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Abstract: Crashes that involved large trucks often result in immense human, economic, and social
losses. To prevent and mitigate severe large truck crashes, factors contributing to the severity of these
crashes need to be identified before appropriate countermeasures can be explored. In this research,
we applied three tree-based machine learning (ML) techniques, i.e., random forest (RF), gradient
boost decision tree (GBDT), and adaptive boosting (AdaBoost), to analyze the factors contributing
to the severity of large truck crashes. Besides, a mixed logit model was developed as a baseline
model to compare with the factors identified by the ML models. The analysis was performed based
on the crash data collected from the Texas Crash Records Information System (CRIS) from 2011 to
2015. The results of this research demonstrated that the GBDT model outperforms other ML methods
in terms of its prediction accuracy and its capability in identifying more contributing factors that
were also identified by the mixed logit model as significant factors. Besides, the GBDT method can
effectively identify both categorical and numerical factors, and the directions and magnitudes of the
impacts of the factors identified by the GBDT model are all reasonable and explainable. Among the
identified factors, driving under the influence of drugs, alcohol, and fatigue are the most important
factors contributing to the severity of large truck crashes. In addition, the exists of curbs and medians
and lanes and shoulders with sufficient width can prevent severe large truck crashes.

Keywords: large truck crash; injury severity; random forest; gradient boost decision tree; AdaBoost;
mixed logit model; contributing factors; AK level crashes

1. Introduction

Since 1994, Texas has had the highest number of fatal crashes involving large trucks in the
U.S. [1].Among these large truck crashes, the AK level crashes (A is the incapacitating crash, and K
is the fatal crash) often result in immense social and economic losses. To prevent and mitigate the
occurrence of AK level truck crashes, factors that significantly contribute to such severe crashes need
to be identified before appropriate countermeasures can be explored. This study was to investigate the
risk factors that contribute to the occurrence of AK level truck crashes. Although a significant number
of crash severity studies have been conducted, few have focused on the AK level truck crashes [2,3].

From a methodological perspective, a wide spectrum of modeling approaches has been adopted
in the crash severity analysis. Both traditional regression models (such as binary logit model, nested
logit model, and mixed logit model) and the machine learning (ML)-based methods (such as random
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forest, adaptive boosting, gradient boost decision tree, neural network, and support vector machine)
have been applied for the crash severity analysis. The traditional regression models and ML-based
methods have their own advantages and limitations, which are introduced in detail in the literature
review section. These models’ capabilities in analyzing the impacts of contributing factors to server
truck crashes need to be investigated.

This study was to investigate the contributing factors to the AK level large truck crashes by using
both classification tree-based ML methods and regression models. For this purpose, three different
types of classification tree-based ML methods, including random forest (RF), adaptive boosting
(AdaBoost), gradient boost decision tree (GBDT), were used for identifying and analyzing the factors
that have significant impacts on the severity of large truck crashes. In addition, a mixed logit model
was developed for serving as a benchmarking model for comparison. The results of the four different
types of models were compared and evaluated based on the identified factors and their impacts.
The results of this study indicated that the GBDT method outperforms the other two types of ML
methods (i.e., RF and AdaBoost). Besides, the GBDT method can effectively identify both categorical
factors and factors, and the directions and magnitudes of the impacts of the factors identified by the
GBDT model are all reasonable and explainable.

Previous studies have investigated the factors that affect the severity of crashes with a variety
of focuses. Some studies have focused on certain types of crashes, such as rear-end crashes or
rollover crashes, and others have focused on certain locations where the crashes occurred. In terms of
methodologies, some studies have used traditional regression models, and some have used ML-based
methods. For the traditional regression models, logit models and ordered probit models have been
widely used for crash severity analysis. For example, Chang and Mannering (1999) used nested logit
models to analyze the severity of injuries for both truck-involved crashes and non-truck-involved
crashes [4]. Khattak et al. (2003) used ordered probit models to identify the contributing factors,
and the focus of their study was the large truck rollover crashes [5].

Besides the traditional logit models and ordered probit models, some advanced regression
modeling techniques have been explored by previous studies. For example, Xie et al. (2009) conducted
a motor vehicle crash injury severity analysis using Bayesian ordered probit (BOP) models [6]. Pahukula
et al. (2015) utilized random parameter logit models to examine the impacts of time of day on the
injury severity of large truck-involved crashes [7]. Al-Bdairi and Hernandez (2017) used an ordered
random parameter probit model to analyze the injury severity of large truck-involved run-off-road
crashes in Oregon [8]. Ahmed et al. (2018) explored the contributing factors to the large truck-involved
crashes on rural highways in Wyoming using Bayesian binary logit models [9].

For ML-based techniques, the techniques applied to traffic safety studies include classification
tree-based models, neural networks, and support vector machine models. In recent years,
the classification tree-based ML methods have been widely employed for crash risk prediction
and identification of contributing factors [10,11]. A classification tree-based ML method decides
which crash risk factors should be chosen as the decision nodes and which features can provide more
information or reduce more uncertainty about the severity of traffic crashes based on information
gain and entropy. Chang and Chien (2013) used the classification and regression tree (CART) method
to examine the impacts of the driver and vehicle-related factors on the severity of injuries in large
truck crashes [12]. The importance of factors was analyzed according to the structure of the developed
classification tree. The results showed that drunk-driving is the most significant factor that contributes
to the severity of injuries in large truck crashes on the freeways. Yu and Abdel-Aty (2014) focused on
developing crash severity analysis models by first selecting the most important variables associated
with the severe crash occurrence using the random forest (RF) method [13]. Then, three different
types of models (fixed-parameter logit model, support vector machine model, and random parameter
logit model) were developed to analyze crash injury severity. In some other studies on crash severity
analysis [14,15], the RF method was also used for preselecting the independent variables for the
regression models. Zeng and Huang (2014) proposed a convex combination (CC) algorithm to train
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a neural network (NN) model for crash injury severity prediction and a modified NN pruning for
function approximation (N2PFA) algorithm to optimize the NN structure [16]. According to the
results of this study, the CC algorithm outperforms the traditional back-propagation algorithm both in
convergence ability and training speed. Tang et al. (2019) proposed a two-layer stacking framework to
predict crash injury severity [17]. The first layer integrates the advantages of three base classification
methods: RF, AdaBoost, and GBDT. The second layer completes the classification of crash injury
severity based on a logistic regression model.

