction in the next section.

2.3 Unentrained Contributions

The unentrained oscillators do not have �xed positions with respect to the mean �eld, but

their speeds depend on their position with respect to the mean �eld's phase according to

equation 2.9. Because the unentrained oscillators move constantly, and because they never

back-track with respect to the mean-�eld, the likelihood of �nding any one of them at a

given phase (relative to the mean �eld) is simply proportional to that oscillator's relative

velocity:

Pi (∆θ) =
Ci

ωi − Ω− r K sin (∆θ)
. (2.18)

Pi (∆θ) is not uniform and as I will soon show, this leads to imaginary contributions to the

self-consistent estimate for the order parameter.

The normalization constant Ci must satisfy the standard normalization condition for

probability distributions:1

1 =

ˆ π

−π
Pi (θ) dθ, (2.19)

= Ci

ˆ π

−π

dθ

ωi − Ω− r K sin (θ)
. (2.20)

To evaluate this integral, I transform it into a contour integral about the unit circle. Taking

z ≡ eı θ, in which case dθ = dz/ız, I have

C−1
i =

˛
dz/ız

ωi − Ω− r K (z − z−1) /2ı
(2.21)

=
−2

r K

˛
dz

z2 − 2ıωi−Ω
r K

z − 1
. (2.22)

The quadratic expression in the denominator has two roots

z±i = ı
ωi − Ω

r K
±

√
1− (ωi − Ω)2

r2K2
. (2.23)

1Note that as de�ned, the sign of Ci ensures that the probability is strictly positive, as required for a
properly de�ned probability.
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ℑz
(b)

ω < Ω− r K

Figure 2.5: The pole structure for equation 2.22 (or more simply equation 2.25). The pole
that contributes to the integral depends on whether the oscillator's natural speed is much
faster (a) or much slower (b) than the synchronized speed. The values of z± are given in
equation 2.24.

By construction, |ωi − Ω| > rK, which means the square-root term is imaginary, so I write

the roots as

z±i = ı
ωi − Ω

r K
± ı

√
(ωi − Ω)2

r2K2
− 1. (2.24)

Both of these roots are purely imaginary and have the form x ±
√
x2 − 1 with x2 > 1.

Whether x is positive or negative, one of the two roots has a magnitude greater than 1 while

the other has a magnitude less than one. For example, if ωi−Ω is positive then =
{
z+
i

}
> 1

and 0 < =
{
z−i
}
< 1, as depicted in �gure 2.5(a). The contour integral can be written in

much simpler terms as

C−1
i =

−2

r K

˛
dz(

z − z+
i

) (
z − z−i

) (2.25)

and only one of the two roots contributes to the integral. Again considering ωi − Ω > 0, z−i
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is the applicable pole and the contour integral evaluates to

C−1
i =

−2

r K
· 2πı · 1

z−i − z+
i

for ωi − Ω > 0 (2.26)

= π
−4ı

r K

1

−2ı

√
(ωi−Ω)2

r2K2 − 1
for ωi − Ω > 0 (2.27)

=
2π√

(ωi − Ω)2 − r2K2

for ωi − Ω > 0, (2.28)

giving a normalization constant of

Ci =

√
(ωi − Ω)2 − r2K2/2π for ωi − Ω > 0. (2.29)

For ωi − Ω < 0, z+
i is the applicable pole and Ci has the opposite sign, giving a general

expression for Ci as

Ci =
ωi − Ω

2π

√
1− r2K2

(ωi − Ω)2 . (2.30)

Computing the contribution of this oscillator to the order parameter is equally labori-

ous (but thankfully no harder). The integral and its associated contour integral for that

contribution is

〈
eı∆θi

〉
=
ωi − Ω

2 π

√
1− r2K2

(ωi − Ω)2

ˆ π

−π

eı θdθ

ωi − Ω− r K sin θ
(2.31)

=
ωi − Ω

2 π

√
1− r2K2

(ωi − Ω)2 ·
−2

r K

˛
z dz

z2 − 2ıωi−Ω
r K

z − 1
. (2.32)

The denominator of the associated contour integral is the same, leading to the same poles

in the evaluation of the contour. The end result of all of the calculations is

〈
eı∆θi

〉
= ı

ωi − Ω

r K
− ı (ωi − Ω)

√
1

r2K2
− 1

(ωi − Ω)2 . (2.33)

Contributions from an unentrained oscillator are astonishingly similar to contributions
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from an entrained oscillator. Here are the three di�erent contributions, for comparison:

〈
eı∆θi

〉
= ı

ωi − Ω

r K
−

√
1− (ωi − Ω)2

r2K2
for ωi − Ω > rK, (2.34)

〈
eı∆θi

〉
= ı

ωi − Ω

r K
+

√
1− (ωi − Ω)2

r2K2
for entrained oscillators, (2.35)

〈
eı∆θi

〉
= ı

ωi − Ω

r K
+

√
1− (ωi − Ω)2

r2K2
for ωi − Ω < −r K. (2.36)

The only real components arise from entrained oscillators (the square-root terms for the

unentrained oscillators yield imaginary contributions). The sign of the square-root terms for

the unentrained oscillators function in such a way that as ωi gets farther from Ω, the (imag-

inary) contribution approaches zero. As mentioned in the previous section, the imaginary

terms exactly cancel for symmetric samplings, whereas the real terms sum.

Having determined the average contribution that an unentrained oscillator makes, I next

assemble and analyze the predictions of the order parameter, properly accounting for all

oscillators.

2.4 The full scheme

Combining the contributions from the entrained as well as the unentrained oscillators gives

the self-consistent scheme for the mean-�eld r:

r e−ı α =
∑
θi∈Θe

√
1− (ωi − Ω)2

r2K2

+ ı

N∑
i=1

ωi − Ω

r K
− ı

∑
θi∈Θu

(ωi − Ω)

√
1

r2K2
− 1

(ωi − Ω)2 . (2.37)

How does this compare this result with previous predictions and how do I interpret this

equation?

In order to compare the predictions of the full scheme in equation 2.37 to the predictions

for the large-N limit, I �rst rewrite the scheme in the large-N limit as a collection of integrals:
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r (Ω, K) e−ı α =

ˆ Ω+r K

Ω−r K

√
1− (ω − Ω)2

r2K2
g (ω) dω

+ ı

ˆ ∞
−∞

ω − Ω

r K
g (ω) dω

− ı
ˆ Ω−r K

−∞
(ω − Ω)

√
1

r2K2
− 1

(ω − Ω)2 g (ω) dω

− ı
ˆ ∞

Ω+r K

(ω − Ω)

√
1

r2K2
− 1

(ω − Ω)2 g (ω) dω (2.38)

If I consider an even distribution g (ω) centered at zero (which means Ω = 0), the imaginary

terms vanish, leaving

r e−ı α =

ˆ r K

−r K

√
1− ω2

r2K2
g (ω) dω. (2.39)

Because the imaginary sums have vanished, α = 0. A simple trigonometric substitution

leads to the expressions

sinφ =
ω

rK
, dω = r K cosφdφ, (2.40)

which allow me to rewrite the expression for r as

r =

ˆ π/2

−π/2
cosφ · g (r K sinφ) r K cosφ dφ (2.41)

= r K

ˆ π/2

−π/2
cos2 φ · g (r K sinφ) dφ, (2.42)

which is identical to equation 2.4. Having shown that the self-consistent scheme reduces to

the well-known limit, I now focus on interpreting and implementing the scheme.

The scheme relates the quantities r, K, Ω, and α to the set of frequencies {ωi}. To see

this, consider the following algorithm:

1. Choose �xed values for Ω and for r K ≡ A. Note that neither r nor K are known, only

their product.

2. Compute r e−ı α using the self-consistent expression 2.37.
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3. Having obtained a value for r given the �xed value of A, compute K = A/r.

The algorithm produces values for r, K, and α for the given values of Ω and r · K. I

interpret the results of these calculations to mean that if I were to perform a simulation

of the Kuramoto model for the given set of oscillators at the computed coupling of K and

computed phase o�set α, the system would exhibit synchronization with an average value of

r at the synchronized frequency Ω. (If I �nd multiple solutions, then I expect the solution

with the largest r to dominate the dynamics.) To predict the outcome of a simulation, I

need only tabulate values for r, K, Ω, and α.

Algorithmically speaking, the key di�erence between the simple self-consistent equation

2.17 and the full self-consistent equation 2.37 is that the latter introduces an extra parameter

Ω. In the simple scheme, I take Ω = ω̄ and I ignore imaginary terms. In the full scheme I

vary Ω to �nd sums in equation 2.37 for which the imaginary component is zero, obtaining

a prediction for the original Kuramoto model where α = 0. However, with greater freedom

comes greater computational expense and tabulating predictions for r, Ω, and α when I only

care about the case α = 0 wastes computing resources and time. The problem can be recast as

a zero-�nding search. Highly optimized algorithms exist for zero-�nding but these algorithms

assume continuity in the function's derivative, and although the piecewise equation 2.37 is

continuous its derivative is discontinuous in many places. In order to determine where the

discontinuities arise, I next consider the contributions to r due to a single oscillator as a

function of Ω.

Equations 2.34�2.36 show how an individual oscillator contributes to the self-consistent

calculation for r. I call these contributions ρi (Ω, r K). Figure 2.6 shows the real and

imaginary parts of ρi (Ω, r K) as a function of Ω for a �xed but arbitrary value of r K,

indicated by the solid semicircle. The real component of ρi is continuous and has support

only over a �nite range of Ω, speci�cally −r K < ωi − Ω < rK. The real component of ρi

is symmetric about Ω = ωi and is an even function of ωi − Ω. The imaginary component of

ρi is also continuous and symmetric about ωi − Ω, but has support over the whole real line
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Figure 2.6: Real (solid) and imaginary (dashed) parts of ρi (Ω, r K) for a �xed but arbitrary
r K and nonzero ωi.

as indicated by the dashed curve. Furthermore, the imaginary component of ρi is an odd

function of ωi − Ω. For a system composed of a single oscillator, the α = 0 solution (zero-

crossing) corresponds with Ω = ωi and a magnitude r = 1, which agrees with the de�nitions

for Ω and r in the trivial case of a single oscillator. The only zero for this case falls between

ω − r K < Ω < ω + r K. (Note that for α 6= 0, the synchronized speed Ω is slower or faster

than ωi according to the sign of α, but the magnitude of the complex number r eı α is still

1.)

