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ABSTRACT

Serotonin, a hormone produced in the brain, has long been implicated in the regulation of 

critical behaviors, such as those related to aggression or impulse control. However, most research 

on serotonin has focused on the proximate connection to behavior, and little is known about its 

evolution. This is unfortunate, since the serotonin system has great potential to inform our 

understanding of behavioral evolution. I seek to address this gap in knowledge by investigating 

the molecular evolution of the serotonin system in macaques (genus Macaca).

The macaque genus represents a useful model for understanding behavioral evolution.  

Comprised of approximately 19 species, macaques display a wide range of behaviors.  It is likely 

that behavioral differences are caused by differences in neuroendocrinology.  Therefore, the 

serotonin system provides one potential mechanism through which evolution may act to shape 

macaque behavior.  In this dissertation, I sequence four genes that are known to influence 

serotonin functioning and behavior: HTR1A, HTR1B, TPH2, and SLC6A4. I examine the pattern 

of genetic variation within and between several species of macaque, and, using an approach 

based on molecular evolutionary theory, discern which evolutionary force – positive selection, 

balancing selection, purifying selection, or random genetic drift – is most likely to have acted on 

these genes.

Three out of the four genes (HTR1B, TPH2, and SLC6A4), show a low level of overall 

genetic variation within the coding regions, suggesting that purifying selection is the 

predominate force acting on these genes. Within non-coding regions, the patterns of genetic 

variation found are consistent with genetic drift. Thus, positive selection does not seem to be 

affecting these genes.  The genetic variation for these genes may contribute to the behavioral 



iii

variation found in macaques; however, any effect that these genes have on behavior is likely due 

to non-adaptive evolutionary forces.

In contrast to the other genes, HTR1A shows a pattern that is clearly distinct. HTR1A

displays an unusually high level of interspecific variation, which is consistent with positive 

selection. Moreover, a subset of macaque species share a codon loss, an extremely rare event in 

gene evolution, and analyses of the coding region indicate a significant elevation of protein 

evolution among certain sites of the gene. These results suggest that positive selection has played 

a significant role in the evolution of the serotonin system and it is likely that the effects of 

positive selection on HTR1A contributed to macaque behavioral evolution. This research 

provides an important first step towards gaining a more thorough understanding of the 

mechanisms underlying the evolution of behavior.
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CHAPTER 1

INTRODUCTION: A NEW APPROACH TO THE STUDY OF BEHAVIOR

OBJECTIVES

This dissertation is an investigation into the molecular evolution of four genes related to 

serotonin functioning in macaques (genus Macaca), with the objective of deepening 

understanding of the evolutionary history of the serotonin system and its implications for 

behavior. Using DNA from several macaque individuals spanning 11 different species, I 

obtained sequence data on all four genes, including both coding and non-coding regions, and 

examined patterns of genetic variation within and between species of macaques. I applied

multiple tests designed to detect and distinguish between different evolutionary forces – namely 

balancing selection, purifying selection, positive selection, and random genetic drift – in order to 

deduce the evolutionary history of the serotonin system in macaques. The methods employed in 

this research specifically address the molecular evolution of these four genes; as such, the results 

of this study most directly contribute to understanding of macaque and serotonin evolution at the 

genetic level. However, the implications of this dissertation research go beyond this. The 

serotonin system has been widely connected with a number of important behaviors including 

those related to aggression, dispersal, stress response, parenting and reproduction. Therefore, 

detailed knowledge of the evolution of the genes underlying serotonin functioning provides a 

critical step in understanding the mechanisms underlying behavioral evolution in primates and 

animals in general.
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THE STUDY OF BEHAVIOR

Among the many pursuits of biology, the study of the biological basis of behavior 

presents an especially formidable challenge. Behavior, as an attribute, is both conceptual and 

transient; it cannot be measured in a concrete, physical way. Therefore, unlike studies based on 

the morphology or molecular attributes of an organism, behavioral studies must rely on indirect 

measures that are always somewhat subjective and which can change depending on a variety of 

circumstances that we do not yet fully understand. Despite such challenges, the study of behavior 

remains an interesting field of study with high potential. Many advances have been made over 

the last several decades that have granted us insights into the chemical underpinnings of a variety 

of behaviors such as depression, parental care, sexuality, and aggression.

Much of the study of behavior is motivated by its implication for human societies. By 

understanding the proximate causes of behaviors, it may become possible to minimize those

activities that we deem detrimental, such as those related to aggression or violence. On this note, 

there have been extensive efforts in clinical psychology, neurology, and endocrinology, among 

others, to understand some of the biological factors that induce dysfunctional behavior, and the 

results of these studies have largely been used to help treat a number of psychopathologies.

Closely linked to these studies, genetics has contributed to the understanding of the biology of 

behavior by pinpointing areas of the genome that are associated with increased likelihood of 

certain behavioral abnormalities. In most of these areas of study, the emphasis has been on

understanding the biological risks of psychopathologies. However, the information runs both 

ways. Not only is research in neurology applied to psychology, for example, but the study of 

aberrant behaviors and their treatments are often what give clues as to what areas of the brain are 

important for regulating behaviors (e.g., Asberg et al., 1976). Likewise, geneticists have largely 
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been aided by concentrating on individuals who exhibit extreme behaviors (e.g., Brunner et al., 

1993a, b). While these studies have been essential in providing an increased understanding in 

how neurological mechanisms contribute to behavior, in general they have been very narrow in 

focus; that is, studies are largely restricted to a few model species (such as rats, mice, humans, or 

fruit flies), usually in a laboratory setting, with an emphasis on abnormal behaviors.

Outside of clinical psychology, genetics, and other fields primarily interested in the 

immediate causes of behavior, other disciplines seek to place behavioral strategies in an 

evolutionary context. At this level, scientists try to explain behaviors in terms of the advantages 

they confer to the actor or its relatives. Here the behaviors addressed are not abnormalities to be 

remedied, but rather those that are part of an adaptive strategy to be explained in terms of 

ecology, life history, demographics, and phylogeny. Primatology has traditionally used this 

approach and has been especially useful in explaining the evolution of behaviors such as 

aggression and sociality. In particular, the socioecological model (Wrangham, 1980; Van Schaik, 

1989; Sterck et al., 1997) has been pervasive in its influence on research in the field. In the 

socioecological model, the balance between aggression and cooperation in primate societies is 

largely dictated by the spacing and availability of their food sources. Thus, differences between 

species in their overall disposition are explained primarily by the ecological niches they inhabit.

Unlike studies that focus on the proximate causes of behavior, evolutionary studies of behavior 

look at a broad range of taxonomic groups and are largely based on observational studies carried 

out in the field. However, even though the ultimate goal of these studies is to understand 

behavioral evolution, this approach tends to emphasize the adaptive value of a behavior and is 

limited in its ability to address other forces of evolution such as drift, despite evidence that these 

might play a significant role in behavioral evolution (Spuhler and Jorde, 1975; de Queiroz and 



4

Wimberger, 1993; Di Fiore and Rendall, 1994; Chan, 1996; Owens, 2006; Rendall and Di Fiore, 

2007).

Thus, studies of behavior might be divided into two groups: those that look for proximate 

explanations for behavior (where the focus is often on extreme or maladaptive behaviors) and 

those that seek explanations as to why certain behavioral patterns evolved (where the focus is on 

a normal or "healthy" range of behaviors). Both of these approaches have limitations, and both 

have largely remained independent of each other (Robinson et al., 2005). Incorporating

knowledge of both areas of research could address these limitations and provide a more 

sophisticated framework in which to examine the biology of behavior (Robinson et al., 2005).

In this dissertation, I have begun to address this gap in the studies of behavior by 

examining the molecular evolution of the serotonin system in macaques (Macaca). The macaque 

genus represents a critical taxon for studying behavior, since it consists of several closely related 

species, all of which display wide behavioral variation. In addition, the serotonin system plays a

significant role in regulating behaviors in a variety of animal species, including humans and 

macaques. Therefore, it is an important biological system to consider when studying the 

evolution of behaviors. Here, I sequence a set of genes that are known to influence serotonin 

function and analyze the sequence data using tests designed to detect and distinguish multiple 

evolutionary forces. This study thus takes a neurological system, researched primarily for its role 

in regulating behavior, and places it in an evolutionary context. Unlike behavioral evolution 

studies that rely exclusively on observations made in the field or the lab, examining genetic 

variation provides a way to statistically test for the role of various evolutionary forces such as 

balancing selection, positive selection, and purifying selection, as well as non-adaptive 

evolutionary forces such as genetic drift. In addition, by focusing on a few candidate genes, a 
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detailed description of the genetic variation within and between species can be obtained, laying 

the groundwork for future studies examining the connection between genetic and phenotypic 

variation. For example, genetic variation within the regulatory regions of a gene (non-coding) is 

likely to underlie differences in expression levels; thus, comprehensive knowledge of sequence

variation in all regions of a gene, both coding and non-coding, is necessary to understand 

phenotypic differences associated with a gene.

The approach used here is not without its limitations. By using a candidate gene 

approach, practical considerations, including cost and time, restrict the number of genes that can 

be sequenced; therefore, this dissertation examined only a small portion of genes underlying the 

serotonin system. Additional studies looking at other genes are needed to fully understand the 

evolution of the genetic architecture underlying serotonin and behavior. In addition, by focusing 

exclusively on genetic evolution, little can immediately be said about phenotypic evolution. 

Many assumptions are made about the connection between the genetic evolution outlined in this 

dissertation and behavioral evolution.; indeed, the serotonin system in incredibly complex, 

consisting of several different components and interacting with other important neurological 

systems (outlined in Chapter 2). Thus, genetic variation can result in phenotypic effects at 

several different "levels." For example, a genetic mutation in a serotonin gene could affect: 

expression levels; serotonin turnover; development; plasticity; other parts of the brain with which 

serotonin interacts, such as the amygdala; epistasis; hormone levels; or behavior. Because these 

different phenotypic "levels" are not independent of each other, genetic variation can act on any 

number of these levels simultaneously. Therefore, although the focus and impetus for this study 

is behavioral evolution, the genetic evolution investigated here could be related to any number of 



6

different phenotypes, which I have subsumed, for the sake of simplicity, under the general 

category of "serotonin functioning."

Despite these restrictions, this study fills a critical gap in serotonin studies, which have 

been preoccupied with defining serotonin's proximate role in behavior without addressing its 

evolution. Furthermore, while this study greatly contributes to evolutionary theory on serotonin 

and has intellectual merit in its own right, research is never meant to be understood in isolation.

To truly understand the evolution of behavior, investigations at all phenotypic levels are needed

(Konopka and Geschwind, 2010; Bell and Robinson, 2011); this study represents one such 

contribution. While this method alone may not directly explain how a given behavior, such as 

aggression, evolved, when applied with what is known from other studies on behavior, 

neurology, and development, it deepens our understanding of the biological bases of behavioral 

evolution, stepping beyond and complementing observational studies of behavior.

A GENETIC APPROACH TO EVOLUTION

When selection occurs on an area of a genome, it leaves a distinctive pattern of variation 

on the sequence (a signature of selection). The nature of this pattern varies depending on both the 

type of selection occurring (i.e., positive, negative, or balancing) and the timing of the selection 

event (Nielsen, 2005). Various methods are available for detecting selection at the sequence level

and most can differentiate between the types of selection occurring (reviewed in Nielsen, 2005).

Therefore, if sufficient sequence data are available, DNA sequences (either individual genes or 

the entire genome) can be examined for signatures of selection.

Most of the methods for examining selection in the genome are based on two influential 

concepts: the neutral theory (and nearly neutral theory) and selective sweeps. The neutral theory
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(Kimura, 1968, 1985; King and Jukes, 1969) posits that most new mutations are extremely 

deleterious and are therefore instantly removed from the population. Those mutations that remain 

are almost always neutral, with beneficial mutations being extremely rare. Thus, most genetic 

variation seen within a population should be the result of stochastic processes, which is referred 

to as genetic drift. New mutations will most likely remain at low frequencies and will eventually 

be lost from the population through genetic drift, while some will gradually reach fixation 

(frequency of 1) in the population. An expansion on the neutral theory, the nearly neutral theory 

(Ohta, 1992), states that most mutations that remain in the population are not entirely neutral, but 

are either slightly deleterious or slightly advantageous. However, given a small enough 

population size, these mutations will effectively act like neutral mutations because the effects of 

genetic drift will overwhelm the effects of selection (Ohta, 1992). While the relative 

contributions of selection and drift to evolution is unclear (see, for example, Gillespie, 1989, 

2000a, b), the benefit of the neutral theory is that it provides a straightforward model for what is 

expected in the absence of selection.

The second concept that has had a major influence in molecular evolutionary theory is 

that of selective sweeps. When a gene is being selected for, its frequency in the population will 

quickly increase. However, segments of the DNA that surround the selected gene will also rise in 

frequency due to the linkage between the loci, an effect known as genetic hitchhiking (Smith and 

Haigh, 1974). If the selected gene reaches fixation (and subsequently fixes the surrounding 

genetic area) this is known as a selective sweep. Genetic hitchhiking and selective sweeps are 

predicted to drastically lower the levels of polymorphism in the areas surrounding the selected 

locus (Smith and Haigh, 1974), particularly where selection is strong and recombination is 

infrequent (Kaplan et al., 1989), providing a strong signal of selection.
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Thus, both the neutral theory and the concept of selective sweeps provide a way to 

examine genetic data for signatures of selection. There are a number of different analyses that 

can be employed, and these differ primarily in which aspect of the genetic data that they use. For 

example, some are designed specifically for coding regions, or require comparison between 

species, while other analyses can be applied to any part of the genome and rely on intraspecific 

data. Each type of analysis has its strengths and limitations. One of the major shortcomings of 

many tests of selection is that they often cannot differentiate between selective events and 

demographic events. For example, in many ways a population expansion is expected to mimic 

the effects of selection because both processes involve an increase in reproductive output. The 

main difference between these two processes is that, with selection, only a small subset of the 

population – those carrying the favored allele – will experience an increase in reproductive 

success. In contrast, in a general population expansion, roughly all members of a population are 

expected to contribute to the increase in population size. Because of this complication, these tests 

often assume that there is constant population size, no migration, no population subdivision, and 

no recombination. Violation of these assumptions can either weaken the power of these tests to 

detect selection or increase the rate of false positives (detect selection when in fact there is no 

selection occurring), depending on the level of analysis. Therefore, the use of multiple tests that 

utilize different aspects of the genetic data are usually required to confirm the presence of 

selection.

To examine the role of selection in the evolutionary history of serotonin, I have employed 

six different tests of selection. Analyses used in this dissertation can be categorized into three 

major types: those that examine the ratio of synonymous and nonsynonymous mutations, which 

include the ω test, the McDonald-Kreitman test, and Phylogenetic Analyses using Maximum 
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Likelihood (PAML); those that look at the frequency spectrum, which includes Tajima's D and 

Fay and Wu's H; and those that examine the ratio of within- versus between-species variation, 

which here includes a single test, the HKA test. These tests are described and compared here.

The Ratio of Nonsynonymous to Synonymous Mutations

One straightforward test of selection is to examine the rate of synonymous versus 

nonsynonymous evolution between species. Within a gene, synonymous mutations are those that 

do not affect the structure of the protein for which the gene is coding; as a result, they are 

predicted to be neutral. In contrast, nonsynonymous mutations cause a change in protein 

structure and are thus more likely to be exposed to selection. At the most basic level, these 

selection tests look at the ratio of nonsynonymous to synonymous mutations between species (ω)

(Kimura, 1977). Where ω < 1, this indicates purifying selection (selection against new 

mutations); where ω > 1, this indicates positive selection (selection favoring new mutations); 

where ω = 1, this indicates neutrality (Kimura, 1977). The significance of this can be calculated 

using a Z-test: 

 
 )()( SN

SN

dVardVar

dd
Z
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where dN is the number of nonsynonymous mutations per nonsynonymous site, dS is the number 

of synonymous mutations per synonymous site, and Var(dN) and Var(dS) are their respective 

variances. The main advantage of the ω test is that it is robust to demographic assumptions and 

other non-selective processes. This is because nonsynonymous and synonymous sites are 

interspersed with each other, so that there is no reason to think that recombination or 

demographic events such as population expansion or migration, would affect nonsynonymous 

sites to greater degree than nonsynonymous sites (McDonald and Kreitman, 1991). However, the 

ω test is also quite conservative. This is because there may be many reasons why there may be a 
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relatively low number of nonsynonymous mutations, even if there is positive selection acting on 

the gene. For example, a functional gene might experience selective restraints such that most 

nonsynonymous mutations are deleterious. This will produce a low ω even if there were several 

nonsynonymous mutations that experienced positive selection. Additionally a single (or even a 

few) beneficial mutations would not register for this type of test. It would take multiple 

beneficial mutations to achieve a significant result. For this reason, ω tests are generally only 

useful for genes that would be expected to undergo multiple selective events, such as those 

involved in an "arms race" (e.g., genes involved in immunity or reproduction). This might also 

occur where a loss of function is selected for or where there is a heterozygous advantage. 

