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ABSTRACT 

The widespread and unexpected damage to welded connections during recent earthquakes led to 

the investigation of alternatives for the construction of steel frames in seismic areas. Bolted 

semi-rigid connections have been recognized as an attractive alternative to welded connections. 

However, existing knowledge on the behavior of the connection is either from testing of beam-

to-column subassemblies under idealized load and boundary conditions, or from analytical 

studies. In addition, the system-level experimental behavior of semi-rigidly connected frames 

using real earthquake motions to conclusively verify the full potential of semi-rigidity (implying 

also partial-strength) in earthquake resistance application is lacking. To this end, an advanced 

hybrid simulation approach for the seismic assessment of steel frames with semi-rigid 

connections was proposed and successfully completed. Furthermore, nonlinear dynamic 

response-history analyses of semi-rigid frames with varying design parameters were conducted 

to evaluate the system performance under seismic events. The results of the hybrid simulation 

and the parametric studies are used to quantify various fundamental code parameters needed for 

the seismic design of structures. 

The hybrid simulation included the most reliable, realistic, and computationally efficient 

experimental and analytical modules, which were developed and successfully integrated in a 

closed-loop system-level simulation. Three hybrid simulations were conducted on three different 

partial-strength semi-rigid frames with connection capacities that are a percentage of the plastic 

moment capacity of the beam (70% Mpbeam, 50% Mpbeam, and 30% Mpbeam). The simulations 

utilized the large-scale Multi-Axial Full-Scale Sub-Structured Testing and Simulation (MUST-

SIM) facility at the University of Illinois and included a full-scale physical specimen for the 

experimental module and a 2D finite element model for the analytical module. The experimental 

component consisted of a beam-column subassembly with top-and seat-angle with double web-

angle connecting the beam to the column. The analytical component is an inelastic finite element 

model with the connections modeled using a refined 2D continuum elements that is capable of 

capturing all relevant deformation and inelastic features of the connection. 

In addition to the hybrid simulation, nonlinear dynamic response-history analyses were 

conducted, on frames with three different connection capacities (70% Mpbeam, 50% Mpbeam, and 
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30% Mpbeam), using a collection of ground motion records scaled to the maximum considered 

earthquake (MCE). The analyses were aimed at investigating the effect of varying different 

design parameters on the seismic response and period elongation of the frames. The design 

parameters, in addition to connection strength, included yield strength of the angle material, 

coefficient of friction between faying surfaces, and the amount of slip allowed in the connection.  

The results of the hybrid simulation along with the analytical studies were used to evaluate more 

realistic fundamental code parameters needed for the seismic design of frames. The parameters 

included the equivalent damping ratio, eq, the inelastic period of the structure, Tinealstic, and a 

demand-based force reduction factor, Rdemand. The evaluated parameters can be used to better 

estimate the design base shear using a simplified design spectrum, allowing for safer and 

economical design of semi-rigid frames under seismic events. 
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CHAPTER 1 

 

INTRODUCTION 

1.1 Statement of the Problem 

The integrity of fully-welded connections under earthquake loading has come 

under question because many steel and composite buildings suffered severe damage in 

connections during the Northridge (1994), and Hyogo-ken Nanbu (1995) earthquakes. 

Post-earthquake visual assessments revealed that numerous cracks were developed in the 

welded beam-to-column joints of steel frames. The damage was caused by the use of low 

toughness welds combined with a number of other connection detailing, material 

properties, and construction practices that were typical prior to the earthquake (SAC 

2000).  The cracks originated in the heat-affected zone of the weld and propagated in the 

flange and the web of the columns as shown in Figure 1. 

 

Figure 1-1 Fractured connection in a steel moment frame 
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Interest in utilizing bolted connections in steel constructions in seismic areas has 

significantly increased as a result of the uncertain and often-inferior performance of 

welded connections during the earthquakes. With their lower construction costs and 

simple fabrication process, bolted partial-strength semi-rigid connections were evaluated 

as a viable alternative and their fundamental characteristics were assessed both 

experimentally and analytically. The common types of bolted semi-rigid connections 

include extended endplate connection, T-stub connection, and top-and seat-angle with 

double web-angle connection. 

The advantages of utilizing semi-rigid connections in the construction of steel 

frames have been widely recognized, especially in Europe. Extensive work has been 

conducted by a number of researchers on the different types of bolted semi-rigid 

connections to assess their fundamental characteristics. Of specific interest in this project 

is the seismic behavior of top-and seat-angle with double web-angle connections. The 

cyclic behavior of the connection was evaluated through testing of beam-column 

subassemblies and the results demonstrated its large energy absorption capabilities with 

stable hysteretic behavior (Azizinamini and Radziminski 1989). In addition, 3D 

analytical models aimed at capturing the complicated behavior of this type of connection 

such as slip, friction between surfaces in contact and prying action were also investigated 

(Kishi, Ahmed et al. 2001) and (Citipitioglu, Haj-Ali et al. 2002).  

The previously conducted experimental and analytical studies were aimed at 

assessing the behavior of the connection on component level bases. Assessment of the 

performance of whole structural system in a global frame analysis is then conducted 

using idealized action-deformation relationships obtained from the experimental results 
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or the finite element models. The drawback of using such approach is that idealizing the 

action-deformation relationships does not represent the true behavior of the connection 

and will result in an inaccurate assessment of frame response. Furthermore, the 

interaction between the beam and column flanges and the angles comprising the 

connection is not captured. Such interaction is essential as it influences the onset and 

spread of yielding in the beam and column, the ductility demand on the joint, and the 

global behavior of the structural system. Figure 1-2 shows the typical approach used for 

evaluating steel frames under seismic loading conditions. 

 

Figure 1-2 Typical approach used for the seismic evaluation of steel frames 

 

Even from an economical point of view, utilizing semi-rigid connections for the 

construction of steel frames could lead to significant savings, particularly on erection cost.  
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Estimates from fabricators suggest about a 30% decrease in erection times, leading to less 

crane and labor time, and most importantly less trades on the job site (Barry 2004). In 

addition, since the connections are considered as the main energy dissipating elements of 

the structure, column overdesign could be eliminated by ignoring the strong-column 

weak-beam design criteria, which will lead to saving on material.  

This research presents new system-level approach for the seismic assessment of 

steel frames with top-and seat-angle with double web-angle connections using hybrid 

simulation. In addition, nonlinear response history analysis is utilized in a parametric 

study to investigate the effect of various connection design parameters; including the 

yield strength of the angles, the coefficient of friction between surfaces, and the 

magnitude of bolt slip allowed, on the seismic behavior of semi-rigid steel frames. The 

implication of the results of the parametric study on the seismic response of semi-rigid 

frames is quantified through the determination of three main code-based design 

parameters including the equivalent damping (eq), the inelastic period (Tinealstic), and the 

demand-based force reduction factor (Rdemand). The three fundamental design parameters 

can be used to construct a simplified design spectrum from which design base shear can 

be estimated more realistically to reflect actual forces likely to be experienced by the 

structure when subjected to a particular ground motion. 

1.2 Objectives and Scope of Research 

As previously discussed, prior research aimed at investigating the potential use of 

semi-rigid connections in the construction of steel frames in seismic zones has been 
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conducted on a component level by assessing the behavior of a beam-column 

subassembly either experimentally or analytically. The moment-rotation relationship 

characterizing the connection behavior is then represented using idealized springs at the 

beam-to-column intersections in frame analysis. Idealizations of the connection behavior 

leads to inaccurate assessment of frame response as many of the inelastic features of the 

connections are not precisely represented including for example slip and pinching effects. 

Moreover, the effect of the interaction between the connecting elements including 

localized deformations and yielding in the beam or column, prying actions, and bolt-hole 

ovalization on the global frame behavior is not accounted for. 

To make a near-fully realistic assessment of the demands upon and performance 

of semi-rigid steel frames that are subjected to seismic loadings, with a focus on the 

effect of top-and seat-angle double web-angle connection details. It was not possible to 

make such an assessment in the past due to limitations in experimental testing facilities 

and integrated analytical-experimental approaches. The research conducted in this project 

was made possible through the use of an expansion upon the unique hybrid-simulation 

testing capabilities that are part of the University of Illinois MUST-SIM facility. 

In addition to conducting hybrid simulations, the scope of work includes 

conducting nonlinear dynamic response-history analyses on frames with varying design 

parameters using a collection of ground motion records. The results of the hybrid 

simulations along with the analytical studies are used to accurately predict fundamental 

code-based design parameters needed for constructing the design response spectrum. 

Accurate predictions of  the code parameters allows for more realistic estimate of the 

design base shear whereby frame design to resist earthquake forces can be conducted in a 
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controlled and economical manner that has not been hitherto available. The proposed 

system-level Framework is illustrated in Figure 1-3. 

 

Figure 1-3 Proposed system-level approach for the seismic assessment of semi-rigid steel 

frames 

 

Realizing the above objective requires the following tasks and subtasks to be 

accomplished: 

 Task1: Conduct Comprehensive Literature Review  

 

 Task2: Develop and Integrate the Hybrid Simulation Modules  

- Develop detailed analytical 2D finite element model capable of capturing 

the inelastic features of the connection 

- Develop an experimental beam-column setup with realistic loading and 

boundary conditions and dense instrumentation array 

- Conduct static pushover analysis  

- Select the ground motion record to be used in the simulations 

- Scale the record using the pushover analysis results 

Analytical Methods
- Component level FEM

- Hybrid simulation module
- Non-linear response-history

Experimental Methods
- Hybrid simulation module

- Cyclic testing

Design Implications
- Force reduction factor
- Period elongation
- Equivalent Damping 

SEISMIC BEHAVIOR OF 
SEMI-RIGID STEEL 

FRAMES
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- Integrate the experimental and analytical modules in a closed-loop hybrid 

simulation 

 

 Task3: Discuss the Simulation and Experimental Results  

- Conduct three independent full-scale simulations with varying connection 

capacities 

- Perform post-simulation cyclic tests of beam-column subassembly to 

quantify the residual characteristics of the connections after being 

subjected to an earthquake 

- Evaluate the effect of localized inelastic connection behavior on the 

resulting moment-rotation relationship  

- Evaluate the effect of the moment-rotation relationship on the  global 

performance of  the structure 

 

 Task4: Interpret the Results 

- Perform comparison of the sub-structured pseudo-dynamic test results 

- Compare frame responses 

- Compare cyclic test results 

 

 Task5: Conduct Analytical Investigation of Frame Response 

- Select an ensemble of ground motions 

- Conduct dynamic response-history analysis 

 

 Task6: Investigate the Implication of the Analytical Study on the Seismic Design 

of Semi-rigid Steel Frames 

- Evaluate the equivalent damping ratio, eq  

- Assess and develop an equation to quantify the period elongation of the 

frame as a function of connection strength (Tinelastic = f (%Mpbeam) 

- Determine the force-reduction factor, R, used in constructing the inelastic 

response spectrum 
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1.3 Organization of Dissertation 

A new approach for utilizing hybrid simulation to conduct system-level 

assessment of semi-rigid steel frames with top-and seat-angle with double web-angle 

connections are developed and implemented. Three hybrid simulations are successfully 

executed whereby an analytical and experimental module are integrated and subjected to 

a ground motion while taking into account the interaction at the interfaces of the two 

modules. The simulations are conducted using the state-of-the-art equipment at the 

MUST-SIM facility at the University of Illinois, part of the Network for Earthquake 

Engineering Simulation (NEES). 

This dissertation includes seven different chapters. Chapter 1 introduces the 

problem statement and objective of this research. Chapter 2 discusses background and 

literature review in reference to evaluating semi-rigid connections with top-and seat angle 

with double web-angle connections and the seismic assessment of semi-rigid frames. 

Chapter 3 focuses on the development of the analytical and experimental modules and 

their integration in the hybrid simulations. Chapter 4 is an overview of the simulation and 

experimental results and discusses both the global behavior of the frames as well as the 

local behavior of the connection. Chapter 5 presents interpretation and comparison of 

results for the hybrid simulations and cyclic tests. Chapter 6 concentrates on the 

analytical investigation of frame response, with varying design parameters, using a 

collection of ground motion records. The implication of the analytical results on the 

seismic design of semi-rigid frames is investigated through assessing code-based 

parameters needed for constructing the design response spectrum. Chapter 7 summarizes 

the findings from current work followed by future research requirements. 
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CHAPTER 2 

 

BACKGROUND AND LITERATURE REVIEW 

2.1 Introduction 

Post Northridge and Kobe earthquakes, alternative construction solutions for 

semi-rigid steel frames in seismic zones were heavily investigated. Design solutions were 

sought that would allow for ductility in all the connecting elements, as well as 

redundancy in failure modes. Due to their easy field installation, high ductility 

characteristics, and inherent redundancy, bolted connections were recognized as a viable 

solution to the seismic design of steel frames. 

The literature review presented herein provides an introduction to the fundamental 

knowledge in moment-rotation relationship of connections while highlighting the models 

developed to represent and predict the characteristics of the connections. In addition to 

highlighting research conducted at the component level, research conducted on the 

performance of semi-rigid steel frames is then presented. The final section of this chapter 

represents the current code of practice for the design of semi-rigid connections with top- 

and seat-angle with double web-angle connections.  

Major research on experimental testing of semi-rigid connections will not be the 

focus of the literature review. However, it is worth noting that various experimental 

programs were carried out to monotonically and cyclically test connections on 

component level basis. In all the tests, the beam was loaded with an actuator while the 

column was kept fixed. Early work on testing welded beam-to-beam and beam-to-column 
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connection using double web angle and top and seat angle connections was conducted by 

Johnson and Green (1940). In these tests, the connections sustained moment at a rotation 

of three times more than the full simple beam rotation was reached. Many other studies 

on semi-rigid connections included monotonic, cyclic, and dynamic loading carried out 

(Popov and Bertero 1973; Kukreti, Murray et al. 1987; Azizinamini and Radziminski 

1989; Nader and Astaneh-Asl 1996; Sarraf and Bruneau 1996). The behavior of the 

connections was highlighted by “fat” and stable hysteretic behavior with high energy 

dissipation capabilities. 

2.2 Existing Models for Predicting the Characteristics of Connections  

As previously mentioned, much research has been conducted to investigate and 

predict moment-rotation relationships of semi-rigid connections. The work included 

mathematical expressions comprising curve-fitting models, simplified analytical models, 

and mechanical models. Furthermore, detailed 3D finite element models were developed 

to capture the complex behavior of the connections. Description of the developed models 

and their distinct features are listed below. 

2.2.1 Mathematical Expressions 

Mathematical models provide the ability to approximate the moment-rotation 

behavior of connections without the need for testing. Early models developed included 

curve fitting of test data using regression analysis. Frye and Morris (1975) proposed an 

odd-power polynomial empirical model whereby the rotation is expressed as a function of 

moment and other curve-fitting parameters. Curves are fitted to available experimental 
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data of connections subjected to monotonic loadings and the resulting M- relationship is 

expressed as follows: 

     
1 3 5

1 2 3r C KM C KM C KM     (2.1) 

 

Where M and θr are the moment and rotation, respectively; C1, C2, and C3 are 

curve-fitting parameters; K is a standardized parameter which is a function of important 

geometrical parameters such as the size of the connecting member and plate thickness. 

The curve fitting and standardization constants are listed in Table 2-1 below. 

Table 2-1 Curve-fitting and standardization constants for Frye-Morris polynomial model 

Connection types Curve-fitting constants Standardization constants 

Single-web angle 

Connection 

C1 = 4.28x10
-3

 

C2 = 1.45x10
-9

 

C3 = 1.51x10
-16

 

K = d
-2.4

·t
-1.18

·g
0.15

 

   

Double-web angle 

Connection 

C1 = 3.66x10
-4

 

C2 = 1.15x10
-6

 

C3 = 4.57x10
-8

 

K = d
-2.4

·t
-1.18

·g
0.15

 

   

Top-and seat-angle - 

angle 

connection 

C1 = 8.46x10
-4

 

C2 = 1.01x10
-4

 

C3 = 1.24x10
-8

 

K = d
-1.5

·t
-0.5

·l
-0.7

·db
-1.1

 

   

Top-and seat-angle - 

angle with double web-angle 

connection 

C1 = 2.23x10
-5

 

C2 = 1.85x10
-8

 

C3 = 3.19x10
-12

 

K = d
-1.287

·t
-1.128

·t
-0.415

·l
-0.694

·(g-db/2)
1.350

 

   

End-plate 

connection 

with column 

stiffener 

C1 = 1.79x10
-3

 

C2 = 1.76x10
-4

 

C3 = 2.04x10
-4

 

K = d
-2.4

·t
-0.6

 

   

T-stud 

Connection 

C1 = 2.1x10
-4

 

C2 = 6.2x10
-6

 

C3 = -7.6x10
-9

 

K = d
-1.5

·t
-0.5

·f
-1.1

·l
-0.7

 

   

Header-plate 

Connection 

C1 = 5.1x10
-5

 

C2 = 6.2x10
-10

 

C3 = 2.4x10
-13

 

K = t
-1.6

·g
1.6

·d
-2.3

·w
0.5
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The work also included proposed equations to predict the connection tangent 

stiffness, Sc and the initial stiffness, 
o

cS , given by: 

   
2 4

1 2 3

1

3 5
c

c

dM
S

d C K C K KM C K KM
 

 
 (2.2) 

0

1

1
|o

c M

c

dM
S

d C K
   (2.3) 

 

The model has been noted by other researchers to represent the moment-rotation 

relationship reasonably well. The main drawback of this model is its prediction of 

negative tangent stiffness when the derivative of the polynomial function is taken within 

specific ranges since a polynomial function is characterized by peaks and valleys. 

Richard and Abbott (1975) proposed a three-parameter power model to represent 

the moment-rotation behavior of the connection under monotonic loading. The model is 

represented by the following equation: 

1/

0

1

ki r

n
n

r

R
M








  
   
   

 

(2.4) 

 

Where Rki is the initial connection stiffness; n is the shape parameter; 0 MuRki 

is the reference plastic rotation; and Mu is the ultimate moment capacity. Empirical 

equations for calculating the shape parameter n are listed in Table 2-2. The resulting 

moment-rotation curves for different values of n are shown in Figure 2-1. 
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Table 2-2 Empirical equations for shape parameters n (Richard and Abbott 1975) 

Type No. Connection types N 

I Single web-angle connection 0.520  log10 o + 2.291         ... log10 o >-3.073 

  0.695                                                      < -3.073 

II Double web-angle connection 1.322  log10 o + 3.952         ... log10 o >-2.582 

  0.573                                                     < -2.582 

III 
Top- and seat-angle connection 

(without double web-angle) 
1.398  log10 o + 4.631         ... log10 o >-2.721 

0.827                                                      < -2.721 

   

IV 
Top- and seat-angle connection 

(with double web-angle) 
2.003  log10 o + 6.070          ... log10 o >-2.880 

0.302                                                       < -2.880 

 

 

 

Figure 2-1 Three-parameter power model, after: (Richard and Abbott 1975; Chen 2000) 

 

Since the tangent stiffness of the connection, Rk and the relative rotation r can be 

determined directly without iterations; this model is considered an effective tool for 

conducting a second-order nonlinear structural analysis. Unlike the Frye and Morris’s 

model, however, this model requires a prior knowledge of the connection initial stiffness 

Mu

 r

n = 

n = 2

n = 4

n = 1

M = Rki  r

M

0  r = M/Rki
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and ultimate moment capacity for a complete prediction of the moment-rotation response 

of the connection. Therefore, its prediction of the response depends on two essential 

values that must be predicted by another tool or model.  

 1 /

0

1

ki
k n n

n
r

r

RdM
R

d





 

  
   
   

 

(2.5) 

 

To alleviate the problem with Frye and Morris’s model associated with the 

prediction of negative tangent connection stiffness when the derivative of the polynomial 

function is taken within specific ranges, Ang and Morris (1984) proposed the use of a 

standardized Ramberg-Osgood model to express the moment-rotation behavior of five 

typical types of connections including single web angle, double web-angle, header plate, 

top-and seat-angle, and the strap angle connections. The proposed model is in the 

following form: 

 

   

 1

0 0 0

1

n

KM KM

KM KM





  
    
    

 (2.6) 

 

Where 0, (KM)0, and n are constants that depend on the geometry and type of the 

connection. The Ramberg-Osgood function has the advantage that its derivative, hence 

the slope of the M- curve, does not fluctuate which is contrary to the inherent oscillatory 

nature of polynomials. 

Lui and Chen (1986) proposed an exponential model in the following form: 
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0

1

| |
1 exp | |

2

n
c

j kf c

j

M M C R
j






  
      

  
  (2.7) 

 

In which M is the connection moment, Mo is the initial moment, |c| is the 

absolute value of the rotational deformation of the joint; Rkf is the strain-hardening 

stiffness of the connection,  is a scaling factor, n is the number of terms considered, and 

Cj is the curve-fitting coefficients. The values of the curve fitting parameters were 

determined based on previous experimental data for four different types of connections 

including single web angle, top-and seat-angle, flush end-plate, and extended end-plate 

and are listed in Table 2-3. The tangent stiffness and the initial stiffness are represented 

by equations (2.8) and (2.9), respectively. 

Table 2-3 Connection parameters of the Chen-Lui exponential model (Chen 2000) 

 Connection type (kips-in) 

 
A 

Single web angle 

B 

Top-and seat-angle 

with double web-angle 

C 

Flush-end plate 

D 

Extended end plate 

Mo 0 0 0 0 

Rkf 0.47104 x 10
2
 0.443169 x 10

3
 0.96415 x 10

3
 0.41193 x 10

3
 

 -0.51167 8 10
-3

 0.31425 x 10
-3

 0.31783 x 10
-3

 0.67083 x 10
-3

 

C1 -0.43300 x 10
2
 -0.34515 x 10

3
 -0.25038 x 10

3
 -0.67824 x 10

3
 

C2 0.12139 x 10
4
 0.52345 x 10

4
 0.50736 x 10

4
 0.27084 x 10

4
 

C3 -0.58583 x 10
4
 -0.26762 x 10

5
 -0.30396 x 10

5
 -0.21389 x 10

5
 

C4 0.12971 x 10
5
 0.61920 x 10

5
 0.75338 x 10

5
 0.78563 x 10

5
 

C5 -0.13374 x 10
5
 -0.65114 x 10

5
 -0.82873 x 10

5
 -0.99740 x 10

5
 

C6 0.52224 x 10
4
 0.25506 x 10

5
 0.33927 x 10

5
 0.43042 x 10

5
 

 

1

| |
1 exp

2
c c

n

c j kf

jc

dM
S C R

d j
 



 

  
      

  
  (2.8) 
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n
jo

c k k k
j
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S D H

j


 


    (2.9) 

 

The Chen-Lui model provides good representation of the nonlinear behavior of 

connections. However, the model does not represent the behavior well if there is sharp 

abrupt in the moment-rotation curve. Similar to Richard and Abbott’s model, this model 

requires a prior knowledge of the different connection characteristics including the initial 

moment and the strain hardening stiffness.  

Kishi and Chen (1986a) and (1986b) modified the Chen-Lui model so that a sharp 

change in moment-rotation curve can be accommodated. The moment-rotation 

relationship is described by the following equation: 

   0

1 1

| |
1 exp | | | | | | | |

2

n n

j k k k

j k

M M C D H
j


   

 

  
        

  
   (2.10) 

 

Where M0 is the starting value of the connection moment to which the curve is 

fitted, Dk is a constant parameter for the linear portion of the curve, k is the starting 

rotation of the linear component of the curve, and H[] is a Heaviside step function. 

In addition to the curve fitting approach, simplified analytical models were also 

developed to predict the connection initial stiffness and ultimate moment. The models use 

equilibrium, compatibility, and material constitutive relations based on the concepts of 

elastic structural analysis, to predict initial stiffness. Likewise, plastic analysis is used to 

predict ultimate moment. 
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Kishi (1988) predicted the initial stiffness and ultimate moment capacity of top-

and seat-angle with double web-angle connections from its geometrical and mechanical 

properties using the following equations: 

   

2 2

1 3

2 2 2 2

1 1 3 3

3 3

0.78 0.78

ta wa

ta wa

EI d EI d
K

g g t g g t
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(2.13) 

 

Where di and gi are geometrical parameters, fy is the yield strength of the material, 

E is the elastic modulus, Ita and Iwa are the moment of inertias for the leg adjacent to the 

column face of the top angle and the web angle, respectively, tta and twa are the thickness 

of the top angle and web angle, respectively, and Vpu is obtained from the following 

equation.  

4

2 2
1

pu puc a

y wa wa y wa

V Vg k

f t t f t

   
    

   
   

 (2.14) 

 

It is important to note that simplified analytical models are only capable of 

describing key parameters of the moment-rotation relationships, mainly the initial 

stiffness and the ultimate moment. However, for a complete description of the moment-

rotation curve, one still has to resort to the power model with the proper shape factor n. 
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The models described above were developed using old tests in which high degree 

of uncertainty exist regarding the level of bolt pretension and actual material properties. 

In addition, the tests were conducted on small specimens with shallow beams and thin 

angles and did not cover a wide range of specimen sizes. Test data for specimens 

comprising deep beams and thick angles did not show good agreement with the curve-

fitting models (Leon, Wan Hu et al. 2004).  

Recognizing the shortcomings of curve-fitting models, mechanical models were 

proposed as a viable approach for predicting the connection behavior based on physical 

meanings. In mechanical models, the various components of a joint are conceived as a set 

of rigid and deformable elements represented by springs with specified load-deformation 

characteristics. The constitutive laws describes the behavior of the various springs 

include both linear and nonlinear relationships; allowing for a complete moment-rotation 

curve to be constructed through the contribution of the various components modeled, 

while taking into account their deformation and progressive yielding. In the case of top-

and seat-angle with double web-angle connections, the various components include 

angles, bolts, and the column panel zone. In addition to modeling the actual components, 

the interaction amongst them must also be modeled for accurate representation of the 

connection behavior which include contact nonlinearity, bolt slippage, and bolt hole 

ovalization. It is however important to note that an effective assembly of all components 

that adheres to equilibrium and compatibility is important to achieve desirable accuracy 

and robustness of the component-based model (Kim, Ghaboussi et al. 2010). 

Early work on the development of mechanical models was conducted to represent 

the behavior of double web-angle connections under monotonic loading (Wales and 
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Rossow 1983). The model was further extended to the case of top-and seat-angle with 

double web-angle as shown in Figure 2-2 (Chmielowiec and Richard 1987).  

 

Figure 2-2 Mechanical model for top-and seat-angle with double web-angle connection, 

after: (Chmielowiec and Richard 1987) 

 

Eurocode 3 provides a complete set of detailed rules to determine the structural 

properties of beam-to-column joints and base-plate joints using the mechanical model for 

an equivalent T-stub connection which is representative of top-and seat-angle 

connections. An extension to the model was proposed to account for the addition of 

double web angles (i.e. top-and seat-angle with double web-angle) and hardening 

(Pucinotti 2001). The model can predict the initial stiffness relatively well but it is not 

accurate in estimating the capacity of the joint. 

To represent the cyclic behavior of double web-angle connections, a model was 

proposed which accounts for only material and geometric properties (De Stefano, De 
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Luca et al. 1994). The model was extended to include gap elements representing the slip 

effects (Shen and Astaneh-Asl 2000). 

2.2.2 Finite Element Models 

Nonlinear finite element analysis is an attractive tool for modeling connections 

and its complex behavior. Early attempts to use finite element for analysis of partially 

restraint connections was a comparative study on extended endplate connections to 

correlate stresses and displacement obtained using 2D and 3D linear elastic models with 

bolt pretension alone (Krishnamurthy 1980). Similar procedure was proposed to 

reproduce moment-rotation relationships of end-plate connections (Kukreti, Murray et al. 

1987).  

Gendron (1989) developed a 2D finite element model for double-bolted joints and 

accounted for plasticity and contact. The model was calibrated against published test 

results and was shown to predict the behavior of the connection both before and after slip 

occurrence. The model, however, did not include the effect of friction, finite geometry, 

bolt clearance and different ratios of bolt loadings.  

To the author’s knowledge, no 2D continuum finite element models have been 

developed for top-and seat-angle connections or top-and seat-angle with double-web 

angle connections. With advancement in computational techniques and power, attention 

was shifted to developing 3D models which have proven, in some cases, to be capable of 

capturing the true behavior of the connections.  

Early research on 3D modeling of bolted connections was conducted to develop a 

methodology to analytically evaluate the moment-rotation relationships for steel bolted 
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end-plate connections (Sherbourne and Bahaari 1994). The work included the 

development of an equivalent 3D analysis where the end plate, beam and column flanges, 

webs, and column stiffeners are represented as plate elements and each bolt shank is 

modeled using six spar elements. Contacts between the various surfaces were modeled 

using three-dimensional interface elements. 

The stiffness and strength of a T-stub to the unstiffened column flange bolted 

connection was investigated in a 3D framework (Sherbourne and Bahaari 1996). Two T-

stub connection models were developed for the validation of the modeling technique and 

included 3D T-stubs bolted to a rigid and flexible elements. The model was considered an 

improvement in investigating end-plate connections since most of the reported research 

has been performed on assemblies either attached to a rigid base or possessing symmetry 

about the interface of the connected elements. 

Additional research on estimating the moment-rotation relationship of bolted 

connections was conducted and included 3D finite element analysis of extended end-plate 

connections for preloaded and non-preloaded bolted T-stubs (Bursi and Jaspart 1997).  

The bolts were preloaded with prestressing force and modeled with brick elements using 

an effective bolt length. The results of the analysis showed good correlation with test data 

and the modeling technique was proposed as a rational approach for accurate simulation 

of these types of connections. 

Three-dimensional finite element models were also developed for angled 

connections. The first model was developed to study the response of double-angle 

connections subjected to axial and shear loads (Yang, Murray et al. 2000). In this study, 
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double web-angle connections with three different thicknesses were analyzed where the 

angles are welded to the beam web and bolted to the column flange. First, the results of 

the three-dimensional analysis were used to replace the angles by equivalent nonlinear 

springs. A two-dimensional finite element technique was then utilized to obtain response 

curves for the connections. 

The behavior of top-and seat-angle connections was also simulated using 3D 

finite element models (Ahmed, Kishi et al. 2001). The model included bolt pretension 

and contact formulation with coulomb friction between contact pair surfaces. The results 

of the numerical analysis together with the prediction by the Kishi-Chen power model 

(Kishi and Chen 1990) were compared with experimental results and all three showed 

good correlation. It is important to note that the power model by Kishi and Chen is based 

on Richard and Abbott’s model with strain-hardening being disregarded. Various 

parameters were then varied to study the effect of material properties of the connecting 

elements and magnitude of bolt pretension on the behavior of the connection. 

The behavior of top-and seat-angle with double web-angle connections was 

investigated using four 3D models (Kishi, Ahmed et al. 2001). The four models included 

contact pair with Coulomb’s friction coefficient of 0.1. The four models were noted as 

ND, NF, BM and BI where “N” denotes non-existence of bolts in the model; “D” denotes 

defined gage length (g-w/2); “F” denotes full gage g where g is the gage distance from 

the bolt hole centerline to the angle heel and w is the width of the bolt head; “B” denotes 

the presence of bolts in the model; “M” denotes that the bolts are monolithic with the 

angle; and “I” denotes that the bolts act as independent component in the model. The 

results showed that all models can predict the strength of the connection with reasonable 
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accuracy except for the ND model. Less accuracy was achieved when estimating the 

initial stiffness of the connection.  