Figure 2.7 shows a series of real and imaginary order-parameter predictions for three

oscillators in which the frequency of the leftmost oscillator is increased from ω1 = −1.9

to ω1 = −0.7. The frequencies of the other two oscillators are held �xed at ω2 = 0 and

ω3 = 1.5, and r K = 1 is also held �xed. This �gure reveals a number of important fea-

tures. First, r (Ω, r K) for three oscillators has six kinks and the Ω coordinates for four of

them remain �xed as ω1 changes. The kinks occur at Ω ∈ {ωi ± r K}, giving a discrete set

of intervals to check for zeroes. Second, all zeroes of the imaginary part of r fall within

(ωmin − r K, ωmax + r K); the values of r for Ω outside these regions are either strictly pos-

itive for Ω < ωmin − r K or strictly negative for ωmax + r K < Ω. Third, the imaginary part

of r may possess 0, 1, 2, or 3 zeroes on intervals over which r is continuous.2

2To prove this, note that the concavity is dominated by the two nearest cusps. These cusps either have
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Figure 2.7: Real (top) and imaginary (bottom) parts of r (Ω, r K) for r K = 1, ω1 as marked,
ω2 = 0, and ω3 = 1.5.

Based on all the observations I just made, one could develop an e�cient and complicated

algorithm capable of �nding all the zeroes of =r. Due to time constraints, I was unable to

implement such an algorithm. Instead, I implemented a much simpler algorithm for �nding

the zeroes that breaks each known continuous interval into multiple pieces and performs a

bounded zero search on each of those intervals. Figure 2.8 shows the simulations initially

presented in �gure 2.2 plotted against the predictions from the full scheme. To generate this

�gure, I broke each known continuous interval into 16 distinct subintervals and executed a

the same concavity in which case there is no in�ection point, or have opposite concavity in which case there
is only one in�ection point. A curve with a single in�ection point can have no more than three zeroes.
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Figure 2.8: Predictions for the full scheme compared to numerical simulations, as shown
in �gure 2.2. Compared to �gure 2.4, which shows the predictions assuming Ω = ω̄, these
predictions perform much better for the unsymmetric populations depicted in �gures (c) and
(d).
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bounded zero-�nding algorithm on each. The resulting predictions for populations (a) and

(b) agree with those of �gure 2.4, but the predictions for populations (c) and (d) perform

much better than those shown in �gure 2.4. In particular, the failures for the non-symmetric

populations are easy to identify from the predictions alone and correspond with substantial

changes in the simulations' behavior.

As shown, the predictions cannot be easily compared with the numerics. Some of the

predictions shown in �gure 2.8 appear to closely match the simulations, but they are peppered

with extraneous results. I stated earlier that if I �nd multiple solutions to self-consistent

scheme, I expect the prediction with the largest r to dominate and the numerics clearly

support that interpretation. To clean the data, I bin the (K, r) predictions by their r-

values into 300 uniformly spaced r-bins from 0 to 1 and for each bin select the pair with the

minimumK value (the left-most pair). The resulting data resemble the simple self-consistent

curves plotted in �gure 2.4 except they better track the numerics for populations (c) and

(d). In particular, for many values of K they give multiple predictions for r. The multi-

valued character of these data is a feature: it allows me to construct the r (K) predictions as a

collection of piecewise-continuous predictions with discontinuous jumps. Such a construction,

for population (d), is shown in �gure 2.9. At the end of this rather involved cleaning process,

I have a collection rsc of piecewise monotonic predictions for r vs K that can be compared

to the numerical simulations. I also explicitly know the values of K at which rsc exhibits

discontinuities.

Figure 2.10 demonstrates how the full self-consistent scheme's predictions fare against

the average order parameter from the direct numerical simulations. I computed the values

for the averaged order parameter from the results of the direct numerical simulations using

a weighted average:

r̄ (K) =

∑
i rini∑
i ni

. (2.43)

Above each of these di�erence curves I plot the discontinuities in the self-consistent scheme,

also as a function of K. The following properties immediately emerge:
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Figure 2.9: Results of cleaning the data from the full self-consistent scheme, as demonstrated
for population (d). The original predictions are shown in (a) (reproduced from �gure 2.8d);
the cleaned results are in (b).

1. The scheme performs very well forK & 1.8, but is also consistently below the numerical

average.

2. Many features in the di�erence plot rsc− r̄ are quite narrow. Others, especially where

rsc di�ers from r̄, are rather broad.

3. Though rsc is generally less than r̄, the largest (and sometimes the second-largest)

discontinuity usually accompanies a positive spike in rsc − r̄.

4. Except for population (a), the largest discontinuity corresponds with a signi�cant

change in quantitative accuracy.

The �uctuations ignored in calculating rsc apparently lead to consistently larger values in the

real order parameter, even for relatively large values ofK and r. I did not expect this. It may

be possible to extend the scheme by using an e�ective coupling f (ψ − θi), where f is similar

but not identical to a sine function. However, such a form would likely lead to intractable

calculations for the unentrained oscillators, and a full treatment of the �uctuations would

probably be a better course of research.
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Figure 2.10: Discontinuities for the full self-consistent scheme and comparisons of the average
order parameter r̄ from the direct numerical simulations to the prediction rsc of the full self-
consistent calculation.
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Sharp features in rsc− r̄ versus K have a very simple interpretation: both rsc and r̄ show

swift changes for close but non-identical values of K. Discontinuities and steep slopes in

rsc for values of K above the largest discontinuity accurately predict swift changes in the

numerics. Also, the unusual positive behavior near the largest discontinuities arises because

the scheme's largest jumps occur just before the end of the swiftest behavior in the numerics.

Discontinuities are accurate predictors of swift changes in the real system.

Broader features in Figure 2.10 have an equally clear interpretation: rsc and r̄ have

substantially di�erent slopes over an extended range in K. For example, for K between 1.45

and 1.55 in population (b), r̄ grows roughly from 0.2 to 0.3, getting faster as it approaches

the sudden transition at K = 1.55. In contrast, the scheme predicts a consistent and slower

rate in increase followed by a sudden huge jump at K = 1.55. The di�erence in slopes leads

to the broad drop in rsc − r̄ as K runs from 1.4 to 1.55.

In general, the scheme captures nontrivial, nongeneric features when r is not small. It

also gives clear signatures for where where it will fail, and those signatures correspond to

interesting behavior in the direct numerical simulations.

2.5 Conclusion

In this Chapter I have demonstrated I can make accurate, population-speci�c predictions

for the Kuramoto model by assuming the mean �eld has a constant magnitude r and steady

rate of rotation Ω. All the oscillators in the population contribute to the self-consistent

expression and non-symmetric distributions show predictions for r that require values of Ω

that do not correspond to the population's mean velocity ω̄. Taking those contributions into

account leads to predictions that are accurate over a wide range of K, and which have clear

indications when they are close to failing.

One of the most important outstanding questions from this work is whether the smaller

discontinuities predicted by the self-consistent scheme correspond to real discontinuities in
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numerical simulations. I have preliminary numerical evidence that larger populations (N =

4096) exhibit �nite (bistable) switching behavior near scheme-predicted jumps. It appears

that for my population size of N = 512, �nite-size e�ects have washed out discontinuous

behavior. Whether or not the numerics exhibit jumps, I am con�dent that the discontinuities

in the scheme correlate with swift behavior in the numerics, and I next study the scaling

properties of these discontinuities in their own right.



Chapter 3

Critical Behavior in the Simple Scheme

As noted in the Introduction, the Kuramoto model exhibits a continuous phase transition

in the limit N → ∞. The explanation of critical behavior near phase transitions was one

of the great theoretical accomplishments in twentieth century condensed matter physics and

many texts and reviews explain the renormalization approach to the problem [16, 17]. The

Kuramoto model also exhibits critical phenomena near the critical coupling strength Kc. In

this Chapter, I describe my work studying avalanching�one kind of critical behavior�in

the simple scheme developed for the Kuramoto model that I presented in the last Chapter.

From the standpoint of statistical physics, avalanching is the notion that a continuous

phase transition in a �nite-sized system actually occurs as a collection of discrete jumps. Mi-

croscopically, one imagines a system of discrete units (atoms, magnetic domains, oscillators)

whose behavior can resemble one of two phases; when one of the units changes behavior,

the global measurement of the system shows a discontinuous jump. Furthermore, one unit's

change may cause other units to change their behavior as well, leading to a cascade of changes.

Such cascades are called avalanches and avalanching reveals itself as a critical phenomenon

when the distribution of jump sizes exhibits a power law with properties that depend on the

system's proximity to the critical point.

Though he did not search for avalanches, Daido developed the majority of the work on

�nite-size e�ects in the Kuramoto model in the second half of the 1980s [18, 19, 20, 21,

22]. Kuramoto and Nishikawa also published a few related papers, but they focused on

determining the globally stable state in the large-N limit [23]. In a series of papers Daido

showed �rst numerically and then analytically that the model exhibits divergent behavior

32
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Exponent K < Kc K > Kc De�nition

γ′ 1/2 1/8
√
N
〈
|r − r̄|2

〉1/2 ∝ |K −Kc|−γ
′

p 1 1/4 τc ∝ |K −Kc|−p
s 1/2 2 |Kc (f)−Kc| ∝ N−s

ν = 1/s 2 1/2 Nc ∝ |K −Kc|−ν , N∆c ∝ N−1 |K −Kc|−ν

Table 3.1: Daido's Critical Exponents

whenK is near the critical couplingKc, as determined by the large-N limit. In his �nal paper

on the matter [22], Daido presented his fully developed theory for the exponents along with

a reproduction of the numerical results. Daido's exponents exhibit the remarkable feature

that the values for K < Kc di�er from those for K > Kc. Mean-�eld models typically have

the same scaling exponents below and above the critical point, making the Kuramoto model

unique among mean-�eld models. Unfortunately, Daido's analysis depends critically upon

a complicated equation that he states without derivation and his writing is impenetrable.

Further work in the Kuramoto model focused on determining the stability of the globally

attracting state, spurred by the work of Strogatz and Mirollo, who reformulated the N →∞

problem and published rigorous predictions for the stability of the synchronized state [3].

Strogatz and Mirollo's work kicked o� a new direction of interest for the Kuramoto model,

but future examinations of �nite-size e�ects focused on modi�ed models, such as considering

the Kuramoto model with additive noise [24].

Daido's main results are summarized in table 3.1. Daido �rst became interested in the

critical behavior of the Kuramoto model when he found substantial �uctuations in the order

parameter near the critical point. The RMS �uctuations scale with |K −Kc|, the system's

vicinity to the critical point, according to γ′. Individual deviations in r can be long-lived and

the second exponent p gives the scaling of the durations of those deviations, τ . Compared

with larger systems, smaller systems show critical behavior over a larger range in K, and the

range of K over which the system displays appreciable �nite-size �uctuations, Kc (f)−Kc,

scales with the system size according to the exponent s. The related exponent ν describes

the scaling of the critical population size Nc that shows �uctuations at a given distance from
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the critical coupling K.

