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Abstract

Shared microarchitectural state is a target for side-channel attacks that leverage timing

measurements to leak information across security domains. These attacks are further

enhanced by speculative execution, which transiently distorts the control and data flow

of applications, and by untrusted environments, where the attacker may have complete

control over the victim program. Under these conditions, microarchitectural attacks can

bypass software isolation mechanisms, and hence they threaten the security of virtually any

application running in a shared environment.

Numerous approaches have been proposed to defend against microarchitectural attacks,

but we lack the means to test them and ensure their effectiveness. The users cannot test them

manually because the effects of the defences are not visible to software. Testing the defences

by attempting attacks is also suboptimal because the attacks are inherently unstable, and

a failed attack is not always an indicator of a successful defence. Moreover, some classes

of defences can be disabled at runtime. Hence, we need automated tools that would check

the effectiveness of defences, both at design time and at runtime. Yet, as it is common in

security, the existing solutions lag behind the developments in attacks.

In this thesis, we propose three techniques that check the effectiveness of defences

against modern microarchitectural attacks. Revizor is an approach to automatically detect

microarchitectural information leakage in commercial black-box CPUs. SpecFuzz is a

technique for dynamic testing of applications to find instances of speculative vulnerabilities.

Varys is an approach to runtime monitoring of system defences against microarchitectural

attacks.

We show that with these techniques, we can successfully detect microarchitectural

vulnerabilities in hardware and flaws in defences against them; find unpatched instances of

speculative vulnerabilities in software; and detect attempts to invalidate system defences.
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Chapter 1
Introduction

When a person steps on the ground, he leaves a footprint. This side effect may seem

harmless in most life situations, yet in the rare case when somebody is chasing the person,

the footprint may cost him dearly.

The same happens when a program runs on a computer. The program’s actions leave

traces, such as when a load affects CPU caches or increases the memory bus traffic. If

another, malicious program runs on the same computer, it could read the traces and spy on

the victim program. This spying method is called a microarchitectural side-channel attack

(hereafter, microarchitectural attack), and the overarching goal of this thesis is to prevent

such attacks.

The research on microarchitectural attacks started with a discovery that cache traces of

some cryptographic functions change depending on the encryption keys [189, 241, 191, 188];

accordingly, an attacker who can observe the traces, can derive the keys from them. The

range of targets later grew out of cryptography into many more applications, such as

browsers [185], image rendering [117], and even operating systems [109, 158]. The attack

toolbox was growing too: New attack variants were expanding to more types of traces [17, 18,

273, 44] and improving on their precision [276, 157, 104]. Today, microarchitectural attacks

turned into a universal primitive for bypassing security boundaries, and they threaten the

security of almost any shared system. Modern variants circumvent such security mechanisms

as virtual machine isolation [131, 262], trusted execution environments [117, 56, 244, 57,

212], browser sandboxes [185, 142], memory safety [142, 76], secure languages [165],

control-flow integrity [165], kernel memory isolation [121, 158, 57], and some could even

read physical memory [121, 262].

Despite this threat, hardware and software developers largely dismissed the issue until

recently [180, 114, 107]. Very few defences got deployed, except for a handful of high-

security systems [93] and cryptographic libraries [1, 3]. The basis for it was a commonly-
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held belief that microarchitectural attacks present only a theoretical threat, as they are rarely

used in practical exploits [230, 90]. This belief is dangerous: First, practical exploits do

begin to appear [203, 125], and most security-critical systems are unprepared for them.

Second, the existing academic proposals of defences against microarchitectural attacks [222,

248, 161, 183] virtually never get tested in practice.

The tide began to change only in 2018, with the publication of Spectre [142] and Melt-

down [158]. These vulnerabilities showed the true harmful potential of microarchitectural

attacks (e.g., Meltdown could leak physical memory contents) and forced the hardware and

software communities to react with numerous security patches [19, 20, 109, 250].

This first large-scale deployment highlighted a major issue: We lack the tools to test and

validate defences against modern microarchitectural attacks. The only available testing

method was manual, which is inherently incomplete, and it repeatedly led to flaws in the

defences [141, 39].

In this thesis, we propose a set of methods and tools to automatically check the defence

effectiveness. Yet before we dive into the details, let us first consider how real is the threat

of microarchitectural attacks, and whether the protection is necessary in the first place.

1.1 The Rise of Offensive Cybersecurity

The first question we have to consider is: Will attackers eventually start employing microar-

chitectural attacks in the real world? We have to consider it because if the answer is “no”,

there is no point in developing defences against them.

In the past, the commonly accepted answer was: not likely. Software was—and still

is—full of conventional vulnerabilities such as buffer overflows or improper input valida-

tion [179]. There are plenty of tried-and-true techniques for exploiting them [184, 220] and

tools that help with the exploitation [10, 9]. At first glance, it seems unreasonable to search

for new attack vectors when the old ones are still effective.

However, this argument may not hold for much longer. As the modern world is becoming

more and more fused with computing, the stakes involved in cybersecurity are getting

alarmingly high, which fuels exploration of new attack methods.

When we look at virtually any modern device, vehicle, or piece of equipment that

could kill or harm people, we will find a computer in it. Power grids and manufacturing

facilities are managed by control systems (e.g., SCADA [50]); airplanes and cars are

controlled by distributed systems of embedded controllers (e.g., fly-by-wire [87] and drive-

by-wire [238]) and are moving towards full autonomy [242]; implantable devices are semi-

or fully automated [118]; voting happens electronically and sometimes remotely [144]; and—
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the most frighteningly—weapons are becoming autonomous too (e.g., ATR systems [201]).

On top of it, many such systems permit remote access [85, 11], and some are built with

commodity components [47, 40].

This environment makes cyberattacks extremely appealing to various malicious actors

and brings significant resources into the development of new exploits. The price of an

exploit on today’s black market is thousands of dollars [24] or—when sold to a government

organization for exclusive use—it can allegedly reach a million dollars [174, 122]. Most

major militaries today include dedicated cybersecurity units (e.g., NSA [52], GRU [68],

North Korean Unit [243]) that harness and develop their offensive capabilities [265, 209].

Their work is further supported by defence contractors and private companies that trade in

exploits (e.g., Zerodium [12]). Worst of all, their tools occasionally get leaked [210], and

become available not only to state-level actors but even to common criminals.

We can already see the first devastating effects of these developments. Among the

examples are a takedown of a regional power grid in Ukraine [280], a lockdown of medical

equipment and hospitals in the UK [37], a disruption of a worldwide shipping network [106],

and a sabotage of oil production facilities in Saudi Arabia [148]. There are also examples

of cyberattacks used for military purposes, including subversion of uranium enrichment

plants [279] and espionage [135].

At the same time, the defence side does not lay idle. We see an increasing deployment

of defence techniques (e.g., memory safety mechanisms [232], input sanitization [34],

fuzzing [219]) which prevents many traditional vulnerabilities. It especially applies to safety-

critical systems, which have to comply with regulatory standards (e.g., ISO/IEC 27000 [75],

ISO/SAE 21434 [208]) and are overall more concerned with security. Accordingly, the old

exploitation tools are becoming less effective.

All these factors together create a modern “arms race” in the field of computer security:

As the traditional attack techniques are gradually becoming outdated, the attackers are well

motivated (and well equipped) to add new vulnerabilities to their toolbox. And given how

effective microarchitectural attacks could be at bypassing existing defences, they may soon

catch the attacker’s attention. Thus, we have to be prepared.

1.2 The Inevitable Front of Shared Hardware

Another common source of skepticism [230] towards microarchitectural attacks is they

assume a local attacker; that is, an attacker who can execute code on the same physical

machine as the victim. This threat model is sometimes viewed as less realistic, as it may

require a breach of several defence layers (e.g., firewall penetration or malware infection).
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There are many situations, however, when this perspective is not valid: Modern browsers

frequently execute untrusted code on the users’ machines (e.g., website-provided JavaScript

or WebAssembly). Application markets for phones and desktops are full of applications

from untrusted vendors, some of which contain malware [149]. Virtual servers rented from a

cloud provider inherently share the hardware with other tenants. Even private high-security

networks are not immune to local attacks as they can be breached through phishing [73],

physical penetration [25], and infection from the devices that employees bring in [152].

One may argue that in most of these scenarios the malicious code runs in isolation: the

untrusted code in browsers is confined by sandboxes [36]; the third-party applications on

smartphones are isolated by the operating system [81]; and virtual servers are defended by

Virtual Machine Managers (VMM), with a possible further reinforcement from a Trusted

Execution Environment (e.g., Intel SGX [168]).

However, microarchitectural attacks are notorious for bypassing isolation mechanisms,

and all of these techniques have been shown vulnerable [185, 131, 127, 117]. Thus, we have

to enhance them with specialized defences against microarchitectural attacks.

1.3 The Undefended Flanks of Microarchitecture

Fortunately, we already have the tools for defending against most known microarchitectural

attacks, some of which are even deployed in practice (§2.5).

Unfortunately, virtually all these tools target either a single attack variant, or a small set

thereof. This strategy is problematic because side channels are not a single vulnerability but

a whole class encompassing dozens of vulnerabilities, and with new ones discovered every

couple of years. Thus, when we patch one attack vector, the adversary can simply pivot to

another one.

To create a holistic protection, we need to approach microarchitectural attacks as a

multifaceted problem, which is solved only by a fleet of defences, each targeting its own

strictly defined problem. For example, a complete defence against known speculative

attacks would include an OS patch against Meltdown [109], a firmware patch against

MDS [247, 57, 212], and an application-level mitigation of Spectre [142] and LVI [244].

There is one major obstacle, however, to creating such “combined arms” of defences:

We have to ensure that every component correctly plays its part. Specifically, we need to test

that every component indeed provides the guarantees that we expect it to provide, and we

have to continuously validate that all components function correctly. Otherwise, we might

get a mere patchwork of defences, with some attack vectors covered redundantly, while the

others are left wide open.
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Figure 1.1: Types of microarchitectural defences.

1.4 Contributions

The main goal of this thesis is to make it possible to automatically check the effectiveness of

defences against modern microarchitectural attacks. The secondary goal is to implement

practical tools for it and make them usable with real-world applications.

These goals stem from the fact that the effectiveness of defences is not apparent, and

specialized methods are required to test if a defence indeed provides the protection we

expect from it. In contrast to more traditional security techniques, manual testing of

microarchitectural defences is hardly possible because they operate at the abstraction level

below the software and are invisible to traditional debuggers. Moreover, microarchitectural

attacks are often unstable and non-deterministic, and an attack failure may be a mere

coincidence, not a result of the defence. This obscurity of the microarchitectural security

guarantees leads to flaws in defences [141, 39] and their ineffectiveness under certain threat

models.

At the same time, the existing testing methods lag behind the developments in microar-

chitectural attacks. Even though there are numerous approaches for microarchitectural

modeling [239], for formal verification of system defences [93], for testing application-level

defences [181], and for fuzzing [183], they are unfit for novel adversarial capabilities or for

modern attack variants (Chapter 2 discusses it in detail).

In this thesis, we target three problems, one for each of the three main types of

microarchitectural defences: hardware-, software-, and system-based defences. The division

into three types comes naturally from the structure of a microarchitectural attack (Figure 1.1).
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It consists of three stages: 1⃝ The victim accesses a shared resource in a secret-dependent

fashion. 2⃝ The access changes the resource’s state (i.e., leaves a trace). 3⃝ The attacker

observes the state change (i.e., reads the trace). Accordingly, software-level defences ensure

that the victim does not perform distinct secret-dependent accesses; hardware-level defences

prevent the CPU operations from leaving observable traces; and system-level defences

preclude the attacker from reading traces, or make them secret-independent.

Problem 1 (Hardware Level): How to automatically check if CPU operations can leave

unexpected and observable microarchitectural traces?

To test hardware defences (and the hardware behavior in general), we need to check

if the traces left by the applications running on the CPU match our expectations about

them. Specifically in this thesis, we target automated testing of black-box CPUs featuring

speculative execution, because the existing techniques in this domain either target white-box

CPUs or do not cover speculation. Thus, there is no method to independently test the

microarchitectural security of commercial CPUs.

In Chapter 3, we propose a method that enables such independent testing. We rely on

speculation contracts—formal microarchitectural specifications that allow us to express our

expectations about the hardware’s behaviour in terms of the traces that we can observe via

side channels. Our approach is to compare our expectations of the CPU behavior (encoded

in a contract) to how the CPU actually behaves. The comparison happens by executing

random instruction sequences on both the silicon CPU and its model, and comparing the

information leakage observed via side channels. We implement this method in a fuzzing

framework Revizor and demonstrate its effectiveness by testing Intel x86 CPUs.

Problem 2 (Software Level): How to automatically check if an application has speculative

accesses that can expose its secrets?

At the software level, the goal of testing is to find the parts of the target application that

can leave secret-dependent microarchitectural traces. Specifically, we focus on speculative

vulnerabilities, as there are no effective tools to test against them, in contrast to traditional

side channels. The main challenge is that speculation is inherently invisible to software, and

regular software testing tools cannot directly detect speculative security violations.

In Chapter 4, we propose a method of speculation exposure, which transforms speculative

execution into normal, software-observable execution. The idea is to simulate microarchitec-

tural features within the application, thereby making speculative security violations visible

to integrity checkers. We showcase the idea in SpecFuzz, a combination of a compiler

extension and a fuzzer that allows us to detect Spectre-type vulnerabilities in software.
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Problem 3 (System Level): How to ensure an execution environment that precludes the

attacker from reading traces even if the system software is compromised?

At the system level, our focus is on the runtime validation of defences. It is necessary

because system-level defences could be disabled and reconfigured at any moment, and the

applications relying on them will be oblivious of the change. This scenario is a real threat

in the computing environments where the adversary may have control over the privileged

software (e.g., OS, VMM), such as under a compromised cloud provider.

In Chapter 5, we propose a set of techniques to validate within the application that

the expected system-level defences are functioning correctly. The key idea is to modify

the application such that it constantly monitors itself and thus detects the changes in the

execution environment. We implement the technique in Varys, a tool for protecting Intel

SGX enclaves [168] against L1/L2 cache side-channel attacks and page table attacks.
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Chapter 2
Background

In this chapter, we will review the basic mechanisms underlying microarchitectural attacks

and defences against them (§2.1, 2.3, and 2.4). We will also examine why no single defence

can prevent microarchitectural attacks completely, and why it takes a fleet of defences to

solve the problem (§2.5). Finally, we will consider the existing options for testing and

verifying microarchitectural defences (§2.6).

2.1 Relevant Microarchitecture

Microarchitectural attacks take their root at the immense and obscure complexity of modern

CPUs. Programs operate a high-level interface to the CPU—Instruction Set Architecture

(ISA)—which describes instruction semantics, memory addressing formats, the set of avail-

able registers, and so on. However, programs do not see the implementation details of the

ISA, such as caching, pipelining, and speculative execution. These details are collectively

called microarchitecture.

A problem arises when a microarchitectural feature introduces software-visible side

effects (e.g., timing differences). Since software security properties are normally expressed

in terms of ISA, the tools that check security properties do not cover the microarchitectural

side effects. Accordingly, a vulnerability caused by the side effects may stay undetected for

a long time. Below are several prominent examples of such microarchitecture features.

2.1.1 CPU Caches

Nowadays, the main memory runs at a much lower clock rate than the CPU, meaning that a

program with many memory accesses could spend most of its execution time waiting for its

loads and stores. To avoid it, CPUs have caches—small but fast buffers that temporarily
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Figure 2.1: Example of a cache hierarchy

keep the values recently read from or written to the memory. When a program runs on a

CPU with a cache and repeatedly tries to accesses the same address, the CPU requests the

memory only the first time, and the subsequent accesses are served from the fast caches.

Cache hierarchy. CPUs often have several levels of caches, each next larger but slower.

A memory access first goes to the lowest level of cache (L1). If the data is there (cache

hit), the cache returns it; if not (cache miss), it requests the next level (L2). The process

continues until all the levels are checked. Only when the data is missing in all caches, the

CPU requests the main memory.

Example: Figure 2.1 shows a cache hierarchy of an Intel Skylake CPU. It has three levels of

caches, with the last level cache (LLC) shared among cores, and the lower levels (L1 and L2) in

exclusive access to each core. L1 cache is split into an instruction (L1I) and data (L1D) caches

to avoid conflicts between instruction fetches and data loads/stores. The first level (L1) has

an access latency of 4 cycles, L2 slows down to 12 cycles, and accessing the last level cache

(LLC) takes 42 cycles. Each next level is also larger than the previous: L1 keeps 32KB of data,

L2—256KB, and LLC—8MB.

Cache addressing. Caches store data in fixed-size blocks called cache lines (commonly

64-bytes wide). Depending on a specific cache design, any given memory address can be

stored either in any cache line or only in a dedicated subset of cache lines.

In a fully associative cache, any cache line can store data from any memory address.

Even though this design is simple, it has a large search complexity. To find an address in

such a cache, all cache lines may need to be scanned; that is, the search time and/or the

hardware complexity is proportional to the cache size. Therefore, fully associative caches

are normally used only when the cache is small, with up to several dozen entries.
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A more common design is a set-associative cache, which groups cache lines into cache

sets, and has a fixed mapping between memory addresses and the cache sets that serve

them. A cache set contains several cache lines, and the number of lines in a set is called

associativity. Memory addresses form a many-to-one relation with cache sets: A single set

serves many addresses, but any given address can be stored only in one set, within any of

its cache lines. To find a specific address within a cache, the CPU derives the cache set

index from the address, and then exhaustively searches through all cache lines in it. The

search complexity in a set-associative cache is proportional to the associativity but not to

the overall cache size. Therefore, this design is commonly used to implement large caches.

In a set-associative cache, many addresses are competing for the limited number of

cache lines in a set. The competing addresses are called congruent. When a cache set is full

and the CPU wants to store more data in it, one of the cache lines gets removed from the

cache (evicted). As such, an access to a non-cached memory address causes eviction of its

cached congruent addresses.

Example: The L1D cache in Intel Skylake CPUs is set-associative, with the associativity of eight

(i.e., 8 cache lines in every cache set). It maps addresses to sets by taking the address bits 6–12

and using them as a cache set index. Below are several examples of mappings:

Address 0b0000’0000’0100’0000 maps into the cache set #1;

Address 0b0000’0000’0100’1111 maps into the cache set #1;

Address 0b1100’0000’0100’0000 maps into the cache set #1;

Address 0b1100’0000’1000’0000 maps into the cache set #2.

The first three addresses are congruent and compete for cache lines in the first cache set.

TAKEAWAY: On a CPU with caches, one memory access may influence the timing of

another access by causing either a cache hit (if they use the same address) or a cache miss (if

they use congruent addresses). This may create an unintentional information flow between

operations in a program or even between programs.

2.1.2 Virtual Address Translation

One of the core abstractions in modern operating systems is virtual memory: The OS

presents each process with a view that it has its own contiguous and large memory to which

it has exclusive access.

To implement the virtual memory abstraction, the OS maintains a table of mappings

between the addresses in the virtual memory (virtual addresses) and the addresses in the

physical memory that back them (physical addresses). This table is called a page table and

is itself stored in the main memory. Every time an application wants to access a virtual

11



Chapter 2. Background

Figure 2.2: Page table entry with bits for permission checks and for swapping.

address, the CPU transparently looks up its physical address in the page table and performs

the corresponding access. In modern CPUs, a dedicated Memory Management Unit (MMU)

is responsible for this task.

The mappings in page tables are coarse-grained, at the granularity of pages, contiguous

memory regions of a fixed size. The standard page size is 4KB, but larger sizes—2MB and

1GB—are getting increasingly common.

Translation Lookaside Buffer. Searching for an entry in a large page table is a slow process,

and performing it at every memory access would considerably degrade performance. To

make the translation faster, its results are cached in a Translation Lookaside Buffer (TLB),

which stores the most recently used page table entries. Like regular caches, TLBs could be

organized into a multi-level hierarchy and split into instruction TLB (iTLB) and data TLB

(dTLB).

TLB introduces a large timing difference between memory accesses: The first access to

a page (TLB miss) could take thousands of cycles, while the next ones (TLB hits) would

take only a few cycles.

Additional MMU Functions. Besides address translation, MMU also checks permissions

before executing a memory access, and serves several support functions for other subsystems.

To this end, each page table entry contains fields with metadata about the page.

Example: Figure 2.2 shows a page table entry in an Intel x86-64 architecture. PPN is the

physical page number, which implements address translation. Bits U/S (user/supervisor) and

R/W (read/write) are used to implement page-level permissions: R/W indicates if writing to the

page is permitted and U/S—if userspace code can access it. Bits P (present), A (accessed), and

D (dirty) are used to implement swapping: P indicates the presence of the page, A—if it has been

accessed after the last swap, and D—that it has been overwritten.

TAKEAWAY: 1⃝ Similar to CPU caches, TLBs cause a timing difference between cached

and non-cached addresses. 2⃝ MMU permission checks enforce isolation between the kernel

and the user memory; thus, the isolation relies on the correctness of the checks.
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1 LOAD R1, (0x123)
2 DIV R2, R1
3 SUB R3, 42
4 XOR R4, 42

(a) Original instruction schedule

LOAD R1, (0x123)
SUB R3, 42
XOR R4, 42
DIV R2, R1

(b) Reordered instruction schedule

Figure 2.3: Example of instruction reordering.

2.1.3 Pipelining and Pipeline Hazards

A large part of the performance gains in modern CPUs is due to increasing parallelism.

Pipelining is a common way to improve parallelism at the instruction level. The idea is to

split the execution of a single instruction into several stages and execute them in parallel.

For example, these stages could be instruction fetch (IF), execution (EX), and write back

(WB). Then, while one instruction is storing its result (WB), the next instruction could be

computing it (EX), and the next one is fetched from memory (IF).

In certain situations—called hazards—the CPU pipeline stalls because it cannot execute

the next instruction immediately. A hazard may happen in three cases: a structural hazard

appears when a microarchitectural resource necessary for the current instruction is occupied

by another instruction; a data hazard—when there is a data dependency between instructions,

and a later instruction has to wait for the result of an earlier one; and a control hazard—when

an instruction modifies the control flow (e.g., at a conditional branch) and the CPU does not

know what instruction to run next. As the hazards are stalling the CPU, they can significantly

reduce its performance.

2.1.4 Techniques to Avoid Hazards

Superscalar Execution. A common way to avoid structural hazards is to replicate some

of the stages. For example, the CPU may have several execution units where multiple

instructions on the EX stage could perform their computations. This is called superscalar

execution.

Out-of-order Execution. Even with superscalar execution, a few slow instructions can stall

the whole pipeline by occupying all execution units. To prevent it, CPUs with out-of-order

execution can change the order of instructions in the program as long as the result stays the

same.
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Example: Consider the following scenario: A CPU has two execution units that can execute any

two instructions in parallel. The CPU has registers R1, R2, and R3. Memory accesses take 3

cycles, and arithmetic operations—1 cycle. (We ignore pipeline timings in this example.)

When the CPU executes the program in Figure 2.3a in-order, it takes 5 cycles: In the first

cycle, LOAD and DIV occupy both execution ports, and DIV cannot proceed until LOAD is completed.

After 3 cycles, LOAD finishes and releases its execution unit. DIV and SUB begin execution, taking

one cycle. Lastly, XOR gets a unit and executes for another cycle.

The CPU can change the schedule and postpone the execution of DIV until the result of LOAD

is ready, as shown in Figure 2.3b. SUB and XOR are not dependent on the load, and can run in

parallel. Accordingly, the execution of the whole program takes 4 cycles.

A problem arises, however, when an instruction in the reordered schedule triggers an

exception, and the results must be discarded for all instructions that follow the exception.

For example, in Figure 2.3b, if the divider in DIV is zero and it triggers an exception, SUB

and XOR are still executed, even though the control flow should have never reached them.

To prevent this issue, the results of all reordered instructions are temporarily kept in an

internal buffer (Reorder Buffer, ROB) while the preceding instructions are executed. When

no fault happens, they are committed into the architectural state (i.e., stored into registers or

memory) in the original program order. Otherwise, the CPU discards the results. Yet the

microarchitectural side effects of the discarded instruction (e.g., cache evictions) usually

remain untouched.

Speculative Execution of Branches. To deal with control hazards, modern CPUs include

a Branch Predictor that tries to predict the outcome of conditional and indirect branches.

Based on the prediction, the CPU starts to speculatively execute the instructions assumed

next.

For example, when the CPU encounters an indirect jump, Branch Predictor predicts the

jump target based on the history of recently used targets, and the CPU redirects the control

flow to it. While the CPU does not know if the prediction was correct, it keeps track of the

speculative instructions in ROB. Eventually, the CPU resolves the hazard and, depending on

the outcome, either commits the results or discards them.

Speculative Execution of Loads. Some CPUs also include a predictor for a limited set of

data hazards that appear when a load follows a store, and it takes a long time to calculate

the store address. In this situation, the CPU has two options: If the addresses match, the

CPU should forward the stored value to the load. Otherwise, the load can be executed

independently of the store. However, while the store address is unknown, the load has to

wait.
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2.2. Threat Model

To resolve this hazard, some CPUs include a Memory Disambiguation Predictor, which

tracks the history of such conflicts, and makes a prediction based on it. Similarly to branch

prediction, it triggers speculative execution until the conflict is resolved.

TAKEAWAY: 1⃝ With out-of-order execution, an instruction may update the microar-

chitectural state even if a previous instruction caused a fault. 2⃝ With branch prediction,

unintended code paths may be executed speculatively. 3⃝ With prediction of memory

conflicts, loads may speculatively return outdated values.

2.1.5 Simultaneous Multithreading

Modern high-performance CPUs have many execution ports, more than most real-world

programs can utilize. For example, Intel Skylake can execute four integer arithmetic

instructions in parallel with two loads and one store. Even with speculative and out-of-order

execution, programs rarely have enough independent instructions to make use of these

capabilities.

Simultaneous Multithreading (SMT) is a technique to improve hardware utilization

by letting multiple independent threads (or even programs) share a core. Each thread

has a dedicated set of registers to prevent mixing their data, but most of the other core

resources—including execution ports—are used concurrently.

TAKEAWAY: When SMT is enabled, multiple programs (potentially from different

security domains) may concurrently use the same microarchitectural resources, such as

execution ports and caches.

2.2 Threat Model

To understand how microarchitectural attacks work, we need to first consider in which

circumstances such attacks are assumed to happen, and what capabilities the attacker is

expected to have.

Main Threat Model. All attacks in this thesis assume the following model: An adversary

has control over a program executing on the same CPU as a victim program. Here, we define

the term “program” broadly as any code executed on the CPU. Depending on a specific

attack, it ranges from a JavaScript snippet executed by a browser to complete control over

the operating system.

We expect both programs to be logically isolated, but share some of the microarchi-

tectural state. For example, they may run as two processes with separate virtual address
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Chapter 2. Background

spaces but with a shared CPU cache. Accordingly, the attacker can observe the traces that

the victim leaves in the shared microarchitectural elements (e.g., cache evictions).

Finally, we do not set any restrictions on the adversary’s knowledge about the source or

compiled binary code. Both the source code and the compiled binary could be known.

Privileged Threat Model. When discussing attacks on Trusted Execution Environments

(§2.3.3 and Chapter 5), we assume an extended version of the previous threat model. It

models a compromised cloud environment where a cloud operator or some of its staff

attempts to spy on its customers. Here, the adversary is in complete control over privileged

software, in particular the hypervisor and the operating system. She can spawn and stop

processes at any point, set their affinity and modify it at runtime, arbitrarily manipulate

the interrupt frequency, and cause page faults. The adversary can also read and write to

any memory region except the memory that belongs to a Trusted Execution Environment

(discussed in Chapter 5), map any virtual page to any physical one, and dynamically re-map

pages. Together, it creates lab-like conditions for a microarchitectural attack: it runs in a

virtually noise-free environment.

2.3 Microarchitectural Side-Channel Attacks

A microarchitectural side-channel attack is a method of spying on a program. It is based

on the idea that most operations on a CPU have side effects. As discussed in §2.1, modern

microarchitectures have numerous internal buffers for speeding up slows operations (e.g.,

caches, TLB) and many modules are shared between processes (e.g., execution ports, lower-

level caches). When a CPU executes a program, its instructions change the state of these

modules. The changes impact the execution time of other instructions using the same

modules. For example, when a memory access brings data into the cache, the later accesses

to the same address will be faster. Hence, a malicious program can observe the side effects

of the victims’ instructions by measuring the execution time of its own instructions.

Microarchitectural attacks can be a powerful tool in an attacker’s toolbox since they pro-

vide means to bypass software isolation. Previous research has shown that microarchitectural

attacks are possible across all major isolation levels, including virtual machines [131, 262],

OS kernel [121, 262], secure enclaves [117, 56, 244, 57, 212], and sandboxes [185, 142].

In this and the next section, we review how microarchitectural attacks work and consider

a few of the most common variants. We also briefly review the spectrum of existing attacks

to illustrate the variety of options available to an adversary and the difficulty of preventing

them.
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2.3. Microarchitectural Side-Channel Attacks

Note on Terminology: In the remainder of the thesis, we refer to traditional (i.e., non-

speculative) microarchitectural side-channel attacks as side-channel attacks, and to specula-

tive microarchitectural side-channel attacks as speculative attacks. The term microarchitec-

tural attack encompasses both traditional and speculative attacks.

2.3.1 Attack Overview

We can model a side-channel attack as two programs—VictimProg and AttackerProg—

interacting with a microarchitectural module. The module consists of one or more elements.

A program can interact with one element at a time, and the interaction changes the element’s

state. The duration of such an interaction depends on the previous state of the element.

Example: CPU cache (§2.1.1) is an example of such a microarchitectural module. The elements

of a cache are cache sets. When a program accesses memory, it uses one of the cache sets.

The access may evict one cache line from the set and bring another one into it. The access

latency depends on whether the address is already cached (cache hit), or it needs to be fetched

from memory (cache miss).

A side-channel attack consists of five stages [74]:

1. Pre-Attack: At the preparation stage, the attacker analyses VictimProg to find vulner-

able instruction sequences; that is, instructions that interact with the target module

such that the interaction depends on the victim’s data.

2. Setup: When the attack begins, AttackerProg sets the module to a known state

(e.g., flushes the cache). This happens either before VictimProg starts, or during its

execution.

3. Tracing [optional]: AttackerProg stops and waits for VictimProg to interact with the

module.

4. Measurement: AttackerProg interacts with the module’s elements and measures the

duration of each interaction. The differences in timing reveal to the attacker the

elements that were used by VictimProg.

5. Analysis: The attacker analyses the measurements to derive the victim’s data.

Pre-Attack and Analysis happen off-line, and are necessary only once. Setup, Tracing, and

Measurement constitute the on-line phase, and are usually repeated many times during the

attack. Setup and Measurement happen either concurrently with the victim’s execution, or

in a time-sliced fashion.

The implementation of each step varies between specific attacks. Several prominent

examples are summarized in Table 2.1, and we discuss them next.
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2.3. Microarchitectural Side-Channel Attacks

1 int8_t array[128];
2 if (secret == 0) {
3 int8_t x = array[0];
4 } else {
5 int8_t x = array[64];
6 }

Figure 2.4: Code vulnerable to cache timing attacks

2.3.2 Cache Side-Channel Attacks

One of the most well-researched targets for side-channel attacks is the CPU cache. In a

cache timing attack [191, 160, 131, 127, 17, 276], the attacker tries to find out which cache

sets the victim program used, and thus infer which memory addresses it accessed. From the

addresses, the attacker derives the memory contents and/or the control flow of the program.

Example: Consider the code snippet in Figure 2.4. At the Pre-Attack stage, the attacker reviews

it and sees that it includes two memory accesses at lines 3 and 5. The accesses are 64B apart,

so they use different cache sets. Moreover, which of the two accesses is executed depends on

the secret value (line 3 if secret is zero, line 5 otherwise). Hence, if the attacker could learn the

cache set used by the victim, she will also learn the secret value. A cache attack helps with this.