A graphical comparison and the numerical results are shown and listed in Figure 

2-3 and Table 2-4, respectively. As shown in Figure 2-3, model BI best represents the 

real interaction among the connection components, which emphasizes the need for 

including the bolts as independent components in the model. The analysis included a 

comparison between various experimental results (Azizinamini and Radziminski 1989), 

three-parameter power model (Kishi and Chen 1990), and the finite element analysis. It 

was concluded that the discrepancies on ultimate moment capacity between FE analysis 

and experimental results range from 15.4% to +6.1% and the power model predictions 

agrees fairly closely with test results with the exception of few cases. The accurate 

predictions using the power model are expected since the model was derived using the 

same test data. 

 

Figure 2-3 Comparison between different modeling approaches, after: (Kishi, Ahmed et 

al. 2001) 

Azizinamini et al.’s 

Test ID : 14S2
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Table 2-4 Pertinent data of Figure 2-3 (test ID 14S2) (Kishi, Ahmed et al. 2001) 

Connection capacity 

Initial connection stiffness Ultimate moment capacity 

Result  

(kN.m/rad) 

Error  

(%) 

Result 

(kN.m/rad) 

Error 

(%) 

ND 69,619 +31.8 195.6 +70.5 

NF 38,612 -26.9 125.3 +9.2 

BM 40,025 -24.3 123.0 +7.2 

BI 41,388 -21.7 112.5 -1.9 

Test 52,839 - 114.7 - 

 

Another 3D finite element model for top-and seat-angle with double web-angle 

connection was developed and included contact between all parts, friction, slip, and a 

method for applying pretension in the bolts (Citipitioglu, Haj-Ali et al. 2002). The models 

were compared with the experimental results in the literature by Azizinamini and 

Radziminski (1989). The results of the analysis highlighted the effect of blot pretension 

on the behavior of the connection as it could vary the ultimate moment-rotation by 25%. 

The 3D model developed is shown in Figure 2-4. 

 



  25 

 

Figure 2-4 Three-dimensional FEM for top-and seat-angle with double web-angle 

connection (Citipitioglu, Haj-Ali et al. 2002) 

 

Notwithstanding their effectiveness, 3D models are difficult to construct and are 

computationally intensive, thus their ability to conduct large parametric studies is limited. 

It is also worth noting that the available finite element models on top-and seat-angle with 

double web-angle connections have all been used and verified against experimental data 

under monotonic loading. Although it is not explicitly mentioned in the literature, it is 

believed that the evaluation of such models under cyclic loading has not been 

investigated since such assessment is computationally very demanding and the evaluation 

of one cyclic test results could take days to complete. 
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2.3 Analytical Investigation of Semi-rigid Frames 

Analyzing semi-rigid frames under dynamic loading requires a cyclic model of 

the connection behavior to be used in the analysis. The mathematical models discussed 

earlier in the chapter were developed for connections under monotonic loading and 

therefore are not suitable for cyclic or dynamic analysis of semi-rigid frames. Despite 

their effectiveness in representing the monotonic response of semi-rigid connections, the 

models cannot capture the inelastic characteristics of the connection.  

The use of models developed for monotonic loading to predict cyclic behavior is 

based on the observation that the envelopes of cyclic tests match closely the envelope for 

static tests (Leon, Wan Hu et al. 2004). It is however known that cyclic tests of these 

types of connections show an increased strength with cycling due to hardening (Leon, 

Wan Hu et al. 2004). Therefore, it is inevitable that the curve-fitting models will always 

underestimate the capacity of the connection. The work by Leon et al. (2004) included a 

comparison between a cyclic test conducted by Azizinamini and Radziminski (1989) and 

three curve-fitting models; Frye and Morris (1975), Ang and Morris (1984), and Kishi 

and Chen (1990). Only the model by Ang and Morris (1984) is capable of predicting the 

actual capacity of the connection. Comparison with other test results showed that in some 

cases the model by Ang and Morris failed to properly predict the moment capacity of the 

connection. It is important to point out that none of the curve-fitting models is capable of 

predicting the rotational capacity when the tension capacity of the bolts governs the 

behavior. 
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Early work on analyzing steel frames with semi-rigid connections was conducted 

by Frye and Morris (1975) where a static analysis technique was presented using a 

modified matrix analysis approach. The analysis highlighted the effect of including the 

flexibility of the connection on the redistribution of moments in the structure and increase 

in lateral displacements. 

Work on modeling connection behavior under dynamic and cyclic loading 

included a trilinear model (Moncarz and Gerstle 1981) and a bilinlinear model 

(Sivakumaran 1988) representing the cyclic moment-rotation behavior of the connection. 

The models however do not represent the connection behavior accurately because of the 

abrupt changes in the connection stiffness in the transition from the elastic to the plastic 

region. 

Recognizing the shortcomings of early models, Albermani et al. (1994) used a 

smooth connection model in a dynamic planar frame analysis. The model included the 

Bauschinger effect of the connection but disregarded the pinching and stiffness 

degradation characteristics of the moment-rotation diagram. The details of the model can 

be found in (Al-Bermani and Kitipornchai 1992) and (American Institute of Steel 

Construction (AISC) 1989).  

A dynamic matrix analysis approach which incorporated geometric nonlinearity 

and a bilinear hysteresis model for semi-rigid connections was formulated by Lui and 

Lopes (1997). In the analysis, the frame was modeled as beam elements with nodal 

springs at the beam ends to simulate the semi-rigid connections. Geometric nonlinearity 

was accounted for through modification of the stiffness of the columns. The analysis 
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technique was applied to a portal frame, which was reduced from a six degree of freedom 

system to a single degree of freedom system, using static condensation while assuming 

no axial deformation in the beam. 

The work by Lui and Lopes (1997) was extended by Awkar and Lui (1999) to 

multi-story structures. The model used matrix analysis that incorporated the connection 

flexibility and the effects of geometric nonlinearities to study the planar behavior of steel 

frames. 

Salazar and Haldar (2001) performed a parametric study of the variation of energy 

dissipation, story drift, and base shear in steel frames when the rigidity of the beam-to-

column connections is varied. An analytical finite element model was used, which 

utilized a discrete piecewise linear spring model for the semi-rigid beam-column 

connection. The spring model did not include asymmetry, strength degradation, stiffness 

reduction, or pinching. 

Foutch and Yun (2002) performed static and dynamic analysis of a 9-story and a 

20-story building. The frames were modeled using centerline dimensions. The behavior 

of the panel zone was included using a special arrangement of rigid links to simulate the 

panel region with nonlinear springs. In addition, the effect of the gravity frames in 

resisting the lateral load was included by modeling the connections between the gravity 

frames using nonlinear springs which accounted for the composite action of the slab.  The 

models were also modified so that the effects of connection fracture could be investigated. 
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2.4 Code of Practice for the Seismic Design of Semi-rigid Connections 

2.4.1 American Institute of Steel Construction (2005) 

According to the American Institute of Steel construction (AISC) classifications, 

there are three types of moment frames: ordinary moment frames (OMF), intermediate 

moment frames (IMF), and special moment frames (SMF). The definition of the frames 

in accordance with the AISC Seismic Provisions for Structural Steel Buildings 

(ANSI/AISC 341-05) revolves around the degree of inelastic deformation the frames can 

sustain and the interstory drift accommodated during an earthquake. The OMF, IMF and 

SMF are assumed to be able to withstand total interstory drifts in the range of 0.01, 0.02, 

and 0.04 radians, respectively. 

An OMF is used in low-seismic areas and is expected to undergo minimal 

inelastic deformations in its members during the seismic event (i.e. the frame is designed 

to remain essentially elastic). An IMF is used in low-to-mid seismic areas and is intended 

to withstand some permanent damage following an event. The frame is required to 

sustain a moderate interstory drift of 0.02 rad. An SMF is used in mid-to-high seismic 

areas and intended to withstand significant permanent damage following high inertial 

forces, while sustaining high level of interstory drift of 0.04 rad.  

The provisions require beam-to-column connections to satisfy the requirements of 

Section 9.2 for SMF or 10.2 for IMF. These requirements include a minimum interstory 

drift angle each connection must be capable of sustaining, a minimum flexural resistance 

at that drift angle, and a minimum shear strength based on full yielding of the moment 

http://www.wisegeek.com/what-is-the-imf.htm
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connection at each end of the beam. The provisions allows for two different ways to 

demonstrate that these criteria have been met: 

1) Testing of the connection in accordance with Appendix S of the Seismic 

Provisions 

2) Using a prequalified connection in accordance with Appendix P of the Seismic 

Provisions including: 

a) Reduced Beam Section (RBS) Moment Connection  

b) Bolted Unstiffened and Stiffened Extended End-Plate Moment Connection 

c) Bolted Flange Plate (PFB) Moment Connection  (SMRF and IMF) 

It is important to note that the three different types of frames are required to be 

designed according to the strong-column weak-beam provisions. That is, the columns are 

expected to remain elastic or experience small yielding while the beams are the main 

source of deformation and supply for the inelastic rotation of the joint.  

It is clear from the above discussion that the AISC seismic design provisions call 

for testing if the connection to be used is not prequalified per Appendix P of the 

provisions. Despite the numerous tests conducted on angled connections, none of which 

have been qualified by AISC to be utilized in steel frames in seismic regions. 

2.4.2 Eurocode 3 (2005) 

The use of mechanical models in design codes of semi-rigid connections has been 

explored in EC3 (Eurocode 3 1998). The formulation described in Annex J of EC3 is 

developed such that the main component in the mechanical model is an equivalent T-stub 

positioned in the column-side and in the beam-side of an end-plate connection. The T-
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stub model, by default, represents a top-and seat-angle connection and is described by 

linear elastic relationship if the applied moment Mj,Sd is lower than the elastic moment, 

Me (Me = 2/3Mj,Rd), where Mj,Rd is the design or ultimate moment of the connection. The 

initial stiffness and the defined moments and rotations capacity are depicted in Figure 

2-5. 

 

Figure 2-5 Moment-rotation curve defined in EC3 for top-and seat-angle connection, 

after: (Eurocode 3 1998) 

 

The initial stiffness, the strength, and the rotational capacity are defined by the 

following equations: 
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,j Rd RdM F Z  (2.16) 

 1 2min , ,....,Rd Rd Rd RdnF F F F  (2.17) 

 

Where; E is the Young’s modulus; Z is the lever arm; Ki is the stiffness coefficient 

of the i
th

 component and n is the number of basic joint components. 

The rotational capacity of the joint is deemed sufficient in accordance with EC3 if 

the following conditions are met: 

 The moment resistance of the joint is governed by the resistance of either: 

- The column flange in bending; or, 

- The tension flange angle in bending 

 The thickness, t, of either the column flange or the tension flange angle satisfies 

the following: 

0.36 /ub yt d f f  (2.18) 

 

Where, d is the nominal diameter of the bolts, fub is the ultimate tensile strength of 

the bolts, and fy is the yield strength of the relevant basic component. 

2.5 Summary and Conclusion 

Various experimental and analytical studies on semi-rigid connections in beam-

to-column subassemblies, including top-and seat-angle with double-web angle 

connections, have been conducted. The studies demonstrated the ability of the 
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connections to dissipate energy and withstand large seismic actions. Results of the studies 

were utilized in a number of frame analyses that included action-deformation 

relationships which are idealized and not well representative of the complex inelastic 

nature of the connection behavior. Such approach highlights the need for accurate and 

more refined system-level approach for the seismic assessment of steel frames with semi-

rigid connections. With advancement in modeling techniques, computing power, and 

experimental facilities, a system-level hybrid simulation approach is the next logical step 

for conducting reliable seismic assessment of steel frames. In addition, the absence of 

top-and seat-angle with double web-angle connections from the ANSI/AISC list of 

prequalified connections calls for more research to be conducted on these connections to 

explore their full potential and prequalify them for seismic applications. 

In the following chapters, a new approach for the seismic assessment of steel 

frames with semi-rigid connections is presented. The approach includes the development 

of experimental and analytical components and integrating them in a system-level hybrid 

simulation as well as conducing parametric studies of frames with varied design 

parameters. 
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CHAPTER 3 

 

HYBRID SIMULATION ENVIRONMENT 

3.1 Introduction 

Seismic evaluation of structural systems has traditionally been explored using 

either experimental methods or analytical models. Issues of scale, equipment capacity 

and availability of research funding continue to limit the full-scale testing of complete 

structures. Analytical platforms on the other hand are limited to solving specific type of 

problems and in many cases fail to capture complex behaviors or failure modes in 

structural systems (Kwon, Elnashai et al. 2007). Combining both tools in a single 

simulation, while taking advantage of what each tool has to offer, is referred to as hybrid 

simulation.  

The concept of hybrid simulation was first developed by Japanese researchers 

where a single-degree-of-freedom system was analyzed under seismic loading (Hakuno et 

al. 1969). The work included using an analog computer for solving the equations of 

motion and an electromagnetic actuator to load the structure. Since then, simulation 

techniques has significantly evolved to include sub-structuring techniques with hybrid 

simulation making it possible to consider distributed hybrid simulation and real-time 

hybrid simulation (Nakashima, McCormick et al. 2008).  
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3.2 Overview of Pseudo Dynamic Testing 

Different experimental approaches currently exist for dynamic experimental 

testing of structures and vary between shake table tests, pseudo dynamic tests, and cyclic 

tests. Shake table testing involves fixing structures at their bases on a table which is 

dynamically operated with hydraulic actuators. The input motion can be as simple as a 

sinusoidal function or an input resembling an actual ground motion. Dynamic testing 

using full-scale shake table is viewed as the most realistic method for the seismic 

evaluation of structural models. However, this testing method requires full-scale shake 

tables which are not readily available in structural labs due to the large space they 

typically occupy.  

Cyclic loading is another alternative for the seismic evaluation of structures. It 

involves the application of increasingly repeated cycles using a predefined deformation 

history at different ductility levels. The drawback of using this approach is that applying 

large number of cycles at different ductility levels is likely to overestimates the seismic 

loads experienced by the structure during an event. In addition, since nonlinear problems 

are path dependent, the loading history imposed on the structure will cause the structure 

to experience stiffness and strength degradation which does not represent what it would 

have otherwise experienced during an actual earthquake. 

Pseudo-Dynamic (PSD) testing is another testing technique that has been widely 

used by many researchers (Hakuno, Shidawara et al. 1969; Mahin and Shing 1985; 

Nakashima and Kato 1987; Elnashai, Elghazouli et al. 1990; Negro, Mola et al. 2004; 

Jeong and Elnashai 2005a). In this testing method, the use of a shake table is substituted 
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by hydraulic actuators connected to the structure. The problem associated with over 

estimating the loading during cycling testing is overcome by imposing realistic loading 

on the structure through numerical integration of the dynamic equation of motion while 

using an actual earthquake. The major shortcoming of using PSD testing is that it requires 

testing of the whole structure, which is not feasible in some cases due to limitations of the 

laboratory space and equipment capacity.  

 A more attractive approach is to use the concept sub-structuring PSD (SPSD) 

testing which is nothing but a derivative of PSD. In this method, the structure can be 

portioned into various components comprising of experimental or analytical modules or a 

combination of both. Combining analytical and experimental modules in a single 

simulation is known as hybrid simulation. This approach has been used by many 

researchers for the seismic evaluation of structures and has proven to be very valuable in 

overcoming the limitations of using conventional PSD (Watanabe, Kitada et al. 2001; 

Spencer, Elnashai et al. 2004; Kim, Elnashai et al. 2006; Stojadinovic, Mosqueda et al. 

2006). The attractiveness of this option lies in the fact that it captures the complex 

interaction between the various modules while providing information on the global 

system behavior.  

In this approach, the earthquake force is calculated numerically using time step-

integration of the equation of motion. The corresponding displacements are then applied 

simultaneously to the test specimens and the analytical models. The resulting restoring 

forces are measured for each module and used in a feedback loop for the calculation of 

the next displacement command corresponding to the next step. A software called UI-

SIMCOR, which is MATLAB based, is used to orchestrate the simulation. The software 
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is developed at UIUC which is capable of conducting the numerical integration as it steps 

through the seismic record. The numerical integration in UI-SIMCOR uses the OS 

method with a modified α- parameter through the Newmark integration scheme (-OS 

method) which applies numerical damping to the undesired oscillations. A full 

description of UI-SIMCOR and its components can be found in (Kwon, Nakata et al. 

2005). 

3.3 The Must-SIM Facility 

The experimental component of the simulation utilizes the Multi-Axial Full-Scale 

Sub-Structured Testing and Simulation Facility (MUST-SIM) which is part of the 15 sites 

of the Network of Earthquake Engineering Simulations (NEES). The main testing 

components include a full-scale bolted beam-column subassembly. The beam comprises 

a portion of first-story beam in the first bay while the column includes portion of the first-

and second-story columns in the same bay. The experiment utilizes two large load and 

boundary condition boxes (LBCBs), the L-shaped strong wall, and the advanced non-

contact displacement measurement systems (Krypton). The main loading units (i.e., the 

LBCBs) are capable of providing deformations and actions in all 6 degrees of freedom at 

different contact points. Details on the advanced capabilities of the MUST-SIM facility 

are given in (Elnashai, Spencer et al. 2004). 
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3.4 Description of the Structure 

The structure under consideration is a 2-story, 4-bay (longitudinal) and 2-bay 

(transverse) steel frame, assumed to be located in Los Angeles, California. The height of 

the first and second story is 15 ft and 13.5 ft, respectively, and the bay width is 30 ft. The 

lateral load resisting system is special moment-resisting frame (SMRF) designed with the 

concept of strong-column weak-beam according to the International Building Code 

Structural Seismic Design Manual, Volume 3 (International Building Code 2006). The 

design of the SMRF resulted in a strong-column weak-beam design with W18 x 40 and 

W14 x 159 for the beams and columns, respectively. 

Following sizing of the beams and columns, the assumed rigid connections in the 

frame are redesigned to reflect partial-strength and semi-rigidity. Three different frames 

are considered with the connections in each frame designed as top-and seat-angles with 

double web-angles according to the EC3 (Eurocode 3 1998). The sizes of the angles and 

the bolts are optimized such that the resulting connection capacity in frame 1, 2 and 3 is 

70%, 50%, and 30%, respectively, of the plastic moment capacity of the beam. Plan view 

of the structure and an elevation of a typical SMRF are shown in Figure 3-1. Detailed 

description of the design procedure can be found in APPENDIX C. 
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Figure 3-1 Plan view of the structure considered and an elevation of the SMRF 

3.5 Analytical Module 

Analytical models of frames have utilized line elements connected with springs 

representing the load deformation characteristics of the connection. Due to its minimal 

computational demands, this modeling approach has been viewed as the best alternative 

for hybrid simulation since the number of elements in this case is small and significant 

time is not required to complete a simulation step. However, the models typically 

represent idealized behavior and in many cases cannot capture the local response of the 

various connection components. Furthermore, the deformation and spread of yielding in 

the beam and the column are not well represented since the prying action and interaction 
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between the beam and column flanges and the various connection components is neither 

physically modeled nor accounted for. 

In light of the above arguments, the use of 2D or 3D finite element models in 

hybrid simulations can pay significant dividends since the localized connection behavior 

and its interaction with the beam and column is physically represented. The decision to 

employ 2D or 3D models in hybrid simulations has been primarily driven by the notion 

that 2D models cannot properly capture the complex localized behavior of the connection. 

However, for planar problems or problems that could be idealized as planar, 2D models 

may be much more efficient when compared to 3D models. Moreover, the use of 3D 

models in a closed-loop hybrid simulation, where thousands of steps are executed, would 

be totally impractical. 

3.5.1 Overview of the Model and Its Components 

An inelastic 2D finite element model is employed in the current investigation with 

29203 nodes and 27617 elements. The model comprises a 2D generalized plane strain 

elements with reduced integration for the beam-to-column connections and 1D beam 

elements between subsequent connections. Bolts used to connect the various connection 

components are modeled using spring elements representing the desired load-deformation 

characteristics of the bolts. Spring elements are also used to represent the transverse 

behavior of the connection as explained below. The model is developed using ABAQUS 

which is a general purpose commercial package (Simula 2007) and includes various 

inelastic behavioral features namely; 1) hot-rolling residual stresses in the top and seat 

angles, 2) bolt preload, 3) friction between faying surfaces, 4) connection slip, 5) the 
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effect of bolt-hole ovalization, 6) transverse stiffness of the connections, and 7) 

idealization of the web angles. 

The effect of the inner gravity frames on the stability of the moment-resisting 

frame (i.e. large P- effect) is included in the model through a leaner column modeled as 

truss elements pinned at the base and at the first floor level. Tie multi-point constraints 

are used to provide rigid links between the SMRF and the leaner column. An overview of 

the analytical module with a zoom-in on the connection deformation is shown in Figure 

3-2.  

 

Figure 3-2 Overview of the analytical module 
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3.5.2 Approach for Modeling the Various Inelastic Features 

3.5.2.1 Hot Rolling Residual Stresses 

The magnitude and distribution of longitudinal residual stresses arising from the 

hot-rolling process during fabrication of steel angles have been researched by others 

(O'Connor 1955; Beedle and Tall 1960; Nuttall and Adams 1970; Usami 1971; European 

Convention for Constructional Steelwork (ECCS) 1985; Elgaaly, Dagher et al. 1991). 

The work is motivated by the need for including residual stresses when assessing the 

flexure buckling capacity of steel angles. The results are highlighted by large scatter in 

the magnitude of measured stresses as shown in Figure 3-3. Linear stress distribution 

with an assumed peak value is recommended to account for the observed scatter. Peak 

values of 0.30Fy, 0.25Fy and 0.50Fy are assumed by ECCS, AISC, and Usami, 

respectively (Usami 1971; European Convention for Constructional Steelwork (ECCS) 

1985; American Institute of Steel Construction (AISC) 1989). 

 

Figure 3-3 Measured hot-rolling residual stresses, after: (Nuttall and Adams 1970) 

Assumed Linear Distribution 

with peak value at 75 MPa

Average Curve
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As mentioned above, the measured hot-rolling stresses are typically used to assess 

the ultimate capacity of a single angle in compression or tension when utilized as steel 

bracing or flexural member. On the other hand, the effect of hot-rolling residual stresses 

on the moment-rotation relationship; when the angle is used as a connecting element has 

never been investigated before. 

In this study, hot-rolling residual stresses are included as per the ECCS (1985) 

recommendations assuming a linear distribution with a peak value of 0.25Fy and 0.22Fy 

at the heel and toe of the angle, respectively as shown in Figure 3-4. Because of the 

nature of the model, being a 2D model, residual stresses are only included in the top and 

seat angles and not in the web angles. 

 

Figure 3-4 Recommended residual stress distribution per the Eurocode, after: (European 

Convention for Constructional Steelwork (ECCS) 1985) 
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The proposed residual stress distribution is introduced in the model by first 

applying the tension field in the desired local direction as initial stresses. The 

compressive stress field is then generated in the model through the redistribution of 

stresses to achieve equilibrium. This approach is based on trial and errors and requires the 

initial tensile filed introduced to be higher than the target field since the redistribution of 

stresses results in reduction of the initially specified values. The approach has been used 

in the past to introduced residual stresses in welded stiffened steel panels (Mahmoud and 

Dexter 2005).  

Prior to applying the above mentioned approach to the 2D model, a 3D model of a 

typical angle was developed using plate elements and used to validate the approach and 

visualize the resulting residual stress field. The angles are modeled using 4-nodal plate 

elements with reduced integrations. The resulting residual stress field is shown in Figure 

3-5. After verifying the approach of introducing residual stresses through using a 3D 

model of the angle, the residual stress field is introduced in the 2D beam-column 

connection model using the same technique. The 2D model including the residual stresses 

field is shown in Figure 3-6. 

 

Figure 3-5 Simulated residual stresses in the top-and seat-angles  
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Figure 3-6 Two-dimensional model with residual stress distribution  

 

3.5.2.2 Bolt Pretension 

Depending on the model, 2D versus 3D, there exist multiple methods to represent 

typical bolt assemblies in finite element models (bolt head, bolt stud, washer, and nut) 

and introduce the pretension force resulting from bolt tightening. In 3D models, the most 

straight forward but computationally expensive approach is to model the actual bolt 

geometry. A more simplified approach, known as the coupled bolt simulation, includes 

using line elements to simulate the bolt stud and coupled nodes to simulate the head/nut. 

This approach allows for axial load transfer in the bolt without the need for using solid 

elements. Rigid body elements (RBE) is another way of including the bolt assembly 

where line elements are used to model the stud and rigid body elements are used to model 

the head and the nut, which are also connected with RBE. Spider bolt simulation is 

another approach for modeling bolts where line elements of the head and the nut in the 

RBE model are substituted with a series of line elements organized in a web-like fashion. 
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In this study each bolt was modeled using axial spring elements in parallel as 

shown in Figure 3-7. This approach takes into account the effect of the bolt action on the 

finite contact area. Its application for assessing the nonlinear behavior of single bolted T-

stub connection was shown to yield significantly better results in comparison with a 

single spring representation (Coelho, Silva et al. 2004).  

 

Figure 3-7 T-stub model accounting for the bolt action, after: (Coelho, Silva et al. 2004) 

 

The application of bolt pretension is essential for maintaining the proper level of 

contact between the faying surfaces. The most common methods for simulating bolt 

preload include applying traction at the end of the bolt or applying the corresponding 

displacement to the end nodes. Other methods have been used to simulate the pretension 

load including using temperature fields, constraint equations, or initial strains. 
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In this analysis, bolt preload was modeled by shifting a load-deformation curve of 

a typical bolt so as to result in an initial axial load applied to the bolt. The axial load is 

chosen to be equal to 80% of the proof strength of the bolt material as recommended by 

AISC (American Institute of Steel Construction (AISC) 2005). Figure 3-8 (a), (b), and (c) 

show a typical axial load-deformation curve without bolt pretension, axial load-

deformation curve with bolt pretension, and a zoom-in image of an exaggerated deformed 

shape of the top-angle connection showing the “cupping” effect resulting from 

introducing the preload, respectively. 

 

Figure 3-8 Simulating typical bolt preload (a) without pretension (b) with pretension 

 

3.5.2.3 Friction and Slip 

Contact pair with master-slave relationship and augmented Lagrange is used to 

model contact between the various surfaces. The friction coefficient used is 0.33 

representing Class A surface  (Kulak, Fisher et al. 1987; American Institute of Steel 

Construction (AISC) 2005).  

A simplified slip model is used to characterize slip in the connection associated 

with the relative motion between the connecting elements. Spring elements are used to 

model the connection slip while accounting for the slip distance, which is half of the 
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difference between the bolt hole and the bolt-hole diameter. The reason for taking half of 

the distance is to account for the slip on each side of the bolt shank (1/32” slip distance 

for 1/16” oversized hole).  

It is important to note that the shear resistance of the connection is characterized 

by four different stages; namely; 1) shear resistance due to friction, 2) bolt bearing, 3) 

bolt bending, and 4) bolt shearing through the plate. It is worth mentioning that shear 

resistance due to friction is a stage that is activated throughout the full loading stage of 

the connection and dynamically varies, depending the magnitude of pretension load 

present in the bolts. It is also important to note that the slip model in itself does not 

represent any shearing resistance of the connection. The shear resistance of the 

connection during the slipping stage is carried by friction between the top and seat angles 

and the beam and column flanges. In other words, within the slip distance, the load 

associated with the load-deformation curve of the springs is zero. Figure 3-9 (a), (b), and 

(c) show a plan view of a typical connection assembly prior to slippage, a plan view at 

the onset of contact between the bolt shank and the plate, and the associated load-

deformation curve used to model slip, respectively.  

 

Figure 3-9 Simulating typical connection slip behavior (a) without slip (b) with slip (c) 

force deformation during slipping (friction excluded) 
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3.5.2.4 Bearing, Bending, and Shearing Stiffness 

As mentioned above, the initial transverse stiffness of the connection is 

characterized through friction between the top and seat angle and the beam and column 

flanges. Three other mechanisms contributing to the transverse stiffness of the connection 

have been defined as the bearing, bending, and shearing stiffness (Rex and Easterling 

2003) and evaluated through finite element analysis; calibrated using experimental data. 

The test setup, shown in Figure 3-10, is aimed at evaluating the transverse stiffness of the 

connection through assessing the behavior of a single “loose” bolt interacting with a 

single plate. The bearing (kbr), bending (kb), and shearing (kv) stiffness are evaluated 

through Equation (3.1), Equation (3.2), and Equation (3.3), respectively.  

 
0.8

120 / 25.4br p y bK t F d  (3.1) 

 
3

32 / 1/ 2b p e bK Et L d 

 

(3.2) 

 6.67 / 1/ 2p e bK Gt L d  
 

(3.3) 

 

Where tp, and Fy are the plate thickness and yield strength, respectively, db is the 

bolt diameter, E is the elastic modulus of the plate, Le is the plate edge distance, and G is 

the shear modulus of elasticity. It is important to note that the constant 25.4 in Equation 

(3.1) must be removed when working with USC units. 

To simplify the derivation of the bearing stiffness equation, Rex and Easterling 

assumed that the problem is 2D and that the plate is at its yield strength once in contact 

with the bolt. For deriving the bending and shearing stiffness equations it is assumed that 
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the steel between the bolt and the end of the plate is modeled as a rectangular elastic 

fixed beam with length db and height Le - db/2.  

 

Figure 3-10 Test setup for a single bolt on a single plate, after: (Rex and Easterling 2003) 

 

In this study, the above described model is modified to determine the three initial 

stiffness values (kbr, kb, and kv) while accounting for two deviations from the initial 

model. First, the bolts are interacting with two plates (beam or column flange plate and 

the angle) instead of one plate as in the case of Rex and Easterling’s model. Secondly, 

when the connection is deformed, the contribution of each of the two plates to the shear 

resistance is in opposite directions. In other words, the top half of the bolt is interacting 

with one side of the angle hole while the bottom half of the bolt is interacting with the 

opposite side of the beam or column flange. This mechanism is schematically illustrated 

in Figure 3-11. 
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Figure 3-11 Illustrated arrangement of springs to account for the existence of two plates 

 

In the study by Rex and Easterling, a single total initial stiffness value of the 

connection is determined by combining the three stiffness values assuming three springs 

in series as indicated in Equation (3.4). In this study, each shear resistant component is 

modeled separately to account for the order at which each spring/mechanism is activated 

in the model (i.e., bearing stiffness followed by bending stiffness then shearing stiffness). 