On the one hand, the assumption in the scheme that r is constant explicitly contradicts

Daido's work. However, the scheme also exhibits �nite discontinuities, and Richard and I�

in conversation with Karin Dahmen�hypothesized that the discontinuities may capture the

critical behavior in the Kuramoto model, in spite of the non-physical assumption of constant

r. After all, avalanching of this sort has been observed in magnets and the scaling theory

for the Ising model correctly predicts the critical phenomena in magnets in spite of its many

simpli�cations [25]. Furthermore, the Kuramoto model resembles the Heisenberg model for

magnets, which exhibits scaling behavior that has been mapped to the Ising model. So, I

set out to study the critical behavior of the discontinuities in the Kuramoto model.

3.1 Method for Finding Avalanches in the Scheme

Both the simple scheme (Section 2.2) and the full scheme (Section 2.4) demonstrate back-

tracks, portions of the r vs K curves in which r increases as K decreases, as shown in �gure

2.8. Population (b) shows a large backtrack, the top of which is near r = 0.4, K = 1.55,

and a small backtrack near r = 0.5, K = 1.65. Population (c) shows a small backtrack

for r between 0.15 and 0.2, at about K = 1.65. The predicted curves contain many other

indiscernible backtracks, as highlighted in the example in �gure 3.1. If I assume that the

system always follows the largest value of r for a given value of K, as con�rmed in the

previous Chapter, then the backtracks imply discontinuous jumps in r. This assumption is

not true for large discontinuities in small populations�a feature of the scheme which tells

me where to look for interesting changes in the system's behavior�but may hold reasonably

well for smaller discontinuities exhibited by larger populations. In what follows, I analyze

the distribution of these jumps in the hope that their statistics shed light on avalanching

behavior in the Kuramoto model for larger populations.

The numerical scheme o�ers a major advantage over direct numerical simulations: speed.
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Figure 3.1: The method for computing discontinuities in r simply replaces backtracking
behavior in �gure (a) with discontinuous jumps, depicted as vertical lines in �gure (b). The
insets show a much larger range in K, for context.

The study of avalanching requires a large quantity of data yet Daido's exponents show

that the lifetime of �uctuations in the order parameter diverges near the critical coupling.

Measuring tiny changes in the order parameter would require exceedingly long simulations.

In contrast, the scheme computes its predictions very quickly (relative to direct numerical

simulations) making it much better suited for gathering the necessary quantity of data to

achieve a meaningful scaling collapse.

In the following analysis, I take the scaling forms from the study of the Ising model by

Perkovi¢, Dahmen, and Sethna [25]. Perkovi¢ et al.'s equation 49 describes the avalanche

size distribution as a function of avalanche size S, system disorder R, and external �eld H.

I only consider the undriven Kuramoto model, so my system does not have an analog to the

external �eld. I also seek scaling in the coupling K rather than the disorder R. Modifying

the scaling function appropriately, I expect the distribution of avalanches to scale as

D (∆r, K) ∝ ∆r−τD± (∆r |K −Kc|α) . (3.1)

D is an unknown scaling function; it and the scaling exponents α and τ should emerge in

the process of performing the scaling collapse. (In Perkovi¢ et al., the scaling exponent in

the argument of the scaling function is σ and it is placed on ∆r so that in their notation
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Figure 3.2: Scaling collapse of avalanche distributions in the simple scheme for N = 106.
In these �gures s represents the step size ∆r. For �gure b, the values of the exponents are
α = 1.4, τ = 1.6. The line with slope -1.6 shown in �gure (a) is a guide to the eye.

α = 1/σ.)

Note that the number of oscillators that become synchronized in a discontinuity of size

∆r is roughly N · ∆r, meaning that the label �avalanche� only makes physical sense when

the jumps exceed N−1. (A claim that 0.1 oscillators suddenly synchronize seems dubious at

best.) The scheme can predict smaller discontinuities, but labeling them as avalanches is

not appropriate.

3.2 Avalanching in the self-consistent scheme

Figure 3.2 shows my �rst and most successful attempt at �nding critical avalanching in the

Kuramoto model. It displays the combined distribution of avalanches for many populations

of N = 106 oscillators. The uncollapsed data in �gure (a) follows a power law with an

exponential cuto� for large ∆r. However, �gure 3.2(a) is peculiar in a number of ways. The

largest shown avalanche size, ∆r ≈ 5·10−5, corresponds to about 50 oscillators synchronizing,

which is a small number compared to the population size. Also, the range ofK bins runs from

1.62 to 1.66, which avoids data closest to the critical coupling Kc ≈ 1.6. Sub�gure (b) shows

an excellent collapse of the data, but unfortunately many other values of the parameters α,

τ , and Kc gave equally or nearly equally good results. Although I presented the results of
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�gure 3.2 at the 2010 March Meeting, I have forgotten why I chose such restricted ranges

of ∆r and K and I subsequently lost the original data and some of the code that produced

them due to a hard-drive failure. Nonetheless, the scaling behavior in �gure 3.2 covers over

a decade of physically meaningful avalanches and the collapse itself is excellent.

Spurred by my success for N = 106, I next sought to perform similar collapses for

smaller populations. In addition to providing additional estimates to the parameters α and

τ , combined collapses for multiple population sizes provide a means for computing relations

between α and τ , leading to restrictions in the otherwise wide range of parameters that result

in successful collapses.

My attempts at scaling collapses for smaller populations (N = 103 and N = 104) are

shown in �gure 3.3. Sub�gures (a) and (c) show the distribution of avalanches on a log-log

plot and they clearly show power-law behavior for all but the largest avalanche sizes. How-

ever, they exhibit a bump on the end of the distribution representing the largest avalanches,

and the curves cross at the tips. I will examine this unusual and worrisome characteris-

tic after explaining the scaling collapses. Sub�gures (b) and (d) show the scaling collapses

which, unlike the collapse in �gure 3.2, I plot on linear x- and y-axes. The collapses appear

to perform fairly well, but just like the data for N = 106 they do not have discriminating

power. In an attempt to relate the exponents of these collapses to the one shown for the

larger population, I performed a collapse at τ = 1.6, as shown in �gure 3.4. Although I

had to consider a narrower range in K for N = 103, the collapses perform about as well for

τ = 1.6 as their counterparts shown in �gure 3.3.

The cross-over behavior of the distributions plotted in �gures 3.3 (a) and (c) lead to

one glaring problem with the scaling collapses in the associated sub�gures (b) and (d): α is

negative. If the underlying scaling function is bell-shaped, then a negative value for α makes

no sense. Such a value implies very few large avalanches occur in the vicinity of the critical

coupling, and that the largest avalanches only occur further from the transition. Not only

does a negative value for α contradict the scaling collapse for N = 106 oscillators, but it also
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Figure 3.3: Distributions of avalanche sizes (a, c) and scaling collapses (b, d) in the simple
scheme for N = 104 (a, b) and N = 103 (c, d). As in �gure 3.2, s represents the step size
∆r. In �gure (b), the values of the exponents are α = −0.09, τ = 2.5 and in �gure (d), the
values of the exponents are α = −0.06, τ = 2.3. Note that the �gures (b) and (d) are linear
plots, and the sign of α is indeed negative for both of them. Also note that for �gures (c)
and (d), the range in K values is much wider than for the other plots.
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Figure 3.4: For comparison to the case N = 106, these show scaling collapses for N = 103

(a) and N = 104 (b) for K between 1.6 and 1.65 and for τ = 1.6. In (a), α = 0 whereas in
(b) α = −0.1.

disagrees with Daido's work, which indicated divergent behavior near the critical coupling

Kc. Even if I cut out the most o�ensive data and restrict the scaling collapse to smaller

values of ∆r, which appears to be what I did for the million-oscillator collapse, the upward

concavity due to the bump at the end of the distributions causes all attempts of a collapse

to diverge.

3.3 Conclusion

In this Chapter, I have demonstrated that the distribution of discontinuities in the simple

self-consistent scheme does not scale in the standard way.

In retrospect, I am not surprised. In the last Chapter I demonstrated that the scheme

most accurately predicts the direct numerical simulations for couplings above the largest

scheme-predicted discontinuity. Above the largest avalanche, where agreement is good,

the avalanches correspond with swift changes in the numerics and the magnitudes of the

avalanches roughly agree with the magnitudes of the changes in the numerics. Although the
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largest avalanche accurately predicts swift changes in the numerics it typically overestimates

the magnitude of the change, and below the largest avalanche the scheme's predictions of

discontinuities have no relation with the behavior of the numerics. Daido showed that the

Kuramoto model exhibits critical behavior for K near Kc, and by extension the accurate

predictions should also exhibit critical behavior. However, the inclusion of the inaccurate

predictions seems to have destroyed the most sensitive and important end of the avalanche

distribution corresponding to the largest jumps.

Although the self-consistent scheme gives remarkably accurate predictions, unfortunately

it is no replacement for direct numerical simulations for studying the critical behavior of the

�nite Kuramoto model.



Part II

Resonant Coupling

41



Introduction to the Second Part

I spent the �rst part of this dissertation closely examining the Kuramoto model. In this the

second part of the dissertation, I examine an experimental system that is a close relative of the

Kuramoto model. In Chapter 4 I discuss the experimental setup, the methods used to take

measurements, and the key results of the measurements. In Chapter 5 I discuss a simple

mechanical model that reproduces the key collective behavior observed in the laboratory

and I compare it to the Kuramoto model. The original Kuramoto model does not capture

the key behavior of the experimental system, but a modi�ed model with only two new

features�frequency-dependent coupling and a frequency-dependent phase delay�explains

the behavior very well.
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Chapter 4

Synchronization with Resonant Coupling

Experimental studies of synchronization are numerous. Biological examples abound [26,

27, 28], but synchronization occurs in many other systems, including coupled metronomes

[29], laser arrays [30], chemical oscillators [31, 32, 33], and arrays of convective cells [34].

Lasers [30, 35], thermo-acoustic engines [36, 37, 38], Josephson junctions [39, 40, 41, 42],

metronomes [29], and pendulum clocks [43] have also been studied. Perhaps the most

notorious example of collective synchronization occurred among pedestrians crossing the

Millennium Bridge in London when it �rst opened [1]. These systems are all examples of

populations of similar but not identical oscillators that exhibit the same basic patterns of

behavior, that (1) they synchronize spontaneously, without the need for any external driving,

and (2) as the oscillators' coupling increases, their synchronization strengthens. The two

systems most similar to the work I discuss in this Chapter are the Pantaleone's metronomes

and the study of the Millennium Bridge. The key di�erence between my work and other

work in synchronization is that I consider the resonant character of the coupling to be a

feature of the system, not something to be suppressed.