At the Setup stage, the attacker program sets both cache sets to the same state (e.g., fills

them with its data). At the Tracing stage, it lets the victim execute the whole snippet. Suppose the

secret value is zero: The victim program executes line 3 and changes the state of the first cache

set. At the Measurement stage, the attacker program accesses both cache sets and measures

the access timing. The timing difference reveals that the first set was accessed.

Finally, at the Analysis stage, the attacker matches the results with the pre-attack analysis:

State change in the first cache set implies that the victim executed memory access at line 3, thus

the secret value was zero.

There are several attack variants, mainly diverging in their Setup and Measurement.

Prime+Probe [191, 188] attacks use cache eviction as a signal of a state change. The stages

of a Prime+Probe attack are:

• Setup (Prime): The attacker fills target cache sets with its own data by accessing

several congruent addresses.

• Tracing: A victim’s access to a target cache set evicts one of the attacker’s cache lines.

• Measurement (Probe): The attacker accesses the same congruent addresses, and

measures the timing of each access. Accesses to those sets used by the victim

experience a cache miss, thus they take longer time.
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Prime+Probe attacks can target any level of cache: Although the original variants [191,

188, 258] targeted only L1 data cache, later research has shown that instructions cache is

vulnerable too [18], as well as higher levels of the caches hierarchy [160, 131, 157, 127, 105].

Compared to other attack variants, Prime+Probe is less demanding to the attack con-

ditions, but is more affected by the measurement noise: On one hand, Prime+Probe does

not require shared memory (in contrast to Flush+Reload, see next) and could be launched

against any program that shares a cache with the adversary. On the other hand, it targets a

cache set and not a specific memory address. Hence, if there are several programs besides

the victim that use the cache, the adversary will not be able to distinguish their accesses

from the victim’s ones.

Flush+Reload [276, 111, 285] uses cache fill as a signal (i.e., an opposite signal to

Prime+Probe). Its stages are:

• Setup (Flush): The attacker flushes the target addresses (e.g., array[0] and array[64]

in Figure 2.4).

• Tracing: The victim accesses one of these addresses and brings it into the cache.

• Measurement (Reload): The attacker accesses the addresses again and measures the

timing. If a cache line was filled, it will take less time to access it.

Flush+Reload requires shared memory. To check if a cache line was filled, the attacker

must be able to access the same address as the victim did. It is possible only if the victim is

sharing memory with the attacker. This could happen, for example, when using a shared

library or when memory de-duplication is enabled.

Evict+Reload [111, 157] is a variant of Flush+Reload for the architectures that do not

provide a flush instructions or restrict it to privileged code (e.g., ARM). At the Setup stage,

the attacker forces eviction of the target address by accessing several other, congruent

addresses. The Measurement stage is identical to Flush+Reload.

Flush+Flush [110] is a more stealthy version of Flush+Reload. As the original attack

produces a lot of memory traffic, the victim could observe this traffic and thus detect an

attack attempt. Flush+Flush avoids it by relying on the timing of the flush instruction itself,

which does not cause a memory access.

Other variants. Evict+Time [241, 42] was the earliest variant of a cache side-channel

attack. It uses execution time of the victim’s program as a signal. At the Setup stage (Evict),

such an attack evicts several target addresses (or simply as many addresses as possible).

At the Measurement stage, it sends some request to the victim program and measures

the response time. The time will depend on the number of memory accesses the victim
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2.3. Microarchitectural Side-Channel Attacks

program executes, as most of the accesses will experience a cache miss after the eviction.

Accordingly, if the number of accesses depends on a victim’s secret, the execution time

will expose the secret to the attacker. The problem is, however, that the execution time also

depends on many other parameters, such as scheduling, number of system processes, and so

on. It makes the measurements noisy and the attack—hard to launch in practice.

Reload+Refresh [54, 272] is a recent attack that exploits the cache replacement policy.

Most caches use a variation of the Least Recently Used (LRU) algorithm to select which of

the cache lines within a cache set will be evicted next. As such, when a victim program uses

a cache line, the line becomes the most recently used, and all other lines become closer to

eviction. Reload+Refresh uses this observation to detect victim’s memory accesses without

causing a cache eviction. It makes the attack more stealthy towards the defences that use

cache evictions as an indicator of an ongoing attack.

2.3.3 Page Table Side-Channel Attacks

Address translation attacks reveal page-level access patterns of a program by exploiting

Memory Management Unit (MMU, see §2.1.2). They are usually considered in the context

of Trusted Execution Environments (e.g., Intel SGX) as they are possible only if privileged

software is compromised, hence they are also called controlled-channel attacks [273]. Page

table attacks can be classified into page-fault based and page-bit based.

Page-fault based attacks [273, 224] intercept page-level memory accesses by intentionally

triggering page faults:

• Setup: The attacker sets up the execution environment such the first access to the

target page will cause a page fault. For example, the attacker may swap the page or

mark the page as invalid in the page table. In case of Intel SGX, the attacker may also

evict the page from Enclave Page Cache (discussed in Chapter 5).

• Tracing: The victim accesses the target page, a page fault happens, and the CPU calls

the OS to handle the fault.

• Measurement: The attacker-controlled fault handler reads the page fault descriptor,

which reveals the accessed address.

Page-bit based attacks [254, 245] use the Accessed and Dirty page table bits as a page

access indicator.

• Setup: The attacker clears Accessed and/or Dirty bits for the target page.

• Tracing: When the victim accesses the page, the CPU automatically sets the bits.

• Measurement: The attacker reads the bits. If they are set, the victim used the page.
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2.3.4 Side-Channel Attack Landscape

Side-channel attacks could target many more microarchitectural modules besides caches and

MMU. In fact, virtually any module could become a target if two programs from different

security domains can share it. Below is a brief overview of such targets1. It illustrates how

diverse side-channel attacks are and why it is so challenging to prevent them.

On-Core Targets. Branch Target Buffer (BTB) is a buffer used to implement speculative

execution of branches (§2.1.4). BTB keeps a history of the recent branch targets. Aciiçmez

et al. [17, 14, 15] showed that an attacker can intentionally fill BTB with wrong values, and

thus cause frequent branch mispredictions. Each misprediction has a penalty of several clock

cycles, which increases the overall execution time of the victim program. This divergence in

timing reveals to the attacker the control flow paths executed by the victim.

The actual values stored in BTB (i.e., branch targets) can also be recovered with a

side-channel attack [82, 83]. To this end, the attacker has to cause collisions between

the branches in its program and in the victim’s program. Then, the mispredictions in the

attacker’s program will reveal which of the branches the victim executed. Sangho et al. [155]

further developed this approach, and showed that the attack becomes particularly precise

when the attacker can completely mirror the victim’s code layout. This, however, assumes a

privileged attacker (§2.2).

Execution port contention can create a signal when two threads use the same core

concurrently (i.e., when SMT is enabled, §2.1.5). If one thread executes an instruction that

occupies an execution port for a period of time, the other thread’s instructions of the same

type have to wait until the port is released. Hence, the execution time of the attacker’s

instructions depends on the instructions that the victim executes. This signal was shown

sufficient to leak victim’s data [258, 16]. Recently, this side channel was also demonstrated

in combination with speculative execution [44, 92].

Floating-point operations are another target. Andrysco et al. [27] showed that the

execution time of floating-point operations highly differs depending on its operands, and

on the previous state. As such, they can cause secret-dependent variance in the programs’

execution time, which the attacker could use as a signal. Kohlbrenner et al. [143] further

detailed these findings.

Translation Lookaside Buffer (TLB) is effectively a cache, and thus it is vulnerable to

cache attacks. Gras et al. [104] demonstrated the possibility of such an attack. The attack

assumed a privileged adversary (§2.2) because a direct manipulation of the TLB state is

only possible by privileged software (at least, on x86).

1For an exhaustive overview, refer to the excellent survey by Ge et al. [94]
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Single-instruction Multiple-data (SIMD) operations often have high energy consumption.

To save power, the OS turns off the SIMD execution unit when it is not in use. Hence, when

a program uses a SIMD operation for the first time, the unit has to be turned on, which takes

a significant amount of time. Schwarz et al. [215] demonstrated that it constitutes a side

channel.

Off-Core Targets. Memory Bus is a bus that transfers data between a CPU and the main

memory. All processes running on the CPU use the memory bus concurrently. As the bus

has only a limited throughput, high memory traffic from one process increases the memory

transfer delays for the other processes. Wu et al. [269] demonstrated these delays constitute

a side channel.

Row buffer is a small buffer that stores the most recently accessed row in a memory

bank (a bank is the smallest structural unit of DRAM memory). It is effectively a cache

with a single entry, and it creates a timing difference between a row buffer hit and miss.

Pessl et al. [192] showed that this difference is observable at the software level, and thus it

could be used to launch a side-channel attack. Later, Schwarz et al. [213] demonstrated that

the signal is strong enough to launch an attack from a JavaScript application running in a

browser.

Intel Data Direct I/O (DDIO) is a feature of recent Intel CPUs that improves performance

of network packet processing. It allows to bypass main memory and transfer network packets

directly into the LLC. Taram et al. [234] presented an attack that finds the location of network

packets in the LLC, monitors them via Prime+Probe, and can detect the frequency and the

size of the received packets.

Accelerators can be a target for side-channel attacks too. Naghibijouybari et al. [178]

demonstrated several attacks on GPUs which used various side-channel signals, including

the execution time of a program on GPU, its allocated memory, and the readings of GPU

performance counters.

2.4 Speculative Attacks

Speculative microarchitectural side-channel attacks (in short, speculative attack) further

enhance the traditional side-channel attacks by exploiting speculative and out-of-order

execution (§2.1.4) to manipulate the victim’s data or control flow. In a speculative attack,

the adversary intentionally forces the CPU into making a wrong prediction and speculatively

executing the victim program incorrectly (e.g., taking a wrong path or using wrong data).

Because the incorrect speculative execution violates the application semantics, it may bypass
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1 int i = input[0]; // attacker-controlled
2 if (i < size) { // speculatively mispredicted
3 int secret = array1[i];
4 int x = array2[secret];
5 }

Figure 2.5: Code snippet vulnerable to Spectre V1.

security checks within the application. Moreover, should any exceptions appear during the

speculative execution, they will be handled only during the last pipeline stage (retirement).

For a long time, this behavior was considered safe because the CPU never commits the

results of a wrong speculation. However, as the authors of Spectre [142] and Meltdown [158]

discovered, some traces of speculative execution are visible on the microarchitectural level.

For example, the data loaded on the mispredicted path will not show up in the CPU registers,

but will modify the state of the CPU caches. The attacker can later launch a side-channel

attack to retrieve the traces and, based on them, deduce the speculatively computed data.

Speculative attacks are commonly divided (e.g., by Canella et al. [58]) into prediction-

based (Spectre-type) and fault-based attacks (Meltdown-type).

2.4.1 Spectre-type

Spectre-type attacks exploit prediction of pipeline hazards (§2.1.4) to force the CPU into

incorrect (speculative) execution of a program.

Spectre V1 [142]. In Spectre V1, the attacker exploits conditional branch prediction

to bypass bounds checks, which are a traditional mechanism to prevent invalid memory

accesses. The idea of bounds checking is simple: Before loading/storing a value into

memory, the program checks that the address is valid and points to the intended object in

memory. Bounds checks are normally implemented with conditional branches. On a CPU

with branch prediction, the attacker can force a misprediction, the CPU will speculatively

take a wrong branch, and accesses an invalid memory address.

Example: Consider the code snippet in Figure 2.5 and assume the attacker can control the input

value. The memory safety of this code hinges on the bounds check at line 2, which prevents

the adversary from reading arbitrary memory values with the load at line 3. However, if the

CPU implements branch prediction, it can execute the check in parallel with the vulnerable load

if it predicts the check will not fail. Later, the CPU will find out the prediction was wrong and

discard the speculated load, but its cache traces will stay. The adversary can access the traces

by launching a side-channel attack.
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1 int64_t invalid_address = input[0]; // attacker-controlled
2 int *pointer = (int *) invalid_address;
3 ... // later
4 pointer = (int *) valid_address;
5 int spec_secret = *pointer; // speculatively loads invalid_address
6 int x = array[spec_secret];

Figure 2.6: Code snippet vulnerable to Spectre V4.

The attack works as follows: The adversary sends several in-bounds inputs that train the

branch predictor to anticipate that the check at line 2 will pass. Then, she sends an out-of-

bounds input, the branch predictor makes a wrong prediction, and the program speculatively

executes lines 3–4 even though the program’s semantics forbid so. It causes a speculative buffer

overread at line 3 and the read value is used as an index at line 4. The second access leaves a

secret-dependent cache trace.

The adversary can access the trace by launching a side-channel attack and use it to deduce

the secret value: The address read at line 4 depends on the secret and, correspondingly,

finding out which cache line was used for this memory access allows the attacker to also find out

the secret value loaded on the speculative path.

Spectre V4 [101]. This attack exploits the memory disambiguation predictor (§2.1.4).

When it produces a wrong prediction, a load may speculatively fetch a stale value from

memory, even though the program semantics dictates that it was supposed to be updated

by a recent store. This is effectively a lost memory update, although a speculative one.

An attacker could use this misprediction to leak the values of memory addresses that the

victim’s program never accesses architecturally.

Example: Consider Figure 2.6. The attacker has control over the input (line 1), and thus controls

a pointer in a program (line 2). Without the speculation, the program never dereferences the

pointer as it overwrites it with another value (line 4). With the speculative store bypass, however,

the load at line 5 may miss the update at line 4, and fetch a stale pointer value. This will lead to a

memory access with an attacker-controlled address (line 5), which later leaves a data-dependent

cache trace (line 6).

Other variants. Other types of prediction have been shown vulnerable too. Indirect

branch misprediction can lead to the execution of unintended code (Spectre V4 [142]).

Return address misprediction leads to a speculative return to an unintended address (Spectre

V5 [147]).
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1 int secret = *kernel_memory_address; // triggers a page fault
2 int x = array[secret];

Figure 2.7: Code vulnerable to Meltdown.

2.4.2 Meltdown-type

Meltdown-type attacks exploit speculative execution of faulting instructions. In some CPUs,

when a memory load causes a fault (e.g., a page fault), the CPU may still speculatively

execute it. This load will not fetch a value from memory, but rather return a previously-

loaded value stored in one of the CPU’s microarchitectural buffers (e.g., in a CPU cache).

The value might have been brought into the buffer by another thread or process, hence

Meltdown-type attacks can leak data across security domains.

This type of speculation was so far observed only on Intel CPUs, but there are signs that

other vendors (e.g., AMD) may have it too [58].

Meltdown [142, 158]. The original Meltdown attack (called Meltdown-US in the classifi-

cation of Canella et al. [58]) exploited speculation on the page faults that happens when a

user-space application attempts to read from an address in kernel memory (i.e., when the

U/S page table entry bit is set). If the kernel has recently accessed this address and the value

is stored in a CPU cache, the CPU vulnerable to Meltdown will speculatively return the

value. Similar to Spectre attacks, the attacker can fetch this value by using it as an offset in

another memory access, and thus leaving a side-channel observable trace.

This way, a user-space application can leak values from kernel memory. It constitutes a

breach of one of the most fundamental isolation primitives—the isolation between privileged

and non-privileged software.

Example: Consider Figure 2.7. This code is a part of the attacker’s program. It takes an address

from kernel space and tries to read it (line 1). This causes a page fault, but while the fault is

handled, the CPU speculatively returns the secret value, if the value is cached. Then, the value

is used as an index in an array access (line 2). Its accessed address depends on the secret,

which means it leaves a secret-dependent cache trace. After the fault is handled, the attacker

can read the trace and thus get the secret value.

Following Meltdown, many more fault-based attacks have been discovered in Intel CPUs.

Foreshadow [56, 262] exploited page faults from accessing non-present pages (i.e., when

the “Present” page table bit is set to zero). It can leak data from Intel SGX enclaves, from

the OS kernel, and across virtual machines. Spectre V3a [29]—the attack was initially

mis-classified as a Spectre variant—speculatively bypassed the faults that happen when a

user-space application tries to access a privileged system register. LazyFP [228] exploited
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faults that happen when a non-available device is accessed. Even more vulnerabilities may

still stay undiscovered; investigation of Meltdown-type attacks is an ongoing research topic.

Microarchitectural Data Sampling. MDS [247, 57, 212] is a sub-family of Meltdown-

type attacks which relies on microcode assists. A microcode assist is a type of fault that

is handled by firmware instead of software. It is commonly used to optimize swapping

algorithms by automatically setting the relevant page table bits. For example, an assist

may happen when a program loads from a page that was recently swapped in. This access

triggers a fault, and the firmware automatically sets the “Accessed” bit in the corresponding

page table entry (see §2.1.2).

Some Intel CPUs speculate on microcode assists. Similarly to the original Meltdown,

such a CPU will speculatively execute the load that triggered an assist, but will return a

value from a microarchitectural buffer instead of memory. In case of MDS attacks, however,

the value may come from one of several buffers, not only CPU caches. Depending on the

microarchitectural state and on the type of assist, the value may be fetched from Store Buffer,

Line-Fill Buffer, or Load Port. (These are buffers that temporary keep store and load values).

2.5 Microarchitectural Defences

We next review the existing defences against microarchitectural attacks. The section show-

cases why we need the tools described in this thesis.

Microarchitectural defences have been proposed at all three main abstraction layers:

Hardware defences modify microarchitectural modules such that sharing them becomes safe.

When hardware modifications are impossible or impractical, system defences try to create a

side-channel free execution environment. And when neither hardware nor system defences

succeed, application-layer defences change the application to make its microarchitectural

traces secret-independent or hide them in noise.

2.5.1 Hardware: Securing Microarchitecture

The most fundamental—albeit the most costly—solution to microarchitectural vulnerabilities

is to improve the microarchitecture itself. To prevent traditional side channels, shared

microarchitectural modules have to be modified such that the state changes made by one

program become invisible to other programs. For speculative attacks, the microarchitectural

side-effects of speculative execution need to be confined until the CPU knows the speculation

was correct.
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Secure Microarchitectural Sharing. In practice, a common defence strategy is to simply

disable sharing. For example, Microsoft Azure security guidelines [166] recommend to

disable SMT when running security-critical applications. This prevents concurrent attacks

on lower-level caches as well as other on-core resources. This recommendation was also a

part of the Intel’s response [128] to Spectre/Meltdown attacks.

When it is impossible to disable sharing, a microarchitectural module could be parti-

tioned, and each program will have an exclusive access to its partition. Page [190] proposed

a cache design that supports such partitioning. Later, Intel implemented a Cache Allocation

Technology (CAT). Liu et al. [161] and Dong et al. [77] used CAT to dedicate a portion of

LLC to a single process, thus preventing cross-core cache attacks. Kiriansky et al. [139]

proposed a design that improves performance of such partitioning by allocating cache ways.

Alternatively, caches could be protected by modifying the eviction algorithm. Wang

et al. [259] developed a cache indexing scheme that randomly selects the cache set for

eviction, thus removing hard mapping between memory addresses and cache sets. Yan et

al. [275] proposed a cache replacement scheme that completely forbids cross-core evictions.

Saileshwar et al. [205] developed a cache design that retains those cache flush patterns

that are typical for Flush+Reload attacks. Fang et al. [86] suggested a dedicated hardware

module that detects suspicious cache activity and preloads the affected cache lines.

Secure Speculation. The discovery of Spectre and Meltdown led to a plethora of proposals

for securing speculative execution.

The most conservative solutions proposed to disable prediction either entirely [226]

(although not all processors support it) or on a targeted basis, with serializing instructions

(e.g., LFENCE on Intel CPUs [129] or DSBSY on ARM). Experiments show [193, 194] that

this solution is impractical as it leads to a dramatic performance drop, up to an order of

magnitude.

The next iteration of this approach was to disable speculation of those instructions that

are considered unsafe. Although the precise definition of “unsafe” varied from paper to

paper, most of them agreed that speculatively-computed (or at least speculatively-loaded)

values should not be used for further speculative computations. One of the first proposals

in this area was Context-Sensitive Fencing [233], which tracks the information flow of a

program at the CPU front-end and inserts serialization barriers upon detecting an unsafe

memory access. STT [277], NDA [263], and SpecShield [35] further extended this idea to

implicit information flow and to non-cache side channels. ConTExT [214] applied a similar

strategy but selectively to the user-defined critical memory regions.

An alternative approach is to permit all speculation but keep the speculative data in

a dedicated buffer until the speculation is resolved. InvisiSpec [274] and SafeSpec [137]
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showed implementations of this idea with a focus on cache-based attacks. CleanupSpec [204]

used an inverse strategy: It allowed speculative microarchitectural changes, kept the old

values in a temporary buffer, and reverted the changes upon a detected misprediction.

TAKEAWAY: 1⃝ The proposals for secure microarchitecture target only one or a few

variants of microarchitectural attacks but do not provide a comprehensive defence. 2⃝

Many techniques for secure speculation make a tradeoff between security and performance,

by allowing those speculative actions that are considered safe. As the definition of “safe”

is informal, the exact security guarantees of these proposals are also uncertain. This

motivates Chapter 3, which describes a tool for automatic detection of such vulnerabilities.

2.5.2 System: Creating a Protected Environment

System defences act as overseers of microarchitectural resources, thus striving to create a

side-channel protected environment for the programs executing on the system. They ensure

programs from different security domains never share resources, or when they do, that

sharing does not provide any useful information to the attacker.

Partitioning. Many system defences prevent the attacker from accessing a microarchi-

tectural module concurrently with the victim. The most prominent example of this strat-

egy is SeL4 [176], a microkernel OS that implements extensive microarchitectural isola-

tion [93, 216] by scheduling most of the CPU resources to one security domain at a time. A

limited version of this approach was also recently introduced in the Linux kernel as Core

Scheduling [88], a technique that mitigates on-core side channels by forbidding threads

from different processes (or groups of processes) to share a core.

Several system defences focused on partitioning CPU caches. To this end, they applied

cache coloring [136], a technique to allocate memory to processes such that one process

never has access to congruent addresses of another process. Notable examples of this

approach are the work of Shi et al. [222], who implemented dynamic cache coloring in

a hypervisor, and of Kim et al. [138], who used static cache coloring to create special

side-channel protected pages for storing sensitive information.

Off-core resources could be partitioned too: Wang et al. [257] and Wassel et al. [260]

showed techniques to partition shared networking hardware. Wang et al. [256] suggested a

scheme for allocating memory bus bandwidth.

Partitioning is also the primary defence against Meltdown: Kernel Page Table Isola-

tion [109] isolates kernel and user memory by splitting them into separate virtual address

spaces.
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Flushing. Partitioning on its own is not sufficient: Although the attacker program cannot

access the partitioned module concurrently with the victim, it can still access the traces left

on the module after the victim finishes using it. Therefore, besides partitioning the resource,

it must also be flushed after a process finishes using it. Zhang et al. [287] suggested

to periodically interrupt applications and flush the caches they use; Godfrey et al. [96]

proposed to flush caches at VM context switches; Cock [67] used lattice scheduling [72] as

an optimization of flushing; SeL4 implementation of timing protection [93] flushes multiple

microarchitectural modules when switching context.

Noise Injection. Instead of restricting microarchitectural sharing, the system could inject

noise into the microarchitectural state such that victim’s traces become indistinguishable

from noise. Zhang et al. [283] introduced this technique in a form of a bystander VM that

continuously uses CPU caches. Venkatanathan et al. [248] achieved the same result by

ensuring that processes run uninterrupted for a prolonged period of time, thus making too

many state changes to be useful for an attack.

Alternatively, the noise could be injected not into the microarchitectural state but in the

attacker’s measurements. Vattikonda et al. [249] modified a hypervisor to insert noise in the

rdtsc instruction readings. Most major browsers have an intentionally reduced resolution

of the timer readings returned by the ‘performance.now()‘ command [170, 202].

Monitoring. Finally, the system may permit unrestricted sharing but monitor all applications

in search for the behavior typical for a side-channel attack. This is the least intrusive method

of defence but also the least reliable. Chiappetta et al. [64] implemented a monitoring

process that continuously reads cache-related performance counters to detect an unusual rate

of cache evictions. Zhang et al. [284] implemented a similar approach in a hypervisor that

monitors its VMs. Raj et al. [197] extended this idea to monitoring the memory bus traffic.

TAKEAWAY: System-level defences inherently rely on privileged software, which could

be compromised in a could environment or via a privilege escalation vulnerability. In this

case, the security guarantees of system defences get compromised too. This motivates

Chapter 5, which describes a technique for validating the effectiveness of system defences.

2.5.3 Application: Avoiding Information Leakage

The final line of defence is the application itself. To make it protected against microarchi-

tectural attacks, the application’s actions should be secret-independent or should not leave

microarchitectural traces.

Constant-time Programming is a classical defence technique where the application is

changed to make all the program’s memory accesses and control-flow paths independent
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of the processed data. Traditionally, it is implemented manually, with carefully-crafted

libraries. For example, NaCl [41] and BearSSL [3] are libraries that provide constant-time

implementations of cryptographic functions. libfixedtimefixpoint [27] and Escort [199]

are libraries of constant-time floating-point operations. Such a manual approach is labor-

intensive and error-prone, thus it is practical only for narrow and well-defined applications,

such as cryptography.

Several techniques have been proposed to automate rewriting. Wu et al. [268] devel-

oped a compiler extension to transform programs into their constant-time versions. Van

Cleemput et al. [246] implemented a similar idea but as a JIT compiler, thus benefiting

from dynamic profiling. Both techniques are effective for small functions but introduce

prohibitive overheads when applied to a complete application.

Preloading. When the range of secret values is narrow, the victim application can access all

of them, independently of the secret. Then, the attacker will not be able to define which of

the values the victim actually used. Osvik et al. [188] and Brickell et al. [53] applied this

idea to protect AES lookup tables. Shinde et al. [224] proposed to use preloading of all

application pages to protect Intel SGX enclaves against page-table attacks. Preloading is

impractical, however, for full-application defence as the range of potentially secret values is

prohibitively large.

Randomization. The application could randomize the location of its secrets, thus making

it harder for the attacker to map traces into the secret values. A common technique for

randomization is Address Space Layout Randomization (ASLR) [89], which randomizes

the location of objects in memory. Randomization has been also proposed for the program’s

control flow [123], and applied to Trusted Execution Environments [217]. These approaches

provide static randomization (i.e., do not re-randomize during the program execution), which

provides only best-effort guarantees as the attacker can still find out the location secrets with

repeated measurement [82, 109].

Oblivious RAM (ORAM) [98, 99, 229, 159] is a continuous randomization technique

that provides strong security guarantees, but at a high performance cost. The idea is to

makes the program’s memory accesses independent of the input by re-shuffling data after

every memory access. The early implementations of ORAM [98, 99] introduced overheads

of 200× and higher; more recent versions [198] reduce it to 20×, which is still too high for

most applications.

Replace Vulnerable Patterns. In the context of speculative attacks, the instructions that

trigger speculation could be replaced with the instructions that do not. For example, Ret-

polines [156] and their derivatives [26] replace indirect branches (vulnerable to Spectre
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V2) with a return-based instruction sequence. The issue, however, is that the replacement

sequence could be vulnerable too: The return instructions used in Retpolines are vulnerable

Spectre V5 [164] and to LVI [244].

Delayed Speculation. An approach similar to InvisiSpec and SafeSpec could be im-

plemented in software: Delay speculative memory accesses until the hazard is resolved.

SLH [59] achieves this effect by adding a data dependency between conditional branches

and the later memory accesses. It protects against Spectre V1, but causes a considerable

slowdown (~50%).

TAKEAWAY: Reliable application-level defences are either labor-intensive or cause a

considerable slowdown. As such, they are practical only when applied in a targeted fashion

to the potentially-vulnerable parts of the application. In Chapter 4, we will consider a

method to find these vulnerable parts.

2.6 Related Work: Testing Microarchitectural Defences

Finally, we consider the existing options for testing microarchitectural defences. This

section illustrates that the available tools are not completely fit for the context of modern

microarchitectural attacks, thus motivating the new methods described in the next chapters.

2.6.1 Hardware Layer

Formal microarchitectural models. While several works [30, 71, 97] present formal

models for (parts of) the ARMv8-A, RISC-V, MIPS, and x86 ISAs, the work on formal

models of microarchitectural aspects is only now emerging. For instance, Coppelia [282]

is a tool to automatically generate software exploits for hardware designs. This tool is not

applicable to black-box testing and does not cover speculative execution.

Detection of microarchitectural vulnerabilities. Several recent papers investigated de-

tection of speculative vulnerabilities in CPUs. Medusa [175] is a method for detecting

variants of MDS with fuzzing. Nemati et al. [182] showed a method for detection of Spectre

V1 in ARM CPUs. SpeechMiner [271] is a tool for detailed investigation of speculative

vulnerabilities. All these works targeted specific attacks and did not propose a generic

detection method.

Nemati et al. [181] proposed a method to fuzz a CPU against an abstract cache model.

Our approach proposed in Chapter 3 is similar to this method, but their model did not include

speculation, and they fuzzed a simpler in-order CPU (Cortex-A53).
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ABSynthe [103] automatically detects contention-based side channels, but cannot detect

if a speculation feature introduces leakage through a side channel.

White-box testing. Some works focused on testing CPUs at design time. Zhang et al. [281]

proposed to annotate Verilog HDL specifications with information-flow properties, and thus

enable verification of the properties at design time. Fadiheh et al. [84] propose a SAT-based

bounded model checking methodology to check whether a given register-transfer level (RTL)

processor design exhibits covert channel vulnerabilities. In the terminology of speculative

contracts (see §3.2.2) they check whether the processor design satisfies the ARCH-SEQ

contract. CheckMate [239] automatically searches for predefined attack patterns in a given

ISA model. These tools are not applicable to testing of commercial, black-box CPUs.

Architectural Fuzzing. Several tools apply fuzzing for detecting architectural bugs in the

CPU implementations; that is, detecting when a CPU’s behavior does not comply with

its ISA. RFuzz [150] proposed a tools for fuzzing on RTL level as well as a method for

measuring its coverage. TestRIG [267] is a tool for mutational random testing of RISC-V

implementations. These tools cannot detect microarchitectural issues.

TAKEAWAY: Several tools exist for testing hardware defences against traditional side-

channel attacks, but few of them can detect speculative vulnerabilities; those that can, are

not applicable to black-box CPUs.

2.6.2 System Layer

Most of the software-layer testing tools are equally applicable to both system- and application-

layer defences, and we will review them together in §2.6.3. However, a few works target

exclusively system-layer defences, which we consider next.

Formal Verification. SeL4 [93] microkernel OS is in the process of developing a formally

verified timing protection [216]. Albeit providing strong information-flow guarantees,

this method is laborious and it is remains doubtful whether it can be extended to a large

monolithic kernel, such as Linux. It also assumes the OS is trusted.

Monitoring Page Faults. Several works proposed a page fault monitoring mechanisms to

detect attempts to launch a page-table attack (§2.3.3). T-SGX [223] used Transactional Syn-

chronization Extensions (TSX) to detect and hide page faults from the OS. Cloak [108] and

its concurrent work [63] strive to extend T-SGX guarantees to cache attacks by preloading

sensitive data, but requires source code modifications and protects only selected parts of

the application; a complete solution would have an unacceptably high overhead. Similarly,

Strackx et al. [231] detect page faults via TSX and avoid cache side channels by preloading

of pages at AEX. SGX-LAPD [91] reduces the precision of page table attacks on code pages
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by requesting large pages and validating their size within the application. These approaches

became a basis for our method of self-monitoring described in Chapter 5.