In general, both the traditional regression models and ML-based methods have their own
advantages and limitations. The regression models have explicit equations that link the independent
variables (risk factors in this study) to the dependent variable (crash severity level); thereby, it has a
good capability in analyzing the impacts of independent variables. However, they have difficulties
in detecting and interpreting complex or high-order interactions among independent variables [18].
Some ML-based methods, like neural networks, have been known for their strong prediction capabilities.
However, they have been criticized for operating like a black box and unable to explicitly explain
the impacts of independent variables on the dependent variables [19]. Classification tree-based ML
methods like random forest have been known for their relatively better transparency [20]. However,
there is still a lack of explicit equations for the developed models. In addition, few studies have
been conducted on comparing the classification tree-based ML models with the traditional regression
models to make a full scale of understanding of the model’s capabilities in analyzing the impacts of
independent variables. This study is to fill these identified gaps in the existing studies.

In this paper, a literature review of previous studies related to the crash injury severity analysis is
presented at first, followed by an introduction of the methodology, the collected crash data, and the
independent variables considered in the analysis. After that, modeling results and their implications
are discussed in detail, which leads to conclusions and recommendations.

2. Collection and Processing

2.1. Data Description

A large and comprehensive truck crash database was developed based on the crash data collected
from the Texas Crash Records Information System (CRIS). It contained the truck crash records for
the entire state of Texas from 2011 to 2015. A large truck, as defined by the U.S. Department of
Transportation (DOT), is any truck with a gross weight rating greater than 10,000 pounds. Crashes
that involved one or more large trucks were collected for this study. In total, the final dataset
contained records of 85,184 large truck crashes and more than 170 attributes for each crash record,
including information about the drivers, vehicles, characteristics of the crashes, roadway conditions,
and environmental conditions.

2.2. Dependent and Independent Variables

The dependent variable in this analysis was the severity level of large truck crashes, and it had
only 2 different levels: AK level crashes (y = 1) and non-AK level crashes (y = 0). In total, there
were 6.37% of AK level crashes and 93.93% of non-AK level crashes. The independent variables were
carefully selected from over 170 attributes of the large truck crash data based on their categories,
their correlations between each other, their relationship to the dependent variable, and the quality of
the data.

At first, different types of variables related to the roadway, environment, and driver’s characteristics
were derived and classified into different categories, as shown in Table 1. Then, the correlations
between these variables were analyzed. Some of these variables were highly correlated. For example,
road surface conditions (dry, wet, and ice-covered) and weather characteristics (clear, rain, and snow)
were highly correlated factors. To avoid the collinearity problem, the weather characteristic factors
were kept in the model, while the surface-condition factors were removed. In addition, most of
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the independent variables were categorical variables, and they were all converted to the dummy
variables, as shown in Table 1. It can be seen that the variables in the same category were highly
correlated. Taking the “Lighting Conditions” category as an example, the lighting conditions included
the “daylight”, “dark no light”, “dawn”, “dark light”, and “dusk”, which was a complete list, and the
lighting condition of a crash must be one of these five conditions. Thus, if we included all these dummy
variables, their sum would be equal to 1. To avoid the dummy variable trap, one baseline variable was
identified for each category and was excluded from the model [21]. Furthermore, some factors did not
have a very clear causal relationship with the dependent variable. For example, the factor “number of
lanes blocked by the crash” was not the cause of a severe crash but was determined simultaneously
with the crash severity level when a crash occurred. Therefore, this type of variable should also be
removed from the model to avoid the endogeneity problem [22]. Finally, by carefully examining all the
factors in different categories, only 40 independent variables were finally selected, as listed in Table 1,
and the distributions of variables are presented in Table 2.
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Table 1. Variables and descriptions. (* Baseline variable for each category).

Traffic Control Lighting Conditions
none * 1 if no traffic control, 0 otherwise (baseline) daylight * 1 if incident occurred when daylight, 0 otherwise (baseline)

stopsign 1 if traffic control is stop sign, 0 otherwise darknolight 1 if incident occurred when dark not lighted, 0 otherwise
signallight 1 if traffic control is signal light, 0 otherwise dawn 1 if incident occurred when dawn, 0 otherwise
yieldsign 1 if traffic control is yield sign, 0 otherwise darklight 1 if incident occurred when dark but lighted, 0 otherwise

flashinglight 1 if traffic control is flashing light, 0 otherwise dusk 1 if incident occurred when dusk, 0 otherwise
Roadway Functional System Road Alignment

rintersatehighway * 1 if rural interstate highway, 0 otherwise (baseline) strailevel * 1 if road alignment is straight level, 0 otherwise (baseline)
uinterstatehighway 1 if urban interstate highway, 0 otherwise straigrade 1 if road alignment is straight grade, 0 otherwise

rprincipalarterial 1 if rural principal arterial, 0 otherwise straihillcrest 1 if road alignment is straight hillcrest, 0 otherwise
uotherprincipalarterial 1 if urban other principal arterial, 0 otherwise curlevel 1 if road alignment is curve level, 0 otherwise

uminorarterial 1 if urban minor arterial, 0 otherwise curgrade 1 if road alignment is curve grade, 0 otherwise
rminorarterial 1 if rural minor arterial, 0 otherwise curhillcrest 1 if road alignment is curve hillcrest, 0 otherwise

