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ABSTRACT In a cognitive radio (CR) system, excessive access services for secondary users (SUs) lead to a
substantial increase in congestion and the retrial phenomenon, both of which degrade the performance of CR
networks, especially in overload conditions. This paper investigates the price-based spectrum access control
policy that characterizes the network operator’s provision to heterogeneous and delay-sensitive SUs through
pricing strategies. Based on shared-use dynamic spectrum access (DSA), the SUs can occupy the dedicated
spectrum without degrading the operations of primary users (PUs). The service to transmission of SUs can be
interrupted by an arriving PU, while the interrupted SUs join a retrial pool called an orbit, later trying to use
the spectrum to complete the service. In the retrial orbit, the interrupted SU competes fairly with other SUs
in the orbit. Such a DSA mechanism is formulated as a retrial queue with service interruptions and general
service times. Regarding the heterogeneity of delay-sensitive SUs, we consider two cases: the delay-sensitive
parameter follows a discrete distribution and a continuous distribution, respectively. In equilibrium, we find
that the revenue-optimal price is unique, while there may exist a continuum of equilibria for the socially
optimal price. In addition, the socially optimal price is always not greater than the revenue-optimal price,
and thus the socially optimal arrival rate is not less than the revenue-optimal one, which is contrary with the
conclusion, i.e., the socially optimal and revenue-optimal arrival rates are consistent, drawn in the literature
for homogeneous SUs. Finally, we present numerical examples to show the effect of various parameters on
the operator’s pricing strategies and SUs’ behavior.

INDEX TERMS Cognitive radio network, dynamic spectrum access, retrial queue, optimal pricing, strategic
behavior.

I. INTRODUCTION

Usage of the radiofrequency spectrum ranging from 3 KHz
to 300 GHz is controlled by government agencies world-
wide and certain sections of the spectrum are assigned to
certain services or to legal licence holders. Most of the
spectrum is operated based on on-and-off services. Accord-
ing to the Federal Communications Commission (FCC),
the utilization rate of a majority of the assigned spectrum is
rather low [1], [2]. Considering the scarcity of spectrum and
the growing demand for wireless communication, the need
for the coexisting heterogeneous wireless technologies is

The associate editor coordinating the review of this manuscript and
approving it for publication was Wen Chen.

increasing. Since the cognitive radio (CR) network can adapt
the transmitter parameters, such as transmission power and
frequency band, to its operating environment, it facilitates the
efficient use of the spectrum [3]. In CR networks, dynamic
spectrum access (DSA) enables secondary users (SUs) to
flexibly utilize dedicated spectrum which is used sporadi-
cally by primary users (PUs). That is, CR networks have
the adaptability and capability to use the wireless spectrum
opportunistically. Moreover, the potential of CR networks has
been identified by research [4], standardization [5], [6], and
policy [1], [7].

Among various DSA protocols in CR networks [8], [9],
the opportunistic shared-use model, in which SUs can obtain
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TABLE 1. Comparison of literature on the pricing analysis with equilibrium strategies.

Contributions [10] [11] [12] [13]- [14] [22] [15] [16] [17]- [18] This paper
Service discipline for SUs FCFS FCFS FCFS FCFS FCFS Retrial Retrial Retrial Retrial
Number of channels Single  Multiple  Single Single Single Single Single Single Single
General transmission time for PUs and SUs — - - — v — v — Vv
SUSs’ heterogeneity — — — - v — - - Vi
Revenue-optimal pricing strategy — v — — v — — — Vv
Socially optimal pricing strategy v — v — v v v Vv N4
Multiple PUs Vv — Vv v — — — Vv
The position of interrupted SU — — — - — Stay in the Stay in the Retry again ~ Retry again

service area  service area

services from the spectrum leased by PUs without interfering
with the operation of PUs, has been widely studied. In such
an opportunistic shared-use model, SUs adopt decentralized
access strategies. Excessive access requests of SUs lead to
a substantial increase in congestion and the resulting retrial
phenomenon degrades the performance of CR networks,
especially in overload conditions. To alleviate congestion,
an appropriate spectrum access control policy should be put
forward. Thus, in this paper, we propose the price-based
spectrum access control policy that characterizes the network
operator’s provision to heterogeneous and delay-sensitive
SUs through pricing strategies adopting the opportunistic
shared-use DSA. In this CR network, delay-sensitive SUs
share a single PU band after paying an admission fee. Based
on the utility function, each SU acts as a player making its
spectrum access decision to maximize its own utility, which
can be formulated as a non-cooperative game. From the per-
spective of the goal of optimization, the network operator can
be a commercial planner or a social planner. The commercial
planner’s aim is to maximize its own revenue by employing
a revenue-optimal price. For the social planner, a socially
optimal price is proposed to maximize the social welfare of
the network. In other words, the operator and SUs form a
Stackelberg game, in which the operator is the leader and SUs
are the followers.

Initially, to deal with the interaction between PUs and
SUs, the exponential transmission times for PUs and SUs
with service disruptions are employed to model the SUSs’
opportunistic accessing of the spectrum, where the service
discipline is first-come-first-served (FCFS) [10]-[14]. How-
ever, this service rule may not be suitable in wireless systems
with random access. Instead, to improve the throughput for
SUs and minimize the probability of collision with packets
being transmitted by SUs, the IEEE 802.11 protocol allows
a back-off policy in CR systems; arriving SUs that find the
PU band unavailable join a virtual waiting space and try to
access the spectrum after a random amount of time (back-
off time). In this sense, the retrial queueing models are more
appropriate to characterize the back-off process of SUs when
involved in a transmission collision. Wang and Li [15] used
the M/M/1 retrial queue to explore the equilibrium joining
strategies and socially optimal strategies of SUs with random
access. To induce individually optimizing SUs to behave in
a more socially optimal way, an appropriate admission fee
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is proposed to impose on SUs that join the orbit. Later, [16]
extended the research to the general case where the service
times follow general distributions, and different information
situations were analyzed. Both of these work in [15] and [16]
assumed the service of the interrupted SU can be cumulative
and the interrupted SU has a higher priority than other SUs.
But this assumption is not reasonable since the interrupted
SU is designated a priority without any pay. Thus, with or
without perfect sensing, Wang et al. [17], [18] relaxed such
an assumption and they assumed the interrupted SU enters
a retrial orbit to compete with other SUs fairly. In these
two papers, under the assumption that SUs are homoge-
neous and the transmission times for the PU and SUs follow
Exponential distributions, a pricing strategy maximizing the
social welfare was proposed. When analyzing under perfect
sensing [17], it is concluded by numerical examples that the
profit-maximizing joining probability is in consistence with
the socially optimal one. However, considering that each
arriving SU carries a distinct job, their sensitivity to delay
may differ. For example, some application types are insensi-
tive to the delay and are willing to wait if they can eventually
be served. However, many multimedia applications contain
stringent delay requirements which cannot wait in reality.
So in the present paper, we discuss a general case and char-
acterize SUs’ heterogeneity by the delay-sensitive parameter.
Specifically, assuming the transmission times for PUs and
SUs can be arbitrarily distributed, two situations, when the
delay-sensitivity parameter follows a discrete or a continuous
distribution, respectively, are investigated under perfect sens-
ing. In addition, different from [15]-[18] which assumed that
the PU band is licensed to only one PU, we allow for multiple
PUs sharing the band. Table 1 summarizes these literatures on
pricing analysis with equilibrium strategies.