Concurrent Work. Concurrent to the work described in Chapter 5, an alternative approach

to establishing thread co-location was proposed in HyperRace [62]. It used data races on a

shared variable as a way of distinguishing L1 from LLC sharing. Accordingly, it does not

require a timer thread.

TAKEAWAY: Few methods exist to detect when a malicious OS neglects a request for a

system-layer microarchitectural defence; those that do exist, targeted only a narrow set of

page-table attacks (except for HyperRace, developed concurrently).

2.6.3 Application Layer

The goal of application-layer testing tools is to find side-channel information leakage. A

program leaks information via side-channels when its traces depend on the data it processes,

thus exposing the data to the attacker. The testing tools focus on finding the places in the

program that trigger such leakage, and on quantifying the amount of information exposed.

Testing if software is constant time. The earliest line of work in this field is testing whether

a given application (usually, a cryptographic library) is constant-time. Langley [151] used

dynamic taint analysis with Valgrind to find secret-dependent branches and memory accesses.

Zankl et al. [278] used Intel PIN tool to detect control-flow leaks in RSA implementations.

These approaches only answer if there is a leakage, but not where it is and how much it

leaks.

Quantifying side-channel leakage. Concurrently, another line of research attempted to

quantify how much information a given program leaks. They statically calculate the upper

bound on the amount of information a program leaks on a given hardware and on a given

threat model. Köpf et al. [145] built a generic formal model for it and automated the

quantification [33]. They later [146] developed a model for cache side channels, and

Doychev et al. [78, 79] implemented a tool that quantifies the upper bound for programs

based on this model. Because of the analysis complexity, the tool is applicable mainly to

small software, but it laid a theoretical foundation for later work.

Finding side-channel leakage. More recently, several papers attempted to find the specific

location of side-channel leakage in software. Irazoqui et al. [132] applied dynamic taint

analysis to find the parts of software that expose information via instruction or data caches.

Chattopadhyay et al. [61] targeted the same goal, but with symbolic execution. Wang et

al. [253] combined taint analysis and symbolic execution to improve precision. Brotzman et
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al. [55] implemented a symbolic model of cache evictions rather than cache accesses, thus

further improving precision. These methods do not consider speculative execution.

Fuzzing has also been applied to detecting side channels. MicroWalk [264] and

DATA [261] are fuzzers that instrument the target binary with PIN and collect the expected

side channel traces, thus revealing side-channel leakage. CT-Fuzz [119] and DiffFuzz [183]

detect information leaks by empirically measuring cache traces. Wang et al. [255] finds

control-flow side channels by collecting control flow traces with Intel PT [133]. These

fuzzers also do not take speculative execution into account.

Finding speculative leakage. A number of tools have been proposed for detecting and

mitigating speculative information leaks in software, and many of them relied on symbolic

execution. Spectector [112], Pitchfork [60], SpecuSym [115], and KLEESpectre [251]

used it to detect Spectre-type vulnerabilities. Although they often provide strong security

guarantees, an inherent problem of symbolic execution is combinatorial explosion, further

exacerbated by nested speculation.

Static analysis is often used to detect the Spectre-type vulnerabilities and avoid the high

performance cost of full hardening. Tools like Spectre 1 Scanner [66], MSVC Spectre 1

pass [173], and Respectre [126] analyze the binary and search for Spectre gadgets. Although

mature tools like Respectre can detect many vulnerabilities, the reliance on predefined

patterns may leave an unexpected variant to stay unnoticed.

oo7 [252] relies on static taint analysis to detect the memory accesses that are dependent

on the program input. (This is the same criteria that we use to identify uncontrolled

vulnerabilities in Chapter 4.) This approach is more universal than the pattern-matching

techniques, but it is affected by the inherent problems of static taint analysis: A limited

analysis depth may cause false positives and overtainting causes false negatives.

TAKEAWAY: The existing tools for detecting speculative vulnerabilities exercise only

the extreme points in the tradeoff between precision and performance: they offer either poor

performance with high security, or poor security with high performance.

We reviewed the landscape of microarchitectural vulnerabilities as well as methods to

prevent and detect them. We also identified several issues in the existing techniques. The

next chapters describe methods for solving these issues.
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Chapter 3

Revizor: Fuzzing for Leaks in Black-box CPUs

In this chapter, our goal is to develop a method to automatically check if CPU operations

can leave unexpected and observable microarchitectural traces.

Even though multiple tools for it already exist (§2.6.1), they all require introspection

into the CPU, making them applicable only to design-time (white-box) testing. It means,

only the CPU vendors can test the microarchitectural security, but not their customers.

We argue, it is insufficient: When customers cannot test the microarchitecture, its security

turns into a vague and obscure property. This, in turn, skews the vendors’ incentives towards

more tangible CPU properties. For example, it is routine to benchmark and compare the

performance of CPUs by different vendors, but there is no established way to compare their

microarchitectural security. Due to this asymmetry, the market rewards vendors that increase

performance at the expense of security [38], which ultimately brings on the vulnerabilities

like Spectre [142] and Meltdown [158].

This market failure calls for a change: Similar to how government agencies test the

safety of commercial vehicles, third parties should be able to test commercial CPUs. Indeed,

security researchers have already started the process by analyzing vendors’ documentation,

patents, and by manually probing the microarchitecture. It prompted discoveries of even

more vulnerabilities such as Foreshadow [56], MDS [247, 57, 212], and others.

The testing process, despite these achievements, remains predominantly manual, which

restricts its scope to public information and limited human capabilities. The few automated

tools that do exist, test for variants of only known vulnerabilities (see §2.6.1). Thus, it

remains an open challenge to find a systematic approach to make microarchitectural security

tangible.
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3.1 System Overview

We introduce Model-based Relational Fuzzing (MRF), a method to automatically test

microarchitectural security properties of black-box CPUs. Informally, MRF confronts our

expectations about a microarchitecture with the reality of an actual CPU.

To describe the expectations, MRF relies on speculation contracts [113]. A contract

is a specification that enhances an ISA by describing which CPU operations an attacker

can observe through a side channel, and which operations can speculatively change the

control/data flow. For example, a contract may state: an attacker can observe addresses of

memory stores and loads, and the CPU may mispredict the targets of conditional jumps. If

the CPU under test permits the attacker to observe more than that (e.g., addresses of loads

after mispredicted indirect jumps), the CPU violates the contract, indicating a potential

microarchitectural vulnerability.

The goal of MRF, phrased in terms of speculation contracts, is to detect contract viola-

tions automatically. To this end, it searches for a contract counterexample, an instruction

sequence and a pair of inputs that are supposed to be indistinguishable to the attacker

according to the contract, but produce two different sequences of side-channel observations

(traces) on the CPU under test. Such a counterexample would indicate that the CPU behaves

differently from what we expect, and it exposes more information than the contract permits.

Our approach is to search for counterexamples by fuzzing: Generate random instructions

sequences (test cases) together with random inputs to them, and check if any of them

constitutes a counterexample. To check this, we compare the side-channel traces observed

while executing the test case on the CPU (hardware traces) with the traces we expect to

observe based on the contract (contract traces). To produce hardware traces, we execute

the test case with its inputs on the CPU while mounting a side-channel attack. To produce

contract traces, we execute them on a functional model of the CPU (e.g., an emulator) that

implements the contract. We modify the model to explore both normal and speculative exe-

cution paths (correct and mispredicted), and to record the contract-prescribed observations

during program execution.

Tool. We implement MRF as a fuzzing framework Revizor1. It overcomes several obstacles

stemming from the difficulty of black-box fuzzing of commercial CPUs.

The main obstacle is the sheer size of the search space: An ISA may include hundreds of

instructions, dozens of registers, and permit large memory spaces. This creates an intractable

number of possibilities for both test cases and for inputs to them. Moreover, there are no

1Revizor is a name of a classical play by Nikolai Gogol about a government inspector arriving into a
corrupt town for an incognito investigation.
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means to measure coverage for black-box CPUs, which precludes a guided search.

Nevertheless, and maybe surprisingly, we discovered that finding counterexamples is

possible; under certain restrictions, it is even fast:

• For test cases we found that fully random generation (based on a restricted subset

of instructions) is sufficient to uncover violations. The reason is that finding a

counterexample is not akin to finding a needle in a haystack: Microarchitectural

vulnerabilities have numerous counterexamples, and it is sufficient to generate only

one of them to surface a violation. For example, any program with a conditional branch

followed by an input-dependent memory access can surface a violation representing

Spectre V1.

• For inputs, however, we had to apply several measures to reduce the search space.

Revizor uses a subset of registers, confines all memory accesses to a narrow memory

range, and bounds the entropy of inputs. These measures could prevent us from

detecting “deep” violations, but they considerably improve the speed of detection:

Revizor surfaces many known vulnerabilities in under two hours of fuzzing on a

consumer desktop PC. As such, it trades the maximum reachable hardware coverage

for improved input coverage and faster detection.

The second obstacle is measuring the effectiveness of a fuzzing campaign. When the

fuzzer times out without detecting a violation, the user would want to know whether the

campaign was deep or if it tested only a narrow set of features. Typically, the answer to it is

coverage, but it is not available for black-box CPUs. We propose to use pattern coverage

instead, a metric that shows the diversity of test cases and inputs in a campaign. Pattern

coverage measures the number of tested instruction patterns that are likely to cause a contract

violation. We also incorporate this metric for simple feedback-driven test case generation.

The third obstacle is the complexity and unpredictability of the microarchitecture in

modern high-performance CPUs, which makes it challenging to obtain reliable hardware

traces. To overcome this obstacle, Revizor creates a low-noise measurement environment by

executing test cases in complete isolation, and it relies on performance counters instead of

timing.

In addition, Revizor provides several practical features such as test case minimization,

multiple measurement modes, and provides a configuration interface for fuzzing. It currently

supports only Intel x86 CPUs. We selected them as the first target because they represent

the worst case for our method: a superscalar CPU with several unpatched microarchitectural

vulnerabilities, no detailed descriptions of speculation mechanisms, and no direct control

over the microarchitectural state.
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3.2 Background: Speculation Contracts

In this section, we recall speculation contracts, a generic framework for characterizing

side-channels in speculative execution. However, the original formalization of contracts in

terms of an operational semantics [113] is not effective for our purposes. This is why we

first give an abstract account of the core idea behind contracts before we present a novel

notation for expressing contracts for real-world CPUs with complex ISAs.

3.2.1 Side-channel Leakage

We consider a victim program Prog that executes on the same CPU as an adversary pro-

gram. We assume both programs are logically isolated, but the adversary can use side-

channels [240, 276, 188] to observe the shared microarchitectural state, and thus learn

about Prog’s computation. We call a sequence of all side-channel observations made by the

attacker during a program execution a hardware trace.

We represent the hardware trace corresponding to a specific adversary as a deterministic

function

HTrace = Attack(Prog,Data,Ctx)

that takes as input three parameters: (1) the victim’s program Prog; (2) the input Data

processed by the victim’s program (i.e., the architectural state including registers and main

memory); (3) the microarchitectural context Ctx in which it executes (i.e., the contents of

internal CPU buffers and caches).

Which observations are exposed in a hardware trace depends on the threat model. That

is, different CPUs and different adversary capabilities correspond to different functions

Attack.

Example: If the threat model includes a shared L1 data cache, HTrace is composed of the cache

set indexes used by Prog’s loads and stores. If the threat model includes a shared LLC cache,

HTrace will additionally contain Prog’s control flow transitions such as conditional branch targets.

A program leaks information via side-channels when its hardware traces depend on the

inputs: We assume the attacker knows Prog and can manipulate Ctx, hence any change in the

hardware trace implies the input Data has changed, which effectively exposes information

to the attacker. For capturing such dependencies, we compare hardware traces of program

executions with different inputs.
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Definition 1: A program Prog leaks information on a given CPU when there is an input

pair (Data,Data′) and a microarchitectural state Ctx such that:

Attack(Prog,Data,Ctx) ̸=Attack(Prog,Data′,Ctx)

Comparing traces as in Definition 1 is standard for reasoning about side-channel leakage

(more generally: information flow properties [65]). Intuitively, this is because the informa-

tion carried by a trace depends on the number of alternative traces one could observe. For

example, if there is only one possible trace, its observation does not carry an information; if

there are n ≥ 2 possible traces, its observation can carry up to log2 n bits of information.

3.2.2 Characterizing Leakage via Contracts

A speculation contract [113] (contract, for short) is a specification of the information leakage

of a CPU under a given threat model. A contract specifies the information exposed by CPU

instructions via side channels, both during speculative and non-speculative execution. A key

feature of contracts is that they can be expressed in terms of ISA instructions. That is, they

do not rely on a specific microarchitecture and can hence be applied to many CPUs, even

from different vendors.

We model a contract as a deterministic function Contract that maps the program Prog

and its input Data to the trace CTrace we expect to observe, and which we call a contract

trace:

CTrace =Contract(Prog,Data)

An alternative interpretation of contracts is that all information that is not exposed via

CTrace is meant to be kept secret during program execution.

Example: Consider a contract that specifies that all instructions are executed in order, and

instructions accessing memory disclose their accessed addresses to the attacker. We call

this contract MEM-SEQ, see §3.2.3 for a detailed description. When executing the program

in Figure 3.1 with inputs data={x=10,y=20}, the MEM-SEQ contract trace is ctrace=[0x110].

A program can also leak information during speculative execution. For example, a

branch misprediction may cause a data-dependent memory access that would otherwise be

impossible. Speculative leakage was exploited in Spectre attacks [142, 57, 158, 247] and

can be captured using contracts.
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1 z = array1[x]; // base of array1 is 0x100
2 if (y < 10)
3 z = array2[y]; // base of array2 is 0x200

Figure 3.1: Example of Spectre V1

Example: Consider a contract MEM-COND that is similar to MEM-SEQ but that additionally

discloses addresses of the memory accesses that happen after a possible branch misprediction.

When executing the program in Figure 3.1 with inputs data={x=10,y=20}, the MEM-COND

contract trace is ctrace=[0x110,0x120], accounting for the fact that the load at line 3 can be

speculatively executed.

A CPU complies [113] with a contract when its hardware traces (collected on the CPU)

leak at most as much information to the attacker as the contract traces. Formally, we require

that whenever two executions of a program have the same contract trace, they must produce

the same hardware trace.

Definition 2: A CPU complies with a Contract if, for all programs Prog, all input pairs

(Data,Data′), and all initial microarchitectural states Ctx:

Contract(Prog,Data)=Contract(Prog,Data′)

=⇒ Attack(Prog,Data,Ctx)=Attack(Prog,Data′,Ctx)

Note that Definition 2 is equivalent to the requirement that any leak according to Defini-

tion 1 is visible at the ISA level in terms of mismatching contract traces.

Conversely, a CPU violates a contract if there is a program Prog and two inputs

Data,Data′ that agree on their contract traces but disagree on the hardware traces. We call

the triple (Prog,Data,Data′) a contract counterexample: it witnesses that an adversary can

learn more information from hardware traces than what the contract specifies. A coun-

terexample is a potential microarchitectural vulnerability that was not accounted for by the

contract.

Example: A CPU with branch prediction will violate MEM-SEQ. Its counterexample is the program

on Figure 3.1 together with inputs data1={x=10,y=20}, data2={x=10,y=30}: The contract trace

for both inputs is ctrace=[0x110], but the hardware traces will diverge (htrace1=[0x110,0x220]

and htrace2=[0x110,0x230]) if the CPU mispredicts the branch (line 2) and speculatively ac-

cesses memory (line 3). At the same time, this is not a counterexample to MEM-COND, because

the contract traces for both inputs already expose the memory accesses on mispredicted paths.
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1 observation_clause: MEM
2 - instructions: MemReads
3 format: READ (ADDR), DEST
4 observation: expose(ADDR)
5 - instructions: MemWrites
6 format: WRITE SRC, (ADDR)
7 observation: expose(ADDR)
8 execution_clause: COND
9 - instructions: CondBranches

10 format: COND_BR CONDITION (DEST)
11 execution: {
12 if NOT CONDITION then
13 IP := IP + DEST
14 fi }

Figure 3.2: MEM-COND described in pseudocode.

3.2.3 Describing Contracts

In [113] contracts are specified in terms of an operational semantics for a toy assembly

language. For scaling contracts to complex ISAs such as x86, we take the following steps:

First, we specify contracts not for a complete ISA (as in the original paper), but for a

subsets of it. That is, we view contracts as partial specifications of leakage that make no

assertion about the instructions not covered. This permits us to test complex CPUs through

incremental expansion of the covered ISA subset.

Second, we specify contracts in terms of the instruction classes, rather than in terms of

individual instructions.

Finally, we describe contracts in a modular fashion using two building blocks: observa-

tion clause, which describes what is exposed to an adversary, and execution clause, which

expresses how to handle instructions that trigger speculation.

Example: Figure 3.2 shows MEM-COND, written in our custom (informal) notation. The ob-

servation clause (lines 1–7), specifies observations for two instruction classes: memory reads

(lines 2–4) and memory writes (lines 5–7). The format field describes the format common

across all instructions in the class: e.g., line 3 specifies that the first operand of all instructions in

MemReads is the memory address of the read, and the second operand is the read destination.

The observation field specifies the information exposed by the instructions: Line 4 specifies

that the addresses of all reads are exposed to the attacker (i.e., added to the contract trace).

The execution clause (lines 8–14) describes the speculation algorithm. It states that conditional

branches (line 9) mispredict their targets as described by the execution field (11–14): If the

condition does not hold, write the jump target (DEST) to the instruction pointer (IP).
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3.2.4 Concrete Contracts

We will consider a wide range of contracts that are constructed from several common

observation and execution clauses. For example, the MEM-SEQ contract is a combination

of the MEM observation clause and SEQ execution clause. We informally describe the

individual clauses below; see Appendix B for detailed specifications.

Observation clauses:

• MEM (Memory Address): exposes the addresses of loads and stores. Represents a

data cache side-channel attack.

• CT (Constant-Time): MEM, but also exposes the program counter. Represents data

and instruction cache. Based on a typical constant-time programming threat model.

• CTR: CT, but additionally exposes register values. Represents a cache attack in an

execution environment that does not clear registers when switching security domains.

• ARCH (Architectural Observer): CTR, but additionally exposes the values loaded

from memory. Represents a same-address-space attack, such as the threat model used

in STT [277]. In this contract, only transiently loaded data is considered secret.

Execution clauses:

• SEQ: Sequential (i.e., in-order) execution.

• COND: Conditional jump misprediction. All jumps speculatively take a wrong target.

• BPAS: Speculative store bypass. All stores are speculatively skipped.

• COND-BPAS: Combination of COND and BPAS.

3.3 Background: Fuzzing

Fuzzing is a technique for discovering bugs and vulnerabilities by exposing the fuzzing

target to diverse conditions and inputs. A fuzzing tool (fuzzer) automatically generates

randomized inputs either from scratch, based on input grammars, or by mutating an existing

input corpus. The fuzzer then feeds these inputs to the application and monitors its behavior:

If an abnormal behavior (e.g., a crash) is observed, the fuzzer reports a bug. Fuzzing is

typically applied to testing software, but in this chapter, we transfer it to hardware.

One important parameter of fuzzing is its coverage, which indicates how extensively the

target was tested. Coverage mainly depends on how effectively a fuzzer can generate inputs

that trigger new behaviour in the fuzzing target.
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1 def fuzzing_round():
2 test_case = generate_test_case()
3 inputs = generate_inputs(test_case)
4 ctraces = collect_traces_on_model(test_case, inputs)
5 htraces = collect_traces_on_CPU(test_case, inputs)
6 if has_violations(ctraces, htraces):
7 report_violation()
8
9 def has_violations(ctraces, htraces):

10 classes = group_by_ctrace(ctraces, htraces)
11 for class in classes:
12 if not all_htraces_equal(class.htraces):
13 return True
14 return False

Figure 3.3: Model-based Relational Fuzzing Algorithm.

3.4 Method: Model-based Relational Fuzzing

This section presents Model-based Relational Fuzzing (MRF), a method for identifying

unexpected information leaks in black-box CPUs. MRF searches for a program and a pair

of inputs that produce identical contract traces but different hardware traces. Such coun-

terexamples witness that the observed leakage on the CPU diverges from our expectations.

3.4.1 Core Concepts

As the acronym suggests, MRF builds on three main ideas, which we describe next. See Fig-

ure 3.3 for accompanying pseudocode.

Fuzzing. We use random generation to create candidate counterexamples: We generate

small random programs (test cases) and random inputs to them (lines 2–3).

Comparing against Model. We collect contract traces corresponding to the test cases and

the inputs (line 4) on a CPU emulator. For this, we modify the emulator to implement

speculative execution as described in the contract’s execution clause, and to record the traces

corresponding to its observation clause (see §3.2.4). This contract implementation serves as

the model of the contract-prescribed leaks.

We also collect hardware traces corresponding to the test cases and the inputs under a

given threat model (line 5). For this, we mount a side-channel attack on the CPU under test

during the execution of the test cases. For example, we may run a Prime+Probe attack and

record which cache sets are touched by the test case.
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Relational Analysis. We process the contract and hardware traces to identify potential

violations of Definition 2 (lines 9–14). This requires relational reasoning, namely the

comparison of contract (and hardware) traces for different inputs: (1) We partition inputs

into groups, which we call input classes2, such that all inputs within a class have the same

contract trace (line 10). (2) For each of the classes, we check if all inputs within a class

have the same hardware trace (lines 11–14). If the check fails, we found a contract violation

according to Definition 2.

3.4.2 Practical Challenges

There are several challenges in applying MRF to commercial CPUs:

CH1: Search Complexity. The main challenge for MRF is the overwhelming number of

possible test cases and inputs to them, making exhaustive search impossible.

CH2: Input Effectiveness. The relational analysis algorithm (Figure 3.3) groups inputs

into classes based on the contract traces. For a class to be useful in the analysis, it needs to

contain at least two inputs (we call them effective classes). The ineffective classes constitute

a wasted effort as they cannot, by definition, reveal a contract violation. This becomes a

challenge when the inputs are generated randomly, as the probability that multiple random

inputs will produce the same contract trace (i.e., form an effective class) is low.

CH3: Measurement Noise. The measurement of hardware traces is influenced by other

processes running on the system, by hardware effects (e.g., prefetching), and by the inherent

imprecision of the measurements (e.g., timing measurements). This may lead to a divergence

between the hardware traces that would otherwise be equal and, accordingly, to a false

contract violation (false positive).

CH4: Non-deterministic Microarchitectural State. There is no direct way of setting a

black-box CPU to a desired microarchitectural state. Thus, the effects of program execution

(e.g., whether speculation is triggered) are partially non-deterministic. It may lead to the

divergence among hardware traces when some of the measurements experienced speculation

while others did not (false positive).

False compliance (false negative) is also possible if the speculation is never triggered

during the measurement, although we expect it unlikely when fuzzing for an extended time.

CH5: Cross-training. The previous issue is especially prominent when testing inputs in

a sequence: The earlier inputs may prime the microarchitectural state (e.g., train branch

predictors), and the latter inputs will not experience speculation, leading to a false positive.

2Input classes correspond to the equivalence classes of equality on contract traces, hence the name.
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Figure 3.4: Components of Revizor.

3.5 Design and Implementation

We built Revizor, a fuzzing framework that implements MRF for testing a CPU against a

contract, as described in §3.4.

Figure 3.4 shows Revizor’s architecture and main components: Test Case Generator

and Input Generator are responsible for creating test cases and generating inputs to them,

respectively. Model executes them on an emulator according to the contract and collects

contract traces. Executor executes the test cases on the target CPU, records observations

via a side-channel attack, and produces hardware traces. Analyser compares the traces and

searches for violations. If found, the contract counterexample is reported to the user.

We describe the individual components of Revizor in the remainder of this section. For

illustration purposes, we will build on the following running example.

Example: Consider a user who seeks to find whether a CPU leaks information during speculation

via L1D cache. The appropriate contract for compliance testing is MEM-SEQ, since it prohibits

any information to be exposed during the speculation, so its violation indicates CPU leaks under

this threat model. The user configures Revizor to apply a Prime+Probe attack mechanism on

L1D cache while collecting hardware traces. To expedite testing the user starts with a subset

of x86: arithmetic operations and conditional branches. For the initial quick test, they select a

configuration with small test cases: 8 instructions long, with at most 4 memory accesses, and 3

basic blocks. The user encodes all of this information into a configuration file passed to Revizor

and starts the fuzzer. The following examples illustrate different aspects of the fuzzing process.
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3.5.1 Test Case Generator

In Revizor, test case generation is random but guided by a user configuration. The configura-

tion specifies, for example, the total number of instructions, functions, and basic blocks per

function, as well as the subset of the ISA from which test cases are built. The description of

instructions comes from the structured ISA specification shipped with nanoBench [13].

The generation algorithm is a series of passes, similar to a typical compiler:

1. Generate a random Directed Acyclic Graph (DAG), following the user configuration;

2. Add jump instructions (terminators) at the end of each node (basic block) to ensure

control flow matches the DAG;

3. Populate the basic blocks with random instructions from the selected ISA subset;

4. Instrument instructions to avoid faults3:

(a) mask memory addresses to confine them within a dedicated memory region

(sandbox);

(b) modify division operands to avoid division by zero;

(c) truncate bit test offsets;

5. Compile the test case into a binary.

We opted for DAG-based generation in contrast to entirely random instruction sequences

because it allows us to contain the control flow of test cases.

Example: Figure 3.5 shows an example of a test case that is produced in multiple steps: 1⃝
The generator created three nodes (recall, the user requested 3 basic blocks). 2⃝ Connected

the nodes to form a DAG. As BASE+MEM+CB includes conditional jumps, the generator randomly

connected each node with either one or two other nodes by placing the corresponding jump at

the node’s end (lines 6–7, 14). 3⃝ Added random instructions with random arguments to each

basic block until the requested size—eight instructions—was reached (lines 2, 5, 11–13, 16, 19,

20). The instructions were selected from the user-requested ISA subset. 4⃝ Masked memory

accesses to ensure they stay within a sandbox, and aligned them to the sandbox base in R14

(lines 3–4, 9–10, 17–18). The generator also added MFENCE at the beginning and the end of the

test case to contain speculative execution. 5⃝ Compiled the resulting test case.

Practical challenges. To improve effectiveness (CH2), all generated instruction sequences

employ only four CPU registers, thus increasing the likelihood of grouping random inputs.

For the same reason, all memory accesses are aligned to a cache line size (64B), thus

3More specifically, we avoid those faults for which the executor does not have a handler. Otherwise, the
control could be transferred to the OS, which would corrupt the measurements and might crash the machine.
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1 MFENCE
2 OR RAX, 468722461
3 AND RAX, 0b111111000000
4 ADD RAX, R14
5 LOCK SUB byte ptr [RAX], 35
6 JNS .bb1
7 JMP .bb2
8 .bb1:
9 AND RCX, 0b111111000000

10 ADD RCX, R14
11 REX SUB byte ptr [RCX], AL
12 CMOVNBE EBX, EBX
13 OR DX, 30415
14 JMP .bb2
15 .bb2:
16 AND RBX, 1276527841
17 AND RDX, 0b111111000000
18 ADD RDX, R14
19 CMOVBE RCX, qword ptr [RDX]
20 CMP BX, AX
21 MFENCE

Figure 3.5: Randomly generated test case

reducing the range of accessible memory addresses. To still test different cache offsets, the

addresses are offset by a random value between 0 and 64 (cache line boundary), such that

the offset is the same for all accesses within a test case but different across test cases.

3.5.2 Input Generator

An input is a set of values to initialize the architectural state, which includes registers used

by the test case (including FLAGS) and memory (one or two pages). The input generator

produces the values randomly, with a 32-bit PRNG.

Practical challenges. To increase the input effectiveness (CH2), the generator can optionally

reduce the entropy of inputs by masking some of the output bits.

3.5.3 Executor

The executor’s task is to collect hardware traces for test cases and inputs executed on a real

CPU. It involves the following steps:

1. Load the test case into a dedicated region of memory,

2. Set memory and registers according to the inputs,

3. Prepare a side-channel attack (e.g., prime cache lines),
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4. (Optional) Prime the microarchitectural state in an attempt to reset it to a known state,

5. Invoke the test case,

6. Measure the microarchitectural changes with a side-channel attack, thus producing a

hardware trace.

The executor repeats the algorithm for each test case, and the measurement (steps 2–6) for

all inputs, thus collecting a hardware trace for each test case-input pair.

Our executor implementation supports several attack modes, each corresponding to a

different threat model:

• In Prime+Probe [188], Flush+Reload [110], and Evict+Reload [111] modes, the

executor uses the corresponding attack on L1D cache and avoids faults during mea-

surements. These modes correspond to an attacker that passively observes the victim.

• In *+Assist mode, the executor extends each of the modes above to include microcode

assists. To this end, the executor clears the “Accessed” page table bit for one of the

pages accessible by the test cases such that the first store or load to this page triggers

an assist. This mode corresponds to an attacker that actively manipulates the execution

environment.

Example: When the executor receives the test case (Figure 3.5), it loads the binary, and initializes

memory and registers. Next, it mounts a Prime+Probe attack (as specified in the configuration): it

evicts the cache lines that map to the test case memory, executes the test case, and then reads

the eviction set while monitoring cache misses. Each miss exposes a memory access.

The attack produces a hardware trace consisting of a sequence of bits, each representing

whether a cache set has been touched by a memory access of the test case. The following is an

example trace (representing the first 32 cache sets) that shows memory accesses to cache sets

5, 14, and 32: 00001000000001000000000000000001

Practical challenges. The executor eliminates four sources of inconsistency as follows:

1. Eliminating side-channel noise (CH3). Instead of relying on timing, the executor

detects evictions with performance counters by comparing the L1D miss counter before and

after probing a cache line. Performance counters give more stable results than timing.

2. Eliminating external software noise (CH3). We run the executor as a kernel module

(based on nanoBench [13]). A test is executed on a single core, with hyperthreading,

prefetching, and interrupts disabled. The executor also monitors System Management

Interrupts (SMI) [130] to discard those measurements polluted by an SMI.

3. Reducing nondeterminism (CH4). As we cannot fully reset the microarchitectural

state before each execution, we perform each measurement multiple times (50 in our
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experiments) after several rounds of warm-up. The traces that appeared only once (i.e.,

include unique memory accesses) are discarded as they are likely caused by the noise. The

remaining traces are merged—the final hardware trace is a union of all traces collected by

repeatedly executing the same test case with the same input.

4. Eliminating cross-training effects (CH5). Since the executor collects traces for

different inputs in a sequence, one input might affect the trace of the others. In this case, the

difference in traces is an artifact of the difference in the microarchitectural state.

We filter such cases as follows. Consider two inputs Data1 and Data2 that produced

mismatching traces HTrace1 and HTrace2. These inputs were executed in the microarchi-

tectural contexts Ctx1 and Ctx2, respectively:

Attack(Prog,Data1,Ctx1) ̸= Attack(Prog,Data2,Ctx2)

To verify that the divergence was caused by the information leakage and not by the difference

in the microarchitectural context, we test Data1 with the context Ctx2 and vice versa. That

is, we test if the following holds:

Attack(Prog,Data1,Ctx2) = Attack(Prog,Data2,Ctx2)

∧ Attack(Prog,Data2,Ctx1) = Attack(Prog,Data2,Ctx1)

If both hold, this is a false positive; otherwise, it is a violation.

As we cannot directly control black-box microarchitecture, we set Ctx1 by executing the

sequence of inputs that preceded the input Data1. We call this process priming.

Example: Consider two inputs from the same input class that produced different traces. Within

the measurements sequence, the first input was at position 100 (i100) and the second–200

(i200). For priming, the executor creates input sequences (i1 . . . i99, i200, i101 . . . i199, i200) and

(i1 . . . i99, i100, i101 . . . i199, i100) and re-measures the traces. The executor will consider it a false

positive if i100 at position 200 produces the same trace as i200 at position 200, and vise versa.