In this Chapter I present an experimental system that exhibits synchronization: small

mechanical vibrators coupled through a resonant plate. The coupling between the oscillators

depends on frequency and exhibits a simple resonance structure. How does frequency depen-

dent coupling e�ect the dynamics of coupled oscillators? Unlike the simple Kuramoto model,

I �nd history-dependent behavior due to characteristic interactions with the resonances of

the plate. The frequencies of individual motors tend to level-o� just below plate resonances

and motors tend to avoid frequencies just above resonances. Groups of motors show similar

43
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Figure 4.1: A photo and diagram of the experimental setup, as described in the �rst section.

features but have wider hysteresis loops because the leveling-o� of the frequencies below

a resonance extends to higher driving voltages than individual motors. The non-transient

behavior of the motors operating at a �xed voltage seem to show that the average motor

velocity is roughly constant.

4.1 Experimental Setup

My experiment involves 16 small motors with eccentrically massed rotors. The motors (All

Electronics Corporation, catalog number DCM-2041) are small dc motors, the sort used as

vibrators in mobile phones. Each motor has a mass of 3 g and is 2 cm long, 1 cm high, and

1 cm wide. Each motor's rotor has a center of mass that is o�set from the axis of rotation,

with a �rst moment of 0.74 g-mm. Vibrations arise from the rotation of this o�-center mass.

(For a clearer picture of how the motors interact with and through the plate, see Chapter

5.)

I glue the motors to a breadboard which is itself glued to a mechanically compliant and

resonant aluminum plate. The motors interact indirectly through the plate, which is held

by clamps as shown in �gure 4.1. The plate is L = 115 cm long, b = 15 cm wide, and

1This item is no longer available in the catalog, but similar motors can be found in their catalog searching
for �motor vibrator.�
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Figure 4.2: Typical time series of a single motor on the plate for di�erent voltages. From
top to bottom, the data correspond to driving voltages of 0.65V , 0.84V , and 1.05V .

5mm thick. I adjust the linear response of the system by adjusting the location where the

clamps hold the plate, parametrized by the length a. Although I considered various clamp

positions, I will only discuss results based on a length of a = 12.5 cm, for which the system

has resonances at 68Hz and 100Hz.

I measure the plate's vertical acceleration a (t) using an accelerometer attached to the

plate, a PCB 353B33. In the diagram shown in �gure 4.1, the accelerometer is depicted by the

canister underneath the motors. Figure 4.2 shows a few typical time series of acceleration

data due to a single motor. The sampling rate for these and all other data is r = 1000

samples per second. The plate is a linear medium, so I attribute any observed vibrations

either to the motors or to background sources, such as building vibrations. In order to reduce

spurious frequencies from the environment, I place the entire setup on a foam pad. Although

some background noise still perturbs the system, these vibrations do not dominate the signal

reported by the accelerometer and have frequencies much lower than the motors' primary

frequencies.

Apart from quantitatively measuring the system, I also listen to and watch the system.
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The plate creates a great deal of noise, especially when many motors operate near a res-

onance, making certain transitions immediately apparent just by listening. I observe the

system visually using a stroboscope, which allows me to identify the motors' primary fre-

quencies and observe variations of those frequencies. I can also examine the mode-shapes of

the plate using the stroboscope. I �nd that both resonances, near f = 68Hz and 100Hz, do

not have any nodes along the array of motors and that the displacements of all the motors

have about equal magnitude. As such, the couplings between the motors and the plate have

no appreciable position dependence. Since the motors interact with each other through the

plate, this means each motor interacts equally with all the others.

All of the motors operate from a common power supply, which has important implica-

tions for the experimental design. First, small variations in each of the motors mean that,

despite operating at the same voltage, all the motors have di�erent natural frequencies. I

have not characterized the distribution of motor speeds in any rigorous way but stroboscopic

observations indicate that the frequency distribution is approximately unimodal. Second, a

common power supply couples the motors electrically, which may lead to synchronization in-

dependently of the mechanical coupling. I �nd that the motors do not show synchronization

when run on a massive support (which provides minimal mechanical coupling) so I attribute

the synchronization results in the later sections to mechanical interactions moderated by the

plate. Third, because I cannot independently change the power delivered to an individual

motor, I cannot precisely control the distribution of natural frequencies for a given exper-

imental run. However, the distribution of the natural frequencies of each of the motors at

di�erent voltages remains roughly unimodal.

4.2 Behavior of a Single Motor

In order to discuss how multiple motors interact I must �rst characterize how a single motor

behaves, and in order to characterize single-motor behavior, I must develop an automated
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Figure 4.3: Typical Fourier transforms of a single motor on the plate for di�erent voltages.
The driving voltages are 0.65V (�), 0.84V (· · · ), and 1.05V (- -).

method for reliably extracting a single motor's frequency of oscillation from a time series.

After developing such a method, I discuss how an individual motor's primary frequency

depends on the driving voltage and then I measure how the plate's response magnitude

depends on the motor's primary frequency. I conclude by explaining how I modify raw

power spectra to obtain a representation for motor density as a function of frequency.

Figures 4.2 and 4.3 demonstrate typical single motor data at voltages V = 0.65V , 0.84V ,

and 1.05V . Both �gures show stable periodic behavior. From two-second long data sets a (t),

sampled at 1000 samples per second, I construct spectra ã (f), shown in �gure 4.3 using a

short-time Fourier Transform:

ã (f) =

ˆ
T

a (t) eı 2π fdt, (4.1)

as implemented with an FFT. The Fourier transform gives data for frequencies spanning from

0Hz to 1000Hz, but the motors' primary frequencies fall into a much narrower range. Using

spectroscopic observations and time-frequency plots, I manually determine the minimum and

maximum operating frequencies of the motor for a given collection of samples and I only

examine Fourier Transform data within those extrema. Usually the motors operate between

f = 40Hz and 100Hz, but my fastest motors at their highest frequencies could achieve
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frequencies up to 170Hz.

To determine a precise measurement of a motor's primary frequency f̂ , I begin with

the frequency corresponding to the maximum amplitude, max |ã|, within the pre-determined

extrema. Because the short-time Fourier transform uses discrete data, the frequency of

the maximum amplitude will come from the set of consecutive frequencies {f1, f2, . . . , fN}

with separation fi+1 − fi = ∆f = 1/N/∆t. N is the number of samples (2000 for these

data) and ∆t is the time between samples, 10−3s, so ∆f = 0.5Hz. A plate resonance

could be responding to a harmonic of the motor's primary frequency, so if the amplitude

corresponding to half that frequency shows a strong peak (a peak with magnitude at least

1/10 the magnitude of the identi�ed peak), I select that as my rough estimate for the motor's

primary frequency. Denote the index of that frequency by ipeak.

Having obtained a rough estimate for the motor's primary frequency (accurate to within

0.5Hz), I obtain a precise measurement using a simple weighted average of the frequencies

in the vicinity of ipeak. Although I considered �tting the data in the vicinity of the peak to

a Lorentzian, noise in the tails of the �t often caused the �ts to mischaracterize the width

of the �t. Instead, I compute a number of estimates for primary frequency f̂ by performing

the following weighted averages:

f̂n =

∑
i |ãi|

2 fi∑
i |ãi|

2 (4.2)

where the sums run from ipeak − n to ipeak + n. As n increases, the sum includes more data

from the tails of the peak. Because the average is weighted using the squared amplitude,

f̂n reaches stable values once n takes the sum beyond the extent of the peak. I �nd that

including all data points within 5Hz of the peak is more than enough to give good estimates

of the motor's primary frequency, and all such frequency values agree with measurements

taken with the stroboscope. For my data, which involves records with durations of 2 s, this

amounts to assigning f̂ = f̂10. Using this technique, the primary frequencies verses the

driving voltage are plotted for the motor on a plate or on a massive block in �gures 4.4(a)

and 4.4(b), respectively.
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Figure 4.4: Frequency response of a single motor versus voltage, both (a) on a resonant
plate, and (b) for comparison, a di�erent motor on a rigid support.

The motor's primary frequency is relatively stable when the voltage is �xed, but �g-

ure 4.4(a) shows that the motor's frequency versus voltage2 is hysteretic. Shown in �gure

4.4(a) are the primary frequencies for two di�erent sets of consecutive measurements, one in

which I started at V = 2.4V and slowly decreased the voltage to 0.6V (indicated by triangles

pointing downward), and another in which I started the motors at V = 0.6V and slowly in-

creased the voltage to 2.4V (indicated by the triangles pointing upward). Although the two

measurements demonstrate relatively good agreement below V = 1V and above V = 2V ,

they exhibit a hysteresis between V = 1V and 2V . A motor on the lower branch gets stuck

near a resonance of the plate and cannot reach the upper branch unless the driving voltage

exceeds V = 2V . Once the motor reaches the upper branch, it does not drop to the lower

branch unless the voltage drops below V ≈ 1.2V , where it will remain unless the voltage is

again increased above V = 2V . In contrast, similar data taken from a separate motor on a

rigid support are shown in �gure 4.4(b), showing that in the absence of resonances, a motor's

frequency is nearly linear in the applied voltage. The marked di�erence indicates that the

motor interacts strongly with the resonances of the plate, and these interactions lead to the

2Note that the primary frequency as a function of voltage in �gure 4.4(a) is uncommonly high because
this happens to be the fastest motor of the 16 included in this study. It is the same motor as the one
operating between f = 80Hz and f = 95Hz between V = 1.2V and 1.4V in �gure 4.7(b).
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Figure 4.5: Accelerometer amplitude as a function of motor frequency when driven by a
single motor. The peaks near 68 Hz and 97 Hz correspond with peaks in the support's
Green function at the same frequencies.

hysteresis observed in �gure 4.4(a).

I measure the magnitude of the plate's response using the root mean square (RMS) of

the Fourier transform in the vicinity of the peak, MRMS. I compute a number of estimates

of the RMS magnitude, similar to the estimates for the primary frequency, as

MRMS,n =

√√√√ ipeak+n∑
i=ipeak−n

|ãi|2
T

, (4.3)

where T is the duration of the sample. For data in which the motor's frequency was indeed

constant, the values obtained for MRMS,n are largely independent of n as long as the sum

covers the extent of the peak. For a given sample, I assign MRMS = MRMS,20. The RMS

magnitude can be plotted against the voltage V , but it is better understood as a function of

the primary frequency f̂ , as shown in �gure 4.5.