The resulting transverse stiffness model is shown in Figure 3-12. As shown in the figure, 

the transverse resistance is characterized by four stages; namely slipping where friction is 

the main contributor to the shear resistance, bearing or ovalization of the bolt-hole, 

bending, and shearing. Throughout all four stages, friction between the faying surfaces is 

activated in the finite element analysis through contact formulations. 
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Figure 3-12 Transverse connection stiffness with all shear resistance mechanisms 

 

3.5.2.5 Web Angle Idealization 

The web angle leg connected to the column flange is modeled using planar 2D 

elements. Spring elements are used to represent the bolts connecting the angle leg to the 

column flange. The load-deformation relationship of the springs represents the axial 

stiffness of the bolt and bolt pretension while accounting for the complex 3D deformation 

of the angle leg. To account for such deformation, an equivalent angle strip model is 

developed and used to evaluate the bending stiffness of the angle leg as shown in Figure 

3-13. The width and length of the equivalent strip are set equal to the width of the angle 

and half the length of the angle leg (accounting for tributary area on each side of the 

bolts), respectively. The initial step in evaluating the stiffness in each spring is setting 

proper boundary conditions to represent the actual physical behavior. To do so, the 

rotation at the end of the strip are set to zero to simulate prying action (1 and 2 are set to 

zero), then a pretension force in the bolts, which is equal to 0.8*fy*Abolt is used as nodal 
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forces at the end of each strip. After formulating the boundary conditions, a unit 

displacement is applied at the middle of the strip to obtain stiffness coefficients for the 

springs. It is important to note that the flexibility of the column flange is accounted for in 

the finite element model through physical modeling of the column. 

 

Figure 3-13 Idealization of the web angle including the equivalent strip model 

 

3.5.3 Validation of the Analytical Model 

The analytical model is verified against the first hybrid simulation results (frame 

with 30% Mpbeam). Satisfactory agreement was observed between the experimental and 

analytical results as described in Chapter 4.  
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3.6 Experimental Module 

The experimental component of the simulation utilizes the MUST-SIM facility at 

UIUC. The main testing components included a full-scale bolted beam-column 

subassembly. The beam comprised a portion of first-story beam in the first bay while the 

column included portion of the first-and second-story columns in the same bay. The 

experiment utilized two large LBCBs, the L-shaped strong wall, Krypton and other 

conventional instrumentations for measuring strain and displacement fields, and still 

cameras for collecting images. 

3.6.1 Test Specimen Configuration 

As mentioned above, the column and beam are designed using strong-column-

weak-beam provisions with the lateral load resisting system designed as a SMRF. The 

connections are designed as top-and seat-angle with double web-angle with capacity of 

70%, 50%, and 30% of the beam’s plastic moment capacity. Figure 3-14 shows an 

elevation of the frame with red dashed line representing the physical specimen to be 

tested. 

 

Figure 3-14 Elevation view of the SMRF with red-dashed line representing the physical 

specimen to be tested 
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3.6.2 Consideration for Column and Beam Length 

Different factors are considered when selecting the length of the beam and 

column as well as the location at which the physical subassembly is extracted from the 

original frame (i.e. the interface points between the physical specimen and the analytical 

module). The plan at which the column is cut is selected such that the column remains 

elastic with no yielding or plastic hinge formation in the column specimen in any of the 

three simulations. In doing so, significant cost savings are achieved since the same 

column is used in all three simulations without the need for replacing the column 

specimen. Since W-sections are available in 20 ft length, the height of the column 

specimen is chosen such that enough steel is to remain for conducting material testing 

and quantify the material properties of the steel used. Similarly, for the beam portion of 

the specimen, a 20 ft long W-section is acquired for fabrication. Initial finite element 

results indicated local yielding of the beam web caused by load transfer resulting from 

the interaction between the top and seat angle with the beam flange. Therefore, it was 

decided to divide the beam into four different portions; three of which are used in the 

hybrid simulation while the fourth is used in material testing. With other constraints 

pertaining to the position of the LBCBs on the strong wall and the availability of steel 

used for the column base-plates and the end-plates connected to the end of the beam and 

column, the resulting final length of the column and beam is 17’-5/16” and 5’-1 5/8”, 

respectively. 

The beam and column are welded to 48” x 48” x 2 ¼” plates at their respective 

ends using 1 in full joint penetration welds. At the top end of the column and at the end of 

the beam, a positive bolted connection is used to attach the base plates to the LBCBs. At 
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the base of the column, additional plates and a load cell is used to fill-in the reaming gap 

between the column-end base plate and the strong floor such that a fully-fixed condition 

is achieved. Figure 3-15 shows an elevation view of the physical specimen with its final 

dimensions. 

 

Figure 3-15 Elevation view of the physical specimen with its final dimensions 
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3.6.3 Connection Topology 

As previously mentioned, the connection investigated in this study comprises top 

and seat-angle with double web-angle. The angle components of the connection are 

bolted to the beam and the column using A325 high strength structural bolts with turn-of-

the-nut method. Figure 3-16 shows detailed geometry of the connections with capacity 

equal to 70% Mpbeam, 50% Mpbeam, and 30% Mpbeam. 

 

(a) 70% Mpbeam connection 

 

 

(b) 50% Mpbeam connection 

Figure 3 – 16 cont. at top of page 58 
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(c) 30% Mpbeam connection  

Figure 3-16 Detailed geometry of the semi-rigid connections 

 

The geometrical variation that constitutes the difference between all three 

specimens includes angle size, bolt size, and location of bolts (i.e. the beam and column 

sizes are kept the same throughout the investigation). The standardized parameters 

typically used for describing the geometry of these types of connections are shown in 

Figure 3-17. The geometrical parameters for all three connections are listed in Table 3-1. 

 

Figure 3-17 Geometrical parameters of the connection, after: (Leon, Wan Hu et al. 2004) 
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Table 3-1 Summary of the geometrical parameters of the connections 

Connection Capacity 
d 

(in) 

T 

(in) 

k 

(in) 

La 

(in)  

ts 

(in)  

ta 

(in) 

l 

(in)  

ga 

(in) 

p 

(in)  

G 

(in)  

W 

(in)  

70% Mpbeam 17.9 1-3/16 3 8 1 5/8 16 2-3/4 5-1/2 3 1-1/4 

50% Mpbeam 17.9 1-3/16 3 8 3/4 1/2 14 2-3/4 5-1/2 3 1 

30% Mpbeam 17.9 1-3/16 3 8 1/2 3/8 14 2-3/4 5-1/2 3 1 

 

3.6.4 Test Matrix 

The tests are conducted on full-scale specimens representing a beam-column 

subassembly of the two-bay-two-story structure. The beam and column sections used are 

W18 x 40 and W14 x 159, respectively. For the purpose of preserving consistency with 

previously published test results, Table 3-2 summarizes the test matrix in the same format 

presented by Azizinamini and Radziminski (1989). 

Table 3-2 Test matrix geometrical parameters 

Specimen ID Beam Section 
Bolt Diameter* 

(in) 

Top and Seat Angles Web Angles 

Angle 
l 

(in) 

g 

 (in) 

p 

(in) 
Angle 

la 

(in) 

70% Mpbeam W 18 x 40 1-1/4 L8 x 6 x 1 16 3 5-1/2 L6 x 6 x 5/8 8 

50% Mpbeam W 18 x 40 1 L6 x 6 x ¾ 14 3 5-1/2 L6 x 6 x 1/2 8 

30% Mpbeam W 18 x 40 1 L6 x 6 x ½ 14 3 5-1/2 L6 x 6 x 3/8 8 

*Bolt diameter values are for the bolts connecting the top and seat angles to the column flange 

 

Two different tests are conducted on each of the three specimens with the 

exception of the 70% Mpbeam specimen which was tested only once. The first test 

included subjecting the specimens to deformations resulting from stepping through a 

horizontal earthquake ground motion during the hybrid simulation. After the hybrid 

simulation is concluded, a post-earthquake cyclic test is initiated to assess the 

fundamental characteristic of the connection including its stiffness, residual capacity, and 

ductility. Due to technical problems associated with the LBCBs, cyclic testing of the 70% 
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Mpbeam connection was not conducted. Table 3-3 lists a summary of the test matrix 

loading parameters. Detailed discussion of the ground motion scaling and the cyclic 

loading history is discussed below in this chapter.  

Table 3-3 Test matrix loading parameters 

Test ID* Test Type Input Control Type 

H70% SPSD Horizontal ground motion Disp. control 

-- -- -- -- 

H50% SPSD Horizontal ground motion Disp. control 

C50% Cyclic Cyclic arc motion Disp. control 

H30% SPSD Horizontal ground motion Disp. control 

C30% Cyclic Cyclic arc motion Disp. control 

* “H” indicates hybrid testing whilst “C” indicates cyclic testing 

3.6.5 Material Properties 

To ensure the angles are the main energy dissipating elements when subjecting 

the frames to ground motion, the connections are designed with assumed material yield 

strength of 36 ksi for the angles and the beams and columns are designed with assumed 

yield strength of 50 ksi. Tensile coupon tests are conducted on specimens fabricated from 

material extracted from the beam, column and angles and the resulting stress-strain 

curves are used in the analytical model.  

Two coupons are fabricated from the beam, the column, and the angles. Owing to 

their different heating and cooling rate during the hot-rolling process, the variation in the 

yield strength of the web and the flange is typically on the order of approximately 5%. 

Heavier W-sections with thick flanges, exceeding 2 inches, are expected to have larger 

variation in the flange and web yield strength due to the large difference in the cooling 

rates between the flange and the web during the manufacturing process. Since the 

sections used in this study are not classified as heavy sections according to AISC with 
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flange thickness of 1/2” and 1-3/16” for the beam and column, respectively, it was 

decided to fabricate the beam and column coupons from material extracted from the 

flanges only. Fabrication and testing of the coupons is in accordance with ASTM A370. 

A prototype coupon specimen, the 100 kip uniaxial universal testing machine used for 

testing, and the observed necking of the specimen during the tests are shown in . 

Summary of the material properties resulting from material testing is included in Table 

3-4. 

 

Figure 3-18 Tensile Testing of coupons specimens 

 

 

 

 

 

(a) Coupon specimens 

(b) Observed necking (c) 100 kips uniaxial testing machine 
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Table 3-4 Material properties of beam, column, and angles 

Component 
tp 

(in) 
*sy 

(ksi) 

*su 

(ksi) 

Angles 

3/8 46.1 69.6 

1/2 50.8 81.5 

3/4 52.2 75.3 

1 48.6 72.4 

Beam flange 1/2 57.6 67.6 

Column flange 1-3/16 54.66 71.2 

* Average of the two coupon tests is listed 

  

 

 

 

 

 

3.6.6 Experimental Setup and Instrumentation 

As illustrated in Figure 3-15, the experimental setup included a beam-column 

subassembly where the beam and column were welded to 48” x 48” x 2 ¼” plates at their 

respective ends using 1in full joint penetration welds. The base plates at the top end of 

the column and the right end of the beam are bolted to the LBCBs platforms which 

impose the required displacements and boundary conditions during testing. The base 

plate welded to the bottom end of the column is attached to different size steel plates 

which are tied to the strong floor. Several computer monitors are used during testing to 

provide an interactive visual analysis environment where all aspects of testing can be 

monitored. Figure 3-19 shows an overview of the display of each computer monitor used 

in the simulation, excluding the one associated with the Krypton camera. As shown in the 

figure, ten computers are utilized during the tests and included software needed for the 

experimental control and data collection. An overview of the experimental set up is 

shown in Figure 3-20. 
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Figure 3-19 Display of computer monitors used during testing 

 

 

Figure 3-20 Overview of the experimental setup 

 

Each test included a total of 175 channels, which were installed on the specimen 

and recorded using a National Instrument Data Acquisition (NI-DAQ) system. In addition, 
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each LBCB houses 6 load cells and 6 LVDTs for displacement and load measurements, 

respectively, for each actuator.  

The instrumentation plan is developed and installed to capture the global response 

of the beam-column subassembly as well as its local response. The global parameters 

measured during testing included displacement, rotations, forces, and moments. A dense 

instrumentation array is used to measure the localized deformation of the connection and 

included strain gauges, linear potentiometers (linear pots), inclinometers, and optical 

devices. The strain gauges are used to measure the strain distribution across the angles 

and the localized strain on the flange and web of the beam and column. The linear pots 

are used to measure slip of the bolts and bolt deformation, the relative deformation 

between the beam and column, and the panel zone deformation of the column web. The 

inclinometers are used to measure the relative rotation between the beam and column.  

A breakdown of the sensors used to capture the local and global response of the 

specimens is listed in Table 3-5. Detailed description of the sensors and their locations 

can be found in APPENDIX B. 

 

 

 

 

 

 



  65 

Table 3-5 Breakdown of the specimen and LBCBs sensors 

 Sensor type Count Global response Local response Purpose 

S
p

ec
im

en
 

String Pots 3 X -- Displacement 

Linear pots 35 -- X Displacement 

Strain gauges 134 X X Strain 

Inclinometers 3 X -- Rotation 

Krypton 175 X X **Deformations 

v
is

u
al

 Still cameras 6 X X Still images 

Video cameras 2 X X Video 

L
B

C
B

s LVDT 12 -- X Displacement 

Load cells 12 -- X ***Actions 

String pots 6 X -- Displacement 

*XX LEDs were used 

**Deformations implies displacement and rotations 

***Actions implies loads and moments 

 

3.6.7 Control 

3.6.7.1 Elastic Deformations of the LBCBs 

As previously mentioned, the actuators housed inside the LBCBs are connected at 

one of their end to a platen. The commands received by the LBCBs through UI-SIMCOR 

are specified in the Cartesian space and translated into actuator space commands. 

Mapping from Cartesian space to actuator space is done through a transformation matrix, 

resulting in motion of the platen to the desired position in space. It is important to point 

out that when the platen is not connected to a specimen, the resulting motion of the platen 

is exactly as desired. However, when a connection between the specimen and the platen 

is made, elastic deformation of the LBCBs could occur, leading to inaccurate motion of 

the platen.  

Elastic deformations arise as a result of the interaction between the test specimen 

and the LBCBs during testing. Specifically, due to the finite stiffness of the specimen, 
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part of the executed motion by the actuators in their own space is consumed through the 

deformation of the LBCBs instead of the specimen. If no specimen is connected, the 

actuators are able to execute the commands with a very high accuracy on the order of 

0.001 in. 

To overcome the issue of elastic deformations, external sensors are used in a 

closed feedback loop to measure the physical displacement of the LBCBs in space, with 

reference to fixed external locations. The external transducers allowed for precise 

measurement of the in-plane rigid body displacements and rotation of the LBCB platform 

through the use of a variation of Newton’s method with a Jacobian transformation matrix. 

A description and a verification of the used method can be found in  (Bennier 2009) 

Prior to employing the external sensor deformation approach in the large-scale 

facility, the small-scale (1/5
th

) MUST-SIM facility was used to verify the developed 

control protocol. 

 

Figure 3-21 Small-scale testing facility including the rubber and steel specimens used for 

control verification 
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3.6.7.2 Relative Deformation Approach 

As previously discussed, the physical component of the simulations comprised a 

beam-column subassembly in a two-story four-bay semi-rigid steel frames. Three 

locations are chosen for the interface between the experimental and the analytical 

component. The interface locations are nodes where force compatibility is enforced by 

UI- SIMCOR between the analytical and experimental modules. The plan at which the 

column is cut was selected such that the column specimen remains elastic with no 

yielding or plastic hinge formation in any of the three simulations. This resulted in cost 

savings associated with specimen fabrication since the same column can be used in all 

three simulations.  

In each simulation step, all interface points (a total of three) received 

displacement commands from UI-SIMCOR and sent back their current executed 

displacement and the corresponding restoring forces. In the analytical module, all 

interface points are free to translate and rotate in planar motion based on the commands 

received from UI-SIMCOR. However, in the physical module, the column is fixed to the 

lab floor; allowing only for two points to freely move in planar space. These two points 

are the top end of the column and the right end of the beam, which are both connected to 

an LBCB, each of which is responsible for imposing the deformations received by UI-

SIMCOR. The reason for physically controlling two points only in the laboratory is due 

to other testing commitments where a third LBCB was not readily available for usage. To 

overcome this issue, the concept of relative motions is used to impose deformations on 

the physical sub-structure by condensing the three nodal deformation values into two 

nodal values prior to sending the commands to the LBCBs. After the commands are 
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executed, the relative deformation approach is used once again to convert the two-nodal 

information into three-nodal information as required by UI-SIMCOR. The corresponding 

restoring force values at the base of the column are obtained using equilibrium since the 

force readings at the other two nodes are known. Prior to returning the displacement and 

force readings back to UI-SIMCOR, the relative displacements are inverted back into 

absolute displacements. The concept of relative deformation is shown schematically in 

Figure 3-22. 

 

Figure 3-22 Concept of relative deformation used to map the three-point information to 

two-point information and vice-versa 

 

The calculations associated with converting the three-point information to two-

point information and vice versa are conducted using the LBCB Plugin, which is a 

MATLAB-based GUI developed specifically for the tests and is shown in Figure 3-23. 

Verification of the used method can be found in  (Bennier 2009).  It is worth noting that 

using an LBCB to control the bottom end of the column would have been a good 
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alternative as it eliminates the need for adopting the concept of relative deformation 

during testing. 

 

Figure 3-23 A snap shot of the LBCB plugin used during the simulation 

 

It is worth noting that in addition to condensing the control points, the LBCB 

Plugin served various purposes during the simulations. For example, deformation 

commands sent by UI-SIMCOR to the LBCBs go through the Plugin first where they are 

checked against safety limits. Similarly, deformation and restoring actions measured by 

the LBCBs are returned to the Plugin for safety checks prior to being accepted by UI-

SIMCOR. In addition, the elastic deformation calculations and the associated external 

control discussed above are also performed within the Plugin. Moreover, implementation 

of sub-stepping is also conducted within the plugin. As a safety precaution, the sub-

stepping technique allowed for the reduction of the size of an experimental step into 

smaller steps based on a specific threshold value. The last functionality of the LBCB 
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Plugin is to trigger data collection once a simulation step is completed. Indeed, the Plugin 

is a vital component for successfully conducting the simulations. 

3.7 Integration of the Analytical and Experimental Modules 

As previously mentioned, the integration of the experimental and analytical 

modules is conducted using UI-SIMCOR. The simulation starts with a stiffness 

evaluation step where predefined deformation values are sent to both the experimental 

and analytical modules for the evaluation of the system stiffness matrix. In the gravity 

load application step, following stiffness evaluation, gravity loads per tributary area of 

the moment-resisting frame are applied in the finite element model as distributed load on 

the beams. As a result of such, target deformation commands are sent to the LBCBs to 

enforce equilibrium of actions between the experimental and analytical modules, 

resulting in a desired deformation of the physical specimen in a way which corresponds 

to the application of distributed load on the specimen. In the dynamic step, time 

integration is conducted using the -Operator Splitting method. A schematic of the 

hybrid simulation approach is shown in Figure 3-24. 
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Figure 3-24 Schematic of the hybrid simulation approach 

3.8 Selection of Ground Motion 

As previously indicated, the building is designed assuming it is located in Los 

Angeles, California. Therefore, records collected during the Northridge and Loma Prieta 

earthquakes are considered as they fit the location criteria. A total of 40 records were 

selected with approximately 30 to 40 seconds of motion duration and 0.005 to 0.02 

seconds of varied time steps. The number of records is further reduced to 20 based on 

epicentral distances of 5-10 km and 15-20 km such that both short-period and long-period 

structures would be excited. The records are further narrowed down based on the spectral 

acceleration to ensure that structures with periods between 0.5 sec and 1.2 sec would be 
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stimulated. The characteristics of the selected records are summarized in Table 3-6 and 

the acceleration elastic response spectra with 2% damping is shown in Figure 3-25. 

Table 3-6 Characteristics of the selected ground motions for the hybrid simulation 

Record Recording Station Recording Direction 
Epicentral Distance 

(km) 

PGA 

(g) 

L
o

m
a 

P
ri

et
a 

(1
9

8
9

) 

Corralitos 90 5.1 0.479 

LGPC 0 6.1 0.563 

Capitola 14.5 0.529 0 

Emeryville 260 67.7 0.25 

N
o

rt
h

ri
d

g
e
 

(1
9

9
4

) 

Sylmar 18 6.1 0.828 

Newhall FS 360 7.1 0.59 

Arleta FS 90 9.2 0.344 

Beverly Hills 9 19.6 0.416 

 

 

Figure 3-25 Acceleration elastic response spectra with 2% damping of the selected records 

 

In order to select one of the eight records to be used in the hybrid simulation, an 

eigenvalue analysis is conducted to determine the natural period of the structure and 

ensure high demand on the frame in its elastic and inelastic ranges. Finite element models 

of the frames are developed and analyzed using ABAQUS software. The models are 
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discussed more in details in Chapter 4. The natural period of vibration calculated by UI-

SIMCOR for the sub-structured models are 0.911 sec, 0.932 sec, and 0.971 sec for the 70% 

Mpbeam, 50% Mpbeam, and 30% Mpbeam frames, respectively. To ensure constant demand 

on the structure during its period elongation, the 1989 Loma Prieta earthquake is selected 

for the hybrid simulation. Specifically, the station used is USGS 1662 Emeryville, 77 km 

from the epicenter of the earthquake, on soft soil (Vs = 199 m/s) with peak ground 

acceleration of 0.26 g. The record is shown in Figure 3-26. 

 

Figure 3-26 Loma Prieta acceleration time-history record with time step of 0.005 seconds 

 

3.8.1 Duration of Motion and Time Step 

To reduce the total time required to complete the simulation, the duration of 

motion and time step of the actual earthquake record are both modified. First, the 

duration of motion is reduced by removing the initial portion of the record, characterized 

by small acceleration amplitudes, while maintaining the same initial conditions of the 

record. Secondly, the time step is increased from 0.005 seconds to 0.02 seconds without 

missing any of the record peaks. The modified record is shown in Figure 3-27. Figure 

3-28 shows excellent agreement between the elastic acceleration response spectrum of 
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the original and modified records which indicates that truncating the record and 

increasing the time step would not alter the impact of the earthquake on the structure. 

 

Figure 3-27 Loma Prieta acceleration time-history record with time step of 0.02 seconds 

 

 

Figure 3-28 Elastic spectral acceleration of the original and modified records 

 

3.8.2 Record Scaling 

The record is scaled to ensure constant capacity-to-demand ratio for all three 

frames where the demand is chosen to be 5% higher than the capacity. The capacity is 

defined as the base shear value at which the base shear versus displacement curve starts 
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to flatten out. The curve is obtained from conventional pushover analysis of the structures 

as shown in Figure 3-29.  The figure shows an example of how the capacity and demand 

are defined for the 30% Mpbeam frame. The resulting equation used for calculating the 

scaling factor used to scale the records is: 

1.05*

*

capacity

a

V
n

W S
  (3.5) 

 

Where; n is the scaling factor, Vcapacity is the capacity of the structure (defined 

from pushover analysis), W is the weight of the structure, and Sa is the spectral 

acceleration. The scaling factor used in the simulations is calculated to be 0.830, 0.810, 

and 0. 763 for the 70% Mpbeam, 50% Mpbeam, and 30% Mpbeam frames, respectively. It is 

important to point out that the pushover curves of all semi-rigid frames are characterized 

by a tri-linear curve which indicates early yielding of the frames. Such behavior is not 

observed through the pushover curve of the rigid frame. 

 

Figure 3-29 Pushover results for rigid and semi-rigid frames 

Vcapacity

Vdemand
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The initial stiffness, yield base shear, and ultimate base shear for all three frames 

are listed in Table 3-7. The table also includes the corresponding values for a rigid frame 

of the same geometry, dimension, loading, and boundary conditions.  

Table 3-7 Initial stiffness, yield, and ultimate base shear from pushover analysis  

Frame ID 
ki 

(kips/in) 

Vy 

(kips) 

Vu 

(kips) 

70% Mpbeam 53.9 115.20 296.4 

50% Mpbeam 43.3 107.52 286.6 

30% Mpbeam 39.6 93.74 268.5 

Rigid 48.6 266.9 291.2 

 

It is worth noting that the 70% Mpbeam exhibit larger initial stiffness than the rigid 

frame. The frame although designed for semi-strength behavior, its response exceeds that 

of a fully rigid frame due to the size of the connection angles and bolts.  According to 

AISC (American Institute of Steel Construction (AISC) 2005) a connection is defined as 

full strength once its capacity exceeds that of the beam as shown in Figure 3-30. A 

monotonic loading of an analytical model of a beam-column connection of the 70% 

Mpbeam frame indicated connection strength of 1.3 times that of the plastic moment of the 

beam. It is also worth mentioning that although during the hybrid simulation, the 70% 

Mpbeam specimen exhibited no visible permanent deformation; the maximum strength 

sustained by the connection during the simulation is approximately 86% of the beam 

plastic moment. Such value indicates the high inherent overstrength of the connection 

and the likelihood for the connection capacity to well exceed the plastic strength of the 

beam. 
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Figure 3-30 Relationship between the strength of the connection and the beam, 

after:(American Institute of Steel Construction (AISC) 2005) 

3.9 Verification of the Sub-structuring Scheme 

Prior to conducting the hybrid simulation using the analytical and experimental 

modules, a full analytical model of the 30% Mpbeam frame was sub-structured into two 

models and subjected to the ground motion using UI-SIMCOR to verify the sub-

structuring technique and to ensure that the simulation yields similar results to that of a 

full model analyzed using ABAQUS alone. The SPSD simulation consisted of 

analytically dividing the whole frame into two models. The first model is a representation 

of the experimental module while the second model represents the analytical module as 

shown in Figure 3-31. 
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Figure 3-31 Sub-structured analytical models for the 30% Mpbeam frame with blue box 

enclosing the model representing the experimental component 

 

The integration of both analytical models (analytical-analytical) in a PSD 

simulation was conducted using UI-SIMCOR. For the purpose of verifying the results of 

analytical sub-structured simulation, a full model is developed and nonlinear dynamic 

response-history analysis is carried out entirely within ABAQUS. The full model is 

shown in Figure 3-32. 

 

Figure 3-32 Complete analytical model of the 30% Mpbeam frame used for comparison 

against SPSD analytical simulation 

 

The record selected for the verification is the same earthquake used in the hybrid 

simulation, which is the scaled 1989 Loma Prieta earthquake. The comparison is 
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conducted for the first 20 sec of the event since beyond the time of 20 seconds the record 

is characterized by very low acceleration amplitude. Figure 3-33 shows a comparison of 

the roof displacement resulting from the SPSD simulation and the full model. As shown 

in the figure, excellent match is observed in the linear range while some differences are 

observed in the nonlinear range of response. This could be due to many factors including 

for example the slight difference in the fundamental period of the structure calculated 

using UI-SIMCOR when compared with one calculated using the ABAQUS Eigen solver.  

For example, the fundamental period predicted by UI-SIMCOR is equal to 0.911 sec 

while ABAQUS determined the fundamental period to be 0.904 sec. In addition, 

differences exist between the time integration scheme used in UI-SIMCOR and 

ABAQUS. The observed difference in response is considered acceptable and therefore, 

investigation of the reasons for the inexact match will not be pursed.  

 

Figure 3-33 Roof displacement comparison between the sub-structured and full ABAQUS 

model 
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3.10 Summary and Conclusion 

In this chapter, different dynamic testing methods are highlighted and their pros 

and cons discussed. The concept of sub-structured PSD hybrid simulation is chosen in 

this study for the system-level evaluation of semi-rigid steel frames. The method requires 

the structure analyzed to be divided into various components; either experimental 

modules, analytical modules or a combination of both. In this investigation, an 

experimental and an analytical component of a 2-bay 2-story semi-rigid frame are used. 

The frame is designed as special moment-resisting frame (SMRF) with rigid connections 

according to IBC 2006. The rigid connections are then replaced by semi-rigid 

connections designed in accordance with EC3. Specifically, three connections with 

capacities equal to 30%, 50%, and 70% of the plastic moment capacity of the beam are 

employed in three different frames to investigate the response of the frames under 

seismic events. 

The analytical component of the hybrid simulation is a multi-resolution model 

which comprised a 2D generalized plane strain element for the beam-to-column 

connections and 1D beam elements between subsequent connections. Many behavioral 

features are captured by the model including hot-rolling residual stresses in the angles, 

bolt preload, friction between faying surfaces, connection slip, and the effect of bolt-hole 

ovalization. The effect of the inner gravity frames on the stability of the moment-resisting 

frame is also accounted for in the model through a leaner column connected to the frame 

through tie multi-point constraint. 
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The experimental component of the simulation comprised a beam-column 

subassembly representing part of the column in the first-and second-stories and part of 

the beam framing into the column in the first left bay. The response of the physical 

specimen during the simulation is measured through the use of a very dense 

instrumentation array aimed at capturing the local and global behavior of the specimen. 

The instrumentation program utilized a noncontact measuring device (Krypton) for 

measuring the 3D deformation of the specimen as well as other conventional sensors for 

measuring strains and displacements. Stationary cameras are also used to collect images 

of the experiment during the simulation. 

Prior to conducting the simulation, the 1/5
th

-scale was used for evaluating the 

control algorithm to be utilized in the simulation. External sensors are used in a feedback 

loop to account for the elastic deformation of the LBCBs and correct the position of the 

LBCB platens. In addition, relative deformation between the control points is used in the 

experimental module to account for the fact that the base of the column is fixed in the 

laboratory instead of being controlled by an LBCB. Accounting for elastic deformation 

and relative deformation is conducted using the LBCB Plugin, which is a MATLAB 

based software developed at UIUC. The whole simulation is orchestrated by UI-SIMCOR, 

which its primary responsibility is to perform the numerical integration and step through 

the acceleration history. 
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CHAPTER 4 

 

SIMULATION RESULTS AND OBSERVATIONS 

4.1 Introduction 

Pseudo-dynamic hybrid simulations are performed in order to investigate the 

effect of earthquake loading on the seismic performance of semi-rigid steel frames with 

top-and seat-angle with double web-angle connections. In addition, an assessment of the 

fundamental characteristics of the connection following an earthquake is conducted using 

cyclic tests with target rotational values which are multiples of the yield rotation of the 

30% Mpbeam connection. In this chapter the experimental results, including visual 

description of the connection deformation, are discussed. It is important to note that 

dense instrumentation array was installed on the specimens to capture the behaviour. 

Additionally the array included sensors installed at redundant locations in case 

unexpected failure of any of the sensors occur during the tests. However, data collected 

by only a sample of the instruments are discussed in this chapter and are chosen such that 

the most important characteristics of the connections are highlighted. 



  83 

4.2 Loading Scenario 

4.2.1 Initial Stiffness Evaluation 

The time integration scheme employed in UI-SIMCOR, α- Operator Splitting time 

integration (α-OS) method, requires the determination of the initial stiffness of the 

experimental module and the analytical module prior to conducting the simulation.  

In determining the initial stiffness, UI-SIMCOR imposes a predefined target 

displacement on both modules for a given degree of freedom and records the restoring 

force needed to populate the stiffness matrix. For the experimental module, the 

predefined target displacement is imposed on the specimen using the LBCBs and the 

restoring forces are measured with load cells located at the end of the hydraulic actuators 

housed within the LBCBs.  

4.2.2 Gravity Loading Stage 

Prior to starting the simulations, gravity loads were applied to the system using 

the loading combination of: 

1.0 10 0.25DL psf LL   (4.1) 

 

Where the DL indicates dead load, the 10 psf is used for partition walls, and LL 

indicates live load. The resulting distributed load is listed in Table 4-1.  

Table 4-1 Distributed gravity loads applied to the frames during the simulations 

Level 
1.0 DL + Partitions 

(kips/in) 

0.25 LL  

(kips/in) 

Roof 0.0863 0.0013 

1st 0.095 0.05 
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Gravity loads on the outer moment-resisting frames and the core gravity frames 

are calculated per their respective tributary areas and their effect is incorporated in the 

simulation. As previously discussed in Chapter 3, gravity loads carried by the core 

gravity frames are considered through the application of point loads on the leaner 

columns modeled as truss elements and connected to the frame through tie multi-point 

constraints. For the moment-resisting frames, gravity loads are applied as distributed load 

on the beam. 