Ideally, priming should be done for every pair of inputs, but it would slow down the

fuzzing dramatically. Therefore, we apply priming only to the inputs that are suspected to

show information leakage, as we explain in §3.5.5. If the number of suspects is large, we

prime them in batches.

3.5.4 Model

Model collects contract traces for test cases and inputs by executing them on an ISA-level

emulator modified according to the target contract. The emulator speculatively executes

instructions based on the contract’s execution clause and collects observations based on the
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observation clause. The complete contract trace is a list of all such observations collected

while executing a test case with a single input. In our implementation, we use Unicorn [196],

a customizable x86 emulator, which we manually modified to implement the clauses listed

in §3.2.3.

Observation Clauses. Every time the emulator executes an instruction listed in the obser-

vation clause, it records its exposed information into the trace. This happens during both

normal and speculative execution, unless the contract explicitly states otherwise.

Example: The contract (MEM-SEQ) exposes addresses of reads and writes. Thus, when execut-

ing lines 5, 11, 19 (Figure 3.5), the model records the accessed addresses. Suppose, the branch

at line 6 was not taken; the store at line 5 accessed the address 0xaaaa100; and the load at

line 19 accessed 0xaaaa340 (here, 0xaaaa000 is the sandbox base, 0x100 and 0x340 are offsets

within the sandbox). Then, the resulting contract trace is ctrace=[0xaaaa100, 0xaaaa340].

Execution Clauses. Executions clauses are implemented as follows: The emulator takes a

checkpoint of the architectural state when it encounters an instruction listed in the clause

(e.g., a conditional branch in MEM-COND). Then, it executes a misprediction as described

by the instruction’s execution filed (e.g., lines 14–16 in Figure 3.2). It continues speculative

execution until the end of the test case, until the maximum possible speculation window

is reached, or until the first serializing instruction. After that, the model rolls back to the

checkpoint and continues normal execution.

Since several mispredictions might happen together, the model supports nested spec-

ulation. To this end, it maintains a stack of checkpoints: at a speculatable instruction a

checkpoint is pushed on the stack and, when the simulation is over, the model rolls back to

the topmost checkpoint on the stack.

This method explores all possible speculative behaviors permitted by the contract. Such

a worst-case simulation ensures that we reliably collect all contract traces representing

legitimate executions of the given test case. Practically, however, nesting greatly reduces

the fuzzing speed. This is why we disable nesting by default but, upon a violation, Revizor

re-enables it and re-runs the experiment.

Practical challenges. Performing exhaustive exploration of all speculative behaviors per-

mitted by the contract may require emulating a very large number of paths, which may

lead to a combinatorial explosion. To avoid it, we restrict the test case generator to create

code sequences according to certain rules: restrict the number of memory locations, branch

targets, and the total number of instructions in the generated test cases.
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3.5.5 Analyser

The analyser detects unexpected leakage by comparing hardware traces that belong to the

same input class. It implements an algorithm similar to has_violations in Figure 3.3. In

practice, however, the cross-training effect (CH5) may cause a mismatch. Even though

microarchitectural priming (§3.5.3) can prevent false positives in these cases, it is a slow

operation, and the effect is common enough to turn it into a major performance bottleneck.

Therefore, we relax the requirement for contract compliance by requiring only a subset

relation between hardware traces, not a full match: One hardware trace is a subset of another

trace if every observation included in the first trace is also included in the second trace.

The intuition behind this heuristic is as follows. If the difference in traces is caused by

speculation not being triggered in a measurement, it will lead to fewer instructions being

executed and, accordingly, to fewer observations in the trace, yet the observations in the

sub-trace would still match those in the full trace. On the other hand, if the difference is

caused by a genuine information leakage (e.g., secret-dependent memory access), the traces

would contain about the same number of observations, but their values would differ.

Example: Revizor executed the test case with two inputs, which produced the same contract

trace ctrace=[0xaaaa100,0xaaaa340]. It contains two addresses because the branch (line 6)

was not taken. The same inputs produced two different hardware traces because the branch was

mispredicted:

htrace1=00001010000001000000000000000000

htrace2=00001001000001000000000000000000

The analyser detects this mismatch: Since inputs 2 and 3 agreed on their contract traces but

produced different hardware traces, Revizor reports them as a violation.

3.5.6 Postprocessor

Finally, when a true violation is detected, the test case is (optionally) passed to the postpro-

cessor. It minimizes the test case in three stages.

First, it searches for a minimal input sequence. Since we cannot directly control the

microarchitectural state, we need not only the pair of inputs that produce mismatching

hardware traces, but also several preceding inputs to prime the microarchitectural state.

Thus, the postprocessor gradually removes inputs until it finds a minimum sequence that

still reproduces the violation.

Second, the postprocessor creates a minimized test case: It removes one instruction at a

time and checks if the violation persists.
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1 AND RAX, 0b111111000000
2 LFENCE
3 ADD RAX, R14
4 LFENCE
5 LOCK SUB byte ptr [RAX], 35
6 JNS .bb1
7 LFENCE
8 JMP .bb2
9 .bb1:

10 AND RCX, 0b111111000000
11 ADD RCX, R14
12 REX SUB byte ptr [RCX], AL
13 LFENCE

Figure 3.6: Minimized test case.

Finally, it minimizes the speculation that led to the violation: It gradually adds LFENCEs,

starting from the last instruction, while checking for violations. As a result, the region of the

test case without LFENCEs is the region where the speculative leakage happens.

Example: Figure 3.6 shows a minimized version of Figure 3.5. The highlighted region without

LFENCEs is the speculative leakage: The load at line 5 delays the next conditional jump, thus

creating a sufficiently large speculation window. The jump at line 6 speculatively jumps into line 9.

This causes a speculative execution of SUB (line 12), which has a memory operand and thus

leaks the value of RCX.

3.6 Coverage

We fuzz CPUs in a black-box fashion, which is why we do not attempt to measure coverage

of implementation-specific features. Instead, we focus on measuring a contract’s input

coverage. Full input coverage means to consider all possible programs Prog, all possible

inputs Data, and all possible contexts Ctx, see Definition 2.

As this space is dauntingly large, we introduce the notion of pattern coverage, which

captures program patterns and inputs that are likely to surface speculative leaks. This

metric measures the diversity of test cases, but it does not correspond to the coverage of

microarchitectural features.

3.6.1 Pattern Coverage

Pattern coverage captures the number of user-defined instruction sequences of interest (i.e.,

instruction patterns) encountered within a fuzzing campaign. Specifically, we focus on
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1 AND rbx, rax
2 CMP rbx, 0
3 JNE .l1:
4 MOV rax, [rcx]
5 .l1: MOV [rdx], rax

Figure 3.7: Illustration of pattern coverage.

the patterns of data and control dependencies as they cause pipeline hazards (§2.1.3), and

hazards can cause speculation. That is, we expect good pattern coverage to increase the

chances to surface speculative leaks.

As we will see next, covering all patterns is trivial; therefore, we set the goal of fuzzing as

to cover as many pattern combinations as possible. This ensures we have many possibilities

for speculation in a campaign, and also test the interaction between different types of

speculation happening together.

Dependency Patterns. We define dependency patterns in terms of pairs of instructions. We

distinguish between three classes:

• Memory dependency patterns occur when two memory accesses use the same address.

We consider 4 patterns: store-after-store, store-after-load, load-after-store, load-after-

load.

• Register dependency patterns occur when one instruction uses a result of another

instruction. We define 2 patterns: dependency over a general-purpose register, and

over FLAGS.

• Control dependency patterns occur when the first instruction modifies the control flow.

For the instruction sets we consider in this chapter, there are two types of control

dependencies: conditional and unconditional jumps. A larger instruction set may also

include indirect jumps, calls, returns, etc.

Example: Consider the test case on Figure 3.7. Lines 1–2 are a dependency pattern over a

general-purpose register. Lines 2–3 are a dependency over the FLAGS register. Lines 3–4 (and

lines 3 and 5) are conditional control dependencies. Lines 4–5 are a potential store-after-load

pattern.

To facilitate counting occurrences of patterns in a fuzzing campaign, we add the require-

ment that dependency patterns appear as consecutive instructions, which corresponds to the

worst case in terms of creating hazards. We say that a test case with an input matches a

pattern if the pattern occurs as two consecutive instructions in the corresponding instruction

stream.
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Covering Patterns. Simply matching a dependency pattern is not sufficient for surfacing a

contract violation. To find a counterexample to Definition 2, a test case must be executed

with multiple inputs from the same input class, which we call colliding inputs.

Definition 3: A pattern is covered by a test case Prog and a set of inputs S, if the pattern

matches Prog for at least two inputs in S that are in the same input class.

Pattern Combinations. A combination is a multiset of patterns; that is, a set where

each element can occur multiple times. A test case and a pair of inputs covers a pattern

combination if the inputs are colliding and they covers all patterns in the combination (with

the respective number of occurrences).

Implementation. We implement tracking of patterns within the model (§3.5.4). While

executing a test case to collect its contract traces, the model also records the executed

instructions and the addresses of memory accesses. These data are later analysed to find the

patterns in the instruction streams.

3.6.2 Coverage Feedback

We use coverage of pattern combinations as feedback for the test case generator. We apply a

simple fuzzing strategy where we begin with small test cases and increase their size based

on the coverage.

Test Case Size. Our goal is to cover the largest possible number of pattern combinations

while minimizing the number of ineffective inputs. Intuitively, the longer a test case is, the

harder it is to find effective inputs.

To illustrate this under suitable independence assumptions, consider contract traces of

length ℓ consisting of observations from a set of size s, i.e. d = sℓ possible contract traces.

Consider a set S consisting of n−1 inputs. The probability p(n,d) that a new (nth) input

collides with an input in S (i.e., that its contract trace is identical to one of those generated

by inputs in S) is given by

p(n;d) = 1−
(︃

1− 1
d

)︃n

The probability p(n;sℓ) quickly approaches 0 as ℓ grows, which indicates that small test

cases require fewer inputs (assuming random input generator), and are thus faster to test.

Fuzzing Strategy. We start fuzzing with test cases of size n and control flow graphs of at

most m nodes, each tested with k inputs (e.g., 10 instructions, 2 basic blocks, 50 inputs per

test case). We fuzz until we have covered all pattern combinations of size 1 (i.e., all patterns

on their own). Then, we increase the sizes by constant factors (e.g., to 15 instructions, 3 basic
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blocks, 75 inputs), and we continue fuzzing until we have covered all pattern combinations

of size 2 (i.e., all possible pairs of patterns), and so on.

3.7 Evaluation

In this section, we demonstrate Revizor’s ability to efficiently check and expose CPU

violations of speculation contracts by fuzzing two generations of commodity Intel CPUs.

Testbed. We used two machines: The first was Intel Core i7-6700 CPU (Skylake) with

32GB RAM, the second was Intel Core i7-9700 CPU (Coffee Lake) with 16GB RAM. Both

run Linux v5.6.13.

Both Skylake and Coffee Lake have multiple known vulnerabilities. In the context of

our experiments, the relevant vulnerabilities are Spectre V1 and, if the corresponding patch

is disabled, V4. Skylake is also vulnerable to MDS, and Coffee Lake to LVI-Null.

Instruction Sets. All experiments were performed on one of the following subsets of x86:

• BASE: in-register arithmetic, logic and bitwise operations;

• BASE+MEM: BASE, but with memory operands and instructions involving memory ac-

cesses (e.g., PUSH/POP);

• BASE+CB: BASE with conditional jumps4;

• BASE+MEM+CB: BASE with memory accesses and branches.

We excluded all multiplication, bit count, bit test, and shift instructions because Unicorn

sometimes emulates them incorrectly. This totalled in the following number of instructions

and variants (a variant is when the same instructions may have different types of operands):

BASE—336; BASE+MEM—687; BASE+CB—368; BASE+MEM+CB—719.

Configuration. Unless mentioned otherwise, the test case generator was in a feedback-

driven mode (§3.6.2): started from 8 instructions, 2 memory accesses, and at most 2 basic

blocks per test case, and increased based on coverage. The entropy started from 2 bits

and the number of inputs from 50, and also increased with coverage. Executor was in

Prime+Probe mode.

3.7.1 Fuzzing CPUs

In our main experiment, we fuzzed Skylake and Coffee Lake to test the behaviour of different

features in these CPUs. To this end, we fuzzed them against an increasingly wide instruction
4We did not include indirect jumps as they create more complicated control flow, which is harder to confine.

This is not a principled issue, but it will require additional features added to the test case generator.
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CPU Skylake Coffee Lake
Assist Mode off on on
V4 patch off on on on
Instruction Set BASE BASE+MEM BASE+MEM BASE+MEM+CB BASE+MEM BASE+MEM

CT-SEQ ✓ × (V4) ✓ × (V1) × (MDS) × (LVI-Null)
CT-BPAS ✓’ ⊗ (V4-var) ✓’ × (V1) × (MDS) × (LVI-Null)
CT-COND ✓’ × (V4) ✓’ ⊗ (V1-var) × (MDS) × (LVI-Null)
CT-COND-BPAS ✓’ ⊗ (V4-var) ✓’ ⊗ (V1-var) × (MDS) × (LVI-Null)

Table 3.1: Summary of the fuzzing results. ✓ means that no violation was detected, and ✓’
that we did not repeat the experiment as a stronger contract was already satisfied. × means
Revizor detected a contract violation, and ⊗ that the detected violation was unexpected. In
parenthesis are the names of vulnerabilities which are similar to the detected violations.

set and gradually enabled more and more CPU features. We also tested each configuration

with several contracts to “permit” some of the known vulnerabilities (e.g., CT-COND permits

branch prediction). For each combination, we fuzzed for 24 hours or until the first violation.

The results are in Table 3.1.

Baseline (column 2). To establish the baseline, we began with fuzzing the most vulnerable

target—Skylake with V4 patch disabled—against the most narrow instruction set (BASE). As

this instruction set does not cause speculation, Revizor did not detect any violations, even

for the most restrictive contract we have (CT-SEQ); that is, Revizor did not produce false

positives.

Testing Memory Accesses (column 3). To test the handling of the memory accesses

in Skylake, we extended the instruction set with them (BASE+MEM). For CT-SEQ and CT-

COND, Revizor found violations (Appendix C.2), and under inspection they appeared to be

representative of Spectre V4 [101].

For the contracts that permit store bypass (CT-BPAS and CT-COND-BPAS) we did not

expect to find a violation, but Revizor detected one. The violation was an instance of a novel

variant of Spectre V4, described in §3.7.3. (Notably, this violation was rare and Revizor did

not always detect it when we repeated this experiment.)

Testing V4 patch (column 4). To test the effectiveness of the V4 patch, we enabled it and

repeated the same experiment. The patch appeared to be effective as Revizor timed out w/o

violations.

Testing Conditional Branches (column 5). To test the handling of conditional branches

in Skylake, we extended the instruction set with them (BASE+MEM+CB). For CT-SEQ and

CT-COND, Revizor found violations (Appendix C.1) representative of Spectre V1 [142]. For

the contracts that permit branch prediction (CT-COND, CT-COND-BPAS), Revizor found a
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V4 Detection time
Contract patch V1-type V4-type MDS-type LVI-type
CT-SEQ on 4’51” (0.9) 73’25” (0.7) 5’35” (0.7) 7’40” (1.1)
CT-BPAS off 3’48” (0.7) N/A 6’37” (0.8) 3’06” (1.0)
CT-COND on N/A 140’42” (0.6) 7’03” (0.8) 3’22’ (0.3)

Table 3.2: Vulnerability detection time. Each cell is the time from the fuzzing start to
the first detected violation. The numbers are mean values over 10 measurements, and the
coefficients of variation are in parentheses.

novel variant of V1, described in §3.7.3.

Testing Microcode Assists (column 6). To test the handling of microcode assists, we

enabled them during fuzzing. Revizor detected violations (Appendix C.3) representative of

MDS [212, 57].

Testing MDS patch (column 7). Finally, to test the hardware patch against MDS, we

repeated the experiment on Coffee Lake that has this patch. Revizor detected violations on

it as well (Appendix C.4), representative of LVI-Null [244].

Overall, the experiments show that Revizor is stable, can successfully detect known and

novel vulnerabilities of diverse types, and is useful in testing microarchitectural defenses.

3.7.2 Detection Time

Next, we evaluated how much time it takes for Revizor to detect a violation. We fuzzed each

of the violation types detected in §3.7.1 (except for the new variants of V1 and V4 as they

are too rare for practical measurements). Detection of each of these vulnerabilities was first

tested in isolation, and then in presence of another vulnerability that was permitted by the

contract.

To surface these vulnerabilities, we had the following setups:

• V1-type: BASE+MEM+CB; Skylake; assists disabled.

• V4-type: BASE+MEM; Skylake; assists disabled.

• MDS-type: BASE+MEM; Skylake; assists enabled.

• LVI-type: BASE+MEM; CoffeeLake; assists enabled.

To test detection of a vulnerability in isolation, we fuzzed against CT-SEQ (disallows all

speculation) with Spectre V4 microcode patch disabled. To include another vulnerability,

we fuzzed (1) against CT-COND (permits Spectre V1) with the Spectre V4 patch enabled

and (2) against CT-BPAS (permits Spectre V4) with the patch disabled. We fuzzed in each

configuration until a violation was detected, and recorded the elapsed time. Each experiment

was repeated 10 times, and the mean values are shown in Table 3.2.
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Vulnerability Inputs to Vulnerability
Spectre V1 [142] 6
Spectre V1.1 [140] 6
Spectre V2 [142] 4
Spectre V4 [101] 62
Spectre V5-ret [164, 147] 2
MDS-AD-LFB [247, 212] 2
MDS-AD-SB [57] 12

Table 3.3: Detection of known vulnerabilities on manually-written test cases. Inputs to
Vulnerability is the average minimal number of random inputs necessary to surface a
violation.

Most of the time, Revizor detected the vulnerability in under 10 minutes, and the

presence of a permitted vulnerability did not hinder detection. It took longer to detect V4

vulnerabilities because they required a longer speculation window, and it was harder to find

a test case with misprediction as the address predictor tended to be conservative. It was

also more impacted by the contract complexity, and the presence of branch misprediction

doubled the detection time as it made harder to find effective inputs.

Manually Written Test Cases. A more sophisticated test case generator could surface

more vulnerabilities than shown in Table 3.2, and faster. To illustrate it, we tested several

manually-written test cases representing Spectre-type vulnerabilities and versions of MDS.

Each test case was tested with an increasing number of inputs until a violation was detected.

The results are in Table 3.3 (the reported number is an average of 100 experiments, each

with a different input generation seed). As Revizor successfully detected all violations with

very few inputs (i.e., in less than a second), which shows the importance of further research

on targeted test case generation.

3.7.3 Unexpected Contract Violations

In our experiments, Revizor discovered two new (to the extent of our knowledge) variants

of speculative vulnerabilities. As they represent variations on the known vulnerabilities

(Spectre V1 and V4) and the corresponding defences prevent them, we did not report them

to Intel. Yet, these nuances may be important to consider when developing future defences,

hence we describe them here.

Speculative Latency-Dependent Leakage (V1-Var and V4-Var). The execution time of

some operations on Intel CPUs depend on their operand values (e.g., division). When a

speculative memory access is dependent on such a variable-latency operation, it creates a
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1 b = variable_latency(a)
2 if (...) # misprediction
3 c = array[b] # evicts only when ‘a‘ causes small latency

Figure 3.8: New Spectre V1 variant (V1-Var), found by Revizor.

race condition between this operation and the instruction that triggered speculation.

Revizor found a case where such race condition causes a side-channel leakage, shown

in Figure 3.8 (the complete test case is in Appendix C.5). Here, if the variable-latency

operation (line 1) is faster than the speculation window of the branch (line 2), the dependent

memory access (line 3) will leave a cache trace. Otherwise, the speculation will be squashed

before the operation completes, and the memory access will not happen. As such, the

hardware traces expose not only the memory access address, but also the latency of the

operation at line 1. It means this variant provides more information to the attacker than the

original Spectre V1.

Revizor detected a similar variant of Spectre V4, and we expect it to be applicable to

other speculative vulnerabilities as well.

Speculative Store Eviction. In addition to our main fuzzing campaign, we tested the

behavior of speculative stores. Several defence proposals (STT [277], KLEESpectre [251])

assumed that stores do not modify the cache state until they retire. To test it, we modified

CT-COND to capture this assumption (see Appendix B.5), and fuzzed our CPUs against

it. Revizor did not discover violations in Skylake, but quickly generated a counterexample

on CoffeeLake (Appendix C.6). Under investigation, it appeared to be almost identical to

Spectre V1, except that the leakage was caused by a store instruction. This is an evidence

that the assumption was wrong, although we do not know the exact microarchitectural

technique behind it.

3.7.4 Runtime Parameters

We next detail the runtime parameters of the fuzzing campaign in §3.7.1 for those configura-

tions that did not detect violations (Table 3.4). Revizor was able to reach a significant speed

of fuzzing, testing several thousand test cases within 24 hours, each with several hundreds

of inputs. The average number of inputs per test case varies because, in the feedback-driven

mode, Revizor increases this number together with the test case size based on coverage,

and the dynamics of coverage varies slightly from campaign to campaign. Column Pattern

Coverage shows that the test cases were diverse and Revizor tested millions of pattern

combinations within the campaigns.
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Test Inputs Effective Classes Pattern
Contract Cases / Test Case / Test Case Coverage
CT-SEQ 5125 493 45 (13.4%) 113’707k
CT-BPAS 5095 480 43 (12.9%) 107’671k
CT-COND-BPAS 5249 477 42 (12.8%) 89’165k

Table 3.4: Runtime parameters of a 24-hour fuzzing campaign. Test Cases is the number of
tested test cases. Inputs/Test Case is the average number of inputs per test case. Effective
Classes/Test Case is the average number of effective input classes per test case, and in
parentheses is the portion of effective classes among all classes. Pattern Coverage is the
number of covered pattern combinations.

1 if (...)
2 b = array[a];
3

(a) CT-SEQ violation

b = array1[a];
if (...)

c = array2[b];

(b) CTR-SEQ violation

if (...)
b = array1[a];
c = array2[b];

(c) ARCH-SEQ violation

Figure 3.9: Difference in violations among attacker models.

Column Effective Classes illustrates the limitations of completely random input genera-

tion. The majority of inputs were ineffective (CH2), and were essentially a wasted effort.

This effect worsens with the contract complexity as speculation further reduces the likeli-

hood of forming effective classes. It indicates that future research on more sophisticated

input generation may significantly improve the fuzzing speed.

3.7.5 Case Study: Comparing Contract Violations

In this case study, we compare the counterexamples that Revizor surfaces when fuzzing

against different contracts. Specifically, we consider CT-SEQ, CTR-SEQ and ARCH-SEQ,

which represent different observation models with increasingly powerful attacker, under the

same (sequential) execution model.

In the experiment, we first fuzz the CPU against CT-SEQ and collect its violations. We

then evaluate these counterexamples against CTR-SEQ which additionally exposes register

values, and identify those that violate CT-SEQ but not CTR-SEQ. Last, we evaluate the

counterexamples that violate CTR-SEQ but not ARCH-SEQ.

The violations of only CT-SEQ (Figure 3.9a and Appendix C.1) speculatively leak values

stored in registers as CT-SEQ (implicitly) prescribes that registers might contain secrets.

The violations of only CTR-SEQ (Figure 3.9b and Appendix C.7) load the secret with a

non-speculative memory access, and leak it with a speculative one; Such examples are

particularly interesting in the context of defences against V1, as some existing proposals
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do not protect against this variant (e.g., STT [277]). Finally, the violations of ARCH-SEQ

(Figure 3.9c and Appendix C.8) expose speculatively-loaded values, and they correspond to

the classic Spectre V1 example.

3.8 Discussion

3.8.1 Scope and Limitations

False contract violations (false positives). If the model incorrectly emulates ISA, it leads to

false positives (although these cases are also valid bugs, but in the emulator instead the CPU).

Due to this reason, we excluded from the tests some instructions that are not implemented

correctly in Unicorn. Non-determinism in the executor may also cause false positives.

However, we inspected a few counterexamples in each of the experiments described in §3.7

and found no false positives.

False contract conformance (false negatives). In several tests, Revizor did not detect

violations (Table 3.1). This indicates, but does not prove, the absence of leaks: it merely

shows that the explored space contained no counterexamples. Deeper testing is an open

question left to future work.

Revizor may not detect a violation also because the information leakage does not surface

in the cache side channel. This will not prevent detection of the currently-known speculative

vulnerabilities because they all can be observed through a cache side channel. However, it

may not hold in the future, for the currently-unknown vulnerabilities.

Coverage. In a few setups, Revizor timed out without detecting a violation (Table 3.1). As

our notion of coverage is only approximate, this indicates, but does not prove, the absence

of leaks: it merely shows that the explored search space did not contain counterexamples.

We leave a more precise notion of coverage to future work.

Feedback. Currently, the fuzzing process is completely random and unguided. This is, how-

ever, not a principled limitation: Future work may improve the search for counterexamples

by incorporating the feedback from performance counters, by relying on a grey-box model

of the CPU, or by employing debugging interfaces.

Dependency patterns. We used control and data hazards as a proxy for speculative execu-

tion. However, a hazard is a necessary, but not sufficient condition to trigger speculation,

and a certain microarchitectural state is normally required as well. For example, to trigger a

branch misprediction, Branch Target Buffer must contain a wrong target. In addition, the

speculation must be long enough to leave a microarchitectural trace. These preconditions
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are hard to control on commercial CPUs and, thus, we have to rely on execution of random

test cases to indirectly randomize the microarchitectural state.

Input generation. An unavoidable consequence of random input generation is low input

effectiveness (CH2). To tackle it, Revizor applies several restrictions, such as limiting the

number of registers, aligning accesses, and reducing the input entropy. These restrictions

could prevent Revizor from detecting unknown vulnerabilities. Future work may develop a

more targeted generation method that would ensure all inputs are effective (e.g., via program

analysis, similar to Spectector [112]), which would eliminate the need for restrictions.

Other attacks. Revizor currently supports only attacks on L1D caches. For other side-

channels, we have to implement them within the executor (e.g., execution port attacks

require reading of the port load). For certain speculative attacks, the executor would have

to be modified (e.g., Meltdown requires handling of page faults). It may also require

re-implementation of the executor in user space or in SGX enclaves.

3.8.2 Applications beyond Black-Box Fuzzing

Revizor can be extended, with very few modifications, to white-box fuzzing of open-source

CPUs such as RISC-V. For this, one needs to implement a new executor that runs on a CPU

simulator instead of a silicon CPU. White-box fuzzing will also enable us to collect more

precise coverage and better guide the fuzzing.

Likewise, our approach can be applied to check the security claims of secure speculation

mechanisms, e.g [263, 277, 206]. This would again require a simulator-based executor (e.g.,

based on gem5 [46]) with the respective mechanism, modified to collect hardware traces.

Beyond that, Revizor can be applied for reverse-engineering CPU internals as it can

surface unknown CPU behavior (e.g., Revizor detected speculative store eviction, §3.7.3).

We presented Model-based Relational Fuzzing (MRF), a technique to test silicon black-

box CPUs for speculative vulnerabilities. We implemented MRF in a fuzzing framework

called Revizor, and used it to test recent Intel x86 CPUs for compliance with a wide range

of speculation contracts.

Our experiments show that Revizor can automatically find contract violations, together

with code snippets to trigger and reproduce them—without reporting false positives. Revizor

also successfully detected a flaw in a hardware defence against MDS (namely, LVI-Null),

and it found novel variants of V1 and V4. This demonstrates that MRF is a promising

approach for third-party assessment of microarchitectural security in black-box CPUs.
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Chapter 4
SpecFuzz: Fuzzing Software for Speculative

Vulnerabilities

In this chapter, our goal is to develop a method to find instances of speculative vulnerabilities

in software.

We focus only on speculative vulnerabilities because similar tools for detecting instances

of traditional side channels already exist (see §2.6.3). Several works attempted to solve

the problem of detecting speculative vulnerabilities too [173, 66, 126], but they relied on

static analysis, which restricted their precision. They analyse the application code in search

of gadgets—the code patterns typical for the attacks. However, the analysis is imprecise

and may overlook vulnerabilities, either because the vulnerable code does not match the

expected patterns [141], or due to the limitations of the analysis itself (e.g., considers each

function only in isolation).

We seek to find a method of detecting instances of speculative vulnerabilities without

restricting ourselves to specific gadgets. Instead, we harness a dynamic testing technique,

namely fuzzing.

The main challenge is that speculative vulnerabilities are inherently invisible to con-

ventional dynamic testing tools. For example, Spectre-type attacks are closely related to

memory safety violations, such as buffer overflows, and differ only in their speculative com-

ponents. Dynamic testing tools catch memory safety violations by verifying the validity of

every memory access. Unfortunately, this is not possible for speculative violations, because

the accesses are invoked speculatively, on mispredicted paths, therefore are discarded by

hardware without being exposed to software. As a result, they remain invisible to runtime

integrity checkers. It remains an open challenge to make speculative vulnerabilities visible

to dynamic testing tools.
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4.1 System Overview

We introduce speculation exposure, a method to enable dynamic testing for speculative

vulnerabilities. Speculation exposure leverages software simulation of speculative execution

to turn speculative vulnerabilities into conventional ones and, thus, make them detectable by

memory safety checkers.

Speculation exposure consists of four phases executed for every speculatable instruction:
1⃝ take a checkpoint of the process state, 2⃝ simulate a misprediction, 3⃝ execute the specu-

lative path, and 4⃝ rollback the process to the checkpoint and continue normal execution.

This way, we temporarily redirect the normal application flow into the speculative path so

that all invalid memory accesses on it become visible to software. This method simulates

the worst-case scenario by examining each possible mispredicted path, without making

assumptions about the way the underlying hardware decides whether to speculate or not.

We further extend speculation exposure to nested speculation, which occurs when a

CPU begins a new speculation before resolving the previous one. To simulate it, for each

speculatable instruction, we dynamically generate a tree of all possible speculative paths

starting from this instruction and branching on every next speculatable instruction. The

complete nested simulation, however, has proven to be too slow. To make fuzzing practical

we develop a heuristic that prioritizes traversal of the speculation sub-trees with a high

likelihood of detecting new vulnerabilities.

To showcase the method, we implement SpecFuzz, a tool for detecting Bounds Check

Bypass (BCB) vulnerabilities. We picked BCB as the main target for two reasons: First,

Spectre-type vulnerabilities are not expected to be fixed in hardware [70], and the burden of

defence lies entirely on software methods [167]. Second, the conservative protection tech-

niques against BCB [59, 128, 156, 225] are impractical because they pessimistically harden

every conditional branch, and thus significantly hurt program performance (see §4.5.3).

SpecFuzz simulates conditional jump mispredictions by placing an additional jump with

an inverted condition before every conditional jump. During the simulation it executes the

inverted jump and then rolls back to return to the original control flow. To detect invalid

accesses on the simulated speculative path, SpecFuzz relies on AddressSanitizer [218].

SpecFuzz may serve as a tool for both offensive and defensive security. For the former

(e.g., penetration testing), it finds vulnerabilities in software, records their parameters, and

generates test cases. For the latter, the fuzzing results are passed to automated hardening

tools (e.g., Speculative Load Hardening [59]) to elide unnecessary instrumentation of the

instructions deemed safe. Note that the code not covered by fuzzing remains instrumented

conservatively, hence lower fuzzing coverage might affect performance but not security.
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Figure 4.1: Speculative execution. Due to a misprediction, the program executes basic
blocks BB3 and BB4, then detects the mistake, discards the results, and continues execution
starting from BB2.