To summarize, the contributions of this paper are three-
fold. (1) Model: A novel CRN model, i.e, applying the
M/G/1 retrial queue with service interruption in CR net-
works, is proposed. We characterize SUs’ heterogeneity by
the delay-sensitive parameter, which complements the equi-
librium analysis for SUs with heterogeneous delay-sensitivity
in [19]-[23] without a retrial mechanism. In our model,
the interrupted SUs join a retrial orbit and retry indepen-
dently for later service, in contrast to the assumptions in
previous studies that they are lost or waiting in front of
the server. In addition, relaxing the restriction identified
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in [17] that only one PU is licensed to access the band
and consequently no PU ever waits in queue, we allow for
multiple PUs that are transmitted by the FCFS discipline.
(2) Methodology: When relaxing the assumption that SUs’
and PUs’ transmission times follow Exponential distribu-
tions, the Markovian property does not hold, and conse-
quently, we adopt the method of supplementary variable to
create a Markovian Process. The stability condition for such
an M/G/1 retrial queue with service interruption is given.
Several performance measures such as the steady state prob-
abilities and SUs’ mean waiting time are derived. Further,
we extensively investigate the Stackelberg game between
the operator (a commercial planner or a social planner) and
SUs when the delay-sensitive parameter follows an arbitrary
discrete or continuous distribution. Specially, the socially
optimal price and the revenue-optimal price are both derived
based on the game-theoretic analysis of the underlying
price-based spectrum access control with strategic SUs.
(3) Managerial insights: We show that the revenue-optimal
price is unique, while there may exist a continuum of equilib-
ria in the case of social welfare maximization. By comparing
the revenue-optimal and socially pricing strategies under the
discrete and continuous distributions of the delay-sensitive
parameter, it is found the revenue-optimal price is not less
than the socially optimal one. Furthermore, we carefully
check the conclusion that the profit-maximizing joining prob-
ability coincides with the socially optimal one drawn in
Wang et al. [17] for the homogeneous SUs, and find that
this conclusion no longer holds when the delay-sensitivity of
SUs is heterogeneous; that is, the profit-maximizing joining
probability is not greater than the socially optimal one in the
case with heterogeneous SUs.

The rest of this paper is organized as follows. The descrip-
tion of the system model and related queueing character-
istics are given in Section II. To model the heterogeneity
and delay-sensitivity of SUs, two scenarios, namely, the dis-
crete distribution and continuous distribution, are consid-
ered in Sections III and IV, respectively. In each section,
we study the operator’s optimal pricing strategies and the
corresponding equilibrium arrival rate of SUs. We find that
the revenue-optimal price is not less than the socially optimal
price, resulting in the revenue-optimal arrival rate being not
greater than the socially optimal arrival rate. In Section V,
numerical examples are presented to investigate the effects
of various parameters on the operator and SUs. Finally, con-
clusions and some future research directions are given in
Section VI.

Il. MODEL

We consider a wireless network operator owning a single PU
band that is licensed to legal PUs and shared by multiple
SUs opportunistically, where PUs and SUs generate a Poisson
arrival stream of demands with rates o and A, respectively.
Arriving SUs (i.e., SU demands) can occupy the PU band
without interfering with PUs after paying an admission fee.
The arrived SU demands will lose immediately whenever
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the PU band is being used by another PU demand. More-
over, the service of the SU can be interrupted by arriving
PUs (i.e., PU demands); that is, PUs have a higher priority
than SUs. Upon the arrival of a PU demand, if the band
is occupied by an SU demand, this SU demand will be
squeezed out by the PU. Assume SUs have perfect detecting
of PUs after joining the system and when being transmitted
through the PU band, which is common in literature, such as
[10]-[17], and we will try to relax this assumption in the
future research. Furthermore, the service times have general
distribution functions G(x) with the Laplace-Stieltjes trans-
form g*(s) = fooo e dG(x) and the finite first two moments
B1, B2 for PUs, and F(x) with the Laplace-Stieltjes transform
f*s) = f ® e=XdF(x) and the finite first two moments
w1, o for SUs. We define w(x) and B(x) as the service
completion rates: u(x) = Sp(x), Bx) = lgé()x), where
f(x) and g(x) are the p.d.f of the service times for SUs and
PUs. In many situations, the assumption of Poisson arrival
and general transmission time holds. For example, packets in
a data network arrive according to a Poisson process, while
the packet length can be arbitrarily distributed. Readers can
see more examples and explanations in Huang et al. [24] and
the references therein.

If the PU band is available upon an SU’s arrival, the SU
can use the PU band immediately. Otherwise, it will join
a retrial pool called an orbit to try its luck after a random
amount of time, following a Poisson process with intensity 6.
In addition, the SU that is in service and squeezed by PUs will
join the retrial orbit to try again for service, and the service
time for the SU is noncumulative. Since SUs finding the band
unavailable try to access it sometime later independently,
the retrial rate of the orbit is proportional to the number of
SUs in the orbit. A PU can always occupy the band if it is
idle or being used by an SU.

Based on the above definitions, the transmission collision
of PUs can be modeled as an M/G/1 queue, whereas the trans-
mission collision of SUs is characterized by an M/G/1 retrial
queue with service interruptions. If we denote the distribution
function and density function of busy period for PUs, which is
defined as the period from the epoch a PU arrives at the band
to the nearest epoch the band becomes idle again, by B(-) and
b(-) respectively, then the Laplace transform of B(-) can be
expressed as b*(s) = g*[s + o — ab*(s)] with the first two
moments y; = ﬁ, Yy = (1_'2# (see [25, Sec. 5.1.6]
for more detail). Present the state of the system at time ¢ by
the pair (/(¢), N(t)), where N(¢) and I(¢) denote the number
of SUs in the orbit and the state of the PU band (0: idle;
1: serving SUs; 2: serving PUs). At time ¢, if I(r) =
we define X (¢) as the elapsed service time of the SU under
service. If I(t) = 2, we define Y (¥) as the elapsed time
of busy period for PUs and y(y) = It then follows
that the stochastic process {(I(¢), N(t), X(yt) Y(@) :t = 0}
is Markovian.