Because of these restrictions, additional tests have been developed that are based on the 

basic premise of examining ω, but are far less stringent. One of these is the McDonald-Kreitman 

test (McDonald and Kreitman, 1991). McDonald-Kreitman compares the ratio of synonymous to 

nonsynonymous mutations that occur within a species to those that occur between species. Under 

neutral evolution, ω should be the same whether looking at variation within or between species 

(McDonald and Kreitman, 1991). However, positive selection is expected to increase the rate of 

fixation of new mutations, elevating the rate of nonsynonymous differences between species 

relative to the polymorphisms found within species (McDonald and Kreitman, 1991). Thus, if a 

significantly different ω is found within species than between, this generally indicates positive 

selection. Like the basic ω test, McDonald-Kreitman is robust to most demographic assumptions, 

although in certain usages the presence of recombination can increase the rate of false positives 

(Andolfatto, 2008). Compared to the ω test, McDonald-Kreitman in far less conservative since 

the overall value of ω does not have to be greater than 1 to achieve a significant result.
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Another way to increase the power of the ω test is to examine evolution in a phylogenetic 

context. Phylogenetic Analyses using Maximum Liklihood (PAML) is a program that generates 

the likelihood values of different models of evolution within a phylogenetic framework. Models 

that incorporate selection can be compared to those that assume neutrality and likelihood values 

can be compared to determine which model best fits the data. Two types of selection tests based 

on ω can be used in PAML. In the first, ω values along different branches in the phylogenetic 

tree are compared to each other to see if they are significantly different from each other. An 

elevated value of ω along one branch indicates positive selection in that lineage. Because ω does 

not have to be greater than 1 but simply elevated compared to other lineages of the macaque 

phylogeny, this test is less conservative than the basic ω test. In the second, ω among different 

sites in the gene are compared. Because most sites on a functional gene are expected to 

experience strong purifying selection, the overall ω value of the gene is expected to be less than 

1, even if a small portion of the gene is under positive selection. However, by allowing ω to vary 

among sites, PAML can detect elevations in ω occurring on just a portion of the gene. Like all 

tests based on ω, analyses using PAML should be robust to demography, but moderate levels of 

recombination can increase the rate of false positives, at least for analyses that examine different 

sites within a gene (Anisimova et al., 2003).

The Frequency Spectrum

The frequency spectrum is a measure of the allele frequencies in a population. Under 

neutrality, there should be a large proportion of low-frequency alleles, with higher-frequency 

alleles becoming increasingly rarer. Balancing selection, by definition, will maintain alleles at 

intermediate frequencies, creating a deviation from the expected frequency spectrum. In contrast, 

both negative selection and selective sweeps will tend to create an excess of rare genetic variants 
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(Charlesworth et al., 1993; Braverman et al., 1995). In this case of negative selection, this occurs 

because selection acts to keep new mutations at low frequencies. In the case of a selective sweep, 

the selected allele and linked loci will quickly rise in frequency, lowering variation around the 

selected locus. Once the selected allele has reached fixation, new mutations will appear, but at 

low frequency; thus, both positive and negative selection are expected to have similar effects on 

rare genetic variants. However, during a selective sweep, when the selected allele has not quite 

reached fixation, there should also be an increase of high-frequency variants (that is, the selected 

genetic variant and those linked to it) (Fay and Wu, 2000), which is not expected in negative 

selection. Based on these expectations, various tests have been designed that examine changes in 

the frequency spectrum (Ewens, 1972; Watterson, 1978; Tajima, 1989b; Fu and Li, 1993; Fu, 

1996, 1997; Fay and Wu, 2000). Unlike analyses based on ω, which are restricted to the coding 

region, tests based on the frequency spectrum can examine evolution on any portion of the 

genome, including potential regulatory regions. This dissertation makes used of two of these

tests: Tajima's D and Fay and Wu's H. Tajima's D (Tajima, 1989b) compares two different 

estimates of the parameter theta (θ = 4Nμ, where N is the effective population size and μ is the 

mutation rate): θS (Watterson, 1975) and θπ (Tajima, 1983). The estimate θS is determined by the 

number of segregating sites, which is more heavily affected by low frequency variants; the 

estimate θπ is determine by the average number of pairwise differences, which is most affected 

variants at intermediate frequency. When there is an excess of rare alleles, Tajima's D is 

significantly negative (θS > θπ), which is consistent with positive selection (or selection against 

slightly deleterious mutations) (Tajima, 1989b; Charlesworth et al., 1995). When there is an 

excess of intermediate-frequency alleles, Tajima's D is significantly positive (θS < θπ), which is 

consistent with balancing selection. The main drawback of Tajima's D is that it is highly 
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sensitive to past demographic events, such as population bottlenecks and expansions (Tajima, 

1989a). For example, a population bottleneck will tend to eliminate rare alleles, creating an 

effect similar to balancing selection. It is therefore difficult to differentiate selection from 

demographic events. However, Fay and Wu's H is much more robust to demographic 

assumptions (Fay and Wu, 2000). Fay and Wu's H is similar to Tajima's D, except that the two 

parameters that are compared are θπ and θH. The parameter θH is most heavily affected by 

derived genetic variants (as determined by an outgroup) at high frequency. In this case, an excess 

of high frequency alleles will produce a significantly negative H-value (θπ < θH), indicating 

positive selection. The advantage of Fay and Wu's H is that it can differentiate between positive 

and negative selection. In addition, because it relies on derived mutations, it should be less likely 

to be affected by past demographic events (Fay and Wu, 2000; but see Przeworski, 2002). For 

example, a population bottleneck, followed by a population expansion, might be expected to 

create an excess of high-frequency variants. However, because bottlenecks are expected to 

eliminate rare genetic variants (i.e., new, derived mutations), such a demographic event is not 

expected to create an excess of high-frequency derived variants. The main limitation of Fay and 

Wu's H is that there is a very narrow time frame in which it can detect selection; once a selective 

sweep is complete and the selected allele has reached fixation, then genetic variation is 

eliminated (Przeworski, 2002).

Comparison Within and Between Species

Neutral theory predicts that the mutation rate at a locus drives the level of variation both

within and between species. Although different loci will have different mutation rates, the ratio 

of variation within to variation between species should be the same across loci if they are 

evolving neutrally. Departure from this expectation indicates that selection is occurring (Hudson 
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et al., 1987). This pattern can be tested using the HKA test (Hudson et al., 1987). For this test, 

the gene of interest is compared with other loci, preferably ones that are not expected to have 

experienced selection (i.e., are neutral). A significant p-value is obtained when the ratio of 

variation within to variation between species varies across loci. Specifically, if departure is due 

to a reduction of within species polymorphism in the candidate gene, this may be interpreted as 

the result of a selective sweep. If within species polymorphisms are increased, this is consistent 

with balancing selection. Like tests based on the frequency spectrum, the HKA test is 

advantageous because it is not limited to coding regions. In addition, because demographic 

events are expected to affect all loci in the genome, an approach that compares multiple loci, 

such as the HKA, should be unaffected by demography (but see Nielsen, 2001). However, the 

presence of recombination can make it more difficult for this test to detect selection (Hudson et 

al., 1987).

Because all of the analyses used in this research examine slightly different aspects of 

genetic data, they are not expected to yield identical results. For example, if the population size 

of the species examined has not remained constant, then those tests that are more sensitive to 

demography are likely to present different results from those that are not. Similarly, the presence 

of recombination will affect tests such as PAML differently than the HKA. Indeed, contrasting 

results will be informative as the likely cause of evolutionary change. For instance, if tests based 

on ω were all non-significant, but HKA indicated positive selection, this could mean that 

selection is acting primarily in the non-coding, regulatory regions of the gene. However, unless 

multiple tests confirm the presence of selection, results should be interpreted with caution. It is 

with these statistical tools that I address the evolution of the serotonin system in macaques.
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OVERVIEW OF DISSERTATION

This dissertation is organized into a series of manuscripts that are largely designed to be 

read and understood independently. Therefore, some repetition of background and methodology 

exists. Chapter 2 provides background information on macaques, the serotonin system, and 

behavior. For each of Chapters 3, 4, and 5, I examine the genetic variation for a gene or set of 

genes within and between several species of macaques. I apply statistical tests of selection to 

determine the role of positive selection on each gene and discuss their implications. In Chapter 3, 

I look at both HTR1A and HTR1B, and find strong evidence for selection for HTR1A, but not 

HTR1B. In Chapter 4, I focus on TPH2. In particular, I emphasize the genetic variation identified 

for this gene as very few studies to date have looked at this in macaques. I find that, overall, 

TPH2 seems to be evolving neutrally. In Chapter 5, I examine the evolution of SLC6A4. As with 

TPH2 and HTR1B, I find that selection is not occurring on this gene. However, I did find a low 

level of linkage between the promoter region and the gene itself. Because I focused on the 

genetic variation within and immediately around SLC6A4 and not the promoter region, it is 

possible that the promoter region has a distinct evolutionary history from the rest of SLC6A4. In 

Chapter 6, I summarize the results of these studies and discuss the implications of my findings 

and their contribution to evolutionary studies. Finally, I outline the next steps in research that I 

plan to take.

DATA ACCESS

The bulk of this dissertation consists of three chapters (Chapters 3-5) that outline the 

methodologies used and results obtained. These chapters are written in the format of scientific 

papers, to be submitted for individual publication with minimal modification. As such, these 
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chapters focus primarily on the most pertinent results, with detailed description of redundant or 

non-informative analyses removed. The appendices provide a more complete description of the 

results; any additional information not provided here is available at the request of the author.

All of the sequence information obtained in this research will be deposited into GenBank, 

and will be available to the public upon publication of the respective chapters in scientific 

journals. At the time of deposit of this dissertation, the submission process of sequence data to 

GenBank has been started, but no accession numbers have yet been assigned. However, the 

sequence data will be associated with the author's name (M.R. Shattuck) and a publication title 

similar to the chapter titles, and can thus be found through a search in the NCBI database

(http://www.ncbi.nlm.nih.gov/). Readers interested in obtaining the sequence data before they 

are made public should contact the author (mshattuc@gmail.com).
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CHAPTER 2

MACAQUES, THE SEROTONIN SYSTEM, AND BEHAVIOR: A REVIEW

OVERVIEW

In this chapter, I will provide some of the background information for this project. First, a 

general overview of the macaques and their social system is provided, and an argument is made 

for their importance in behavioral evolution and molecular studies. This is followed by a brief 

review of the history of serotonin study and the mechanisms of the serotonin pathway. The bulk 

of this chapter will consist of an extensive review of the evidence for the relationship of the

serotonin system to behavior in primates, with a particular focus on humans and macaques.

Studies on the serotonin system and behavior are divided into three parts: population level

studies, clinical studies, and genetic studies. In particular, the review of genetic studies will

identify key genes that show great promise for their ability to predict behavior and will therefore

be used as the focus of study in the following chapters. In addition, as it relates to this project, I

will discuss any evidence available for the possible role of selection on these genes.

It should be noted that, to date, the vast majority of studies on serotonin have

concentrated on a suite of behaviors that include, but are not limited to, exploration, alcoholism,

dispersal, arson, murder, obsessive compulsive disorders (OCD), and anxiety. The general

framework under which these behaviors are discussed treats them as manifestations of a decrease

in impulse control. Of course, many of these behaviors, such as arson, are unique to humans, or

at least rarely seen among nonhuman primates. Because we are more limited in the types of

behaviors that can be observed in nonhuman primates, discussion for nonhuman primates

frequently centers on impulsivity as it relates to aggression. Thus, this review will almost
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exclusively discuss the connection between serotonin, aggression, and impulsivity. However, it

should also be noted that this focus is narrow, and studies have increasingly expanded to include

behaviors related to sociality (Samochowiec et al., 1999; Caspi et al., 2002; Anstey et al., 2009;

Crockett et al., 2010), sex (Dominguez and Hull, 2010; Liu et al., 2011), and cognition (Borg,

2008; Ogren et al., 2008). A new framework is emerging in which these behaviors are seen as

outcomes of increased sensitivity to environmental cues (Homberg and Lesch, 2010), and the

genes underlying these behaviors viewed as "plasticity" genes (Belsky et al., 2009). I will

therefore briefly review the role of environment in these genetic studies and discuss its

relationship to evolution. Finally, I will address some of the limitations and challenges of the

current research on behavior, biology, and genetics.

MACAQUES

This dissertation examines the evolution of the serotonin system within the macaque

genus (Macaca), with the goal of adding to the understanding of behavioral evolution within and

between species. Several features make the macaque genus useful for the study of the evolution

of behavior, namely 1) a well studied phylogeny with a large number of species, 2) a wide range

of ecological habitats, and 3) a diverse set of species specific behaviors. These three features

allow for the testing of multiple hypotheses about behavioral evolution. In particular, they permit

the examination of the influence of both ecology and phylogeny on the expression of behaviors.

The macaque genus is comprised of around 19-22 different species, depending on the

classification used (see Fa, 1989 for a review); the relationship of these species with each other,

as reconstructed from both morphology and genetics, is fairly well understood (Fooden, 1976;

Hoelzer and Melnick, 1996). These species span an exceptionally large geographical range
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(Lindburg, 1991); the rhesus macaque (M. mulatta) in particular inhabits a variety of habitat

types, dwelling in both primary forests and alongside humans in urban settings (Figure 2.1). In

fact, outside of humans, macaques have the widest distribution of any living primate. In addition,

the macaque genus is notable for exhibiting a wide range of behavioral attributes. All macaque

species share the same basic social structure (reviewed in Thierry, 2000). They form large

multimale-multifemale groups where the females are philopatric and matrilines form the basis of

hierarchies that are relatively stable. In contrast, the males migrate at sexual maturity and their

rank fluctuates through time. In terms of aggressive and reconciliatory behavior, macaque

species range from a fairly tolerant social structure (e.g., Macaca tonkeana) to more aggressive

groups with strict hierarchies (e.g., M. mulatta) (Thierry, 1985, 2000; Caldecott, 1986; De Waal

and Luttrell, 1989; Clarke and Lindburg, 1993; Aureli et al., 1997; Petit et al., 1997). Initially,

the behavioral differences among macaque species were interpreted as the result of varied

ecological conditions and mating strategies (Caldecott, 1986; De Waal and Luttrell, 1989; Clarke

and Lindburg, 1993; Aureli et al., 1997). That is, certain species of macaques were argued to

behave more aggressively toward group members because food resources were scarcer and

external threats (i.e., predators and other conspecifics groups) were relatively rare. However,

more recent research has emphasized the influence of phylogeny (Di Fiore and Rendall, 1994;

Chan, 1996; Petit et al., 1997; Thierry, 2000; Thierry et al., 2000; Rendall and Di Fiore, 2007).

Thierry (2000) proposed categorizing macaque species according to a 4-grade scale based on

behavior, with grade 1 being the most aggressive and grade 4 being the least aggressive. He

showed that these categories map well onto macaque phylogenies, with little homoplasy

necessary to explain its distribution (Figure 2.2) (Thierry, 2000; Thierry et al., 2000). Based on

this observation, Wendland et al. (2006) suggested that genetic differences, rather than
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environmental differences, contributed the behavioral variation seen in this genus (although see

Chakraborty et al., 2010). Thus, this genus presents a useful model for examining the genetic

basis of interspecific behavioral variation.

In addition to these features, macaques are an important focus of study because they

share many features that parallel humans; consequently, knowledge of behavioral evolution in

this group can grant insight into human behavioral evolution as well. This is especially true for

rhesus macaques (M. mulatta). For example, rhesus macaques have a wide geographic range

(Figure 2.1), they do particularly well in human inhabited regions (Richard et al., 1989), and they

possess many behavioral characteristics similar to those of humans, such as individualism and

competition for power (Maestripieri, 2007). Moreover, they are frequently used as animal

models in biomedical research, reflecting many of the physiological similarities they share with

humans; these similarities extend to the serotonin system, which is especially evident when

examining serotonin related genes. Several genetic variants have been identified within

macaques, particularly rhesus macaques, which are similar to those found in humans (e.g., Lesch

et al., 1997). The genetic variants found in macaques affect serotonin functioning and behavior

in a manner analogous to those found in humans. However, these genetic variants are not

identical to those in humans and are likely to have evolved independently (Lesch et al., 1997).

This raises the possibility that similar selective pressures led to parallel evolution of the serotonin

system in humans and rhesus macaques. If this is so, future comparative studies between humans

and macaques may highlight important factors that influence behavior, allowing for testing of

hypotheses of behavioral evolution. Moreover, the genetic parallels present between macaques

and humans highlight the serotonin system as an important focus of study.
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SEROTONIN

In 1953, an attempt to improve the current treatment of tuberculosis resulted in the

creation of iproniazid (Fox and Gibas, 1953; Pletscher, 1991). Patients treated with iproniazid

often expressed states of euphoria as a side effect and later the drug began to be used on

depressed patients (Pletscher, 1991). At the same time, Zeller and colleagues (1952) discovered

that iproniazid acted to inhibit monoamine oxidase (MAO), an enzyme that acts to breakdown

serotonin. In a similar manner, during the early 1950’s, research on antihistamines led to the

development of imipramine, a tricyclic antidepressant that works in part by blocking reuptake of

serotonin (Pletscher, 1991). The actions of these drugs, combined with the knowledge that

another new drug, LSD, interacted with the serotonin system, pointed to serotonin as a key factor

in moderating behavior. Based in large part upon the research of these early drugs, and others

like them, studies were conducted to determine if inherent differences in serotonin levels could

explain the presence of certain psychiatric conditions. These studies indicated lower serotonin

levels in depressed patients (Ashcroft and Sharman, 1960; Ashcroft et al., 1966; Dencker et al.,

1966; Coppen, 1972; Asberg et al., 1976) as well as in suicide victims (Shaw et al., 1967; Bourne

et al., 1968) when compared to controls. These early studies opened the doorway for an

abundance of research on serotonin. In the years to follow, knowledge of the neurotransmitter’s

influence would expand to include a wide range of behaviors, including aggression, sexual

behavior, sociality, dispersal, stress response, and impulsivity.