It is important to mention that in most of the analytical studies available in the 

literature, the gravity loads are applied as point loads on the columns at the beam-to-

column joints instead of applying the load as distributed load on the beam. The approach 

is followed as some analytical software packages do not support the application of 

distributed loading and is justified by the fact that the P- effect is taken into account 

regardless whether the load is applied as distributed load on the beam or as point load on 

the column. In spite the logic in following such approach, visual assessment of the local 

connection behavior indicates different localized connection deformation following the 

application of gravity loads as distributed load on the beam in comparison with the load 

being applied as point loads on column. Figure 4-1 shows the two different methods 

mentioned for applying gravity loads with the localized connection deformation resulting 

from each method. As the figure shows, applying the load as point loads at the column 

results in “opening” of the seat angle and “closing” of the top angle whereas the effect is 

reversed when the load is applied as distributed load. Such difference in angle 

deformation has an effect on determining the global drift value at which first yield is 

reached. 
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(a) Point load applied to the columns    (b) Distributed load applied to the beam 

Figure 4-1 Localized connection deformation due to gravity load application 

(deformation scale is set to 100x) 

One approach for including the gravity load associated with the physical 

specimen is to include it as point loads in the analytical module at preferred 

locations/nodes. However, a new yet simple technique is utilized whereby gravity loads 

are indirectly applied to the specimen. To do so, distributed loads are applied only to the 

analytical model. As the case in all stages associated with testing, equilibrium has to be 

maintained during the initial loading stage between the experimental and analytical 

modules at their interface. Equilibrium is enforced as UI-SIMCOR sends target 

displacements to the LBCBs resulting in force and deformation compatibility between the 

two modules. The resulting physical deformation of the specimen is therefore 

representative of the gravity loading being applied. An exaggerated deformed shape of 

the analytical module due to gravity load is shown in Figure 4-2. 
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Figure 4-2 Deformed shape of the analytical module due to gravity loading (deformation 

scale of the analytical module is set to 100x) 

 

4.2.3 SPSD Tests with Selected Ground Motion 

As previously discussed in Chapter 3, the 1989 Loma Prieta earthquake (record 

collected at the USGS 1662 Emeryville station) is used for all three hybrid simulations. 

For proper comparison of the seismic performance of all three frames, the record is 

scaled in each test with consistently defined capacity to demand ratios. Characteristics of 

the earthquake and the scale factor used in each simulation are shown in Table 4-2. 

Table 4-2 Ground motion characteristics and scale factor 

Earthquake Mw Station 

Fault Distance Hor. 

PGA 

(g) 

 

Scale Factor 

Epicentral 

(km) 

Hypocentral 

(km) 
30% 50% 70% 

Loma 

Prieta 

(17/01/09) 

7.1 
Emeryville/Pacific Park 

Plaza Building 
96 17.48  0.245 0.763 0.810 0.83 
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4.2.4 Cyclic Tests with Different Rotation Levels 

Cyclic tests are conducted to evaluate the post-earthquake connection 

characteristics. Due to technical problems with the LBCBs, only the 30% Mpbeam and 50% 

Mpbeam connections are cyclically tested. To ensure no participation of the beam end 

connected to the LBCB to the moment resistance during the simulation and that the 

LBCB motion remains tangent to the load path, the deformation path is applied such that 

the center of the connection is acting as the center of rotation. Figure 4-3 shows the 

motion path of LBCB2 during the cyclic tests. Equation (4.2) and (4.3) are used to derive 

the target cycling loading protocol. 

 

Figure 4-3 Motion path of LBCB2 during the cyclic tests 
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It is important to note that during cycling of the 30% Mpbeam connection a strut 

action developed at the compression flange of the beam. This is due to the fact that the 

center of rotation for the cyclic loads is taken at the mid-height of the beam. For the 50% 

Mpbeam connection, a traveling center of rotation is used to move the center of motion 

towards the compression flange as the rotations increased and allow the tension angle to 

freely open up. 

The 30% Mpbeam cyclic test included two cycles through multiples of the yield 

rotation, which is determined from the hybrid simulation results to be 0.002 rad.  

Specifically, two cycles are applied at 3y, 6y, 12y and 24y for a total of 8 cycles. The 

increase in the target rotation is based on whether or not the connection sustained any 

damage. If no damage is observed at a given rotation, then the target rotation is increased. 

The imposed LBCB deformation history used to achieve the desired end rotation is 

shown in Figure 4-4. For proper comparison between the cyclic behaviors of the two 

tested connections, the same deformation demand is imposed on the 50% Mpbeam 

connection. 
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Figure 4-4 Deformation commands imposed at the LBCB connected to the beam end to 

achieve the desired connection rotation during the cyclic tests 

4.3 Frame with 70% Mpbeam under Earthquake Loading  

4.3.1 Comparison with Analytical Predictions 

Comparison between the predicted and measured second-story displacement for 

the frame with connection capacity equal to 70% Mpbeam is shown in Figure 4-5. 

Acceptable correlation is observed between the analytical predictions and hybrid 

simulation except for the range of time between 8.92 sec and 10.34 sec. The predicted 

maximum absolute displacement of the second story is 6.16 in, while the maximum 

absolute second-story displacement resulting from the hybrid simulation is 6.48 in and 

occurred at time 5.02 sec. The resulting error associated with the difference between the 

hybrid simulation results and the analytical predictions for the second-story displacement 

is -4.94%. Small difference in the frame period elongation is noted between the analytical 
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predictions and the hybrid simulation with larger difference observed beyond the peak 

response. 

 

Figure 4-5 Second-story displacement comparison between the hybrid simulation and the 

analytical predictions for the 70% Mpbeam specimen 

  

The overall comparison between the analytical predictions and hybrid simulation 

for the first-story displacement is similar to that of the second-story displacement where 

reasonable match is observed between both as shown in Figure 4-6. The predicted 

maximum absolute displacement of the first story is 2.67 in, while the maximum absolute 

first-story displacement resulted from the hybrid simulation is 2.89 in at time 5.02 sec. 

The corresponding error between the hybrid simulation results and the analytical 

predictions for the first-story displacement is -7.61%. 
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Figure 4-6 First-story displacement comparison between the hybrid simulation and the 

analytical predictions for the 70% Mpbeam specimen 

 

Figure 4-7 shows comparison between the predicted and hybrid simulation base 

shear. Similar to previous comparisons, reasonable agreement is observed between the 

predicted and the actual response. The maximum absolute base shear predicted is equal to 

280.4 kips, while the corresponding value resulting from the hybrid simulation is equal to 

281.6 kips at time 5.06 sec. The resulting error between the hybrid simulation results and 

the analytical predictions for the base shear is -0.426%. 
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Figure 4-7 Base shear comparison between the hybrid simulation and the analytical 

predictions for the 70% Mpbeam specimen  

 

In order to verify the analytical model and assess its capabilities in capturing the 

local moment-rotation relationship of the connection, a comparison is made between the 

analytical predictions and the physical specimen response during the hybrid simulation. 

Figure 4-8 shows a comparison of the rotation versus time between the predicted and the 

test value. Similarly, Figure 4-9 shows a comparison of the moment versus time between 

the predicted and the hybrid simulation results for the same specimen.  

As shown in both figures, up to the first peak of moment response (time range 

between 0 sec and 3.72 sec) small difference is observed between the analytical 

prediction and the hybrid simulation results. The predicted moment and rotation values at 

the first peak response are 1077 kips.in and 0.0071 rad, respectively. The corresponding 

moment and rotation are measured to be 1288 kip.in and 0.0072 rad, respectively. The 

error between the predicted and measured response is therefore -16.38% for the moment 

and -1.39% for the rotation. It is worth noting that both the moment and rotation curves 
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start with an offset value which resulted from the gravity loading step. It is also important 

to note that these values correspond to yielding in the connection. In addition, the 

response of the connection is characterized by audible slip during the whole simulation 

time including the gravity loading stage. From evaluating the response up to time of 3.72 

sec, one can conclude that the model captures the inelastic features of the connection with 

very reasonable accuracy.   

The figures also show large unmatched response between the analytical 

predictions and the hybrid results, particularly for the three peak responses at time 4.20 

sec, 4.76 sec, and 5.26. For the large positive peak response, the maximum predicted 

rotation at time 4.76 sec is 0.0143 rad while the measured response is 0.0197 rad, which 

corresponds to an error of -27.41%. The moment associated with the rotation at 4.76 sec 

is 3546 kips.in for the predicted response and 2454 kips.in for the measured response. 

The error between the predicted and measured large positive response is 44.50%.  

The reason for the discrepancy is due to a very large and highly dynamic slip that 

occurred during the simulation. The slip is characterized by very loud noise and shaking 

of the specimen, causing some of the sensors to fall off during testing. When the very 

dynamic slip occurred, it resulted in large difference of the measured actions between the 

experimental module and the analytical module. As a result, rotational commands are 

sent to the LBCB connected to the beam to impose larger rotations on the beam as UI-

SIMCOR attempts to maintain equilibrium at the interface of the modules. If equilibrium 

is not reached, larger rotations are imposed on the specimen in the next step in effort to 

increase the restoring forces to achieve equilibrium of actions. The process continues 

until the record reversed directions, and eventually equilibrium is reached at the same 
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load where slip occurred. It is rather surprising to note that all three connections 

experienced this dynamic slip a the exact same step in the simulation with the highest slip 

observed in the 30% Mpbeam followed by the 50% Mpbeam, then the 70% Mpbeam as shown 

in Figure 5-6, Figure 5-7, and Figure 5-8 for the 70% Mpbeam, 50% Mpbeam and 30% 

Mpbeam, respectively.  

 

Figure 4-8 Rotation comparison between the hybrid simulation and the analytical 

predictions for the 70% Mpbeam specimen 
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Figure 4-9 Moment comparison between the hybrid simulation and the analytical 

predictions for the 70% Mpbeam specimen 

 

4.3.2 Experimental Observations 

4.3.2.1 Connection Slip 

Data on the relative motion between the bolts connecting the top and seat angle to 

the top and bottom flange of the beam, respectively, are collected. It is important to note 

that although such motion is referred to here as slip, the value represent slip of the bolts 

in the bolt hole as well as bolt deformation. Slip in both the top angle and the seat angle 

connection is shown in Figure 4-10 and Figure 4-11, respectively. The top left image of 

the figures shows the arrangement of the linear pots used for measuring the relative 

deformation between the connection components while the top right image includes the 

sensor ID with the bolts labeled as bolt 1 through bolt 4 as shown in the figures. Opposite 

signs for the measured slip between the top and seat angles are observed which is 

expected since the connection is asymmetric. During the simulation, slip is visually 
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observed and also heard throughout the whole test. The maximum absolute slip between 

the top angle and the top beam flange was measured in bolt 3 and is equal to 0.149 in. It 

is important to note that small amount of slip is observed in bolt 1. The maximum 

absolute slip between the seat angle and the bottom flange of the beam, measured in bolt 

3, is equal to 0.162 in.  

 

Figure 4-10 Slip of the top angle bolts relative to the top beam flange during the hybrid 

simulation of the 70% Mpbeam frame  

 

1 2

3 4
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Figure 4-11 Slip of the bottom angle bolts relative to the bottom beam flange during the 

hybrid simulation of the 70% Mpbeam frame 

 

4.3.2.2 Localized Deformation 

The deformation of the specimen is characterized mainly by yielding in the top 

and seat angles and in the beam flange and web. Very small deformation is visually 

observed at the end of the simulation in the top angle and seat angle as shown inFigure 

4-12. Despite the low connection deformation, flaking of the whitewash, which was 

painted on the specimen prior to testing, is observed particularly on the top flange and 

beam web. The visual pattern resulting from flaking of the whitewash provides good 

indication of the localized deformation and yield line formation in the specimen. No 

failure of any of the connection components is observed during the test. 

1 2

3 4 8
5
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Figure 4-12 Deformation of the specimen during the hybrid simulation of the 70% Mpbeam 

frame 

 

The localized yielding in the connection is measured using special strain gauges 

capable of measuring strain in excess of the yield strain. Uniaxial strain gauges are 

installed at various locations on the top and seat angle legs to characterize the distribution 

of stresses in the angles as influenced by stress raisers such as sharp re-entry corners and 

bolt holes. The left image of Figure 4-13 shows the layout of strain gauges installed on 

both legs of the top angle. The largest measured strain in the leg connected to the beam 

flange is equal to 0.0056 as shown in the figure, which is higher than the material yield 

strain. Similarly, large strain in the beam web resulting from the interaction between the 

angles and the beam, in addition to the nominal stress, is also captured through the 

installation of high yield strain gauges. The gauges are installed in a rectangular rosette 

configuration to allow for the determination of the principal strains and their orientation 
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with respect to the rosette gauge if needed. The maximum absolute strain is equal to 

0.011 and is measured by the gauge oriented vertically on the web with the other two 

gauges exceeding the yield strain of the material as well. 

 

Figure 4-13 Strain measurements in the top angle legs connected to the beam flange and 

column flange during the hybrid simulation of the 70% Mpbeam frame 
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Figure 4-14 Localized strain in the beam web measured by the rectangular rosette gauges 

during the hybrid simulation of the 70% Mpbeam frame 

 

4.3.2.3 Relative Deformation of Beam with Respect to Column 

The deformation of the beam relative to the column is measured for the purpose 

of evaluating the connection relative rotation, which can be correlated with the moment at 

the column face. Since such information is of a very high importance as it characterizes 

the connection behavior, two different approaches are used to measure the deformation of 

the beam relative to the column. The main system utilized two linear potentiometers, with 

an accuracy of 0.001 in, which are perpendicularly mounted to the column and parallel to 

the beam (one above the top angle and one below the seat angle). With such arrangement, 

the relative displacement between the beam and column can be measured as the 

connection is cycled. The relative displacement between the top and bottom linear pots 

divided by the vertical distance between them is the corresponding rotation of the 

connection, which is presented in Chapter 5. The arrangement of the linear pots for 

measuring the relative displacement between the beam and column is shown in Figure 

4-15. The maximum absolute relative displacement of the top of the beam with respect to 

the column is equal to 0.325 in while the maximum absolute relative displacement of the 

bottom of the beam with respect to the column is 0.303 in. 

The second system used for measuring the relative rotation between the beam and 

column included three inclinometers (two mounted on the beam and one on the column). 

Specifically, one inclinometer is mounted at the center of the column panel zone, while 

the two other inclinometers are mounted on the beam web, directly above the bottom 

flange and directly below the top flange as shown in Figure 4-15. It is generally known 
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that inclinometers lack the level of accuracy needed for precise measurements. However, 

in using them, a level of redundancy in obtaining the moment-rotation relationship is 

ensured. It is important to note that it was expected that the two inclinometers on the 

beam, placed at two different locations, will not result in the same rotation values since 

the Euler-Beam theory assumption of “plane sections remain plane” will not be 

necessarily valid under large deformation. Therefore, the rotation of the beam is 

calculated as the average of the two inclinometers mounted on the beam. The difference 

between the beam and column rotation is taken as the relative rotation of the connection 

as discussed in Chapter 5. The maximum absolute rotation of the inclinometer installed 

near the top end of the beam web is measured to be 0.471
o
 while the maximum absolute 

rotation of the bottom of the beam inclinometer is measured to be 0.477
o
. The maximum 

absolute rotation measured by the column inclinometer is 0.821
o. 
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Figure 4-15 Rrelative rotation measurements between the beam and column during the 

hybrid simulation of the 70% Mpbeam frame  

4.4 Frame with 50% Mpbeam under Earthquake Loading  

4.4.1 Comparison with Analytical Predictions 

Comparison between the predicted and measured second-story displacement for 

the frame with connection capacity equal to 50% Mpbeam is shown in Figure 4-16. The 

figure shows good comparison between the analytical predictions and hybrid simulations. 

The predicted maximum absolute displacement of the second story is 6.73 in, while the 

maximum absolute second-story displacement resulting from the hybrid simulation is 

7.17 in at time 5.08 sec. The resulting error associated with the difference between the 

hybrid simulation results and the analytical predictions for the second-story displacement 

is equal to -6.13%.  

Larger period elongation is observed from the hybrid simulation in comparison 

with the analytical prediction, which implies that the analytical model is stiffer than the 

physical specimen. This is expected since stiffness and strength degradation of the 

material are not account for in the analytical model. The difference between the actual 

and predicted period elongation increase with increasing the number of cycles, which 

could be the reason for the larger difference observed towards the end of the simulation 

as shown in the figure. 
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Figure 4-16 Second-story displacement comparison between the hybrid simulation and the 

analytical predictions for the 50% Mpbeam specimen 

 

Reasonable agreement is also observed between the analytical prediction and the 

hybrid simulation for the first-story displacement as shown in Figure 4-17. The maximum 

absolute displacement of the first story is predicted to be equal to 2.87 in, while the 

maximum absolute first-story displacement resulting from the hybrid simulation is equal 

to 3.35 in at time 5.02 sec. The corresponding error between the hybrid simulation results 

and the analytical predictions for the first-story displacement is equal to -14.32%. 
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Figure 4-17 First-story displacement comparison between the hybrid simulation and the 

analytical predictions for the 50% Mpbeam specimen  

 

Comparison between the predicted and hybrid simulation base shear is shown in 

Figure 4-18. Similar to previous comparisons, resonable agreement is observed between 

the predicted and the actual response. The predicted maximum absolute base shear is 

equal to 273.3 kips, while the corresponding value resulting from the hybrid simulation is 

equal to 253.6 kips at time 5.14 sec. The resulting error between the hybrid simulation 

results and the analytical predictions for the base shear is equal to 7.77%. 
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Figure 4-18 Base shear comparison between the hybrid simulation and the analytical 

predictions for the 50% Mpbeam specimen 

 

The comparison between the predicted and the resulting moments and rotations 

are shown in Figure 4-19 and Figure 4-20, respectively. Similar observation is made with 

regard to the large discrepancy between the predicted and the measured values. The 

predicted rotation at time 4.94 sec is equal to 0.0087 rad while the measured value is 

0.0176 rad, which corresponds to an error of -50.6 %. Similarly, the predicted moment at 

time 4.94 sec is equal to 2856 kips.in while the measure value is 1358 kips.in, which 

corresponds to an error of -110 %. It is also noted that there appears to be a drift in the 

results for the time range between 0 sec and 3.8 sec. This could primarily be due to slip of 

the specimen baseplate, which was welded to the bottom end of the column and bolted to 

the lab floor. Despite the sufficient pretension load applied to the threaded rods 

connecting the baseplate the lap floor, noticeable slip, of approximately 1 in, was 

observed in the base of the specimen after the data was processed. It is important to note 
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that this slip did not affect the global deformation of the system during the simulation 

since the deformation of the specimen is calculated using relative deformation not 

absolute. 

 

Figure 4-19 Rotation comparison between the hybrid simulation and the analytical 

predictions for the 50% Mpbeam specimen 

 

 

Figure 4-20 Moment comparison between the hybrid simulation and the analytical 

predictions for the 50% Mpbeam specimen 
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4.4.2 Experimental Observations 

4.4.2.1 Connection Slip 

Similar to the previous simulation, experimental slip measurements are collected 

to quantify the relative motion between the bolts and the beam and column flanges. Slip 

of the bolts connecting the top and seat angles to the top and bottom beam flanges, 

respectively is shown in Figure 4-21 and Figure 4-22, respectively.  

The arrangement of the linear pots for measuring the relative deformation 

between the connection components is shown in the top left image of the figures while 

the top right image includes labeling of the bolts and the sensors number. Similar to the 

observation made in the first simulation, the slip is visually observed and heard 

throughout the test. The largest slip is measured and heard at time corresponding to the 

largest acceleration peaks. The expected opposite sign of slip shown in the figures is an 

indication of opening of one angle and closing of the other due to asymmetry of the 

connection. The figures also show that maximum slip in the top connection bolts and the 

seat connection bolts is observed in bolt 1 and bolt 3, which are the bolts closer to the 

column flange. The maximum absolute slip in the top angle is observed in bolt 3 to be 

0.185 in while the maximum absolute slip in the seat angle is observed in bolt 1 to be 

0.196 in. It is important to point out that although the largest slip value is observed in the 

seat angle, the top angle experienced larger slip at some locations along the record. 
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Figure 4-21 Slip of the top angle bolts relative to the top beam flange during the hybrid 

simulation of the 50% Mpbeam frame  

 

 

Figure 4-22 Slip of the seat angle bolts relative to the bottom beam flange during the 

hybrid simulation of the 50% Mpbeam frame 
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4.4.2.2 Localized Deformation 

The deformation of the specimen is characterized mainly by large yielding and 

plastic deformation in the top and seat angles and in the beam flange and web. As shown 

in Figure 4-23, gap opening between the top angle and the column flange is evident. 

Furthermore, large flaking of the whitewash on the bottom face of the top angle is 

observed, indicating the formation of yield lines and plastic hinges.  

 

Figure 4-23 Deformation of the specimen during the hybrid simulation of the 50% Mpbeam 

frame 

 

Uniaxial strain gauges are used to measure the distribution of the localized strain 

in the top and seat angle legs. The layout of strain gauges in both legs of the top angle 

used is shown in the left image of Figure 4-24. The largest measured strain is measured in 

the leg connected to the beam flange to be 0.023 as shown in the figure, which is 

significantly higher than the yield strain. Rectangular rosette gauges are installed on the 

beam web to measure the localized yielding in the web as shown in Figure 4-25. The 
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highest absolute strain is measured to be 0.0026 by the gauge oriented longitudinally on 

the web. 

 

Figure 4-24 Strain measurements in the top angle legs connected to the beam flange and 

column flange during the hybrid simulation of the 50% Mpbeam frame 

 

 

Figure 4-25 Localized strain in the beam web measured by the rectangular rosette gauges 

during the hybrid simulation of the 50% Mpbeam frame 
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4.4.2.3 Relative Deformation of Beam with Respect to Column 

The sensor layout arrangement used for measuring the relative deformation of the 

beam with respect to the column is the same used for the 70% Mpbeam simulation as 

shown in Figure 4-26. As previously mentioned, both linear pots and inclinometers are 

used to obtain the relative deformation to ensure redundancy in the measurements in case 

any of the sensors malfunctions during the simulation. The two sets of measurements are 

later used to derive the moment-rotation relationship of the connection as discussed in 

Chapter 5. 

With the linear pots arrangement, the maximum absolute relative displacement of 

the top of the beam with respect to the column is 0.446 in while the maximum absolute 

relative displacement of the bottom of the beam with respect to the column is 0.425 in. 

The measured inclinometer rotations are also recorded during the simulation.  The 

maximum absolute rotation of the top beam inclinometer is 0.686
o
 while the maximum 

absolute rotation of the bottom beam inclinometer is 0.597
o
. The maximum absolute 

rotation measured by the column inclinometer is equal to 0.908
o. 
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Figure 4-26 Relative rotation measurements between the beam and column during the 

hybrid simulation of the 50% Mpbeam frame  

4.5 Frame with 30% Mpbeam under Earthquake Loading 

4.5.1 Comparison with Analytical Predictions 

Figure 4-27 shows comparison of the second-story displacement between the 

analytical predictions and the sub-structured pseudo-dynamic test for the frame with 

connection capacity equal to 30% Mpbeam. It is important to note that the simulation was 

not completed and stopped after time 6.42 sec of the earthquake motion due to 

conversion problems associated with the analytical model. A closer look at the issue 

indicated contact convergence problems in the FEM. Interestingly, all sub-structured 

analytical simulations conducted prior to executing the actual hybrid test, demonstrated 

superior convergence which gave a false sense of confidence, prior to testing, in terms of 
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the ability to complete the hybrid simulation. The contact formulation was revisited and 

modified to increase the stability of the solution. 

The figure shows very good comparison between the analytical predictions and 

hybrid simulations. The predicted maximum absolute displacement of the second story is 

equal to 6.34 in, while the maximum absolute second-story displacement resulting from 

the hybrid simulation is equal to 7.13 in at time 5.80 sec. The resulting error associated 

with the difference between the hybrid simulation results and the analytical predictions 

for the second-story displacement is equal to -11.08%. 

 

Figure 4-27 Second-story displacement comparison between the hybrid simulation and the 

analytical predictions for the 30% Mpbeam specimen 

 

A similar comparison is made between the analytical predictions and the hybrid 

simulation results for the first-story displacement as shown in Figure 4-28. Acceptable 

agreement between the analytical prediction and the hybrid simulation is observed. The 

maximum absolute displacement of the first story is predicted to be equal to 2.41 in, 
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while the maximum absolute first-story displacement resulting from the hybrid 

simulation is equal to 2.77 in. The corresponding error between the hybrid simulation 

results and the analytical predictions for the first-story displacement is equal to -13%. 

 

Figure 4-28 First-story displacement comparison between the hybrid simulation and the 

analytical predictions for the 30% Mpbeam specimen 

 

A comparison between the predicted and hybrid simulation base shear is shown in 

Figure 4-29. Similar to the previous comparisons, reasonable agreement is observed. The 

maximum absolute base shear is predicted to be 219.7 kips, while the corresponding 

value resulting from the hybrid simulation is 202.8 kips at time 5.16 sec. The resulting 

error between the hybrid simulation results and the analytical predictions for the base 

shear is 8.3%. 
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Figure 4-29 Base shear comparison between the hybrid simulation and the analytical 

predictions for the 30% Mpbeam specimen 

 

Figure 4-30 shows a comparison of the rotation versus time between the predicted 

and that of the hybrid simulation. Similarly, Figure 4-31 shows a comparison of the 

moment versus time between the predicted and the hybrid simulation results for the same 

specimen. As shown in both figures, the analytical model is capable of capturing the 

response very well with the exception of two peaks at time 4.36 sec and 5.62 sec, which 

are not properly predicted. For the large positive peak response, the maximum predicted 

rotation at time 5.0 sec is 0.0138 rad while the measured response is 0.0154 rad, which 

corresponds to an error of -10.39%. The moment associated with the rotation at 5.0 sec is 

1723 kips.in for the predicted response and 1421 kips.in for the measured response. The 

error between the predicted and measured large positive response is -10.39% and 21.25%, 

respectively. As previously discussed, the reason for the discrepancy is due to the large 

dynamic slip in the connection as the case for the 50% Mpbeam and 70% Mpbeam 

specimens. 
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Figure 4-30 Rotation comparison between the hybrid simulation and the analytical 

predictions for the 30% Mpbeam specimen 

 

 

Figure 4-31 Moment comparison between the hybrid simulation and the analytical 

predictions for the 30% Mpbeam specimen 
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4.5.2 Experimental Observations 

4.5.2.1 Connection Slip 

One of the main observations during the simulation is the large slip in the 

connection caused by the relative motion between the top and seat angles and the beam 

flanges. Figure 4-32 and Figure 4-33 show the linear pots arrangement and detailed 

description of sensor layout in the top left and right images of the figures, respectively. 

The slip is observed visually and also heard throughout the tests with very large audible 

sound characterizing large dynamic slip in the connection corresponding to the large 

peaks of the earthquake motion. The top and seat angle bolts connected to the beam 

flange are labeled as bolt 1 through bolt 4. Opposite sign of the measured slip values 

between the top and seat angles is shown in the figures, which is in agreement with the 

expected physical deformation of the angles. 

The figures also show scatter in the measured slip values with obvious difference 

in the slip of bolt 4 of the top angle. The maximum absolute slip value is observed to be 

in bolt 3 of the top angle and is equal to 0.0645 in. The maximum absolute slip in the seat 

angle is measured in bolt 1 and is equal to 0.165 in. 
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Figure 4-32 Slip of the top angle bolts relative to the top beam flange during the hybrid 

simulation of the 30% Mpbeam frame  

 

 

Figure 4-33 Slip of the seat angle bolts relative to the bottom beam flange during the 

hybrid simulation of the 30% Mpbeam frame  
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4.5.2.2 Localized Deformation 

Another main observation during the simulation is the significant yielding and 

plastic deformation noted in the top and seat angles as well as the beam flange and web.  

As shown in Figure 4-34, the deformation of the specimen is characterized by large gap 

opening between the top angle and the column flange as well as flaking of the whitewash 

which was installed on the specimen prior to testing. The visual pattern resulting from 

flaking of the whitewash provides excellent visualization of the localized deformation 

and yield line formation in the specimen. 

 

Figure 4-34 Deformation of the specimen during the hybrid simulation of the 30% Mpbeam 

frame 

 

As noted previously, uniaxial strain gauges are installed at various locations on 

the top and seat angle legs to characterize the distribution of stresses in the angles. The 

layout of strain gauges in both legs of the angles is shown in the top left image of Figure 

4-35. The maximum absolute strain is measured in the leg connected to the beam flange 

and is equal to 0.037 as shown in the figure, which is significantly larger than the yield 

strain. The strain gauges installed on the beam in a rectangular rosette gauges 



  120 

configuration measured a maximum absolute strain of 0.007 by the gauge oriented at 45
o
 

on the beam web. 

 

Figure 4-35 Strain measurements in the top angle legs connected to the beam flange and 

column flange during the hybrid simulation of the 30% Mpbeam frame 

 

 

Figure 4-36 Localized strain in the beam web measured by the rectangular rosette gauges 

during the hybrid simulation of the 30% Mpbeam frame  
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4.5.2.3 Relative Deformation of Beam with Respect to Column 

Similar to the previous simulations, redundant set of measuring systems are 

installed to collect information on the relative deformation of the beam with respect to the 

column. The arrangement of the linear pots for measuring the relative displacement 

between the beam and column and the inclinometers used to measure their relative 

rotation is shown in Figure 4-37. The collected data showing the relative displacement 

between the beam and column are shown in the figure. The maximum absolute relative 

displacement of the top face of the beam flange with respect to the column is 0.663 in 

while the maximum absolute relative displacement of the bottom face of the beam flange 

with respect to the column is 0.419 in.  

The measurements collected using the inclinometers are shown in Figure 4-37. 

The maximum absolute rotation of the top beam inclinometer is equal to be 0.908
o
 while 

the maximum absolute rotation of the bottom beam inclinometer is equal to 0.796
o
. The 

maximum absolute rotation measured by the column inclinometer is equal to 1.039
o. 
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Figure 4-37 Relative deformation measurements between the beam and column during the 

hybrid simulation of the 30% Mpbeam frame  

4.6 Cyclic Tests 

As previously mentioned, cyclic tests are conducted to evaluate the post-

earthquake behavior of the connection and its residual characteristics including stiffness, 

strength, and ductility. Since the specimens are used in the hybrid simulations prior to 

conducting the cyclic tests, the experimental observations will not include discussion on 

any of the strain measurements. Connection slip and deformation are the only two 

observations highlighted in this section. As indicated in the previous chapter, cyclic tests 

on the 70% Mpbeam connection was not conducted due to required maintenance of the 

LBCBs. 
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4.6.1 Experimental Observations (50% Mpbeam) 

4.6.1.1 Connection Slip 

Slip in the bolts used to connect the top angle to the top beam flange is shown in 

Figure 4-38. As shown in the figure, similar magnitude of slip is observed between the 

set of bolts close to the column flange (bolt 1 an bolt 3) when compared to the set of bolts 

further away from the column flange (bolt 2 and bolt 4). Such observation also resulted 

from the hybrid simulation. The maximum absolute slip is observed in bolt 3 of the top 

angle connection to be 0.579 in while the maximum absolute value measured in the seat 

angle connection is 0.380 in bolt 1. 