Each SU is assumed to receive a reward of V utility units
after being served and paying a service fee P. A waiting
cost C per time unit exists when an SU remains in the
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Does an SU
decide to enter
the system?

Is the PU
band idle?

It retries
until
success

The SU is The SU enters W

The SU occupies
the PU Band.

Does a PU
arrive during
the service of
the SU?

The SU is

transmitted.

The interrupted SU

blocked and lost. the orbit.

enters the orbit.

FIGURE 2. The network topology for the cognitive radio system.

TABLE 2. Comparisons between PUs and SUs.

Characteristics [ PU SU
Arrival process Poisson process with rate « Poisson process with rate A
Transmission time Generally distributed Generally distributed
Priority Preemptive priority No
Model for the transmission collision M/G/1 queue M/G/1 retrial queue with service interruption
Decision All PUs join Join or balk according to the expected utility

system, and SUs differ on the delay-sensitivities parameter.
We consider both the discrete and continuous distributions of
C in the following sections. Before joining the system, SUs
have no information (i.e., the band status and the number of
SUs in the retrial orbit, or the unobservable case as in [12])
about the system. Each SU can infer the long-term waiting
time statistically by existing method [29] and respond to the
expected utility by deciding whether to use the PU band or
not. Assume that SUs are risk neutral and their decisions are
irrevocable. In other words, neither the retrial of balking SUs
nor the reneging of entering SUs is allowed. Recalling that
PUs have permanent licenses to access the band and their
services are not affected by the presence of SUs, the demand
rate of PUs is constant, equal to «. Define the effective arrival
rate of SUs by A (A < A), then the corresponding transition
rate diagram and network topology are shown in Figures 1-2.
All the differences between PUs and SUs are listed in Table 2.
In addition, the main notations are summarized in Table 3.
In Figure 1, the state (0, i) (i € {0, 1, 2, ...}) means the PU
band is idle and there are i SUs waiting in the retrial orbit;
the state (1,7, x) (i € {0, 1, 2, ...}) represents an SU is being
transmitted through the PU band with elapsed service time x
and the number of SUs in the retrial orbit is i; and the state
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TABLE 3. Notations.

Notations [ Explanations

1% Service reward

C Waiting cost per time unit

A Potential arrival rate of SUs

« Potential arrival rate of PUs

I First moment of the transmission time for SUs
w2 Second moment of the transmission time for SUs
51 First moment of the transmission time for PUs
B2 Second moment of the transmission time for PUs
0 Retrial rate of SUs

Y1 First moment of the busy period for PUs

Y2 Second moment of the busy period for PUs

2,i,y) i € {0,1,2,...}) denotes the band is occupied by
PUs with elapsed time y of the busy period for PUs and there
are i SUs in the retrial orbit. From state (0, 7), it may transform
to state (2, i, y) with rate « if a PU arrives at the band, or to
state (1,7 — 1, x) with rate i0 if an SU in the orbit retries
successfully and thus the band is occupied by this SU with
the number of SUs in the orbit reduced by one, or to state
(1, i, x) with rate A if an SU arrives from outside and then
the band is occupied by this new arriving SU. In a similar
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way, from state (1, i, x), it may transform to state (1, i+ 1, x)
with rate A if an SU arrives from outside and thus the number
of SUs in the orbit increases by one, or to state (2,i + 1, y)
with rate « if a PU arrives at the band and the interrupted SU
enters the retrial orbit, or to state (0, /) with rate w(x) if the
SU being served with the elapsed service time x is transmitted
successfully and then the PU band becomes idle. Further,
from state (2, i, y), it may transform to state (2, i + 1, y) with
rate A if an SU arrives from outside and thus the number of
SUs in the orbit increases by one, or to state (0, i) with rate
y(y) if PUs in the system with the elapsed time y of the busy
period are transmitted successfully and consequently, the PU
band becomes idle.

Remark 1: Note that when both the SU’s service time and
PUs’ busy period follow Exponential distributions and the
delay-sensitivity of SUs is homogeneous, our model degen-
erates to the one discussed in Wang et al. [17].

A. STEADY STATE SOLUTIONS
To investigate the steady state solution for such a system,
we first give the stable condition below.

Assume an SU begins to be served at some epoch 7y, and a
service cycle is defined as the length of time from the point
to to the nearest point 7y + T when either an SU is transmitted
successfully or the PU band is empty after the transmission of
the PU which arrives during the SU is being transmitted (the
preempted SU enters the orbit). Let v; be the number of new
SUs (arriving from outside) entering the system during the
service cycle, and v, be the number of old SUs (interrupted by
PUs) entering the orbit during the service cycle (i.e., v = 0
orl).

In queueing terminology, for an SU under service, PUs’
arrival can be regarded as a failure of the server from the
perspective of SUs. The mean number of new SUs and old
SUs entering the system in our model is equal to that in
Falin [26]. The only difference is that when the band is busy
(occupied by PUs or SUs), a new arriving SU in our model
joins the retrial orbit, while the new one in Falin [26] joins a
queue. Thus, we have E(v;) = A(1 —f*(@))(1 + 1) (equal to
Ev in the model of Falin [26]) and E(v2) = 1 — f*(«) (equal
to Eu in the model of Falin [26]).

We consider the time sequence #; (k = 1,2,...) when
the process (I(t), N(t)) moves into the states (0,1), i > 0.
It means at time #; (k > 1) the PU band completes the service
of PUs or an SU. Define N; as the number of SUs in the orbit
at time #; and x; as the mean drift from time #; to #;, 1, that is,
xi = ENjp1 — Nj | Nj = .

Theorem 1: The Markov process is ergodic iff the condi-
tion k. < % lS satisfied..

Proof: By the definition of x;, i.e., x; = E(Njy1 — N; |
N; = i), we have

A+ i0)EW)+EMW) Ayia—if
X = - + —. (D
Ao +i6 A+a—+ib
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As i — 00, we obtain
. * 1 *
x = lim x; = A(1 — fH(a))(y1 + =) — f ().
I—00 o

We first prove the Markov process is ergodic if A <
M%;SLW It is readily to see that the Markov chain is
irreducible and aperiodic. It remains to be proved that it is
positive recurrent. We use [27, Th. 2] which states that an
irreducible and aperiodic Markov chain is positive recurrent
if [x;] < oo for all i and lim;_, o supx; < 0. Obviously,
in our model, if A < these two inequalities
hold.