Overview of the Serotonin Pathway

Serotonin is a phylogenetically old, well conserved system that is influential in many

animal taxa, including both vertebrates and invertebrates. Its organization is similar across

vertebrate taxa including birds, reptiles, and mammals (reviewed in Challet et al., 1996). Within
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both vertebrates and invertebrates, serotonin plays a critical role in modulating behaviors. While

the exact relationship between serotonin and behavior seems to differ between vertebrates and

invertebrates, serotonin has been shown to play a role in behaviors in crickets, crustaceans, and

fruit flies (reviewed in Kravitz and Huber, 2003), as well as reptiles (Deckel, 1996; Matter et al.,

1998; Summers et al., 2005), birds (Ison et al., 1996; Sperry et al., 2003, 2005), fish (Winberg et

al., 1993; Overli et al., 1999; Perreault et al., 2003; Clotfelter et al., 2007), and mammals (see

below).

Serotonin, or 5-hydroxytryptamine (5-HT), is a monoamine neurotransmitter that is

produced in the raphé nuclei of the brainstem and released to various parts of the brain (Figure

2.3). 5-HT is synthesized from tryptophan, an amino acid acquired through diet. Tryptophan is

converted to 5-HT via a metabolic pathway that includes the enzymes tryptophan hydroxylase

and amino acid decarboxylase (Figure 2.4). Serotonin is broken down by monoamine oxidase

(MAO), which has two forms: form A (MAOA) and form B (MAOB). The breakdown of

serotonin by MAO converts 5-HT into its metabolite 5-hydroxyindoleacetic acid (5-HIAA). 5-

HIAA is relatively easily measured in cerebral spinal fluid (CSF), urine, or other bodily fluids

and its levels are often used as an indication of overall serotonin activity (Murphy, 1990).

The basic schematic of the serotonin pathway is provided in Figure 2.5. 5-HT is produced

in the neuron and released into the postsynaptic space. There, 5-HT can bind with numerous

receptor types. There are 17 different receptor types that are classified based upon their function

(Bradley et al., 1986). Most of these receptors are G-protein coupled receptors; the only

exception to this is the 5-HT3 receptor, which is a ligand-gated ion channel (Bradley et al., 1986;

Gaddum and Picarelli, 1997; Barnes and Sharp, 1999; for a full review of the structure and

functions of each receptor type, see Barnes and Sharp, 1999). While most receptor types are
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located on the postsynaptic neurons, receptor types 5-HT1A, 5-HT1B, and 5-HT1D are located both

postsynaptically (where they are termed heteroreceptors) and on the neurons themselves

(presynaptically, or autoreceptors). These three receptor types seem to act as inhibitors when

they are presynaptic. When activated they prevent the neuron from firing, and thus provide a

mechanism for self-regulation for the serotonin system (reviewed in Barnes and Sharp, 1999).

In addition to these three receptor types, the serotonin transporter (5-HTT) also works to

regulate serotonin levels in the brain. By moving serotonin molecules from out of the post-

synaptic space and back into the neuron, the serotonin transporter helps to limit the effect of

serotonin by restricting its contact with receptors. However, as a feedback mechanism, the

serotonin transporter appears to do more than just act as a doorway for 5-HT. When serotonin

reuptake is reduced (for example, by means of selective serotonin reuptake inhibitors, SSRIs),

there are multiple consequences. As expected, it leads to an increase in 5-HT levels in the

synaptic spaces throughout the brain (Adell and Artigas, 1991; Bel and Artigas, 1992; Fuller,

1994). However, at least in the short term, it also leads to an overall decrease in serotonin

turnover. Less tryptophan is converted into 5-HT (Carlsson and Lindqvist, 1978), there is a

decrease in the levels of 5-HIAA in the body (Sheline et al., 1997), and the serotonergic neurons

fire less often (de Montigny et al., 1990).

Once serotonin is produced, it is released to various parts of the brain where it acts to

modulate the activity of these neurological systems (Figure 2.3). Two important neurological

structures with which serotonin interacts are the prefrontal cortex and the amygdala (Figure 2.3).

The prefrontal cortex controls decision making, including the choice of appropriate behavior

given a particular the social and environmental context (Miller et al., 2002); the amygdala is

involved in emotional response, particularly related to negative stimuli and fear (LeDoux, 2000,
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2003, 2007). Both are likely regulated by serotonin (Mann et al., 1996; Hariri et al., 2002, 2005;

Clarke et al., 2004, 2007; Furmark et al., 2004; Bertolino et al., 2005; Brown et al., 2005; Canli

et al., 2005a, b; Heinz et al., 2005; Pezawas et al., 2005) and serotonin's role in regulating

behavior is likely mediated, in part, through these structures.

THE ASSOCIATION BETWEEN SEROTONIN AND BEHAVIOR

Research on serotonin can be divided into three groups: population studies, clinical

studies, and genetic studies. Population studies examine how natural variation in serotonin

functioning is related to differences in behaviors. Clinical studies artificially manipulate

components of the serotonin system, usually through pharmaceutical intervention, in order to

determine the exact mechanisms underlying serotonin's role in regulating behavior. Finally,

genetic studies examine variation in genes connected with serotonin to determine the role these

genes play on behavioral variation. A review of these studies is presented here.

Population Studies

Researchers often examine how the natural variation in serotonin activity is correlated

with various behaviors in a population. Overall serotonin activity is typically measured in two

ways. The most common way is to look at the level of the serotonin metabolite (5-HIAA) in

bodily fluids such as cerebral spinal fluid (CSF), urine, or blood. In this case, a higher

concentration of 5-HIAA implies a higher level of serotonin activity. Another commonly used

method is to measure the levels of certain hormones (particularly prolactin) following

administration of a 5-HT agonist, such as fenfluramine. These agonists excite the serotonin

system, which stimulates the pituitary gland to release hormones (Quattrone et al., 1983). The

greater the neuroendocrine response to a 5-HT agonist “challenge”, the greater the inferred
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sensitivity of the serotonin system (Quattrone et al., 1983; Yatham and Steiner, 1993). However,

this particular method tends to work best in males, as differing results may be found in women

depending on their current menstrual phase (McBride et al., 1990; Manuck et al., 1998; Steiner et

al., 1999).

Highlighted here are just a few of the foundational studies that have examined serotonin

activity and behavior at the population level, with an emphasis on aggressive and impulsive

behavior. Since these studies were initially carried out, most of the results have been replicated

in hundreds of additional studies, at least within humans (although there are some

inconsistencies; see, for example, Fishbein et al., 1989; Wetzler et al., 1991; Castellanos et al.,

1994; Zhou et al., 2006). Thus, the overall trends outlined here are quite robust, even if the exact

relationship between serotonin and behavior is not clearly understood (see Clinical Studies).

Humans

The general trend found in humans is the higher the degree of aggression and impulsivity,

the lower the overall levels of serotonin activity. Brown and colleagues (1979) found a negative

correlation between CSF 5-HIAA and aggressive behavior in military men diagnosed with

various personality disorders. In addition, those subjects that had a history of suicide attempts

had significantly lower CSF 5-HIAA than those without a history of suicide (Brown et al., 1979).

Lidberg et al. (1985) also found lower CSF 5-HIAA in men who attempted suicide and in men

who murdered sexual partners, but not in other types of murderers. In this study, impulsiveness

rather than aggression itself seemed to be the important factor. Similarly, males who commit

impulsive versus premeditated murders have a lower CSF 5-HIAA (Linnoila et al., 1983), as do

impulsive male arsonists (Virkkunen et al., 1987) and impulsive alcoholics (Virkkunen et al.,

1994). In children and adolescents with disruptive behavior disorders, CSF 5-HIAA negatively
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correlates with aggression towards other people (Kruesi et al., 1990). On the opposite side of the

spectrum, there is some evidence that people with obsessive-compulsive disorder (OCD) have

higher concentrations of CSF 5-HIAA than controls (Thoren et al., 1980; Insel et al., 1985),

although the difference may not be significant (Thoren et al., 1980). Since patients with OCD are

often characterized by the inability to act on aggressive impulses (Insel et al., 1990), a higher rate

of serotonin turnover fits in with general trend found with serotonin, aggression, and impulsivity.

While these general findings have been repeated in numerous studies, the main problem with this

research is the tendency to focus on people with pathologies (Haller et al., 2005), particularly

males, rather than the general population. It is therefore less clear whether more "adaptive" forms

of aggression (Ferrari et al., 2005; Table 2.1), which may have more relevance for evolutionary

questions, have a similar relationship with serotonin.

Studies done in “normal” populations are both rare and less consistent. Mannuck and

colleagues (1998) found a negative correlation between prolactin response in a fenfluramine

challenge and various measures of aggression and impulsivity, but only in males. In women, a

similar trend was found only when considering postmenopausal subjects. This may be due in part

to the method used to measure serotonin activity since fenfluramine challenges are more

consistent in men. Roy, Adinoff, and Linnoila (1988) used CSF 5-HIAA and found a significant

negative correlation between CSF 5-HIAA and the “urge to act out hostility”. However, when

factoring out the influence of sex, this trend became non-significant. More studies are needed to

verify the link between serotonin and aggression/impulsivity in the general population and in

women in particular, but it is likely that the weakened correlation seen between genetic variation

and behavior in may be due to intervening environmental effects (see SEROTONIN GENES AND

PLASTICITY below).
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Nonhuman primates

As with humans, a negative relationship between serotonin functioning and impulsivity is

found in nonhuman primates. In rhesus macaques (M. mulatta), both males and females show a

negative correlation between CSF 5-HIAA and the frequency of long leaps made at dangerous

heights in the forest canopy (Mehlman et al., 1994; Westergaard et al., 2003b). Male vervet

monkeys (Chlorocebus aethiops) with lower CSF 5-HIAA are more likely to approach a stranger

(Fairbanks et al., 2001); likewise female cynomolgus monkeys (M. fascicularis) are more likely

to approach strangers if they have lower serotonin turnover as measured by a fenfluramine

challenge (Manuck et al., 2003). CSF 5-HIAA is also negatively correlated with age at

emigration in male macaques (Mehlman et al., 1995).

In regards to aggression, the association with serotonin in nonhuman primates is typically

only seen when examining severe aggression rather than overall rates of aggression. For

example, in male rhesus macaques, low CSF 5-HIAA corresponds with high levels of

aggression, but not overall rates of aggression (Mehlman et al., 1994; Higley et al., 1996a, c;

Howell et al., 2007). In addition, young rhesus macaques with low CSF 5-HIAA are less likely to

survive to adulthood (Higley et al., 1996b; Westergaard et al., 2003a; Howell et al., 2007), and

the increase in mortality is at least partially related to aggression (Higley et al., 1996b). Thus,

rather than finding an association between serotonin and more ritualized or adaptive forms of

aggression (e.g., mounting, eye contact, etc.), it is more commonly found with aggression that

can potentially have severe consequences for the actor and may even be maladaptive (but see

Eaton et al., 1999). In this regard, the association found in nonhuman primates may be analogous

to that found in humans with psychopathologies. That is, a correlation may be strongest in

primates that show abnormal levels of aggression, but is weaker in "healthy" subjects that do not
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display severe forms of violence. Also similar to humans, this association in nonhuman primates

may be more robust in males. Westergaard and colleagues (2003b) found a negative correlation

between CSF 5-HIAA and low levels of aggression in female rhesus macaques, but not for high

levels of aggression. They attributed this finding to differences in female sociality where

relatives can act as “social buffers.” However, the link between serotonin function and

aggression seems to be largely generalizable to both sexes.

Clinical Studies

In contrast to population studies that look at natural variation in serotonin activity,

clinical studies chemically manipulate various parts of the serotonin system to see the effect it

has on behavior. While these studies are probably not very useful for explaining how serotonin

influences behavior in more natural settings, and therefore how it may have been influenced by

evolution, they do help to determine the exact mechanisms by which serotonin influences

behavior. Also in contrast to population studies, which show a straightforward relationship

between serotonin and behavior, clinical studies demonstrate that the mechanisms behind this

relationship are exceedingly complicated and minimally understood; a general consensus as to

how the serotonin system works to influence behavior has not been reached. Nevertheless, an

overview of what has been discovered to date is warranted here.

Because of the association found between low CSF 5-HIAA levels and aggression, the

general paradigm put forward is that serotonin helps to increase moods and to control aggressive

behaviors, in particular those related to impulse control (Soubrie, 1986). Various clinical studies

seem to support this model, particularly for those studies based on the effects of antidepressants.

Prolonged treatment of selective serotonin reuptake inhibitors (SSRI’s), a form of antidepressant,

is thought to increase 5-HT transmission. Although initial treatment of an SSRI causes a
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decrease in neuron firing activity, after two weeks of continued treatment, firing activity of the

neurons is restored (Blier et al., 1990). This supports the observation that antidepressants

typically take a couple of weeks to become effective. This reactivation is thought to occur

through a desensitization of serotonin autoreceptors, which normally act to inhibit firing activity

(de Montigny et al., 1990). The same appears to be true for MAOA inhibiters (reviewed in Blier

and de Montigny, 1994). Tricyclic antidepressants, however, appear to work by increasing

sensitivity of postsynaptic receptors (Chaput et al., 1991). The mechanisms by which these drugs

act all point to an increase in serotonin transmission as decreasing the symptoms of clinical

depression.

However, the general idea that decreased serotonin signaling increases aggression and

impulsivity may be oversimplified. Various studies indicate that the activation of the 5-HT1A/1B

receptor types, as well as inactivation of 5-HT2A/C receptor types, leads to a reduction of

aggressive behaviors (de Boer and Koolhaas, 2005 and sources therein). However, many of these

drugs also cause a reduction of overall motor activity, making it unclear whether they affect

aggression per se (de Boer and Koolhaas, 2005). Nevertheless, certain pharmaceuticals (termed

serenics) are capable of reducing aggression without affecting other behaviors, particularly those

that act as agonists for 5-HT1A/1B (Bell and Hobson, 1994; Olivier et al., 1995; de Boer et al.,

1999). One major problem with these agonists, though, is that 5-HT1A/1B receptors can be found

on both postsynaptic neurons and on the serotonin neurons themselves (see Figure 2.5).

Therefore, 5-HT1A/1B agonists can either activate the autoreceptors, which inhibit serotonin

neuron firing, or they can activate the heteroreceptors, which increases serotonin signaling, or

both. Studies which remove the autoreceptors via specific neurotoxins, have found that 5-HT1

agonists are still effective in reducing aggression, indicating that it is the postsynaptic receptors
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that are responsible for this effect (Sijbesma et al., 1991; Sanchez and Hyttel, 1994; de Almeida

et al., 2001). However, de Boer and Koolhaas (2005) have pointed out that these neurotoxins can

affect the level of aggression regardless of administration of 5-HT1 receptor agonists and they

can trigger alterations of neuronal activity in other parts of the brain (e.g., Sijbesma et al., 1991).

In contrast, S-15535 is a drug that acts as both a postsynaptic receptor antagonist and an

autoreceptor agonist, which decreases serotonin neuron firing and acts effectively to reduce

aggression (Millan et al., 1993; de Boer and Koolhaas, 2005). Collectively, these studies suggest

that serenics act by reducing serotonin transmission rather than enhancing it.

Furthermore, there are differences in the kinds of aggression that an animal may display

(Table 2.1). For example, there is a distinct difference between an aggressive state (a situational

or temporary emotional state) and an aggressive trait (a stable personality trait where aggression

is either chronic or more easily triggered). These different types of aggression may be influenced

by slightly different neuronal mechanisms (de Boer and Koolhaas, 2005; Ferrari et al., 2005;

Haller et al., 2005; Olivier and van Oorschot, 2005). For example, the results found when

looking at immediate changes in serotonin levels in individuals during aggressive episodes are

different from what is found when looking at overall differences between individuals (state

versus trait). Some studies have found a decrease in 5-HT in the prefrontal cortex in rats during

aggressive episodes, as would be expected given what is found in population studies (van Erp

and Miczek, 2000; Ferrari et al., 2003). However, van der Vegt and colleagues (2003a) showed

that while 5-HT decreased, the ratio of 5-HIAA to 5-HT increased, indicating enhanced

serotonin turnover. Moreover, there is an increase in neuron firing following an aggressive

encounter (van der Vegt et al., 2003b). These studies indicate that, at least for temporary displays

of aggression, serotonin may enhance aggression, rather than inhibit it.
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The majority of the studies mentioned in this section have been conducted in rats, and

therefore their applicability to primates may be questionable (van der Vegt et al., 2003a). In fact,

in contrast to the general findings in primates, van der Vegt et al. (2003a) found a positive

correlation between CSF 5-HIAA and levels of aggression. However, as mentioned above, the

evidence for decreased serotonin function in aggressive animals holds best for abnormal levels of

aggression. Rats, more than primates, may benefit from increased aggression, and as such,

displays of severe aggression may not be considered pathological (de Boer and Koolhaas, 2005;

Ferrari et al., 2005). Only when abnormally aggressive rats are considered can a significant

negative correlation between extra-cellular levels of 5-HT and aggression be found (de Boer and

Koolhaas, 2005). It has been proposed, therefore, that aggression in general is in part the result of

temporary increases in serotonin transmission; however, for those individuals with abnormally

low baseline 5-HT levels, this increase has much more dramatic effects and results in

pathological behavior (de Boer and Koolhaas, 2005). The validity of this theory waits further

testing.