As shown in �gure 4.5, the magnitude of the plate's response to a single motor is not

monotonic in frequency. To understand this behavior, note that the plate has resonances near

68Hz and 100Hz, so the plate will have larger accelerations when driven by a motor near

these frequencies than when the motor's frequency is far from the resonances. These data

were obtained by powering di�erent motors�one at a time�at various voltages and taking
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two-second data sets for each voltage. Although I could seek a relation between the RMS

magnitude and the applied voltage, �gure 4.5 indicates that the RMS magnitude is a function

of primary frequency. Despite overlaying data from motors at various locations on the plate,

the magnitude as a function of primary frequency is remarkably consistent, con�rming that

the coupling between the plate and the motors for this particular experimental setup does

not depend substantially on the motor's position. Apart from the gaps in the data for

frequencies just above the two peaks, which I discuss in the next section, the magnitudes

in this plot are equivalent to f 4 |G|, where G represents the passive frequency-dependent

Green function of the system.

Spectroscopic observations and time-frequency plots indicate that a motor's primary

frequency occasionally jumps quickly by one or two Hertz and then relaxes back to its

pre-jump frequency over the next few seconds. The growth of MRMS,n as a function of n

gives a simple criterion for identifying motor data in which the motor's frequency changes

appreciably over the course of the sample. After examining many data samples, I decided

to discard any data samples for which

MRMS,20

MRMS,1

> 1.09. (4.4)

In practice this amounts to rejecting about 10% of the samples.

All of the discussion of data presented so far has focused on single motors. Since I use

a single accelerometer to measure the behavior of multiple motors acting simultaneously,

and since I wish to know when two or more motors synchronize, I must obtain a reasonable

estimate for the number of motors at a given frequency. Such an estimate is not trivial:

the resonant response of the plate means that one motor turning at 95Hz will produce a

much stronger signal than many synchronized motors with a primary frequency of 78Hz.

My solution to this problem is to use �gure 4.5 as a normalization curve. I sample the RMS

magnitude uniformly, interpolating where necessary, to obtain normalization amplitudes

M̂ (f). I then normalize a raw spectrum such as �gure 4.3 by dividing the amplitudes of the
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Figure 4.6: Normalized plot of data shown in �gure 4.3. The driving voltages are 0.65V
(�), 0.84V (· · · ), and 1.05V (- -).

original spectrum by the normalization amplitudes:

N (f) =
|ã (f)|
M̂ (f)

. (4.5)

The result of such a normalization scheme is shown in �gure 4.6 for the data presented in

�gure 4.3. Except for the artifacts at f = 50Hz and 75Hz associated with the signal at

V = 1.05V , the scheme appears to work quite well. Even with the artifacts, single motors

can be easily distinguished and counted, providing a decent measure of the number of motors

in the vicinity of a given frequency.

4.3 Many Motors on a Resonant Plate

The behavior of multiple motors interacting on a plate is richer than the behavior of a

single motor on a plate. In this section I explore that richness, �rst by examining how the

driving voltage e�ects the behavior of the motors, and then by considering the non-transient

behavior of the system at �xed voltage over long times.
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Figure 4.7: Behavior of many motors on a plate as a function of voltage. (a) Behavior as
I decrease the voltage starting from an initially high value. (b) Behavior as I increase the
voltage from an initially low value. The gray-scale is logarithmic in motor density.

Behavior versus Voltage

The essential behavior of multiple motors interacting on the plate is given in �gure 4.7.

These plots are consecutive minute-long measurements that have been Fourier transformed

and normalized as discussed in the previous section, where I now identify the motor density

ρ with the normalized amplitude:

ρV (f) = N (f, V ) . (4.6)

Instead of plotting individual spectra, like those in �gure 4.6, I plot consecutive spectra by

creating gray-scale columns and laying them out sequentially in order of applied voltage.

(This is similar to the greyscale plots introduced in Chapter 2, except that the probabil-

ities are based on Fourier transforms instead of simple counts.) The di�erence between

�gures 4.7(a) and 4.7(b) is that in the former I started the system at high voltage and

stepped the voltage down each consecutive measurement, whereas in the latter I started

the system at low voltage and stepped the voltage up each consecutive measurement, in a

manner similar to the data shown in �gure 4.4.

The motors exhibit a number of consistent and contrasting behaviors between �gures 4.7(a)

and 4.7(b). Both �gures indicate that for high voltages (V > 1.7V ) the motors show strong
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synchronization approaching f = 90Hz, and ensembles of motors near f = 64Hz between

V = 1.2V and 1.4V maintain nearly the same frequency. Both �gures also show almost no

motor activity between f = 65Hz and 75Hz. The motors' behavior in the vicinity of the

resonance near f = 68Hz is the key di�erence between the �gures. As with the single-motor

data shown in �gure 4.4, the motors show hysteresis behavior. Starting from low frequencies

and moving upward��gure 4.7(b)�most of the motors synchronize strongly just below the

resonance. The transition out of this synchronized state occurs swiftly and can be observed

without any special equipment: the noise of the plate drops many decibels in less than a

second. Once the motors have jumped above the f = 68Hz resonance at V = 1.5V , many of

them remain above that resonance in a less synchronized state despite reducing the voltage,

as in �gure 4.7(a), until the driving voltage drops below V = 1.2V .

The frequency of the resonance that causes the hysteresis is surprising and is due to

interactions of multiple motors. Although the magnitude measurements in �gure 4.5 clearly

show the resonance near f = 68Hz, and seem to indicate a gap between f = 68Hz and

71Hz, the individual motor's behavior shown in �gure 4.4(a) indicates that the resonance has

no noticeable e�ect on the motor's frequency as a function of voltage. Yet, the same resonance

has a substantial impact on the dynamics of the multi-motor system. The pronounced e�ect

of the resonance in �gures 4.7(a) and (b), and the lack of any e�ect in �gure 4.4(a), suggest

that a resonance's e�ect on a motor's steady-state frequency depends on the number of

motors near the resonance. I have two additional observations that con�rm this assertion.

I originally planned to study how the motors negotiated the strong resonance near f =

100Hz. The fastest motor, as reported in �gure 4.5, jumps over the resonance at about

V = 2V , but I do not observe any such transition for the same motor when operating all

16 motors even up to V = 2.5V . I do not drive the system much higher than V = 2.5V for

fear of tripping the power supply's fuse, and because my motors begin to degrade at such

high voltages. Although I do not know the voltage at which the fastest motor would have

negotiated the resonance, I do know that the e�ect of the resonance on the motor's steady
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state behavior is di�erent with other motors present than with the motor interacting with

the plate alone.

I am also able to strengthen or weaken the stability of the group of oscillators synchronized

near f = 64Hz by changing the behavior of a single motor. Note that in �gure 4.7(b) at

V = 1.15V , there is a motor turning with frequency f = 74Hz. Before proceeding to 1.2V , I

forced the motor back down to the ensemble near 62Hz, with which it remained synchronized

until the transition at V = 1.5V . Had I continued the measurements with that motor

left unchecked, as I did in other measurements, the synchronization at 63Hz would have

dispersed at V = 1.35V . Forcing the motor in question to operate at the lower frequency may

have strengthened the synchronization of that group of motors, or alternatively, the presence

of the motor operating at the higher frequency may have weakened the synchronization of

that group of motors. I cannot say which of these explanations is correct, but I can con�rm

that the interaction of the motors with the resonance can change substantially by changing

the behavior of one of the motors.

The motors avoid frequencies between f = 65Hz and 75Hz. From my experience with

the Kuramoto model, I had expected the motors' frequencies to continuously increase through

a resonance as I increased the driving voltage, but the empty region between f = 65Hz and

75Hz in �gures 4.7(a) and (b) as well as the gaps above the resonances in �gure 4.5 indicate

that the motors avoid those frequencies when approaching from both below and above the

resonance. This is an important e�ect that I will explore further in the next Chapter.

The RMS magnitude shown in �gure 4.5 measures how strongly the plate couples with

the motor and conversely how strongly a motor couples with a vibrating plate. If two or

more motors are running simultaneously on the plate, this should also give some indication

for how strongly they will interact with each other, making it a proxy for the frequency-

dependent coupling between motors due to the plate. A rudimentary prediction of standard

models of coupled oscillators [9] is that the e�ective distribution of the oscillators' frequencies

narrows as the coupling between them increases. If the RMS magnitude is a good proxy
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Figure 4.8: Normalized spectrograms of dynamics of multiple motors on a resonant plate.
(a) Behavior at 1.49V , using a logarithmic gray-scale. (b) Behavior at 1.06V , using a linear
gray-scale. The arrows in �gure (b) indicate synchronization or desynchronization events.

for the coupling strength, then the narrow frequency distributions in �gures 4.7(a) and (b)

should correspond to frequencies with greater RMS magnitudes. The narrowest frequency

distributions correspond to frequencies close to f = 63Hz and close to f = 88Hz or greater,

and the most dispersed frequency distributions correspond to frequencies near f = 80Hz

or below f = 60Hz. These frequencies respectively correspond with the greatest and least

values of MRMS, as reported in �gure 4.5.

Behavior versus Time

The spectrograms in �gures 4.8 give an alternate perspective on the motors' behavior. These

�gures show the non-transient dynamics of the motors at a �xed voltage over about eight

minutes. The plots have been prepared by dividing their associated time series into two-

second intervals, Fourier Transforming the data in each interval, normalizing the data by

dividing as explained in the previous section, and plotting consecutive columns. Both systems

were given at least 10 minutes to adjust to their stated voltages before these data were taken,

so the results represent the non-transient behavior of the system. The di�erences between

�gure 4.8(a) and 4.8(b) is that in the former the operating voltage is V = 1.49V and the
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gray-scale is logarithmic in motor density, whereas in the latter the operating voltage is

V = 1.06V and the gray-scale is linear in motor density. In �gure 4.8(a), 14 of the motors

synchronize near f = 79Hz while one motor turns near f = 65Hz and another turns near

f = 93Hz. In �gure 4.8(b), all of the motors operate between f = 40Hz and 60Hz,

synchronizing in small groups, and spontaneously desynchronizing.

A striking feature of �gure 4.8(a) is the apparent mirror symmetry. The fourteen motors

synchronized at f = 79Hz vary within less than 1Hz, appearing essentially �at, while the

much larger �uctuations of the two other motors are negatively correlated. The slower motor

is roughly ∆f = 14Hz below the synchronized group, while the faster motor is equally far

above the group. The magnitudes of the changes are nearly identical: for example, both

motors' frequencies jump by ∆f = 2Hz at t = 780 s. The symmetric behavior of the two

motors is reproducible3 for voltages in the range 1.48V < V < 1.52V . The mirror symmetry

suggests that the overall average frequency of all 16 motors is a conserved quantity for

non-transient behavior.