Further, with regard to the necessity of this condition,
according to the ergodic theorem of Markov chain which
states all the stationary probabilities of an ergodic Markov
chain are positive, we have the probability that the band is
idle, i.e., Py (defined in Theorem 2), should be positive at
steady state. It then 'follows.that A< mf% when
the Markov process is ergodic.

Thus, the sufficient and necessary condition for the ergod-
icity of the Markov chain is A < % ]

Define Pg i(¢), P1,i(t, x)dx, P2 (t, y)dy as the probabilities
that the PU band is unoccupied, occupied by an SU with the
elapsed service time between x and x + dx, occupied by the
PU with the elapsed time of busy period for the PUs between
y and y + dy and the number of SUs in the orbit is i at time ¢,
respe'c'tively. Let M = (1_)‘%:% Assume 'the stable
condition A < M is fulfilled, and set Py; = tl_1)ngo Py (1)
fori > 0; Pyi(x) = tEonPlsi(t’x) fori > Oand x > O;
Py i(y) = tl_1)rgo Py i(t,y)fori>0andy > 0.

From the transition rate diagram depicted before, we obtain
the following equations at steady state

af*(a)
A=) +ayr)’

(A +1i6 + a)Po,;

_ /0 PLICORGdx + /O Py Oy, 30,

2
d .
(E + u(x) + A+ )Py i(x) = APy i—1(x), =0, (3)
d .
(@ +A+yO)Pi(y) = AP2i—1(y), =0, “)
together with the boundary conditions
P1i(0) = APo i+ (i+ DOPyiy1, =0, %)

o

PO = aPota [ PLwd P20, (©)
0

and the normalization equation

o 00 00

Stro+ [ Pruacs [P =1 @

: 0 0

i=0

where P1 _1(x) =0, P2,_1(y) =
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To solve the above equations, we firstly define the follow-
ing probability generating functions:

o
Qo) =Y Po.id,
i=0
0 .
Qi(z,x) = ij,i(x)z’, j=1,2.
i=0

Multiplying both sides of equations (2)-(6) by z* and summing
over i, we have

100(2) + € Q0(2) + 20 Q4(2)

= /O 01(z, x)pu(x)dx + /0 O2(z, )y(mdy,  (8)
9
(5 + u(x) + A 4+ a)Q01(z, x) = zA01(z, x), (&)

a
(8—y +4+y(3)02(z,y) = 2z20:(z, y), (10)

01(z,0) = 1Q0(2) + 00 (), (11)

0:(2.0) = Q@) +az [ Qe (12
By (11), we derive the solution to equation (9) as follows
01z %) = (AQo(2) + 0QH@Ne I F(x).  (13)
Similarly, by plugging equation (12) into (10), it follows that
02(2.) = aQo(@)e” T B() + a2(1Q0(2)

1—F*(A
+o0)) = e

’\Z) o MI-NF
B
Ao ).

(14)
Substituting equations (13)-(14) into (8) yields

1
Qo(z)=c~exp{—/ A+ o —ab*(L — Au)

1= f*0u+ o — Au)
Ao —Au

X b*(A — Au) — Af*(A + o — Au)} /{0

I —f*O+o— 2w
A4 o —Au

X b*(h — Au) — ue}du}, (15)

— Ao

X f*(A+a — Au) + aub

where c is a constant.
Let z — 1, then solving equations (13)-(15) subject to
Qo(D) + [° @1(1, x)dx + [5° Q2(1, y)dy = 1 gives that
1 A A

- l+ay o af*@)

Since

Q1(Z)=/O Q1(z, x)dx

. ﬂ 1 —f*(A4+ao—Az)
—()»+9A2)Q0(Z) a2 (16)
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0:) = /O 02, y)dy

1—-b*(L — A
= a0u0—5
1—=b*(A— A
+0€ZQ1(Z)#ZZ)’ a7

where
1= f*(+a — 22)

Al = A+ a—ab*(h — A7) —

Ao — Az
X b*(L — A7) — AMf*(A + o — A2), (18)
1 —f*A 4o — A7)
Ar = OF* ()L —A 0
2 =070 +a—A)+az Ao —2Az
x b*(A — A7) — 26, (19)

we obtain the probabilities that the band is under different
states by inserting the value z = 1. Consequently, the proba-
bilities that the band is idle, serving SUs or serving PUs are
Po = ﬁ + 4 ; a *(a)’Pl M(lx I(of()x)) and Py = 1%1;/

On the other hand, denote by K(¢) the number of SUs in
the system at time #, then we have the generating function of
K (o). which s given by 0(2) = Qo(2)-+201(2)+0x(2). Using
Little’s Law E[W(3)] = £ = 2 the SU’s mean waiting
time in the system denoted by E[W(A)] can be derived as
follows

EIW0)] = (201 + ay)(@ + 0)(@ + 1)f (@)
— (@Qa(l +ay) + Q21 +ay)’ = a’y2)0)
+2(1 + ay)*(@ + OV (@)’
+2a(1 + ay)?0r() (@)}/{2a(1 + ayp)
SOf () (—(1 + ay)Dr + (@ + 4
+ayif (@)} (20)
We summarize the above results as the following theorem.
Theorem 2: For the considered cognitive radio system,
in steady state, we have:

(1) The probabilities that the PU band is idle, serving SUs

(;flsii\(]h;)g PUs are Py = ﬁ + % — ﬁ, P =
—f*(a _ _ay
@) and P, = Tray

(i) An SU’s expected waiting time in the system is

EIWO)] = {2(1 + ay)* (@ + ) + 1)f (@)
— (@Qa(1+ay)+Q(1+ay)* —a?y2)0)
+2(1 + ayn)(a + ON( (@)
+2a(1 + ay PO (@)} /{201 + ayy)
SOf () (—(1 +ayDr + (¢ + 2
+ayi)f (@)

Ill. SCENARIO-I: DISCRETE DISTRIBUTION

Recall that a service fee P is collected at SUs’ arrival. In a
discrete distribution CR system, the operator of the PU band
is a monopoly that knows how the price affects SUs’ behavior
and moves first to select the price to charge. Seeing the
price posted by the operator and knowing all the system
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parameters, SUs can infer the long-term waiting time statistic
by existing method [29] and respond to the expected utility.
Thus, in the game theory context, all the potential SUs can be
seen as players in a simultaneous move and non-cooperative
game, where their strategies are joining or balking and their
aim is to maximize their own profit. In SUs’ strategies, we try
to look for a Nash equilibrium. Let U (swgged s Sothers) be the
utility of a tagged SU who adopts strategy syqggeq, When others
follow strategy somers- For the later statement to be clearer,
the definition of Nash equilibrium is given here.