Genetics

In addition to the population studies and clinical research reviewed here, a number of

polymorphisms in genes known to influence the serotonin system and behavior have been found,

adding to the evidence for serotonin's role in behavior. One gene in particular – the serotonin

transporter gene (SLC6A4) – is especially promising in its ability to predict behavior and has

been the subject of a large body of research. A second gene, HTR1A, which codes for the 5-HT1A

receptor, has been the focus many behavioral genetic studies in humans, but has largely been

neglected in macaque studies. Two other genes – the gene for the 5-HT1B receptor (HTR1B) and

the gene for the second isoform of the enzyme tryptophan hydroxylase (TPH2) – have only
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recently become the focus of research, but seem to have a significant effect on behavior. These

four genes (SLC6A4, HTR1A, HTR1B, and TPH2) are the focus of research for this dissertation,

and their connection with behavior are reviewed here.

The serotonin transporter gene: SLC6A4

The serotonin transporter is a key element in the process of serotonin regulation (Figure

2.5). Polymorphisms in the gene that codes for the transporter – SLC6A4 – are a source of great

interest for their potential to predict behavioral abnormalities. In humans, the promoter region of

SLC6A4 shows variation in the number of repeats, leading to a 44 base pair difference (Heils et

al., 1996), and these polymorphisms are termed “long” and “short” alleles. The short allele

shows decreased transcriptional activity and decreased 5-HT uptake in lymphoblasts (Lesch et

al., 1996; Heils et al., 1997; Greenberg et al., 1999), which carry transporters identical to those

found in the brain. This in turn may lead to a decrease in serotonin turnover as indicated by 5-

HIAA levels (Williams et al., 2001; Manuck et al., 2004; Smith et al., 2004), although results are

highly inconsistent (Jonsson et al., 1998; Williams et al., 2003). In addition, the short allele has

been linked with an increase in anxiety (Lesch et al., 1996), inability to cope with stressful life

events (Caspi et al., 2003), aggression (Beitchman et al., 2006), and violence (Retz et al., 2004),

to name only a few behaviors. This result is interesting since a decrease in reuptake of serotonin

might be expected to increase the effects of serotonin by increasing the available 5-HT levels in

the synaptic cleft. In addition, SSRI’s, which in theory mimic the effects of the short allele (i.e.,

decrease reuptake), tend to have the opposite results. However, because 5-HT uptake is critical

for development in embryos (Shuey et al., 1992), the short allele might cause other neuronal

changes that influence these behaviors (Bethea et al., 2004).
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Homologous polymorphisms have also been found in the rhesus macaque (M. mulatta)

(Lesch et al., 1997; Rogers et al., 2006). The insertion/deletion is smaller than the polymorphism

in humans (21 base pairs) and it occurs in a different area of the promoter region (Lesch et al.,

1997). However, most studies indicate that it acts in a very similar manner to the human variant.

Again, the short allele has lower transcriptional activity (Bennett et al., 2002) and associations

with behaviors such as anxiety (Bethea et al., 2004), alcoholism (Barr et al., 2003), aggression

(Bennett et al., 1998), age at dispersal (Trefilov et al., 2000), and infant disposition (Champoux

et al., 2002). As with humans, the short allele in rhesus macaques has a tendency to be related to

decreased CSF 5-HIAA and overall reduced serotonin functioning (Bennett et al., 2002).

Serotonin receptor 5-HT1A: HTR1A

As discussed in the overview of clinical studies, the serotonin receptor 5-HT1A is an

important target for many behavior altering pharmaceutics. Thus, variation in its underlying

gene, HTR1A, is expected to contribute to behavioral variation. In one of the first studies that

looked at the effects of HTR1A and behavior, Ramboz et al. (1998) showed that knockout mice

lacking HTR1A demonstrated increased anxiety and decreased exploratory behavior.

Shortly thereafter, researchers began to examine the genetic variation with humans (e.g.,

Kawanishi et al., 1998; Wu and Comings, 1999), but it was Lemonde and colleagues (2003) that

first found a definitive link between a polymorphism in HTR1A and behavior. Specifically, they

found that a single nucleotide polymorphism (SNP) in the promoter region of this gene (termed

C-1019G) affected transcriptional activity and binding properties (Lemonde et al., 2003; Albert

and Lemonde, 2004), and individuals who possessed the G allele were at a higher risk for suicide

and major depression (Lemonde et al., 2003). Since this study, the vast majority of research on

HTR1A has focused on this promoter SNP. In addition to depression and suicide (Lemonde et al.,
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2003; Wasserman et al., 2006; Lenze et al., 2008) it has been shown to affect neuroticism

(Strobel et al., 2003), harm avoidance (Strobel et al., 2003), impulse control (Benko et al., 2010),

panic disorder, schizophrenia, and substance abuse (Huang et al., 2004).

Unfortunately, very little of this work has been repeated in primates. Bethea et al. (2005)

examined the expression levels of HTR1A in the dorsal raphé of M. fascicularis individuals and

found a non-significant trend towards decreased expression in less stress resistant individuals; a

similar study examining expression in the hypothalamus, however, did not repeat these results

(Centeno et al., 2007). While important, these studies did not look at the actual genetic

variations. Thus, HTR1A remains an interesting avenue of future research in macaques.

Serotonin receptor 5-HT1B and tryptophan hydroxylase: HTR1B and TPH2

Two further genes of interest for their possible relationship to behavior are the 5-HT1B

receptor gene (HTR1B) and the gene coding for the second isoform of tryptophan hydroxylase

(TPH2). Both are involved in the serotonin system, and therefore may influence behavior.

However, both these genes have been minimally studied compared to SLC6A4 and HTR1A and

therefore less is known about them.

Similar in structure to 5-HT1A, the serotonin receptor 5-HT1B (also referred to as 5-HT1Dβ

in humans) is another critical component of the serotonin system. Evidence for 5-HT1B’s role in

aggressive and impulsive behavior comes two main sources. First, mice that have had HTR1B

silenced have shown a decrease in aggressive behaviors (Saudou et al., 1994; Brunner and Hen,

1997; Zhuang et al., 1999; Bouwknecht et al., 2001), particularly in relation to impulsivity

(Bouwknecht et al., 2001). (Note that this is the opposite of what occurs in HTR1A knockout

mice.) Secondly, several pharmacological studies indicate that 5-HT1B has a specific effect on

aggression; several drugs that act to reduce aggressive behavior are agonists that are specific to



39

the 5-HT1B receptor (Millan et al., 1993; Bell et al., 1995; Fish et al., 1999; de Almeida et al.,

2001; Miczek and de Almeida, 2001; de Boer and Koolhaas, 2005; Olivier and van Oorschot,

2005).

Like HTR1A, HTR1B contains no introns, and several variants have been found in

humans that may be linked to variation in behavior. One of the most widely studied mutations is

G861C. This polymorphism has been linked to suicide attempts (New et al., 2001), alcoholism

(Lappalainen et al., 1998; Fehr et al., 2000) and substance abuse (Huang et al., 2003), ADHD

(Hawi et al., 2002; Quist et al., 2003), OCD (Mundo et al., 2002), major depression (Huang et

al., 2003), and pervasive aggression in children (Davidge et al., 2004). However, the alleles that 

are associated with these conditions are not always consistent (Lappalainen et al., 1998; Fehr et

al., 2000). Another allele of interest is A161T, which may be part of the promoter region of this

gene and has been found (in certain combinations with other nearby mutations) to affect

expression levels (Sun et al., 2002; Duan et al., 2003). A161T has been associated with both

impulsive aggressive behavior and suicide (Zouk et al., 2007). While the manner in which this

gene affects the phenotype is unclear, these studies all seem to indicate at least a minimal role in

behavior.

Tryptophan hydroxylase (TPH), is an enzyme that is used in the process of converting

tryptophan into 5-HT (Figure 2.4). Defects in this enzyme can thus limit the availability of

serotonin in the brain. There are two genes that each code for the two isoforms of TPH: TPH1

and TPH2. While polymorphisms found in TPH1 have been linked to suicide (Nielsen et al.,

1994, 1998; Buresi et al., 1997; Mann et al., 1997; Manuck et al., 1999), knockout mice with a

complete deficiency in TPH1 still exhibit normal levels of 5-HT in the brain and are behaviorally

indistinguishable from wildtype mice (Walther and Bader, 2003). This is because while TPH1 is
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expressed mainly in peripheral tissue, TPH2 is expressed almost exclusively in the brain

(Walther and Bader, 2003; Zill et al., 2004b). Therefore, variations in this gene are more likely to

confer a behavioral effect than TPH1. In humans, multiple polymorphisms in TPH2 have been

linked with major depression and affective disorders (Harvey et al., 2004; Zill et al., 2004a;

Zhang et al., 2005; Zhou et al., 2005), a history of suicide attempts (Zill et al., 2004c; Zhou et al.,

2005), autism (Coon et al., 2005), and ADHD (Sheehan et al., 2005; Walitza et al., 2005). Zhou

and colleagues (Zhou et al., 2005) identified a haplotype (a set of polymorphisms on a

chromosome that are inherited together) of TPH2, termed the yin haplotype, that was associated

with suicidal behavior and depression. In addition, they also found that those homozygous for the

yin haplotype had lower CSF 5-HIAA than those who lacked the yin haplotype completely.

Recently, Chen and colleagues (2006) identified several polymorphisms in rhesus macaques (M.

mulatta) that are associated with differences in hypothalamus-pituitary-adrenal (HPA) axis and

with expression level differences. They further found that these polymorphisms are predictive of

levels of self-injurious behavior, and thus TPH2 seems to be connected to stress response in

macaques (Chen et al., 2010). However, to date these are the only studies that have looked at

TPH2 and behaviors in macaques. Because TPH2 has only been identified very recently, this

gene awaits a great deal of future research.

EVOLUTIONARY THEORIES ON SEROTONIN AND PARTICULARLY SLC6A4

The extent to which variation in serotonin functioning affects fitness has received limited

attention. Some studies have attempted to discern whether or not selection has acted on this

system by examining the costs and benefits associated with differences in serotonin turnover.

From a genetic perspective, discussion on serotonin evolution has been almost exclusively
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centered on the promoter region variation of SLC6A4. Here, I review some of the evolutionary

theories surrounding serotonin and SLC6A4, and make some predictions as to how each of these 

theories would be expected to affect genetic variation. (For a more detailed description for how 

different evolutionary forces affect genetic variation, see Chapter 1.)

In general, it is unclear to what degree variation is serotonin functioning affects fitness.

Some studies have indicated that individuals with increased serotonin functioning should fare

better than those lowered serotonin functioning. For example, in primates it is not always the

most aggressive males that are dominant (Higley et al., 1996d; Takahata et al., 1999; Fairbanks

et al., 2001). Furthermore, low serotonin levels are associated with lower rank (Higley et al.,

1996d; Higley and Linnoila, 1997a, b; Fairbanks et al., 2001), higher risk of injury (Mehlman et

al., 1994; Higley et al., 1996a), and decreased survival rates (Higley et al., 1996b; Westergaard et

al., 2003a; Howell et al., 2007). In terms of reproduction, high CSF 5-HIAA is associated with

increased time spent in courtship, mounting, and insemination in rhesus macaques (Mehlman et

al., 1997). Gerald et al. (2002) examined rhesus macaque male pairs who were present during the

time an offspring was conceived and found that the male with the higher CSF 5-HIAA is usually

the sire. Female macaques with lower CSF 5-HIAA are less likely to give birth (Cleveland et al.,

2004). In specific relation to the promoter region of SLC6A4, female macaques that carry the

short allele are significantly less likely to exhibit ovulatory cycles (Hoffman et al., 2007). Taken

together, these studies would indicate that selection is acting against genetic variants that are

more likely to decrease overall serotonin functioning. In this respect, new mutations are less 

likely to be favored, particularly those that occur in coding regions, as these generally result in a 

loss of function (Kimura, 1985). Accordingly, purifying selection is likely to be the predominate 
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force acting on selection, and analyses of genetic variation should reflect this. That is, the level 

of overall genetic variation should be low, particularly at nonsynonymous sites (see Chapter 1).

However, in both rhesus macaques (M. mulatta) and humans, the short allele of SLC6A4,

which is associated with lower serotonin levels, is present in high frequency [Humans: 43%

(Lesch et al., 1996); Indian rhesus macaques: 40% (Chapter 5); Chinese rhesus macaques: 58%

(Chapter 5)]. In addition, not all studies indicate that the short allele, or low serotonin

functioning, is maladaptive. Within humans, Chiao and Blizinsky (2010) theorize that in areas

where pathogen levels have been historically high, "collectivist" values are favored over

"individualistic" values, creating a cultural environment where the short allele might thrive, or at

least not be selected against (see SEROTONIN GENES AND PLASTICITY). This theory might be

extended to primate studies, although this is admittedly problematic. While Howell and

colleagues (2007) found that male macaques with low CSF 5-HIAA were at greater risk of

premature death, once they emigrated to a new group they were more likely to achieve high rank.

Other studies have found a negative correlation between CSF 5-HIAA and rank (Yodyingyuad et

al., 1985; Kaplan et al., 2002; Fairbanks et al., 2004a). Another factor to consider is a species'

ability to exploit various habitats. Macaque species can be divided into two different groups

depending on their ability to live in areas affected by humans (Richard et al., 1989). Rhesus

macaques in particular do very well in human inhabited areas and this may in part be due to an

aggressive/impulsive nature (Richard et al., 1989; Thierry et al., 2000), which may be mediated 

through the serotonin system. Given the expansion of humans, there may be a selective

advantage to tolerating humans. In fact, the ability to expand and exploit a variety of habitats 

may be related to serotonin functioning (Chapter 3), and thus lowered serotonin turnover may be

favored. If this is so, then positive selection is predicted to shape genetic variation. Specifically, 
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positive selection is expected to increase the rate of protein evolution, increase interspecific 

genetic differences, and increase the number of high- and low-frequency genetic variants 

(Chapter 1).

Alternatively, balancing selection may be operating to keep genetic polymorphisms such

as the short allele at high frequency in the population. Suomi (2006) suggested that because both

humans and rhesus macaques show variation in genes related to serotonin, and because they are

both the most widely distributed primate species, that it is genetic diversity that has allowed

these species to adapt to a variety of habitats (see also Chakraborty et al., 2010). Gerald and

Higley (2002) also suggested that certain alleles might be advantageous in specific

environments, but detrimental in others. Trefilov et al. (2000) proposed that males that are

heterozygous for SLC6A4 might have an advantage over homozygotes. Furthermore, since rank

is inherited and stable in females, but acquired and unstable in males, selection may be acting

differently in males and females. Indeed, different results have been achieved in males and

females when linking CSF-5HIAA with fitness (e.g., Trefilov et al., 2000; Westergaard et al.,

2003b; Fairbanks et al., 2004a, b; Howell et al., 2007). Therefore, rather than positively selecting

for one allele, balancing selection may be acting to maintain variation. This would be reflected 

by an increase in intraspecific variation and an excess of alleles at intermediate frequency 

(Chapter 1).

SEROTONIN GENES AND PLASTICITY

It is clear from these studies that selection's role in serotonin evolution is not clearly

understood. Further complicating the matter is the fact that in both macaques and humans there

appears to be a significant genotype by environment interaction. In humans, the association
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between the short allele and lowered serotonin functioning (as measured by a fenfluramine

challenge) is only seen in individuals with low socio-economic status; those individuals with

high socio-economic status had high serotonin turnover regardless of genotype (Manuck et al.,

2004). Likewise, a macaque’s rearing condition (mother- or peer-raised) will influence the

genotypic expression of SLC6A4 on CSF 5-HIAA and behavior (Bennett et al., 2002; Champoux

et al., 2002). Wasserman et al. (2006) found an association between the C -1019G polymorphism

of HTR1A and suicide, but only when examining subject with a history of traumatic life event.

Furthermore, there is evidence that both gender and race can influence genotype expression

(Williams et al., 2003). In fact, many of the studies outlined indicate that the effect of genetic

variants on behavior is best seen when paired with a poor environment.

There is a tendency to discuss genetic variants as risk factors, particularly within the field

of psychology, and certain genotypes are assumed to increase an individual's vulnerability to

environmental influences. However, several authors have recently argued that these genetic

variants are better thought of as plasticity genes, rather than vulnerability genes, with certain

genetic variants conferring more or less plasticity (Belsky et al., 2009; reviewed in Homberg and

Lesch, 2010). In this context, plasticity can be defined as the degree of the gene by environment

interaction. Accordingly, individuals who possess certain genetic variants ("plastic" alleles) show

more variation across environments – for better or for worse – whereas those who do not possess

such "plastic" alleles display phenotypes that are more consistent across environments (Figure

2.6). For example, Caspi et al. (2003) were among the first to demonstrate a significant gene by

environment interaction for SLC6A4 when they found that individuals with the short promoter

allele were more likely to develop depression or contemplate suicide, but only if they had

experienced two or more stressful life events. Among people who had not experienced stressful
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life events, carriers of the short allele were actually less likely to develop these behaviors than

carriers of the long allele. Thus, carriers of the short allele do both better and worse (i.e., are

more plastic) than carriers of the long allele depending on the environment.

This viewpoint adds a layer of complexity to evaluating the evolution of the serotonin

system. To begin with, we must discern whether the target of potential selection is a specific set

of behaviors, plasticity itself, or some combination of the two. If the capacity to be plastic is the

adaptation, then our expectations for the types of signatures of selection we would find in

looking at these genes would not really differ. However, if plasticity is not the sole target of

selection, then finding any evidence of selection on these genes becomes increasingly difficult.