4.2 Method: Speculation Exposure

Speculative vulnerabilities are notoriously hard to find because hardware strives to hide the

effects of speculative execution from software, making it impossible to detect such vulner-

abilities with conventional testing methods. In this chapter, we approach the problem by

simulating the unsafe hardware optimization in software. We call this approach speculation

exposure.

To understand how we construct the simulation, first consider how speculative execution

(§2.4.1) is implemented in hardware. When a hazard appears (e.g., at a conditional or an

indirect jump), the CPU 1⃝ makes a prediction of its outcome, 2⃝ executes the speculative

path while temporarily keeping the results in internal buffers, 3⃝ eventually eliminates

the hazard and either commits the results (correct prediction) or discards them (wrong

prediction), and 4⃝ proceeds with the correct path.

Example: In Figure 4.1, the CPU might make a wrong prediction that BB1 (Basic Block 1) will

proceed into BB3. It will start executing BB3, BB4, and maybe even further, depending on how

long it takes to resolve the hazard. When the hazard is resolved, the CPU determines that the

prediction was wrong and discards all changes made on the speculative path. Afterward, it

redirects the control flow to the correct path and proceeds with the execution starting from BB2.

The core idea behind speculation exposure is to simulate this behavior in software with a

checkpoint-mispredict-rollback scheme: At a potential hazard, we 1⃝ take a checkpoint of the

current process state. Then, we 2⃝ diverge the control flow into a wrong (mispredicted) path

and start executing it. When a termination condition is reached (e.g., a serializing instruction

is executed), we 3⃝ rollback to the checkpoint and 4⃝ proceed with normal execution. The

pattern can be applied to data hazards too: Instead of diverging the control flow, we would

replace a memory/register value with a mispredicted one.
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This basic mechanism simulates the worst-case scenario when a CPU always mispredicts

and always speculates to the greatest possible depth. Such a pessimistic approach makes the

testing results universally applicable to different CPU models and any execution conditions.

Moreover, it also covers all possible combinations of correct and incorrect predictions that

could happen at runtime (see §4.2.2).

4.2.1 Components of Speculation Exposure

There are four core components: a checkpointing mechanism, a simulation of mispredictions,

a detection of faults on the simulated path, and a mechanism for detecting termination

conditions.

Checkpointing. For storing the process state, we could use any of the existing checkpoint-

ing mechanisms, ranging from full-process checkpoint (e.g., CRIU [80]) to transactional

memory techniques (e.g., Intel TSX [130]). However, checkpointing is on the critical path in

our case, thus heavy-weight mechanism would either increase the testing time, or reduce the

number of inputs used in fuzzing under a fixed time budget. We describe the checkpointing

mechanism used in our implementation in §4.3.1.

Simulating Misprediction. To simulate misprediction, we instrument basic blocks in a way

that forces control flow to enter the paths that the CPU would otherwise take speculatively.

The nature of the instrumentation depends on the exact type of the speculative execution

attack being simulated (see §4.3 and §4.6.1 for a detailed discussion about applying this

technique to different Spectre attacks).

Detection of Vulnerabilities. In Spectre-type attacks, the data is leaked when a program

speculatively reads from or writes to a wrong object. Therefore, when we have a mechanism

for simulating speculative execution, the detection of actual vulnerabilities boils down

to the conventional memory safety problem; detecting bounds violations. This is a well-

developed field with many existing solutions [177, 130, 218]. In this work, we rely on

AddressSanitizer [218].

Terminating Simulation. The simulation mimics the termination of the speculative execu-

tion by hardware. Speculative execution terminates: (i) upon certain serializing instructions

(e.g., LFENCE, CPUID, SYSCALL, as listed in the CPU documentation [130]), and (ii) after the

speculation exhausts certain hardware resources.

Note that terminating the simulation earlier results in faster fuzzing and could be used as

an optimization, but it could miss vulnerabilities. Below we discuss the hardware resources

used in speculation to determine the simulation termination conditions.
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Termination conditions. All program state changes made during the speculative execution

must be temporarily stored in internal hardware buffers, so that they can be reverted if the

prediction is incorrect. Accordingly, once at least one of these buffers becomes full the

speculation stops.

On modern Intel CPUs, there are several buffers that can be exhausted [130]: Reorder

Buffer (ROB), Branch Order Buffer (BOB), Load Buffer (LB), Store Buffer (SB), Reser-

vation Station (RS), Load Matrix (LM), and Physical Register Reclaim Table (PRRT). We

seek to find the one that overflows first.

LM and PRRT are not documented by Intel. LB, SB, and RS are also not useful for prac-

tical simulations as their entries could be reclaimed dynamically (policy is undocumented)

during speculative execution. Therefore, we do not simulate these buffers and assume that

they do not restrict the depth of the speculation. Correctly simulating them would require an

often-undocumented information about the reclamation algorithms in Intel CPUs.

We are left with ROB, which keeps track of all speculative microoperations (µops), and

BOB, which tracks unresolved branch predictions. We choose ROB because BOB is not

portable as it is a specific optimization of Intel CPUs [49].

In Intel x86, any speculative path can contain at most as many µops as there are entries

in ROB1. In modern CPUs, its size is under 250 µops (the largest we know is 224 entries, on

Intel Skylake architecture [69]).

The simulation terminates after reaching 250 instructions, which is a conservative

estimate because one instruction is typically mapped into one or more µops. The only

exception is µops fusion, when CPU merges several instructions into one. However, on Intel

CPUs, it is limited to a small set of instruction combinations [69]. To account for this effect,

we count these combinations as a single instruction.

Note that a tighter bound on the number of speculated instructions (e.g., through simula-

tion of a smaller buffer) could have improved the fuzzing time without affecting correctness.

4.2.2 Nested Speculation Exposure

The CPU may perform nested speculation; that is, it can make a prediction while already

executing a speculative path. Since we do not make any assumptions about the predictions,

every speculatable instruction triggers not a single simulation, but a series of nested simula-

tions. We refer to a tree of all possible speculative paths as a simulation tree. A simulation

tree for each speculatable instruction is regenerated for each program input.

1Some CPU architectures (e.g., CPR [21]) could speculate beyond the ROB size. However, to the best of
our knowledge, that is not the case for the existing x86 CPUs
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Figure 4.2: Nested speculation exposure for the flow A→B→D. Dashed lines are mispre-
dicted speculative paths.

Instead of traversing the complete simulation tree (complete simulation), we could

simulate only a subset of all mispredictions. Then, an order of a simulation is the maximum

number of nested mispredictions it simulates. In other words, an order is the maximum

depth of the simulation tree. Accordingly, an order of a vulnerability is defined as the

minimum order of a simulation that triggers this vulnerability. An order of a speculative

path is the number of mispredictions required to enter it.

Example: Consider Figure 4.2. The left side (Figure 4.2a) is a control-flow graph. Suppose that

the correct flow is ABD.

If we simulate branch mispredictions, then the simulation tree of branch A would be as shown

in Figure 4.2b. The simulation of order 1 for that branch traverses only the path (ACBD), simulating

only the first misprediction, and then following the original flow graph. The simulation of order

3 would traverse three additional paths: ACBB, ACCB and ACCC, according to misspeculation of A

and B; A and C; and A, C, C respectively. The four paths constitute a complete simulation tree

of the branch A. Every branch (or, more generally, every speculatable instruction) has its own

simulation tree and the tree has to be traversed every time the branch is executed.

Nested simulation dramatically increases the fuzzing time. However, in SpecFuzz we

use a heuristic which, while traversing only a small portion of the speculation tree on each

input, shows high detection rates. We discuss it in detail in §4.3.2.

4.3 Design

To showcase speculative exposure on a specific class of vulnerabilities, we develop SpecFuzz,

a tool for simulating and detecting Bounds Check Bypass (BCB) [142]. We discuss other

Spectre-type attacks in §4.6.1.
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1
2
3
4 if (x < array_size)
5
6 int result = array[x];
7 ...
8
9

(a) Native version

checkpoint();
if (x >= array_size)

goto skip_branch;
if (x < array_size)
skip_branch:

int result = array[x];
...

if (terminate_simulation())
rollback(); // to line 4

(b) Simulation of conditional branch misprediction

Figure 4.3: SpecFuzz instrumentation.

As described in §2.4.1, BCB in its core contains a speculative out-of-bounds access

caused by a conditional jump misprediction. To expose such accesses, we create a modified

(instrumented) version of the application which executes not only the normal control flow

but also enters all possible speculative paths.

SpecFuzz works as follows (Figure 4.3): Before every conditional branch (line 4), it

inserts a call to a checkpointing function (line 1) that stores the process state and initializes

simulation. Then, it adds an instruction sequence that simulates a misprediction (lines 2–3)

and forces the control flow into the mispredicted path. Specifically, SpecFuzz inserts a

jump with an inverted condition (line 2), followed by a jump into the basic block, thus

skipping the original branch (line 3). During the simulation, SpecFuzz periodically checks

if a termination condition has appeared (line 8). If the check passes, SpecFuzz restores the

process state from the previous checkpoint (line 9) and continues the program execution.

We implement this design as a combination of an LLVM [153] compiler backend pass

for the x86 architecture and a runtime library.

4.3.1 Basic Simulation

Simulating Branch Misprediction. SpecFuzz simulates mispredictions by forcing the

application into taking a wrong branch at every conditional jump. We implement this

behavior by replacing all conditional terminators in the program with the ones that have an

inverted condition (see Figure 4.4). Now, when the original basic block (BB) would proceed

into the successor S1, the modified terminator diverges the control flow into S2. The original

terminator is moved into a separate BB, and the control flow returns to normal execution by

rolling back into this BB after the simulation.

As a result, every time the program reaches this BB, it first executes the simulated path,

then rolls back to the BB and continues with normal execution.
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Figure 4.4: Simulation of conditional branch mispredictions: On simulated speculative
paths, all conditional terminators are replaced by terminators with inverse conditions.

Saving and Restoring Process State. The main requirement to the rollback mechanism

used in SpecFuzz was to have low performance impact so that the fuzzing time is kept short.

To this end, we implement a light-weight in-process mechanism that snapshots the CPU

state before starting a simulation and records the memory changes during the simulation.

To store the CPU state, we add a call to a checkpointing function (a part of the runtime

library) before every conditional jump. The function takes a snapshot of the register values

(including GPRs, flags, SIMD, floating-point registers, etc.) and stores it into memory.

During the rollback, we restore the register values based on the snapshot. The function also

stores the address of the original conditional jump (i.e., original terminator) that we later

use as a rollback address.

This approach, however, is not efficient when applied to saving the memory state because

it would require dumping the memory contents into the disk at every conditional jump. To

avoid the performance overhead linked with this expensive operation, we instead rely on

logging the memory changes that happen during the simulation. Before every instruction that

modifies memory (e.g., mov, push, call), we store the address it modifies and its previous

value onto a stack-like data structure. Then, to do a rollback, we go through this data

structure in the reverse order and restore the previous memory values.

Currently, SpecFuzz supports only fixed-width writes; If the pass encounters REP MOV,

compilation fails with an error. Yet, we did not encounter any issues with that during our

experiments because Clang in its default configuration does not use these instructions.

Detecting and Handling Errors. With the simulation mechanism at hand, we now need a

mechanism to detect any speculative out-of-bounds accesses that happen on the speculative
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paths. To this end, we utilize AddressSanitizer [218]2 (ASan), and we use a custom signal

handler to handle the errors that inevitably appear during the simulations.

We had to modify the behavior of ASan to our needs. In contrast to normal, non-

speculative execution, the process does not crash if an error happens during the speculation.

Instead, the CPU silences the error by discarding its effects when the misprediction is

detected. To simulate this behavior in SpecFuzz, we adjusted the error response mechanism

in ASan to record the violation in a log and continue the simulation. Accordingly, one test

run might detect several (sometimes, hundreds of) violations.

Similarly, we have to recover from runtime faults. We register a custom signal handler

that logs and rolls back after the signals that could be caused by an out-of-bounds access,

such as SIGSEGV and SIGBUS. We also rollback after other faults (e.g., division by zero), but

we do not record them in the log as they are irrelevant to the BCB vulnerability. We perform

an immediate rollback because hardware exceptions are supposed to terminate speculative

execution. Even though on some CPU models exceptions may not terminate speculation

(see Meltdown-type attacks [158, 58]), we ignore such cases assuming they will be fixed at

the hardware level similarly to Meltdown.

Terminating Simulation. As discussed in §4.2, we terminate the simulation either when

we encounter a serializing instruction or when the maximum depth of speculation is reached.

To implement the first case, we simply insert a call to the rollback function before every

serializing instruction. As serializing, we consider the instructions listed as such in the Intel

documentation [130] (e.g., LFENCE, CPUID, SYSCALL).

To count instructions at runtime, we keep a global instruction counter and set it to zero

when a simulation begins. At the beginning of every basic block, we add its length to the

counter. (We know the length at compile time because SpecFuzz is a backend pass). When

the counter reaches 250 (maximum ROB size, see §4.2), we invoke the rollback function.

4.3.2 Nested Simulation

To implement nested simulation, we maintain a stack of checkpoints: Every time we

encounter a conditional branch, we push the checkpoint on the stack, as well as the current

value of the instruction counter and a pointer to the previous stack frame. All later writes

will be logged into the new stack frame. At rollback, we restore the topmost checkpoint

and revoke the corresponding memory changes. This way, SpecFuzz traverses all possible

combinations of correct and incorrect predictions in the depth-first fashion.

2The inherent limitation of AddressSanitizer is that it cannot detect intra-object out-of-bounds accesses;
hence we consider them out of scope.
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Order JSMN Brotli HTTP libHTP libYAML OpenSSL
1 6 74 6 221 77 1254
2 5 9 4 64 92 366
3 7 12 2 33 14 253
4 1 6 3 5 16 91
5 1 2 1 2 6 -
6 0 0 0 2 2 -

Total 20 103 16 327 207 1964
Iterations 933 3252 1582 540 1040 227

Table 4.1: Distribution (by order) of the vulnerabilities detected by 24 hours of fuzzing
non-prioritized 6th-order simulation. This experiment motivates prioritized simulation:
Even though all fuzzing rounds simulated all 6 orders of misprediction, most of the detected
vulnerabilities required only a few mispredictions. Since execution of OpenSSL was too
slow, we simulated it only to the 4th order.

Coverage Trade-off. The number of paths to traverse increases exponentially with the order

of the simulation. In most programs, the density of conditional branches is approximately

one in ten instructions. If we assume the maximum depth of speculative execution to be

250 instructions, then it creates over 30 million speculative paths on average per conditional

branch. Often the actual number of paths is smaller because the tree is not balanced, or

because the tree is shallow due to serializing instructions (e.g., system calls), however the

costs are still high, slowing down the fuzzing driver by orders of magnitude. It could be

acceptable for very small fuzzing drivers (e.g., when fuzzing a single function), but not for

larger libraries.

The trade-off between the fuzzing speed and the completeness of nested simulation is

a non-trivial one. In particular, it is not clear to what extent added depth of the simulation

improves the detection of speculative vulnerabilities compared to the loss in input coverage.

To estimate the effectiveness of deeper simulation we compiled our test libraries (see

§4.5) with SpecFuzz configured for a 6th-order simulation and fuzzed them for 24 hours.

Table 4.1 contains a breakdown of the vulnerabilities we detected by their order. Clearly, the

bulk of the vulnerabilities is detected with only a few levels of nesting, and the higher the

order the fewer vulnerabilities we find3.

A plausible explanation of this result is as follows. Most memory accesses are guarded

by only one safety check (e.g., a bounds check) which we would need to bypass speculatively

(first order vulnerabilities). More rarely, the bounds checks would be duplicated across

3The real distribution is even more contrasting. Here, the 6th-order simulation caused a high overhead and
few iterations were executed (Table 4.1). Therefore, the fuzzer could not generate the inputs to trigger the
vulnerabilities with fewer mispredictions. In fact, in §4.5.2, many of these vulnerabilities were discovered by
lower-order simulations with more iterations.

74



4.3. Design

functions or, for example, accompanied by an object type check; In this case, detecting such

a vulnerability would require two mispredictions (second order). Higher order vulnerabilities

usually require the speculative path to cross several function boundaries.

We can conclude that the speed of fuzzing is a higher priority than the order of simulation.

Most of the vulnerabilities have low orders and we are likely to find more vulnerabilities

if we have many iterations of low-order simulation compared to running few iterations of

high-order simulation. In fact, in our later experiments (§4.5.2), SpecFuzz detected more

vulnerabilities within an hour of low-order fuzzing compared to 24 hours with a 6th order

simulation.

Prioritized Simulation. Based on this observation, we propose the following fuzzing

heuristic. Our prioritized simulation tests the low-order paths more rigorously, allocating

less time to higher-order paths.

A simple approach would be to always run the simulation at a baseline order and once

every N iterations run a higher-order simulation. For example, all runs simulate order 1,

every 4th run simulates up to order 2, every 16th up to order 3, and so on.

However, since not all runs invoke all the branches, the distribution would be uneven.

Instead, we should calculate the shares per branch.

Suppose we have only two branches—X and Y—in the program under test, and we test

the program with six inputs. X is executed in every run, but Y is invoked only in the runs

1, 2, 3, and 5. With the prioritized simulation, we simulate only the first-order paths of the

branch X in the runs (1, 2, 3, 5, 6) and both the first and the second order paths in the run 4.

As of the branch Y, we simulate the first order in runs (1, 2, 3) and up to the second order in

the run 5.

We implemented this strategy in SpecFuzz and used it in our evaluation.

Simulation Coverage. Because prioritized simulation begins by traversing only one spec-

ulative path in every simulation tree and only gradually enters more and more paths, it

would be important to know which share of all possible speculative paths it managed to

cover within a given fuzzing round. We call this metric a simulation coverage. This metric

provides an estimate of the portion of the covered speculated paths out of all possible paths

for all the branches.

The trade-off different simulation heuristics might explore is a trade-off between fuzzing

coverage and simulation coverage. For example, prioritized simulation gives preference to

the fuzzing coverage. Unfortunately, estimating the precise number of speculative paths

for each branch is a complex problem because the trees are not balanced. Solving it would

require detailed program analysis, which we leave to future work.
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4.3.3 Other Implementation Details

External calls and indirect calls. By the virtue of being implemented as a compiler pass,

SpecFuzz cannot correctly run the simulation beyond the instrumented code. Therefore, we

have to consider all calls to external (non-instrumented) functions as serialization points,

even though it is not necessarily a correct behavior (see §4.6).

As the complete list of program functions is not known at compile time, SpecFuzz first

collects the functions with a dummy compilation, and only then does the full instrumentation.

The collected function list can be reused for later compilations if the source does not change.

This approach, however, does not work for indirect calls as we do not know the call

target at compile time. Instead, we have to detect the callee type at run time. To this end,

SpecFuzz inserts a NOP instruction with a predefined argument into every function entry.

Before indirect calls, it adds a sequence that fetches the first instructions and compares it

with the opcode of this NOP. If they match, we know that the function is instrumented and it

is safe to continue the simulation.

Callbacks. There could be a situation where a non-instrumented function calls an instru-

mented one (e.g., when a function pointer is passed as an argument). In this case, the

instrumented function might return while executing a simulation and the simulation will

enter the non-instrumented code, thus corrupting the process state. To avoid it, SpecFuzz

globally disables simulation before calling external functions and re-enables it afterward.

Accordingly, our current implementation does not support simulation in callbacks (see a

potential solution to this problem in §4.6).

Long Basic Blocks. In the end of every basic block (BB), SpecFuzz checks if the spec-

ulation window has expired (i.e., if the instruction counter has reached 250). This could

unnecessarily prolong the simulation when we encounter a long BB, which could be created,

for example, by loop unrolling. To avoid this situation, SpecFuzz inserts additional checks

every 50 instructions in the long BBs.

Preserving the Process State. When a function returns while executing a simulation, the

value of the stack pointer becomes above its checkpointed value. Therefore, if we call a

function from the SpecFuzz runtime library or from ASan, it would corrupt the checkpointed

stack frame. This could be avoided by logging all changes that these functions do to the

memory, but it would have a high performance cost. Instead, we use a disjoint stack frame

for these functions and replace the stack pointer before calling them.

The same applies to the code that SpecFuzz compiler pass inserts: We had to ensure that

the code that could be executed on a speculative pass never makes any changes to memory

besides modifying dedicated variables of the SpecFuzz runtime.

76



4.4. Fuzzing with SpecFuzz

Figure 4.5: Workflow of testing an application with SpecFuzz.

Code pointer checks. Besides causing out-of-bounds accesses, misprediction of conditional

branches may also change the program’s control flow. This happens when a corrupted code

pointer is dereferenced. For example, if speculative execution overwrites a return address or

the stack pointer, the program can speculatively return into a wrong function or even attempt

to execute a data object. This vulnerability type is especially dangerous as it may allow to

launch a ROP-like attack [220]. To detect such corruptions, SpecFuzz checks return and

indirect jump addresses to verify that they point to the code section of the binary.

4.4 Fuzzing with SpecFuzz

The workflow is depicted in Figure 4.5.

1. Compile the software under test with Clang and apply the SpecFuzz pass (§4.3), thus

producing an instrumented binary that simulates branch mispredictions.

2. Fuzz the binary. We used HonggFuzz [100], an evolutionary coverage-driven fuzzer,

and we relied on a combination of custom coverage tracking and Intel Processor

Trace [133] for measuring coverage.

3. Aggregate the traces and analyze the detected vulnerabilities to produce a whitelist of

conditional jumps that were deemed safe by our analysis.

4. Patch the application with a pass that hardens all but the whitelisted jumps.

We now describe these stages in detail.

4.4.1 Coverage and Fuzzing Feedback

Using existing coverage estimation techniques (e.g., SanitizerCoverage [162], Intel PT [133])

with SpecFuzz is incorrect: the values become artificially inflated because SpecFuzz adds

the speculative paths that do not belong to normal program execution.

Instead, we implement a custom coverage mechanism that tracks the conditional branches

executed during fuzzing, but excludes the branches executed while simulating mispredic-

tions and when the simulation is globally disabled (i.e., in callbacks). We implement the

mechanism through a hashmap that tracks the executed branches as well as the number of
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unique inputs that triggered every branch. In addition to coverage, this map is also used for

prioritized simulation (§4.3.2).

We also maintain a hashmap of vulnerabilities as an additional feedback source for

evolutionary fuzzing. This way, every time we detect a new vulnerability, HonggFuzz stores

the input that triggered it and adds it to the corpus. It provides a better feedback to the fuzzer

and also allows us to preserve the test cases that trigger specific vulnerabilities.

4.4.2 Aggregation of Results

As a result of fuzzing, we get a trace of detected speculative out-of-bounds accesses. Each

entry in the trace has a form:

(accessed_address; offset; offending_instruction; mispredicted_branches)

Here, offending_instruction is an address of the instruction that tried to access a memory

outside the intended object’s bounds (accessed_address), and mispredicted_branches

are the addresses of the mispredicted branches which triggered the access. offset is the

distance to the nearest valid object, if we found one.

To make the trace usable, we aggregate the results per run and per instruction. That

is, for every test run, we collect all the addresses that every unique offending instruction

accessed as well as the addresses of the mispredicted branches.

4.4.3 Vulnerability Analysis

After the aggregation, we have a list of out-of-bounds accesses with an approximate range of

accessed addresses for each of them. As we will see in §4.5.2, the list may be rather verbose

and contain up to thousands of entries. Yet we argue that most of them are not realistically

exploitable.

In many cases, the violation occurs as a result of accessing an address that remains

constant regardless of the program input. Therefore, the attacker cannot control the accessed

address, and cannot leak secrets located in other parts of the application memory. This could

happen, for example, when the application tries to speculatively dereference a field of an

uninitialized structure. In this case, the attacker would be able to leak values from only one

address, which is normally not useful unless the desired secret information happens to be

located at this address4. We call such vulnerabilities uncontrolled.

We identify the uncontrolled vulnerabilities by analyzing the aggregated traces. We

4In this work, we do not consider this corner case and leave it to future work. Its identification would
require more complex program analysis (e.g., taint analysis).
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estimate the presence of the attacker’s control by comparing the accessed addresses in every

run (i.e., every new fuzzing input). If a given offending instruction always accesses the same

set of addresses, we assume that the attacker does not have control over it. Note, however,

that the heuristic is valid only after a large enough number of test runs (and even then, it

may be prone to false positives, see §4.6.2).

After the analysis, we collect a list of safe conditional branches (whitelist). The safety

criteria is defined by the user of SpecFuzz. In our experiments, the criteria were: (i) the

branch was executed at least 100 times; (ii) it never triggered a non-benign vulnerability.

The criteria for defining whether a vulnerability is benign could be controlled too. In

our experiments, they were: (i) the vulnerability was triggered at least 100 times; (ii) the

vulnerability is uncontrolled. In the future, additional criteria could be added to reduce the

rate of false positives.

The resulting whitelist is a plaint-text file with a list of corresponding code locations,

which we get based on accompanying DWARF debugging symbols.

4.4.4 Patching

Finally, we pass the whitelist created at the analysis stage to a tool that would harden those

parts of the application that are not in the list. We opted for this approach (in contrast to

directly patching the detected vulnerabilities) because it ensures that we do not leave the

non-tested parts of the application vulnerable.

In our experiments, we used two hardening techniques: adding serializing instructions

(LFENCEs) and adding data dependencies (SLH [59]).

LFENCE Pass. The simplest method of patching a BCB vulnerability is to add an LFENCE—

a serializing instruction in Intel x86 architecture that prevents [130] speculation beyond

it. Adding an LFENCE after a conditional branch ensures that the speculative out-of-bounds

access will not happen. We used an LLVM pass (shipped as a part of SLH) that instruments

all conditional branches with this technique and modified it to accept the whitelist.

Speculative Load Hardening (SLH). An alternative mechanism is to introduce a data

dependency between a conditional branch and the memory accesses that follow it. This

mechanism is implemented in another LLVM pass called SLH. We similarly modified the

pass to accept the whitelist.
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4.4.5 Investigating Vulnerabilities

Often, it is necessary to go beyond automated analysis and investigate the vulnerabilities

manually. For example, this may be required for penetration testing, for weeding out

false positives, or for creating minimal patches where the performance cost of automated

instrumentation is not acceptable.

To facilitate the analysis, SpecFuzz reports all the information gathered during fuzzing.

For vulnerabilities, this information includes: all accessed invalid addresses and their

distance to nearby valid objects (when available); all sequences of mispredicted branches

that triggered the vulnerability; the order (i.e., the minimal number of mispredictions that

can trigger it); the code location of the fault (based on debug symbols); whether different

inputs triggered accesses to different addresses (controllability); the execution count. For

branches, the SpecFuzz reports: which vulnerabilities this branch can trigger; the code

location of the branch; its execution count (how many unique inputs covered this branch).

SpecFuzz also stores the inputs that triggered the vulnerabilities, which could later be

used as test cases.

Finally, when the gathered information is not sufficient, SpecFuzz can instrument a

subset of branches instead of the whole application. This way, we can quickly re-fuzz the

locations of interest because such targeted simulation normally runs at close-to-native speed.

4.5 Evaluation

In this section, we focus on the following questions:

• How effective is SpecFuzz at detecting BCB?

• How many vulnerabilities does it find compared to the existing static analysis tools?

• How much performance does SpecFuzz recover over conservative instrumentation of

all the branches?

Applications. We use SpecFuzz to examine six popular libraries: a cryptographic library

(OpenSSL [1] v3.0.0, server driver), a compression algorithm (Brotli [4] v1.0.7), and four

parsing libraries, JSON (JSMN [5] v1.1.0), HTTP [8] (v2.9.2), libHTP [6] (v0.5.30), and

libYAML [7] (v0.2.2). We chose them because they directly process unsanitized input from

the network, potentially giving an attacker the opportunity to control memory accesses

within the libraries, which together with BCB enables random read access to victim’s

memory by the attacker.
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MSVC RH Scanner Spectector SpecFuzz Total
7 12 15 15 15

Table 4.2: BCB variants detected by different tools.

JSMN Brotli HTTP libHTP libYAML OpenSSL
Native 370 392 463 251 457 84
SpecFuzz 2.8 6.6 20.4 2.4 5 0.15

Table 4.3: Average number of fuzzing iterations executed by native version and by SpecFuzz
simulation per hour, in thousands.

Other tools. To put the results into a context, we compare SpecFuzz against two existing

mitigation and detection tools:

• RedHat Scanner [66]: Spectre V1 Scanner, a static analysis tool from RedHat.

• Respectre [126]: a static analysis tool from GRSecurity. Tested only on libHTP as we

did not have a direct access to the tool.

As a baseline we use LFENCE instrumentation and Speculative Load Hardening

(SLH) [59] (shipped with Clang 7.0.1) described in §4.4.4.

In §4.5.1, we additionally tested the /Qspectre pass of MSVC [173] (v19.23.28106.4)

and a symbolic execution tool Spectector [112] (commit 839bec7). Due to low effectiveness,

we did not perform further experiments with MSVC. As of Spectector, we report results

only for microbenchmarks because larger libraries (Brotli, HTTP, JSMN) exhibited large

number of unsupported instructions.

Testbed. We use a 4-core (8 hyperthreads) Intel Core i7 3.4 GHz Skylake CPU, 32 KB L1

and 256 KB L2 private caches, 8 MB LLC, and 32 GB of RAM, running Linux kernel 4.16.

4.5.1 Detection of BCB Gadgets

We tested 15 BCB gadgets by Paul Kocher [141]. They were originally designed to illustrate

the shortcomings of the BCB mitigation mechanism in MSVC [173]. While the suite is not

exhaustive, this is a plausible microbenchmark for the basic detection capabilities.

Table 4.2 shows the results. SpecFuzz and Spectector expose all speculative vulnerabili-

ties. MSVC and RedHat Scanner rely on pattern matching and overlook a few cases.

4.5.2 Fuzzing Results

To see how effective SpecFuzz is at detecting vulnerabilities in the wild, we instrumented

the libraries with SpecFuzz configured for prioritized simulation (§4.3.2) and fuzzed them
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JSMN Brotli HTTP libHTP libYAML OpenSSL
Native 96.6 84.1 64.1 60.6 63.9 24.0
SpecFuzz 96.6 84.1 63.5 60.6 63.3 24.0

Table 4.4: The highest reached coverage of the libraries. In percent, out of all branches.

for varying duration of time: 1, 2, 4, 8, 16, and 32 hours (63 hours in total). We used one

machine and fuzzed on a single thread. Every next round used the input corpus generated by

the previous ones. The initial input corpus was created by fuzzing the native versions of

the libraries for an hour. Where available, we also added the test inputs shipped with the

libraries.

Fuzzing iterations. Over the experiment, the average rate of fuzzing was as presented in

Table 4.3. Compared to native, non-instrumented version, SpecFuzz is definitely much

slower. Yet, the rate is still acceptable: For example, we managed to test over 400’000

inputs within 63 hours of fuzzing Brotli.

Coverage. The final coverage of the libraries is shown in Table 4.4. The presented numbers

are branch coverages; that is, which portion of all branches in the libraries was tested during

the fuzzing. We show only the final number (i.e., after 63 hours of fuzzing) because we

started with an already extensive input corpus and the coverage was almost not changing

across the experiments. The largest difference was in OpenSSL compiled with SpecFuzz,

where after one hour the coverage was 22.9% and, in the end, it reached 24%.

The difference between the native and the SpecFuzz versions is caused by our handling

of callbacks. As discussed in §4.3.3, we globally disable the simulation before calling

non-instrumented functions. Hence, some parts of the application are left untested. However,

it affects only performance, not security – the untested branches remain protected by

exhaustive instrumentation.

Detected Vulnerabilities. The total numbers of detected vulnerabilities in each experiment

is in Table 4.5. There is a vast difference between the results, ranging from thousands of

violations detected in OpenSSL to only 16 found in the HTTP parser. The main factor is the

code size: OpenSSL has ~330000 LoC while HTTP has fewer than 2000 LoC.