Median Type Location of First Harmful Event
mediannone * 1 if no median, 0 otherwise (baseline) onroad * 1 if crash occurred on road, 0 otherwise (baseline)
unprotected 1 if median type is unprotected, 0 otherwise onshoulder 1 if crash occurred on shoulder, 0 otherwise

positivebarrier 1 if median type is positive barrier, 0 otherwise onmedian 1 if crash occurred on median, 0 otherwise
onewaypair 1 if median type is one-way pair, 0 otherwise offroad 1 if crash occurred off-road, 0 otherwise

Shoulder Type Left Shoulder Type Right
shoulderlnone * 1 if no left shoulder, 0 otherwise (baseline) shoulderrnone * 1 if no right shoulder, 0 otherwise (baseline)

shoulderleft 1 if left shoulder exists, 0 otherwise shoulderright 1 if right shoulder exists, 0 otherwise
Curb Type Left Curb Type Right

curblnone * 1 if no left curb, 0 otherwise (baseline) curbrnone * 1 if no right curb, 0 otherwise (baseline)
curbleft 1 if left curb exists, 0 otherwise curbright 1 if right curb exists, 0 otherwise

Weather Characteristics Crash Contributing Factors
clear * 1 if clear, 0 otherwise (baseline) fatigue 1 if driver under the influence of fatigue, 0 otherwise
rain 1 if raining, 0 otherwise drug 1 if driver under the influence of a drug, 0 otherwise

snow 1 if snowing, 0 otherwise alcohol 1 if driver under the influence of alcohol, 0 otherwise
blowing 1 if blowing sand, 0 otherwise

fog
sleet

severcrosswinds

1 if fog, 0 otherwise
1 if sleet, 0 otherwise

1 if severe crosswinds, 0 otherwise

Lane Width and Shoulder Width
lanewid

shldrrwid
The width of travel lanes in feet

The width of the right shoulder in feet
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Table 2. Distribution of the variables.

Variable
Crash Injury Severity

Total Percent Variable
Crash Injury Severity

Total Percent
Non-AK Crash AK Crash Non-AK Crash AK Crash

Traffic Control Light Characteristics
none 9275 395 9670 11.35% daylight 59,034 3324 62,358 73.20%

stopsign 4392 452 4844 5.69% darknolight 11,129 1383 12,512 14.69%

signallight 10,952 373 11,325 13.29% dawn 1085 124 1209 1.42%

yieldsign 2016 123 2139 2.51% darklight 7455 542 7997 9.39%

flashinglight 509 51 560 0.66% dusk 708 42 750 0.88%
Location of First Harmful Event Median Type

onroad 65,535 4344 69,879 82.03% mediannone 29,965 2816 32,781 38.48%

onshoulder 1015 169 1184 1.39% unprotected 21,286 1482 22,768 26.73%

onmedian 2818 180 2998 3.52% positivebarrier 24,565 1014 25,579 30.03%

offroad 10,345 747 11,092 13.02% onewaypair 483 11 494 0.58%
Roadway Functional System Weather Characteristics

uinterstatehighway 21,666 851 22,517 26.43% clear 69,592 4853 74,445 87.39%

rprincipalarterial 9642 1159 10,801 12.68% rain 7470 410 7880 9.25%

uotherprincipalarterial 23,084 1050 24,134 28.33% snow 752 19 771 0.91%

uminorarterial 4615 296 4911 5.77% blowing 124 16 140 0.16%

rminorarterial 12,058 1453 13,511 15.86% fog 738 97 835 0.98%

rintersatehighway 8679 631 9310 10.93% sleet 675 25 700 0.82%
Road Alignment severcrosswinds 368 18 386 0.45%

strailevel 58,853 3742 62,595 73.48% Crash Contributing Factors
straigrade 9424 715 10,139 11.90% fatigue 1618 240 1858 2.18%

straihillcrest 2669 217 2886 3.39% drug 206 99 305 0.36%

curlevel 4757 428 5185 6.09% alcohol 862 241 1103 1.29%

curgrade 3191 291 3482 4.09%

curhillcrest 615 37 652 0.77%
Shoulder Type Left Curb Type Left

shoulderlnone 12,463 559 13,022 15.29% curblnone 66,710 4971 71,681 84.15%
shoulderleft 63,903 4543 68,446 80.35% curbleft 9307 339 9646 11.32%

Shoulder Type Right Curb Type Right
shoulderrnone 9576 433 10,009 11.75% curbrnone 66,427 4960 71,387 83.80%

shoulderright 66,732 4660 71,392 83.81% curbright 8188 300 8488 9.96%
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3. Methodology

As mentioned in the literature review, a variety of regression methods have been applied to
analyze crash-severity data, including the traditional regression models, such as the multinomial
logit model, ordered logit model, and so on. The mixed logit model is a widely used regression
model for crash injury severity analysis. Many studies have found that the mixed logit model could
achieve a closer estimation of the crash probabilities to the observations by allowing parameters to
differ across observations [14,23,24]. Thus, in this study, the mixed logit model was chosen as the
baseline regression model to compare with the ML models. Besides, the classification tree-based
ML methods have been widely employed for crash risk prediction and identification of contributing
factors [10,11,25]. Note that a number of traffic safety studies have used classification tree-based ML
methods for preselecting the independent variables for the mixed logit model to efficiently determine
the random parameters and improve model accuracy [13,14]. Therefore, there is a need to find out if
the classification tree-based methods can effectively and correctly identify contributing factors that
will also be identified by the regression model as significant factors. In this study, three representative
tree-based machine learning (ML) techniques, i.e., random forest (RF), gradient boost decision tree
(GBDT), and adaptive boosting (AdaBoost), were selected for developing models for identifying the
contributing factors to the AK level large truck crashes. For each developed model, the importance of
the identified factors was ranked based on the Gini impurity (a criterion to minimize the probability of
misclassification). Meanwhile, a mixed logit model was developed as a baseline model for comparing
with the developed ML-based classification tree models. Following is the introduction of all the
developed models.