This is because the increased plasticity that some of these genetic variants impart would weaken

the connection between specific types of behaviors and the underlying genetic structure. Thus,

even if there was strong selection for a behavior, there might be very little corresponding genetic

change. If so, random genetic drift would be expected to be the predominant evolutionary force 

driving genetic variation. These are factors that must be considered when interpreting data.

LIMITATIONS, CHALLENGES, AND CONCLUSIONS

Most of the information on the relationship between serotonin and behavior has come

from three sources. The first of these is population level studies that look at how people afflicted

with various behavioral abnormalities (particularly men) differ from control populations in their

serotonin levels. The second source of information comes from clinical studies that artificially

manipulate serotonin level (or manipulate certain aspects of the serotonin pathway) to see the

affect on behavior. The third source of information comes from genetic studies that look at
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associations between behaviors and variations of genes related to serotonin. All three of these

sources are problematic.

In the first case, the emphasis on psychopathologies (and on men) limits the ability to

extend findings to the general population. While these studies are, of course, useful for the field

of psychology and the treatment of pathologies, it is difficult to make definite conclusions about

how serotonin may play a role in behaviors that fall within the normal range. Furthermore, while

these studies may help to frame hypotheses about how abnormal behaviors (by definition, non-

adaptive behaviors; see Table 2.1) evolve and remain in a population, they add little to the

theories about the evolution of adaptive behaviors. Unfortunately, the studies conducted thus far

on "normal" populations of people are inconclusive. This may be due in part to the relatively

small numbers of studies that have explicitly looked at this, but it is also likely due to a gene by

environment interaction that makes the connection between genotype and phenotype less

straightforward (e.g., Bennett et al., 2002; Champoux et al., 2002; Caspi et al., 2003; Wasserman

et al., 2006). Within nonhuman primates, there is no way to "diagnose" psychopathologies in the

same way that is done in humans. Therefore, studies conducted on nonhuman primates are, at

least in theory, limited to "normal" populations. These studies overall indicate that the

relationship between serotonin and aggression/impulsivity do hold for more adaptive forms of

aggression, as do studies outside of primates (not reviewed here, but see for example Winberg et

al., 1993; Matter et al., 1998; Kravitz and Huber, 2003; Clotfelter et al., 2007). However, as with

humans, nonhuman primates show the strongest relationship between serotonin and extreme

forms of impulsive aggression that may fall outside of the adaptive range.

The second source of information, clinical studies, is important for determining the exact

mechanisms through which serotonin influences behavior. While the population level studies
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make it clear that serotonin has a role in shaping behavior, clinical studies demonstrate that how

this happens is complex and far from understood. The predominant paradigm has been that a lack

of serotonin promotes aggressive and impulsive behavior; it is now appears that it is better to

think of any imbalance of serotonin leading to aggressive behavior. However, the main problem

with clinical studies is the artificial nature of the environment to which these animals are

subjected. As mentioned previously, factors such as socio-economic status, cultural influences,

and rearing conditions all affect both serotonin levels and the expression of aggressive and

impulsive behaviors. Therefore, the laboratory environment in itself is likely to be influencing

the outcome of these studies. Many of the methods employed in these studies (such as

microdialysis or the application of neurotoxins) are likely to be stressful to the animals and may

alter other components of the brain that interact with the serotonin system. These factors make

clinical studies difficult to apply to questions of evolution.

Finally, genetic analyses are also used in the study of serotonin and behavior. Like

population level studies, genetic studies tend to concentrate on abnormal behavior. In addition,

some of the genetic studies have revealed an important environmental component to the

expression of these genes, on both a physiological and behavioral level (Bennett et al., 2002;

Champoux et al., 2002; Williams et al., 2003; Caspi et al., 2003; Manuck et al., 2004; Newman

et al., 2005). While this is to be expected for a trait like behavior, these studies rarely take these

factors into account, despite the fact that these environmental factors may help to explain any

discrepancies found between studies. Particularly for SLC6A4, which has been the most widely

studied, it seems that a good environment (i.e., high socio-economic status, a non-abusive

childhood, or a strong social network) acts as a buffer against some of the negative effects of

polymorphisms associated with behavioral pathologies (Champoux et al., 2002; Caspi et al.,
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2003; Westergaard et al., 2003b; Manuck et al., 2004). It may be that the effects of some of these

polymorphisms are only exposed under rare conditions, and therefore have little opportunity for

selection to act on them. However, until there are more studies that examine the effects of these

genes in the general population and that explicitly look at a variety of environmental conditions,

it is uncertain how strongly or how often these genes may play a significant role in the evolution

of behavior.

Despite these limitations, there is overwhelming evidence that serotonin acts to moderate

behavior, even if some factors – such as the degree of its effect in general populations and the

exact mechanisms behind this effect – are not yet fully understood. Therefore, it is perhaps the

best neurological system to investigate in order to understand the biological basis of behavior

within macaques. Furthermore, if we are to gain a deeper understanding of the evolution of

behavior, we have to understand the evolution of its underlying biological mechanisms.
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FIGURES AND TABLES

Figure 2.1. A map of the distribution of the macaque genus (all shades of green), with a special
emphasis on the rhesus macaque (Macaca mulatta: dark green).

Macaca mulatta

Other Macaca species
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Figure 2.2. Behavioral categories of Thierry (2000) applied to a phylogeny of macaque species.
Modified from Thierry et al. (2000). Category 1 describes the most aggressive species, while
category 4 describes the least aggressive. Categories 2 and 3 are intermediate.
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Figure 2.3. A schematic of how the serotonin system interacts with the human brain. Serotonin
is produced in the caudal raphé nuclei (CRN) and one of the rostal raphé nuclei (RRN) and is
projected to various regions of the brain. C, cerebellum; Th, thalamus; A, amygdala; TL,
temporal lobe; ST, striatum; PFC, prefrontal cortex; OC, occipital cortex. Reprinted with
permission from Cools et al. (2008).
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5-hydroxytryptophan (5-HTP)

5-hydroxyindoleacetic acid (5-HIAA)

Serotonin (5-hydroxytryptamine) (5-HT)
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tryptophan hydroxylase
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Figure 2.4. Overview of the different steps of serotonin synthesis. Tryptophan is acquired
through the diet and becomes serotonin using the enzymes tryptophan hydroxylase and
decarboxylase. Serotonin is eventually broken down using the enzyme monoamine oxidase.
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Figure 2.5. Basic schematic of the serotonin system. Serotonin is released from the serotonin
neuron where it is free to bind with multiple receptor types. The serotonin transporter moves
serotonin from the postsynaptic space and back into the serotonin neuron. MAOA breaks down
serotonin (5-HT) into its metabolite 5-HIAA.
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Figure 2.6. Graphical demonstration of variation in plasticity. All genetic variants are expected
to show some phenotypic variation across environments (plasticity), but not all genetic variants
will be affected to the same degree. Certain genetic variants ("plastic" genotypes, symbolized as
the red line) will show a large amount of phenotypic variation across environments. In contrast,
other genotypes ("stable" genotypes, symbolized as the dark blue line) will show less phenotypic
variation across environments.
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Table 2.1. A comparison of the different types of aggression.

State Trait

Hyperarousal Hypoarousal

Competitive Protective

Adaptive Abnormal

Agression within a normal range 
that helps to increase an 
individual's fitness

Agression beyond the normal 
range that is actually maladaptive

A stable personality trait, where 
agression is either chronic or 
more easily triggered 

Aggression caused by "excessive 
autonomic arousal."  
Characterized by "outbursts."

Associated with low arousal.  
This is more of the "calculated" 
or "cold-blooded" violence

Agression to increase resources.  
Also thought of as "proactive" or 
"offensive"

Agression to protect oneself.  
Also thought of as "reactive" or 
"defensive"

(or situational) a temporary 
emotional state

State Trait

Hyperarousal Hypoarousal

Competitive Protective

Adaptive Abnormal

Agression within a normal range 
that helps to increase an 
individual's fitness

Agression beyond the normal 
range that is actually maladaptive

A stable personality trait, where 
agression is either chronic or 
more easily triggered 

Aggression caused by "excessive 
autonomic arousal."  
Characterized by "outbursts."

Associated with low arousal.  
This is more of the "calculated" 
or "cold-blooded" violence

Agression to increase resources.  
Also thought of as "proactive" or 
"offensive"

Agression to protect oneself.  
Also thought of as "reactive" or 
"defensive"

(or situational) a temporary 
emotional state
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CHAPTER 3 

EVIDENCE FOR SELECTION IS FOUND IN HTR1A, BUT NOT IN HTR1B

ABSTRACT

Research has increasingly highlighted the role of serotonin in behavior. However, 

relatively few researchers have examined serotonin in an evolutionary context, even though such 

research could provide insight into the evolution of important behaviors. The genus Macaca

represents a useful model for studying the evolution of serotonin. It is comprised of 19 

morphologically and behaviorally diverse species and this diversity correlates with phylogeny. In 

addition, many genetic features of the macaque serotonin system parallel those of the human 

lineage and evidence of positive selection on genes related to serotonin has been demonstrated in 

humans. If parallel evolution is occurring in macaques and humans, and selection is similarly 

shaping behavioral patterns in both primates, we should expect to see evidence of positive 

selection in macaques as well.

I examine the role of selection in the macaque serotonin system by comparing two genes 

that code for two types of serotonin receptors – HTR1A and HTR1B – across five species of 

macaques. The pattern of evolution is significantly different for HTR1A compared to HTR1B. 

Specifically, there is an increase in between-species variation compared to within-species 

variation for HTR1A, consistent with positive selection. This high level of divergence resulting 

from natural selection likely contributes to the behavioral diversity among species in the 

macaque genus, is potentially related to dispersal, and may parallel selection acting on similar 

behaviors in humans. 
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INTRODUCTION

Over the past 50 years, research has increasingly highlighted the role of the serotonin 

system in shaping behavior (for reviews see Pihl and LeMarquand, 1998; Munafo et al., 2003; 

Cools et al., 2008; Caspi et al., 2010). However, despite the large amount of research devoted to 

this system, it is rarely placed in an evolutionary context. This is surprising given the potential to 

explain the evolution of important behavioral strategies. For example, genetic, pharmaceutical, 

and hormonal studies have shown that serotonin influences age at dispersal (Trefilov et al., 2000; 

Krackow and König, 2008), social behavior (Samochowiec et al., 1999; Caspi et al., 2002; 

Anstey et al., 2009; Crockett et al., 2010), exploratory behavior (Ramboz et al., 1998), and 

aggressive behavior (Manuck et al., 2000; Newman et al., 2005; Filby et al., 2010; Vermeire et 

al., 2010) in animals. These characteristics have been used to define the "behavioral syndromes" 

(sensu Sih and Bell, 2008) of invasive animals (Duckworth and Badyaev, 2007; Sih and Bell, 

2008; Cote et al., 2010) and may contribute to an individual’s ability to expand its habitat and 

successfully compete with other individuals occupying similar niches. Thus, alteration of the 

serotonin system provides one possible mechanism through which selection can influence 

behavior, and may explain how and why similar behaviors evolve across species.

The genus Macaca represents a useful model for addressing the evolution of the 

serotonin system. The genus is composed of approximately 19 species (Fooden, 1976, 1980), 

which, while closely related, exhibit diverse social behaviors, including age at dispersal, 

frequency of reconciliation, degree of counter-aggression, and social play patterns (Thierry et al., 

2000, 2008). These differences among species are significantly influenced by phylogeny 

(Thierry et al., 2000, 2008), suggesting that genetic differences in neurological functioning may 

underlie the behavioral differences in this genus (Wendland et al., 2006). Macaques also share 
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interesting parallels with humans. Specifically, they occupy a diverse set of habitats, making 

macaques – particularly the rhesus macaque (Macaca mulatta) – the most widely distributed of 

nonhuman primates. Much like invasive species, both humans and macaques, especially M. 

mulatta, are successful at expanding territory and competing with individuals from other species 

in new habitats. It has been hypothesized that the exploitation of a large part of the world by both 

humans and rhesus macaques was the result of the evolution of similar behavioral strategies, 

such as high between-group aggression, in both species (Suomi, 2006; Maestripieri, 2007). In 

line with this theory, several similar, though independently evolved, genetic variants related to 

serotonin functioning have been identified in both rhesus macaques and humans (e.g., Lesch et 

al., 1997). In both species, these uniquely derived genetic variants show similar connections to 

behavior (e.g., Lesch et al., 1996, 1997; Bennett et al., 2002; Barr et al., 2003; Caspi et al., 2003; 

Bethea et al., 2004; Beitchman et al., 2006). This suggests that similar behavioral features of 

these two species may be the result of selection acting on the same system in these species. The 

repeated recruitment of the same neurological system to produce similar behaviors, what I call 

here parallel evolution sensu Haldane (1932), may explain behavioral similarities across a wide 

range of animals (Fitzpatrick et al., 2005; Robinson et al., 2008). Recently, Claw and colleagues 

(2010) inferred that selection likely acted on the serotonin system in humans. If parallel 

evolution is occurring, then positive selection may also have influenced the serotonin system in 

macaques.

To examine the evolution of the serotonin system in macaques, I compared the genetic 

variation of two genes, HTR1A and HTR1B, within and among five macaque species. The two 

genes code for serotonin receptor types 1A and 1B, and are located on chromosomes 4 and 6 of 

the macaque genome, respectively (Rhesus Macaque Genome Sequencing and Analysis 
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Consortium et al., 2007). They are similar in structure, having just one exon (1269 and 1173 base 

pairs for HTR1A and HTR1B, respectively) and no introns; both receptor types are associated 

with various behaviors (e.g., Ramboz et al., 1996a,b, 1998; Davidge et al., 2004; de Boer and 

Koolhaas, 2005; Centenaro et al., 2008). I sequenced both genes and their flanking regions, 

including potential regulatory regions, and applied several tests designed to detect selection. 

These tests include Tajima’s D, ω, McDonald Kreitman, Phylogenetic Analyses by Maximum 

Likelihood (PAML), and the HKA test (see Methods for explanation of these tests). While both 

receptors are similar in structure and exhibit an overlap in function (Barnes and Sharp, 1999), 

experiments with knockout mice indicate that these two receptors modulate behavior in opposite 

ways (Ramboz et al., 1996b; Ramboz et al., 1998), potentially due to the different distributions 

of the receptors within the brain (Ghavami et al., 1999). Knockout mice lacking HTR1A show 

increased anxiety and decreased exploratory behavior compared to the wildtype (Ramboz et al., 

1998); in contrast, knockout mice lacking HTR1B are more impulsive, less anxious, and more 

aggressive than the wildtype (Ramboz et al., 1996b). Differences occurring in the coding and 

regulatory regions of these receptor genes may have contributed to the diverse behaviors 

macaque species exhibit today. Here, I investigate whether positive selection affects the pattern 

of genetic variation of HTR1A and HTR1B in the macaque genus.

METHODS

Subjects

DNA samples from 20 Macaca mulatta (11 from India, 9 from China), 11 M. 

fascicularis, 11 M. fuscata, 6 M. nemestrina, and 4 M. sylvanus were used in this study (Table 

A.1). Previous studies (Melnick et al., 1993; Morales and Melnick, 1998; Tosi et al., 2003; 
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Smith, 2005; Hernandez et al., 2007; Satkoski et al., 2008) have shown that M. mulatta consists 

of two groups that are genetically distinct, roughly split between those of Indian and Chinese 

origin. Because the substructure of this species could influence analyses, I analyzed each 

population separately as well as the species as a whole. In addition to the previously mentioned 

samples, one sample each from Macaca assamensis, M. cyclopis, M. nigra, M. silenus, and 

Chlorocebus aethiops (Table A.1) were used in PAML analyses (see below) to help place the 

results in an evolutionary framework. Because of unusual results obtained for M. nigra, for post

hoc analyses I obtained 2 additional M. nigra samples, 1 M. maura, and 1 M. tonkeana. In total, 

61 DNA samples were sequenced. The 11 different macaque species analyzed span the range of 

behavioral variation found in the genus. The C. aethiops (vervet) sample was used as an 

outgroup for the macaque species.

PCR and Sequencing

I amplified the coding and flanking regions, including potential regulatory regions, of 

HTR1A and HTR1B (see Table A.2 for primers) using both previously published (Cigler et al., 

2001) and newly designed primers. The new primers were designed based on the Macaca 

mulatta draft assembly (Rhesus Macaque Genome Sequencing and Analysis Consortium et al., 

2007) using Primer3 (Rozen and Skaletsky, 2000) and GeneRunner (generunner.net). In addition 

to HTR1A and HTR1B, five non-coding, presumably neutral regions were amplified in all of the 

samples (Table A.3) and used for the HKA test (see below) (Hudson et al., 1987). I designed 

these non-coding regions to be at least 20,000 base pairs from the nearest coding region 

(Satkoski Trask et al., 2011). The PCR protocols differed for each of the regions amplified and 

are available upon request of the author.
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I used the ExoSAP-IT protocol (usb.com) to clean up the PCR product and submitted it to 

the W.M. Keck Center for Comparative and Functional Genomics, UIUC for Sanger sequencing. 

As with the PCR primers, the sequencing primers used were a combination of published and 

newly designed primers. Efforts were made to design primers that would provide substantial 

overlap with each other so that any one region being analyzed would have multiple reads from 

different primers, ensuring the accuracy and quality of the sequence.

