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Abstract

We study the convergence of a drift implicit scheme for one-dimensional SDEs
that was considered by Alfonsi [1] for the Cox-Ingersoll-Ross (CIR) process. Under
general conditions, we obtain a strong convergence of order 1. In the CIR case,
Dereich, Neuenkirch and Szpruch [2] have shown recently a strong convergence of
order 1/2 for this scheme. Here, we obtain a strong convergence of order 1 under
more restrictive assumptions on the CIR parameters.

Keywords: Discretization scheme, Cox-Ingersoll-Ross model, Strong error, Lamperti
transformation.
AMS Classification (2010): 65C30, 60H35

This paper analyses the strong convergence error of a discretization scheme for the
Cox-Ingersoll-Ross (CIR) process and complements a recent paper by Dereich, Neuenkirch
and Szpruch [2]. The CIR process, which is widely used in financial modelling, follows the
SDE:

dXt = (a− kXt)dt+ σ
√

XtdWt, X0 = x. (1)

Here, W denotes a standard Brownian motion, a ≥ 0, k ∈ R, σ > 0 and x ≥ 0. This SDE
has a unique strong solution that is nonnegative. It is even positive when σ2 ≤ 2a and
x > 0, which we assume in this paper. It is well-known that the usual Euler-Maruyama
scheme is not defined for (1). Different ad-hoc discretization schemes have thus been
proposed in the literature (see references in [2]). Here, we focus on a drift implicit scheme
that has been proposed in Alfonsi [1]. We consider a time horizon T > 0 and a regular
time grid:

tk =
kT

n
, 0 ≤ k ≤ n.



By Itô’s formula, Yt =
√
Xt satisfies :

dYt =

(

a− σ2/4

2Yt

− k

2
Yt

)

dt+
σ

2
dWt, Y0 =

√
x. (2)

We consider the following drift implicit Euler scheme

Ŷ0 =
√
x, Ŷt = Ŷtk +

(

a− σ2/4

2Ŷt

− k

2
Ŷt

)

(t− tk) +
σ

2
(Wt −Wtk), t ∈ (tk, tk+1]. (3)

The equation (3) is a quadratic equation that has a unique positive equation:

Ŷt =
Ŷtk +

σ
2 (Wt −Wtk) +

√

(

Ŷtk +
σ
2 (Wt −Wtk)

)2
+ 2

(

1 + k
2 (t− tk)

)

(

a− σ2

4

)

(t− tk)

2
(

1 + k
2 (t− tk)

) ,

provided that the time-step is small enough (T/n ≤ 2/max(−k, 0) with the convention
2/0 = +∞). Last, we set X̂t = (Ŷt)

2, t ∈ (tk, tk+1]. It is shown in [1] that this scheme has
uniformly bounded moments. We recall now the main result of Dereich, Neuenkirch and
Szpruch [2] that gives a strong error convergence of order 1/2.

Theorem 1. Let x > 0, 2a > σ2 and T > 0. Then, for all p ∈ [1, 2a
σ2 ), there is a constant

Kp > 0 such that for any n ≥ T
2
max(−k, 0),

(

E

[

max
t∈[0,T ]

|X̂t −Xt|p
])1/p

≤ Kp

√

T

n
.

Let us remark that, contrary to [2], we do not consider a linear interpolation between tk
and tk+1 here for X̂t. This removes the logarithm term of Theorem 1.1 in [2].

The strong convergence rate of X̂ is studied numerically in Alfonsi ([1], Figure 2). This
numerical study shows that the strong convergence rate depends on the parameters σ2 and
a. When σ2/a is small enough, a strong convergence of order 1 is observed. The scope of
the paper is to prove the following result.

Theorem 2. Let x > 0, a > σ2 and T > 0. Then, for all p ∈ [1, 4a
3σ2 ), there is a constant

Kp > 0 such that for any n ≥ T
2
max(−k, 0),

(

E

[

max
t∈[0,T ]

|X̂t −Xt|p
])1/p

≤ Kp
T

n
.

Thus, we get a strong convergence of order 1 under more restrictive conditions on σ2/a.
Both theorems are complementary and are compatible with the numerical study of [1],
which indicates that the strong convergence order downgrades as long as σ2/a increases.