3.1. Mixed Logit Model

In the development of a mixed logit model for crash injury severity analysis, a utility function
needs to be defined, which is a linear function that determines the specific injury severity level i for
observation (crash) j:

Uij = βiXij + εij (1)

where Xij is the vector of the independent variables, which are the contributing factors to the crash j
with severity level i. In this study, there were only two severity levels (i.e., AK crash and non-AK crash).
Thus i = 1,2. βi is a vector of the coefficients of independent variables, and εij denotes the error term
representing unobservable impacts on the crash outcomes. If εij is assumed to follow a Gumbel type1
distribution, then the probability of that crash j suffering injury severity level i can be expressed as:

Pij|βi =
exp

(
βiXij

)
∑I

i=1 exp
(
βiXij

) (2)

In the mixed logit model, it allows the coefficient vector βi to vary across individuals (different
crashes). Each element of βi may be either fixed or randomly distributed with fixed means, allowing for
heterogeneity within the observed crash dataset. By considering the randomly distributed coefficients,
the probability of that crash j suffering injury severity level i can be expressed as follows [26]:

Pij =

∫ (
Pij

∣∣∣βi

)
f(β|ϕ)dβ (3)

where f(β|ϕ) is the probability density function (PDF) of the random vector β, and ϕ denotes a vector
of parameters describing the PDF (e.g., the mean and variance of the normal distribution). In this
study, it was assumed that all the random coefficients are set to be normally distributed.

A simulation-based maximum likelihood method is used to estimate the model parameters by
using SAS 9.3. It has used a maximum of 100 iterations and 100 simulation points. A backward
stepwise variable selection process is conducted. During this process, the random coefficients with
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insignificant standard deviation are excluded so that the coefficients of those variables are set as fixed.
For the final modeling result, the independent variables with both random or fixed coefficients at a
significant level of 5% are included.

3.2. Random Forest (RF)

The RF method combines Breiman’s bagging idea and Ho’s “random subspace method” to
construct a collection of decision trees with various sub-samples of the dataset based on information
theory [27,28]. Each tree is constructed from a sample drawn with replacement from the training
set. A predetermined number of classification trees are generated from the bootstrap sample and
combined to give a final prediction. In this study, the model combined classifiers by averaging their
probabilistic prediction instead of letting each classifier vote for a single class. The performance of an
RF is optimized by minimizing the bias of each tree and the correlations among trees. To minimize the
bias, each tree should be grown to maximum depth based on the Gini index [29].

3.3. Adaptive Boosting (AdaBoost)

The basic idea of the AdaBoost algorithm is to combine a sequence of weak learners through a
weighted majority vote (or sum) to make classifications. It repeatedly updates the data by taking the
previous weak learners’ mistakes into account. The basic steps of this algorithm can be explained as
follows [30].

Given a classification training dataset D =
{(

x1, y1

)
,
(
x2, y2

)
, · · · ,

(
xN, yN

)}
, a strong classifier C(x)

is generated by the following steps:
Initialization of the weight value distribution of the training data,

W1 = (w11, · · · , w1i, · · · , w1N,), w1i =
1
N , i = 1, 2, · · · , N, m = 1, 2, · · · , M (m is the times of iteration) (4)

Using the training dataset has the weight distribution Wm to learn, and the basic classification
Cm(x) according to the Gini indexes of different influencing factors k is calculated.

The classification error rate of Cm(x) is calculated as follows

em = P
(
Cm(x) , yi

)
=

N∑
i=1

wmiI(Cm(x)) , yi (5)

The “amount of say”, am of Cm(x) is calculated according to its classification error em

am =
1
2

log
1− em

em
(6)

The weight distribution based on the calculated “amount of say”, am, is updated

Wm = (wm+1,1, · · · , wm+1,i, · · · , wm+1,N) (7)

wm+1,i =
wmi

Zm
exp

(
−amyiCm(xi)

)
(8)

where Zm is the normalization factor, which could make the sum of Wm equal to 1.
The weighted sum of all the classifiers is calculated

f(x) =
M∑

m=1

amCm(x) (9)
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The final strong classifier can be expressed as

C(x) = signf(x) = sign

 M∑
m=1

amCm(x)

 (10)

3.4. Gradient Boosting Decision Tree (GBDT)

GBDT is a generalization of boosting to arbitrary differentiable loss functions. The motivation
is to combine several weak models to produce a powerful ensemble [31]. Assume that F(x) is an
approximation function of the dependent variable y based on a set of independent variables x. F(x) can be
expressed as F(x) =

∑M
m=1 γmhm(x), where hm(x) are the basis functions, which are usually called weak

learners in the context of boosting. The loss function can be defined as, L(y, F(x)) = log
(
1 + e−yF(x)

)
.

Similar to other boosting algorithms, GBDT builds the additive model in a greedy fashion:

Fm(x) = Fm−1(x) + γmhm(x) (11)

where the newly added tree hm tries to minimize the loss L, given the previous ensemble Fm−1(x):

hm = arg min
h

n∑
i=1

L
(
yi, Fm−1(xi) + h(xi)

)
(12)

The initial model F0 is problem-specific; for the least-squares regression, one usually chooses the
mean of the target values.