 

Figure 4-38 Slip of the top angle bolts relative to the top beam flange during the post-

earthquake cyclic testing of the 50% Mpbeam connection  
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Figure 4-39 Slip of the seat angle bolts relative to the bottom beam flange during the post-

earthquake cyclic testing of the 50% Mpbeam connection 

 

4.6.1.2 Connection Deformation 

Significant deformation is noted in the connection components which progressed 

with increase in the magnitude and number of cycles. Figure 4-40 shows very notable 

yield lines forming in the beam flange and web as well as the top angle. The figure also 

shows one of the bolts connecting the top angle to the beam flange to be missing. This is 

due to failure of the bolt at the last cycle of loading. It is important to note the 

corresponding bolt on the opposite side of the connection also failed at the same cycle. 

Failure of bolts is characterized by shear failure and formation of shear lips on the failed 

surface as shown in Figure 4-41 and Figure 4-42. 
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Figure 4-40 Deformation of the specimen during the post-earthquake cyclic testing of the 

50% Mpbeam connection 

 

 

Figure 4-41 Shear failure of bolt 2 including failure surface characterized by shear lips 

during cyclic testing of the 50% Mpbeam connection  
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Figure 4-42 Shear failure of bolt 4 including failure surface characterized by shear lips 

during cyclic testing of the 50% Mpbeam connection  

 

4.6.1.3 Relative Deformation of Beam with Respect to Column 

The collected data showing the relative displacement between the beam and 

column are shown in Figure 4-43. The maximum absolute relative displacement of the 

top of the beam with respect to the column is 0.871 in while the maximum absolute 

relative displacement of the bottom of the beam with respect to the column is 0.852 in. 

The figure also shows the collected data characterizing the relative rotation of the beam 

and column. The maximum absolute rotation of the top beam inclinometer is 2.820
o
 

while the maximum absolute rotation of the bottom beam inclinometer is 2.767
o
. The 

maximum absolute rotation measured by the column inclinometer is 0.147
o
. The reason 

for the low rotation value measured by the inclinometer installed on the column web is 

due to the fact only the LBCB connected to the beam end is used to impose rotation on 

the specimen while the LBCB connected to the top end of the column remained 

stationary. The small rotation value measure by the inclinometer installed on the column 

web is caused by the deformation of the column as it interacted with the beam. 
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Figure 4-43 Relative deformation measurements between the beam and column during the 

post-earthquake cyclic testing of the 50% Mpbeam connection 

 

4.6.2 Experimental Observations (30% Mpbeam) 

4.6.2.1 Connection Slip 

Slip in the bolts used to connect the top angle to the top beam flange is shown in 

Figure 4-44 while the measured slip in the bolts connecting the seat angle to the bottom 

beam flange is shown in Figure 4-45.  

Similar to the observation made for the 50% Mpbeam cyclic test, similar amount of 

slip is observed between the set of bolts close to the column flange (bolt 1 an bolt 3) 

when compared to the set of bolts further away from the column flange (bolt 2 and bolt 4) 

with higher slip measured in bolt 1 and bolt 3. However, the slip seems to be 

concentrated in one direction. In other words, significantly larger slip is observed as the 

connection is loaded in one direction versus the other. The maximum absolute slip is 
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measured in bolt 1 of the top angle connection to be 0.316 in while the maximum 

absolute slip measured in the seat angle connection is 0.228 in bolt 4. 

 

Figure 4-44 Slip of the top angle bolts relative to the top beam flange during the post-

earthquake cyclic testing of the 30% Mpbeam connection 
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Figure 4-45 Slip of the seat angle bolts relative to the bottom beam flange during the post-

earthquake cyclic testing of the 30% Mpbeam connection 

 

4.6.2.2 Connection Deformation 

Figure 4-46 shows large yielding and gap opening between the top and seat angle 

and the column flange during the cyclic test. The deformation is highlighted as the 

whitewash flaked off the connection, revealing the yield line formation in the angles and 

the beam web and flange including around the bolt hole as shown in the figure. No failure 

in any of the connection components is observed upon the completion of the test.  
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Figure 4-46 Deformation of the specimen during the post-earthquake cyclic testing of the 

30% Mpbeam connection 

 

4.6.2.3 Relative Deformation of Beam with Respect to Column 

Figure 4-47 shows the measured data of the relative displacement between the 

beam and column. The maximum absolute relative displacement of the top of the beam 

with respect to the column is measured to be 0.838 in. The maximum absolute relative 

displacement of the bottom of the beam with respect to the column is measured to be 

0.748 in. The figure also shows the rotation of the beam and column with the maximum 

absolute rotation of the top beam inclinometer to be 2.714
o
 and the maximum absolute 

rotation of the bottom beam inclinometer to be 2.652
o
. The maximum absolute rotation 

measured by the column inclinometer is found to be 0.114
o
. As previously mentioned, 

small rotation values are measured by the inclinometer installed on the column since the 

column remained stationary and only the beam was cycled. The small measured values 

are imposed on the column as it interacts with the beam during the beam rotation. 
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Figure 4-47 Relative deformation measurements between the beam and column during the 

post-earthquake cyclic testing of the 30% Mpbeam connection 

4.7 Summary and Conclusion 

In this chapter, observations made during the hybrid simulation and cyclic testing 

are discussed. In total three hybrid tests and two cyclic tests are conducted. Specifically, 

three hybrid simulations of semi-rigid frames with three different connection capacities 

of 70% Mpbeam, 50% Mpbeam, and 30% Mpbeam are completed.  

Upon the completion of a hybrid simulation, cyclic tests are conducted to quantify 

the post-earthquake fundamental characteristic of the connection. The response of the 

physical specimen is assessed using data collected through instrumentations installed at 

various key locations to capture the local response of the connection as well as the global 

response. In addition to assessing the specimen response, the results of the hybrid 

simulations are compared to that of the analytical predictions. resonable agreement 
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between the hybrid simulation and the analytical predictions are observed. The main 

response features observed during the hybrid simulation and laboratory testing are 

summarized below: 

Hybrid testing of the 70% Mpbeam frame 

 The simulation is successfully completed for a period of 15 sec of the earthquake. 

 No failure is observed in any of the connection components. 

 The maximum absolute roof displacement occurred at time 5.02 sec and is equal to 

6.48 in. 

 The corresponding maximum base shear is equal to 281.6 kips at time 5.06 sec. 

 Within reasonable scatter and with the exception of bolt 1 in the top angle connection, 

similar slip is observed in the bolts used for connecting the top angle to the top beam 

flange when compared with the bolts used for connecting the seat angle to the bottom 

beam flange. 

 The maximum absolute slip between the top angle and the top beam flange is 

measured in bolt 3 to be 0.149 in while the maximum absolute slip between the seat 

angle and the bottom flange of the beam is measured in bolt 3 to be 0.162 in.  

 Very small deformation is visually observed in the connection components during the 

simulation. 

 Strain in excess of the yield strain is measured in the top angle and is equal to 0.0056. 

 Large strain is also measured by all three rectangular rosette gauges installed on the 

beam web with the highest strain measured as 0.011 by the gauge oriented vertically. 
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 Relative deformation between the beam and column is measured by employing linear 

pots to measure the relative displacement of the beam with respect to the column and 

by using inclinometers installed on the beam and column to measure their rotations. 

 The maximum relative displacement of the top of the beam with respect to the 

column is 0.325 in while the maximum absolute relative displacement of the bottom 

of the beam with respect to the column is 0.303 in. 

 The inclinometers recorded maximum absolute rotation of 0.471
o
 for the instrument 

installed near the top end of the beam flange while the maximum absolute rotation 

near the bottom of the beam is 0.477
o
. The maximum absolute rotation measured by 

the column inclinometer is 0.821
o. 

 

Hybrid testing of the 50% Mpbeam frame 

 The simulation is successfully completed for a period of 15 sec of the earthquake. 

 No failure is observed in any of the connection components. 

 The maximum absolute roof displacement occurred at time 5.08 sec and is equal to 

7.17 in. 

 The maximum base shear is equal to 253.6 kips and occurred at time 5.14 sec. 

 Scatter in the measured slip data is observed with the largest slip in the top angle 

measured at 0.185 in by bolt 3 while the maximum absolute slip in the seat angle is 

0.196 in by bolt 1. 

 Large deformation of the connection is observed and is characterized by flaking of 

the whitewash installed on the specimen and large gap opening between the top angle 

and the column flange. 
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 Large magnitude of strain is measured in the top angle leg connected to the beam 

flange to be equal to 0.023. 

 The largest strain measured by the rectangular rosette gauge arrangement on the beam 

web is measured by the gauge oriented longitudinally on the web and is equal to 

0.0026. 

 Large strain is also measured by all three rectangular rosette gauges installed on the 

beam web with the highest strain measured at 0.011 by the gauge oriented vertically 

on the web. 

 The relative displacement between the beam flange and the column is 0.446 in at the 

top of the beam and 0.452 in at the bottom of the beam. 

 The maximum absolute rotation is 0.686
o
 and is measured by the inclinometer 

installed near the top end of the beam, 0.597
o
 by the inclinometer installed near the 

bottom end of the beam, and 0.908
o
 by the inclinometer installed on the column. 

 

Hybrid testing of the 30% Mpbeam frame 

 The simulation stopped at time 6.42 sec of the ground motion due to convergence 

problems associated with contact formulation in the analytical model. 

 No failure is observed in any of the connection components. 

 The maximum absolute roof displacement occurred at time 5.08 sec and is equal to 

7.13 in. 

 The maximum base shear is equal to 202.8 kips and occurred at time 5.14 sec. 
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 Large scatter in the measured slip is observed with the largest maximum absolute slip 

in the top angle measured to be 0.0645 in by bolt 3 while the maximum absolute slip 

in the seat angle is measured to be 0.165 in by bolt 1. 

 Significant connection deformation is observed with yield lines forming in the beam 

and in the angle and highlighted by flaking of the whitewash installed on the 

specimen prior to testing. 

 The maximum absolute strain value measured in the top angle leg connected to the 

beam flange is equal to 0.037. 

 The maximum absolute strain measured by the rectangular rosette gauge arrangement 

is 0.007 and is measured by the gauge oriented at 45
o
 on the web. 

 The maximum absolute relative displacement between the beam flange and the 

column is 0.663 in at the top of the beam and 0. 419 in at the bottom of the beam. 

 The maximum absolute rotation measured is 0.908
o
, which is measured by the 

inclinometer installed near the top end of the beam, 0.796
o
 by the inclinometer 

installed near the bottom end of the beam, and 1.039
o
 by the inclinometer installed on 

the column. 

Cyclic testing of the 50% Mpbeam connection 

 Only 7.75 cycles out of the eight cycles imposed on the specimen are completed. 

 Shear failure in two of the top angle bolts are observed and highlighted by the 

formation of shear lips on the failure surfaces. 

 The largest maximum absolute slip in the top angle is 0.579 in by bolt 3 while the 

maximum absolute slip in the seat angle is 0.380 in by bolt 1. 
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 Significant deformation is noted in the connection components which progressed as 

the number and magnitude of cycles increased. 

 The maximum absolute relative displacement between the beam flange and the 

column is measured to be 0.871 in at the top of the beam and 0.852 in at the bottom 

of the beam. 

 The maximum absolute rotation measured is 2.820
o
 by the inclinometer installed near 

the top end of the beam, 2.767
o
 by the inclinometer installed near the bottom end of 

the beam, and 0.147
o
 by the inclinometer installed on the column. 

 

Cyclic testing of the 30% Mpbeam connection 

 All 8 cycles of loading are completed. 

 The largest maximum absolute slip in the top angle is 0.316 in by bolt 1 while the 

maximum absolute slip in the seat angle is by bolt 4. 

 The slip is concentrated in one direction where more slip is observed with positive 

cycles and significantly less slip observed with negative applied cycles. 

 Significant deformation is noted in the connection components which progressed as 

the number and the magnitude of the cycles increased. 

 No failure is observed in any of the connecting components. 

 The maximum absolute relative displacement between the beam flange and the 

column is 0. 838 in at the top of the beam and 0. 748 at the bottom of the beam. 

 The maximum absolute rotation measured is 2.714
o
 by the inclinometers installed 

near the top end of the beam, 2.652
o
 by the inclinometer installed near the bottom end 

of the beam, and 0.114
o
 by the inclinometer installed on the column. 
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CHAPTER 5 

 

INTERPRETATION OF RESULTS 

5.1 Introduction 

This chapter provides detailed assessment of the global response of the frames as 

well as the local behavior of the connections during the simulations. The base shear and 

global drift resulting from all three hybrid simulations are compared. The interstory drift 

ratios are evaluated against the ASCE 41-06 (ASCE/SEI 41-06 2007) drift requirements 

corresponding to the design basis earthquake (DBE) and the maximum considered 

earthquake (MCE).  After evaluating the global response of the frames, the local behavior 

of the physical specimens is compared in terms of connection slip, local deformation, and 

the level of strain in the top angle and beam web. In addition, data collected on the 

relative deformation between the beam and the column is used to drive the moment-

rotation relationship of all three connections. The fundamental cyclic characteristics of 

the connections including stiffness, strength, and ductility along with stiffness 

degradation and strength degradation are compared. The post-earthquake cyclic tests are 

also discussed in terms of connection capacity and ductility.  
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5.2 Comparison of Hybrid Simulation Results 

5.2.1 Global Drift and Base Shear 

Figure 5-1 shows a comparison of the second-story displacement and the first-

story displacement for all three frames during the hybrid simulations. The largest 

absolute second-story peak displacement is equal to 6.48 in, 7.17 in, and 7.13 in and the 

largest absolute first-story peak displacement is 2.89 in, 3.35 in, and 2.84 in for the 70% 

Mpbeam frame, 50% Mpbeam frame 30% Mpbeam, respectively.  

Similarly, Figure 5-3 shows the base shear comparison between all three frames 

during the simulations. The maximum absolute base shear developed is equal to 281.6 

kips, 253.6 kips, and 202.8 kips for the 70% Mpbeam, 50% Mpbeam, and 30% Mpbeam frame, 

respectively. It is also noted in the figure that the fundamental period of the frames are 

very similar up to time 5 sec. In the time range of 5 sec to 6.42 sec, the 30% Mpbeam 

frame starts to show signs of larger period elongation when compared to the other frames. 

This is a result of the larger nonlinearity experienced by the 30% Mpbeam frame at lower 

displacement. The difference in period elongation of the frames is more evident for the 

time range between 6 sec to 15 sec of the ground motion.  
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Figure 5-1 Comparison of the second-story displacement between all three frames during 

the hybrid simulations 

 

 

Figure 5-2 Comparison of the first-story displacement between all three frames during 

the hybrid simulations 

 



  140 

 

Figure 5-3 Comparison of the base shear between all three frames during the hybrid 

simulations 

 

The above mentioned maximum absolute displacement and base shear values are 

listed below in Table 5-1. It is important to note that the values listed in the table 

correspond to different time of the earthquake ground motion. This is expected since the 

frames have different fundamental periods and will respond differently when excited by 

the earthquake. 

Table 5-1 Maximum absolute bolt slip in the top angles during the simulations 

 
| 

2nd
 |Max 

(in) 

| 
1st

 |Max 

(in) 

| Base Shear |Max 

(kips) 

70% Mpbeam 6.48 2.89 281.6 

50% Mpbeam 7.17 3.35 253.6 

30% Mpbeam 7.13 2.84 202.8 
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5.2.2 Interstory Drift Ratio and Compliance with ASCE 41-06 

The interstory drift ratio (IDR) of all three frames is shown in Figure 5-4. As 

shown in the figure, the 50% Mpbeam sustained the highest IDR for the first story while 

the 30% Mpbeam sustained the highest IDR for the second story. Specifically, the 

maximum IDR was found to be equal to 1.61%, 1.86%, and 1.58% for the first story and 

2.32%, 2.42%, and 2.70% for the second story for the 70% Mpbeam, 50% Mpbeam, and 30% 

Mpbeam, respectively. 

 

Figure 5-4 Comparison of the maximum interstory drift ratios between all three frames 

during the hybrid simulations 

 

In addition to calculating the maximum IDR, the frames are assessed using two 

different performance levels, namely Life Safety (LS) or Design Basis Earthquake (DBE) 

and Collapse Prevention (CP) or Maximum Considered Earthquakes (MCE). The 

acceptance criteria used in this study is limiting the interstory drift ratio to 2.5% and 5% 

for DBE and MCE as defined by ASCE 41-06 (ASCE/SEI 41-06 2007). Even though the 
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criteria defined by ASCE 41-06 is used for assessing steel moment-resisting frames, it is 

felt that the same criteria should be used for assessing the semi-rigid frames to fully 

evaluate their performance in high seismic regions. 

It is important to note, that the procedure used to scale the records during the 

simulations (i.e. constant capacity-to-demand ratio) does not allow for direct comparison 

with the interstory drift limits of ASCE 41-06. Therefore, the response spectra for the 

scaled records are compared with that of the DBE and MCE at the period range of 1 sec 

to 1.5 sec. The first period value selected corresponds to the average fundamental period 

of the frames while the second period value is a conservative upper bound corresponding 

to the maximum expected period elongation and is based on the analytical investigation 

of period elongation discussed in Chapter 6.  

Figure 5-5 below shows the DBE, MCE, and the response spectra for the three 

frames. The DBE spectrum intercepts the response spectrum of the 70% Mpbeam frame 

and the 50% Mpbeam frame at periods of 0.90 sec, sec 0.94 and 0.98 sec, respectively. 

Coincidently, the values are approximately equal to the calculated elastic fundamental 

periods of 0.911 sec, and 0.932 sec and 0.971 sec for the 70% Mpbeam, 50% Mpbeam, and 

30% Mpbeam, respectively. As such, one can conclude that the 70% Mpbeam and the 50% 

Mpbeam frames are deemed acceptable for LS limit state (DBE) while the 30% Mpbeam 

violates the ASCE 41-06 LS requirement as its roof drift ratio is 2.70%, which is slightly 

higher than the limit of 2.5%.  

It is important to note that the response spectra of the records are higher than that 

of the DBE spectrum until a period of 1.88, 1.80, and 1.78 sec for the 70% Mpbeam, 50% 
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Mpbeam, and 30% Mpbeam, respectively. This implies that within the expected period 

elongation of the structure, the demand on the structures is always higher than the DBE 

and in some cases even higher than the MCE. In other words, all three frames comply 

with the drift requirements for DBE and in some cases even with that of MCE.  

 

Figure 5-5 Comparison between the response spectrum of all three frames and the DBE 

and MCE spectrum of ASCE 41-06 

 

The calculated IDR for the first and second story and their normalized values with 

respect to ASCE 41-06 requirements are listed in Table 5-2.  As shown in the table, the 

second-story IDR normalized to that of MCE approaches 1 for the 70% Mpbeam and 50% 

Mpbeam frames and exceeds 1 for the 30% Mpbeam frame while the value is well below 

1 for the DBE. The first-story IDR normalized to that of MCE and DBE is always well 

below 1. 

 

 

 

IDR limit of 5%

IDR limit of 2.5%
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Table 5-2 Maximum and normalized IDR 

 
1

  (%)

st

MaxIDR  1

41

st

Max
DBE

ASCE

IDR

IDR
 1

41

st

Max

MCE

ASCE

IDR

IDR
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  (%)

nd

MaxIDR  2

41

nd

Max

DBE

ASCE

IDR

IDR

 
2

41

nd

Max

MCE

ASCE

IDR

IDR

 

70% Mpbeam 1.61 0.322 0.644 2.32 0.464 0.928 

50% Mpbeam 1.86 0.372 0.744 2.42 0.484 0.968 

30% Mpbeam 1.58 0.316 0.632 2.70 0.540 1.080 

 

5.2.3 Connection Slip 

The maximum absolute bolt slip measured during the three simulations is listed in 

Table 5-3. As shown in the table, the largest slip value in all four bolts connecting the top 

angle leg to the beam flange is measured by the 50% Mpbeam specimen. The mean slip 

value for the connection is 0.1538 in with a standard deviation of 0.0277. The lowest 

amount of slip is measured by the 30% Mpbeam connection with mean and standard 

deviation values of 0.0450 in and 0.1654, respectively. The higher standard deviation is 

an indication of larger scatter in the measured slip. The slip in the top angle bolts of the 

70% Mpbeam connection falls between that of the other two specimens with mean value of 

0.1017 in and standard deviation of 0.0628. The scatter in the slip data is related to the 

inherent randomness in the pretension force applied when bolting the connection as well 

as how the connection was fitted during construction.  

Table 5-3 Maximum absolute bolt slip in the top angles during the simulations 

Connection ID 

Top Angle 

Bolt 1 Slip 

(in) 

Bolt 2 Slip 

(in) 

Bolt 3 Slip 

(in) 

Bolt 4 Slip 

(in) 

Mean Slip 

(in) 
Std Dev. 

70% Mpbeam 0.0100 0.1132 0.1492 0.1342 0.1017 0.0628 

50% Mpbeam 0.1697 0.1266 0.1845 0.1344 0.1538 0.0277 

30% Mpbeam 0.0474 0.0457 0.0645 0.0222 0.0450 0.1654 
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Similar to the observation made with the top angle, the seat angle of the 50% 

Mpbeam connection experienced the largest amount of slip during testing with mean value 

of 0.1474 in and standard deviation of 0.0253. However, unlike the top angle, the seat 

angle of the 30% Mpbeam connection appear to have experienced more slip than that of the 

70% Mpbeam connection. The mean and standard deviation slip values for the 30% Mpbeam 

connection are 0.1474 in and 0.0131, respectively, while the mean and standard deviation 

slip values for 70% Mpbeam connection are 0.1429 in and 0.0186, respectively. 

Table 5-4 Maximum absolute bolt slip in the seat angles during the simulations 

Connection ID 

Seat Angle 

Bolt 1 Slip 

(in) 

Bolt 2 Slip 

(in) 

Bolt 3 Slip 

(in) 

Bolt 4 Slip 

(in) 

Mean Slip 

(in) 
Std Dev. 

70% Mpbeam 0.1581 0.1258 0.1298 0.1617 0.1439 0.0186 

50% Mpbeam 0.1962 0.1542 0.1362 0.1677 0.1636 0.0253 

30% Mpbeam 0.1654 0.1442 0.1342 0.1459 0.1474 0.0131 

 

Although the turn of the nut method was specified for pretensioning the bolts, the 

torque applied on the bolt is not exact. Furthermore, another source of the randomness in 

the measured slip values could be due to the existence of locked up stresses, which arise 

when assembling the specimen together as drilled holes do not necessarily line up exactly 

as intended during fabrication. 

5.2.4 Connection Deformation 

As mentioned in the previous chapter, large strain is measured by the strain 

gauges installed on the top angle connected to the beam flange and column flange. 

Summary of the recorded strains at the four strain gauges discussed in the previous 

chapter is listed below in Table 5-5. As shown in the table, the largest strains are 

measured in the top angle of the 30% Mpbeam specimen followed by the 50% Mpbeam and 
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the 70% Mpbeam. This is expected since the size of the angles used in the tests are 

proportioned to the connection capacity (i.e., the thickness of the top and seat angles used 

are 1/2 in, 3/4 in, and 1 for the 30% Mpbeam, 50% Mpbeam, and 70% Mpbeam specimens, 

respectively). The highest magnitude of strain is measured by strain gauge SG51 in all 

three tests. This is the gauge located on the angle leg connected to the beam and butted 

against the angle leg connected to the beam flange.    

Table 5-5 Maximum absolute strain in the top angle during the simulations 

 Top Angles  

 TA BF (SG51) TA BF (SG55) TA CF (SG46) TA CF (SG42) 

Connection ID Max. Abs. Strain () Max. Abs. Strain () Max. Abs. Strain () Max. Abs. Strain () 

70% Mpbeam 0.0056 0.0030 0.0012 0.000745 

50% Mpbeam 0.0231 0.0037 0.0015 0.0054 

30% Mpbeam 0.0371 0.0026 0.0036 0.0111 

 

Table 5-6 includes the measured strain normalized to the yield strain obtained 

from material testing. As shown in the table, the angle leg connected to the beam flange 

experienced strain higher than the yield strain in all three specimens. The highest 

magnitude of strain is measured by strain gauge SG 51 installed in the top angle leg 

connected to the beam flange.   

Table 5-6 Normalized maximum absolute strain in the top angle during the simulations 

 Top Angles  

 TA BF (SG51) TA BF (SG55) TA CF (SG46) TA CF (SG42) 

Connection 

ID 

Normalized Strain 

(y) 

Normalized Strain 

(y) 

Normalized Strain 

(y) 

Normalized Strain 

(y) 

70% Mpbeam 3.3797 1.8081 0.7126 0.4489 

50% Mpbeam 13.9245 2.2469 0.9070 3.2725 

30% Mpbeam 22.3403 1.5958 2.1707 6.7033 
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The magnitude of strain measured by the gauges located on the beam web showed 

variation in the measurements with respect to the three beams used during the simulations. 

For example and as shown in Table 5-7, higher strain is measured by strain gauge SG21 

installed longitudinally on the beam web in the 30% Mpbeam specimen followed by the 70% 

Mpbeam, and the 50% Mpbeam. The table shows that for strain gauge SG22 installed at a 

45
o
 angle on the beam web, the largest magnitude of strain is measured in the 70% 

Mpbeam specimen, followed by the 30% Mpbeam then the 50% Mpbeam. The largest strain 

measured by SG23, which was installed transversely on the beam web is measured in the 

70% Mpbeam specimen followed by the 30% Mpbeam specimen then the 50% Mpbeam 

specimen.  

Table 5-7 Maximum absolute strain in the beam web during the simulations 

 Beam Web 

 Beam Web (SG21) Beam Web (SG22) Beam Web (SG23) 

Connection ID Max. Abs. Strain () Max. Abs. Strain () Max. Abs. Strain () 

70% Mpbeam 0.0030 0.0088 0.0111 

50% Mpbeam 0.0026 0.0018 0.000513 

30% Mpbeam 0.0056 0.0071 0.0021 

 

The normalized values for the strain measured on the beam web are shown in 

Table 5-8 below. As shown in the table, all three strain gauges measured values in excess 

of the yield strain on the beam web of the 70% Mpbeam specimen. The gauges installed 

longitudinally and diagonally on the beam web of the 30% Mpbeam specimen measured 

strain larger than the yield strain. For the 50% Mpbeam specimen, the strain gauge installed 

longitudinally was the only gauge that reached the yield strain of the material.  
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Table 5-8 Normalized maximum absolute strain in the beam web during the simulations 

 Beam Web 

 Beam Web (SG21) Beam Web (SG22) Beam Web (SG23) 

Connection ID Normalized Strain (y) Normalized Strain (y) Normalized Strain (y) 

70% Mpbeam 1.1786 3.4807 4.4192 

50% Mpbeam 1.0148 0.7095 0.2040 

30% Mpbeam 2.2420 2.8057 0.8367 

 

5.2.5 Moment-rotation Relationship 

As previously discussed, instrumentations are installed on the specimens to 

collect information related to the relative deformation between the beam and the column, 

which can be used to drive the moment-rotation relationship of the connections. Two 

different sets of instrumentations are installed for that purpose. The first set of 

instrumentations included two linear pots perpendicularly mounted to the column and 

parallel to the beam (one above the top angle and one below the seat angle). The 

corresponding rotation obtained from the linear pots is found by dividing the relative 

displacement between the two linear pots by the vertical distance between them. The 

second set of instrumentations included three inclinometers, two of which installed on the 

beam web directly below the top flange and directly above the bottom flange while the 

third inclinometer is installed on the column web at the center line of the connection. The 

rotation of the beam is calculated as the average rotation of the two inclinometers 

mounted on the beam. The connection rotation is derived by calculating the difference 

between the beam and column inclinometer rotations. 

The derived moment-rotation relationships from all three simulations are shown 

in Figure 5-6, Figure 5-7, and Figure 5-8 for the 70% Mpbeam, 50% Mpbeam and 30% 
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Mpbeam, respectively. As shown in the figures, higher level of agreement between the 

derived relationships using the inclinometers versus the linear pots is observed for the 

positive rotation. Less agreement between the two methods is observed when the 

connections are characterized by negative moment and rotation.   

 

Figure 5-6 Comparison between the moment-rotation relationships derived using the 

linear pots and the inclinometers resulting from the hybrid simulation of the 

70% Mpbeam frame 

 

 

Figure 5-7 Comparison between the moment-rotation relationships derived using the 

linear pots and the inclinometers resulting from the hybrid simulation of the 

50% Mpbeam frame 
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Figure 5-8 Comparison between the moment-rotation relationships derived using the 

linear pots and the inclinometers resulting from the hybrid simulation of the 

30% Mpbeam frame 

 

The moment-rotation relationships derived using the linear pots are used for the 

purpose of comparing the behavior of all three connections. The reason for choosing the 

linear pots results for the purpose of comparison is because the displacement resolution 

achieved using the linear pots is 0.001 in while the inclinometer measurements are known 

to be less reliable. Furthermore, evaluation of the of the sensor measurements prior to 

conducting the hybrid simulation showed low level of repeatability in the measurements 

(Bennier 2009). In addition, using the linear posts in representing the moment-rotation 

relationship ensures consistency between the current study and previous studies 

conducted by others, which facilitates comparison of results if needed. 

A comparison of the derived moment-rotation relationships for all three 

connections is shown in Figure 5-9. As shown in the figure, large pinching and hardening 

is observed in the response of the 70% Mpbeam connection when compared to the other 
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two connections. The highest stiffness degradation is observed in the 50% Mpbeam 

specimen, which is 46.05% of the original stiffness, followed by the 30% Mpbeam 

specimen, which experienced degradation in its stiffness of 33.59%, and finally the 70% 

Mpbeam specimen with stiffness degradation of 23.47%. It is important to note that the 

high percent degradation in the 50% Mpbeam specimen does not imply that the connection 

experienced the lowest unloading stiffness. In fact that lowest unloading stiffness is 

experienced by the 30% Mpbeam due to the high level of inelasticity in the top and seat 

angles of the connection during the simulation as shown by the strain gauge data 

discussed previously and listed in Table 5-6. As shown in the table, the strain in the top 

angle is 22.34 times higher, 13.92 times higher, and 3.38 times higher than the yield 

strain of the material for the 30% Mpbeam, 50% Mpbeam and 70% Mpbeam connections, 

respectively. 

 

Figure 5-9 Comparison between the moment-rotation relationships derived using the 

linear pots resulting from the hybrid simulation of all three frames 
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The characteristics of the connections during the simulations are listed in Table 

5-9. The table includes values for the initial stiffness (ki), the unloading stiffness (ku), the 

percent of stiffness degradation (kdeg), the maximum moment and rotations experienced 

by the connections, and the energy dissipated by each connection during the simulations. 