Vulnerability types. For most of the vulnerabilities, however, we did not observe any

correlation between the input and the accessed address, which puts them into the category of

uncontrolled vulnerabilities (see §4.4.3). The results of the analysis are in Table 4.6. Note

that we marked the violations as uncontrolled only if they were triggered by at least 100

different inputs. Those under the threshold are in the row unknown. SpecFuzz also detected

several cases where the vulnerability corrupted a code pointer (code).
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Duration JSMN Brotli HTTP libHTP libYAML OpenSSL
1 hr 20 96 16 322 175 1940
2 hr 20 101 16 330 202 1997
4 hr 20 104 16 332 211 2060
8 hr 20 106 16 334 230 2104
16 hr 20 108 16 337 244 2139
32 hr 20 108 16 344 251 2155

Table 4.5: Total number of detected vulnerabilities in each experiment.

Type JSMN Brotli HTTP libHTP libYAML OpenSSL
code 0 2 1 2 3 16
controlled 16 68 9 91 140 589
uncontrolled 34 36 6 222 49 1127
unknown 0 4 0 29 59 423

Table 4.6: Breakdown of the detected vulnerabilities by type. Here, code are speculative
corruptions of code pointers (e.g., of a return address) and the rest are corruptions of data
pointers. Cont. are controlled vulnerabilities and uncont. are uncontrolled. Unknown are
likely uncontrolled vulnerabilities, but they were triggered too few times (less than 100
times).

The row checked is the number of vulnerabilities that are left after we checked the results

for common false positives (i.e., false labeling as controlled). The difference between the

last two rows is caused by the fact that ASan does not provide precise information about

the overflows and SpecFuzz sometimes falsely marks them as controlled (see §4.6). We did

the checking by using a set of heuristics (implemented as scripts) that identified these cases,

which we later verified manually. Overall, the manual analysis took 5 hours of work.

It is still possible that some of the less-typical false positives where not detected by

SpecFuzz; unfortunately, we do not have a method to filter them out. However, with our

automated patching approach (§4.4.4), the false labeling is acceptable as its only cost is

higher overhead.

Vulnerability orders. Finally, Table 4.7 shows a distribution of the detected vulnerabili-

ties by order. As we can see, prioritized simulation successfully managed to surface the

vulnerabilities up to the 6th order.

4.5.3 Performance Impact

We used the whitelists produced in the previous experiment to patch the libraries with

LFENCEs and with a modified version of Speculative Load Hardening (see §4.4.4). Specifi-
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Order JSMN Brotli HTTP libHTP libYAML OpenSSL
1 6 79 6 232 97 1344
2 7 9 4 66 81 428
3 5 14 3 33 33 216
4 2 4 3 5 28 91
5 0 2 0 6 6 55
6 0 0 0 2 6 21
7 0 0 0 0 0 0

Table 4.7: Breakdown (by order) of the detected vulnerabilities.

Hardening Type JSMN Brotli HTTP libHTP libYAML OpenSSL
SLH (all) 65% 48% 44% 41% 26% 15%
SLH (c,100) 69% 49% 44% 50% 27% 16%
SLH (c,10) 69% 49% 44% 51% 37% 18%
LFENCE (all) 73% 50% 56% 43% 27% 16%
LFENCE (c,100) 77% 51% 56% 52% 28% 18%
LFENCE (c,10) 77% 51% 56% 53% 39% 20%

Table 4.8: Shares of branches that avoided instrumentation based on the results of fuzzing.
All means that we patched all detected out-of-bounds accesses, regardless of the type; c,100
means that we did not patch uncontrolled vulnerabilities that were triggered at least 100
times, and c,10—uncontrolled that were triggered at least 10 times.

cally, we used two whitelists for every library: a list based on all out-of-bounds accesses

detected by SpecFuzz and a list that excludes uncontrolled vulnerabilities.

Table 4.8 shows the shares of the branches that were not instrumented because of

whitelisting (out of the total number of branches in the application). Naturally, the shares

directly correlate with the fuzzing coverage and with the number of detected vulnerabilities.

If the coverage is large, the whitelisting proves to be very effective: In JSMN, SpecFuzz

reduced the necessary instrumentation by ~77%.

Based on these builds, we evaluated the performance impact of the patches. For the mea-

surements, we used benchmarks included in the libraries, where available; Otherwise, we

used example applications. As such, we executed: the speed benchmark in OpenSSL (specif-

ically, RSA, DSA, and ECDSA ciphers); unbrotli in Brotli; bench in HTTP; test_bench

in libHTP; run-loader in libYAML; and a sample parser in JSMN.

The results are presented in Figure 4.6. For clarity, Table 4.9 shows the same results but

interpreted as a speedup of a whitelisted patch compared to full hardening. As we can see,

the overhead is considerably reduced. The performance cost was, on average, reduced by

23% for SLH and by 29% for LFENCE.

An overall tendency is the higher the coverage of fuzzing, the lower the overhead
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Figure 4.6: Performance overheads of hardening (Lower is better). +SF(all) means that we
patched all detected out-of-bounds accesses, regardless of the type; +SF(cont) means that
we did not patch uncontrolled vulnerabilities that were triggered at least 100 times.

Figure 4.7: Performance improvement of SpecFuzz-based patched compared to full harden-
ing (Higher is better). +SF are builds with fully-automatic whitelists and +SF+ch. are with
whitelist based on manually checked vulnerabilities.

becomes. It stems from our benchmarks executing some of the code paths that could not be

reached by the fuzzing drivers.

Another parameter is the number and the location of detected vulnerabilities. In ECDSA,

SpecFuzz detected vulnerabilities on the hot path and, hence, we were not able to remove

instrumentation from the places where it caused the highest performance overhead. SpecFuzz

was also not effective at improving the LFENCE instrumentation of OpenSSL because it

detected speculative bounds violations in the bignum functions that are located on the hot

path.

A major reason for relatively high overheads is an issue with debug symbols that we

encountered in LLVM. Sometimes, the debug symbols of the same code location would

mismatch between compilations with different flags or would be completely absent for some

instructions. Accordingly, some of the whitelisted locations would still be hardened. Note

that this bug only impacts the performance, not the security guarantees. Nevertheless, when

the issue is resolved, the overheads are likely to get lower.

One interesting example is JSMN, which experienced 5x slowdown with SLH and 11x

with the LFENCE instrumentation. It is caused by an extremely high density of branches in

the application (approximately one branch executed every cycle) and, thus, high reliance

on branch prediction to efficiently utilize instruction parallelism. Complete hardening

effectively disables this optimization and makes the execution much more sequential. At the
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SLH LFENCE
+SF(all) +SF(cont) +SF(all) +SF(cont)

JSMN 233% 234% 131% 132%
Brotli 20% 22% 66% 67%
HTTP 34% 34% 243% 242%
libHTP 15% 15% 40% 52%
libYAML 30% 33% 93% 110%
RSA 17% 19% 2% 2%
DSA 13% 14% 8% 9%
ECDSA 5% 5% 2% 2%

Table 4.9: Performance improvement of SpecFuzz-based patches compared to full hardening.
+SF(all) means that we patched all detected out-of-bounds accesses, regardless of the type;
+SF(cont) means that we did not patch uncontrolled vulnerabilities that were triggered at
least 100 times.

Order JSMN Brotli HTTP libHTP libYAML OpenSSL
Both 1 6 1 78 3 992
RHS 0 4 3 36 3 601
RHS/covered 0 (1) 0 0 0 (1)

Table 4.10: Vulnerabilities detected by SpecFuzz and RH Scanner. The first row are the
vulnerabilities detected by both tools; the second—only by RH Scanner; the third row are
the vulnerabilities detected only by RH Scanner and located on the paths covered during our
fuzzing experiments.

same time, SpecFuzz found very few vulnerabilities in JSMN and had high coverage (96%).

Hence, the patches improved the performance by 230% (LFENCE) and 130% (SLH)

4.5.4 Comparison with Other Tools

Spectre Scanner. For comparison, we also tested the libraries with RedHat Scanner

(Table 4.10). Although it detected fewer vulnerabilities than SpecFuzz, it found many

vulnerabilities that SpecFuzz did not (second row). The reason behind it is almost all

of them were located in the parts of code not covered during fuzzing. There were only

two exceptions (row three), but both turned out to be false positives. (Because of the

overwhelming amount of data, we did not investigate which share of the second row were

false positives).

Note that when the whitelist-based patching is applied (§4.4.4), these undetected vulner-

abilities do not compromise the security guarantees of SpecFuzz.

Respectre. Thanks to a cooperation with GRSecurity, we were able to also compare our
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1 int base64_decode_single(signed char value_in) {
2 static signed char decoding[] = {62, -1, ...}; // 80 elements
3 value_in -= 43;
4 if ((value_in < 0) || (value_in > decoding_size - 1))
5 return -1;
6 return decoding[(int) value_in];
7 }
8 ...
9 int htp_base64_decode(const void *code_in, ...) {

10 signed char fragment;
11 ...
12 do {
13 ...
14 fragment = base64_decode_single(*code_in++);
15 } while (fragment < 0);
16 ...
17 }

Figure 4.8: A BCB vulnerability in a Base64 decoding function.

results to a commercial static analysis tool Respectre [126]. As a test case we selected

libHTP. In total, Respectre detected 167 vulnerabilities, out of which SpecFuzz found 79.

Similarly to the previous experiment, the other 88 are located in the parts of libHTP not

covered by fuzzing.

SpecFuzz was able to detect more vulnerabilities due to its more generic nature: For

example, it can detect vulnerabilities that span multiple functions. On the other hand,

Respectre is not confined by coverage and it can detect vulnerabilities in the parts of the

application that cannot be reached by fuzzing.

Note, however, that these numbers are based on the raw outputs of both tools. It is

possible that they include false positives. We attempted to manually analyze them, but the

task appeared to be too complex. Speculative vulnerabilities in real software constitute of

complex interactions of correct and wrong predictions, and analyzing them by just looking at

the code has proven to be too error prone. Therefore, we report only raw numbers and leave

the analysis of false positives to future work (e.g., to program analysis tools, as discussed in

§4.6).

4.5.5 Case Studies

In this section, we present a detailed overview of three potential vulnerabilities found by

SpecFuzz. Note that we did not test them in practice.

87



Chapter 4. SpecFuzz: Fuzzing Software for Speculative Vulnerabilities

1 const unsigned long tag2bit[32] = {...};
2 unsigned long ASN1_tag2bit(int tag) {
3 // misspeculation required
4 if ((tag < 0) || (tag > 30)) return 0;
5 return tag2bit[tag];
6 }
7 int asn1_item_embed_d2i(ASN1_VALUE **pval, ...) {
8 int otag;
9 ...

10 switch (it->itype) {
11 case ASN1_ITYPE_MSTRING:
12 ret = asn1_check_tlen(..., &otag, ...);
13 ...
14 if (!(ASN1_tag2bit(otag) & it->utype)) {...}
15 }
16 }
17 int asn1_check_tlen(..., int *otag, int expclass) {
18 ...
19 // decodes the ptag from message
20 i = ASN1_get_object(..., &ptag);
21 ...
22 if (exptag >= 0) {
23 if ((exptag != ptag) || (expclass != pclass)) {
24 // misspeculation required
25 ...
26 }

Figure 4.9: A BCB vulnerability in a ASN1 decoding function.

Speculative Overflow in libHTP base64 decoder. One of the utility functions that libHTP

provides is base64 decoder, which is used to receive user data or parameters that may be sent

in text format. This functionality is implemented in function htp_base64_decode, which

calls function base64_decode_single in a loop. base64_decode_single decodes a Base64

encoded symbol by looking it up in a table of precomputed values (array decoding, lines

2–3). Before fetching the decoded symbol, the function checks the value for over- and

underflows. The attacker can bypass the check by training the branch predictor and, thus,

trigger a speculative overread at line 7.

Two properties make this vulnerability realistically exploitable. First, the attacker has

control over the accessed address because the array index (value_in) is a part of the HTTP

request. Second, the fetched value is further used for defining the control flow of the

program (see the comparison at line 16), which allows the attacker to infer a part of the

value (specifically, its sign) by observing the cache state.
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The attacker could execute the attack as follows. She begins by sending a probing

message to find out which cache line the first element of the array decoding uses. Then, she

sends a valid message to train the branch predictor on predicting the bounds check (line

5) as true. Finally, she resets the cache state (e.g., flushes the cache) and sends a message

that contains a symbol that triggers an overread, followed by a symbol that triggers a read

from the first array element. If the read value is negative, the loop will do one more iteration,

execute the second read, and the attacker will see a change in the state of the corresponding

cache line. Otherwise, the loop will be terminated and the state will not change.

Speculative Overflow in OpenSSL ASN1 decoding. Another vulnerability is in OpenSSL

ASN1 decoder. It is used to decode, for example, certificates that clients send to the server.

The attacker sends malicious ASN1 data to the victim. The victim uses asn_∗_d2i
family of functions to parse the message. One of the functions is asn1_item_embed_d2i,

which, among others, decodes components of type MSTRING, verifying its tag in the process.

The tag of the message is extracted through a call to asn1_check_tlen function, which

delegates this calculation to ASN1_get_object. asn1_check_tlen verifies if the received tag

matches the expected one (lines 22 and 23), however a misspeculation on any of these lines

can nullify this check. Later, asn1_item_embed_d2i calls ASN1_tag2bit on the decoded

tag value. If misspeculation happens in this function as well (line 4), the array tag2bit will

be indexed with a potentially unbounded 4-byte integer. Later, this value is used to derive

the control flow of the application (line 14), which may be used to leak user information.

4.6 Discussion

4.6.1 Other Spectre Attacks

Bounds Check Bypass is not the only type of speculative vulnerabilities that could be

detected by speculative exposure. Below we give an overview of instrumentation that can be

used for other Spectre-type attacks.

Branch Target Injection [142] is a Spectre variant targeting speculation at indirect jumps.

When an indirect jump instruction is executed, the CPU speculates the jump target using the

branch predictor without waiting for the actual target address computation to finish. The

attacker can exploit this behavior by training the branch predictor to execute a jump to a

code snippet that would leak program data via a side channel.

SpecFuzz could be modified to simulate BTI by maintaining a software history buffer

for every indirect branch in the application. Then, at an indirect branch, SpecFuzz would (i)

record the current branch target into the history buffer and (ii) run a simulation for every
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previously recorded target. This approach works, however, only under the assumption that

attacker can train the branch predictor only by providing data to the application and cannot

inject arbitrary targets into the branch predictor’s history buffer from another application on

the same core.

Return Address Misprediction [164, 147] attack is a variant of Branch Target Injection.

The CPU maintains a small number of most recently used return addresses in a dedicated

cache, pushing the return address into this cache on each call instruction and popping it

from the cache on each return instruction. When this cache becomes empty, the CPU

will speculate the return address using the indirect Branch Target Buffer. To simulate this

vulnerability, SpecFuzz could instrument call and return instructions to, correspondingly,

increment and decrement a counter, jumping to an address from history buffer on return

addresses with negative or zero counter value. This simulation should be combined with

the previous one as the return address prediction could fall back to indirect branch target

prediction.

Speculative Store Bypass [101] is a microarchitectural vulnerability caused by CPU ignor-

ing the potential dependencies between load and store instructions during speculation. When

a store operation is delayed, a subsequent load from the same address may speculatively

reuse the old value from the cache. To simulate this attack, SpecFuzz could be extended

to start a simulation before every write to memory. Then, SpecFuzz would skip the store

during the simulation, but execute it after the rollback.

4.6.2 Limitations

In this section, we discuss the conceptual problems we have discovered while developing

SpecFuzz as well as potential solutions to them.

Reducing the Complexity of Nested Simulation. As we discussed in §4.3.2, complete

nested simulation is too expensive and limiting the order of simulation may lead to false

negatives. One way we could resolve this problem is by statically analyzing the program

before fuzzing it, such that the typical vulnerable patterns as well as typical false positives

would be purged from the simulation, thus reducing its cost.

False Negatives. SpecFuzz will not find a vulnerability if the fuzzer does not generate an

input that would trigger it. Unfortunately, it is an inherent problem of fuzzing.

SpecFuzz will also not detect the vulnerabilities of different types other than out-of-

bounds accesses (e.g., use-after free, missing permission checks). Detecting them would

require applying the corresponding integrity checking techniques instead of AddressSani-

tizer.
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Fuzzing Driver. Another inherent issue of all fuzzing techniques is their coverage. As we

saw in §4.5, it highly depends on the fuzzing driver and a bad driver may severely limit

the reach of testing. Since we use whitelist-based patching, low coverage may cause high

performance overhead in patched applications. It could be improved by applying tools that

generate drivers automatically, such as FUDGE [32].

Mislabeling. During the evaluation, we discovered that our vulnerability analysis technique

(see §4.4) sometimes gives a false result and mistakenly labels an uncontrolled vulnerability

as a controlled one. It happens because AddressSanitizer reports only the accessed address

and not the distance between the address and the referent object (i.e., offset). Therefore, if

the object size differs among the test runs, the accessed address will also be different, even

if the offset is the same.

For example, one common case of mislabeling is off-by-one accesses. If an array is read

in a loop, our simulation will force the loop to take a few additional iterations and read a few

elements beyond the array’s bounds. If the array size differs from one test run to another,

the analysis would mark this vulnerability as controllable.

To avoid this issue, we could use a more complete memory safety technique (e.g., Intel

MPX [130]) that maintains metadata about referent objects. Unfortunately, none of such

techniques is supported by LLVM out-of-the-box. To resolve this issue, we would have to

implement MPX support or migrate SpecFuzz to another compiler.

An even better solution would be to use a program analysis technique (e.g., taint analysis

or symbolic execution) to verify the attacker’s control. We leave it to future work.

Legacy Code and Callbacks. Because we implemented SpecFuzz as a compiler pass,

it cannot run the simulation in non-instrumented parts of the application (e.g., in system

libraries) as well as in the calls from these parts (callbacks). To overcome this problem, we

could have implemented SpecFuzz as a binary instrumentation tool (e.g., with PIN [163]).

Yet, techniques of this type are normally heavy-weight and it would considerably increase

the required fuzzing time.

We presented a technique to make speculative execution vulnerabilities visible by

simulating them in software. We demonstrated the technique by implementing a Bounds

Check Bypass detection tool called SpecFuzz. During the evaluation, the tool has proven to

be more effective at finding vulnerabilities than the available static analysis tools and the

patches produced based on the fuzzing results had better performance than conservative

hardening techniques.
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Chapter 5
Varys: Runtime Validation of System Defences

In this chapter, our goal is to develop a method to continuously check if the system creates

such an execution environment that precludes the attacker from reading traces.

A distinct property of system defences is that they can be disabled or reconfigured at

runtime, and the protected applications will not know about it. Thus, to ensure a secure

execution environment, we have to continuously check if the system correctly serves the

application requests.

The task becomes particularly important when privileged software (e.g., the OS kernel

or the hypervisor) is under the attacker’s control. It may happen, for example, when the

program executes in an untrusted cloud environment, which corresponds to the privileged

threat model in §2.2. Under a privileged attacker, the victim has no guarantees that the

system will provide the requested defences. Instead, it may accept the request, pretend that

it enabled the defence, but in fact leave it disabled. Thus, the application needs a way of

validating the defence without relying on the OS or the hypervisor.

The first step to protecting an application from a privileged adversary is to rely on a

Trusted Execution Environment, such as Intel SGX [130]. SGX enclaves provide a shielded

environment to securely execute sensitive programs on commodity CPUs. They enforce

integrity and confidentiality of the program data on the hardware level, thus preventing

any code outside an enclave from accessing it. As such, Intel SGX prevents a privileged

adversary from directly attacking the victim program. Unfortunately, its security guarantees

do not extend to microarchitectural attacks [51, 102, 273, 245, 254, 117], and enclaves still

have to rely on system software for microarchitectural protection. Thus, the problem of

validating system defences from within Intel SGX enclaves remains open.
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5.1 System Overview

We introduce a technique for validating system defences from within an Intel SGX enclave.

The key idea is self-monitoring: we modify the application to constantly monitor its ex-

ecution environment in search of side-effects of a side-channel attack. We also request

the system to make these side-effects impossible under normal circumstances, so that their

presence becomes a clear indicator of an ongoing attack.

We showcase the technique in Varys, a tool that defends SGX enclaves against cache

timing and page table attacks. Varys requests a potentially malicious OS to provide a

side-channel protected execution environment. To validate the request, a trusted runtime

inside the enclave continuously monitors its execution to detect violations of the requested

environment.

Protected Environment. With respect to the requested environment, our main observation

is that all published page table and L1/L2 cache timing attacks on SGX require either a

high rate of enclave exits, or control of a sibling hyperthread on the same CPU core with

the victim. Consequently, if an enclave is guarded against frequent exits and executes on a

dedicated CPU core without sharing it with untrusted threads, it would be protected.

Varys relies on trusted core reservation1. It requests the OS to create such an environment

that the attacker cannot access the core’s resources shared with the enclave threads while

they are running, nor can it recover any secrets from the core’s L1 and L2 caches afterward.

A simple way to achieve it would have been to disable hyperthreading, but it causes

performance degradation [236]. Instead, Varys requests the OS to schedule enclave threads

in pairs such that they always run together on the same physical core. Assuming a standard

processor with SMT §2.1.5, the threads occupy both hardware threads of the core, and the

attacker cannot access the core’s caches. It also prevents exit-less side-channel attacks on

page table attributes [245] because they require the attacker’s access to the core’s TLB—

available only if the attacker thread is running on that core. Additionally, to ensure that

the victim leaves no traces in the caches when de-scheduled from the core, Varys explicitly

evicts the caches when the enclave threads are preempted.

To reduce the frequency of legitimate exits and to lower the false positives, Varys uses

exitless system calls [31] and in-enclave thread scheduling such that multiple application

threads can share the same OS thread. Moreover, Varys configures the OS to reduce the

frequency of interrupts routed to the core in order to avoid interference with attack-free

program execution.

1After the publication of our original paper, this feature was introduced in Linux under the name Core
Scheduling [88]. To the extent of our knowledge, it was developed independently of our work.
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Self-monitoring. The primary challenge that Varys addresses is maintaining the protected

environment in face of a potentially malicious OS. An untrusted OS may ignore the request

to pin two enclave threads to the same physical core, and may preempt each of the threads

separately in an attempt to break Varys’s defense. Varys prevents these threats via two

mechanisms:

• Thread Handshake: To validate trusted reservation, the paired application threads

periodically communicate with each other via an on-core side channel (we call it a

handshake). If they are scheduled correctly (i.e., on the same core), the signal will

pass through the channel; otherwise, the threads will not observe the signal.

• Asynchronous Enclave Exit Monitoring: Varys monitors enclave exits (e.g., for

scheduling another process on the core or handling an exception), and restricts their

frequency, terminating the enclave once the frequency bound is exceeded. Varys

sets the bound to the values that render all known attacks impossible. Notably, the

bound is much higher than the frequency of exits in an attack-free execution, thereby

minimizing the chances of false positives (see §5.3.1).

If either of these checks fails, Varys terminates the enclave.

Hardware Extensions. Due to the lack of appropriate hardware support in today’s SGX

hardware, Varys remains vulnerable to timing attacks on Last Level Cache (LLC) as we

explain in §5.7. We suggest a few minor hardware modifications that hold the potential

to solve this limitation and additionally, eliminate most of the runtime overhead. These

extensions allow the operating system to stay in control of resource allocations but permit

an enclave to determine if its allocation has changed.

5.2 Background: Intel Software Guard Extensions

A Trusted Execution Environment (TEE) is a special execution mode where the hardware

guarantees integrity and/or confidentiality of the program’s code and data.

Intel Software Guard Extensions is an ISA extension that adds hardware support for TEE

in Intel CPUs. SGX offers creation of enclaves—isolated and encrypted memory regions,

with code running in a novel enclave execution mode. As such, SGX enclaves prevent

privileged software from reading and modifying the application data, and from directly

observing its execution.

The memory region protected by SGX is called Enclave Page Cache (EPC). Accesses

to the EPC go through the Memory Encryption Engine (MEE), a hardware module that
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transparently encrypts all the data that the program writes into EPC, and decrypts when the

program reads it.

EPC paging. In the early versions of SGX, the EPC size was limited (as small as 128 MB

in SGX v1), but enclaves could use more virtual memory via paging. EPC paging happens

when a page not backed by physical memory is accessed. The CPU, in coordination with the

OS kernel, encrypts contents of the EPC page, stores it in untrusted memory, and allocates

the EPC page to a new virtual page. The eviction mechanism preserves confidentiality,

integrity, and freshness of EPC pages.

AEX. The enclave data is encrypted only when it is stored in memory (i.e., in EPC), but not

when it is in the CPU registers or caches. Thus, upon a hardware exception (e.g., fault or

interrupt), the OS could read enclave’s data in the CPU registers. To prevent it, SGX has a

mechanism of Asynchronous Enclave Exits (AEX), where the CPU automatically stores the

register values into the encrypted memory and resets the registers before re-directing the

exception to the OS.

Restrictions. Code running inside an enclave is subject to several restrictions: it can neither

directly jump to code outside the enclave nor directly invoke system calls and several

trapping instructions. Enclaves are running in the address space of the host userspace

application and can access all data that is mapped into this address space.

5.3 Protected Environment

Varys relies on the OS to provide an environment protected from side-channel attacks on

L1/L2 caches and on page tables. This section analyzes the runtime conditions required for

these attacks to be successful, and describes the environment that prevents the conditions.

5.3.1 Attack Requirements

Cache attacks (§2.3.2) can be classified into either concurrent, i.e., running in parallel with

the victim, or time-sliced, i.e., time-sharing the core (or a hyperthread) with the victim.

Time-sliced cache attacks =⇒ high AEX rate. For a time-sliced attack to be successful,

the runtime of the victim in each time slice must be short; otherwise, the cache noise will

become too high to derive any meaningful information. For example, the attack described

by Zhang et al. [286] can be prevented by enforcing minimal runtime of 100us [248],

which translates into the interrupt rate of 10kHz. This rate is dramatically higher than the

preemption rate under normal conditions—below 100Hz (see §5.3.3). If the victim is an

enclave thread, its preemption implies an AEX.
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Concurrent cache attacks =⇒ shared core. The adversary running in parallel with the

victim must be able to access the cache level shared with it. Thus, L1/L2 cache attacks are

not possible unless the adversary controls a sibling hyperthread.

We note that with the availability of the Cache Allocation Technology (CAT) [130], the

share of the Last Level Cache (LLC) can also be allocated to a hardware thread, preventing

any kind of concurrent LLC attacks [161]. However, this defense is ineffective for SGX

because the allocation is controlled by an untrusted OS. We suggest one possible solution to

this problem in §5.7.

Page-fault page table attacks =⇒ high AEX rate. These attacks inherently increase the

page fault rate, and consequently AEX rate, as they induce page faults to infer the accessed

addresses. For example, as reported by Wang et al. [254], a page table attack on EdDSA

requires approximately 11000 exits per second. In fact, high exit rates have already been

used as an attack indicator [223, 108].

Interrupt-driven page-bit attacks =⇒ high AEX rate. If the attacker does not share

a physical core with the victim, these attacks incur a high exit rate because the attacker

must flush the TLB on a remote core via Inter-Processor Interrupts (IPIs). The rate is cited

to be around 5500Hz [245, 254]. While lower than other attacks, it is still above 100Hz

experienced in attack-free execution (§5.3.3).

Exit-less page-bit attacks =⇒ shared core. The only way to force TLB flushes without

IPIs is by running an adversary thread on the same physical core as the victim to force TLB

evictions [254]. These attacks involve no enclave exits, hence are called silent.

In summary, all the known page table and L1/L2 cache timing side-channel attacks on

SGX rely on 1⃝ an adversary-controlled sibling hyperthread on the same physical core,

or/and 2⃝ an abnormally high rate of asynchronous enclave exits. The only exception is the

case when the victim has a slowly-changing working set, which we discuss in §5.6.3.

5.3.2 Trusted Core Reservation

The simplest way to ensure that an adversarial hyperthread cannot perform concurrent

attacks on the same physical core would be to disable hyperthreading [166]. However, doing

so significantly hampers application performance.

An alternative approach is to allow sharing of a core only by benign threads. Considering

that in our threat model only the enclave is trusted, we allow core sharing only among the

threads from the same enclave. We can achieve this goal by dividing the application threads

into pairs (if the number of threads is odd, we spawn a dummy thread) and requesting the

OS to schedule the pairs on the same cores.
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5.3.3 Restricting Enclave Exit Frequency

To prevent attacks with a high AEX rate, we request the system to reduce the baseline rate

of exits. Ensuring it is imperative for our approach because a high exit rate under normal

conditions makes it harder to distinguish an attack from the attack-free execution. In the

worst case, if the application’s normal exit rate is sufficiently high (i.e., more than 5500

exits/second, see below), the adversary does not have to introduce any additional exits and

can abuse the existing ones to retrieve information. Therefore, we have to analyze the

sources of exits and the ways of eliminating or reducing them.

Under SGX, an application may exit the enclave for one of the following reasons:

1. When the application needs to invoke a system call;

2. To handle system timer interrupts, with up to 1000 AEX/s, depending on the kernel

configuration;

3. To handle other interrupts, which could happen especially frequently if Varys runs

with a noisy neighbor (e.g., a web server);

4. To perform EPC paging when the memory footprint exceeds the EPC size;

5. To handle minor page faults, which could happen frequently if the application works

with large files.

Additionally, SGX enclaves may exit when the application tries to execute a forbidden

instruction in the enclave mode. Unfortunately, there is no workaround for such instructions

except re-writing the application code.

We strive to reduce the number of enclave exits as follows. We use asynchronous

exit-less system calls implemented, for example, in Eleos [187] and SCONE [31] (which we

use in our implementation). Further, we combine asynchronous system calls with user-level

thread scheduling inside the enclave to avoid reliance on the OS scheduling. When a user

thread issues a system call, the arguments of this system call are copied to the outside of the

enclave in the untrusted shared memory region. The enclave thread scheduler switches to

another user thread, and restarts the preempted one only when the system call returns. We

avoid timer interrupts by setting the timer frequency to the lowest available (100 Hz), and

enabling the DynTicks feature of the Linux kernel, which further reduces the rate of timer

interrupts. Regular interrupts are re-routed to non-enclave cores. Last, we prevent minor

page faults when accessing untrusted memory via MAP_POPULATE flag to mmap calls.

To evaluate the overall impact of these changes, we measure the exit frequencies of

the applications in PARSEC and Phoenix benchmark suites (see §5.6 for the benchmarks’

description). The results are shown in Figure 5.1.
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Figure 5.1: AEX rates under normal system configuration and with re-configured system.

As we see, the rate is relatively stable across the benchmarks and much lower than the

potential attack rate of more than 1000 exits per second. Specifically, the attack presented by

Van Bulck et al. [245] has one of the lowest interrupt rates among the published time-sliced

attacks. We ran the open-sourced version of the attack and observed the rate of at least 5500

exits per second, which is in line with the rate presented in the paper. Correspondingly, if

we detect that the AEX rate is getting above 100 Hz, we can consider it a potential attack

and take appropriate measures. To avoid false positives, we could set the threshold even

higher—around 2kHz—without compromising security (this is illustrated in §5.6.3).

5.4 Method: Enclave Self-Monitoring

To validate the protected environment, Varys monitors the enclave execution. It checks if

any of the enclave threads are sharing a core with another process, and if the AEX rate is

abnormally high.

5.4.1 Thread Handshake

Since we do not trust the OS, we ensure collocation by establishing a covert channel in the

L1 cache. The idea is to determine whether the threads share the L1 cache or only LLC.

The latter would imply the threads are on different physical cores.