Gradient boosting attempts to solve this minimization problem numerically via steepest descent:

Fm(x) = Fm−1(x) − γm

n∑
i=1

∇FL
(
yi, Fm−1(xi)

)
(13)

where the step length γm is chosen using the line search:

γm = arg min
γ

n∑
i=1

L

yi, Fm−1(xi) − γ
∂L

(
yi, Fm−1(xi)

)
∂Fm−1(xi)

 (14)

3.5. Mean Decrease Impurity (MDI)

In ML-based classification tree methods, the impurity of the classification results from a tree
node can be measured by the Gini index. Like entropy, the basic idea is to gauge the disorder of a
grouping by the target variable. The Gini index for a node t in a single tree can be calculated using the
following equation:

G(t) = 1−
m∑

i=1

p2(i|t) (15)

where G(t) denotes the Gini index for the node t; i represents the number of classes; p2(i
∣∣∣t) represents

the estimated class probabilities.
The Gini index can be used to evaluate the importance of the independent variables. Generally,

the impurity (measured by Gini index) decreases from each independent variable in a randomized
tree, and the decrease in impurity can be averaged across trees to determine the importance of the
variables [32]. This is known as the mean decrease impurity (MDI). The more an independent variable
decreases the impurity, the more important the variable is. In this study, MDI was used to rank the
importance of risk factors that contribute to the severity of large truck crashes.
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4. Result Analysis

4.1. Identified AK Crash Contributing Factors

As mentioned before, this study was to compare the performance of ML-based classification tree
models with the regression model in terms of the models’ capabilities in identifying the crash severity
contributing factors and analyzing their impacts. For this purpose, a mixed logit model was first
developed and served as the benchmarking model. The results of the developed mixed logit model
are presented in Table 3. It can be seen that eighteen independent variables have significant impacts
(p-value < 0.005) on the dependent variable (y = 1 if it is an AK level crash; y = 0 otherwise). Among
them, the coefficients of three independent variables are random across the observations because they
yield statistically significant standard deviations (see the values in the parentheses). The positive
(negative) coefficients mean that when the value of the independent variable increases, the probability
that a large truck crash is an AK level crash will increase (decrease). The impacts of these eighteen
independent variables are discussed in detail in the “Impacts of the identified contributing factors”
section later on. Note that the lower the p-value of the estimated coefficient, the higher the significance
level of this variable. Thus, the importance of the factors can be ranked according to their p-values.

Table 3. Results of the mixed logit model.

Variable Coeff. * Std. Error t p-Value **

traffic control
signallight −0.5801 0.0644 −9.01 <0.0001
stopsign 0.2037 0.0587 3.47 0.0005

location Offroad *a −2.5980
(2.9134) 0.5779 −4.50 <0.0001(<0.0001)

weather

Rain *a −1.2411
(1.7131) 0.3592 −3.45 0.0006(<0.0001)

sleet −0.8620 0.2479 −3.48 0.0005
snow −1.4201 0.2880 −4.93 <0.0001

severcrosswinds −0.7184 0.3243 −2.22 0.0267

road alignment
straigrade 0.1569 0.0488 3.21 0.0013
curlevel 0.2380 0.0669 3.56 0.0004
curgrade 0.3068 0.0800 3.83 0.0001

functional
system

uinterstatehighway −0.7046 0.0618 −11.40 <0.0001
uotherprincipalarterial −0.5464 0.0480 −11.39 <0.0001

curb left curbleft −0.6472 0.0581 −11.13 <0.0001

median
positivebarrier −0.5434 0.0548 −9.91 <0.0001

Unprotected *a −1.8760
(−2.2862) 0.3472 −5.40 <0.0001(<0.0001)

onewaypair −0.6444 0.3111 −2.07 0.0383

factors
drug 2.0215 0.1466 13.79 <0.0001

fatigue 0.7642 0.0935 8.18 <0.0001

Intercept −2.1065 0.0278 −75.85 <0.0001

Log likelihood −19,352 (df = 22)

Sample size 85,184

* Parentheses indicate the standard deviations of the random coefficient estimates. ** Parentheses indicate the
p-value of the standard deviations of the random coefficient estimates. *a Denotes random parameters.

Meanwhile, the ML classification tree models, i.e., RF, AdaBoost, and GBDT, were also developed
to identify the crash risk factors that will significantly affect the severity of large truck crashes based
on the estimated Gini index. The ML classification tree models were implemented in Python using
the scikit-learn (0.19.1) package. For the development of the classification tree models, the number
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of trees for each type of model needs to be determined based on the model performance. In this
study, a prediction accuracy measure, namely the receiver operating characteristic (ROC) curve,
was used for evaluating the model performance. A ROC curve is a graphical plot for demonstrating
the discriminant ability of a binary classifier system as its threshold is varied. The results showed
that 200, 400, 200 trees are the optimal number of trees to achieve minimum misclassification for the
RF, AdaBoost, and GBDT models, respectively. Based on the developed models, the importance of
different independent variables can be assessed according to their MDI measures.

Since the mixed logit modeling results (see Table 3) indicate that there are 18 significant crash risk
factors, for comparison purposes, only the top 18 most important risk factors were selected for each
ML model, as presented in Figure 1.
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To compare the results of ML models with the mixed model, Spearman’s rank correlation analysis
was conducted between the importance ranks of the factors identified by the ML models and their
importance ranks based on the p-values of their coefficients in the mixed logit model. The following
are the results:

The correlation analysis results in Table 4 implies that, compared with the RF and AdaBoost
models, the results of the GBDT model are more correlated with the results of the mixed logit model.
Therefore, if we choose an ML method for preselecting the independent variables for the mixed logit
model, the GBDT model should be chosen because it can better identify important variables for the
mixed logit model than the other two models. In addition, according to Figure 2, the area under the
ROC curves (AUC) of the GBDT model is greater than those of RF and Adaboost, which indicates that
the GBDT model has better prediction performance than the other two models. Thus, the GBDT model
is selected for comparing with the mixed logit model for analyzing the impacts of the identified crash
contributing factors.

Table 4. Spearman’s rank correlation coefficients of factors’ importance rank.

Importance Ranks Based on the MDI *2 Measures of the ML *3 Models

Importance ranks based
on the p-values of the

mixed logit model

RF *4 model GBDT *5 model AdaBoost *6 model

−0.059 (0.817 *1) 0.738 (0.001 *1) 0.152 (0.548 *1)

*1 The significance level of the estimated correlation coefficient, *2 MDI denotes Mean Decrease Impurity. *3 ML
denotes Machine Learning. *4 RF denotes Random Forest. *5 GBDT denotes Gradient Boost Decision Tree.
*6 AdaBoost denotes Adaptive Boosting.
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4.2. Analysis of the Impacts of the Identified Crash Contributing Factors

For the mixed model, the impacts of factors were determined based on the estimated coefficients
of the independent variables. The positive coefficient indicates that the independent variable has a
positive effect on the dependent variable, and vice versa. For the GBDT model, partial dependence
plots were used for analyzing the directions of impacts.