Table 5-9 Characteristics of the connections during the simulations 

 
ki  

(kips.in/rad) 

ku  

(kips.in/rad) 

kdeg 

(%) 

| M |Max 

(kips.in) 
%Mpbeam 

Max 

 (rad) 

Energy Dissipated 

 (kips.in.rad) 

70% Mpbeam 510,683 390,827 23.47 3,222 82.0 0.0196 195.18 

50% Mpbeam 494,314 266,718 46.04 2,556 65.2 0.0271 177.45 

30% Mpbeam 306,521 203,565 33.59 1,708 43.6 0.034 109.56 

 

As mentioned previously, the connections used are not considered one of the 

prequalified connections per AISC 358 for special and intermediate moment-resisting 

frames. The prequalified connections include reduced beam section (RBS), bolted 

unstiffened extended end plate (BUEEP), and bolted stiffened extended end plate 

(BSEEP). According to AISC, the connection must be fully restrained (FR) to be 

considered to exhibit sufficient stiffness for seismic applications. Furthermore, it is 

required that the connection be able to sustain an interstory drift angle of 0.04 rad which 

is equivalent to a plastic rotation of 0.03 rad. It is importation to point out that the 

maximum rotation sustained by the specimens are not the rotation capacity of the 

connection since none of the connections are shown to exhibit flattening of its capacity 

curves to indicate that capacity is reached. The maximum rotations achieved during the 

simulations are 0.0196 rad, 0.0271 rad, and 0.034 rad for the 70% Mpbeam, 50% Mpbeam, 

and 30% Mpbeam connections, respectively. 
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5.3 Comparison of Cyclic Test Results 

Cyclic tests are conducted to investigate the post-earthquake behavior of the 

connections. Due to some technical difficulties with the loading units, cyclic tests are 

conducted only on the 50% Mpbeam and 30% Mpbeam specimens. Bolt slip and the derived 

moment-rotation relationships of the connections is discussed in the sections below. 

5.3.1 Connection Slip 

The maximum absolute bolt slip in the top and seat angle bolts measured during 

the three simulations is listed in Table 5-10 and Table 5-11. As shown in Table 5-10, 

larger slip in the top angle bolts is observed in the 50% Mpbeam connection with mean slip 

of 0.4808 in when compared to the 30% Mpbeam with mean slip value of 0.2846 in. 

Similar to the hybrid simulation results, bolt 1 and bolt 3 located closer to the column 

flange experienced the largest amount of slip.   

Table 5-10 Maximum absolute bolt slip in the top angles during the cyclic tests 

Connection ID 

Top Angle 

Bolt 1 Slip 

(in) 

Bolt 2 Slip 

(in) 

Bolt 3 Slip 

(in) 

Bolt 4 Slip 

(in) 

Mean Slip 

(in) 
Std Dev. 

50% Mpbeam 0.5786 0.4048 0.5512 0.3887 0.4808 0.0979 

30% Mpbeam 0.3161 0.2725 0.2897 0.2601 0.2846 0.0242 

 

The seat angle connection of the 50% Mpbeam specimen experienced larger slip 

than its 30% Mpbeam counterpart with mean slip of 0.3367 in while the mean slip in the 30% 

Mpbeam specimen is equal to 0.2846 in. Summary of the measured slip values for the seat 

angle bolts during cyclic testing is shown Table 5-11. 
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Table 5-11 Maximum absolute bolt slip in the seat angles during the cyclic tests 

Connection ID 

Seat Angle 

Bolt 1 Slip 

(in) 

Bolt 2 Slip 

(in) 

Bolt 3 Slip 

(in) 

Bolt 4 Slip 

(in) 

Mean Slip 

(in) 
Std Dev. 

50% Mpbeam 0.3800 0.3087 0.3086 0.3492 0.3367 0.0347 

30% Mpbeam 0.2279 0.1853 0.1767 0.1990 0.1972 0.0224 

 

The observed slip in the top and seat angle bolts during cyclic testing is higher 

than that observed during the hybrid simulation as shown in Table 5-12.  The table shows 

that the largest absolute mean maximum slip is observed in the top angle of the 50% 

Mpbeam connection during cyclic testing. 

Table 5-12 Absolute mean maximum bolt slip in the top-and seat-angles for all tests 

Connection ID 

Top Angle Seat Angle 

Hybrid Mean Slip  

(in) 

Cyclic 

 Mean Slip  

(in) 

Hybrid Mean Slip  

(in) 

Cyclic Mean 

Slip  

(in) 

50% Mpbeam 0.1538 0.4808 0.1636 0.3367 

30% Mpbeam 0.1474 0.2846 0.1474 0.1972 

 

5.3.2 Moment-rotation Relationship 

The derived moment-rotation relationships from the two cyclic tests using the 

inclinometers and the linear pots are shown in Figure 5-10 and Figure 5-11 for the 50% 

Mpbeam and 30% Mpbeam, respectively. As shown in the figures, for the 50% Mpbeam 

connection, higher level of agreement between the derived relationships using the 

inclinometers versus the linear pots is observed for the positive rotation region while less 

agreement is observed for the negative moment region. For the 30% Mpbeam connection, 

very high level of agreement is observed between the derived relationships for both the 

negative and positive regions. 
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Figure 5-10 Comparison between the moment-rotation relationships derived using the 

linear pots and the inclinometers resulting from cyclic testing of the 50% 

Mpbeam connection 

 

 

Figure 5-11 Comparison between the moment-rotation relationships derived using the 

linear pots and the inclinometers resulting from cyclic testing of the 30% 

Mpbeam connection 
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A comparison of the derived moment-rotation relationships between the two 

connections is shown in Figure 5-12. The behavior of the connections is highlighted by 

stable hysteretic behavior and large pinching. Furthermore, the 50% Mpbeam connection 

appear to have reached its positive and negative moment capacity as indicated by the 

flattening of the moment-rotation curve at the maximum rotation sustained while the 30% 

Mpbeam connection reached its positive moment capacity but not its negative moment 

capacity. As mentioned in the previous chapter, two bolts connecting the top angle to the 

beam flange of the 50% Mpbeam connection failed at the peak of the very last cycle during 

the test as indicated in the figure by the sharp drop in the capacity curve. 

 

Figure 5-12 Comparison between the moment-rotation relationships derived using the 

linear pots resulting from the hybrid simulation of all 50% Mpbeam and 30% 

Mpbeam connections 

 

 

Shear failure of 

top angle bolts
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The characteristics of the connections during the cyclic tests are listed Table 5-13 

including the maximum moment and rotations experienced by the connections, the 

energy dissipated by each connection during the tests, the percent of connection capacity 

with respect to the moment, and the connection capacity normalized to its design capacity. 

As shown in the table large moment and rotation was experienced by the connections. In 

fact the moment sustained by the connections was approximately 76% Mpbeam and 

68.41% Mpbeam for the 50% Mpbeam and 30% Mpbeam connection, respectively. The 

results are a clear indication for the need to reevaluating the Eurocode design guidelines 

since it was used to design the connection.  

Table 5-13 Characteristics of the connections during the cyclic tests 

 
| M |Max 

(kips.in) 
Max 

 (rad) 

Energy Dissipated 

 (kips.in.rad) 
(%Mpbeam)Actual (%Mpbeam)Actual / (%Mpbeam)Design 

50% Mpbeam 3,002 0.0534 569.82 76.58 1.53 

30% Mpbeam 2,682 0.0440 407.36 68.41 2.28 

 

It is important to note that the rotations sustained by both connections during the 

tests are measured as 0.053 rad and 0.0440 rad for the 50% Mpbeam and 30% Mpbeam, 

respectively. The measured rotations exceeded the required rotation of 0.04 rad per the 

2005 seismic provisions of AISC, section 9.2a. The specification calls for flexural 

resistance of the connection, determined at the column face, to be at least equal to 

0.80Mp of the connected beam at an interstory drift angle of 0.04 radians. As shown in 

Table 5-13 above, the flexural resistance of the connections is equal to 76.58% and 68.41% 

for the 50% Mpbeam and 30% Mpbeam connection, respectively. Although the capacity of 

the connection does not meet the seismic specifications requirements, it is unclear as to 

why a connection capacity of 0.80 Mp of the connected beam is needed. The connections 
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appear to be penalized by these provisions despite the fact that their rotations exceed the 

required rotation according to the specification.  

5.4 Summary and Conclusion 

In this chapter, the results of the hybrid simulation and the cyclic tests are 

discussed. Specifically, the results of the hybrid simulation are compared and the global 

behavior of the frames evaluated against the ASCE 41-06 requirements. In addition, the 

local characteristics of the connections are compared including the initial stiffness, the 

unloading stiffness, the moment and rotation sustained, and the amount of energy 

dissipated in the connections. Comparison between the moment and rotation sustained by 

the connections and the 2005 seismic provisions of AISC is made. The main findings are 

summarized below.  

 Hybrid testing of the 70% Mpbeam, 50% Mpbeam, 30% Mpbeam 

When comparing the results of all three hybrid simulations, it is observed that the 

maximum base shear is developed in the 70% Mpbeam frame followed by the 50% Mpbeam 

frame then the 30% Mpbeam frame. Difference in period elongation is observed as a result 

of the large inelasticity imposed on the frames beyond time equal to 5 sec. The 

interestory drift ratio of all three frames differed by very small amount. The maximum 

IDR is equal to 2.7% in the second story of the 30% Mpbeam frame. The record used 

during the simulation is scaled to a constant capacity-to-demand ratio, and hence the 

results cannot be directly compared to the requirements set by ASCE 41-06. However, a 

quick comparison for a period range between 1.0 sec and 1.5 sec showed the response 
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spectra resulting from scaling the record to be bounded by the DBE and MCE spectra 

given within ASCE 41-06 and in some cases exceeded MCE spectrum for the period 

range of interest. Therefore, it is conservative to conclude that the 70% Mpbeam and 50% 

Mpbeam frames satisfy the DBE drift requirements of 2.5% while the requirement is 

slightly violated by the 30% Mpbeam frame. The period range mentioned above is chosen 

to reflect the approximate initial period of the structures and the maximum expected 

period elongation based on the results of Chapter 6. 

Comparison of the local behavior of the connection revealed that the lowest 

amount of slip in the top angle bolts is measured by the 30% Mpbeam connection with a 

mean and standard deviation values of 0.0450 in and 0.1654, respectively. The mean slip 

in the top angle of the 70% Mpbeam connection is 0.1017 in while the standard deviation is 

0.0628, respectively. The top angle of the 50% Mpbeam connection measured a mean slip 

and standard deviation of 0.1538 in and 0.0277, respectively. 

The mean slip of the seat angle bolts is 0.1439 in, 0.1636 in, and 0.1474 in for the 

70% Mpbeam, 50% Mpbeam, and 30% Mpbeam, respectively. Less variation is observed for 

the mean slip of the seat angle bolts as reflected by the calculated standard deviations of 

0.0186, 0.0253, and 0.0131 for all three connections, respectively.  Therefore, it can be 

concluded that the largest scatter in the slip results is associated with the top angles of the 

connections.  

In addition to the observed slip, the largest strain is measured in the top angle 

connected to beam flange and is equal to 3.38, 13.92, and 22.34 times the yield strain of 

the material for the 70% Mpbeam, 50% Mpbeam, and 30% Mpbeam connections, respectively. 
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Strain at other locations on the angles exceeded the yield strain of the material as well.  

Similarly large strain, in excess of the yield strain, is measured on the beam web by all 

three gauges in the rectangular rosette arrangement. 

The moment-rotation relationships of the connections are derived using two 

different set of measurement including liner pots installed above the top angle and below 

the seat angle to measure the relative displacement between the beam and column as well 

as inclinometers installed on the beam web and column web. Very reasonable agreement 

in the derived moment-rotation relationships using both sets of measurements is observed.  

Large pinching and hardening is observed in the 70% Mpbeam connection when compared 

to the other two connections. The highest stiffness degradation of the original stiffness is 

observed by the 50% Mpbeam specimen to be 46.049%, followed by the 30% Mpbeam 

specimen with stiffness degradation of 33.59%, and finally the 70% Mpbeam specimen 

with stiffness degradation of 23.47%. The maximum moment sustained by the 70% 

Mpbeam, 50% Mpbeam, and 30% Mpbeam connections is equal to 3,222 kips.in, 2,556 kips.in, 

and 1,708 kips.in, respectively, with corresponding rotations of 0.0196 rad, 0.0271 rad, 

and 0.3400 rad, respectively. The behavior of all three connections is highlighted by 

stable hysteretic behavior and high energy dissipation. 

 Cyclic testing of the 50% Mpbeam and the 30% Mpbeam 

Due to some technical problems with the LBCBs, cyclic testing of the 70% 

Mpbeam was not conducted. As expected, larger slip is observed when comparing the 

cyclic test results to that of the hybrid simulation due to the large magnitude of cycles 

imposed on the connection. The mean slip in the top angle bolts is equal to 0.4808 in and 

0.2846 in with standard deviation of 0.0979 and 0.0242, respectively, for the 50% Mpbeam 
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connection and the 30% Mpbeam connection, respectively. The mean slip in the seat angle 

bolts is equal to 0.3367 in and 0.1972 in with standard deviation of 0.0347 and 0.0224, 

respectively, for the 50% Mpbeam connection and the 30% Mpbeam connection, 

respectively.  

The moment sustained by the connections is approximately 76% and 68.41% of 

the plastic moment of the beam for the 50% Mpbeam and 30% Mpbeam connections, 

respectively. The rotations sustained by both connections during the tests are 0.053 rad 

and 0.0440 rad for the 50% Mpbeam and 30% Mpbeam, respectively. The measured 

rotations exceeded the required rotation of 0.04 rad as per the 2005 seismic provisions of 

AISC, section 9.2a. The achieved moments do not meet the seismic specification of 

0.80Mp of the connected beam at an interstory drift angle of 0.04 radians for the SMRF. 

The requirement for complying with IMRF of 0.02 rad of interstory rotation is satisfied.  
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CHAPTER 6 

 

ANALYTICAL INVESTIGATION AND DESIGN IMPLICATIONS 

6.1 Introduction 

In this chapter, nonlinear dynamic response-history analyses are carried out using 

a suite of 10 records to investigate the seismic performance of semi-rigid frames. The 

goal of the parametric studies is to assess the effect of varying various connection design 

parameters on the global behavior of the frames. The design parameters include strength 

of the connection, yield strength of the angles, coefficient of friction used between faying 

surfaces, and the magnitude of slip allowed in the top and seat angles. In addition, a rigid 

frame of the same geometry is modeled and analyzed to be used as a reference for 

evaluating the performance of the semi-rigid frames. The varied design parameters and 

their magnitude are listed in Table 6-1. 

Table 6-1 Varied design parameters used in the parametric studies  

Connection Strength 

(% Mpbeam) 

Angle Yield Strength 

(ksi) 
Friction Coefficient 

Bolt Slip 

(in) 

70 
36  

50 

0.25  

0.33 

1/16 

NA 
50 

30 

 

The semi-rigid frame models include the same element formulation and 

mathematical representation of the various inelastic features of the connection as the ones 

used in the hybrid simulation. The difference between the models used in the parametric 

studies and the hybrid simulations is in the material model employed in the analyses. In 
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this study, a simplified linear kinematic hardening model, used in design, is utilized since 

the motive behind the study is to investigate frame response as influenced by design 

parameters. The model, shown in Figure 6-1, is a bilinear model with an initial stiffness 

k1 representing the young’s modulus of the material and a hardening stiffness, k2 = 0.01k1 

as suggested by (Elnashai and Elghazouli 1994). 

 

Figure 6-1 Linear kinematic hardening material model used in the parametric study 

 

Various studies have been aimed at developing design guidelines for this type of 

connections with focus on connection detailing including size of angles and bolts, among 

other parameters. However, the effect of connection geometry and the design parameters 

on the global frame response and the implication on seismic design is yet to be conducted. 

Analysis of the frame is carried out to evaluate the period elongation of the structures and 

assign a realistic demand-based force reduction factor for each frame. Particularly, three 

main fundamental design parameters, including, the equivalent damping ratio, eq, the 

inelastic period of the frames, Tinealstic, and the response modification factor, Rdemand, are 

K1 = 30000

K2 = 0.01 K1

s
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investigated. The parameters are needed for constructing the inelastic response spectrum 

and estimating the inelastic base shear. 

Naming of the models used in the analyses is assigned to reflect the earthquake 

the model is subjected to as well as the design parameters varied in each model. When 

naming the models a dash symbol, “-“, is used to separate the earthquake names and each 

of the design parameters. Specifically, each model name reflects the following; “the 

earthquake - earthquake station - connection strength - angle yield strength - coefficient 

of friction - amount of slip used in the model”. For example, a model named “LP-CLS-

50%-36-0.33-0.0625” indicates that the Loma Prieta earthquake recorded at Corralitos 

station (CLS) is used to analyze a frame with connection capacity of 50% Mpbeam where 

the yield strength of the angles is 36 ksi, the coefficient of friction between surfaces is 

0.33, and the bolt is allowed to slip for a distance of 0.0625 in (1/16 in). More detailed 

descriptions of the earthquakes used, the recorded stations, and the reference names used 

to describe the records are listed in Table 6-3. 

6.2 Description of the Selected Building Structure 

The building layout used for the analysis is the same used in the hybrid simulation 

and is described in Chapter 3. The structure is a 2-story, 4-bay (longitudinal) and 2-bay 

(transverse) steel frame located in Los Angeles, California. The outer frames are designed 

as special moment-resisting frames to resist the earthquake loads using the International 

Building Code (International Building Code 2006). The height of the first and second 
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story is 15 ft and 13.5 ft, respectively and the bay width is 30 ft. The sizes of the beams 

and columns are W18 x 40 and W14 x 159, respectively. 

6.3 Eigen Value Analysis and Fundamental Periods 

Eigen value analyses are conducted to investigate the modes of vibrations and the 

fundamental period of the structures. A typical first three modes of vibrations for all 

frames are shown in Figure 6-2. 

 

Figure 6-2 First three mode shape of vibrations for the 30% Mpbeam frame (typical for the 

other two frames) 

 

The first three natural periods of the structures, including that of a rigid frame are 

listed in Table 6-2. As shown in the table, the periods of vibration for all frames are 

almost the same. This is due to the similarity in the initial stiffness of all three frames as 

shown in Figure 3-29 and listed in Table 3-7. Furthermore, the initial period of the 70% 

Mpbeam frame is higher than that of the rigid frame which is in correlation with the fact 

that the initial stiffness of the 70% Mpbeam frame is higher than that of its rigid frame 

counterpart as discussed in Chapter 3. 

 

 



  166 

Table 6-2 First three natural periods of the structures 

Frame ID 
T1  

(sec) 

T2  

(sec) 

T3  

(sec) 

Rigid 0.879 0.230 0.093 

70% Mpbeam 0.864 0.229 0.094 

50% Mpbeam 0.882 0.231 0.097 

30% Mpbeam 0.904 0.237 0.098 

6.4 Selection of Ground Motion Records 

Ten horizontal ground motion records are selected for the dynamic response-

history analysis. The records are a subset of an ensemble of 40 records (22 far-field and 

28 near-field), recommended for the collapse assessment of building structures in 

Appendix-A of ATC 63 (Applied Technology Council (ATC) 2009). It is important to 

note that the records listed in ATC 63 are recommended on the basis of distance to fault 

rupture and not on either site condition or source mechanism. Selection of ground 

motions based on distance to fault rupture ensures the inclusion of directivity and pulse 

effect. 

 The appendix describes several criteria used for selecting the 40 records 

including; 1) very strong ground motion, 2) large number of records, 3) structure-type 

independent, and 4) site-hazard independent. According to ATC 63, the very strong 

motion criterion corresponds to MCE, which is a characteristic of shaking of buildings in 

high seismic regions with Mw ≥ 6.5. Including large number of records is to ensure that a 

statistically sufficient number of earthquakes are used whereby the inherent variability in 

the ground motions is sufficiently represented. Finally, the importance of including 

records that are structure-type independent and site-hazard independent is to guarantee 
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that the records are applicable to evaluating a wide range of structural systems and can be 

used in the collapse evaluation of structures located at different sites. 

Two criterions are used for determining the subset records, selected from the 40 

records, to be used in the response-history analyses of the frames. First, the number of 

records to be used is such that the time required to complete all analyses is at minimum. 

The reason for such requirement is because on average, 10 hours of computational time is 

required to complete an analysis when subjecting any of the semi-rigid frames to 20 

seconds of earthquake duration. On the other hand, it is important to include sufficient 

number of ground motions that well represent the hazard. A study conducted by Wen and 

Wu (2001) indicates that suites of 10 selected ground motions yield median response 

spectra that closely match the uniform hazard spectra in the elastic and inelastic ranges 

with coefficient of variation of less than 10%. In addition, the uniform hazard spectra 

developed are comparable to those corresponding to the USGS hazard map.  Based on the 

results by Wen and Wu, it was decided to employ ten ground motion records in the 

parametric studies. 

Upon deciding to use ten records in the analyses, selection of the ground motions 

is made such that large variation in the distance from the fault is represented as 

recommended by ATC 63. This is achieved through the selection of 5 earthquakes from 

the 22 far field set and 5 earthquakes from the 28 near field set of ATC63 with distance 

from fault ranging between approximately 2 km to 25 km.  

The characteristics of the selected ground motions are shown in Table 6-3. The 

table includes the magnitude of the events, the year of occurrence, the earthquake name, 
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the station at which the record is measured, the closest distance to the fault, the PGA of 

the record, and the scale factor used to scale the records. 

Table 6-3 Characteristics of the ground motion records used in the parametric study 

Mw Year 
Earthquake 

Name 
Station ID 

Reference 

Name 

Distance 

(km) 
PGA 

Scale 

Factor 

6.5 1979 
Imperial 

Valley 

Bonds Corner 

(HBCR230) 
IV-HBCR 2.7 0.775 1.002 

6.9 1989 Loma Prieta Corralitos (CLS000) LP-CLS 3.9 0.644 1.339 

6.7 1992 Erzincan Erzincan (ERZEW) EZ-ERZ 4.4 0.496 0.997 

7.5 1999 Kocaeli Izmit (IZT090) KC-IZT 7.2 0.220 2.347 

6.7 1994 Northridge Arleta (ARL360) NR-ARL 8.7 0.308 1.989 

7.1 1999 Duzce Bolu (BOL000) DZ-BOL 12.0 0.728 0.929 

6.7 1994 Northridge 
Canyon County WLC 

(LOS000) 
NR-LOS 12.4 0.410 1.636 

6.9 1989 Loma Prieta Capitola (CAP090) LP-CAP 15.2 0.443 1.542 

6.9 1995 Kobe Shin Osaka (SHI090) KB-SHI 19.2 0.212 1.731 

6.7 1994 Northridge 
Century City CC North 

(CCN360) 
NR-CCN 25.7 0.222 1.225 

 

The records are scaled to the MCE spectrum per ASCE07 (American Society of 

Civil Engineers (ASCE 7-05) and Structural Engineering Institute (SEI) 2005) where the 

response spectrum of the record is anchored at the spectral acceleration of the MCE 

design spectrum corresponding to the period of the structure. The MCE design spectrum 

is developed assuming the structures are founded on an area with soil classification D 

with occupancy category of II and an importance factor of 1.0. The response acceleration 

for short period and one second period are taken as 1.50g and 0.60g, respectively. The 

frames are designed as special moment-resisting frames with seismic response 

modification factor (R), overstrength factor (d) and deflection amplification factor (Cd) 

of 8, 3, and 5.5 respectively. The scaled records and the resulting PGA are shown in 

Figure 6-3. The corresponding response spectra are shown in Figure 6-4.   
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Figure 6-3 Scaled records used in the parametric studies 

 

 

Figure 6-4 Response spectra of the scaled records 
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6.5 Investigation of Frame Response 

To evaluate the seismic response of the frames, different parameters are 

investigated including global drift, base shear, and interstory drift ratio. Comparison of 

the results is summarized in tables to reflect the following: 

 Average response for a given connection strength and design parameters under all 

earthquakes (i.e., average response of the first model of the 30% Mpbeam frame under 

all earthquakes). 

 Average response for a given connection strength with all different design parameters 

under a given earthquake (i.e., comparison of average of all 30% Mpbeam, 50% Mpbeam 

and the 70% Mpbeam models under individual earthquakes). 

6.5.1 Global Drift and Base Shear  

With the exception of connection strength, varying the design parameters appear 

not to significantly influence the behavior except in the nonlinear range (i.e., after the 

peak response). This is expected since for low rise frames, the columns are the primary 

contributors to the resistance of lateral forces. Figure 6-5 shows the influence of 

connection flexibility on the fundamental period of vibrations for frames with varying 

heights. As shown in the figure, for low-rise frames the ratio of the fundamental period of 

a semi rigid frame to that of a rigid frame is smaller than the ratio for taller frames. In 

other words, the lateral stiffness of semi-rigid frames approaches that of rigid frames as 

the height of the frames decreases. Furthermore, the figure shows the ratio to approach 

one as the connection stiffness reaches that of a rigid frame as indicated by the 

nondimensional connection stiffness parameter, m.  
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Figure 6-5 Influence of connection flexibility on the fundamental period of vibration for 

frames with varying heights (Elnashai and Di Sarno 2008) 

 

Figure 6-6 shows an example of the effect of varying the angle yield strength, 

coefficient of friction, and slip on the roof displacement response of the 50% Mpbeam 

frame under the Loma Prieta earthquake (LP-CLS). As shown in the figure, variation in 

the response, as a result of varying the design parameters, is evident after time of 

approximately 3.1 sec. 
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Figure 6-6 Roof displacement response of the 50% Mpbeam frame to the 1989 Loma 

Prieta earthquake (LP-CLS) 

 

As shown in Table 6-4, as the connection strength decreases, the average 

maximum absolute response of the frames is characterized by an increase in roof 

displacement and a decrease in base shear. This is expected since the stiffness of the 

frames decreases with reduction in connection strength, causing higher displacement and 

lower base shear demand on the frames. Specifically, the roof displacement of the 50% 

Mpbeam and 30% Mpbeam is 2.86% and 4.29% higher than that of the 70% Mpbeam frame, 

respectively, while the base shear of the 50% Mpbeam and 30% Mpbeam frames is 5.04% 

and 21.07% lower than that of the 70% Mpbeam frame, respectively.  

The dispersion in the results as influenced by the variation in the angle yield 

strength, the coefficient of friction, and the magnitude of slip is quantified with the 
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calculated standard deviation. Lower standard deviation is observed for the roof 

displacement results while higher standard deviation is observed with the base shear 

results. The maximum percent difference between the highest and lowest values is equal 

to 3.43%, 5.89%, and 4.99% for roof displacement and 6.52%, 8.55%, and 19.21% for 

the base shear for the 70% Mpbeam, 50% Mpbeam, and 30% Mpbeam frames, respectively.  

Variation in the response is better visualized through the bar graphs shown in Figure 6-7. 

Table 6-4 Average maximum absolute response for a model under all ground motions 

 70% Mpbeam 50% Mpbeam 30% Mpbeam 

Model Parameters 
Roof 

(in) 

VBase 

(kips) 
Roof 

 (in) 

VBase 

(kips) 
Roof 

 (in) 

VBase 

(kips) 

36-0.25-0.000 6.39 266.82 6.57 242.89 6.41 198.82 

36-0.25-0.0625 6.29 264.51 6.48 244.68 6.44 189.94 

36-0.33-0.000 6.27 265.71 6.36 242.44 6.44 198.37 

36-0.33-0.0625 6.19 251.57 6.28 238.10 6.42 198.75 

50-0.25-0.000 6.41 267.98 6.65 258.47 6.66 220.64 

50-0.25-0.0625 6.30 265.70 6.58 258.01 6.69 211.78 

50-0.33-0.000 6.25 263.94 6.45 256.36 6.73 226.43 

50-0.33-0.0625 6.21 252.48 6.40 251.85 6.70 211.75 

Mean 6.29 262.34 6.47 249.10 6.56 207.06 

STD Dev. 0.078 6.49 0.124 8.03 0.145 12.59 

 

 

Figure 6-7 Average maximum absolute response with varying design parameters under 

all ground motions 
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Table 6-5 shows the average maximum absolute response of all models under a 

given earthquake. In addition to the average response shown in the table for the semi-

rigid frames, analyses are also conducted on rigid frames so that reference comparison 

can be established.  As shown in the table, the resulting roof displacement and base shear 

of the rigid frame are significantly higher than that of the semi-rigid frames with the 

exception of the performance under the Northridge earthquake (NR-CCN). This might be 

due to the fact that the semi-rigid frames have significantly higher energy dissipation 

characteristic when compared to the rigid frame since their pushover curves is 

characterized by early yielding of the frames, unlike the rigid frame. It is important to 

note that the rigid frame model is developed to represent a typical pre-Northridge 

structure which has shown poor performance during the earthquake.  

A number of design strategies to improve the beam-to-column connection 

behavior of steel structures were proposed after the Northridge earthquakes and have 

shown satisfactory results. It is possible that if one of such strategies is employed in the 

rigid frame model (ex. reduced beam section), the results could be more satisfactory than 

shown in Table 6-5 below. The average maximum response results listed in the table are 

superimposed on the pushover curves of the semi-rigid frames as shown in Figure 6-8. As 

expected, scatter in the results of the dynamic-response analyses is shown when 

compared to that of the pushover curves. 
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Table 6-5 Average maximum absolute response of all models under a given earthquake 

 Rigid 70% Mpbeam 50% Mpbeam 30% Mpbeam 

EQ- Station ID 
Roof 

(in) 

VBase 

(kips) 
Roof 

 (in) 

VBase 

(kips) 
Roof 

 (in) 

VBase 

(kips) 
Roof 

 (in) 

VBase 

(kips) 

IV-HBCR 9.13 638.06 5.20 319.10 4.98 329.67 5.48 298.11 

LP-CLS 9.16 382.50 6.72 382.50 6.62 379.17 6.46 412.49 

EZ-ERZ 9.93 467.51 3.69 281.52 3.85 274.85 4.14 252.43 

KC-IZT 18.05 464.50 6.04 327.99 6.60 286.61 9.35 328.22 

NR-ARL 12.07 473.11 4.61 384.18 5.31 341.36 6.37 285.54 

DZ-BOL 10.78 560.95 7.77 281.13 6.53 285.89 5.38 275.98 

NR-LOS 18.82 640.89 3.85 305.94 4.17 282.58 6.28 236.82 

LP-CAP 8.00 594.12 5.79 230.36 6.43 228.05 8.24 204.86 

KB-SHI 8.19 474.86 5.38 209.45 7.10 229.7 7.62 212.67 

NR-CCN 6.15 354.56 6.18 262.34 6.22 249.05 5.90 180.07 

Mean 11.03 505.11 5.52 298.45 5.78 288.69 6.52 268.72 

STD Dev. 4.22 99.92 1.26 57.94 1.13 12.59 1.52 8.13 

 

 

Figure 6-8 Average maximum absolute base shear and displacement from the dynamic 

analyses superimposed on the pushover results 
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6.5.2 Interstory Drift Ratio 

Table 6-6 below shows the average maximum absolute IDR for all models under 

all ground motions. As shown in the table, all models satisfied the ASCE 41-06 

requirement of 5% IDR for MCE. The table also shows the calculated average IDR to be 

larger for the first story than the second story. This is due to the mass of the first story 

being larger than that of the second story which causes higher IDR between the first story 

and the ground when compared to that of the second story and the first story.  