Despite the stark contrast between data plotted in �gures 4.8, the second �gure also

demonstrates behavior that supports my tentative hypothesis that the average frequency is

constant. However, the evidence is more subtle and focuses on details of synchronization and

desynchronization events. Consider a subset of the motors which transition from two small

synchronized groups to one larger synchronized group. If the other motors in the system

maintain relatively constant frequencies, then the hypothesis of constant average frequency

would imply that the average frequency of the subset would be constant. Furthermore, the

slopes of the small groups as they approach each other must satisfy Ni
dfi
dt

+ Nj
dfj
dt

= 0.

These criteria appear to be satis�ed by many synchronization and desynchronization events

in �gure 4.8(b) as indicated by the arrows in the �gure. The simplest synchronization event

occurs at the beginning of the time-series, t = 600 s. Two motors are synchronized at

3In addition, the system must be prepared such that the slowest motor is below resonance and the fastest
motor is not synchronized, which can be di�cult since the system's state is not a function of the driving
voltage.
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f2 = 61.5Hz and a third turns at f1 = 65.5Hz giving an average of f̄ = 62.8Hz; when

these three motors synchronize brie�y at t = 670 s, their synchronized frequency is between

fsync = 62.5Hz and 63Hz, agreeing well with the prediction. For the pair of motors just

before synchronization, df
dt

= 0.0714Hz
s
, and for the top motor just before synchronization,

df
dt

= −0.125Hz
s
, nearly twice the magnitude and opposite sign. Unfortunately, the data for

the noted synchronization and desynchronization events are imprecise and do not de�nitively

establish my hypothesis for average frequency conservation.

I conclude this section by drawing attention to the many time scales exhibited in �g-

ures 4.8(a) and (b). The motors occasionally exhibit long durations of stability, such as the

slowest motor in �gure 4.8(a) from t = 840 s to 880 s, and the fastest motors in �gure 4.8(b)

from t = 950 s to 990 s. Both �gures exhibit jumps in motor frequency, and the magnitude

of the jumps as well as the decay-like response that follows involve time scales whose origins

are not apparent in the data. I do not have an explanation for these time scales and a full

analysis will have to wait for more detailed measurements.

4.4 Conclusion

I �nd that the behavior of individual motors and ensembles of motors interacting with a

resonant plate shows a characteristic signature near the resonances of the plate. Motors in-

teracting with a resonance tend to avoid frequencies just greater than the resonant frequency;

operating frequencies level-o� just below a resonance; and the stability of a collection of mo-

tors near a resonance is not the same as the stability of a single motor near a resonance.

These characteristics have the overall e�ect of creating a hysteresis in frequency versus volt-

age both for a single motor on the plate and for a collection of motors. Once all of the

transient behavior has passed, I �nd evidence that the average motor frequency is constant.

All of these observations provide useful criteria for developing models of frequency-

dependent coupling in systems of many coupled oscillators, which I consider next.



Chapter 5

Modeling Resonant Coupling

The previous Chapter concluded with a set of general properties that a model of the motors

must demonstrate. In this Chapter I develop a model that satis�es most of those properties.

Although it can be made to look suspiciously like the Kuramoto model, I derive it from a

�rst principles analysis of the motor dynamics.

The behavior of the motors I obtain in this Chapter closely resembles the Kuramoto

model, but the di�erences are important. In particular, the coupling is a function of the

motors' frequencies, and the resonant coupling introduces a frequency-dependent phase delay.

5.1 Basic Model

Figure 5.1 shows a schematic of one of the eccentrically weighted dc motors that I use in

my laboratory and describes an idealized mechanical model for the dynamics of the ith such

Figure 5.1: Motor illustration. The mechanical model describes an eccentrically weighted
DC motor on a compliant foundation. The motor has total mas m + µ. It has a rotor of
mass µ, �rst moment of inertia λ, and second moment of inertia I. The rotor is subject to
an applied torque Γi and a viscous drag (not illustrated).

59
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motor in terms of its orientation θi (t) and the displacement ui (t) of the support under it.

A force fi (t) acts upwards on the motor and downwards on the support. The rotor is taken

to have moment of inertia I around its axis, �rst moment of mass λ, and total mass µ. The

rest of the motor has mass m. A torque Γ is applied to the rotor by the motor, controlled

by the current supplied to the motor. I neglect horizontal forces in this analysis because the

support is sti� against horizontal motions. In other words, the support's side-to-side motion

is negligible. I take as the governing equations Newton's second law for forces and torques.

The torque equation reads

I
d2θi
dt2

= Γi − α
dθi
dt

+ λ sin θi
d2ui
dt2

, (5.1)

where I model the motor's drag with a viscous coe�cient α and the last term is a �ctitious

torque due to the motor's accelerating reference frame. In this work I will ignore gravity,

which means that each motor has only one force: the force of the plate on the motor.

However, the mass term is complex and force balance gives

fi = (m+ µ)
d2ui
dt2

+ λ
d2 cos θi
dt2

. (5.2)

For linear systems such as the support, the displacements ui at one location and time can

be expressed as a convolution of a Green function with the forces fj applied at other points

and times. Using this formalism, I close the system of equations 5.1 and 5.2 by writing

ui = −
∑
j

Gi j ⊗ fj, (5.3)

where ⊗ represents a temporal convolution and Gi j is the Green function for the support.

The minus sign arises from the oppositely de�ned direction for f and u. Furthermore, I

introduce an ancillary Green function gi j, de�ned most readily in abstract terms and direct

matrix notation:

g =

[
G−1 + (m+ µ) I

d2

dt2

]−1

. (5.4)

g may be interpreted as Green's function for the structure with added point masses m + µ

at the positions of all the motors. Here I is the identity matrix.
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The experimental system I aim to model is a resonant support, for which g will be best

represented in its modal expansion. It is often convenient to represent g (t) and its Fourier

Transform g̃ (ω) as a sum over natural modes r:

gi j (t) =
∑
r

gr (t)uriu
r
j , (5.5)

g̃i j (ω) =
∑
r

g̃r (ω)uriu
r
j . (5.6)

Each resonance has a frequency ωr, modal mass Mr, and decay time Tr. Here u
r
i is the rth

resonance's displacement amplitude (not ui (t)) at the position of the ith motor. I relate

the decay times to the resonant frequencies by the (unitless) loss tangent ηr ≡ (ωr Tr)
−1,

allowing me to express the Green function from a single resonances as:

gr (t) = sin (ωrt)
e−ηrωrt

Mrωr
, (5.7)

g̃r (ω) =

ˆ ∞
0

gi j (t) eı ω tdt =
M−1

r

(ηrωr − ı ω)2 + ω2
r

. (5.8)

g̃r represents the Fourier transform of the resonance and ı =
√
−1. I will also sometimes

make use of the magnitude and phase of the Fourier transform of the Green function or its

resonances:

g̃i j (ω) ≡ |g̃i j (ω)| eı γi j(ω), (5.9)

g̃ri j (ω) ≡
∣∣g̃ri j (ω)

∣∣ eı γri j(ω). (5.10)

I use g to combine equation 5.1 and 5.2 and eliminate the variables f and u, obtaining

a set of integro-di�erential equations for the θ:

I
d2θi
dt2

= Γi − α
dθi
dt

+ λ sin θi
∑
j

d2

dt2

[
gi j ⊗

(
−λd

2 cos θj
dt2

)]
. (5.11)

In the absence of coupling (e.g. set λ to zero) each motor achieves a steady state at θi =

ωi t+ θi0 with a natural speed ωi = Γi/α and an arbitrary phase θi0. After a brief transient,

the motors usually reach roughly constant velocities, so I neglect the second time derivative
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on the left to simplify the governing equation:

dθi
dt

= ωi −
λ2

α
sin θi

∑
j

d2

dt2

[
gi j ⊗

(
d2 cos θj
dt2

)]
. (5.12)

It is for this integro-di�erential equation that I will seek analytic and numeric solutions.

5.2 Analytic solutions

Without loss of generality I set θi (t) = Ω t+ φi (t) with Ω to be determined:

dφi
dt

= ωi − Ω− λ2

α
sin (Ω t+ φi)

∑
j

d2

dt2

[
gi j ⊗

d2 cos (Ω t+ φj)

dt2

]
. (5.13)

I now apply a series of approximations to derive an expression that can be more easily

interpreted. If the φ vary slowly, as they will if every motor has a speed at or close to Ω,

then the e�ect of g can be approximated well in the frequency-domain in terms of a transfer

function |g̃i j (Ω)| and a phase delay γi j (Ω), as in equation 5.9. Similarly each pair of time

derivatives is well approximated by a factor of −Ω2:

dφi
dt

= ωi − Ω− λ2Ω4

α
sin (Ω t+ φi)

∑
j

|g̃i j (Ω)| cos (Ω t+ φj − γi j (Ω) ). (5.14)

Using a trigonometric identity, I combine the sine and cosine terms on the right side, leading

to a rapidly varying part (at frequency 2 Ω) and a slowly varying part. I eliminate the rapidly

varying part by averaging over one cycle, giving

dφi
dt

= ωi − Ω− λ2 Ω4

2α

∑
j

|g̃i j (Ω)| sin (φi − φj + γi j (Ω) ). (5.15)

Each of the diagonal elements of the Green function of a dissipative structure must have a

positive imaginary part1, i.e. sin γi i ≥ 0, so I restrict my attention to 0 ≤ γi i ≤ π.

If I ignore the i, j, and Ω dependence in g and if the γi j are zero, I recover the Kuramoto

model. Sakaguchi and Kuramoto [14] considered the e�ect of a constant, uniform phase delay

1Supports of physical interest lose energy to heat and acoustic radiation. This energy must come from
the motors, which requires that velocity responses be in phase with the forcing.
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γi j ≡ γ and Yeung and Strogatz considered explicit time delays [44]. To my knowledge no-

one has examined Ω dependence. In the case of a highly resonant support, η � 1, Ω

dependence can be strong.

Synchronization in the above system is complex. To better understand how the system

behaves, I will analyze some special cases. I will begin by assuming all the motors are identi-

cal, ωi = ω for all i. I furthermore require all motors to be coupled identically, independent

of i and j, a condition that applies to the experimental setup in the last Chapter. Thus

gi j (Ω) = g (Ω), γi j (Ω) = γ (Ω), and I have

dφi
dt

= ω − Ω− λ2 Ω4

2α

∑
j

|g (Ω)| sin (φi − φj + γ (Ω) ). (5.16)

The synchronized state is now easy to identify; it corresponds to φi = 0 for all i, and

requires

Ω = ω − N λ2 Ω4

2α
|g̃| sin γ

= ω − N λ2 Ω4

2α
={g̃ (Ω)}

(5.17)

In this state, all motors have identical phases and run at speed Ω diminished from their

natural speed ω by an amount that scales with N and with the positive quantity |g| sin γ.