4.3. Partial Dependence Plots of GBDT Model

To examine complex risk patterns of large trucks, partial dependence plots were constructed.
A partial dependence shows the dependence between the outcomes (crash severity levels) and a
set of crash contributing factors; it indicates the marginal effect the factors have on the predicted
outcomes [31]. The partial dependence plots of the top 18 factors are presented in Figure 3.
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From these partial dependence plots, the impacts of the dependent variable on the independent
variable can be analyzed according to the direction of the plotted lines. More specifically, if the partial
dependence increases with the increase in the value of an independent variable, this independent
variable has a positive effect on the dependent variable, and vice versa. In addition, the slopes of
the plotted lines indicate the magnitudes of the impacts. Comparing with the mixed logit model,
the advantage of the GBDT model is that it can reveal nonlinear relationships between the numerical
independent variables and the dependent variables. For example, as shown in Figure 3e, the impact of
lane width (lanewid) does not decline in a straight line; instead, it roughly shows a piecewise decline
with spikes at some points that may be due to some random factors.

4.4. Comparison of the Mixed Logit Model and GBDT Model

To further compare the results of the mixed logit model and the GBDT model, the factors identified
by these two models and their impacts on the dependent variable are summarized and listed together
in Table 5.

Table 5 consists of three parts. The top part lists the nine factors that were identified by both the
mixed logit model and the GBDT model. These factors belong to six categories, including “Crash
contributing factors”, “Roadway functional system”, “Traffic control”, “Curb type left”, “Median type”,
and “Location of first harmful event”. First, the signs of the coefficients of the mixed logit model are
consistent with the directions of the partial dependence plots of the GBDT model shown in Figure 3.
It means that the directions of the impacts for these factors are consistent according to the results
of both models. In addition, both models identified “driver under the influence of a drug” as the
important contributing factor to the AK level large truck crashes.

In the mid part of Table 5, it lists the nine factors that were only identified by the mixed logit model
but not the GBDT model. These factors belong to three categories, including “Weather characteristics”,
“Road alignment”, and “Median type”. Note that, for the category “Weather characteristics”, the results
of the mixed logit model showed that the weather conditions of “snowing”, “sleet”, “raining”,
and “severe crosswinds” would all decrease the chance of a severe large truck crash, which is not
reasonable and contradicts with the findings of some previous studies [9,33].

In the lower part of Table 5, it lists the nine factors that were only identified by the GBDT model
but not the mixed logit model. These factors belong to five categories. More factors related to lighting
conditions and crash contributing factors were identified. Overall, the influencing directions of these
factors are all reasonable and explainable. It is worth mentioning that the GBDT model can identify
the numerical factors like lane wide (lanwid) and shoulder wide (shldrrwid), while all the factors
identified by the mixed model are category variables. It is because, for the numerical factors, they very
likely to have nonlinear impacts on the dependent variable, and this type of impact can be hardly
identified by the mixed logit regression model, which is built upon a linear link function between the
x and y.

Overall, the GBDT model identified more factors related to lighting conditions and crash
contributing factors, while the mixed logit model identified more factors related to weather
characteristics and roadway geometric characteristics. About half of the factors were identified
by both models, and for these factors, the results of both models are consistent. In the following section,
the impacts of the identified factors are discussed in detail.
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Table 5. Comparison of the mixed logit model and the GBDT model.

Variable Category Variables’
Descriptions

Mixed Logit GBDT

Significant Factors
(p-Value <5%) Signs of β Ranked by

p-Value
Important Factors

(Top 18)
Direction of Partial

Dependence
Ranked
by MDI

Crash contributing
factors

1 if driver under
the influence of a
drug, 0 otherwise

drug + 1 drug + 5

1 if driver under
the influence of

fatigue, 0
otherwise

fatigue + 7 fatigue + 11

Roadway
functional system

1 if urban
interstate highway,

0 otherwise
uinterstatehighway – 2 uinterstatehighway – 12

1 if urban other
principal arterial, 0

otherwise
uotherprincipalarterial – 3 uotherprincipalarterial – 17

Traffic control

1 if traffic control
is stop sign, 0

otherwise
stopsign + 14 stopsign + 15

1 if traffic control
is signal light, 0

otherwise
signallight – 6 signallight – 16

Curb type left 1 if left curb exists,
0 otherwise curbleft – 4 curbleft – 10

Median type
1 if median type is
positive barrier, 0

otherwise
positivebarrier – 5 positivebarrier – 13
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Table 5. Cont.

Variable Category Variables’
Descriptions

Mixed Logit GBDT

Significant Factors
(p-Value <5%) Signs of β Ranked by

p-Value
Important Factors

(Top 18)
Direction of Partial

Dependence
Ranked
by MDI

Location of first
harmful event

1 if crash occurred
off-road, 0
otherwise

offroad – 10 offroad – 9

Weather
characteristics

1 if snowing, 0
otherwise snow – 9

1 if sleet, 0
otherwise sleet – 13

1 if raining, 0
otherwise rain – 15

1 if severe
crosswinds, 0

otherwise
severcrosswinds – 17

Road alignment

1 if road alignment
is straight grade, 0

otherwise
straigrade + 16

1 if road alignment
is curve level, 0

otherwise
curlevel + 12

1 if road alignment
is curve grade, 0

otherwise
curgrade + 11

Median type

1 if median type
is one-way pair, 0

otherwise
onewaypair – 18

1 if median type is
unprotected, 0

otherwise
unprotected – 8
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Table 5. Cont.