Table 6-6 Average maximum absolute IDR for a model under all ground motions 

 70% Mpbeam 50% Mpbeam 30% Mpbeam 

Model Parameters 
IDR1st 

(%) 

IDR2nd 

(%) 

IDR1st 

(%) 

IDR2nd 

(%) 

IDR1st 

(%) 

IDR2nd 

(%) 

36-0.25-0.000 2.66 1.76 2.70 1.78 2.91 1.72 

36-0.25-0.0625 2.60 1.73 2.70 1.77 2.91 1.71 

36-0.33-0.000 2.62 1.73 2.66 1.74 2.91 1.72 

36-0.33-0.0625 2.58 1.69 2.65 1.73 2.91 1.73 

50-0.25-0.000 2.67 1.77 2.70 1.81 2.92 1.78 

50-0.25-0.0625 2.62 1.73 2.69 1.80 2.91 1.77 

50-0.33-0.000 2.63 1.75 2.67 1.76 2.91 1.78 

50-0.33-0.0625 2.57 1.70 2.63 1.75 2.91 1.76 

Average 2.62 1.73 2.67 1.77 2.91 1.75 

STD Dev. 0.035 0.028     0.027 0.028 0.004 0.029 

 

The results listed in Table 6-6 are shown with a bar chart in Figure 6-9. The figure 

shows that for a given combination of design parameters, the largest calculated average 

maximum IDR of the first story resulted in the 30% Mpbeam frame, followed by the 50% 

Mpbeam frame, then the 70% Mpbeam. A strong conclusion cannot be made regarding the 

IDR response of the second story since the results of all three semi-rigid frames lay 

within a very narrow range. However, it appears from the figure that the largest 
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calculated average maximum absolute IDR of the second story is experienced by the 50% 

Mpbeam. 

 

Figure 6-9 Average maximum absolute IDR ratios with varying design parameters under 

all ground motions 

 

The average maximum absolute IDR for all models under a given earthquake are 

shown in Table 6-7. Despite the rigid frame experiencing large roof displacement when 

excited by the earthquakes (Table 6-5), the average first-and second-story IDR of the 

rigid frame is still below the 5% limit of ASCE 41-06 for MCE except when the frame is 

subjected to the NR-LOS record. 
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Table 6-7 Average maximum absolute IDR of all models under a given earthquake 

 Rigid 70% Mpbeam 50% Mpbeam 30% Mpbeam 

EQ- Station ID 
IDR1st 

(%) 

IDR2nd 

(%) 

IDR1st 

(%) 

IDR2nd 

(%) 

IDR1st 

(%) 

IDR2nd 

(%) 

IDR1st 

(%) 

IDR2nd 

(%) 

IV-HBCR 3.13 2.25 3.05 2.38 2.92 1.73 2.43 1.78 

LP-CLS 3.87 1.72 2.94 1.50 2.84 1.50 3.14 1.80 

EZ-ERZ 3.65 2.94 3.08 2.16 3.53 2.11 2.90 2.17 

KC-IZT 5.56 5.10 2.47 1.71 3.27 2.36 2.74 1.50 

NR-ARL 3.96 3.24 2.62 1.82 2.54 1.54 2.83 2.11 

DZ-BOL 4.00 2.75 2.73 1.49 2.66 1.47 3.18 1.68 

NR-LOS 6.49 5.22 2.60 1.97 2.82 1.74 2.69 2.13 

LP-CAP 2.96 1.78 2.32 1.48 3.07 1.83 2.09 1.37 

KB-SHI 2.93 2.40 2.56 1.65 3.00 1.77 1.93 1.32 

NR-CCN 2.44 1.51 2.36 1.51 2.48 1.42 2.26 1.49 

Average 3.90 2.89 2.67 1.77 2.91 1.75 2.62 1.73 

STD Dev. 1.25 1.32 0.272 0.314 0.324 0.299 0.428 0.319 

 

The interstory drift ratios for 70% Mpbeam, 50% Mpbeam, and 30% Mpbeam are 

shown in Figure 6-10, Figure 6-11, and Figure 6-12, respectively. The figures combine 

the IDRs of the first and second stories to give a more physical sense of the deformation 

of the frame as a whole. In addition, the figures illustrates the effect of varying the design 

parameters under a given earthquake on the IDRs (i.e., average values are not used). As 

shown in the figures, the effect of varying the design parameters on the IDR increases as 

the connection strength degreases. Such observation suggests that there is coupling 

between yielding of the angles and the increase in the effect of the design parameters on 

the system behavior.  

 



  179 

 

Figure 6-10 IDR for the 70% Mpbeam frame 
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Figure 6-11 IDR for the 50% Mpbeam frame 
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Figure 6-12 IDR for the 30% Mpbeam frame 

 

 

 

 

IV-HBCR LP-CLS EZ-ERZ

KC-IZT NR-ARL

NR-LOS LP-CAP KB-SHI

NR-CCN

DZ-BOL



  182 

6.6 Design Approach and Methodology 

The code approach for the seismic design of structures is based on constructing a 

simplified response spectrum from which the base shear is estimated (American Society 

of Civil Engineers (ASCE 7-05) and Structural Engineering Institute (SEI) 2005; 

International Building Code 2006). In a general term, the spectrum is used to determine 

the spectral acceleration corresponding to the period of the structure, which is then 

multiplied by the mass of the structure to determine the base shear. The parameters used 

for constructing the response spectrum (SD1 and SDS), shown in Figure 6-13, are simply 

the coefficients for the MCE spectral response acceleration, adjusted for site class effects. 

 

Figure 6-13 Design elastic response spectrum, after: (American Society of Civil Engineers 

(ASCE 7-05) and Structural Engineering Institute (SEI) 2005) 

 

Three major fundamental design parameters are required for constructing the 

response spectrum and estimating the inelastic base shear, which is used to determine 

actions on the various components and elements of the structure considered. The main 

design parameters include, the equivalent damping ratio, eq, the period of the structure, 
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Telastic (known as Ta in codes), and the response modification factor, R. First, the 

equivalent damping ratio is used in the construction of the elastic response spectra where 

the peak of the spectrum is determined for the MCE mapped spectral acceleration 5% 

critical damping. It is important to note that the 5% damping value is fixed regardless of 

frame type and height. A mapped MCE spectral acceleration that is adjusted to account 

for the actual equivalent damping of the structure will lead to more accurate estimates of 

the base shear. Once the elastic response spectrum is constructed, the elastic spectral 

acceleration corresponding to the approximated structural period, Ta, can be estimated. 

The elastic base shear is then determined by multiplying the elastic spectral acceleration 

by the mass. The approximated period is calculated using the following equation.  

x

a t nT =C h  (6.1) 

 

Where Ct is a coefficient equal to 0.028 for steel, hn is the height of the structure 

in feet, and x is a constant equal to 0.8. The code imposes an upper limit on estimating 

the period for strength determination, Ts, to ensure that an unreasonably low design base 

shear is not calculated by using a long period based on an unrealistic frame stiffness 

assumption. 

Following the calculation of the elastic spectral response acceleration, the 

inelastic seismic response coefficient is then calculated using equation (6.2). Where, I is 

the importance factor and R is the response modification factor. 

SDsC =s
R/I

 (6.2) 
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The current code design approach is conservative in that it uses the elastic period 

of the structure for estimating the inelastic seismic response coefficient. This results in 

estimating higher base shear than what is likely to be experienced by the structure. An 

improvement to the code design approach can be achieved if the inelastic period of the 

structure can be estimated and used to determine the inelastic seismic response 

coefficient. A modified code-based seismic design approach can be as follows: 

 Construct the elastic response spectrum using the conventional code approach 

with damping coefficient value representing the actual damping in the structure 

instead of that assumed by the code  

 Construct the inelastic response spectrum by dividing the elastic spectrum by (R/I) 

where a realistic R value, which accounts for the actual period elongation of the 

system is used   

 Use an estimated inelastic period of the structure, Tinelastic to estimate the seismic 

response coefficient, Cs, from the inelastic response spectrum 

 Estimate the base shear by multiplying the seismic response coefficient with the 

mass of the structure 

From the above discussion, it is clear that calculating the inelastic base shear for 

the seismic design of frames requires the determination of the following design 

parameters: 

 The equivalent damping ratio, eq 
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 The initial period and elongated period of the structure Tinelastic 

 The response modification factor, R  

The sections below are aimed towards assessing the three design parameters 

indicated above. 

6.7 Determination of the Equivalent Damping Ratio, eq  

The equivalent damping ratio of a structure, eq, is simply an equivalent viscous 

damping that is based on the measured response of a structure at a particular frequency, 

which is equal to the natural frequency of the system. Such value should be 

representative of all damping mechanism present in the structure. The value could be 

determined by equating the energy dissipated in a vibration cycle of the actual structure, 

ED, to that of an equivalent viscous system using the following equation. 

4 eq So D

n

E E





  (6.3) 

 

Where, 
2 / 2So oE ku  and uo is the maximum displacement. It is important to note 

that ED is defined at  = n, resulting in eq defined as: 

1

4

D
eq
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E

E



  (6.4) 

 

A schematic of the energy dissipated in the actual structure, ED, and the strain 

energy, Eso, is shown in Figure 6-14. 
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Figure 6-14 Schematic of the dissipated energy, ED, in a cycle of harmonic vibration and 

the strain energy, Eso, after: (Chopra 2006) 

 

A distributed inverted triangle load is used to develop a force-displacement curve 

for the frames similar to the one shown in the figure. The distributed load used 

corresponds to the base shear value developed as a result of imposing a peak 

displacement on the frame, which is equal to the force reduction factor multiplied by 

yield displacement. In other words, an inverted load triangle is assumed along the frame 

height and a pushover analysis is conducted. If the peak displacement resulting from the 

analysis is equal to the ultimate displacement calculated by (u = R*y), where R and y 

are given, then the pushover analysis is deemed acceptable and the resulting force-

displacement cycle is used in calculating the equivalent damping. The reason for using 

such approach instead of applying the ultimate displacement directly to the frame is due 

to the fact that using displacement control in pushover analysis results in an excessively 
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stiffer behavior of the frame and deformation that does not correspond to mode one 

deformation, which will result in inaccurate representation of the energy dissipated by the 

frame. To use displacement control in a pushover analysis, one should employ an 

algorithm such that one node at a floor level is being pushed while the magnitude of the 

displacement of the other node, at the other floor level, is adjusted  so that the restoring 

forces are maintained as a constant ratio of each other.  

It is important to note that the force reduction factor used to calculate the ultimate 

displacement is derived in Section 6.9. The target ultimate displacement is calculated to 

be equal to 15.57 in, 15.68 in, and 15.05 in for the 70% Mpbeam, 50% Mpbeam, and the 30% 

Mpbeam frame, respectively.  That is, u = R*y, which is equal to 6.55 * 2.377 for the 70% 

Mpbeam frame, 6.79*2.31 for the 50% Mpbeam frame, and 6.81*2.21 for the 30% Mpbeam 

frame. 

The hysteretic loops used for calculating the dissipated energies and the 

equivalent damping for all models are shown in Figure 6-15. It is noted that the larger 

hysteretic loop is developed by the 70% Mpbeam and 50% Mpbeam frames when compared 

to the 30% Mpbeam frame. This is due to the fact that as the connection strength increases, 

so is the angle size used in constructing the connection (i.e., there is more material that 

can yield and dissipate energy). 
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Figure 6-15 Cyclic response of the semi-rigid frames   

 

It is worth noting that in a multi-degree of freedom system, an equivalent 

damping can be assigned to each natural vibration mode. The equivalent damping ratios 

calculated are, however, associated with the first mode response. This is because the 

lateral load applied to the frames is distributed along the height per each floor weight to 

represent mode one deformation shape. The resulting equivalent damping is 7.78%, 

7.23%, and 5.13% for the 70% Mpbeam, 50% Mpbeam and 30% Mpbeam frame, respectively, 

as listed in Table 6-8. 

Table 6-8 Equivalent damping for all three semi-rigid frames 

Frame ID 
eq 

(%) 

70% Mpbeam 7.78 

50% Mpbeam 7.23 

30% Mpbeam 5.13 

 

It is important to note that the IBC or ASCE 07-2005 design codes assume 5% 

damping when the spectral response acceleration associated with MCE is constructed. 
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The same damping value is assumed for steel structures by other design codes including 

for example EC 8 (Eurocode 8 2003). Analytical studies of steel frames have shown very 

large variation in the damping ratio employed by researchers in the analysis, ranging 

from 2% to 5% (Pong 2002; Murat Diclelia and Anshu Mehtab 2006; Monica D. Kohler, 

Thomas H. Heaton et al. 2007). An analytical investigation was conducted to evaluate the 

magnitude of the equivalent damping ratio of rigid 1-bay steel frames, with varying 

number of stories, as a function of the ductility ratio and the peak ground acceleration 

(Parulekar, Vaity et al. 2004). The number of stories used in the investigations is 5, 10, 

and 20. Similar to this study, the equivalent damping ratio is determined by equating the 

energy dissipated in a vibration cycle of the actual structure, ED, to that of an equivalent 

viscous system. The results show large magnitudes of equivalent damping ratio 

associated with large ductility ratio and peak ground acceleration as shown in Figure 6-16.  

 

Figure 6-16 Variation of ductility and damping ratio with peak ground acceleration, after: 

(Parulekar, Vaity et al. 2004) 
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6.8 Investigation of Period Elongation 

6.8.1 Fourier Transformation  

Traditionally, studies have focused on evaluating the inelastic period of structures 

using Fourier transformation. The Fourier transformation is a mathematical 

representation of the amplitudes of the signal by decomposing a function into oscillatory 

function. The discrete Fourier transformation is a periodic sequence of sampled values 
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 of period N (or number of sample N) transformed into Xp values using the 

following equation: 
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    (6.5) 

 

Where e denotes the natural exponent and j= , and xn is a complex number 

equal to xreal + j ximag. Similar to the DFT, the fast Fourier transform (FFT) of a periodic 

function is an extraction of the series of the sines and cosines for which the function is 

made up of (i.e., the superposition of the sines and cosines reproduces the function). In 

fact, FFT is nothing but an efficient algorithm used to compute the DFT and its inverse. 

A real periodic function x(t) can be expressed as sum of trigonometric series (-L < t < L) 

as: 
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For which the coefficients can be computes by:  
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(6.8) 

 

The generalization of the continuous Fourier series for infinite domains can be 

expressed by: 

2( ) ( ) iftx t F f e df







   (6.9) 

 

When fast Fourier transformation (FFT) is carried out on the function above, the 

result is the real and imaginary terms for F(f) defined at all frequencies that indicates how 

big the amplitude of the sin wave has to be to make the function x(t) for all frequencies. 

The resulting F(f) is defined as: 

2( ) ( ) iftF f x t e dt







   (6.10) 

 

The FFT algorithm within MATLAB, which is a high-level technical computing 

language, was used to conduct an FFT on the relative roof acceleration with respect to the 

ground acceleration to provide an insight on the predominant frequency response of the 

structure. This proves to be helpful when the response is predominantly mode one and the 

natural frequency of the structure are well spaced. For example, as shown in Figure 6-17, 

the predominant period of the structure is 1.177 sec. Since the fundamental period of the 
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structure is 0.904 sec, the 1.177 sec value must correspond to the inelastic period of the 

structure (period elongation).  

 

Figure 6-17 FFT of the roof acceleration response of the 30% Mpbeam frame under the 

1979 Imperial Valley earthquake (IV-HBCR) 

 

When the response of the structure is governed by various modes, conducting 

FFT on the acceleration response reveals that multiple modes are highly participating in 

the response of the structure as shown in Figure 6-18. In this case, the predominate period 

of 0.714 sec must correspond to an elongation of the second mode since the fundamental 

period of the structure is 0.904 sec. 
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Figure 6-18 FFT of the roof acceleration response of the 30% Mpbeam frame under the 

1989 Loma Prieta earthquake (LP-CLS) 

 

Fourier transform is considered the primary tool for signal processing and 

interpretation of system response. It provides an insight on the inelastic period of the 

structure corresponding to period elongation when the response of the system is governed 

by the first mode. However, for higher modal participation, the information gathered 

from conducting an FFT appears to be washed away by the complexity of the response. 

The inability of the FFT to capture the time-varying response of the system motivated the 

use of time-frequency transformation for analyzing the high transient events such as 

structural response due to earthquakes. 

6.8.2 Short-time Fourier Transformation  

Another alternative to FFT is short-time Fourier transform (STFT) which is a 

powerful tool for signal processing specifying complex amplitude versus time and 

frequency for any signal. Introducing the time scale into the Fourier transformation 
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analysis enables for the quantification of the modal participation at a given time of 

interest. Similar to FFT, both discrete and continues forms of the STFT are used for 

signal analysis. In the discrete time case, used in this study, the data is divided into 

chunks of overlapping frames where each chunk is transformed and the complex results 

are added to a matrix recording the magnitude and phase of each point in time and 

frequency. 

        , jwn

n

STFT x n X m x n n mR e 






    (6.11) 

 

Where x[n] represents the signal input at time n, [n] represents the length m 

window functions (e.g., hamming), and R is the hop size in samples between successive 

discrete time Fourier transformation.  

A time-varying spectral representation showing the variation of the spectral 

density with time is called a spectrogram. In its most common format, a spectrogram has 

two geometric dimensions with the vertical axis representing frequency while the 

horizontal axis represents time. A third dimension is added to the graph by representing 

the amplitude of the frequency through a color bars or intensity. A spectrogram of a 

signal is developed by calculating the squared magnitude of the STFT of the signal as: 

  
2

 ( , )spectogram t STFT x n   (6.12) 

 

As mentioned above, the FFT of the roof acceleration of the 30% Mpbeam resulting 

from subjecting the structure to the Loma Prieta earthquake is shown in Figure 6-18. The 
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FFT gives an insight on the predominate period of the structure with no reference to the 

time at which the period was dominating. Such information is needed particularly when 

determining period elongation as a function of time is needed.  

Figure 6-21 below shows a spectogram of the roof acceleration response of the 30% 

Mpbeam frame to the Loma Prieta earthquake (LPCLS). As shown in the figure, the STFT 

is characterized by distinct high participation of various modes at two different time 

ranges. The first high modal participation approximately corresponds to time range 

between 2 sec to 4 sec while the second high modal participation approximately 

corresponds to time range between 6 sec to 8 sec.  

 

Figure 6-19 Spectogram of the roof acceleration response of the 30% Mpbeam frame under 

the 1989 Loma Prieta earthquake (LP-CLS) 

 

A visual evaluation of the roof displacement response of the frame under the same 

ground motion clearly shows the highest displacement response of the frame to be 

associated with the same time range corresponding to high modal participation (i.e., 2 sec 

to 4 sec and 6 sec to 8 sec). 

STFT for 

1st peak response 
STFT for 2nd

peak response 
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Figure 6-20 Roof displacement response of the 30% Mpbeam frame under the 1989 Loma 

Prieta earthquake (LP-CLS) 

 

The correlation between the roof displacement response and the spectogram of the 

roof acceleration response proves to be useful in providing an insight on characterizing 

the structural response with the progression of time. The drawback of using STFT in 

signal analysis is that it has a fixed resolution where the width of the windowing function 

is related to how the signal is presented. The resolution of the analysis is controlled by 

either obtaining a good frequency resolution at the expense of the time resolution 

(wideband) or obtaining the desired time resolution at the expense of frequency 

resolution (narrowband).  The selection of the widow size must be such that sharp peaks 

or low frequency features can be captured. This is because of the inverse relationship 

between the window length and the corresponding frequency bandwidth. 

Figure 6-21 shows a zoom in image of the spectogram of the roof acceleration 

response shown in Figure 6-19. The maximum frequency included in figure is 5 Hz. As 

the figure shows, it is difficult to obtain a clear idea regarding period elongation of the 

1st peak response 2nd peak response 
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frame with the progression of time. Furthermore, the resolution obtained on the time axis 

is quite high at the expense of a low resolution of the frequency axis. The result of 

achieving higher resolution on the frequency axis is lower resolution on the time axis. 

 

Figure 6-21 A Zoom in image of the Spectogram of the roof acceleration response of the 

30% Mpbeam frame under the 1989 Loma Prieta earthquake (LP-CLS) 

 

In some cases it might be useful to obtain a 3D snazzy spectrogram which 

includes peaks and valleys characterizing the amplitude of a given frequency in addition 

to the color map intensity. Figure 6-22 shows a 3D spectrogram of the roof acceleration 

response. The figure shows peaks and valleys characterizing the frequency response of 

the system. However, the 3D spectrogram still lacks the needed resolution for quantifying 

the period elongation of the system. 
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Figure 6-22 Three-dimensional spectogram of the roof acceleration response of the 30% 

Mpbeam frame under the 1989 Loma Prieta earthquake 

 

An alternative to overcome the issue of resolution tradeoff between the frequency 

and time domains is to conduct a discrete wavelet transformation (DWT). In DWT the 

resolution in time and frequency can be controlled independently as desired. 

6.8.3 Wavelet Transformation  

The wavelet transform is used to decompose random non-stationary signals into 

localized orthogonal basis functions. Time-frequency maps of the time-varying signals 

can be formulated with desired resolution to provide insight into the characteristics of the 

signal. The method allows for an automated change of the window size to observe high 

and low frequency content of the signal. The process starts by formulating a single parent 

wavelet which is then decomposed into a series of basis functions characterized by 

A
m

p
lit

u
d

e



  199 

different scales and positions in time or space, which are related based on power of two. 

A continuous wavelet transform is presented by:  

*1
 ( , ) ( )

t
W a t x g dt

aa








 
  

 
  (6.13) 

 

Which represents the decomposition of a signal x(t) through basis functions that 

are a subset of the complex conjugate parent wavelet g(t), and a represents the scale or 

the frequency of the basis functions. This study utilized Morlet wavelet for the 

continuous wavelet transform which is a Gaussian-windowed Fourier transform, with 

sines and cosines oscillating at the central frequency, fo (ωo=2πfo) (Correa and Kareem 

2004). 

The square magnitude of the wavelet coefficient of Equation (6.13) is referred to 

as wavelet scalogram, which is a color contours representing the energy of the signal in 

scale and time SG (a,t). The contours are more apparent at the dominate frequency of the 

signal and when combined they form a time-evolving curves called ridges where the 

frequency of the scaled wavelet coincides with that of the signal. Defined as the 

instantaneous frequency (IF) or the wavelet instantaneous frequency (WIFS), the isolated 

ridges provide very useful information on the evolution of the signal with time.  

( )

( )

( , ) |
 ( , )

0 |

r

r

a a t

a a t

SG a t
WIFS a t






 


 (6.14) 

 



  200 

The wavelet scalogram and the instantaneous frequency corresponding to the roof 

acceleration response with respect to the ground of the 30% Mpbeam frame when 

subjected to the 1989 Loma Prieta earthquake are shown in left and right part of Figure 

6-23, respectively. The figure clearly shows the predominate response modes with 

resolution higher than that provided by the spectrogram. 

 

Figure 6-23 Wavelet scalograms (left) and instantaneous frequency (right) of the roof 

acceleration response of the 30% Mpbeam frame under the 1989 Loma Prieta 

earthquake 

 

An inverse of the IF values represents the evolution of the period of the structure 

as it responds to the seismic event. As shown in Figure 6-24 the dominate response of the 

structure is between the period of 0 sec and 2 sec with most of the activities dominated by 

lower period response. Such information correlates very well with the FFT analysis 

shown in Figure 6-18 where the dominate response is also mainly governed by lower 

modes.  
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Figure 6-24 Instantaneous period of the structural response of the 30% Mpbeam frame under 

the 1989 Loma Prieta earthquake 

 

As previously discussed, the instantaneous frequency (IF) or ridges provide an 

insight on the evolution of the structural period with time. Although the first mode of 

vibration is not the primary contributor to response in this case, one way to extract the 

ridges corresponding to the first mode is to use a weighted average only on frequencies 

corresponding to mode one and lower (i.e., low frequencies corresponding to low-

frequency response and period elongation). The weighted average is with respect to the 

absolute of the wavelet transformation (i.e. how intense each frequency is participating in 

the response). This is done while excluding any frequency higher than that of the 

fundamental mode. It is important to note that the resulting frequency (or period) profile 

with time does not imply higher participation of the first mode. Instead, it is simply an 

indication of the most predominate period of mode one at a given point in time. 
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The extracted period from the above scalogram is shown in Figure 6-25. It is 

important to note that the first period shown in the figure at time of zero sec is 1.2 sec. 

This value neither represents the fundamental period of the structure nor any period 

elongation since it is shown at time of zero seconds where the structure is under very 

small to no excitation. In another words, the calculated period is the most predominate 

period of response at time when there is no response and is simply the outcome of 

conducting the weighted average on the scalogram at a point in time. 

The scalogram of Figure 6-24 clearly shows no predominate period of response 

for the time and up to approximately 2.5 sec. However, when taking a closer visual 

inspection of the scalogram, one can see higher intensity “purple” color for period up to 2 

sec. Therefore, when a weighted average is conducted up to the time of 2.5 sec, it results 

in a higher period than the elastic one. From the figure below one can clearly see that 

indeed the maximum period elongation of 1.22 sec corresponds to the maximum response 

of the frame. The value corresponds very well to the average of mode one period 

elongation that could be estimated using FFT as shown below in Figure 6-26. The 

method used for extracting the fundamental mode of vibration and its elongation is 

further highlighted below as shown in Figure 6-27 and Figure 6-28. It is also important to 

point out that the oscillation of the period with time is expected since a simplified 

material model was used in the analysis with an unloading stiffness taken to be the same 

as the initial stiffness.  
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Figure 6-25 Extracted instantaneous fundamental period of the structural response of the 

30% Mpbeam frame under the 1989 Loma Prieta earthquake (LP-CLS) 

 

 

Figure 6-26 FFT of the roof acceleration response of the 30% Mpbeam frame under the 

1989 Loma Prieta earthquake (LP-CLS) showing the predominate mode two 

response and the average of the elongated first mode period  

 

Period = 1.111

Period = 1.334

Avg. = 1.222
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Figure 6-27 Scalogram (left) and instantaneous period of the structural response (right) of 

the 30% Mpbeam frame under the 1994 Northridge earthquake (NR-LOS) 

 

 

Figure 6-28 Scalogram (left) and instantaneous period of the structural response (right) of 

the 70% Mpbeam frame under the 1995 Kobe earthquake (KB-SHI) 
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Table 6-9 list a summary of the average inelastic period and percent period 

elongation for the 70% Mpbeam, 50% Mpbeam and the 30% Mpbeam frames under all ground 

motions. As shown in the tables, the average period elongation of the three frames is 

equal to 1.16 sec (34.48%), 1.20 sec (35.92%), and 1.25 sec (38.24%) for the 70% 

Mpbeam, 50% Mpbeam and 30% Mpbeam frames, respectively. 

Table 6-9 Average inelastic period and percent period elongation for all frames 

 70% Mpbeam 50% Mpbeam 30% Mpbeam 

EQ-Station ID 
Tinelastic 

(sec) 

Telongation 

(%) 

Telongation 

(%) 

Telongation 

(%) 

Tinelastic 

(sec) 

Telongation 

(%) 

IV-HBCR 1.170 35.417 1.18 33.787 1.201 32.854 

LP-CLS 1.184 37.037 1.177 33.447 1.221 35.066 

EZ-ERZ 1.132 31.019 1.245 41.156 1.274 40.929 

KC-IZT 1.141 32.060 1.194 35.374 1.218 34.735 

NR-ARL 1.214 40.509 1.22 38.322 1.291 42.810 

DZ-BOL 1.19 37.731 1.18 33.787 1.212 34.071 

NR-LOS 1.156 33.796 1.18 33.787 1.315 45.465 

LP-CAP 1.156 33.796 1.217 37.982 1.269 40.376 

KB-SHI 1.176 36.111 1.213 37.528 1.267 40.155 

NR-CCN 1.1 27.315 1.182 34.014 1.229 35.951 

Mean 1.16 34.48 1.20 35.92 1.25 38.24 

STD Dev. 0.03 3.76 0.02 2.66 0.04 4.25 

 

It is important to note that very limited research has been conducted on evaluating 

the evolution of period elongation in structures. Furthermore, research on quantifying 

period elongation to be used in seismic design is lacking. One paper is found in the 

literature where ground intensity parameters are used to develop a relationship between 

expected structural damage and the seismic forces experienced by the structure (Kadas, 

Uakut et al. 2011). To achieve this goal an equation is developed describing the final 

period elongation as a function of the spectral acceleration normalized to yield spectral 

acceleration. It important to note, however, that although the ground motions used in the 
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current analyses are all scaled with different scaling factors, one could argue that the 

intensity of the records are the same since all records are scaled to the MCE (i.e., 

intensity of the records are not varied).  

One approach to describe period elongation of the structures investigated is 

through describing a relationship between the ratio of the inelastic to the elastic period as 

a function of connection strength as shown in Figure 6-29. The inelastic period used in 

the plot are listed in Table 6-9. Although the figure shows large scatter in the measured 

period elongation, there is a clear trend pointing towards an increase of the ratio of the 

inelastic to the elastic period with reduction in connection strength. The reason for 

choosing connection strength as a parameter for describing period elongation is because 

connection strength is the main parameter used in the design of the connections. A linear 

regression line of the plotted data and an equation describing the period elongation is 

shown in the figure.  

As the figure shows, large scatter is observed in the calculated period elongation 

of the frames. Further research should be carried out to investigate the effect of the yield 

median response spectra of the records used in the dynamic response-history analyses on 

the dispersion of the calculated elongated period. Furthermore, the proposed equation for 

period elongation requires further investigation to incorporate the effect of various 

parameters, including for example building height, intensity of the record, and site 

conditions on the resulting inelastic period. 
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Figure 6-29 Ratio of the elastic to the inelastic period as a function of connection strength 

 

6.9 Proposed Response Modification Factor (demand) 

Inelastic energy absorption is key to the seismic design of structures to ensure 

proper energy absorption capacity needed to reduce the seismic demand. Such behavior is 

accounted for in building codes through the use of force reduction factors “R” used to 

reduce the elastic seismic demand to an inelastic demand. 

The demand R value represents a minimum reduction of forces corresponding to a 

specific level of ductility. The R factor, known as the behavior factor (q) in EC8  

(Eurocode 8 2003) is the ratio between the elastic and inelastic design spectra, that is: 

elastic

inelastic

Sa
q R

Sa
   (6.15) 
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The determination of Sainealstic requires knowledge of the expected inelastic period 

of the structure. Among other factors, such value depends on various parameters 

including structural type and material used. Eurocode 8 includes a maximum allowable 

behavior factor, accounting for difference in structural type, material type, and desired 

ductility. Similarly, US codes provide R factors for different structural types 

(International Building Code 2006). The recommended R factors implemented in US 

seismic codes and reports are frequency dependent and are a result of much extensive 

work on relating the nonlinear behavior of multi-degree of freedom systems to that of 

single-degree of freedom systems.  