The paper is structured as follows. We first prove that
(

E

[

maxt∈[0,T ] |Ŷt − Yt|p
])1/p

≤
Kp

T
n
under a general framework for Y and Ŷ that extends (2) and (3). Then, we deduce

Theorem 2 from this result. Also, we construct an analogous drift implicit scheme for
general one-dimensional diffusion, and get a strong convergence of order one under suitable
assumptions on the coefficients. This scheme has the advantage to be naturally defined in
the diffusion domain like R

∗
+ for the CIR case.
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A general framework for Y and Ŷ

Let c ∈ [−∞,+∞), I = (c,+∞) and d ∈ I. We consider in this section the following SDE
defined on I = (c,+∞):

dYt = f(Yt)dt+ γdWt, t ≥ 0, Y0 = y ∈ I, (4)

with γ > 0. We make the following monotonicity assumption on the drift coefficient f :

f : I → R is C2, such that ∃κ ∈ R, ∀y, y′ ∈ I, y ≤ y′, f(y′)− f(y) ≤ κ(y′ − y). (5)

Besides, we assume

v(x) =

∫ x

d

∫ y

d

exp

(

− 2

γ2

∫ y

z

f(ξ)dξ

)

dzdy satisfies lim
x→c+

v(x) = −∞. (6)

The Feller’s test (see e.g. Theorem 5.29 p. 348 in [5]) ensures that Y never reaches c nor
+∞ by (5), and the SDE (4) admits a unique strong solution on I.

Let us now define the drift implicit scheme. Let us first observe that for h > 0 such
that κh < 1, y 7→ y − hf(y) is a bijection from I to R. Indeed, it is continuous and we
have from (4):

y ≤ y′, y′ − y − h(f(y′)− f(y)) ≥ (1− κh)(y′ − y).

This shows the claim for c = −∞. For c > −∞, we first remark that limc+ f exists
from (5), and is necessarily equal to +∞ from (6). Thus, for n such that κT/n < 1, the
following drift implicit Euler scheme is well defined

Ŷ0 = y, Ŷt = Ŷtk + f(Ŷt)(t− tk) + γ(Wt −Wtk), t ∈ (tk, tk+1], 0 ≤ k ≤ n− 1, (7)

and satisfies Ŷt ∈ I, for any t ∈ [0, T ]. From a computational point of view, let us
remark here that in cases where Ŷtk+1

cannot be solved explicitly like in the CIR case,

Ŷtk+1
can still be quickly computed from Ŷtk and Wtk+1

−Wtk thanks to the monotonicity
of y 7→ y − (T/n)f(y) by using for example a dichotomic search.

The drift implicit Euler scheme (also known as backward Euler scheme) has been studied
by Higham, Mao and Stuart [4] for SDEs on R

d with a Lipschitz condition on the diffusion
coefficient and a monotonicity condition on the drift coefficient that extends (5). They
show a strong convergence of order 1/2 in this general setting.

Proposition 3. Let p ≥ 1 and n > 2κT . Let us assume that

E

[(
∫ T

0

|f ′(Yu)f(Yu) +
γ2

2
f ′′(Yu)|du

)p]

< ∞ and E

[

(
∫ T

0

(f ′(Yu))
2du

)p/2
]

< ∞. (8)

Then, there is a constant Kp > 0 such that:

(

E

[

max
t∈[0,T ]

|Ŷt − Yt|p
])1/p

≤ Kp
T

n
.
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Before proving this result, let us recall that the same result holds for the usual (drift
explicit) Euler-Maruyama scheme when I = R (i.e. c = −∞), under some regularity as-
sumption on f . Said differently, the Euler-Maruyama scheme (Ȳtk+1

= Ȳtk + f(Ȳtk)T/n +
γ(Wtk+1

−Wtk)) coincides with the Milstein scheme when the diffusion coefficient is con-
stant, and its order of strong convergence is thus equal to one. The main advantage of the
drift implicit scheme is that it is well defined when c > −∞ while the Euler-Maruyama is
not, since the Brownian increment may lead outside I.

Proof. We may assume without loss of generality that κ ≥ 0. For t ∈ [0, T ], we set
et = Ŷt − Yt. From (5), there is βt ≤ κ, such that f(Ŷt)− f(Yt) = βtet. For 0 ≤ k ≤ n− 1,
we have

etk+1
= etk + [f(Ŷtk+1

)− f(Ytk+1
)]
T

n
+

∫ tk+1

tk

f(Ytk+1
)− f(Ys)ds,

and then, by using Itô’s formula:
(

1− βtk+1

T

n

)

etk+1
= etk+

∫ tk+1

tk

(u−tk)[f
′(Yu)f(Yu)+

γ2

2
f ′′(Yu)]du+γ

∫ tk+1

tk

(u−tk)f
′(Yu)dWu.