Definition 3 [30]: In the n-player normal game, the strat-
egy (s1,82,---,8,) is a Nash equilibrun if for each
player j, s; is (at least tied for) player j’s best response
to the strategies specified for the n — 1 other players,
(S1, -+ s Sj—1, Sj1s ="+ 5 Sn)

That is, a strategy s, is a Nash equilibrium if it is the best
response against itself, i.e., U(s¢, s.) > U(s, s.) for every
s € ¢ (¢ is the set of SU available actions). Suppose there
are multiple SU types (denote the number of SU types by
N) with delay-sensitive parameters C;, i € {1,2,...,N}
and C; < Cjifi < j. The corresponding probability is p;

(ef{l,2,.

rate of C;-SUs (i € {1, 2 ,N})is A; = Ap;. If we denote

the C;-SUs’ effective arrlval rate by A;, the effective arrival
N

rate to the network is . = ) ;. Recall that an SU receives a

,N}) and Z pi = 1. Then the potential arrival

reward V after paying the sle_rlvice fee P and being transmitted.
Thus, the expected utility of a C;-SU is defined as the benefit
of joining the system minus the cost including the service fee
and expected waiting cost:

It can be concluded that A; = A;if A; > 0 (j > i) because of
C; < Cjfor j > i. That means for j > i, if some C;-SUs join
the system, C;-SUs must all join. In addition, to rule out the
case where no SU would enter the system even if the PU band
is free and available, we assume that V — C; E[W(0)] > 0
holds.

V—-P—-CE[WQ)]

A. SUS’ STRATEGIES
Denote the equilibrium arrival rate of the network by Ad then
we have

1 = min{A 1, A7},

i—1
i =min{A;, A4 =D A,

=1
N—-1

CED IRV
j=1

To derive the equilibrium solutions, we first investigate the
monotonicity of E[W ()] with respect to A below.

Lemma 4: In such a cognitive radio network system,
a joining SU’s mean waiting time in the system is
monotonously increasing in A.

ief{2,3,....N—1},

AN
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Proof: Since the stable condition for such a system is
A < M, that implies

lim E[WQ)] = +oo.
A—>M—

In addition, we derive that the denominator of E[W ()]
expressed in equation (20) is positive under the steady-state
condition, and it approaches to zero when A — M ™. So the
sign of the numerator of E[W(X)] should be positive as
A—> M~

As A — M~ the numerator of E[W(L)] is O‘]; (S;)Aﬁ‘ , Where

My = [—1+f*@))2(1 + ay)* (@ +0) + a[-2y1(1
+ay) +ayal0f* (@)} — 2a(1 + ay)0(f*) (@),
(2D
and 0 < f*(a) < 1. It then follows that M < O.

Furthermore, differentiating E[W(XA)] with respect to A
leads to

dE A
% = —M1/{20[—)\ — ayiA + af *(@) + Af *(a)
+ayidf @)’
> 0, (22)
which indicates E[W (1)] is increasing in A. O

Following the monotonicity of E[W(X)], we can now
establish the uniqueness and existence of SUs’ equilibrium
strategies.

Theorem 5: In such a cognitive radio network system
where there are N types of SUs with delay sensitive parame-
ters C; (i € {1,2,..., N} and C; < Cjif i < j, there exists a
unique equilibrium arrival rate Ag such that:

(1) IfV — P < C{E[W(0)], then A¢ = 0.

(2) IfCLE[W(0)] <V —P < C1E[W(A})], then A¢ is the

unique solutionto V. = P4+C1E[W(X)] for A € (0, Ay).

(3) If CLE[W(A])] <V — P < GE[W(A))], then ¢ =

Aq. |
i—
4) HGEW()_ADl <V -P < ClE[W(Z Aj)], then
J=1 J=1
d s the unlque solution to V. = P + C,E[W(A)] for

xe(ZA],ZA)le{Z N}.
Jj=1
W(Z APV -P< CZ+1E[W(Z Aj)], then
J=1 j=1

gzzAjforie{z,...,N—u.
J=1

N N
(6) If CVE[W(Y. Al <V — P, then A4 = 3" A;.
j=1 j=l1
Proof: The increasing property of E[W(X)] in A gives
that the expected utility of Cj-SUs, i.e., Uj(A) = V — P —
C,E[W(L)], decreases with respect to A.
For C1-SUs, if U1(0) < 0, the best response of SUs against
A = 01is to balk. So A = 0 is the best response against itself,
that is, A‘ei = 0 is the unique equilibrium strategy.

6) IfGE
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If Ui(A1) < 0 < Uj(0), because of the continuity and
monotonicity of Uj(A), there exists a unique solution A} to
the equation Uy(A) = 0 in the interval A € (0, A1). For any
strategy A € (0, %), the best response for a tagged SU is to
join, so such a strategy cannot be an equilibrium. Similarly,
for any strategy A € (A}, A1), the best response is balking,
so such a strategy cannot be an equilibrium, too. Whereas, for
the strategy A, any strategy A € [0, A1]is a best response for
a tagged SU. Therefore, in this case, Ag = A} is the unique
equilibrium strategy.

If Ui(A1) = 0 and Ua(A1) < 0, the best response for the
tagged C1-SU is to join.

Fori € {2,3,...,N}, recall that C;_; < C; and the C;-

SUs may enter the network only when all C;_1-SUs choose
i—1

joining. Thus, when U;(>_ Aj) > 0, in equilibrium, some or
Jj=1

all C;-SUs choose to join. The equilibrium analysis for C;-

SUs is similar with that for C;-SUs, and we omit it here. [

B. OPTIMAL PRICING BY THE OPERATOR

Having derived SUs’ equilibrium arrival rate, in this subsec-
tion we turn our attention to analyze the decision of the oper-
ator of the PU band, who wants to earn a profit by charging
entering SUs. Based on different objectives, the operator can
be viewed as a commercial planner that aims to maximize its
own revenue or a social planner if its objective is to maximize
the social welfare of the system.

Recalling that the operator moves first to select a price
and then SUs decide whether to join the system or not after
knowing the price charged, it is as if the operator and all
the potential SUs are playing a two-stage Stackelberg game,
where the operator is the leader and SUs are the followers.
Denote the operator’s revenue and the social welfare of the
network per time unit by R and S, respectively. The two-stage
Stackelberg game is then defined as follows:

First stage: r}ga(); R(P)(or S(P)), (23)
>
Second stage: max Uj(A) =V — P — GE[W(A)],
A>1>0
i=1,2,...,N. (24

Based on SUs’ equilibrium arrival rate given in Theorem 5,
we now adopt backward induction to investigate the opera-
tor’s optimal pricing strategies. Since the operator’s revenue
is zero if no SU chooses to join (i.e., )\‘21 = 0), in what follows
we only focus on the cases where ¢ # 0 fulfills.