Variable Category Variables’
Descriptions

Mixed Logit GBDT

Significant Factors
(p-Value <5%) Signs of β Ranked by

p-Value
Important Factors

(Top 18)
Direction of Partial

Dependence
Ranked
by MDI

Lighting
conditions

1 if incident
occurred when

dark not lighted, 0
otherwise

darknolight + 1

1 if incident
occurred when

dark but lighted, 0
otherwise

darklight + 14

1 if incident
occurred when

dawn, 0 otherwise
dawn + 18

Crash contributing
factors

1 if driver under
the influence of

alcohol, 0
otherwise

alcohol + 3

Lane width and
shoulder width

The width of the
right shoulder in

feet
shldrrwid – 6

The width of
travel lanes in

feet
lanewid – 7

Location of first
harmful event

1 if crash occurred
on shoulder, 0

otherwise
onshoulder + 8

Roadway
functional system

1 if rural minor
arterial, 0
otherwise

rminorarterial + 2

1 if rural principal
arterial, 0
otherwise

rprincipalarterial + 4
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4.5. The Impacts of the Identified Contributing Factors

As shown in Table 5, there was a total of 27 factors identified either by the mixed logit model
or by the GBDT model. In this section, the impacts of these 27 factors are discussed according to
the modeling results by categories. First, the factors identified by the GBDT model were analyzed
according to the order of the categories presented in Figure 3. After that, the categories that were only
identified by the mixed logit model but not by the GBDT model were analyzed according to the order
of the categories presented in Table 5.

(1) Crash Contributing Factors

Three crash contributing factors—“driver under the influence of a drug”, “driver under the
influence of alcohol”, and “driver under the influence of fatigue”—were identified as the important
factors by the GBDT model. Among them, the factors “driver under the influence of a drug” and
“driver under the influence of fatigue” were also identified by the mixed logit model as the significant
factors. Overall, these three factors all have positive impacts on the dependent variable, which means
that these three factors all tend to result in severe large truck crashes. This is reasonable. Fatigue,
alcohol, and drug can affect human brains and other parts of the nervous system and, thus, slow down
a person’s activity or responsiveness. Therefore, truck drivers’ reactions and decision-making can be
greatly affected if they are under the influence of these factors, leading to risky driving situations [34].
In terms of the magnitude of the impacts, according to the estimated variable coefficients of the mixed
logit model, the coefficient for the “driver under the influence of a drug” is 2.0215, and the coefficient
for the “driver under the influence of fatigue” is 0.7642. This indicates that the impacts of “driver
under the influence of a drug” are greater than the impacts of “driver under the influence of fatigue”.
In addition, according to the slopes of the partial dependence plots presented in Figure 3a, it can be
seen that the “driver under the influence of a drug” has the biggest impacts, followed by “alcohol” and
“fatigue”. Overall, the results of both models are consistent, while GBDT can identify more driving
under influencing (DUI)-related factors.

(2) Lighting Conditions

Lighting conditions factors were only identified by the GBDT model but not the mixed logit model.
They are “incident occurred when dark not lighted”, “incident occurred when dark but lighted”,
and “incident occurred when dawn”. These three factors all have positive impacts on the dependent
variable, which means that they will increase the chance of an AK level large truck crashes. In general,
crashes that occur at dawn or night (with light or without light) tend to be more severe than crashes
that occur during the day. It is because that reduced visibility at night has an adverse effect on truck
drivers’ reaction time.

(3) Roadway Functional System

Four roadway functional system factors—“urban interstate highway”, “urban other principal
arterial”, “rural minor arterial”, and “rural principal arterial”—were identified as the important factors
by the GBDT model. Among them, the factors “urban interstate highway” and “urban other principal
arterial” were also identified by the mixed logit model as significant factors. The results of both models
are consistent, and all indicate that “urban interstate highway” and “urban other principal arterial”
have negative impacts on the dependent variable, which means that there is less chance of an AK level
large truck crashes on these two types of roadway. It is reasonable because urban roadways usually
have better traffic and access control and are, therefore, generally safer than rural roads. In addition,
according to the slopes of the partial dependence plots presented in Figure 3c, large truck crashes
on a rural principal arterial are most likely to be severe crashes, followed by those on rural minor
arterials. These results are also reasonable because truck drivers usually drive at a higher speed on
rural roadways, especially on rural principal arterials, which increases the risk of severe crashes.
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(4) Traffic Control

Two traffic control factors—“stop sign” and “signal light”—were identified as the important
factors by the GBDT model and were also identified by the mixed logit model as significant factors.
The results of both models are consistent, and all indicate that “stop sign” has positive impacts on
the dependent variable, while “signal light” has negative impacts on the dependent variable. It is
reasonable because stop signs usually are installed at rural intersections with high-speed limits, where
the risk of severe truck crashes is high, and traffic signals can prevent the severe truck crashes by
clearly assigning the right-of-way to the vehicles from different directions to keep traffic in order.

(5) Lane Width and Shoulder Width

The factors—“ lane width” and “right shoulder width”—were identified by the GBDT model but
not by the mixed logit model. According to Figure 3e, both the “lane width” (lanewid) and “right
shoulder width” (shldrrwid) plots show a piecewise decline. These results are reasonable. According
to Zegeer et al. (1980), a wider lane width reduces the risk of the run-off-road and opposite-direction
crashes, which are usually AK level crashes [35]. From the partial dependence plot of the “right
shoulder width”, it can be seen that there is a sudden drop at the point of 12ft shoulder width.
According to Federal Highway Administration (FHWA) safety acquirement [36], a paved shoulder
width of 12 feet is required for the interstate highway with truck traffic exceeding 250 directional design
hour volume (DDHV). Note that in roadway segments where the shoulder width is less than 12ft,
a stalled truck cannot be safely refuged on the shoulder, which significantly increases the risk of severe
truck crashes. In addition, wider shoulder width allows vehicles to pull off the road in emergencies
and have clearance from traffic, which brings the drivers a high perception of safety [37].