Once received, sequences were aligned and edited manually using Sequencher 

(www.genecodes.com). Each heterozygote base pair was confirmed visually by identifying clear 

double peaks in the chromatogram. All SNPs (single nucleotide polymorphisms) and indels 

(insertions/deletions) were identified. Where indels involved more than one sequential 

nucleotide, the entire deleted region was treated as a single mutation. For example, the loss of a 

codon, which includes three nucleotides, was treated as a single mutational event rather than 

three separate events. Haplotypes were determined using the program Phase v.1 (Stephens et al., 

2001; Li and Stephens, 2003; Stephens and Donnelly, 2003). In order to visualize the genetic 

variation and relationships among the haplotypes of each gene, I constructed a haplotype tree 

using the reduced median method in Network v4.5 (fluxus-engineering.com).

Analysis

With the exception of the likelihood ratio tests and the haplotype networks, all analyses 

were conducted on samples of five species: M. mulatta, M. fuscata, M. fascicularis, M. 

nemestrina, and M. sylvanus. Several indices of molecular diversity were calculated for each of 

the five species using Arlequin (Excoffier et al., 2005). These included two different estimates of 

theta (θ = 4Nμ, where N is the effective population size and μ is the mutation rate): θS

(Watterson, 1975) and θπ (Tajima, 1983), which were used to estimate within-species diversity. 
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Nucleotide diversity (averaged over all loci) (Tajima, 1983) was used to estimate within- and 

among- species diversity.

In order to determine whether selection has acted on either gene, I used multiple 

approaches. For all selection tests, I used a significance level of 0.05. First, I applied the HKA 

test, which compares the ratio of within- versus among-species variation in a gene of interest 

with that of several unlinked, neutral loci. A gene that is evolving neutrally should not have a 

ratio that varies significantly from that of the other loci considered. I used the five non-coding 

regions described above and in Table A.3 for comparison to the serotonin genes in the HKA test. 

Because the HKA test requires a comparison between two species, I conducted pairwise 

comparisons for all five species using software provided by J. Hey 

(http://genfaculty.rutgers.edu/hey/software).

Second, I examined the ratio of nonsynonymous to synonymous mutations (ω) in the 

coding regions of the genes. Positive selection increases the relative rate of nonsynonymous 

substitutions, whereas purifying selection decreases it (Kimura, 1977). For this approach, I used 

multiple tests. First, I used the program Mega v.4 (Tamura et al., 2007) to determine whether ω

between any two species significantly differs from 1.0 (Kimura, 1977; Yang and Nielsen, 2000). 

If ω > 1.0, this indicates positive selection, while ω < 1.0 indicates purifying selection. Second, I 

employed the McDonald-Kreitman (MK) test (McDonald and Kreitman, 1991), which compares 

synonymous and nonsynonymous ratios within and among two species, using the program 

DNAsp (Rozas et al., 2003). This ratio should remain constant for genes evolving neutrally. Like 

the HKA test, calculation of ω and the MK test require a comparison among two species. As 

with HKA, I made pairwise comparisons among all five species. Finally, I conducted likelihood 

ratio tests (LRT) on all of the samples available using the program PAML (Phylogenetic 
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Analysis using Maximum Likelihood; Yang, 1997; Yang, 2007). PAML determines the 

maximum likelihood values for different models of evolution within a phylogenetic framework. 

Models that incorporate positive selection can be compared to null models and the LRT used to 

determine which model best fits the data. Because PAML allows only one sequence per species, 

I included all ten species in the LRT using the phylogeny seen in Figure 3.2 (Vos, 2006). For this 

study, I examined two types of evolutionary models. First, I tested a variable branch model, 

which allows ω to vary among each of the branches of the macaque phylogeny, to see if 

selection has occurred on a specific lineage (Yang, 1998). Tested in this way, ω does not have to 

be greater than one, but simply elevated compared to other lineages of the macaque phylogeny. 

Second, I compared several sites models using PAML (M1 vs. M2, M7 vs. M8, and M8a vs. M8; 

see Yang et al. (2000) and Swanson et al. (2003) for explanation of models). These models allow 

ω to vary among different sites on the gene using different parameters (Nielsen and Yang, 1998; 

Yang et al., 2000; Swanson et al., 2003). Most sites on a gene are under strong purifying 

selection, which reduces the overall ω for a gene and can hide signals of positive selection 

occurring only in a small portion of the gene. Testing the sites models in PAML can determine if 

a portion of a gene shows signs of positive selection, even if the average ω ratio over the entire 

gene is low.

Finally, using Arlequin, I conducted a Tajima’s D test, which detects skews in the 

frequency spectrum of alleles by comparing two different estimates of theta, θS and θπ (Tajima, 

1989). An excess of rare alleles (θS > θπ, leading to a significantly negative Tajima's D) is 

consistent with positive selection, while an excess of intermediate-frequency alleles (θS < θπ, 

leading to a significantly positive Tajima's D) is consistent with balancing selection.
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Many of the tests that I employed assume absence of recombination, which can affect the 

results. Specifically, violation of this assumption can increase false positives in the MK test 

(Andolfatto, 2008) and in the LRT of the sites models using PAML (Anisimova et al., 2003). In 

contrast, the assumption of no recombination is conservative for the HKA test (Hudson et al., 

1987). I used the SITES program of J. Hey (http://genfaculty.rutgers.edu/hey/software) to obtain 

an estimate of the recombination parameter C, where C = 2Nc, and c is the rate of recombination 

per generation per base pair and N is the effective population size (Hey and Wakeley, 1997). 

Because the LRT test only examines the coding region, whereas the HKA test can analyze both 

coding and non-coding regions, I obtained estimates of C based on the entire regions sequenced, 

and on the coding region alone. Presence of recombination indicates that a significant result for 

the MK test and the LRT of the sites models should be treated with caution, but should not affect 

the interpretation of a significant result for HKA.

RESULTS

Molecular Diversity

Overall, indices of genetic diversity are comparable to those reported for other areas of 

the macaque genome (Table 3.1) (Stevison and Kohn, 2009). Several studies have found a major 

split in the M. mulatta lineage between Chinese and Indian populations (Melnick et al., 1993; 

Morales and Melnick, 1998; Tosi et al., 2003; Smith, 2005; Hernandez et al., 2007; Satkoski et 

al., 2008). Because the presence of population substructure might have an affect on analyses, I 

examined representatives of each branch of this species separately. The values for all genetic 

diversity indices (Table 3.1) are very similar for both lineages, and for all analyses separate 
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examination of the two M. mulatta branches did not affect results. Therefore, for the remainder 

of this manuscript, I only report the results for the species as a whole.

A comparison of the two genes shows that genetic distances between species for HTR1A 

are generally high compared to HTR1B (Table 3.1). The only exception to this is between M. 

mulatta and M. fuscata, where the divergence is actually lower in HTR1A than HTR1B. These 

trends are also reflected in the gene trees by both the wider spacing of the haplotypes in HTR1A

than in HTR1B and the tight clustering of M. mulatta, M. fuscata, and M. cyclopis in HTR1A 

(Figure 3.1). Because these three species are members of a monophyletic group that excludes the 

other macaque species studied (Figure 3.2), for ease of future discussion, M. mulatta, M. fuscata, 

and M. cyclopis will be referred to as the mulatta group (see Melnick et al., 1993; Morales and 

Melnick, 1998; Tosi et al., 2003).

While members of the same species tend to cluster together in the HTR1A haplotype 

network, one M. fascicularis individual provides an exception to this pattern by showing greater 

similarity to a clade with M. nemestrina, M. assamensis, and M. silenus individuals than to the 

other M. fascicularis individuals (Figure 3.1). It shares none of the SNPs that distinguish the 

other M. fascicularis individuals and possesses several SNPs that are unique to this individual. I 

repeated sequencing on this individual in order to rule out a PCR or sequencing error. This 

individual likely represents either substructure within M. fascicularis or introgression. It was not 

clear how this individual would affect the results, so I report here the results of analyses of 

HTR1A with and without this outlier (Tables 3.1, 3.2, and 3.3). With the exception of the HKA 

test, inclusion or exclusion of the outlier did not significantly change the test results (see below 

and Appendix A). Because this individual was largely undifferentiated in HTR1B, its inclusion 

had no effect on the results; therefore, only the original dataset, including the outlier, is reported.
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Evidence for Selection

For the first set of tests, HKA, I obtained significant results for some among-species 

comparisons of HTR1A, but not for any comparisons of HTR1B (Table 3.3). These results were 

mainly driven by a high level of among-species divergence in HTR1A (Figure 3.1), and provide 

evidence for positive selection occurring in macaques. HKA results were not significant for any 

comparison with M. sylvanus, nor for the comparison between M. mulatta and M. fuscata. All 

other between-species comparisons are significant for HTR1A when the outlying M. fascicularis

individual is excluded. When the outlier is included, only comparisons between M. nemestrina

and the mulatta group (M. mulatta and M. fuscata) remain significant.

The second set of tests focused on the ratio of synonymous to nonsynonymous 

substitutions (ω). The overall ratios for both genes (Table 3.3) were almost all either 

significantly lower than one or else approaching significance; this is consistent with previous 

studies of the serotonin system that have shown the system to be evolutionarily conserved 

(Andres et al., 2007; Anbazhagan et al., 2010). However, results for the likelihood ratio tests 

(LRT) comparing various sites models in PAML showed significant results for HTR1A, but not 

for HTR1B (Table 3.4), indicating that at least some portions of HTR1A are under selection even 

though the overall ω was low. The LRT using the variable branch models were non-significant 

for both genes (not shown); that is, no selection was detected on a specific lineage. In addition, I 

also conducted McDonald-Kreitman (MK) tests on both genes. Due to the low number of 

nonsynonymous polymorphisms in several cases, both within and among species, the MK test 

could not be calculated. Where p-values could be computed for the MK test, results for both 

genes were non-significant (results not shown).



94

Finally, I calculated the Tajima’s D values for both HTR1A and HTR1B, which are shown 

in Table 3.1. The Tajima’s D values were non-significant for both genes for all species analyzed. 

The Placement of M. nigra

Although not closely related to the mulatta group, the haplotype network of HTR1A 

shows that M. nigra clusters with these species, sharing several mutations unique to the mulatta

group (Figures 3.1 and 3.2). Notably, all four species – M. mulatta, M. fuscata, M. cyclopis, and 

M. nigra – share both a codon loss and a nonsynonymous substitution that no other species 

exhibit. Based on models of the human serotonin receptor (Kobilka et al., 1987), both mutations 

affect the extracellular amino terminal region of the receptor. The effect of the codon loss is 

unknown; however, the nonsynonymous substitution is identical to a polymorphism identified in 

humans, Gly22Ser (Nakhai et al., 1995). While this polymorphism has not been associated with 

behavior, possibly due to its low frequency in humans (Nakhai et al., 1995; Bergen et al., 1996), 

it does show a different pharmacological response than the wildtype (Rotondo et al., 1997).

Because it is unexpected for both the mulatta group and M. nigra to share these unusual 

mutations, especially the loss of a codon, to the exclusion of other, more closely related species 

(e.g., M. nemestrina), I verified these results by sequencing two additional M. nigra samples, as 

well as a sample from M. maura and M. tonkeana, using the same methods outlined below. 

These three species are located on Sulawesi and are closely related to each other (Tosi et al., 

2003). All four additional samples had the same codon loss and nonsynonymous mutation, and 

all cluster with the mulatta group (Figure 3.1). 

Recombination

I estimated the recombination rate as C = 0.002 for HTR1A and C < 0.001 for HTR1B

using the methods of Hey and Wakeley (1997). For HTR1A, these estimates seem to be largely 
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the result of recombination outside of the coding region for HTR1A because when I only 

included the coding region, C = 0. In other words, the data suggest no recombination occurring 

within the coding region for HTR1A (see Figure A.1 in Appendix A).

DISCUSSION

Although behaviors are complex and no explanation of behavior can be reduced to a 

single gene or gene product, it is increasingly recognized that genetic variation plays an 

important role in mediating social behavior (Fitzpatrick et al., 2005; Robinson et al., 2008; 

Anstey et al., 2009). In addition, because evolution is ultimately a genetic process, understanding 

behavioral evolution entails understanding the evolution of neurological systems and the genes 

that underlie them. The serotonin system represents one such genetic/neurological system. Its 

connection to behavior has been well established and may play a role in macaque behavioral 

evolution. A window on the evolution of the serotonin system in macaques is provided here by 

examining the evolutionary history of two serotonin related genes: HTR1A and HTR1B.

The overall difference in the evolution of HTR1A and HTR1B is most easily 

demonstrated by comparing the two gene trees presented in Figure 3.1. Unlike HTR1A, HTR1B

shows little genetic differentiation among macaque species. All of the species HTR1B haplotypes 

cluster tightly together, with the exception of the vervet, which was purposely included to 

provide an outgroup. In contrast, HTR1A among-species variation is much higher than in 

HTR1B, and the vervet does not form a distinct outgroup. Instead, three main groups of 

haplotypes can be discerned: one including M. sylvanus, M. nemestrina, M. silenus, and M. 

assamensis (with the outlying M. fascicularis individual), a second one consisting of M. 

fascicularis, and third one which includes the mulatta group and the Sulawesi macaques. The 
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difference between the two genes can also be seen in nucleotide diversity among species, which 

is 4 to 5 times higher in HTR1A than in HTR1B. These two genes have clearly experienced 

distinct evolutionary histories.

To determine if the observed patterns of variability in HTR1A and HTR1B result from 

different selective events, I employed several tests designed to detect departures from neutrality. 

Phylogenetic analyses using maximum likelihood provided evidence that selection is acting on 

HTR1A, but not HTR1B. Although the overall ω for both genes was low, suggesting that 

purifying selection is the dominant force acting on the coding regions of these genes, the 

maximum likelihood analyses indicate that at least some portions of HTR1A are under positive 

selection. That is, there is evidence that selection is acting to alter the structure of the protein 

itself, which is consistent with the finding of both a codon loss and a nonsynonymous 

substitution in a subset of the macaque species. 

The HKA test also shows that HTR1A, but not HTR1B, is evolving in a non-neutral 

manner. When the outlying M. fascicularis individual was removed, several among-species 

comparisons were significant for HKA due to the high level of among-species divergence in 

HTR1A compared to within-species variation. However, the HKA results were not significant for 

any comparison with M. sylvanus, or between M. mulatta and M. fuscata. M. mulatta and M. 

fuscata exhibit a low degree of differentiation from each other (Figure 3.1) due to their close 

phylogenetic relationship, which explains this non-significant result. M. sylvanus is the outgroup 

to all Asian macaque species, being an African relict species and the first to diverge from the 

other macaque species in any phylogenetic analysis (e.g., Tosi et al., 2003; Vos, 2006; Li et al., 

2009). The non-significant results for comparison to M. sylvanus may indicate that the selective 

sweeps occurred after the macaque radiation diverged from its African congeners and began to 
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spread across Eurasia. If the outlier is included, comparisons with M. fascicularis become non-

significant because the estimate of within species variation for this species increases dramatically 

(although see Appendix A for further discussion). Even with the inclusion of the outlier, 

however, significant results still remain between M. nemestrina and the mulatta group, 

suggesting that HTR1A experienced at least one instance of positive selection in the macaque 

lineage. Because the significant results for HTR1A are driven by the high level of among-species 

divergence in this gene and the vast majority of polymorphisms occur in the non-coding region, 

the HKA results are likely due to selective events occurring in the regulatory region of the gene. 

Given the constraint on changes in the gene itself, demonstrated by the low ω found, this is not 

surprising. Thus, this study provides evidence for positive selection acting on both the structure 

and regulation of HTR1A. 

While several non-selective forces, such as demography, increased mutation rate, and 

recombination may influence some of these tests, this is unlikely given that I obtained significant 

results from two different types of tests. That is, none of these factors alone could explain the 

significant results seen in both PAML and HKA (see Appendix A for further discussion).

Until future studies can determine the phenotypic effect of the polymorphisms identified 

here, the exact cause of selection on HTR1A remains speculative. However, I propose here that 

one potential explanation may be related to dispersal. Previous studies on the serotonin system 

have shown that it is connected with behaviors characteristic of invasive species (Ramboz et al., 

1998; Samochowiec et al., 1999; Manuck et al., 2000; Trefilov et al., 2000; Caspi et al., 2002; 

Newman et al., 2005; Duckworth and Badyaev, 2007; Krackow and König, 2008; Sih and Bell, 

2008; Anstey et al., 2009; Cote et al., 2010; Crockett et al., 2010; Filby et al., 2010; Vermeire et 

al., 2010), and certain genetic variants of serotonin may allow a species to exploit more habitats 
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through increased plasticity (Belsky et al., 2009; Chakraborty et al., 2010). Outside of humans, 

M. mulatta has the widest geographic distribution of all primates, and their fossil record indicates 

a long history of expansion (Delson, 1980). It is therefore possible that the divergent HTR1A

haplotype characteristic of M. mulatta actually enabled their increase in range. While M. fuscata 

and M. cyclopis do not have large ranges and are limited to small islands, their close 

phylogenetic relationship with Chinese M. mulatta (Smith et al., 2007) and likely dispersal from 

the mainland mulatta range during recent glacial maxima (Melnick et al., 1993) is sufficient to 

explain the presence of this "high-dispersal" haplotype.

In a similar manner, the geographic location of the Sulawesi macaques is of interest in 

addressing the possible influence of HTR1A on dispersal. The island of Sulawesi has been 

separated from land masses to the west for 50 million years (Hall, 1996, 1998); the sharp 

distinction in the faunal composition between Sulawesi and Java/Borneo (what is known as 

Wallace's line) reflects this isolation. Yet the Sulawesi macaques provide a notable primate 

exception to this distinction by managing to cross the Makassar Straits between Borneo and 

Sulawesi, and thus Wallace line, at least once, and possibly twice (Evans et al., 1999). Therefore, 

although these species are restricted to a small island, it would not be unexpected for them to 

have reached Sulawesi because of a propensity to expand and explore new habitats.