(9)
For u ∈ [0, T ], we denote by η(u) the integer such that tη(u) ≤ u < tη(u)+1. We set Π0 = 1,

Πk =
∏k

l=1(1− βtl
T
n
), ẽk = Πketk , Π̃k = Πk/(1− κT/n)k and

Mt =

∫ t

0

(1− κT/n)η(u)(u− tη(u))γf
′(Yu)dWu.

Let us remark that Πk > 0, Π̃k ≥ 1 and Π̃k is nondecreasing with respect to k. By
multiplying equation (9) by Πk, we get

ẽk+1 = ẽk +Πk

(
∫ tk+1

tk

(u− tk)[f
′(Yu)f(Yu) +

γ2

2
f ′′(Yu)]du+

∫ tk+1

tk

(u− tk)γf
′(Yu)dWu

)

.

Then, we obtain ẽk =
∫ tk
0

Πη(u)(u− tη(u))[f
′(Yu)f(Yu)+

γ2

2
f ′′(Yu)]du+

∑k−1
l=0 Π̃l(Mtl+1

−Mtl)
by summing over k and finally get

etk =

∫ tk

0

Πη(u)

Πk
(u− tη(u))[f

′(Yu)f(Yu) +
γ2

2
f ′′(Yu)]du+

1

Πk

k−1
∑

l=0

Π̃l(Mtl+1
−Mtl). (10)

Since 1
1−x

≤ exp(2x) for x ∈ [0, 1/2], we have

0 ≤ l ≤ k ≤ n, 0 <
Πl

Πk
=

1

(1− κT/n)k−l

Π̃l

Π̃k

≤ exp

(

2(k − l)κ
T

n

)

≤ exp(2κT ).

On the other hand, an Abel transformation gives
∑k−1

l=0 Π̃l(Mtl+1
− Mtl) = Π̃k−1Mtk +

∑k−1
l=1 (Π̃l−1 − Π̃l)Mtl and thus

∣

∣

∣

∣

∣

k−1
∑

l=0

Π̃l(Mtl+1
−Mtl)

∣

∣

∣

∣

∣

≤ Π̃k−1|Mtk |+
k−1
∑

l=1

(Π̃l − Π̃l−1)|Mtl | ≤ 2Π̃k max
1≤l≤k

|Mtk |,
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since Π̃k is nondecreasing. From (10) and Π̃k

Πk
= 1

(1−κT/n)k
≤ exp(2κT ), we get

|etk | ≤ exp(2κT )

(

T

n

∫ tk

0

|f ′(Yu)f(Yu) +
γ2

2
f ′′(Yu)|du+ 2 max

0≤l≤k
|Mtl |

)

.

Since the right hand side is nondecreasing with respect to k, we can replace the left hand
side by max0≤l≤k |etl |. Burkholder-Davis-Gundy inequality gives that

E

[

max
0≤l≤n

|Mtl|p
]

≤ Cpγ
p(T/n)pE

[

(
∫ T

0

(f ′(Yu))
2du

)p/2
]

,

since 0 ≤ (1− κT/n)η(u) ≤ 1. Thus, there is a positive constant K depending on κ, T and
p such that:

E

[

max
0≤l≤n

|etl |p
]

≤ K

(

T

n

)p(

E

[(
∫ T

0

|f ′(Yu)f(Yu) +
γ2

2
f ′′(Yu)|du

)p]

(11)

+γp
E

[

(
∫ T

0

(f ′(Yu))
2du

)p/2
])

It remains to show the analogous upper bound for E[maxt∈[0,T ] |et|p]. Similarly to (9), we
have for t ∈ [tk, tk+1]:

(1− βt(t− tk)) et = etk +

∫ t

tk

(u− tk)[f
′(Yu)f(Yu) +

γ2

2
f ′′(Yu)]du+ γ

∫ t

tk

(u− tk)f
′(Yu)dWu.