We refer to the procedure that determines the threads co-location on the core as a

handshake. To perform the handshake, we establish a simple covert channel between the

threads via L1: One of the two threads writes a dummy value to a shared memory location,

thus forcing it to L1. Then, the sibling thread reads the same memory location and measures

the timing. If the reading is fast (up to 10 cycles per read), both threads use the same L1

cache, otherwise (more than 40 cycles) they share only LLC, implying they are on different

cores. If the threads indeed run on different cores, the OS did not satisfy the scheduling

request made by Varys. We conclude that the enclave is under attack and terminate it. As

SGX does not provide a trusted fine-grain time source, we implement our own (§5.5.2).
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The operating system could compromise the handshake by rescheduling these threads on

different cores immediately after the handshake. However, this rescheduling would cause an

asynchronous enclave exit (AEX), which we detect via AEX monitoring as we discuss next.

5.4.2 AEX Monitoring

To detect an asynchronous enclave exit, we monitor the SGX State Save Area (SSA). The

SSA is used to store the execution state of an enclave upon an AEX. Since some parts of the

enclave execution state are deterministic, we can detect an AEX by overwriting one of the

SSA fields with an invalid value and monitoring it for changes.

For example, the Program Counter register (PC) never contains a zero value during a

normal program execution, because it implies execution of the NULL page. Thus, if we

write zero to the SSA field that stores PC, SGX will overwrite it with a non-zero value at

every AEX. To detect an AEX, we periodically read and compare this field with zero. Note,

it is not the only SSA field that we could use for this purpose; many other fields, such as

EXIT_TYPE, could be used too.

Now that we have a detection mechanism, it is sufficient to count the AEX events and

abort the application if they are too frequent. Yet to calculate the frequency, we need a trusted

time source that is not available for enclaves. Fortunately, precise timing is not necessary for

this particular purpose as we would only use the time to estimate the number of instructions

executed between AEXs. It is possible to estimate it through the AEX monitoring routine

that our compiler pass (§5.5.1) adds to the application. Since it adds the routine every few

hundred LLVM IR instructions, counting the number of times it is called serves as a natural

counter of LLVM IR instructions. In Varys, we define the AEX rate as a number of AEXs

per number of executed IR instructions.

Even though IR instructions do not correspond to machine instructions, one IR instruction

maps on average to less than one x86-64 machine instruction1. Thus, we overestimate the

AEX rate, which is safe from the security perspective.

Originally, we considered using TSX (Transactional Synchronization Extensions) to

detect AEXs—similar to the approach proposed by Gruss et al. [108]. The main limitation

of TSX is, however, that it does not permit non-transactional memory accesses within

transactions. Hence, handshaking is not possible within a TSX transaction—this would lead

to a transaction abort. Moreover, the maximum transaction length is limited, and we would

need to split executions into multiple transactions.

1In our experience with Phoenix and PARSEC benchmark suites, calling the monitoring routine every 100
IR instructions resulted in the polling period of 70–150 cycles.
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1 while(true) {
2 wait_for_request();
3 if (secret == 0) {
4 int response = *a;
5 } else {
6 int response = *b;
7 }
8 }

Figure 5.2: An example of code leaking information in cache side-channel even with a
low frequency of enclave exits. If a and b are on different cache lines and the requests are
coming infrequently, it is sufficient to probe the cache at the default frequency of OS timer
interrupts.

5.4.3 Removing Residual Cache Leakage

Even with a low frequency of enclave exits, some leakage will persist if the victim has

a slowly changing working set. Consider the example in Figure 5.2: The replies to user

requests depend on the value of a secret. If requests arrive infrequently (e.g., one per second),

restricting the exit frequency would not be sufficient; even if we set the bar as low as 10

exits per second (the rate we achieved in §5.3.3), the victim will touch only one cache line

and thus, will reveal the secret.

To completely remove the leakage at enclave exits, we need to flush the cache before

exiting the enclave. This would remove any residual cache traces that an adversary could use

to learn whether the enclave has accessed certain cache lines. Unfortunately, this operation

is unavailable at userspace on Intel CPUs [130], and we have no possibility to request a

cache flush at each AEX. Moreover, Ge et al. [95] have proven that the kernel-space flush

commands do not flush the caches completely. The CLFUSH instruction does not help either

as it flushes a memory address, not the whole cache set. Thus, it cannot flush the adversary’s

eviction set residing in a different virtual address space, as it is the case in Prime+Probe

attacks.

Instead, on each enclave entry, we write a dummy value to all cache lines in a continuous

cache-sized memory region (e.g., 32 KB for L1), hereafter called eviction region. In case of

L1, for which instruction and data are disjoint, we also execute a 32 KB dummy piece of

code to evict the instruction cache. This way, regardless of what the victim does in between

the exits, an external observer will see that all the cache sets and all the cache ways were

accessed and no information will be leaked.
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5.5 Implementation

We implement Varys as an LLVM compiler pass that inserts periodic calls to a runtime

library. We use SCONE to provide us with asynchronous system calls as well as in-enclave

threading so that we minimize the need for an application to exit the enclave.

5.5.1 LLVM Compiler Pass

The cornerstone of Varys is the enclave exit detection. As discussed in §5.4.2, it requires all

application threads to periodically poll the SSA region. Although we implement the checks

as a part of a runtime library (§5.5.2), calls to the library have to be inserted directly into the

application. To do this, we instrument the application using LLVM [153].

The goal of the instrumentation pass is to call the library and do the SSA polling with a

predictable and configurable frequency. We achieve it by inserting the following sequence

before every basic block: We increment a counter by the length of the basic block (in

LLVM IR instructions), call the library if the counter reached a threshold, and skip the

call otherwise. If the basic block is longer than the threshold, we add several calls. This

way, the checks will be performed each time the application executes a given (configurable)

number of IR instructions. We also reserve one of the CPU registers for the counter, as it is

manipulated every few instructions, and having the counter in memory would cause much

higher overheads.

A drawback of SSA polling is that it has a blind zone. If a malicious OS preempts

a thread multiple times in a very short period of time, the interrupts may happen before

the counter reaches the threshold, and the thread checks the SSA value. Hence, they will

be all counted as a single enclave exit. This allows an adversary to launch stealthy cache

attacks on small pieces of code by issuing occasional series of frequent preemptions. Yet

this vulnerability would be hard to exploit because the blind zone is narrow—on the order

of dozens of cycles, depending on the configuration—and the adversary must run in tight

synchronization with the victim to retrieve any meaningful information.

Optimization. Adding even a small piece of code to every basic block could be expensive

as the blocks themselves are often only 4–5 instructions long. We avoid this by applying the

following optimization.

Consider a basic block B0 with two successors, B1 and B2. In a naive version, at the

beginning of each basic block we increment the IR instruction counter by the length of the

corresponding basic block. However, if B0 cannot jump into itself, it will always proceed to

a successor. Therefore, it is sufficient to increment the counters only at the beginnings of B1
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Figure 5.3: State diagram of a Varys-protected application.

and B2 by, accordingly, length(B0)+length(B1) and length(B0)+length(B2). If B1 or

B2 have more than one predecessor, it could lead to overestimation and more frequent SSA

polling, which only reduces the blind zone.

5.5.2 Runtime Library

Most of Varys’ functionality is contained in a runtime library implementing the state machine

in Figure 5.3. When a program starts, it begins normal execution (S0). As long as the

program is in this state, it counts executed instructions thus simulating a timer.

When one of the threads is interrupted, the CPU executes an AEX and overwrites the

corresponding SSA (S1). As its sibling thread periodically polls the SSA, it eventually

detects the exit. Then, if the program has managed to make sufficient progress since the last

AEX (i.e., if the IR instruction counter has a large enough value), it transfers to the detected

state (S2). Otherwise, the program terminates. To avoid false positives, we could terminate

the program only if it happens several times in a row.

In S2, the sibling declares that the handshake is pending and starts busy-waiting. When

the first thread resumes, it detects the pending handshake, and the pair enters state S3. If the

handshake fails, the program is terminated2. Otherwise, one of the threads evicts L1 and L2

caches, and the pair continues normal execution.

Software Timer. To perform cache measurements during the handshake phase, we need a

trusted fine-grained source of time. Since trusted hardware time counters are not available

in the current version of SGX, we implement it in software (similar to Schwarz et al. [211]).

We spawn an enclave thread incrementing a global variable in a tight loop, giving us

2In practice, timing measurements are noisy and the handshake may fail for benign reasons. Therefore, we
retry it several times and consider it failed only if the timing is persistently high.
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1 .align 64
2 label1: JMP label2 // jump to the next cache line
3 .align 64
4 label2: JMP label3

Figure 5.4: A code snippet evicting cache lines in the L1 instruction cache. For evicting a
32 KB cache, the pattern is repeated 512 times.

approximately one tick per cycle.

However, the frequency of the software timer is not reliable. An adversary can abuse

the power management features of modern Intel CPUs and reduce the timer tick frequency

by reducing the operational frequency of the underlying core. If the timer becomes slow

enough, the handshake will always succeed. To protect against it, we measure the timing

of a constant-time operation. Then, we execute the handshake only if the measurement

matches the expected value.

Instruction Cache Eviction. Writing to a large memory region is not sufficient for evicting

L1 or L2 caches. L1 has separate caches for data (L1D) and instructions (L1I), and L2 is

non-inclusive, which means that evicting L2 does not imply evicting L1I. Hence, the attacks

targeting execution path are still possible.

To evict L1I, we have to execute a large chunk of code. The fastest way of doing so is

shown in Figure 5.4. The code goes over a 32 KB region and executes a jump for each cache

line thus forcing it into L1I.

L2 Cache Eviction. Evicting L2 cache is not as straightforward as L1 as it is physically-

indexed physically-tagged (PIPT) [270]. For the L2 cache, allocating and iterating over a

continuous virtual memory region does not imply access to continuous physical memory,

and therefore does not guarantee cache eviction. A malicious OS could apply cache

colouring [43, 136] to allocate physical pages in a way that the vulnerable memory locations

map to one part of the cache and the rest of the address space to another. This way, the

vulnerable cache sets would not be evicted, and the leakage would persist.

With L2 cache, we do two passes over the eviction region. The first time, we read the

region to evict the L2 cache. The second time, we read and measure the timing of this read. If

the region is continuous, the first read completely fills the cache and the second read should

be relatively fast as all the data is in the cache. However, if it is not the case, some pages of

the eviction region would be competing for cache lines and evicting each other, thus making

the second read slower. We use this as an indicator that L2 eviction is not reliable and we

should try to allocate another region. If the OS keeps serving non-continuous memory, we

terminate the application as the execution cannot be considered reliable anymore.
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Figure 5.5: Performance impact of Varys security features with respect to native SGX
version. Each next bar includes all the previous features. (Lower is better.)

5.5.3 SCONE

We base our implementation on SCONE [31], a shielding framework for running unmodified

applications inside SGX enclaves. Among other benefits, SCONE provides two features

that make our implementation more efficient and compact. First, it implements user-level

threading, which significantly simplifies thread pairing. As the number of enclave threads

is independent of the number of application threads and fixed, it suffices to allocate and

initialize thread pairs at program startup. Second, it provides asynchronous system calls.

They not only significantly reduce the rate of enclave exits but also make this rate more

predictable and application agnostic.

We should note that Varys is not conceptually linked to SCONE. We could have avoided

user-level threading by modifying the standard library to dynamically assign thread pairs.

The synchronous system calls are also not an obstacle, but they require a mechanism to

distinguish different kinds of enclave exits.

5.6 Evaluation

In this section, we answer the following questions:

• What are the runtime overheads of Varys?

• How does it influence scalability of multithreaded applications?

• How efficiently does it detect violations of trusted reservation and high AEX rates?

• What is the rate of false positives?

5.6.1 Experimental Setup

Applications. We base our evaluation on the Fex evaluation framework (Appendix A),

with PARSEC [45] and Phoenix [200] benchmark suites as workloads. The following
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Figure 5.6: IPC (instructions/cycle) numbers for native and protected versions.

benchmarks were excluded: raytrace depends on the dynamic X Window System libraries

not shipped together with the benchmark; freqmine is based on OpenMP; facesim and ferret

fail to compile under SCONE due to position-independent code issues. Together with the

benchmarks, we recompile and instrument all the libraries they depend upon. We also

manually instrument the most frequently used libc functions so that at least 90% of the

execution time is spend in a protected code. We used the largest inputs that do not cause

intensive EPC paging as otherwise, they could lead to frequent false positives.

Methodology. All overheads were calculated over the native SGX versions build with

SCONE. The reported results are averaged over 10 runs and the “mean” value is a geomean

across all the benchmarks.

Testbed. We ran all the experiments on a 4-core (8 hyperthreads) Intel Xeon CPU operating

at 3.6 GHz (Skylake microarchitecture) with 32 KB L1 and 256 KB L2 private caches, an

8 MB L3 shared cache, 64 GB of RAM, and a 1TB SATA-based SSD. The machine was

running Linux kernel 4.14. To reduce the rate of enclave exits, we configured the system as

discussed in §5.3.3.

5.6.2 Performance Evaluation

Runtime. Figure 5.5 presents the runtime overheads of different Varys security features.

On average, the overhead is ~15%, but it varies significantly among benchmarks.

A major part of the overhead comes from the AEX detection, which we implement as

a compiler pass. Since the instrumentation adds instructions that are not data dependent

on the application’s data flow, they can run in parallel. Therefore, they highly benefit from

instruction level parallelism (ILP), which we illustrate with Figure 5.6. The applications

that have lower ILP utilization in the native version (e.g., canneal and stream cluster) can

run a larger part of the instrumentation in parallel, thus amortizing the overhead.

Since we apply instrumentation per basic block, another factor that influences the

overhead is the average size of basic blocks. The applications dominated by long sequences
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Figure 5.7: Impact of the SSA monitoring frequency on performance. (Lower is better.)

of arithmetic operations (e.g., linear regression) tend to have longer basic blocks and lower

number of additional instructions (53% in this case), hence the lower overhead. At the same

time, the applications with tight loops on the hot path cause higher overhead. Therefore,

string match has higher overhead than kmeans, even though they have approximately the

same ILP utilization.

The second source of overhead is trusted reservation. It does not cause a significant

slowdown because the handshake protocol is relatively small, including ten memory accesses

for the covert channel and the surrounding code for the measurement. The overhead could

be higher as the handshake is synchronized, i.e., two threads in a pair can make progress

only if both are running. Otherwise, if one thread is de-scheduled, the second one has to

stop and wait. Yet, as we see in Figure 5.5, the overhead of this procedure is negligible.

Finally, cache eviction involves writing to a 256 KB data region and executing a 32 KB

code block. Due to the pseudo-LRU eviction policy of Intel caches, we have to repeat the

writing several times (three, in our case). Together, it takes dozens of microseconds to

execute, depending on the number of cache misses. Fortunately, we evict only after enclave

exits, which are infrequent under normal conditions (§5.3.3) and the overhead is low.

Impact of SSA Monitoring. Varys does not detect AEXs immediately, but with a config-

urable latency that depends on how frequently we check the SSA value. It introduces a

trade-off between security and performance: longer latencies create an opportunity for the

adversary to launch a brief attack and stay undetected, but shorter latencies require more

work from the application’s side and hamper performance. To evaluate the impact of this

parameter, we measured runtime overheads of different frequencies. The results are shown

in Figure 5.7.

Multithreading. As Varys is primarily targeted at multithreaded applications, it is crucial

to understand its impact on multithreaded performance. To evaluate this parameter, we

measured the execution time of all benchmarks with 2, 4, and 8 threads with respect to

native versions with the same number of threads. Mind that these are user-level threads; the

number of underlying enclave threads is always 4. The results are presented in Figure 5.8.
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Figure 5.8: Runtime overhead with different number of threads. (Lower is better.)

Generally, Varys does not have a significant impact on multithreaded scaling. However,

there are a few exceptions. First, larger memory consumption required for multithreading

causes EPC paging3, thus increasing the AEX rate and sometimes even causing false

positives. We can see this effect in dedup and x264: the higher AEX rate makes the flushing

more expensive and eventually leads to false positives with higher numbers of threads. For

the same reason, we excluded linear regression, string match, and word count from the

experiment.

Another interesting effect happens in multithreaded kmeans. The implementation of

kmeans that we use frequently creates and joins threads. Internally, pthread_join invokes

memory unmapping, which in turn causes a TLB flush and an enclave exit. Correspondingly,

the more threads kmeans uses, the more AEXs appear and the higher is the overhead.

Case Study: Nginx. To illustrate the impact of Varys on a real-world application, we

measured throughput and latency of Nginx v1.13.9 [23] using ab [28]. Nginx was running

on the same machine as previous experiments, and the load generator was connected via a

10 GB network. The results are presented in Figure 5.9.

In line with the previous measurements, Varys reduces the maximum throughput by 19%

if the system is configured for a low AEX rate. Otherwise, the AEX rate becomes higher,

cache flushing has to happen more frequently and the overhead increases. The higher rate

comes from two sources: disabling DynTicks increases the frequency of timer interrupts

and disabling interrupt redirection adds exits caused by network interrupts. Finally, the

“Over-assignment” line is the throughput of Nginx in the scenario, when we do not dedicate

a core exclusively to Nginx and assign another application that competes for the core (in our

case, we use word_count from Phoenix). Since the Nginx threads are periodically suspended,

the cost of the handshake becomes much higher as both threads in a pair have to wait while

one of them is suspended.

3This experiment was performed on a CPU with SGXv1, which has a small EPC size (128 MB). Newer
versions of SGX have larger EPC sizes and, hence, this issue is less pronounced on them.
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Figure 5.9: Throughput-latency plots of Nginx. Varys: low-exit system configuration, De-
fault config: default configuration of Linux, Over-assignment: another process is competing
for a core with Nginx.

Time threshold, ticks False positives, % False negatives, %
130 90.1 0.0
140 4.0 0.0
160 0.0 0.0
250 0.0 0.1

Table 5.1: Rate of false positives and false negatives depending on the value of handshake
threshold. The threshold is presented for 10 memory accesses.

5.6.3 Security Evaluation

Violation of Trusted Reservation. To evaluate how effective Varys is at ensuring trusted

reservation (i.e., if a pair of threads is running on the same physical core), we performed

an experiment that emulates a time-sliced attack. We launched a dummy Varys-protected

application in normal configuration (all threads are correctly paired) and then, at runtime,

change affinity of one of the threads. Additionally, to evaluate the rate of false positives, we

ran the application without the attack. As trusted reservation is implemented via a periodic

handshake, the main configuration parameter is the time limit distinguishing cache hits from

cache misses.

The results are presented in Table 5.1. False negatives represent the undetected attacks

and false positives—the cases when there was no attack, but a handshake still failed. The

results are aggregated over 1000 runs.

As we see, trusted reservation can be considered reliable if the limit is set to 160 ticks of

the software timer (§5.5.2). The fact that we neither have false positives nor false negatives

is caused by the difference in timing of L1 and LLC cache hits. If the threads are on the

same core, the handshake will have timing of 10 L1 cache hits. Yet, if they are on different

cores, the only shared cache is LLC and all 10 accesses would miss both L1 and L2.

Increased Rate of AEX. To evaluate Varys’s effectiveness at detecting attacks with high

109



Chapter 5. Varys: Runtime Validation of System Defences

MRT, IR instructions Normal execution Low-AEX attack Common attack
60M 0.2% 100% 100%
62M 1.2% 100% 100%
64M 10% 100% 100%

Table 5.2: Varys abort rate depending on the system interrupt rate and on the value of
minimum runtime (MRT).

AEX frequencies, we ran a protected application under different system interrupt rates, and

counted the number of aborts (i.e., detected attacks). For the purity of the experiment, the

victim was a dummy program that does not introduce additional AEXs on top of the system

interrupts. In each measurement, we tested several limits on the minimal runtime (MRT),

which is inverse of the AEX rate. As in the previous experiment, we had 1000 runs.

The results are presented in Table 5.2. We tested three setups:

• “Normal execution” represents an attack-free environment, with an interrupt rate of

100 Hz (§5.3.3);

• “Low-AEX attack” represents stealthy attacks from Wang et al. [254] and Van Bulck

et al. [245], which cause an interrupt rate of 5.5 kHz;

• “Common attack” represents a typical cache attack, with an interrupt rate of 10 kHz.

We can see that if we set the threshold on the number of IR instructions between enclave

exits to 60 millions, it achieves both low level of false positives (0.2%) and detects all

simulated attack attempts.

Residual Cache Leakage. For small applications (i.e., applications with small or slowly

changing working set), cache leakage may persist even after we limit the frequency of

enclave exits.

As a worst case, we consider the application on Figure 5.10: It iterates over cache

sets, accessing all cache lines in a set for a long time. With such applications, limiting

the interrupt frequency will not help, because even a few samples are enough to derive the

application state. We use this application to evaluate effectiveness of the cache eviction

mechanism proposed in §5.4.2.

We used a kernel module to launch a time-slicing cache attack on the core running the

victim application. The attack delivers an interrupt every 10 ms, and does an L1D cache

measurement on all cache sets. We normalize the results into the range of [0,1]. Additionally,

we disable CPU prefetching both for the victim and attack code to reduce noise. Essentially,

it is a powerful kernel-based attack that strives to stay undetected by Varys.

The results of the measurements are on Figure 5.11. Without eviction (Figures 5.11a
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1 for (Set in L1_Cache_Sets):
2 for (Very Long):
3 for (CLine in CacheLine1..CacheLine8):
4 Read(Set, CLine)

Figure 5.10: Worst-case victim for a defense mechanism based solely on interrupt frequency.

and 5.11b), the attack succeeds and the state of application can be deducted even with a

few samples. Then, we apply Varys with L1I and L1D cache eviction to the application

(Figure 5.11c). Even though the amount of information leaked decreases greatly, we can still

distinguish some patterns in the heatmap due to residual L2 cache leakage. When we enable

L2 eviction in Varys, the results contain no visible information about the victim application

(Figure 5.11c).

5.7 Hardware Extensions

Many parts of Varys’s functionality could be implemented in hardware to improve its

efficiency and strengthen the security guarantees. In this section, we propose a few such

extensions. We believe that introducing such a functionality would be rather non-intrusive

and should not require significant architectural changes.

5.7.1 Userspace AEX Handler

Varys relies on the SGX state saving feature for detection of enclave exits. However, this

approach has certain drawbacks: it requires the application to monitor the SSA value, thus

increasing the overhead, and it introduces a window of vulnerability (§5.5.1). An extension

to the AEX protocol could solve both of the issues.

Normally during an AEX, the control is passed to the OS exception handler, which

further transfers control to the userspace AEX handler, provided by the user. The user AEX

handler then executes ERESUME instruction, which re-enters the enclave. However, there is

no possibility for an in-enclave handler. Our proposed extension adds a hardware triggered

callback to the ERESUME instruction, specified in the TCS: TCS.eres_handler. After each

ERESUME executed by unprotected code, the enclave is re-entered, and the control is passed to

code located at the address TCS.eres_handler. To continue executing interrupted in-enclave

code, the ERESUME handler will execute the ERESUME instruction once again, this time, inside

the enclave. Note that calling ERESUME inside of an enclave is right now not permitted. One

difficulty of this extension would be an AEX during the processing of a handler. We would

allow recursive calls since handlers could be designed to deal with such recursions.
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(a) L1 attack: no eviction.
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(b) L2 attack: no eviction.
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(c) L1 attack: L1 eviction.
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(d) L2 attack: L2 eviction.

Figure 5.11: An experiment proving the effectiveness of cache eviction. Without eviction,
we can easily see the program behavior. With L1 eviction, the L2 residual leak exposes
some information. With L2 eviction, no visible information is exposed. Graphs have
different time scales due to different overhead from L1/L2 measurement and presence of
eviction mechanism. Color reflects normalized values, with different absolute minimum and
maximum values for every graph.
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Figure 5.12: Impact of different cache allocation sizes on throughput and latency of Nginx
protected by Varys.

Recently (after the publication of our original paper), Intel introduced User Interrupts, a

feature that allows userspace applications to directly handle interrupts. This feature relies

on OS assistance, thus it is still not applicable to the SGX threat model.

5.7.2 Intel Cache Allocation Technology

Although Intel CAT could be used to prevent concurrent LLC attacks, the OS has complete

control over the CAT configuration, which renders the defense ineffective. It can be solved

by associating the CAT configuration registers with version numbers that are automatically

incremented each time the configuration changes. The application could check the version

number in the AEX handler after each AEX and thus easily detect the change. In case, no

support for AEX handlers is added, the application could perform periodic checks within

the enclave instead.

To estimate the potential impact of the extension, we ran an experiment where Nginx

was protected by Varys and had a slice of LLC exclusively allocated to it (Figure 5.12).

As we see, allocating 4 and 2 MB of cache did not cause a significant slowdown for the

given workload. The difference in throughput comes mainly from the larger eviction region:

Varys had to flush 4 MB instead of 256 KB. However, allocating this large part of the

cache can significantly reduce the overall system performance. At the same time, if we try a

more modest allocation, we risk causing a much higher rate of cache misses, which is what

happened with the 1 MB allocation in our experiment.

5.7.3 Trusted HW Timer

Since the hardware timer (RDTSC/P instruction) is not available in SGX1, we used a software

timer, which wastes a hyperthread. More recent SGX2 supports the timer, but we cannot

rely on it either as privileged software can overwrite and reset its value.
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We see two ways of approaching this problem: We may introduce a monotonically

increasing read-only timer which could be used as-is. Alternatively, we could introduce a

version number that is set to a random value each time the timer is overwritten. To ensure

the timer correctness, the application would have to compare the version of this register

before and after the measurement.

5.8 Discussion

Security Guarantees. Varys provides complete protection against all L1 and L2 cache

attacks thanks to trusted reservation. As a by-effect, trusted reservation also prevents

concurrent attacks on on-core resources such as branch predictor, floating point unit, etc.

Concurrent LLC attacks could be prevented with an extension to Intel CAT (§5.7.2). Higher

levels of memory hierarchy are not guarded by Varys. This includes, among others, attacks

on DRAM buffers and memory bus snooping (§2.3.4).

Availability. A potential drawback of our approach is its impact on availability. Our default

policy upon detection of a potential attack—termination—might be an issue in a noisy

environment that creates false positives. If we run programs with the help of Docker Swarm

(as SCONE supports), Docker Swarm will restart the program. After repeated failures, it

will restart on a different machine.

We presented Varys, an approach to runtime validation of side-channel protected environ-

ments within SGX enclaves. Varys protects from multiple side channels and reliably detects

violations of the protected environment, all while causing low overheads. With additional

hardware support, we would not only expect a more straightforward implementation of

Varys but also lower overhead and protection against a wider range of side channel attacks.
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Conclusion

This thesis introduced several methods that enable testing and runtime validation of defences

against modern microarchitectural attacks. We conclude with a brief summary of each

technique, with a description of their impact so far, and with the potential directions for

future work.

6.1 Summary of Techniques

Model-based Relational Fuzzing allows us to check if the microarchitecture of a CPU

under test exposes as much information as we expect it to expose. The idea is to run random

instruction sequences on the tested CPU and on its reference model, collect the side-channel

traces on both, and compare the amount of information exposed by the traces. The tool

implementing this approach, Revizor, managed to automatically surface several known

speculative vulnerabilities and detect two new variants.

Speculation Exposure allows us to find instances of speculative vulnerabilities with dy-

namic software testing. The idea is to simulate speculative execution in software and,

thus, transform speculative security violations into normal ones, detectable with traditional

integrity checking mechanisms. We implemented the idea in SpecFuzz, a fuzzing framework

that automatically detects instances of Spectre V1. It successfully detected hundreds of V1

instances in several real-world libraries, and its results allowed us to significantly reduce the

cost of Spectre V1 mitigations.

Enclave Self-Monitoring enables runtime validation of the side-channel protected environ-

ments created by untrusted system software. The idea is to modify the target application such

that it continuously monitors its execution environment in search of signs of a misbehaving

OS or an ongoing attack. We implement it in Varys, a tool that works with Intel SGX
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enclaves and monitors system defences against L1/L2 cache side-channel attacks and page

attacks. We show that Varys successfully detects when the defences are compromised, and

it can prevent the attacks.

6.2 Impact

SpecFuzz:

• Two papers built on top of SpecFuzz and extended it with more precise analysis

of vulnerabilities: SpecTaint [195] used dynamic taint analysis to filter out uncon-

trolled vulnerabilities; FastSpec [235], in one of its case studies, post-processed the

vulnerabilities detected by SpecFuzz with a Generative Adversarial Network.

• A few papers used SpecFuzz as a point of comparison, including KLEESpectre [251]

and the work of Guo et al. [116].

• SpecFuzz took the first place in CSAW Applied Research Competition (Europe) 2020.

Varys:

• Three papers built on top of the ideas of Varys: S-FaaS [22] used trusted core

reservation; Autarky [186] extend the idea of AEX detection; T-Lease [237] used the

CPU frequency validation mechanism.

• Several papers assumed a Varys-like technique in their threat model, e.g., Replica-

TEE [227], Occlum [221], and EnclaveDom [171].

• Keystone [154] used Varys as a point of comparison.

Revizor is under submission at the time of writing, thus it has had no impact so far.

6.3 Future Work

Our research showed the feasibility of testing against modern microarchitectural attacks, but

many challenges remain unsolved to make it practical and widely applicable.

End-to-End Guarantees. The tools presented in this thesis work independently of each

other. This would be insufficient when the security of a system relies on multiple defence

techniques implemented at different abstraction layers. Instead, we need end-to-end security

guarantees, which requires a unified specification method for the guarantees and end-to-end

testing mechanisms. To get such a unified specification, the speculation contracts framework
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(§3.2.2) has to be extended to system- and application-layer defences. To perform end-to-end

testing, we need to connect the results of Revizor and SpecFuzz and implement a tool for

similar system-level testing. In addition, Varys would need to be extended to work with the

new contract-like specification.

Systematic Testing of Existing Defences. A natural step after implementing the testing

tools is to apply them to a wide range of real-world applications. The numerous existing

defence proposals (Chapter 2) often have uncertain or untested security guarantees, and our

tools can test them. As such, the security community could benefit from an evaluation study

that empirically validates the guarantees of existing defences.

Microarchitectural Fuzzing. The implementation of Revizor was only the first step into

practical testing of microarchitectural security properties, and many questions are still open.

The most important one is the generation method: Revizor generates both test cases and

inputs to them randomly, which hinders detection of “deep” vulnerabilities. More precise

techniques, such a feedback-driven mutational fuzzing, could significantly improve the

chances of detection. Related to it is the notion of coverage, which is still only approximate

in our tool, and it needs to be further developed. Revizor also needs to be ported to other

architectures to truly serve its purpose of comparing security of different CPUs. We hope

that the open-source release of Revizor will provide a solid foundation for this future work.

Contract-based Software Fuzzing. Currently, SpecFuzz supports only one type of spec-

ulative vulnerabilities—Spectre V1. Real-world applications would require extension to

other vulnerabilities as well. The best option would be to re-implement SpecFuzz such that

it could interpret the speculation contracts, and the user would be able to directly control the

CPU model to be tested against.

System Defence Validation. Varys is tightly coupled with Intel SGX, even though the

problem of unreliable defences is common across all TEEs. As such, Varys needs to be

ported to other TEEs. In case of open-source TEEs (e.g., Keystone [154]), it creates an

opportunity [266] to implement the missing hardware extensions, as discussed in §5.7.

6.4 Code Availability

The source code of several presented tools is publicly available:

• Revizor: https://github.com/hw-sw-contracts/Revizor

• SpecFuzz: https://github.com/tudinfse/SpecFuzz

• Fex: https://github.com/tudinfse/fex
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Appendix A
Fex: Systems Evaluation Framework

As a by-effect of working on this thesis, we developed an evaluation framework, called Fex,

which we used in Chapter 5 and Chapter 4. Fex started as a small set of frequently reused

scripts and quickly matured in a full-fledged framework. During years of internal usage,

we refactored and expanded Fex to accommodate our growing needs, until it turned into a

stand-alone contribution. The end result is presented in this appendix.