The existence of a haplotype that contributes to "high-dispersal" behavior has the 

potential to explain both the signatures of selection and the unusual grouping of the Sulawesi and 

mulatta species in HTR1A. When a gene tree is incongruent with a species tree, there are two 

likely explanations. The first is introgression. This seems unlikely based on the geographic 

distribution of the mulatta species and the Sulawesi species (Figure 3.3). Furthermore, previous 

studies examining mitochondrial, Y-chromosomal, and autosomal DNA have not shown 
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evidence for introgression between these two groups (Morales and Melnick, 1998; Tosi et al., 

2003). The second possibility, differential lineage sorting, is a more likely explanation. While 

differential linage sorting is usually discussed as a random process, certain circumstances exist 

where it is not. These include natural selection and a process termed "spatial sorting." Spatial 

sorting is the tendency for genes related to dispersal to sort geographically, which are most likely 

to accumulate at the edges of expanding ranges (reviewed in Shine et al., 2011). Because of this 

phenomenon, it is likely for genes related to high dispersal to show different genealogies from 

other loci, in much the same way that Y-chromosome data might be expected to differ from 

mitochondrial data in a species that shows sex-biased dispersal (e.g., Tosi et al., 2003). Spatial 

sorting and natural selection are deeply connected (Shine et al., 2011) and would explain the 

presence of a "high-dispersal" haplotype on islands on the outskirts of the macaque range. 

The only other species examined here whose range expands as far eastward as the 

Sulawesi macaques is M. fascicularis, which inhabits mainland Southeast Asia as well as the 

islands of Borneo, Sumatra, Java, and the Philippines (Figure 3.3). This species is similar to the 

mulatta and Sulawesi macaques in that, relative to M. sylvanus, it forms a derived haplotype 

group for HTR1A (excluding the outlier). Two substitutions that separate this species from the 

others are a G/C and a C/A mutation at positions 985 and 986 of the exon, respectively, resulting 

in the substitution of Ala for His at amino acid 329, which is part of the third intracellular loop of 

the receptor (Kobilka et al., 1987). Mutations in this part of the receptor are known to affect 

transductional properties (Bruss et al., 2005). Whether this and the other substitutions defining 

this group lead to a "high-dispersal" phenotype is again speculative, but if so, this species has 

clearly achieved this through a different path than the mulatta or Sulawesi species. 
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CONCLUSION

The patterns of variation found in the two genes examined, HTR1A and HTR1B, show 

that each gene was influenced by different evolutionary forces and that, for HTR1A, positive 

selection probably played an important role. This selection has led to a high level of divergence 

among species and may explain some of the species differences in behavior, although further 

studies on the phenotypic effect of the sequenced polymorphisms are needed to confirm this. A 

previous study showed that selection has acted on the serotonin system in humans as well (Claw 

et al., 2010). Parallel evolution acting on the serotonin system of both macaques and humans 

may have contributed to the evolution of similar behavioral strategies that resulted in the 

successful colonization and exploitation of a diverse set of habitats over large regions of the 

world by both species. Behaviors such as aggressiveness and likelihood to disperse, both of 

which are related to serotonin functioning (Manuck et al., 2000; Trefilov et al., 2000; Newman et 

al., 2005; Krackow and König, 2008; Filby et al., 2010; Vermeire et al., 2010), are hypothesized 

to comprise a behavioral syndrome characteristic of invasive species (Duckworth and Badyaev, 

2007; Sih and Bell, 2008; Cote et al., 2010) such as mosquitofish (Gambusa affinis: Cote et al., 

2010) and exotic signal crayfish (Pacifatasus leniusculus: Pintor et al., 2009). Selection acting on 

this behavioral syndrome through the recruitment of the serotonin system may be a widespread 

phenomenon among invasive species, including humans and macaques. The study of the 

serotonin system and analysis of patterns of variation of genes associated with this system in 

invasive species will contribute to our understanding of the evolution of a range of behaviors.
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FIGURES AND TABLES

Figure 3.1. Shortest unrooted haplotype networks for HTR1A (left) and HTR1B (right). The 
networks represent all areas sequenced: coding regions and the areas flanking either side of the 
gene, including potential regulatory regions. Each circle represents a haplotype whose size is 
proportional to the frequency of the haplotype. The lengths of the lines connecting the circles are 
proportional to the number of mutations that separate each haplotype. To provide scale, a few of 
the lines are labeled to show the number of mutations between haplotypes. Because of the larger 
number of mutations separating the vervet from the macaques in HTR1B, this line is not drawn to 
scale. 
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Figure 3.2. Phylogeny used to run analyses in PAML. The red dashed lines indicate where the 
loss of a codon occurred. Phylogeny based on Vos (2006). 
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Figure 3.3. Map showing the distribution of M. mulatta, M. fascicularis, M. fuscata, M. cyclopis, 
and the Sulawesi macaques.

M. fuscata

M. fascicularis

M. mulatta

M. cyclopis

Sulawesi spp.
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Table 3.1. Indices of within-species genetic diversity found in HTR1A and HTR1B for five 
species of macaque. Indices include the number of polymorphisms found within each species, 
two estimates of theta, and Tajima’s D. The polymorphisms found within each species are 
separated into two types: SNPs and indels. In addition, the number of nonsynonymous (NS) 
polymorphisms is indicated. For Macaca mulatta, indices for both the Chinese and the Indian 
populations are shown separately, as well as indices for the species as a whole. For M. 
fascicularis, indices for HTR1A are shown both with and without the outlier.

HTR1A
China India Total Original No Outlier

Polymorphisms 18 15 18 28 7 6 27 2
SNP 16 13 16 26 7 6 25 2
Indel 2 2 2 2 0 0 2 0
Nonsynonymous 0 0 0 2 0 1 1 0

Haplotypes 8 7 11 7 6 6 6 3
Theta (S) 4.65 3.57 3.76 7.13 1.97 1.65 8.28 0.77
Theta (π) 5.72 3.28 4.65 5.82 2.27 1.82 9.95 1.07
Tajima's D -0.78 0.28 0.25 -0.88 0.49 0.33 0.46 1.03

HTR1B
China India Total

Polymorphisms 8 10 11 4 5 2
SNP 7 10 10 4 5 2
Indel 1 0 1 0 0 0
Nonsynonymous 0 0 0 2 1 0

Haplotype 6 5 10 3 5 3
Theta (S) 2.04 2.74 2.35 1.10 1.66 0.77
Theta (π) 2.25 3.77 3.20 1.74 1.35 0.68
Tajima's D -0.24 1.27 0.84 1.65 -0.68 -0.450.28

3.51
3.02

Macaca           
fascicularis

1
11

9
0

Macaca mulatta

12

Macaca 
sylvanus

Macaca 
fuscata

Macaca 
nemestrina

Macaca 
sylvanus

Macaca mulatta Macaca fascicularis Macaca 
fuscata

Macaca 
nemestrina
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Table 3.2. Genetic distance within and among species for HTR1A and HTR1B. The diagonal 
elements show the nucleotide diversity within species and the off-diagonal elements show the 
nucleotide diversity among species. Nucleotide diversity was averaged over all loci. Mul = M. 
mulatta; Fas = M. fascicularis; Fus = M. fuscata; Nem = M. nemestrina; Syl = M. sylvanus. See 
Table A.4 for similar comparisons in the non-coding regions sequenced.

HTR1A
Mul Fas Fus Nem Syl

Mul 0.0015
Fas 0.0125 0.0019
Fus 0.0013 0.0120 0.0006
Nem 0.0122 0.0068 0.0121 0.0032
Syl 0.0115 0.0083 0.0115 0.0060 0.0003

HTR1A (outlier removed)
Mul Fas Fus Nem Syl

Mul 0.0015
Fas 0.0125 0.0007
Fus 0.0013 0.0121 0.0006
Nem 0.0122 0.0071 0.0121 0.0032
Syl 0.0115 0.0085 0.0115 0.0060 0.0003

HTR1B
Mul Fas Fus Nem Syl

Mul 0.0015
Fas 0.0021 0.0017
Fus 0.0032 0.0036 0.0008
Nem 0.0018 0.0020 0.0038 0.0006
Syl 0.0028 0.0028 0.0047 0.0023 0.0003
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Table 3.3. Results of two selection tests for HTR1A and HTR1B. For the ω test, the numbers 
represent the ratio calculated for each species comparison. The numbers for the HKA test 
represent the sum of deviations calculated in the HKA program. See Table 3.2 for list of species. 
*Results are significant (p < 0.05).

ω HKA (sum of deviations)
Mul Fas Fus Nem Mul Fas Fus Nem

Fas 0.242* Fas 13.93
Fus 0.046* 0.252* Fus 3.65 10.72
Nem 0.152* 0.423 0.162* Nem 22.15* 10.23 18.89*
Syl 0.121* 0.269 0.129* 0.043* Syl 14.82 5.84 6.93 6.22

ω HKA (sum of deviations)
Mul Fas Fus Nem Mul Fas Fus Nem

Fas 0.253* Fas 23.04*
Fus 0.046* 0.263 Fus 3.65 22.69*
Nem 0.152* 0.460 0.162* Nem 22.15* 19.06* 18.89*
Syl 0.121* 0.296* 0.129* 0.043* Syl 14.82 13.84 6.93 6.22

ω HKA (sum of deviations)
Mul Fas Fus Nem Mul Fas Fus Nem

Fas 0.000* Fas 1.75
Fus 0.128* 0.180 Fus 5.25 2.21
Nem 0.039* 0.076* 0.189 Nem 4.73 7.58 9.86
Syl 0.000* 0.000* 0.113* 0.031* Syl 14.53 10.41 8.78 9.34

HTR1A

HTR1A (outlier removed)

HTR1B

Table 3.4. Results of the PAML analyses comparing various sites models for HTR1A and 
HTR1B. Models M2 and M8 represent null models (no selection), whereas Models M1, M7, and 
M8a allow for selection at some sites within the gene. See (Yang and Nielsen, 2000; Swanson et 
al., 2003) for detailed explanation of models.

Null Selection HTR1A HTR1B
M1 M2 0.0007 0.9909
M7 M8 0.0007 0.9160
M8a M8 0.0001 0.8911

Models compared p-values
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CHAPTER 4

INTRA- AND INTERSPECIFIC VARIATION IN TPH2 AND THE ROLE OF 

DEMOGRAPHIC HISTORY IN MACAQUE BEHAVIORAL EVOLUTION

ABSTRACT

The macaque genus (Macaca) represents a key area of research in the evolution of 

behavior. Comprised of 19 species, the macaques are notable for displaying a wide range of 

behavioral strategies across species. One biological system that has been suggested to play a role 

in creating this behavioral variation is the serotonin system. Heavily investigated for its 

connection to behavior, the serotonin system is a likely candidate for selection to act on in order 

to shape behaviors. However, little is known about its evolutionary history in these species. Here, 

I examine TPH2, a gene necessary for the production of serotonin in the brain. 

Because TPH2 was only recently discovered, studies in nonhuman primates are severely 

limited for this gene. In this chapter I examine the level of variation within and between several 

species of macaques and show that very few polymorphisms are shared across species. I also 

highlight how the presence of population structure can impact the analyses of molecular 

variation; the presence of two distinct populations of M. mulatta has a significant effect on 

results. Finally, I place this gene in an evolutionary context by examining the role of selection in 

its evolution. While individuals from Chinese populations of M. mulatta show signatures of 

elevated evolution by the presence of derived alleles at high frequencies, this is likely a result 

demographic effects, as most tests of selection indicate neutral evolution. Therefore, behaviors 

related to TPH2 may be shaped by neutral forces and may not be adaptive. Alternatively, the 

presence of environmental and genetic "buffers" may limit the effect of selection on this gene.
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INTRODUCTION

The evolution and proximate causes of behavior are of central concern to primatology 

and evolutionary biology in general. In this regard, the macaque genus (Macaca) represents a 

vital area of research. Several features make this genus an incredibly useful model for addressing 

questions surrounding the interactions between behavior, genetics, neurology, environment, and 

evolution. Because of the frequent use of macaques as animal models in biomedical studies, 

much is known about their biology. Furthermore, the genus is comprised of several species

(approximately 19: Fooden, 1976, 1980) that span an exceptionally large geographic range 

(Lindburg, 1991). The rhesus macaque (M. mulatta), in particular, inhabits a diverse set of 

habitats, from the northern parts of Pakistan and India through eastern China, where they dwell 

in primary forests and alongside humans in urban settings. Most importantly, the macaque genus 

is notable for exhibiting a wide range of behaviors and social systems, ranging from groups with 

fairly tolerant social structures to more aggressive groups with strict hierarchies (Thierry, 1985, 

2000; Caldecott, 1986; De Waal and Luttrell, 1989; Clarke and Lindburg, 1993; Aureli et al., 

1997; Petit et al., 1997). These behavioral variations correlate strongly with phylogeny (Thierry 

et al., 2000, 2008), suggesting a common underlying neurological mechanism for behavioral 

differences (Wendland et al., 2006). Thus, one approach to understanding the evolution of 

different behavioral strategies is to examine the evolution of the macaque brain.

A key neurological system that has been repeatedly highlighted in studies on the 

biological bases of behavior is serotonin (5-HT). Across multiple taxa, including primates, 

serotonin has been shown to play a role in aggression (Newman et al., 2005), dispersal (Trefilov 

et al., 2000), social behavior (Anstey et al., 2009; Crockett et al., 2010), sexual behavior 

(Dominguez and Hull, 2010; Liu et al., 2011), stress response (Chen et al., 2010b), and 
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exploration (Ramboz et al., 1998). Likewise, investigations into variation for genes that underlie 

the serotonin system have identified several genetic features that are correlated with these 

behaviors (e.g., Brunner et al., 1993a, b; Lesch et al., 1996; Caspi et al., 2002, 2003; Davidge et 

al., 2004; Zill et al., 2004a, b; Chen et al., 2010a). Interestingly, similar, independently evolved 

genetic variants have been found in both macaques and humans (e.g., Lesch et al., 1997; 

Newman et al., 2005), suggesting parallel evolution between the two taxa. However, although a 

large amount of research has been devoted to investigating the proximate links between 

serotonin and behavior, little is known about its evolutionary history (but see Soeby et al., 2005; 

Andres et al., 2007). And yet, knowledge of the evolution of serotonin is likely to grant insight 

into behavioral evolution. For example, given the strong link established between serotonin and 

behavior, it has been argued that this system provides a promising mechanism for explaining 

behavioral differences between macaque species (Wendland et al., 2006; Chapter 3). 

Accordingly, genes related to serotonin functioning are predicted to vary between species and 

will result in behavioral differences. Furthermore, if the behavioral differences found between 

species are the result of selection, we should expect to find signatures of selection in the patterns 

of variation of these genes in one or more species. Indeed, previous studies examining various 

components of the serotonin system in humans (Claw et al., 2010) and macaques (Chapter 3) 

have found evidence for selection occurring in these lineages. Here, I expand on those studies by 

examining the gene TPH2 in macaques.

Serotonin is produced though a two-step process that converts tryptophan into 5-HT, with 

tryptophan hydroxylase (TPH) acting as a rate-limiting enzyme in this process. TPH2 codes for 

the second isoform of TPH and is expressed exclusively in brain tissue (Walther and Bader, 

2003), making it a crucial gene of study for behavioral genetics. Although this gene was only 
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described in 2003, numerous studies have already demonstrated a connection between TPH2 and 

behavior (e.g., Harvey et al., 2004; Zill et al., 2004a, b; Coon et al., 2005; Walitza et al., 2005; 

Zhang et al., 2005; Zhou et al., 2005). These studies have largely been limited to humans and 

little has been done to determine the genetic variation of this gene in nonhuman primates. A 

notable exception to this is Chen et al. (2006, 2010b), who both described the genetic variation 

within rhesus macaques (Macaca mulatta) and demonstrated that variations in the regulatory 

regions of this gene had a significant impact on stress response, as measured by HPA 

(hypothalamic-pituitary-adrenal) axis activity and levels of self-injurious behavior. However, 

these studies were restricted to only M. mulatta of Indian origin, and it is unclear to what extent 

these results may apply to other populations of M. mulatta or to other macaque species. 

Information on a wider range of taxa is critical because pharmacological and psychological 

studies often use different species of macaques, so knowledge of genetic differences between 

species may be needed to explain inconsistent results. Furthermore, if we are to address the 

hypothesis that differences in TPH2, and the serotonin system in general, explain the behavioral 

variation observed in macaques, a broader sampling of genetic data is needed. Consequently, in 

this study, I quantify the genetic variation of TPH2 within and between several species of 

macaques. I also begin to place TPH2 in an evolutionary context by testing the influence of 

selection on the evolutionary history of this gene.