Since (1− βt(t− tk)) ≥ 1/2, we get:

max
t∈[tk,tk+1]

|et| ≤ 2

(

|etk |+
T

n

∫ tk+1

tk

|f ′(Yu)f(Yu) +
γ2

2
f ′′(Yu)|du

+γ max
t∈[tk,tk+1]

∣

∣

∣

∣

∫ t

tk

(u− tk)f
′(Yu)dWu

∣

∣

∣

∣

)

,

and thus

max
t∈[0,T ]

|et|p ≤ 2p3p−1

(

max
0≤k≤n

|etk |p +
(

T

n

)p(∫ T

0

|f ′(Yu)f(Yu) +
γ2

2
f ′′(Yu)|du

)p

+γp max
0≤s≤t≤T

∣

∣

∣

∣

∫ t

s

(u− tη(u))f
′(Yu)dWu

∣

∣

∣

∣

p)

.

Since
∣

∣

∣

∫ t

s
(u− tη(u))f

′(Yu)dWu

∣

∣

∣

p

≤ 2p
(
∣

∣

∣

∫ t

0
(u− tη(u))f

′(Yu)dWu

∣

∣

∣

p

+
∣

∣

∫ s

0
(u− tη(u))f

′(Yu)dWu

∣

∣

p
)

,

we conclude by using once again Burkholder-Davis-Gundy inequality, (11) and (8).
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Application to the CIR process

For the CIR case, we have c = 0 (i.e. I = R
∗
+), f(y) =

a−σ2/4
2y

− k
2
y and γ = σ/2. When

2a ≥ σ2, we can check that both (5) and (6) are satisfied. By Jensen inequality, (8) holds
if we have

∫ T

0

E[|f ′(Yu)f(Yu)|p + |f ′′(Yu)|p + |f ′(Yu)|2∨p]du < ∞. (12)

The moments of the CIR process can be uniformly bounded on [0, T ] under the following
condition (see [2] equation (7)):

sup
t∈[0,T ]

E[Xq
t ] < ∞ for q > −2a

σ2
. (13)

Condition (12) will hold as soon as supt∈[0,T ] E[Y
−(4∨3p)
t ] = supt∈[0,T ] E[X

−(2∨ 3
2
p)

t ] < ∞. This

is satisfied when σ2 < a and p < 4
3

a
σ2 , and we have

(

E

[

maxt∈[0,T ] |Ŷt − Yt|p
])1/p

≤ Kp
T
n
.

From now on, we assume that σ2 < a and consider 1 ≤ p < 4
3

a
σ2 . Let ε > 0 such that

p(1 + ε) < 4
3

a
σ2 . Since X̂t −Xt = (Ŷt − Yt)(Ŷt + Yt), we have by Hölder’s inequality:

E

[

max
t∈[0,T ]

|X̂t −Xt|p
]

1
p

≤ E

[

max
t∈[0,T ]

|Ŷt − Yt|p(1+ε)

]
1

p(1+ε)

E

[

max
t∈[0,T ]

|Ŷt + Yt|p
1+ε
ε

]
ε

p(1+ε)

.

The moment boundedness of Ŷ is checked in [1] and [2], and the second expectation is thus
finite. Proposition 3 gives Theorem 2.

Application to dXt = (a− kXt)dt+ σXα
t dWt, with 1/2 < α < 1

We consider this SDE starting from X0 = x > 0 with parameters a > 0, k ∈ R and σ > 0.
This SDE is known to have a unique strong positive solution X , which can be checked
easily by Feller’s test for explosions. We set

Yt = X1−α
t .

It is defined on I = R
∗
+ and satisfies (4) with

f(y) = (1− α)

(

ay−
α

1−α − ky − α
σ2

2
y−1

)

with γ = σ(1− α).

Since a > 0 and α
1−α

> 1, f is decreasing on (0, ε), for ε > 0 small enough. It is also clearly
Lipschitz on [ε,+∞), and (5) is thus satisfied. Also, we check easily that (6) holds. The
drift implicit scheme (Ŷt, t ∈ [0, T ]) given by (7) is thus well defined for large n and we set:

X̂t = (Ŷt)
1

1−α .

To apply Proposition 3, it is enough to check that (12) holds. To do so, we have the
following lemma.
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Lemma 4. We have: ∀q ∈ R, supt∈[0,T ] E[X
q
t ] < ∞.

Proof. For q ≥ 0, it is well known that we even have E[maxt∈[0,T ]X
q
t ] < ∞ from the

sublinear growth of the SDE coefficients (see e.g. Karatzas and Shreve [5], p 306). Let

q < 0. We set Zt = X
2(1−α)
t and have:

dZt = b(Zt)dt+ 2(1− α)σ
√

ZtdWt, with b(z) = 2(1− α)

[

az
1−2α
2(1−α) − kz + σ2

(

1

2
− α

)]

.