1) REVENUE-OPTIMAL PRICING

When charging a price P, the operator’s objective is to max-

imize its own revenue, that is, On}oaxv R(P) = AZ (P)P, where
<P<

AZ(P) is SUs’ equilibrium arrival rate at price P defined in
Theorem 5. Observing that we cannot derive closed form
solutions for Af in some cases, it is difficult to obtain the opti-
mal price to maximize the operator’s revenue. Thus, we try to
simplify this problem by seeking an equivalent one.

30944

Assume )

j=1
i—1 i
A e (ALY A)Goe {1,2,...,N}) so that A? is the
=1 j=1
unique root to U;(A) = 0. Because of the monotonicity
of function U;(A), there must exist a one-to-one mapping
between P and A¢ in this situation. Next consider the cases

0
- = 0, then we first consider the cases when

1
AZ = > Aj,i € {1,2,...,N}, where in order to reach
=1
the ma;(imum of the revenue, the operator would increase
the price to drain the C;-SUs’. So in equilibrium we have
Ui(A) = 0,1 € {1,2,...,N}. Namely, there always exists
a one-to-one mapping between P and AZ, and it is equivalent
to seek the optimal arrival rate.
Hence, the objective function can be rewritten as

max R4y = 24(P)P
)\‘E
=21V — GEIWGD)D, (25)
i—1 i
if 24 e (ALY Al i € {1,2,...,N}, and the
=1 j=I

J
second-order derivative of R(AZ ) with respect to Af is

I*R(AY) p d d o d
007 = 2GE'[WAH] = CGE"IWOD].  (26)
As
PEWQOL)] (1 + ay)(—1 +f*@)M,
a2 =1+ ayDr + (o + A + ay A *(a)]?
> 0, (27)

82 R(\Y)
a(rd)?
i—1 i )
inAd. Forad € (3" A, Y Ajlie{l,2,...,N}, let AR be

J=1 Jj=1
d
the solution to % = 0, if it exists.
Thus, the equilii)rium arrival rate which makes the man-

ager’s revenue maximize is obtained as follows

ARd RO,

it can be obtained that < 0; that is, R(Ag) is concave

= arg max i
A e{ARdi 3 Apiief1,2,...,N}}
j=1

j=1
sponding price is PR = R — G;E[W (AR%)].

We summarize the above analysis in the following
theorem.

Theorem 6: When the SUs’ delay-sensitive parameter fol-
lows a discrete distribution, the unique revenue-optimal
price is

o
Foranyi € {1,2,...,N},if \R¢ = \Rdi or 3~ A, the corre-

P* =R — GE[W(E),

where ARY = argmax i R(AY) and
A e(aRdi 3 Apie(l,2,..,N}}
j=1
. : d
ARdi is the solution to equation dl;%f) = 0 for A4 €

i—1 i
(XA Y AjlLiefl,2,..., N}, if it exists.
=1 " j=1
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2) SOCIALLY OPTIMAL PRICING
For a social planner, the social welfare is defined as the sum
of operator and the SU surplus. The SU surplus per time unit

at a given price is SS = Z AiU; (A ). The operator’s surplus

is the same as the operator 1s revenue and so it is expressed as
0S = 12P. So the social welfare function of the network per
unit of time is
i—1 i—1
SQd) =D AV = GEIWOON+ (0 = > Ap
J=1 J=1
x[V — GE[WODI,  (28)

i—1 i

where 1¢ € (21\],21\,-],1' e {1,2,...,
Jj= j=

Theorem 5, is a function of price P. Note that the price

charged for entering SUs is just an internal variable transfer-
ring from SUs to the operator. So for the remainder of this
subsection, we turn to consider the arrival rate.

By taking the second-order derivative of § (AZ) with respect
to AZ, we have

N}, defined in

i—1

2 d
325(1d) =3 AGETWOD] - 2GETWGD)]

and)y2

i—1
— 0 =3 ANGE" WD) < 0. (29)
Jj=1
So S(Ad) is concave with respect to Ad for any Ad IS

(ZAJ,ZA]IG{Iz N}.
=1 =1
Similar to the case of revenue-optimal pricing, the equilib-

rium arrival rate which makes the social welfare maximize is
given by

sd
A’ e

= arg max S,

i
A e(nsdi S Agiiefl,2,...,N}}
j=1

where for i € {1,2,. N 1, )»Sdl is the solution to equation

Ay d
asa()zf) = 0 for Xd e ( X% 2% Aj), if it exists. Sequently,
= ]:

the socially optimal pricing strategy is given in what follows.
Theorem 7: When the SUs’ delay-sensitive parameter fol-
lows a d1screte dlstrlbutlon the socially optimal price exists:

i
() If 234 € (Z LA G e {1,2,...,
j=1 j=1
sponding price is unique and given by

P¥ = R — GEIW(:{)];

N}), the corre-

(2) If 234 = ZA G e {1,2,.
=1
following interval can be socmlly optimal:

,N}), any price in the

50 € (max{R—Cii E W(ZA) 0}, R— CE[W(ZA ).
Jj=1 J=1

VOLUME 7, 2019

Having characterized the optimal pricing strategies of the
operator as a commercial planner or a social planner, we now
turn to compare them in the following corollary.

Corollary 8: The revenue-optimal price is not less than the
socially optimal one when there are N types of SUs with
different delay-sensitive parameters.

Proof: Since E[W (A)] is increasing in A, the equilibrium
arrival rate is non-increasing in the admission fee P. So in
the following we just need to prove that the revenue-optimal
arrival rate is not greater than the socially optimal one.