The key goals of developing Fex were to make it extensible (can be easily extended

with custom experiment types), practical (supports composition of different benchmark

suites and real-world applications), and reproducible (it is built on container technology to

guarantee the same software stack across platforms).

Out-of-the-box, Fex is integrated with several well-known benchmark suites (SPLASH,

Phoenix, PARSEC), standalone programs (Apache, Memcached, Nginx), compilers (GCC,

Clang), and measurement tools (perf, time). Internally, Fex is comprised of a number of

tools for automating installation, building and running benchmarks, collecting logs, and

plotting the final results.

Going forward, we discuss the architecture of the framework, explain its interface, and

show common usage scenarios.

A.1 System Interface

Fex was developed with reproducibility as one of the main goals. Therefore, we prepare the

environment and run all experiments in a Docker container in such a way that they are as

independent from the actual host system as possible [172, 48]. The Docker image contains

a bare minimum to run the experiments: sources for all programs in benchmark suites with

corresponding makefiles, Bash scripts for environment setup, Python scripts to actually

perform experiments and to aggregate and plot their results. Note that the packages put
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Figure A.1: System interface of Fex.

in the image—git, python3, wget, perf, etc—are used by the framework itself and do not

influence the experiments (i.e., they do not affect measurements neither through the build

system nor through dynamically linked libraries).

Figure A.1 shows the general workflow and the exposed system interface of Fex. Any of

the actions in the workflow can be executed via call to the framework’s entry point—fex.py

file:

>> fex.py <action> -n <name> [other_arguments]

For example, running Phoenix benchmark suite with GCC will look like this:

>> fex.py run -n phoenix -t gcc_native

The workflow is divided into two stages: setup and run. The first stage prepares an

environment for the second stage by installing all the necessary components from the

Internet.

Experiment Setup. The Docker image we ship contains only the source codes of bench-

marks and a set of scripts to build and run them. The actual dependencies—compilers to

build, shared libraries to link against, additional tools and benchmarks—are downloaded

from the Internet and installed at the experiment setup stage. The reasons for this flow are

twofold. First, the Docker image would swell to approx. 17GB in size1 if all dependencies

would be built-in. Images of such size would be cumbersome to distribute. Second, this

allows the end user to install only those dependencies and only those versions needed for her

experiments. (For reproducibility, it is important that the exact versions of software crucial

for experiments are installed.)

For simplicity, the installation scripts are written in Bash (they can also be written in

Python). To run an installation script, Fex provides an “install” command. The following

1Our current image is 1.04GB, with 122MB Ubuntu files, 300MB of benchmarks’ source files, and the rest
helper packages
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example installs GCC 6.1.

>> fex.py install -n gcc-6.1

As shown in Figure A.1 (top), this stage includes three steps:

• Installing compilers with specific versions is a prerequisite. Fex cannot rely on Linux

default package managers to automatically install required compilers, e.g., APT or

RPM, because compiler versions in their repositories change over time and thus hinder

reproducibility.

• Installing dependencies implies tools required for the build process or for specialized

measurements. For example, several PARSEC benchmarks require gettext system

for Autoconf—this software does not affect performance but is simply needed to

resolve all build dependencies of a particular benchmark. These tools are optional and

may not be needed for simple experiments.

• Installing additional benchmarks may be necessary to perform experiments on large

unmodified programs. Fex encourages to put program sources in its repository;

this simplifies changing and tweaking original code to the user’s needs. However,

sometimes it is simpler to fetch the sources from elsewhere. For example, we install

Apache and Nginx in this way because we want to experiment with their different

versions (those that are vulnerable to a particular bug and those that are not).

Experiment Runs. After installing all prerequisites, users can start running experiments.

All experiments are usually performed as a sequence of steps depicted in Figure A.1

(bottom):

• The build step is performed once before running each benchmark in the experiment.

Fex consults the makefile corresponding to the benchmark-to-run and puts a final

binary in the build directory. It is important to re-build all benchmarks for each

experiment, otherwise a mix of old and new compilation flags and/or libraries could

skew the results. For quick preliminary experiments, the build step can be omitted via

--no-build flag.

• The run step is the experiment itself. Fex includes a Run component, which provides

several Python hooks to specify a list of benchmarks-to-run with their inputs and to

control how exactly these benchmarks are started. For example, we implement an

additional “dry run” for Phoenix benchmarks using a per_benchmark_action hook.

Multithreaded benchmarks are automatically run with a set of number of threads

specified in the command line, e.g., -m 1 2 4.
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Figure A.2: Build system hierarchy.

• The collect step parses the log, extracts the measurement results, processes them in a

user-specified way, and stores into a CSV table. We use Pandas Python library [169]

for efficient data analysis and aggregation.

• The plot step is performed after the whole experiment is finished. It is usually

performed on a local user machine. The powerful matplotlib [124] is used to emit dif-

ferent kinds of plots. Again, the user is provided with hooks to change the appearance

of emitted plots.

Building and running the benchmarks is sensitive to environment variables. Fex provides

a convenience wrapper to specify default variables for these steps (see §A.2).

A.2 System Architecture

Following the workflow presented in §A.1, Fex consists of 4 subsystems: build, run, collect,

and plot. The later two have plain structure which does not require any explanations. The

former two, however, are slightly more complex and we will discuss them in detail.

Build subsystem. In the build stage, two scenarios are possible: (1) a single application can

be built many times with varying build parameters or (2) the same parameters can be reused

for many different applications. To aid this variability, our build subsystem was divided into

three layers (see Figure A.2): common, experiment, and application layers.

Common layer contains parameters that are applicable to all benchmarks and all build

types. This includes, for example, optimization levels, debugging information (if enabled),

common compilation flags and generic compilation targets.

Experiment layer is responsible for parameters of the current build type. For example, if

a benchmark suite has to be built by GCC and with enabled AddressSanitizer, the makefiles

will set CC variable to gcc and CFLAGS to -fsanitize=address. Note that there might be
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- set_variables()

ASanEnvironmentNativeEnvironment

Fex

- configure()
- set_environment()
- run_benchmark()

ParsecSecurityPhoenixPerformance
ParsecVariableInput

Performance
PhoenixVariableInput

Performance

Runner

- experiment_name

- experiment_setup()
- experiment_loop()
- per_run_action()
- per_type_action()
- per_benchmark_action()
- per_thread_action()

Configuration

...

VariableInputRunner

- experiment_loop()

......

Figure A.3: Class diagram of the experiment infrastructure.

multiple levels of makefiles in this layer: some may set parameters that are applicable

to all configurations of a single compiler, and the others will refine them to a concrete

configuration.

Finally, the application layer defines the structure and the procedure of the build. It

specifies the location of source files, lists dependencies, and sets application-specific flags.

The overall build system is structured in such a way that these layers can be replaced

independently of each other. Accordingly, any application can be compiled with any of the

existing build configurations without additional efforts.

Experiment runners. When an experiment is started via

>> fex.py run ...

a new instance of the Fex class is created (see Figure A.3). This object controls the overall

experiment execution. Firstly, it retrieves a configuration file and sets experiment parameters

accordingly. Then, it sets environment variables to the necessary values by instantiating

child classes of the Environment abstract class. In the end, it instantiates and calls the child

of the Runner class that corresponds to the current experiment. This new Runner object will

perform the actual experiment.

Since environmental variables can vary in accordance to parameters of the given experi-

ment (e.g., when debug mode is turned on), we define four types of the variables:

1. Default: the default values of environment variables.

2. Updated: the values of this type are appended if the variable exists, and assigned

otherwise.

3. Forced: the variables are overwritten regardless of the previous value.

4. Debug: the values are set only in the debug mode.

Note that the order is important here: each next type has higher priority that the previous

one. For example, if variable BIN_PATH is assigned to /usr/bin/ among default variables

and to /home/usr/bin/ among the forced ones, the end value will be /home/usr/bin/. On

top of it, if a user wants to add another type, she can do it simply by writing a subclass of
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Appendix A. Fex: Systems Evaluation Framework

1 for each build type:
2 self.per_type_action(type)
3 for each benchmark:
4 self.per_benchmark_action(type, benchmark)
5 for each thread count:
6 self.per_thread_action(type, benchmark, thread_num)
7 for i in range(0, number_of_repetitions):
8 self.per_run_action(i)

Figure A.4: Experiment loop

Environment and redefining the set_variables function.

The key element of the Runner class is experiment_loop function. For each of the

execution parameters, it iterates over all their values by going through a series of nested

loops, as shown in Figure A.4. For example, the outermost loop may go through GCC and

Clang compilers, the next one—through Nginx, Apache, and Memcached applications, and

so forth. Each of the loops has a hook that can be implemented in a subclass. This way, the

overall structure of the experiment stays the same, but the concrete actions can be tailored to

the needs of the given experiment. Moreover, if even more parameters would be necessary,

the experiment_loop can be redefined or extended in a subclass, as VariableInputRunner

does in Figure A.4.

A.3 Fex Details and Workflow

A.3.1 Creating new experiments

In this section, we explain how Fex facilitates creation of new experiments and evaluation

of new benchmark suites and standalone programs. We also detail the implementation of

Fex with the help of its standard directory layout (similar to projects like Jekyll [134], Fex

assumes a specific directory tree structure).

One (simplified) example of a directory tree is shown in Figure A.5. Here, the end user

sets up the environment to evaluate the performance overhead of Google’s AddressSani-

tizer [218] on the Phoenix benchmark suite [200] and on Apache web server [2]. Moreover,

for reproducibility she chooses GCC version 6.1 which comes with AddressSanitizer by

default.

First, she needs to write installation scripts to install the GCC 6.1 compiler, download

input files for the Phoenix benchmark, and install an additional Apache benchmark. For

convenience, Fex provides a set of functions for frequently used operations, found in
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install/common.sh, e.g., download.

Next, the user must create compiler-specific and type-specific makefiles for different

experiment variants and put them under makefiles/. The compiler-specific gcc_native.mk

file would look like:

include common.mk

CC := gcc

CXX := g++

The type-specific file gcc_asan.mk would include the previous file and additionally enable

AddressSanitizer:

include gcc_native.mk

CFLAGS += -fsanitize=address

LDFLAGS += -fsanitize=address

After that, the user must put application-specific makefiles and sources of the Phoenix

benchmark suite and Apache web server under src/. To keep directories clean, standalone

programs like Apache are put in a separate subdirectory named applications/. In case of

Apache, the sources are downloaded from the Internet using an installation script, thus the

only file required is a Makefile. In case of Phoenix, all sources are copied in the Fex directory

tree for convenience; we only show histogram for the sake of clarity. Application-specific

makefiles are generally simple and follow this pattern on the histogram example:

NAME := histogram

SRC := histogram-pthread

include Makefile.$(BUILD_TYPE) # includes type-specific makefile

all: $(BUILD)/$(NAME) # build target

Finally, the user describes the experiments themselves. The Phoenix performance-

overhead experiment is put under experiments/phoenix. The only required file here is

run.py which describes benchmarks with their command-line arguments to be run and mea-

sured. Additionally, each Phoenix benchmark needs a preliminary dry run: this functionality

is implemented through a per_benchmark_action hook. Note that most of the functionality

to build and run benchmarks is actually inherited from the abstract class implemented in

experiments/run.py.

There are no specific collect and plot scripts for Phoenix. Instead, since the user has no

ad-hoc requirements for them, the generic collect.py and plot.py are re-used. Also note

that Figure A.5 does not show Apache experiment files for simplicity.

Some variants of the experiment may require setting specific environment variables. For

example, AddressSanitizer can be fine-tuned via runtime flags in the ASAN_OPTIONS variable.
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For this, the user shall add this flag in environment.py. In addition, the user can modify

parameters for collection and plotting of results in a config.py file.

In the end, to add a new experiment with new compiler types and new benchmarks,

the user needs to create (some of) the following files: (1) installation scripts, (2) compiler-

and type-specific makefiles, (3) sources and makefiles for benchmarks, and (4) experiment

descriptions. In fact, all of the scripts are already available in the repository of Fex.

Additionally, Fex facilitates creation of tests—short runs of benchmarks with tiny inputs.

These tests can be accessed via -i test and are useful to check if user-defined makefiles,

source files, and other scripts are written correctly. This functionality is implemented inside

run.py files.

A.3.2 Running new experiments

Now that the experiment description is finished, the user can re-build the Docker container

using Dockerfile and deploy it on a test server. The actual experiment proceeds in two

stages as shown in Figure A.1.

Inside the container, the user sets up the experiment by invoking the relevant installation

scripts:

>> fex.py install -n gcc-6.1

>> fex.py install -n phoenix_inputs

>> fex.py install -n apache

Next, it is sufficient to call the generic all-in-one “run” command like this:

>> fex.py run -n phoenix -t gcc_native gcc_asan

This command will build all Phoenix benchmarks using native and AddressSanitizer GCC

versions, run them once (with a preliminary dry run), collect statistics from logs, and

aggregate and save final data in a CSV table. There are several command-line flags to

fine-tune the experiment. The user can specify -v for verbose output and -d to build

debug versions of benchmarks. To increase the number of runs of each benchmark, the

user adds -r 10. To run benchmarks with different numbers of threads, the -m 1 2 4 flag

must be added. To run only one benchmark from the benchmark suite, the user specifies

-b histogram.

Note that the final binaries of benchmarks are put under build/ directory, see Figure A.5.

Sometimes it is useful to run the binary directly from there, e.g., to debug spurious errors or

to perform additional quick measurements.

After the experiment is finished, the user should fetch the final CSV results from the
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Fex
Dockerfile
fex.py
environment.py
config.py
install..............................................installation scripts to prepare environment

compilers
gcc-6.1.sh

dependencies
phoenix_inputs.sh

benchmarks
apache.sh

common.sh
makefiles................................................makefiles for different variants to test

common.mk
gcc_native.mk
gcc_asan.mk

src........................................................makefiles and sources for benchmarks
applications

apache
Makefile

phoenix
histogram

Makefile
[...source files...]

experiments.....................................................scripts to run-parse-plot results
phoenix

run.py
collect.py
plot.py
run.py

build......................................................automatically generated final binaries
phoenix

histogram
gcc_native

[...]
gcc_asan

[...]

Figure A.5: Example directory tree of Fex.
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server and run the “plot” command locally:

>> fex.py plot -n phoenix -t perf

This builds the “perf” (performance overhead barplot) graph and saves it in a PDF file.

A.3.3 Currently supported experiments

The following list contains the currently supported benchmarks, compilers and compilation

types, and experiments:

• Benchmark suites: Phoenix, SPLASH, PARSEC, SPEC CPU2006, RIPE.

• Real-world applications: Apache, Nginx, Memcached, micro.

• Compilers: GCC, Clang/LLVM.

• Types: AddressSanitizer (as example).

• Experiments: Performance and memory overheads, security evaluation.

• Tools: perf-stat (generic), perf-stat (memory), time.

• Plots: Lineplot, regular barplot, stacked barplot, grouped barplot, stacked-grouped

barplot.

Fex supports four benchmark suites: Phoenix [200], SPLASH [207], PARSEC [45], and

SPEC CPU20062 [120]. The reasons to support these suites are as follows. SPEC CPU2006

is a de facto standard to test new static and runtime instrumentation techniques in the

research community. However, it only supports single-threaded programs and is rather old

by computer science standards. Phoenix and PARSEC are two widely used multithreaded

benchmarks, stressing two different computer subsystems. Phoenix benchmarks are simple

and are mostly limited by memory, whereas PARSEC ones are of production quality and

mostly limited by CPU.

Additionally, Fex comes with Apache, Memcached, and Nginx programs that showcase

real-world usage scenarios. They are installed via scripts and not put under src/. Fex also

provides several statically linked libraries like libevent and OpenSSL, required for at least

one of the above benchmarks. Lastly, we wrote a suite of microbenchmarks—e.g., reading

from an array—that can be useful for debugging purposes.

2SPEC CPU cannot be made publicly available and will not be open-sourced as part of Fex
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Fex provides installation scripts and makefiles for GCC version 6.1 and Clang/LLVM

3.8.0 [153]. It is easy to update these scripts to install newer versions of these compil-

ers. As of type-specific makefiles, the current version of the framework includes only

AddressSanitizer as an example.

The list of supported experiments includes (1) performance- and memory-overhead

experiments as well as variable-inputs experiments of Phoenix, PARSEC, and SPEC, and

(2) throughput-latency and security experiments of Apache, Nginx, and Memcached.

For plotting, Fex provides the following generic plots: barplot (e.g., for performance

and memory overheads), lineplot (for multithreading overheads), stacked barplot, grouped

barplot, and stacked-and-grouped barplot (for complicated statistics such as cache misses at

different levels).

A.4 Limitations

Currently, Fex has a number of limitations. The framework provides no statistical analysis

functionality (except basic statistics such as standard deviation).

Fex supports only single-machine experiments. We are investigating ways to build

distributed experiments, e.g., using the Fabric library.

Finally, since we rely on the Docker infrastructure, we do not guarantee reproducibility

on levels below user space, i.e., on different hardware setups or across different kernel ver-

sions. However, Fex outputs various environment details, so that the complete experimental

setup is stored in the log file.
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Appendix B
Complete Contract Specifications

This appendix details all contracts used in Chapter 3. The concrete instructions included in

each class depend on the target instructions set.

B.1 MEM-SEQ

1 observation_clause: MEM

2 - instructions: MemReads

3 format: READ (ADDR), DEST

4 observation: expose(ADDR)

5 - instructions: MemWrites

6 format: WRITE SRC, (ADDR)

7 observation: expose(ADDR)

8 execution_clause: SEQ

9 None
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B.2 MEM-COND

1 observation_clause: MEM

2 - instructions: MemReads

3 format: READ (ADDR), DEST

4 observation: expose(ADDR)

5 - instructions: MemWrites

6 format: WRITE SRC, (ADDR)

7 observation: expose(ADDR)

8 execution_clause: COND

9 - instructions: CondBranches

10 format: COND_BR CONDITION (DEST)

11 execution: { # branch misprediction

12 if NOT CONDITION then

13 IP := IP + DEST

14 fi

15 }
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B.3. CT-SEQ

B.3 CT-SEQ

1 observation_clause: CT

2 - instructions: MemReads

3 format: READ (ADDR), DEST

4 observation: expose(ADDR)

5 - instructions: MemWrites

6 format: WRITE SRC, (ADDR)

7 observation: expose(ADDR)

8 - instructions: CondBranches

9 format: COND_BR CONDITION (DEST)

10 observation: { # expose branch targets

11 if CONDITION then

12 expose(DEST)

13 else

14 expose(IP)

15 fi

16 }

17 execution_clause: SEQ

18 None
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B.4 CT-COND

1 observation_clause: CT

2 - instructions: MemReads

3 format: READ (ADDR), DEST

4 observation: expose(ADDR)

5 - instructions: MemWrites

6 format: WRITE SRC, (ADDR)

7 observation: expose(ADDR)

8 - instructions: CondBranches

9 format: COND_BR CONDITION (DEST)

10 observation: {

11 if CONDITION then

12 expose(DEST)

13 else

14 expose(IP)

15 fi

16 }

17 execution_clause: COND

18 - instructions: CondBranches

19 format: COND_BR CONDITION (DEST)

20 execution: {

21 if NOT CONDITION then

22 IP := IP + DEST

23 fi

24 }
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B.5 CT-COND-NonspeculativeStore

1 observation_clause: CT-NonspeculativeStore

2 - instructions: MemReads

3 format: READ (ADDR), DEST

4 observation: expose(ADDR)

5 - instructions: MemWrites

6 format: WRITE SRC, (ADDR)

7 observation: { # do not expose speculative stores

8 if NOT IN_SPECULATION then

9 expose(ADDR)

10 fi

11 }

12 - instructions: CondBranches

13 format: COND_BR CONDITION (DEST)

14 observation: {

15 if CONDITION then

16 expose(DEST)

17 else

18 expose(IP)

19 fi

20 }

21 execution_clause: COND

22 - instructions: CondBranches

23 format: COND_BR CONDITION (DEST)

24 execution: {

25 if NOT CONDITION then

26 IP := IP + DEST

27 fi

28 }
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B.6 CT-BPAS

1 observation_clause: CT

2 - instructions: MemReads

3 format: READ (ADDR), DEST

4 observation: ADDR

5 - instructions: MemWrites

6 format: WRITE SRC, (ADDR)

7 observation: ADDR

8 - instructions: CondBranches

9 format: COND_BR CONDITION (DEST)

10 observation: {

11 if CONDITION then

12 expose(DEST)

13 else

14 expose(IP)

15 fi

16 }

17 execution_clause: BPAS

18 - instructions: MemWrites

19 format: WRITE SRC, (ADDR)

20 execution:

21 # speculatively skip stores

22 IP := IP + instruction_size()
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B.7 CT-COND-BPAS

1 observation_clause: CT

2 - instructions: MemReads

3 format: READ (ADDR), DEST

4 observation: expose(ADDR)

5 - instructions: MemWrites

6 format: WRITE SRC, (ADDR)

7 observation: expose(ADDR)

8 - instructions: CondBranches

9 format: COND_BR CONDITION (DEST)

10 observation: {

11 if CONDITION then

12 expose(DEST)

13 else

14 expose(IP)

15 fi

16 }

17 execution_clause: COND-BPAS

18 - instructions: CondBranches

19 format: COND_BR CONDITION (DEST)

20 execution: {

21 if NOT CONDITION then

22 IP := IP + DEST

23 fi

24 }

25 - instructions: MemWrites

26 format: WRITE SRC, (ADDR)

27 execution:

28 # speculatively skip stores

29 IP := IP + instruction_size()
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B.8 CTR-SEQ

1 observation_clause:

2 - instructions: RegReads # expose register values

3 format: READ SRC, DEST

4 observation: expose(SRC)

5 - instructions: MemReads

6 format: READ (ADDR), DEST

7 observation: expose(ADDR)

8 - instructions: MemWrites

9 format: WRITE SRC, (ADDR)

10 observation: expose(ADDR)

11 - instructions: CondBranches

12 format: COND_BR CONDITION (DEST)

13 observation: {

14 if CONDITION then

15 expose(DEST)

16 else

17 expose(IP)

18 fi

19 }

20 execution_clause:

21 None
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B.9 ARCH-SEQ

1 observation_clause:

2 - instructions: RegReads

3 format: READ SRC, DEST

4 observation: expose(SRC)

5 - instructions: MemReads

6 format: READ (ADDR), DEST

7 observation: {

8 expose(ADDR)

9 expose(read(ADDR)) # expose loaded values

10 }

11 - instructions: MemWrites

12 format: WRITE SRC, (ADDR)

13 observation: expose(ADDR)

14 - instructions: CondBranches

15 format: COND_BR CONDITION (DEST)

16 observation: {

17 if CONDITION then

18 expose(DEST)

19 else

20 expose(IP)

21 fi

22 }

23 execution_clause:

24 None
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Appendix C
Examples of Contract Violations

This appendix shows examples of contract counterexamples generated by Revizor. Ap-

pendix C.1 is the original generated test case, and the rest are automatically minimized

versions.

C.1 Instance of Spectre V1

1 LEA R14, [R14 + 12] # instrumentation

2 MFENCE # instrumentation

3 JMP .bb0

4 .bb0:

5 CMOVNL ECX, ECX

6 AND RBX, 0b0111111000000 # instrumentation

7 ADD RBX, R14 # instrumentation

8 ADC dword ptr [RBX], -67100032

9 NOT RAX

10 JP .bb1 # < ---------------------- mispredicted branch

11 JMP .test_case_main.exit

12 .bb1:

13 AND RBX, 1048197274

14 ADD AX, 5229

15 AND RCX, 0b0111111000000 # instrumentation

16 ADD RCX, R14 # instrumentation

17 ADC EAX, dword ptr [RCX] # < ----- speculative leak

18 {load} ADD RCX, RCX

19 .test_case_main.exit:

20 LEA R14, [R14 - 12] # instrumentation

21 MFENCE # instrumentation
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C.2 Minimized Instance of Spectre V4

1 LEA R14, [R14 + 8] # instrumentation

2 MFENCE # instrumentation

3 .test_case_main.entry:

4 JMP .bb0

5 .bb0:

6 MOV RDX, 0 # leftover instrumentation

7 OR BX, 0x1c # leftover instrumentation

8 AND RAX, 0xff # leftover instrumentation

9 CMOVNZ BX, BX

10 AND RBX, 0b0111111000000 # leftover instrumentation

11 ADD RBX, R14 # leftover instrumentation

12 XOR AX, AX

13 AND RBX, 0b0111111000000 # instrumentation

14 ADD RBX, R14 # instrumentation

15 SETNS byte ptr [RBX] # < ---------- delayed store

16 AND RAX, 0b0111111000000 # instrumentation

17 ADD RAX, R14 # instrumentation

18 MOVZX EDX, byte ptr [RAX] # < ----- store bypass

19 AND RDX, 0b0111111000000 # instrumentation

20 ADD RDX, R14 # instrumentation

21 AND RCX, qword ptr [RDX] # < ----- speculative leakage

22 LEA R14, [R14 - 8] # instrumentation

23 MFENCE # instrumentation
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C.3 Minimized Instance of MDS

1 LEA R14, [R14 + 48] # instrumentation

2 MFENCE # instrumentation

3 .test_case_main.entry:

4 JMP .bb0

5 .bb0:

6 ADC EAX, -2030331421

7 AND RAX, 0b1111111000000 # instrumentation

8 ADD RAX, R14 # instrumentation

9 MOV CX, word ptr [RAX] # < ---------- microcode assist

10 AND RCX, 0b1111111000000 # instrumentation

11 ADD RCX, R14 # instrumentation

12 SUB EAX, dword ptr [RCX] # < ------- speculative leak

13 LEA R14, [R14 - 48] # instrumentation

14 MFENCE # instrumentation

C.4 Minimized Instance of LVI-NULL

1 LEA R14, [R14 + 8] # instrumentation

2 MFENCE # instrumentation

3 .test_case_main.entry:

4 JMP .bb0

5 .bb0:

6 SUB AX, 27095

7 AND RAX, 0b1111111000000 # instrumentation

8 ADD RAX, R14 # instrumentation

9 ADD BL, byte ptr [RAX] # < -- speculative zero injection

10 AND RBX, 0b1111111000000 # instrumentation

11 ADD RBX, R14 # instrumentation

12 OR dword ptr [RBX], -1193072838 # < ---- speculative leak

13 LEA R14, [R14 - 8] # instrumentation

14 MFENCE # instrumentation
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C.5 Minimized Instance of Spectre V1-Var

1 LEA R14, [R14 + 28] # instrumentation

2 MFENCE

3 .test_case_main.entry:

4 JMP .bb0

5 .bb0:

6 NOP

7 NOP

8 CDQ

9 SETZ CL

10 ADD EDX, 117

11 REX ADD BL, BL

12 SETNLE AL

13 SUB RBX, RBX

14 TEST AL, 29

15 MOV RDX, 0 # instrumentation

16 OR RBX, 0x6d # instrumentation

17 AND RAX, 0xff # instrumentation

18 DIV RBX # < ---------------- variable-latency operation

19 {disp32} JNO .bb1

20 .bb1:

21 AND RCX, 0b111111000000 # instrumentation

22 ADD RCX, R14 # instrumentation

23 MOVZX EDX, byte ptr [RCX]

24 AND RAX, RAX

25 AND RAX, 0b111111000000 # instrumentation

26 ADD RAX, R14 # instrumentation

27 SBB qword ptr [RAX], 39412116

28 TEST ECX, ECX

29 AND RAX, 0b111111000000 # instrumentation

30 ADD RAX, R14 # instrumentation

31 MOV qword ptr [RAX], 81640764

32 REX NEG AL

33 CMC

34 OR RDX, 37323177
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35 JNP .bb2 # < ---------------------- mispredicted branch

36 JMP .test_case_main.exit

37 .bb2:

38 REX SBB AL, AL

39 SBB EAX, 74935583

40 AND RDX, 0b111111000000 # instrumentation

41 ADD RDX, R14 # instrumentation

42 CMOVS RDX, qword ptr [RDX] # < ---- speculative leak

43 AND RAX, 0b111111000000 # instrumentation

44 ADD RAX, R14 # instrumentation

45 MOV qword ptr [RAX], 23088010

46 AND RBX, 0b111111000000 # instrumentation

47 ADD RBX, R14 # instrumentation

48 LOCK AND word ptr [RBX], 5518 # < ---- speculative leak

49 .test_case_main.exit:

50 LEA R14, [R14 - 28] # instrumentation

51 MFENCE # instrumentation

C.6 Minimized Instance of Speculative Store Eviction

1 LEA R14, [R14 + 32] # instrumentation

2 MFENCE # instrumentation

3 JMP .bb0

4 .bb0:

5 AND RBX, 0b0111111000000 # instrumentation

6 ADD RBX, R14 # instrumentation

7 LOCK AND dword ptr [RBX], EAX

8 JZ .bb1 # < ---------------------- mispredicted branch

9 JMP .test_case_main.exit

10 .bb1:

11 AND RAX, 0b0111111000000 # instrumentation

12 ADD RAX, R14 # instrumentation

13 MOV qword ptr [RAX], 3935 # < ---- speculative leak

14 .test_case_main.exit:

15 LEA R14, [R14 - 32] # instrumentation

16 MFENCE # instrumentation
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C.7 Minimized CTR-SEQ Violation

1 LEA R14, [R14 + 4] # instrumentation

2 MFENCE # instrumentation

3 .test_case_main.entry:

4 JMP .bb0

5 .bb0:

6 {store} ADC CX, CX

7 AND RAX, 0b0111111000000 # instrumentation

8 ADD RAX, R14 # instrumentation

9 CMOVNS EBX, dword ptr [RAX]

10 AND RCX, 0b0111111000000 # instrumentation

11 ADD RCX, R14 # instrumentation

12 MOVZX ECX, byte ptr [RCX] # < --- non-speculative load

13 SUB RBX, 20

14 {store} ADC EDX, EDX

15 REX SETNLE AL

16 {store} REX ADC BL, BL

17 {disp32} JBE .bb1 # < ---------- branch misprediction

18 JMP .test_case_main.exit

19 .bb1:

20 REX INC AL

21 AND RCX, 0b0111111000000 # instrumentation

22 ADD RCX, R14 # instrumentation

23 MOV EBX, dword ptr [RCX] # < ---- speculative leak

24 .test_case_main.exit:

25 LEA R14, [R14 - 4] # instrumentation

26 MFENCE # instrumentation
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1 LEA R14, [R14 + 60] # instrumentation

2 MFENCE # instrumentation

3 .test_case_main.entry:

4 JMP .bb0

5 .bb0:

6 {load} REX MOV DL, DL

7 MOVSX RBX, BX

8 {store} AND BX, BX

9 ADD EAX, 11839320

10 AND RDX, 0b0111111000000 # instrumentation

11 ADD RDX, R14 # instrumentation

12 SETS byte ptr [RDX]

13 TEST AX, 6450

14 AND RDX, 0b0111111000000 # instrumentation

15 ADD RDX, R14 # instrumentation

16 SUB word ptr [RDX], CX

17 {disp32} JB .bb1 # < ---------- branch misprediction

18 JMP .test_case_main.exit

19 .bb1:

20 SUB AX, -29883

21 AND RAX, 0b0111111000000 # instrumentation

22 ADD RAX, R14 # instrumentation

23 ADD EAX, dword ptr [RAX] # < ------- speculative load

24 AND RAX, 0b0111111000000 # instrumentation

25 ADD RAX, R14 # instrumentation

26 CMOVLE RBX, qword ptr [RAX] # < ---- speculative leak

27 .test_case_main.exit:

28 LEA R14, [R14 - 60] # instrumentation

29 MFENCE # instrumentation
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