(6) Types of Curbs

The existence of left curbs (curbleft) was identified in both models with consistent negative
impacts. When a crash occurs, curbs can help prevent the large truck from running off the road. These
preventive measures can lead to less severe crashes.

(7) Location of First Harmful Event

Two locations of first harmful event factors—“crash occurred off-road” and “crash occurred on the
shoulder”—were identified as the important factors by the GBDT model, and “crash occurred off-road”
was also identified by the mixed logit model as a significant factor. According to both models, the factor
“crash occurred off-road” has negative impacts on the dependent variable. Since, in this category,
we used “the large truck crashes that occurred on the road” as the baseline variable, it can be seen that
large truck crashes that occurred off the road usually are less severe than those that occurred on the
road. It is because off-road crashes usually are due to a truck hitting a fixed object (like a tree) rather
than hitting another moving vehicle, which usually results in less injury and fatality. According to the
GBDT model, “crash occurred on the shoulder” has positive impacts on the dependent variable, which
means that a large truck crash occurred on the shoulder tend to be more severe than that occurred on
the road. It is because this type of crash usually is the result of a large truck hitting a stalled vehicle
on the shoulder or another moving vehicle hitting a stalled large truck on the shoulder, which often
causes incapacitating injuries or fatalities.

(8) Median Type

“Median type is positive barrier” was identified by both the mixed logit model and the GBDT
model as a negative influencing factor, which indicates that barriers installed on the median can help
reduce the risk of severe large truck crashes. In addition, “median type is unprotected” and “median
type is one-way pair” were only identified by the mixed logit model as a negative influencing factor.
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Note that the baseline variable in the “median type” category is “no median”. Thus, these results
indicate that the roadways with unprotected median or one-way roadway have less risk for AK level
large truck crashes than the roadway with no median. These results are also reasonable. It is because,
on these two types of roadway, the traffic from two opposite directions are better separated than that
on a roadway with no median. As a result, when a crash occurs, there is less chance for the large truck
running into the opposite direction of the road and resulting in severe crashes. These results are also
consistent with the findings in the literature [38].

(9) Weather Characteristics

Four weather characteristic factors—“snowing”, “sleet”, “severe crosswinds”, and “raining”—
were only identified by the mixed logit model but not the GBDT model. These four weather characteristic
factors all have negative impacts on the dependent variable. These results are not reasonable and
contradict the findings in the literature. For example, Malin et al. (2019) found that accident risks
increase under bad road weather conditions, especially for icy rain and slippery road conditions [33].

(10) Road Alignment

Three road alignment factors—“straight grade”, “curve grade”, and “curve level”—were only
identified by the mixed logit model but not the GBDT model. Overall, these three factors all have
positive impacts on the dependent variable. As compared to a straight level road segment, curved
road, grade road, and curved with grade road are more likely to result in severe large truck crashes.
This is because large truck drivers have limited sight distance when approaching the road segments
with curves, slopes, or curved slopes. In addition, it is difficult for a large truck driver to apply brakes
sufficiently on a curved grade road.

5. Conclusions and Recommendations

In this study, three classification tree-based ML models, i.e., RF, AdaBoost, and GBDT models,
and a mixed logit model were developed for analyzing the severity of the large truck crashes.
We compared the performance of these models in terms of their capabilities in identifying the right risky
factors and analyzing their impacts. The following are some key findings and some corresponding
recommendations:

(1) The importance rank of the factors identified by the GBDT model is more correlated with the
significant level of the factors identified by the mixed logit model than those of the RF and
AdaBoost models. This result indicates that the GBDT model is a better choice for preselecting
the variables for the mixed logit model.

(2) The partial dependence plots of the GBDT model can be used effectively in deriving the direction
and magnitude of the impacts of the identified factors.

(3) For the factors that are identified by both GBDT and mixed logit models, the directions of the
impacts of these factors are consistent according to the results of both models.

(4) For the factors that are only identified by the GBDT model, the directions and magnitudes of
their impacts are all reasonable and explainable according to the partial dependence plots of the
GBDT model.

(5) For the factors only identified by the mixed logit model, it is found that influencing directions of
the weather characteristic factors are not reasonable.

(6) All the factors identified by the mixed model are categorical variables, while the GBDT model
can also identify numerical factors like lane width (lanwid) and right shoulder width (shldrrwid),
which have nonlinear impacts on the dependent variable.

(7) According to the partial dependence plots of GBDT, driving under the influence of drugs, alcohol,
and fatigue are important contributing factors to the severity of large truck crashes. In addition,
the existence of curbs, medians, and lanes and shoulders with sufficient width can effectively
prevent severe large truck crashes.
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The results of this study can help researchers in applying the ML-based methods for crash severity
analysis in the future. It also can help traffic engineers better understand the contributing factors to the
severity of large truck crashes and thereby choosing the most effective countermeasures for preventing
severe large truck crashes. For example, fatigue, alcohol, and drug are identified as top contributing
factors. For preventing driving under the influence of drugs, alcohol, and fatigue, in-vehicle driver
drowsiness detection, alcohol detection, and drug detection systems could be implemented. Improving
law enforcement and disseminating knowledge of traffic regulations to road users will also help.
In addition, adequate lighting should be installed in the road segments with a high percentage of trucks
to improve the roadway visibility at night. Furthermore, roads can be better designed by installing
proper curbs, medians, and shoulders and lanes with sufficient widths to ensure the safe moving of
large trucks.

In this study, due to the data quality limitations, some potential contributing factors, such as the
number of lanes and speed limit at the crash sites, have not been included in the developed models.
In the future, more data need to be collected to include these variables to refine the modeling results.
Besides, as shown in Table 2, the collected traffic crash data is very unbalanced as some of the categories
only have very few cases. To address the imbalanced data problem, some resampling techniques will be
employed to balance the data before model development in future studies. Furthermore, this research
only considered four modeling methods. In the future, more methods should be considered to obtain a
more comprehensive understanding of different models’ capabilities in crash severity analysis.
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