As previously discussed, the use of wavelet transformation is the most accurate 

tool for quantifying elongation of the period as the structure exhibit large nonlinear 

defamation. By using such tool, the average period elongation of all models for a given 

period strength is calculated. With the calculated Telastic and Tinealstic, the corresponding 

Saelastic and Sainealstic are determined for all ten records used in the analyses. The ratio of 

both values is defined as the demand force reduction factor Rdemand. When determining 

the elastic and inelastic spectral accelerations, a damping ratio of 2% and a ductility 

demand of 4 are used. Table 6-10 lists a summary of Saelastic, Sainealstic, and the proposed 

average R factor for each connection type. 
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Table 6-10 Proposed average force reduction factor, Rdemand 

 70% Mpbeam 50% Mpbeam 30% Mpbeam 

EQ-Station ID 
Saelastic 

(g) 

Sainelastic 

(g) 

Rdemand 

 

Saelastic 

(g) 

Sainelastic 

(g) 

Rdemand 

 

Saelastic 

(g) 

Sainelastic 

(g) 

Rdemand 

 

IV-HBCR 0.944 0.105 8.994 0.749 0.108 6.933 0.757 0.116 6.545 

LP-CLS 0.814 0.159 5.105 0.786 0.159 4.950 0.748 0.160 4.676 

EZ-ERZ 0.777 0.222 3.495 0.735 0.137 5.385 0.703 0.129 5.474 

KC-IZT 0.810 0.216 3.749 0.810 0.218 3.709 0.901 0.221 4.082 

NR-ARL 0.895 0.091 9.835 0.873 0.091 9.591 0.849 0.090 9.433 

DZ-BOL 0.976 0.150 6.527 1.013 0.152 6.663 1.027 0.145 7.105 

NR-LOS 0.832 0.216 3.857 0.854 0.147 5.812 0.856 0.140 6.133 

LP-CAP 1.151 0.096 12.036 0.883 0.094 9.374 0.625 0.088 7.099 

KB-SHI 0.811 0.163 4.972 0.724 0.171 4.226 0.669 0.146 4.572 

NR-CCN 0.66 0.094 6.97 0.717 0.064 11.216 0.795 0.061 13.030 

Mean 0.87 0.15 6.55 0.81 0.13 6.79 0.79 0.13 6.81 

STD Dev. 0.13 0.05 2.91 0.09 0.05 2.51 0.12 0.04 2.69 

 

The demand force reduction factor is found as the ratio between the elastic to the 

inelastic spectral accelerations. The calculated average demand force reduction factor is 

6.55, 6.79, and 6.81 for the 70% Mpbeam, 50% Mpbeam and 30% Mpbeam, respectively. The 

small dispersion in the values is somewhat expected since the fundamental period of all 

three frames are closely spaced with very comparable period elongation. A supply force 

reduction value of 7 can be specified for all three frames. 

6.10 Summary and Conclusion 

In this chapter, the response of semi-rigid frames with varying design parameters 

is studied. The parameters included connection strength as a function of the plastic 

moment capacity of the beam, yield strength of the angles, coefficient of friction between 

faying surfaces, and the magnitude of slip allowed in the connection.  
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The results of the analyses indicated that all frames, including the rigid frame 

(except for one analysis), met the requirement of ASCE 41-06 for interstory drift ratio of 

5% for the MCE. It is worth noting that the semi-rigid frames outperformed the rigid 

frame with lower base shear and lower IDR. On average, ranking of the behavior of the 

semi-rigid frames is as expected where the frame with the highest stiffness (70% Mpbeam) 

developed the highest base shear and the lowest displacement and the frame with the 

lowest initial stiffness (30% Mpbeam) developed the lowest base shear and the highest 

displacement. Measurable, but not drastic, differences are noted in the response of the 

frames when changing the design parameters. 

The implication of the behavior of the structures on design is assessed through 

quantifying various code-based design parameters including the equivalent damping ratio 

(eq), the inelastic period of the structure (Tinealstic), and the force reduction factor (R).   

Equating the hysteretic energy dissipated in one cycle of loading to that of an 

equivalent viscous system resulted in equivalent damping ratios of 7.78%, 7.23%, and 

5.13% for the 70% Mpbeam, 50% Mpbeam and 30% Mpbeam frame, respectively. Wavelet 

transformation analysis is used to characterize the response of the structures as a function 

of time. Instantaneous frequency scalograms are developed to highlight the dominate 

period of the structure. The evolution of period elongation with time is characterized 

through the extraction of ridges from the scalogram using a weighted average. The 

corresponding average percent period elongation is equal to 34.48%, 35.92%, and 38.24% 

for the 70% Mpbeam, 50% Mpbeam, and 30% Mpbeam, respectively. Based on the results, an 

equation describing the period elongation as a function of connection strength is 

presented. 
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The elastic and inelastic periods of the frames are used in response spectrum 

analysis, with damping ratio of 2% and ductility demand of 4, to determine the elastic 

and inelastic spectral acceleration. The spectral acceleration values are then used to 

calculate the demand force reduction factor for the frames. The average R value for the 

frames is 6.55 6.79, and 6.81 for the 70% Mpbeam, 50% Mpbeam and 30% Mpbeam, 

respectively. Based on this result, a supply force reduction of 7 could be specified for 

these types of frames that are 2-story high. 

The advanced tools utilized for determining the equivalent damping ratio, the 

inelastic period, and the force reduction factor results in more accurate quantification of 

such parameters. The implication on design of semi-rigid frames is that, more realistic 

estimate of the seismic forces is achieved while using the simplified code-based design 

response spectrum. 
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CHAPTER 7 

 

CONCLUSIONS AND FUTURE RESEARCH REQUIREMENTS 

7.1 Summary of Current Work 

In this thesis, a new methodology for the seismic evaluation of semi-rigid steel 

frames is proposed and executed. The methodology includes conducting system-level 

PSD hybrid simulations, performing nonlinear response-history analyses, and evaluating 

code-based design parameters used for constructing the elastic and inelastic response 

spectrum to accurately estimate the design base shear.  

The hybrid simulation methodology consists of integrating a 2D analytical model 

with an experimental setup to conduct a system-level assessment of the frames. Three 

nodes are used to define the interface between the analytical and experimental modules 

during the simulations. At each node, lateral, transverse, and rotational degrees of 

freedoms are controlled. Both modules are successfully integrated in three independent 

full-scale hybrid simulations.  

The analytical module includes generalized plane strain elements with reduced 

integration to model the beam-to-column connections and 1D beam elements for portions 

of the beams between subsequent connections. The model represents many behavioral 

features of the connection including; 1) hot-rolling residual stresses in the top and seat 

angles, 2) bolt preload, 3) friction between faying surfaces, 4) connection slip, 5) the 

effect of bolt-hole ovalization, 6) transverse stiffness of the connections, and 7) 

idealization of the web angles.  
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The experimental module comprises a beam-column subassembly representing 

portion of the first and second floor columns and portion of the first floor beam of the left 

bay. The experimental control included various advanced techniques to ensure that the 

target commands are accurately reached. In addition, to account for the fact that only two 

LBCBs are available during the simulations, the concept of relative motion is used to 

condense the three nodal deformation values into two nodal values prior to sending the 

commands to the LBCBs.  

Upon the completion of a hybrid simulation, cyclic tests were conducted to 

quantify the post-earthquake fundamental characteristic of the connection (only for the 

50% Mpbeam and 30% Mpbeam). The response of the physical specimen is assessed using 

data collected through instrumentations installed at various key locations to capture the 

local response of the connection as well as the global response. 

Furthermore, the seismic performance of semi-rigid frames with varying design 

parameters is assessed using nonlinear dynamic response-history analyses. The design 

parameters investigated included connection capacity, yield strength of the angles, 

friction coefficient, and the amount of bolt slip allowed in the connection. Analysis of 

rigid frames is also conducted and compared to that of the semi-rigid frames. The results 

of the hybrid simulations and the parametric studies are used to quantify various 

fundamental code-parameters needed for the seismic design of structures including 

equivalent damping ratio, the inelastic period, and the force reduction factor. In addition, 

an equation is proposed for the prediction of the inelastic period of the frames, under 

maximum considered earthquake, as a function of the connection strength.  
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7.2 Summary of Findings 

7.2.1 Hybrid Simulation 

The simulations were completed for a period of 15 sec for the 70% Mpbeam and 50% 

Mpbeam frames and 6.48 sec for the 30% Mpbeam frame (due to convergence problems). 

The behavior of the connections during the simulations is characterized by large slip and 

deformation of the bolts and high localized yielding of the top-and seat-angle. Similarly, 

large deformation and localized yielding is noted in the beams as a result of the 

interaction between the beams and angles. It is important to note that no failure is 

observed in any of the specimen components during the simulations.  

The behavior of the connections during the simulations is characterized by large 

hysteretic loops with no failure in any of the connection components. The maximum 

moment sustained by the 70% Mpbeam, 50% Mpbeam, and 30% Mpbeam connections is 

3,222 kips.in, 2,556 kips.in, and 1,708 kips.in, respectively, with corresponding rotations 

of 0.0196 rad, 0.0271 rad, and 0.34 rad, respectively. 

When comparing the global frame behavior during the simulations, it is observed 

that the maximum base shear is developed in the 70% Mpbeam frame followed by the 50% 

Mpbeam frame then the 30% Mpbeam frame.  A small difference in the magnitude of the 

IDRs is noted in all three frames with maximum value of 2.32%, 2.42, and 2.70% in the 

second story of the 70% Mpbeam frame, 50% Mpbeam frame, and 30% Mpbeam frame, 

respectively. It could be concluded that the 70% Mpbeam and 50% Mpbeam frames satisfy 

the DBE drift requirements of 2.5% while the requirement is slightly violated by the 30% 

Mpbeam frame. 
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7.2.2 Cyclic Tests 

Cyclic tests on the 30% Mpbeam and 50% Mpbeam connections are conducted. 

Due to technical issues associated with the LBCBs. Due to some technical problems 

associated with one of the LBCBs, cyclic testing of the 70% Mpbeam was not conducted.  

Larger slip and deformation of the connections is observed when compared to the 

hybrid simulation as a result of the large magnitude of rotational cycles imposed on the 

connections. The moment sustained by the connections is approximately 76% and 68.41% 

of the plastic moment of the beam for the 50% Mpbeam and 30% Mpbeam connections, 

respectively, which is larger than what the connections are designed for. A rotation of 

0.053 rad and 0.0440 rad are sustained by the 50% Mpbeam and 30% Mpbeam connections, 

respectively. When compared to the 2005 seismic provisions of AISC, section 9.2a, the 

resulting rotations exceed the minimum specified code value of 0.04 rad. The achieved 

moments, however, do not meet the seismic specification of 0.80Mp of the connected 

beam at an interstory drift angle of 0.04 radians for the SMRF. The requirement for 

complying with IMRF of 0.02 rad of interstory rotation is satisfied.  

7.2.3 Analytical Study of Semi-rigid and Rigid Frames 

The analytical nonlinear response-history analyses of semi-rigid and rigid frames 

with varying design parameters indicated that all frames, including the rigid frame 

(except for one analysis), satisfied the ASCE 41-06 requirement for interstory drift ratio 

of 5% for the MCE. With the exception of the connection strength, the influence of 

varying the design parameters on the frame response influenced the results but not in a 
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significant way. Furthermore, the semi-rigid frames outperformed the rigid frame with 

lower base shear and Interstory drift ratios.  

7.2.4 Design Implications 

The implication of the behavior of the structures on design is assessed through 

evaluating various code-based design parameters; namely the equivalent damping ratio, 

the inelastic period of the structure, and the force reduction factor.   

The equivalent damping ratio is 7.78%, 7.23%, and 5.13% for the 70% Mpbeam, 50% 

Mpbeam and 30% Mpbeam frame, respectively. The values although larger than the 5% 

value adopted by the code for MCE, they are much lower than some values listed in the 

literature for steel frames. In addition to calculating the equivalent damping, the evolution 

of period elongation with respect to the earthquake time is investigated. The 

corresponding average percent period elongation is equal to 34.48%, 35.92%, and 38.24% 

for the 70% Mpbeam, 50% Mpbeam, and 30% Mpbeam, respectively. Moreover, an equation 

relating the inelastic to the elastic period ratio to connection strength is proposed to 

facilitate the determination of period elongation of any frame for a given connection 

strength.  

The resulting inelastic period is used with the elastic period in a response 

spectrum analysis to determine the elastic and inelastic spectral acceleration, which are 

used to calculate the demand force reduction factor, R. The average R value for the 

frames is 6.55, 6.79, and 6.81 for the 70% Mpbeam, 50% Mpbeam and 30% Mpbeam, 

respectively. Based on this result, a supply force reduction of 7 could be specified for 

these types of frames. 



  217 

The advanced techniques used resulted in an accurate determination of the 

equivalent damping ratio, the inelastic period, and the force reduction factor of the frames. 

Such parameters can be utilized in current seismic codes for more realistic estimate of the 

seismic forces imposed on the semi-rigid structures. The outcome of such is frames that 

are designed to resist earthquake forces in a controlled and economical manner. 

7.3 Future Research Requirements 

In this study experimental and analytical investigations are carried out to evaluate 

the seismic performance of steel frames under high seismic loads. Advanced tools 

utilized in the studies for an accurate evaluation of frame behavior. The results of the 

study highlight the significant potential for using frames with top-and seat angles with 

double web angles in high seismic regions. However, future research directions can 

include the following: 

 The frames investigated included only bare steel with no concrete slab utilized 

in the experimental testing or the analytical studies. The effect of the concrete 

slab on the behavior of the frames should be investigated since the slab will 

affect the location of the neutral axis in the connection; hence, the onset of 

yielding in the connection will not be the same. Furthermore, the effect of 

changing various design hypotheses on the connection behavior and frame 

response can be investigated including the density of the reinforcement used 

in constructing the slab and the effectiveness of the stress transfer mechanisms 

from the slab to the columns (Plumier, Doneux et al. 1998). A slab that is fully 
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isolated from the column will have no effect on the semi-rigidity of the 

connection and is likely not to affect the global response of the frame. On the 

other hand, a slab that is rigidly connected to the column flange will increase 

the rigidity of the connection, resulting in frame behavior similar to that of a 

rigid frame. 

 In this study two-story structures are investigated under horizontal ground 

motions. Due to their low height, the initial stiffness of all three frames is very 

similar which makes it difficult to highlight the effect of connection strength 

on the performance of the frames. This is also evident in how similar the 

calculated R factors and equivalent damping are for all three frames. 

Therefore, it is suggested that a study is conducted on frames with varying 

heights so that the effect of connection flexibility and strength on the behavior 

can be fully explored. In doing so, acceptance criteria for semi-rigid frames 

with various heights can be established. 

 The absence of top-and seat-angle with double web-angle connections from 

the ANSI/AISC list of prequalified connections calls for more research to be 

conducted on this type of connections to explore their full potential and 

prequalify them for seismic applications. 

 The large dynamic slip which occurred in the physical connections during the 

hybrid simulations was not captured by the analytical module. Developing an 

algorithm for real-time model updating could increase the accuracy of the 
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simulation as the analytical module is updated during the simulation to reflect 

more realistic behavior of the connections.  

 Large scatter is observed in the calculated percent period elongation of the 

frames. The effect of the yield median response spectra of the records used in 

the dynamic-response history analyses on the dispersion of the calculated 

elongated period should be investigated furthers. Moreover, the proposed 

period elongation equation requires further investigation to include the effect 

of various parameters are incorporated in the analysis including for example, 

building height, intensity of the record, and site conditions. 

 In constructing the code-based response spectrum, the peak of the spectrum is 

determined from the MCE mapped spectral acceleration for 5% critical 

damping. The 5% damping value is used regardless of frame type and height. 

Therefore, a mapped MCE spectral acceleration, which is adjusted to account 

for the actual equivalent damping of the frames, should be investigated as it 

will lead to more accurate estimates of the base shear. 

 The conducted research included only the effect of horizontal ground motions. 

The effect of vertical ground motions on the response of semi-rigid frames 

might be of significant importance since the flexibility of the connections can 

result in large vertical vibration of the beams when subjected to vertical 

earthquakes. 

 Research on semi-rigid frames should include the effect of soil-structure 

interaction, which could amplify or reduce the response of the frames. 



  220 

In general, the experimental and analytical evidence presented in this thesis 

highlight the potential construction of steel frames with top- and seat-angle with double 

web-angle connections in high seismic regions.  
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APPENDIX A.  

 

SPECIMEN DESIGN AND CONSTRUCTION 

A.1 Building Configuration 

 

Figure A-1 Plan and side view of the building including the SMRF 
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A.2 Frame Strength and Drift per ASCE 7-02 

The maximum considered earthquake (MCE) spectral response acceleration (9.4.1) & 

(9.4.1.1) 

Ss = 1.5g @ T = 0.2 sec  (for short period)  (Eq. 9.4.1.1(a)) 

S1 = 0.6g @ T = 1.0 sec (for long period)  (Eq. 9.4.1.1(b)) 

 

Note: using the USGS website, the Ss and S1 values can be obtained for LA area: 

For 0.2 sec horizontal ground motion and 2% probability of exceedence in 50 yrs 

  Ss = 234.79%g = 2.35g 

For 1 sec horizontal ground motion and 2% probability of exceedence in 50 yrs 

S1 = 10%g = 0.1g 

 

The values of Ss and S1 are used to produce the coefficient SDS and SD1, which are then 

used to construct the response spectra. The strength is determined using the SDS value 

since it is higher than the SD1. It is important to note that one could use the SDS and SD1 

that are based on actual values of Ss and S1 as oppose to the values of 1.5g and 0.6g.   

 

Site coefficients to adjust the MCE spectral response (Table 9.4.1.2.4a and b) 

Assume stiff soil, (Site class D) 

 Fa = 1.0       (Table 9.4.1.2.4a)  

 Fs = 1.5       (Table 9.4.1.2.4b) 
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Site Coefficient and Adjusted Maximum Considered Earthquake Spectral Response 

Acceleration Parameters (9.4.1.2.4)   

The site coefficient is the Maximum Considered Earthquake (MCE) spectral response 

acceleration, adjusted for site class effects: 

SMS = Fa*SS = 1.0*1.5g = 1.5g   (Eq. 9.4.1.2-1) 

SM1 = Fv*S1 = 1.0*0.6g = 0.9g   (Eq. 9.4.1.2-1) 

    

Design spectral response acceleration 

SDS = (2/3)*SMS = 2/3*1.5g = 1.0g   (Eq. 9.4.1.2.5-1) 

SDS = (2/3)*SM1 = 2/3*0.9g = 0.6g   (Eq. 9.4.1.2.5-2) 

 

 

Figure A-2 Design elastic response spectrum 

 

Seismic use Group       (Table 9.1.3) 

Is based on the occupancy category   (Table 1.1) 

   Occupancy category is II  

   Therefore, Seismic Use Group = I  
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 Importance factor = I       (Table 9.1.4) 

 Response modification factor       R = 8 (Table 9.5.2.2) 

 System overstrength factor        = 3 (Table 9.5.2.2) 

 Deflection amplification factor       Cd = 5.5 (Table 9.5.2.2) 

 Coefficient for upper limit on calculated period Cu = 1.4 (Table 9.5.5.3.1) 

        

Approximate Fundamental period (9.5.5.3.2) 

 x

a t nT = C h         (Eq. 9.5.5.3.2-1) 

 Ct = 0.028 for steel moment-resisting frames  

 hn = height in ft above the base to the highest level = 28.5 ft 

 x = 0.8 

 Ta = 0.028*(28.5)
0.8

 = 0.408 sec 

 

Maximum allowable period (T) (9.5.5.3.1) 

Ts = Ta * Cu   

Ts = Tx = Ty = 0.408 sec * 1.4 = 0.571 sec  

 

This upper limit on estimating the period for strength determination is to ensure that an 

unreasonably low design base shear is not calculated by using a long period based on an 

unrealistic frame stiffness assumption. 
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Strength Requirement 

 

From eigen value analysis 

 T = 0.963 sec > 0.571 sec   

 

Therefore, need to use 0.571 sec for strength determination.  Note that this restriction 

does not hold for drift determination. When checking for drift use actual period (T = 

0.963 sec)  

 

Seismic response coefficient for strength check (9.5.5.2.1) 

SDsC =s
R/I

1.0g
     = =0.125g

8/1.0

         (Eq 9.5.5.2.1-1)  

   

Upper limit on the seismic response coefficient (9.5.5.2.1) 

 

S
D1C =s

T(R/I)

0.6g
     = =0.131g

0.571*(8/1.0)

     (Eq 9.5.5.2.1-2) 

 

Lower limit on the seismic response coefficient (9.5.5.2.1) 

 

C = 0.044*S *Is DS

     = 0.044*1.0g*1=0.044g
    (Eq 9.5.5.2.1-3) 
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Therefore; use 0.125g 

 

Calculate Design Seismic Base Shear (9.5.5.2)  

 V=C *Ws  

W = the total dead load and applicable portions of other loads as indicated in Section 

9.5.3 

W = 1.0DL +0.5LL = (3*0.236 kips.sec
2
/in*386 in/sec

2
) + (3*0.3132 

kips.sec
2
/in*386 in/sec

2
) = 635.97 kips 

 

 0.125g * 635.97 kips = 79.5  80 kips.  

Accounting for accidental eccentricity, (details not presented here) 

 80 + 130 (0.05) = 86.5 kips  87 kips. 

This is the design base shear that all three columns need to withstand.  

 

Therefore, the next step needed it distribute the base shear over the height to check 

yielding in the columns and connections. 

 

Figure A-3 Distribution of base shear along the height to check columns and connections 

yielding using SAP2000 

 

35.13 k 

51.87 k 
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Resulting reactions 

The resulting frame reactions are shown in Table A-1. 

Table A-1 Reactions resulting from ELF analysis 

Connection ID Rx Rz My 

Left column -28.46 -15.73 -4304.99 

Middle column -32.80 0.22 -4419.81 

Right column -26.74 15.51 -4091.67 

 

Shear Capacity of the column = 0.577 * Fy * Aw  

        = 0.577 * 50 ksi * (0.745 in*14 in) = 300 kips  

 

Vy = 300 kips > V = 32 kips  

Therefore,    OK 

 

Moment capacity of the column = M*Y/I  

= 4305 kips.in * 7 in / 1900 in
4
 = 15.86 ksi < 50 ksi  



s = 15.86 ksi < sy = 50 ksi  

Therefore,    OK 

 

Drift Requirements 

 

Seismic response coefficient for drift check (9.5.5.2.1) 
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S
D1C =s

T(R/I)

0.6g
     = =0.0779g

0.963*(8/1.0)

     (Eq 9.5.5.2.1-1)  

Note that for drift check, the actual frame period can be used when calculating CS. 

Total base shear = mtotal * SA 

For 1.0DL + 0.50 LL 

Total base shear = mtotal *0.0779g*386 kips.in/sec
2

 

    = (0.236*3) + (0.3132*3) * 0.0779g * 386 kips.in/ sec
2

   = 49.54 

kips 

Therefore, need to distribute the 49.54 kips over the height and use the calculated the 

drift values to check for drift. 

h .Wx xF = ni
W .h

i ii=1


 

 

Figure A-4 Distribution of base shear along the height to check drift using SAP2000 

 

Resulting drift 

First floor = 0.501 in 

  20 k 

30 k 
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Top floor = 1.097 in 

 

Check Drift (9.5.2.8) & (9.5.5.7): 

x < a         (Eq.9.5.2.8)

a is the allowable story drift      (Table 9.5.2.8) 

a = 0.025 hx 

hsx is the story height below level x, which is 15 ft = 180 in 

a = 0.025 * 180 = 4.5 in 

 

x = Cd xe/I        (Eq. 9.5.5.7.1) 

Cd = deflection amplification factor      (Table 9.5.2.2) 

Cd = 5.5        (Table 9.5.2.2) 

xe = deflection determined by an elastic analysis  

I = Importance factor in accordance with = 1    (Table 9.1.4) 

x = (5.5)* (1.0974 – 0.501) / (1.0) = 3.28 in 

 

x = 3.28 in < a = 4.5 in 

Therefore,    OK 

 

Check P-Delta effect (9.5.5.7): 

 < max       (9.5.5.7.2) 

 =  (Px * ) / (Vx * hsx * Cd)     (Eq. 9.5.5.7.2.1) 
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Where; 

Px = the total vertical design load at and above level x.  When computing Px, no 

individual load factor need to exceed 1.0 

= (3*0.236 kips.sec
2
/in*386 in/sec

2
) + (3*0.3132 kips.sec

2
/in*386 in/sec

2
) = 635.97 kips. 

This is based on 1.0DL+0.5LL 

 = the design story drift = difference between the deflections at the top and bottom of 

the story under consideration. 

Vx = seismic base shear acting between levels x and x-1 = 20 kips 

hsx = story height below level x = 180 in 

Cd = deflection amplification factor = 5.5 

Therefore; 

 =  (635.97 * (1.0974-0.501))/(20 * 180 * 5.5) = 0.019  

max = 0.5/(*Cd)  =< 0.25 

 = 1 (conservative) 

max = 0.5/(1*5.5) = 0.09 

 =  0.019 < max = 0.09  

Therefore,    OK 

 

Checks on Beam and Column per AISC 358 (Prequalified Connections for Special and 

Intermediate Steel Moment Frames for Seismic Applications) 

 

Beam: W18 x 40 

Flange local buckling 
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Flange width-thickness ratio:  
bb Ef= 0.3

t 2t Fyf

  

bb 6.02f= = =5.73
t 2t 2*0.525

f

 

29000
0.3* 0.3* 7.22

50

E

Fy

   

5.73 < 7.22 

Therefore,    OK 

 

Web width-thickness ratio:  
h E

2.45
t Fw y

  

  
h 16.85

= = 53.49
t 0.315w

 

E 29000 
2.45* =2.45* =59

F 50 y

 

53.49 < 59 

Therefore,    OK 

 

Check beam depth, weight and span-to-depth ratio limit per AISC 358  

 

Maximum beam depth > W36 

W18 is used 

Therefore,    OK 
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Maximum beam weight > 300 lb/ft  

Beam weight is 40 lb/ft 

Therefore,    OK 

 

Maximum flange thickness > 1.75 in  

Flange thickness = 0.54 in 

Therefore,    OK 

 

Minimum Span-to-width ratio > 7  

Ratio = (30ft *(12 in/1ft) /18 = 20 

Therefore,    OK 

 

Check beam lateral bracing requirements 

 

0.086*r *E 0.086 (1.27)*29000y
L = = 63.34 in=5.28 f

b Fy 50
t  

Therefore, we need to brace every 1/6
th

 point: L = 30/6 = 5 ft on center. However, since 

we are analyzing a planar frame, we do not have to worry about such a requirement (i.e., 

for the purpose of this project, the brace does not need to be designed) 

 

Check beam design flexure strength (AISC 360 (Chapter F.2) 

E
L =1.76*r * =5.3ft > 5ftyP

Fy

M =M =F *Zn y xP
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Design Flexural Strength: inkipksinM .35284.78*50*9.0   

Demand-capacity ratio: D/C = 1504 kips.in (from SAP2000) / 3528 kips.in 

D/C = 0.426 < 1 

Therefore,    OK 

 

Check nominal shear capacity 

 

 

 

d E
2.45*

t Fw y

d 18in
= = 57.14

t 0.315inw

E
2.45* = 59.00

Fy

V = 0.6F A Cn y w v

C = 1v





 

Design Shear Strength: φV =0.9*0.6*50*((18-(2*0.525))*0.315)*1 = 144.15 kipsn  

Demand-capacity ratio: D/C = 38.97 kips (from SAP2000) / 144.15 kips  

D/C = 0.27 < 1 

Therefore,    OK 

 

Column: W14 x 159 

Flange local buckling 

Flange width-thickness ratio: 
bb Ef= 0.3

t 2t Fyf

  

   
bb 15.6f= = = 6.55

t 2t 2*1.19
f
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E 29000

0.3* = 0.3* = 7.22
F 50y

 

6.55 < 7.22 

Therefore,    OK 

 

Web width-thickness ratio:  
h E

3.14 (1-1.54C )a
t Fw y

  

h 12.62
= =16.94

t 0.745w

 

   
P P 639kips 639u uC = = = = = 0.304a 2φ P 0.9*F *A 21010.9*50ksi*46.7iny y gb

 

E 29000
3.14 (1-1.54C ) = 3.14* =59*(1-(1.54*0.304)) = 28.10a

F 50y

 

16.94 < 28.10 

Therefore,    OK 

 

Check column depth, weight and span-to-depth ratio limit per AISC 358  

Maximum beam depth > W36 

W14 is used 

Therefore,    OK 

 

Maximum column weight = unlimited  

Therefore,    OK 
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Maximum flange thickness = compact  

Therefore,    OK 

 

Minimum Span-to-width ratio > 7  

Ratio = (30ft *(12 in/1ft) /18 = 20 

Therefore,    OK 

 

Check column lateral bracing requirements 

Unbraced column height (taken from top of framing at bottom to mid-depth of beam at 

top) 

Lp = 14.2 ft, Lr = 73.2 ft 

h = 13.5 – (1.5/2) = 12.75 ft 

Lb = 12.75 ft < Lp = 73.2 ft 

Therefore,    OK 

 

Check column Buckling 

(I /L )c cG = 
(I /L )g c




 

4

top 4

1900in
2

12.5ft
G =  = 7.4

612in
2

30ft

 
 
 

 
 
 

 

botG  = 1  
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Using the Monograph; Kx = 1.8, assume Ky = 1.2 

x x

x

y y

y

y y

y y

2 2

e 2 2

Fy

50/147Fe
cr y

k L 1.8*12.25*12
 =  = 41.47

r 6.38

k L 1.2*12.25*12
 =  = 44.1

r 4

k L E
if 4.71

r F

29000
44.1£4.71  = 113.43

50

π E π *29000
F =  =  = 147.02 ksi

(44.1)KL

r

F = 0.658 F  = [0.658 ]*50=43.36 ksi



 
 
 

 
 
 

 

The nominal design capacity is:  

2

n c cr gφP =φ F A =0.9*43.36 ksi*46.7in =1822 kips > 38 kips
 

Therefore,    OK 

 

Check the Flexural Strength 

Lp = 14.2 ft > 12.75 ft 

Therefore, Mnx = Mpx = Fy*Zx = 50 ksi * 287 in
3
 = 14350 kips.in = 1196 kips.ft 

     Mny = Mpy = Fy*Zy = 50 ksi * 146 in
3
 = 7300 kips.in = 608.33 kips.ft 

     Mcx = φMnx = 0.9 * 1196 kips.ft = 1076.4 kips.ft 

     Mcy = φMnx = 0.9 * 608.33 kips.ft = 547.497 kips.ft 

 

Consider second order effect 
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m
1

r e

r nt lt

m 1 2

mx

ux 1 nt

ux

C
B = 1

1-αP /P

P = P +P

α = 1

C = 0.6-0.4(M /M )

C = 0.6-0.4(1)=0.2

M = B M

M = 0.2*1196 kip.ft = 239.2 kip.ft



 

Check moment axial interaction 

u ux

n b nx

P M
+ 1

2φP φ M

639 239
+ =0.572 1

1822 1076




 

Therefore,    OK 

 

Check Column Shear Strength 

w y

h 12.62 E
= =16.94 < 2.45* =59.00

t 0.745 F
 

n y w v

v

n

n u

V = 0.6F A C

C = 1

φV = 1*0.6*50*0.745*6.30*1 = 140.8 kips

φV = 140.8kips > V = 38 kips





 

Therefore,    OK 
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APPENDIX B.  

 

INSTRUMENTATION PLANS 

Instrumentation Plan for the 30% Mpbeam Connection (Typical for all specimens) 
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