Differentiating R(A?) and S(A¢) with respect to A¢ yield
that

d
8];;26) =V — GE[W(G)] — CALETWQDL,
and
d
a‘;gj\d ) _y_ GEIWGDH] — CAIE WO

i—1 i—1
HGY A=Y NCGHETWRD),

J=1 J=1

i—1 i
for A4 e (3 Aj, Y Ajl i€ {1,2,...,N}. It is obvious

Jj=1 J=1
d
that 825\)}) > ‘)IS%) because C; < C; if j < i. Thus,

we divide our proof into two cases according to the different
revenue-optimal arrival rates.
The first one is ARd XRd’ i e {1,2,...,N}),

which implies that 2 axd | sd=pka = 0. It then follows that

ds()” |xa=prs = 0. Thus, we can easily conclude that ASd >

kfd in this case.
Similarly, in the second case where the revenue-optimal

]
arrival rate satisfies kfd = Y A (i € {1,2,...,N}),
IR0 -

we have axg IM ke = 0, leading to axd IM wkd = 0
also holds. So we come to the same conclusion. |

The conclusion in the above corollary seems natural. From
the service provider’s perspective, the server plays the role
of a monopolist. To maximize its own profit, the provider
will raise the price to extract SUs’ benefit to zero. However,
the social planner is indifferent to the utility of SUs and the
monopolist. Thus, the price set by the monopolist is an upper
bound of that chosen by the social planner.

IV. SCENARIO-II: CONTINUOUS DISTRIBUTION

Now assume that the SUs’ delay-sensitive parameters are
distributed on [C}, C] with distribution function H(-) and
density function A(-). Obviously, sometimes A = 0 or A{ =
A is an equilibrium. Otherwise, there exists a parameter C,
with which marginal SUs are indifferent between joining and
balking in equilibrium. In other words, in equilibrium, SUs
with delay sensitive parameter C < C, would join the system,
otherwise not. Thus, the equilibrium arrival rate of the system
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is M(C,) = AH(C,). In addition, V — C;E[W(0)] > 0O is
assumed to fulfill to ensure some SUs enter the system.

A. SUS’ STRATEGIES
In virtue of the indifference of marginal SUs, we have

V =P = CE[WQ(C))]. (30)

According to Lemma 4, the right hand of equation (30)
increases as C, grows. It reaches its minimum at C, = Cj,
and maximum at C, = Cj. Then the equilibrium solutions
are summarized in the following theorem.

Theorem 9: In such a cognitive radio network system
where SUs’ delay-sensitive parameters are distributed on
[C1, Cp], there exists a unique equilibrium arrival rate A¢.

(1) £V —P < CGE[WO(C)))], then AS = 0.

Q) If GE[W(C)] < V — P < CLE[W(A(Cp))], then

C, is the unique solution to V. = P+ CE[W (A(C))] for
C € (Cy, Cp) and AS = AH(C,).
3) If V—P > CLE[W(AL(Cp))], then AS = A.

B. OPTIMAL PRICING BY THE OPERATOR

Having characterized SUs’ equilibrium behavior, we are now
in a position to investigate the optimal pricing strategies
from the points of revenue maximizing and social welfare
maximizing.

1) REVENUE-OPTIMAL PRICING

To maximize the operator’s revenue, the optimization prob-
lem to find the optimal price and corresponding arrival rate
can be formulated as

Jmax R(P) = A(P)P 31)
0, ifP>V—CE[WMC):
A, ifV — CEIWC)] <P <V
— CIE[W(C))];
A, ifP <V — CLE[WA(CW)],
(32)

Subject to Ay =

where A; = AH(C,) and C, is the unique solution to equation
UC)=V —P—CE[WQA(C))] =0for C € (Cy, Cp).

The main focus of this optimization problem is the case
where V. — CLE[W(A(Cp))] < P < V — CIE[W(A(CD)].
Because of the one-to-one mapping between P and AS,
the objective function is transformed to the following one

max  R(C.) = MCe)(V — C.E[W(C,))])
C1<Ce=<Cy

MCUo(Co).

The second-order derivative of R(C,) with respect to C, is
R"(Ce) = 2)/(C)UY(C,) + MCHUF(Ce) + 1"(Ce)Un(Co).
Because

N (C.) = Ah(C,) > 0, (33)
A'(Ce) = AH(Ce), (34)

30946

—o—pSc

7./;4;4»4; /LJ;JLJ} oo 5 6 o o
,,,,,,,

0
01 02 03 04 05 06 07 08

)
A,

(b)

FIGURE 3. Optimal pricing strategies and equilibrium arrival rate vs. g,
forR=10,;=1,6,=2,=1,C,=2,A=0.8,A; =02, A, = 0.6,
«=0.5,0=2, B, =3,f*(a) =0.5, (f*) (x) = —1. (a) Two SU types.

(b) Continuous distribution.

Ui(C) = —Etwoico — ¢ 2EY O ey <o, 39)
ey = OEWML, o OEIW@GL,,
U§(Ce) = =220 (C) = Co— 1 (Co)
ZE[W(
~C, %(x (Co))?, (36)

the sign of /'(C,) is uncertain, which leads to that we can
not determine the sign of U”(C,) and thus the uncertainty
of R"(C,). Therefore, we solve this model in what follows
under a specific distribution, that is, the uniform distribution
on [Cy, Cp], which is common in [19]-[21].

Under the uniform distribution, it follows that #'(C,) =
0 and thus R"(C,) < 0. So R(C,) is concave and then the
revenue-optimal pricing strategy is followed.

Theorem 10: When the SUs’ delay-sensitive parameter is
uniformly distributed on [C;, Cp], the revenue-optimal price
uniquely exists.

(1) If there exists CX¢ e (Cy, Cy) satistying R'(CK) = 0,
the optimal price is
PR¢ = v — CRE[W(M(CEY)].
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FIGURE 4. Optimal pricing strategies and equilibrium arrival rate vs. 8,
forR =10, CG=1,6G=2¢=1C=2,A=08A; =0.2,A, =0.6,
«=0.50=2,p; =0.5,f*(«) = 0.5, (f*) («) = —1. (a) Two SU types.
(b) Continuous distribution.

(2) Otherwise, the optimal price is

PRE =V — CLE[W(L(CW)].

2) SOCIALLY OPTIMAL PRICING

From the perspective of a social planner, the social welfare
can be regarded as the aggregate utility obtained by all enter-
ing SUs. Thus, the social welfare of the network at price P is

Ce(P)
S(P)=A /C (V. = CE[W(A(C(P))Dh(CYdC.  (37)
1

In a same manner, to maximize the social welfare, seeking
the optimal pricing strategy maximizing the social welfare is
equivalent to searching the optimal marginal delay-sensitive
parameter. Under the uniform distribution, the optimization
of equation (37) can be rewritten as

C,—C
max  S(C,) = AV—<_—L
Ce€[C,Chl Cr—C
C? - C?
— AE[WC,)]————. (38
[W(( E))]Z(Ch—Cl) (38)
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FIGURE 5. Optimal pricing strategies and equilibrium arrival rate vs. ¢ for
R=10,C;=1,C=2,(=1,C,=2,A=0.8,A; =02, A5 =0.6,

o« =0.5, B; =0.5, B =3, f*(«) = 0.5, (f*)'(x) = —1. (a) Two SU types.