The acoustic power output of the N motors is the di�erence between the rate of work done

by the torques Γ and the loss in the viscous mechanisms, i.e.

N
(
Γ Ω− αΩ2

)
= N Ωα (ω − Ω) (5.18)

=
1

2
N2 λ2Ω5 |g| sin γ. (5.19)

Inasmuch as this scales with the square of the number of motors, the system exhibits stim-

ulated emission and super radiance. By linearizing equation 5.16 around the synchronized

state φi = 0 for all i, it is not hard to show that the synchronized state is stable against all

in�nitesimal perturbations (except the trivial marginally stable perturbation of a uniform

shift of all φ) if and only if the real part of the Green function is positive, i.e. cos γ > 0.
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Another solution to equation 5.16 is apparent, in which the θ are distributed uniformly

between 0 and 2π:

θi = ω t+
2 π i

N
, (5.20)

for a suitable ordering of the θi. This state has N − 2 neutrally stable linear perturbations.

The two remaining perturbations exhibit time-dependence proportional to eν t with

ν = N
λ2 ω4

4α
e±ı γ |g̃ (γ)| . (5.21)

On the sti�ness controlled, low frequency side of a resonance, where 0 < γ < π, these

dispersed states are unstable. On the mass controlled high-frequency side of a resonance,

the Green function has a negative real part (i.e. π
2
< γ < π), making the modes exponentially

stable.

Figure 5.2 plots the solution Ω (ω) to equation 5.17 for the case of a single resonance (the

sum over r in equation 5.6 has one term). I plot

Ω = ω − MrX Ω4

2
={g̃r (Ω)} (5.22)

= ω −X ηr ωr Ω5

(2 ηr ωr Ω)2 + (ω2
r − Ω2 + η2

r ω
2
r)

2 , (5.23)

where I have introduced a coupling strength parameter X = N λ2/ (αMr). The coupling

strength is measured in units of seconds per radian.

For a single resonance, the stability criterion cos γ > 0 only holds for Ω < ωr
√

1 + η2
r .

Thus by this theory I expect to see no synchronization at speeds Ω on the mass controlled,

high frequency, side of a resonance, regardless of the driving torques and the natural motor

speeds ω. Solutions to equation 5.23 that satisfy this criterion follow the bold lines in the

�gure. The nearly �at regions for the synchronized speed Ω in the vicinity of 0.075 rad/s

correspond to the speed of the synchronized state being almost independent of torque. For

very high driving torque, however, the synchronized state loses its stability.

Figure 5.3 shows a plot for the more complex case of two resonances. Each resonance

gives rise to a range of natural speeds ω for which the synchronization speed Ω is slightly
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Figure 5.2: Representative cases for Ω, the speed of the synchronized state, as a function
of the natural speeds ω of the motors, according to equation 5.23. The bold lines are the
solutions that I expect to be stable because the imaginary part of g̃ is positive. The thin
lines are solutions for which the imaginary part of g̃ is negative, and should be unobservable
in practice. The dotted line Ω = ω is provided for reference. For all four curves, the resonant
frequency ωr is 0.08 rad/s. Figure (a) shows curves for two di�erent couplings X and the
same loss tangent η of 0.06. Figure (b) shows curves for two di�erent loss tangents η but
identical coupling X = 2 s/rad. The star, circle, and square in �gure (a) are related to �gures
5.4 and 5.5, and are discussed in section 5.3.

less than a resonance frequency and nearly independent of the natural speed. These ranges

overlap for the two resonances, leading to a regime�ω between 0.08 and 0.11 rad/s�in

which the system can synchronize at either of two speeds Ω. Furthermore the system cannot

synchronize over a range of Ω from 0.06 to 0.075 rad/s. All of these satisfy the criteria stated

in the previous Chapter, and arise in my numerics in the next section, even those involving

disorder.

5.3 Numerical solutions

The experiments that motivated this model have disorder in the sense that natural motor

speeds vary amongst the motors. Such a generalization does not readily lend itself to the
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Figure 5.3: The solution to equation 5.17 for the case in which the Green function g has
two resonances. For the meaning of the line weights, see �gure 5.2. The resonances have
identical coupling strengths X1 and X2 of 2.0 s/rad and identical loss tangents η1 and η2 of
0.038, but di�erent resonant frequencies: ω1 = 0.06 rad/s, ω2 = 0.09 rad/s.

analysis of section 5.2. Nor does the above analysis shed much light on the dynamics: how

does the system approach the stable synchronized state? Nor does it shed light on errors

that may have been introduced by the short time averaging used to eliminate the terms in

2 Ω. For all those reasons, I now turn to numerical solutions.

I examine numerical solutions of the integro-di�erential equation 5.12 for their correspon-

dence to the simple model discussed in section 5.2 and my previous laboratory observations.

I rewrite equation 5.12 using a modal expansion for the Green function:

dθi
dt

= ωi −
1

N
sin θi

∑
r, j

d2

dt2

(
Xr h

r ⊗ d2 cos θj
dt2

)
(5.24)

where I take the ancillary green function for each resonance hr in the form

hr (τ) = sin (ωr τ)
e−η ωr τ

ωr
. (5.25)

I label resonances by r and factors of λ2, α, and M have been absorbed into the coupling

strengths Xr, as in the previous section.
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Numerical solutions of equation 5.24 are of necessity approximate. I employ a simple

Euler tangent approximation for the �rst time derivative, and evaluate the convolution by

discrete integrations and the second time derivatives by discrete di�erencing. I de�ne my

units such that a single time step is one second. I choose motor speeds of about 0.1 rad/s,

meaning the motors advance their phases by about 0.1 rad each time step. The scheme is

prohibitively implicit if these second derivatives are evaluated centrally; they are therefore

evaluated with a delay of one time step. While the resulting time series will di�er from

exact solutions of the original equations, I expect the qualitative behavior to be correct. All

studies are for N = 100.

In the previous section, Ω denoted the speed at which the motors synchronized. Since

that population of motors had no disorder, the synchronized speed was identical to the

average speed. I will consider populations with disorder in this section, and I will rede�ne

Ω as the average motor speed:

Ω =
1

N

∑
i

θ̇i. (5.26)

Approach to the steady-state

I �rst evaluate how the system evolves from random initial conditions. The simulations

typically achieve a steady state after about 2000 seconds. Figures 5.4 to 5.6 show the

evolution of the speeds (averaged over 16 time steps) of 11 arbitrarily chosen motors. They

also show the evolution of an order parameter de�ned as

R =
1

N

∣∣∣∣∣∑
i

eı θi

∣∣∣∣∣ . (5.27)

This order parameter is identical to the standard Kuramoto order parameter: if the motors

are in phase, R will be close to 1, if they are uniformly distributed between 0 and 2π, R

will be close to 0, and if the motors have random phases, R will exhibit random �uctuations

about an RMS of N−1/2 = 0.1. The resonant frequency ωr is the same among all three

�gures (0.08 rad/s) and the loss tangent η is the same (0.06). The �gures di�er only in their
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Figure 5.4: Order parameter R and discrepancy ∆i ≡ θ̇i − ω between instantaneous motor
speeds and the natural motor speed, for 100 identical motors. The initial phases were
distributed randomly. For these plots, the natural speed of the motors ω was 0.11 rad/s.
There was a single resonance with frequency ωr of 0.08 rad/s, loss tangent η of 0.06, and
coupling strengthX of 2 s/rad. The sub�gure shows how the instantaneous speeds di�er from
the natural speed of 0.11 rad/s, for 11 arbitrarily chosen motors. The �nal state corresponds
to the star in �gure 5.2(a).

coupling strengths X and the presence or absence of quenched disorder amongst the motors'

natural speeds.

In the simulation shown in �gure 5.4, the motors settle at their natural speed of 0.11 rad/s.

According to equation 5.23 (and indicated by the open circle in �gure 5.2), there is a synchro-

nized speed Ω of 0.075 rad/s. The motors do not choose that solution, even when slight noise

is arti�cially introduced. The motors settle instead into a state, indicated in �gure 5.2 by a

star, in which each motor runs at close to its natural speed. The order parameter decreases

exponentially, which agrees with the previous section's prediction of exponential stability

of the uniformly distributed state. In other simulations, with di�erent initial conditions, I

was able to obtain synchronized behavior with mean speed Ω that matched the prediction

of 0.075 rad/s. Thus both the synchronized and the uniformly distributed states are stable,

as predicted.

The behavior changes substantially at a greater coupling strength of X = 4 s/rad, as

shown in �gure 5.5. After a transient, the motors synchronize at a speed of Ω = 0.073 rad/s
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Figure 5.5: Order parameter R and representative speeds βi ≡ θ̇i for a simulation of 100
identical motors with initial phases distributed randomly. In contrast to �gure 5.4, the
coupling strength X of the resonance was 4 s/rad; all other parameters were identical. The
�nal state corresponds to the open square in �gure 5.2(a).

and an order parameter of unity. The late time behavior shows a residual oscillation at a

rate 2 Ω, neglected in deriving equation 5.17. The open box in �gure 5.2 is the corresponding

prediction, a speed of Ω = 0.0745 rad/s. The discrepancy may be due to numerical impreci-

sion in computing Ω from the data in �gure 5.5; it may be because the neglected oscillations

at speed 2 Ω are indeed signi�cant; it may be due to the discretization in the implementation

of the numerics. Whatever the source of the discrepancy, it is small and the decision to

neglect �uctuations of frequency 2 Ω in deriving equation 5.16 appears justi�ed.

Figure 5.6 shows a case of disorder in the distribution of motor speeds. By introducing

a Gaussian distribution of natural motor speeds with a standard deviation of 10% (i.e.

ω̄ = 0.1 rad/s and σ = 0.01 rad/s), I �nd that a few of the motors have left the pack and the

order parameter is reduced below unity. Like the motor behavior presented in �gures 5.4

and 5.5, the motors in �gure 5.6 approach their steady state behavior exponentially and in

about 15 cycles. These compare favorably with observations from the laboratory, in which

transient behavior was so fast that it was not measurable.
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Figure 5.6: Order parameter R and representative motor speeds βi ≡ θ̇i for a disordered
population of 100 motors, started from initially random phases. The resonance parameters
were the same as in �gure 5.4, except the coupling X was 2.9 rad/s. The natural frequencies
were chosen from a Gaussian distribution with mean ω̄ of 0.1 rad/s and standard deviation
σ of 0.01 rad/s (i.e. 10% of ω̄).