Since limz→0+ b(z) = +∞ and b is Lipschitz on [ε,+∞) for any ε > 0, we can find for
any M > 0 a constant kM ∈ R such that b(z) ≥ M − kMz for all z > 0. We consider then
the following CIR process:

dξMt = (M − kMξMt )dt+ 2(1− α)σ
√

ξMt dWt, ξM0 = x2(1−α).

From a comparison theorem (Proposition 2.18, p 293 in [5]) we get that ∀t ≥ 0, Zt ≥ ξMt
and thus supt∈[0,T ] E[Z

q
t ] ≤ supt∈[0,T ] E[(ξ

M
t )q]. We conclude by using (13) and taking M is

arbitrary large.

We can then apply Proposition 3 and get, for any p ≥ 1 and n large enough, the exis-

tence of a constant Kp > 0 such that
(

E

[

maxt∈[0,T ] |Ŷt − Yt|p
])1/p

≤ Kp
T
n
. In particular,

we get E[maxt∈[0,T ] Ŷ
p
t ] < ∞. We have X̂t = (Ŷt)

1
1−α and

ŷ, y > 0, |ŷ 1
1−α − y

1
1−α | = 1

1− α

∣

∣

∣

∣

∫ ŷ

y

z
α

1−αdz

∣

∣

∣

∣

≤ 1

1− α
|ŷ − y|(ŷ ∨ y)

α
1−α .

The Cauchy-Schwarz inequality leads then to

E

[

max
t∈[0,T ]

|X̂t −Xt|p
]

1
p

≤ 1

1− α
E

[

max
t∈[0,T ]

|Ŷt − Yt|2p
]

1
2p

E

[

max
t∈[0,T ]

(Ŷt ∨ Yt)
2pα
1−α

]
1
2p

≤ K̃p
T

n
.

Strong convergence towards X in a general framework

Let us now consider a one-dimensional SDE with Lipschitz coefficients b, σ : R → R:

dXt = b(Xt)dt+ σ(Xt)dWt, X0 = x.

We will consider the Lamperti transformation of this SDE. We assume that there exist
0 < σ < σ such that σ ≤ σ(x) ≤ σ, so that

ϕ(x) =

∫ x

0

1

σ(z)
dz is bijective on R,

Lipschitz and such that ϕ−1 is Lipschitz. Besides, we assume that σ ∈ C1 and that
f =

(

b
σ
− σ′

2

)

◦ ϕ−1 satisfies (5), (6) and:

∃K > 0, q > 0, ∀y ∈ R, |f ′(y)|+ |f ′′(y)| ≤ C(1 + |y|q).
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Then Yt = ϕ(Xt) satisfies dYt = f(Yt)dt + dWt. The Lipschitz assumption on the coeffi-
cients b and σ ensures the boundedness of moments of X and thus of Y . The condition (8)
is thus satisfied and the conclusion of Proposition 3 holds. Then, defining Ŷ by (7) and
setting X̂t = ϕ−1(Ŷt) for t ∈ [0, T ], we get that:

∃Kp > 0,

(

E

[

max
t∈[0,T ]

|X̂t −Xt|p
])1/p

≤ Kp
T

n
.

Let us mention that the same result holds under suitable conditions on f for the scheme
X̄t = ϕ−1(Ȳt), where Ȳ denotes the Euler-Maruyama scheme dȲt = f(Ȳtη(t))dt + dWt.
The weak convergence of this scheme has been studied by Detemple, Garcia and Rindis-
bacher [3].

Remark 5. Let γ > 0, ϕγ(x) = γϕ(x) and fγ(y) = γf(y/γ). Then, Y ′
t = ϕγ(Xt) solves

dY ′
t = fγ(Y

′
t )dt+ γdWt. The associated drift implicit scheme

Ŷ ′
0 = ϕγ(X0), Ŷ ′

t = Ŷ ′
tk
+ fγ(Ŷ

′
t )(t− tk) + γ(Wt −Wtk), t ∈ (tk, tk+1], 0 ≤ k ≤ n− 1,

clearly satisfies Ŷ ′
t = γŶt. Thus, X̂t = ϕ−1

γ (Ŷ ′
t ): the scheme X̂ is unchanged when the

transformation between X and Y is multiplied by a positive constant.
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