(b) Continuous distribution.

Based on Lemma 4 and equations (27), (33), it is easily
derived that & S(C” < 0 and thus the socially optimal pricing
strategy is at hand

Theorem 11: When the SUs’ delay-sensitive parameter is
uniformly distributed on [C;, Cy], there exist socially optimal
pricing strategies as follows.
(1) If there exists CS‘ € (Cy, Cy) satisfying BS(CE) =0,

the socially 0pt1ma1 price is

PS¢ =V — CSSE[W(M(C))].

(2) Otherwise, any price satisfying the following inequality
can maximize the social welfare

P <V — CLE[W(MCY)].

Furthermore, the revenue-optimal price is not less than the
socially optimal one according to the fact E)S(Cg) > ag(ce)

Corollary 12: When the delay-sensitive parameter follows
a uniform distribution, the revenue-optimal price is not less
than the socially optimal one.

In the above, we only give the detailed analysis for the
optimal pricing strategies when the delay-sensitive parameter
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FIGURE 6. Optimal pricing strategies and equilibrium arrival rate vs. o for
R=10,(;=1,C,=2,(=1,C,=2,A=08,A; =02,A, =06, =3,
0 =2, ; = 0.5, B = 3. (a) Two SU types. (b) Continuous distribution.

is uniformly distributed. Recalling the conclusion that the
revenue-optimal price is not less than the socially optimal
price holds when N types of SUs follow a discrete distribu-
tion, we can surmise that this conclusion still applies under
any continuous distribution by letting N approach infinity.

V. NUMERICAL EXAMPLES

In this section, we present numerical examples to show the
effects of several system parameters on the pricing strategies
and SUs’ behavior, and examine whether the conclusion that
the socially optimal joining probability coincides with the
revenue-optimal one when the delay-sensitivity of SUs is
homogeneous drawn in Wang et al. [17] holds or not for the
case with heterogeneous SUs.

Assume that in the case of continuous distribution SUs’
delay-sensitive parameters follow a uniform distribution and
two types of SUs exist in the discrete distribution case. With
regard to the sensitivity of SUs’ arrival rate, from Figures 3-5,
we observe that SUs’ arrival rate is non-increasing with
the first two moments of PUs’ service time B, B2, and
non-decreasing with the retrial rate 6, which can be explained
as follows. Firstly, the increase in PUs’ expected service
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o« =0.50=2,8; =0.5, f = 3. (a) Two SU types. (b) Continuous
distribution.

time means the band needs more time to serve PUs. Due to
the priority of PUs, that causes SUs’ mean waiting time to
grow and thus SUs have less incentive to enter the system.
Secondly, the growth in the second moment S, leads to a
bigger variance (i.e., higher volatility in the service time),
which results in SUs’ mean waiting time rising. So SUs
are reluctant to join the system. Lastly, a larger retrial rate
implies that the probability of an SU occupying the band
successfully increases, thus decreasing its mean waiting time
and motivating more SUs to join the system.

Next, we explore the sensitivity of optimal pricing strate-
gies with respect to the system parameters. It is known that
when the arrival rate decreases, there are two ways to improve
the revenue. One is to increase the fee to compensate for the
loss caused by the decreasing arrival rate, and the other is to
decrease the fee to slow the decreasing trend in the arrival
rate. Similarly, if the arrival rate increases, the operator can
increase the price, or it may lower the price to make the arrival
rate grow faster. We observe that the changing trends in the
revenue-optimal and socially optimal prices are the same as
that of the arrival rate. This means that, if more SUs enter
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the system, to obtain more profit, the manager or the social
planner will raise the price. In contrast, facing a decreasing
arrival rate, the manager or the social planner will cut the
price to attract more SUs, thus slowing the decreasing arrival
rate. We find colored areas in some figures, which means
that any pricing strategy in that area can maximize the social
welfare, which coincides with the theoretical analysis when
the equilibrium arrival rate equals A1 or A1 + Aj. Note that
for those figures with colored areas, the changing trend of
optimal pricing strategies is the same as that of the arrival rate
is referred to the changing trend before and after the colored
area.

On the other hand, when investigating the effect of PUs’
arrival rate and SUs’ service time distribution on the pricing
strategies and SUs’ arrival rate, in Figures 6-7, we assume
SUs’ service time follows an Exponential distribution with
parameter . Clearly, in equilibrium, the revenue-optimal
price, the socially optimal price, and SUs’ arrival rate are
increasing in service rate w and decreasing in arrival rate
o, except for that of the socially optimal price in the case
of continuous distribution with respect to p. The reason is
that the mean service time equal to + is decreasing in service
rate, while the probability that an SU in service is interrupted
increases with respect to PUs’ arrival rate o.

Furthermore, from Figures 3-7, one can see that the
revenue-optimal price is not less than the socially optimal
price. Accordingly, the revenue-optimal arrival rate is not
greater than the socially optimal rate, consistent with the
theoretical analysis, but contrary with that derived in Wang
et al. [17] for homogeneous SUs.

VI. CONCLUSION

This paper has provided an analysis of the optimal pricing
strategies of the network operator and the non-cooperative
joining behavior of SUs in a cognitive radio system with a
single PU channel utilized by multiple PUs and multiple SUs,
where the transmission times for SUs and PUs follow general
distributions and the disrupted SU enters a retrial orbit to try
again.

We show that a unique Nash equilibrium exists in the
non-cooperative game where SUs are possibly the different
players and decide whether to join the system or not based
on the utility function capturing their delay-sensitive hetero-
geneity. From the perspective of the operator who can act as
a commercial planner aiming to maximize its own revenue
or a social planner aiming to maximize the social welfare,
we investigate the optimal pricing strategies. We find that the
revenue-optimal price is unique, while there may exist multi-
ple socially optimal pricing strategies locating in an interval.
Furthermore, the revenue-optimal price is not less than the
socially optimal price, leading to the arrival rate under the
revenue-optimal price being not greater than the rate under
the socially optimal price. This finding is consistent with the
reality but contrary with the conclusion drawn in the literature
for homogeneous SUs; that is, the socially optimal arrival
rate coincides with the revenue-optimal one. The reason for
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that is the commercial planner is selfish, whereas the social
planner is indifferent when faced with the utility of SUs and
commercial planner.

An interesting future research topic is to investigate the
effects of sensing failures on the operator’s pricing strategies
and SUs’ joining behavior. In addition, in our paper, although
the collision of PUs is modelled by an M/G/1 queueing sys-
tem, the PUs are assumed to join the system without balking.
So the analysis for PUs’ balking behavior is another future
research direction.
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