Numerical solutions for swept natural motor speeds

In the laboratory observations presented in Chapter 4, I monitored behavior as a function

of driving voltage, which determines torques and thus serves as a proxy for mean natural

motor speed. The voltage was slowly swept, in a stepwise fashion, from a low to a high or a

high to a low value, giving the motors time to adjust at each value. The laboratory system

had two resonances and was noteworthy for a parameter regime in which the system could

synchronize at either of two distinct frequencies. Each such frequency was slightly below

one of the plate's resonant frequencies. Which frequency the system chose was a function of

its history. It was also noteworthy for its observation of a spectral gap, a frequency range

between the resonant frequencies in which the system was never seen to oscillate coherently.

As discussed above the analytic solutions shown in �gure 5.3 obey these criteria.

Birythmic hysteresis and a spectral gap are behaviors seen in the numerics also. I ran

numerical simulations for the integro-di�erential equations
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dθi
dt

= ωi −
1

N
sin θi

∑
j

d2

dt2

(
h⊗ d2 cos θj

dt2

)
(5.28)

again with Green's function independent of i and j, but now corresponding to a set of motors

on a support with two resonances:

h (τ) = X1 sin (ωr1 τ)
e−η1 ωr1 τ

ωr1
+X2 sin (ωr2 τ)

e−η2 ωr2 τ

ωr2
. (5.29)

Analytic predictions for this two-resonance structure are shown in �gure 5.3.

The numerical simulations were performed in sweeps of 256 blocks. Mimicking the labo-

ratory measurements, each block had three phases of 1024 seconds apiece: a sweep phase, a

hold phase, and a measure phase. During the sweep phase, the natural speeds were slowly

increased or decreased at a rate of 2−20 = 9.54 × 10−7 rad/s2. During the hold phase, the

natural speeds were held �xed to allow transients to dissipate2. As such, the total num-

ber of time steps for a single upward or downward sweep was 256 × 3 × 1024. During the

measure phase, the natural speeds were again held �xed and I measured time series for the

instantaneous speeds θ̇i, order parameter R, and other data.

I ran cases in which every motor had identical natural motor speed ωi and the results

corresponded very closely to the predictions of section 5.2, in particular to the curves of �gure

5.3. Figure 5.7 shows the mean motor speed Ω as a function of mean natural motor speed

ω̄, for the case of disorder. For reference, I have included the stable solutions of �gure 5.3.

Natural motor speeds were taken randomly from a Gaussian distribution with a non-zero

mean ω̄ and with a width of 5% or 10% of the mean for sub�gures (a) and (b), respectively. I

maintained the percentage width of the population throughout the simulations by stretching

or compressing the population as I increased or decreased the mean natural motor speed ω̄.

The numerical and theoretical results plotted together in �gure 5.7 agree nicely. The

sweep of the solution of the coupled ordinary di�erential equations 5.24 reproduces much
2The hold phase is only 1024 seconds, which is shorter than the reported transient times in the previous

subsection. However, those transient times are for a system starting from completely random initial condi-
tions; the motors in the sweeps are not so disordered, and do not need so much time for their transient to
diminish.
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Figure 5.7: Order parameter R and average motor speeds Ω for sweeps of mean natural
motor speed ω̄ from 0.03 to 0.2 rad/s (dash-dotted curves) and then back to 0.03 rad/s
(dashed curves), for disordered populations. For �gure (a), the standard deviation of the
natural motor speeds ωi is σ = 0.05 ω̄, whereas for �gure (b) it is σ = 0.1 ω̄. These results
correspond to X1 = X2 = 2.0 s/rad, ω1r = 0.06 rad/s, ω2r = 0.09 rad/s, η1 = η2 = 0.038.
The solid curves indicate stable solutions for no disorder from equation 5.17 and plotted in
�gure 5.3. The marked locations in �gure (a) correspond to spectral power densities of �gure
5.8.

of the behavior predicted by the simpler analytic model of equation 5.17, and found also in

the laboratory measurements in �gure 4.7. I note in particular the birythmic hysteresis, the

spectral gap, and the wide regions in ω̄ over which Ω is nearly constant at a value a bit less

than ωr. Neither disorder nor modeling of the fast time scales (ignored in section 5.2) have

qualitatively changed these features.

Disorder has displaced and reduced some of the sharp features in Ω (ω̄). Transitions in

the order parameter remain sharp, suggesting that mean speed Ω fails to fully represent the

state of the system. For that purpose, it may be better to address the chief interest for

lasers: the spectral density of the wave power radiated by the oscillators.
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Spectral power density and lasing transition

The energy radiated into the support by the motors can be written as a time-integral of force

times velocity. The work done is

W = −
ˆ ∑

i

fi (t)
d

dt
ui (t) dt.

Expressing the displacements ui in terms of the forcing fi and the Green function G, and

using Parseval's identity, I can rewrite the above equation as

W =
−1

2π

ˆ
ı ω
∑
i, j

f̃ ∗i (ω) G̃i j (ω) f̃j (ω) dω (5.30)

=
−1

2π

ˆ
ω ı ω

∑
i, j

q̃∗i (ω) g̃i j (ω) q̃j (ω) dω (5.31)

where

qi (t) = fi (t)− (m+ µ) üi (5.32)

= λ
d2

dt2
cos θi. (5.33)

This permits me to identify a spectral power density:

Π (ω) =
−1

π
=
(∑

i, j

ω q̃∗i (ω) g̃i j (ω) q̃j (ω)

)
. (5.34)

Spectral power density can be evaluated as a function of frequency by short-time Fourier

transform over data from the numerical solutions, as in �gure 5.8. In that �gure, the fre-

quency resolution ∆ω is (2 π/4096) rad/s, corresponding to time records with 4096 samples.

The sub�gures in �gure 5.8 correspond to the labels in �gure 5.7(a). Sub�gures (a)

through (e) show that the power output is strong and con�ned to one or two narrow peaks.

The width of the peaks appears to be governed by the resolution of the discrete Fourier

transform. Sub�gure (b) is of particular interest since it indicates lasing in two modes

simultaneously, like a multimode laser. In sub�gure (f), the power output is weak, broad-

band, and noisy. The small di�erences in mean natural motor speed across sub�gures (d-f)

show that transitions between the various states can be abrupt. This corresponds to the
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sudden changes in audible power output observed in the last Chapter and is reminiscent of

a lasing transition.

The frequency at which Π (ω) peaks, as shown in �gure 5.8, is not always the same as

the average motor speed Ω shown in �gure 5.7. Consider the cases (d) and (e), for which

ω̄ = 0.162 and 0.163 rad/s. The dash-dotted line in �gure 5.7 indicates a measured average

motor speed Ω of about 0.095 rad/s whereas the power output in sub�gures (d) and (e) of

�gure 5.8 show peaks just below the resonant frequency, 0.09 rad/s. The peak of the power

output is biased towards the motors operating near a resonance, making the frequency of the

maximum power output distinct from the average motor speed. (Note that I developed the

normalization procedure in the last Chapter to solve precisely this problem. However, the

procedure that I detailed only works when the motors couple to the plate equally, a situation

that requires a carefully chosen geometry.)

5.4 Conclusion

The main features of the laboratory observations presented in the previous Chapter include

bistability, hysteresis, and a spectral gap. The original Kuramoto model is unable to describe

this behavior. However, the �rst-principle model that I develop in this Chapter shows that

with only a couple of modi�cations to the Kuramoto model, I can reproduce those features. I

also �nd theoretical evidence that the laboratory system should exhibit stimulated emission

and superradiance, and therefore should serve as an acoustic analog to a laser.



Chapter 6

Final Remarks

Synchronization is an engaging and intuitive subject, and the Kuramoto model is a simple

model for that subject. This dissertation details my contribution to the �eld of synchroniza-

tion. As re�ected in the structure of the document, I view my work as two distinct projects

aimed at di�erent aspects of the �eld.

My theoretical studies of synchronization have focused on making population-speci�c

predictions for the Kuramoto model by assuming a mean �eld r eıψ that has a constant

magnitude and a constant rate of rotation. By taking the rate of rotation as a parameter

of the self-consistent solution for r, I have shown that I can obtain excellent predictions

for the value of r for both symmetric and unsymmetric populations. The quality of the

predictions varies from population to population, but generally gets better as K increases.

In particular, for K larger than the coupling of the largest discontinuity, the predictions

consistently perform well.

My experimental studies of synchronization have focused on exploring the collective be-

havior of oscillators that couple through a resonant medium. Cell-phone vibrators glued to

a plate interact with each other through that plate, and the strength of the coupling de-

pends on the resonant characteristics of the plate. The resulting collective behavior exhibits

the properties that motor synchronization preferentially occur rs at frequencies close to but

below the resonant frequencies of the plate. Multiple stable synchronization frequencies are

possible for the same driving voltage and generally lead to hysteresis in collective behavior.

The motors even serve as an acoustic analog to a laser, exhibiting stimulated emission and

super-radiance.

76
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Even after studying synchronization intensely for over three years, I have many unan-

swered questions. The most important question related to my work in the �rst part of this

dissertation is whether real �nite-sized Kuramoto systems exhibit �nite discontinuities in

their order parameters. I have preliminary numerical evidence that indicates that some pop-

ulations of N = 4096 exhibit switching behavior between two di�erent states. The behavior

is swift, almost Markovian, and symmetric populations show a much higher likelihood of

such behavior. And, the scheme predicted a jump for a K value in the neighborhood of the

switching behavior. Is this a general feature, and does the scheme generally correspond with

such behavior for larger systems? Do these discontinuities exhibit critical scaling?

From a more theoretical angle, I wonder if the large-N integral form for the full scheme

could give meaningful predictions for the order parameter for skewed populations. I also won-

der if the scheme could be improved by attempting to compute the spectrum of �uctuations

in r self-consistently.

The experimental work also has many avenues of further work. The unsynchronized

behavior looks very interesting: is it chaotic or just noisy? I have shown here how the motors

respond to resonances when they interact with the plate modes in an identical fashion, but

what about di�erent motor layouts or plate geometries? Can the theory be extended to

handle these more complex Green functions? At one point the theory assumed that all the

oscillators run at identical natural speeds. Can this substantial restriction be relaxed?

Answers to all of these questions are beyond the scope of this work, but I look forward to

the future science that will bring answers to all of these questions�and raise new questions

of their own.
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