METHODS

Subjects

DNA samples from 27 Macaca mulatta (13 from India, 14 from China), 10 M. 

fascicularis, 11 M. fuscata, 6 M. nemestrina, and 5 M. sylvanus were used in this study (Table 



122

4.1). These species formed the focus of all analyses. Past studies have shown that M. mulatta

individuals from China and India exhibit moderate levels of population differentiation (Melnick 

et al., 1993; Morales and Melnick, 1998; Tosi et al., 2003; Smith, 2005; Hernandez et al., 2007; 

Satkoski et al., 2008) a factor that can influence analyses. Therefore, I conducted an analysis of 

molecular variance (AMOVA) (Weir and Cockerham, 1984; Excoffier et al., 1992; Weir, 1996)

using Arlequin (Excoffier et al., 2005) to estimate the degree of population differentiation. I also 

performed separate analyses on the Chinese and Indian samples as well as on M. mulatta as a 

whole. In addition to the previously mentioned species, one sample each from Macaca 

assamensis, M. cyclopis, M. nigra, M. silenus, and Chlorocebus aethiops were included (Table 

4.1). These additional samples were primarily used for two purposes: 1) to generate an estimate 

of the level of between-species genetic variation and 2) for use in PAML analyses (see below) to 

place the results in a phylogenetic framework. Unless otherwise noted, they were not included in 

any other analyses described below. In total, 64 DNA samples were sequenced. The nine 

different macaque species analyzed span the range of behavioral variation found in the genus, 

and three of the four Macaca “species groups” are represented in this study (sylvanus-silenus, 

fascicularis, and sinica: Fooden, 1976, 1980). The C. aethiops (vervet) sample is used as the 

outgroup to the macaque species. Specifically, it was used as the outgroup for HKA, ω, 

McDonald-Kreitman, and Fay and Wu's H (described below).

PCR and Sequencing

TPH2 is incredibly large, consisting of 11 exons spread over a 90 kilobase (kb) region. In 

order to efficiently examine TPH2 in a large number of samples, I focused on selected regions of 

the gene. I amplified four large segments of TPH2, which include i) the 5'UTR, Exon 1, and 

flanking regions (1527 baspairs (bp)), ii) Exon 2 and flanking regions (1212 bp), iii) Exons 3-4 
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and flanking regions (1409 bp), and iv) Exons 10-11, the 3'UTR, and flanking regions 

(2186/2345 bp) (Figure 4.1). In total I successfully sequenced 6352 bp, including 849 bp of 

coding regions. The sequenced regions provide an overview of variation present across the gene, 

particularly in non-coding, potentially regulatory regions where selection is less likely to limit 

variation. In addition, by focusing on both ends of the gene, an accurate sense of the level of 

recombination experienced by THP2 is obtained. Because these sections of the genes are so 

widely separated, and because there was a chance of recombination between the regions, I 

analyzed each of these areas separately. However, in order to increase power, these regions were 

combined into one large haplotype and analyzed as a whole.

Amplification of the TPH2 fragments was carried out using both previously published 

and newly designed primers (Table B.1 in Appendix B). The new primers were designed based 

on the Macaca mulatta draft assembly (Rhesus Macaque Genome Sequencing and Analysis 

Consortium et al., 2007) using Primer3 (Rozen and Skaletsky, 2000) and GeneRunner 

(generunner.net). In addition to TPH2, five additional non-coding regions were selected for 

amplification (Table A.3 in Appendix A); these regions were at least 20,000 base pairs from any 

feature with a known function (Satkoski Trask et al., 2011) and provide presumably neutral loci 

for use in the HKA test (see below) (Hudson et al., 1987). The PCR protocols varied for all 

regions amplified and are available upon request of the author.

I used the ExoSAP-IT protocol (usb.com) to clean up the PCR product and submitted it to 

the W.M. Keck Center for Comparative and Functional Genomics, UIUC for Sanger sequencing. 

As with the primers used for amplification, I used a combination of published and newly 

designed primers for sequencing (Table B.1). Efforts were made to design primers that would 
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provide substantial overlap with each other so that any one region being analyzed would have 

multiple reads from different primers, ensuring the accuracy and quality of the sequence.

Once received, sequences were aligned and edited manually using Sequencher 

(www.genecodes.com). Each heterozygote base pair was confirmed visually by identifying clear 

double peaks in the chromatogram. All SNPs (single nucleotide polymorphisms) and indels 

(insertions/deletions) were identified. Where indels involved more than one sequential 

nucleotide, the entire deleted region was treated as a single mutational event. For example, the 

presence of an 11-bp indel would be treated as a single polymorphic site rather than 11 

polymorphic sites. Haplotypes were determined using the program Phase v.1 (Stephens et al., 

2001; Li and Stephens, 2003; Stephens and Donnelly, 2003). In order to visualize the genetic 

variation and relationships among the haplotypes of each gene, I constructed a haplotype tree 

using the reduced median method in Network v4.6 (fluxus-engineering.com). Because of the 

large number of base pairs sequenced and the presence of recombination (see results), a 

minimum spanning tree was also generated, which presents the simplest relationship between 

haplotypes. The minimum spanning tree was generated in Arlequin (Excoffier et al., 2005) and 

graphically modified using HapStar (Teacher and Griffiths, 2011) and Adobe Illustrator®.

Analysis

With the exception of the likelihood ratio tests and the haplotype networks, all analyses 

were conducted on the five species for which I had more than one sample: M. mulatta, M. 

fuscata, M. fascicularis, M. nemestrina, and M. sylvanus. Several indices of molecular diversity 

were calculated for each of the five species using Arlequin (Excoffier et al., 2005). These 

included two different estimates of theta, θS (Watterson, 1975) and θπ (Tajima, 1983), which 
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were used to estimate within-species diversity, and the nucleotide diversity (Tajima, 1983), 

which was used to estimate within- and among- species diversity.

In order to determine the role of selection on patterns of variation in TPH2, I used 

multiple approaches that each utilizes different aspects of genetic data. For all selection tests, I 

used a significance level of 0.05. First, I applied the HKA test on the five species of macaques. 

The HKA test examines the ratio of within- versus among-species variation in a gene of interest 

and compares it to that of several unlinked, neutral loci (Hudson et al., 1987). A gene under 

balancing selection will have a high level of within-species variation compared to the other loci, 

while one that has undergone positive selection will have a high level of between-species 

variation. I used the five non-coding regions described above for the comparison with TPH2 

(Table A.3). For all macaque species tested, C. aethiops was used as the comparison species. 

HKA was conducted on software provided by J. Hey 

(http://genfaculty.rutgers.edu/hey/software).

Next, I analyzed the ratio of nonsynonymous to synonymous mutations (ω) in the coding 

regions of the genes to detect signatures of selection. Because synonymous mutations do not 

affect protein structure, they are assumed to evolve neutrally. In contrast, selection is more likely 

to act on nonsynonymous mutations. Positive selection is expected to increase the relative rate of 

nonsynonymous substitutions, whereas purifying selection is expected to decrease it (Kimura, 

1977). I determined whether ω between C. aethiops and the five species of macaques 

significantly differs from 1.0 (Kimura, 1977; Yang and Nielsen, 2000). A ω > 1.0 indicates 

positive selection, while ω < 1.0 indicates purifying selection. The significance of this is 

calculated using a Z-test: 
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where dN is the number of nonsynonymous mutations per nonsynonymous site, dS is the number 

of synonymous mutations per synonymous site, and Var(dN) and Var(dS) are their respective 

variances. Using the program MEGA v.4 (Tamura et al., 2007), estimates of dN and dS were 

obtained using the Nei-Gojobori method (Nei and Gojobori, 1986) and variances were 

determined using the bootstrap method (Nei and Kumar, 2000). 

However, this method of testing for positive selection is very conservative, so two 

additional sets of tests were employed. First, the McDonald-Kreitman (MK) test (McDonald and 

Kreitman, 1991) compares synonymous and nonsynonymous ratios within and between two 

species, using the program DNAsp (Rozas et al., 2003). This ratio should remain constant for 

genes evolving neutrally, but ω is expected to be higher between species if there is positive 

selection occurring. This test is more sensitive to selection since ω does not have to be greater 

than one to produce a significant result. As with HKA, I made pairwise comparisons between C. 

aethiops and the five macaque species. Second, I conducted likelihood ratio tests (LRT) on all of 

the samples available using the program PAML (Phylogenetic Analysis using Maximum 

Likelihood: Yang, 1997, 2007). PAML determines the maximum likelihood values for different 

models of evolution within a phylogenetic framework. Models that incorporate positive selection 

can be compared to null models and LRT used to determine which model best fits the data. 

Because PAML allows only one sequence per species, I included all ten species using the 

phylogeny seen in Figure 3.2 (Tosi et al., 2003; Vos, 2006; Li et al., 2009). Haplotypes were 

determined based on fixed differences between species and I did not perform separate analyses 

for Indian and Chinese macaques. I tested a variable branch model, which allows ω to vary 

among each of the branches of the macaque phylogeny, to see if selection has occurred on a 

specific lineage (Yang, 1998). Like MK, ω does not have to be greater than one, but simply 
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elevated compared to other lineages of the macaque phylogeny. I also compared several sites 

models using PAML (M1 vs. M2, M7 vs. M8, and M8a vs. M8: see Yang et al., 2000; Swanson 

et al., 2003). These models allow ω to vary among different sites on the gene using different 

parameters (Nielsen and Yang, 1998; Yang et al., 2000; Swanson et al., 2003). Most sites on a 

gene are under strong purifying selection, which reduces the overall ω for a gene and can hide 

signals of positive selection occurring only in a small portion of the gene. Testing the sites 

models in PAML can determine if a portion of a gene shows signs of positive selection, even if 

the average ω ratio over the entire gene is low.

Finally, I carried out two tests designed to detect skews in the frequency spectrum of 

alleles: Tajima’s D (Tajima, 1989b) and Fay and Wu’s H (Fay and Wu, 2000). Tajima’s D 

compares the theta estimators θπ (Tajima, 1983) and θS (Watterson, 1975); intermediate-

frequency alleles contribute the most to θπ, while θS is more affected by low-frequency alleles. 

An excess of rare alleles (significantly negative Tajima's D) is consistent with positive selection, 

while an excess of intermediate-frequency alleles (significantly positive Tajima's D) is consistent

with balancing selection. The value and significance of Tajima's D was determined using 

Arlequin (Excoffier et al., 2005). Fay and Wu’s H compares the theta estimators θπ and θH. In 

this case, high-frequency, derived alleles contribute the most to θH, so that positive selection is 

inferred from an excess of high frequency alleles (significantly negative H). To calculate H, an 

outgroup is needed to estimate which alleles are derived; here I use the C. aethiops sample. 

Significance for Fay and Wu’s H was determined by running coalescent simulations using an 

estimate of the recombination rate and theta (θπ) as parameters (Fay and Wu, 2000). The value 

and significance of Fay and Wu's H was determined using DNAsp (Rozas et al., 2003).
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Because of the large size of TPH2, recombination is likely (Chen et al., 2006). The 

presence of recombination can increase false positives in the MK test (Andolfatto, 2008) and the 

LRT of the sites models using PAML (Anisimova et al., 2003); for HKA and Fay and Wu's H, its 

presence makes positive selection more difficult to detect (Hudson et al., 1987; Fay and Wu, 

2000). I used the SITES program of J. Hey (http://genfaculty.rutgers.edu/hey/software) to obtain 

an estimate of the recombination parameter C, where C = 4Nc, c is the rate of recombination per 

generation per base pair, and N is the effective population size (Hey and Wakeley, 1997). 

Because the LRT only examines the coding region, whereas the HKA test can analyze both 

coding and non-coding regions, I obtained estimates of C based on the entire regions sequenced 

and on the coding region alone. I was able to account for recombination in determining the 

significance of Fay and Wu’s H by using it as a parameter in coalescent simulations, but not in 

the other tests employed here. Presence of high levels of recombination indicates that a 

significant result for the MK test and the LRT of the sites models should be treated with caution, 

but should not affect the interpretation of a significant result for HKA. In addition, in order to 

visualize the level of linkage disequilibrium (LD) an LD plot between all polymorphic sites 

within M. mulatta was generated using the program JLIN (Carter et al., 2006), which calculates 

LD based on genotypic, rather than haplotypic, data. 

RESULTS

Substructure and Recombination in Macaque Species

The M. mulatta samples show significant differentiation between the Chinese and Indian 

populations (p<0.0001), with 11.54% of the total genetic variance in M. mulatta attributed to 
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between-population differences. I therefore discuss the results of the two populations separately, 

as well as discuss the results for the species as a whole.

I also found evidence for recombination. The recombination estimate of C = 0.002 (per 

base pair) is moderate, although there is no evidence of recombination in the coding regions 

alone (C = 0). Furthermore, the linkage disequilibrium plot shows a tendency for polymorphisms 

in the 3'UTR region to have low LD with the other regions sequenced, as might be expected 

(Figure 4.2) based on the physical distance separating it from other regions of the gene. 

However, results did not differ in a meaningful way, in the context of evolutionary history,

between analyses that considered the regions amplified separately and those that examined all 

regions together. Consequently, only the results for the combined regions are discussed here.

Molecular Diversity

Measures of molecular diversity are shown in Tables 4.2 and 4.3, a list of polymorphic 

sites identified is provided in Table 4.4, and the minimum spanning tree is shown in Figure 4.3. 

(See also Table B.2 for a list of interspecific substitutions.) For clarity, I use the term 

"polymorphism" when referring to intraspecific differences, the term "substitution" when 

referring to interspecific differences, and the term "mutation" when referring to variation either 

within or between species. For ease of discussion and comparison with previous studies, I repeat 

the system for designating polymorphic sites utilized by Chen et al. (2006). Within the regions 

sequenced, most of the polymorphisms previously identified in M. mulatta (Chen et al., 2006)

were confirmed in my samples, including a 159-bp insertion in the 3'UTR (2128S>L). I also 

identified several additional polymorphic sites in M. mulatta that were not previously described, 

including an 11-bp insertion in Intron 9 (IVS9-156del>in). This indel is in complete linkage with 

1503A>G. As with Chen et al. (2006), I found 1503A>G (and IVS9-156del>in) to be in 
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complete linkage with 2128S>L, but only for the Indian M. mulatta; I did not find the 2128S>L 

polymorphism in Chinese M. mulatta, although this population is polymorphic for the two other 

sites (1503A>G and IVS9-156del>in).

In addition to M. mulatta, I describe the level of intraspecific variation and identify 

polymorphic sites in each of four additional macaque species: M. fascicularis, M. fuscata, M. 

nemestrina, and M. sylvanus (Table 4.4). Most polymorphisms identified were not shared by 

multiple species. In one instance, a polymorphic site was shared by both M. mulatta and M. 

nemestrina; however, the actual polymorphism differed between the species, as M. nemestrina

possessed a T/C polymorphism rather than a T/G polymorphism. Across all macaque species 

examined, only one nonsynonymous polymorphism was identified (25Pro>His), and this was 

only in a small proportion of the Indian M. mulatta samples (minor allele frequency = 0.077). 

Comparing substitutions among species, only one nonsynonymous mutation was found 

(54Lys>Arg); this occurred between C. aethiops and all of the macaque species (Table B.2).

Notably, M. sylvanus was highly unusual in showing almost no intraspecific variation, 

especially compared to the other macaque species (Tables 4.2 and 4.3). It is possible that these 

results are due to allelic dropout. That is, the primers used in this study preferentially amplified 

only one allele in this species. Allelic dropout effectively decreases sample size for this species 

and makes any measure of intraspecific variation unreliable. Consequently, this species was 

dropped from all subsequent analyses except for PAML.

Evidence for Selection

Results for the HKA tests were non-significant (Table 4.5). For ω, all the values were 

significantly less than 1 (Table 4.5), consistent with purifying selection. Because of the low 

number of nonsynonymous mutations, McDonald-Kreitman could not be calculated except for in 
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M. mulatta – this was non-significant (Table 4.5). Likewise, the results for the LRTs in PAML 

were all non-significant (results not shown).

The results of Tajima's D and Fay and Wu's H are shown in Table 4.2 and 4.5. While 

none of the Tajima's D values were significant, the Chinese population of M. mulatta approached 

significance (D = -1.24, p = 0.08). For Fay and Wu's H, only M. mulatta showed significant 

results (H = -6.22, p = 0.03). An examination of the separate populations of M. mulatta show that 

it is likely that the Chinese population is driving these results. While the Indian population does 

not have a significant H-value (H = -1.81, p = 0.21), the Chinese population's H-value is 

significant (H = -4.98, p = 0.05). Thus, this population of M. mulatta possesses derived alleles at 

a higher frequency than would be expected under neutrality.

DISCUSSION

For this study, I provide a detailed description of the genetic variation within and among 

various species of macaques on TPH2, a gene known to play an important role in regulating 

behavior (Harvey et al., 2004; Zill et al., 2004a, b; Coon et al., 2005; Sheehan et al., 2005; 

Walitza et al., 2005; Zhang et al., 2005; Zhou et al., 2005). Previous studies (Chen et al., 2006, 

2010b) identified a number of polymorphisms present in M. mulatta and showed a link between 

regulatory polymorphisms, HPA activity, and self-injurious behavior. However, this work was 

limited to M. mulatta individuals of Indian origin, so it is unclear 1) if the polymorphic sites 

identified are informative for other populations of M. mulatta or other macaque species, and 2) if 

the behavioral link established extends outside Indian M. mulatta. Addressing these questions is 

critical for biomedicine, which frequently uses macaques of various origins in research, because 

the presence of interpopulation and interspecific genetic differences may confound results. 
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Additionally, primatologists would benefit from the establishment of reliable genetic markers for 

field studies in behavior. In this study, I focus on the first of these issues by providing a 

description of the genetic variation within and among various species of macaques for TPH2. I 

also begin to frame this gene in an evolutionary context by examining the possible role of natural 

selection on TPH2. 

I was able to confirm the polymorphisms identified by Chen et al. (2006) as well as 

identify several additional polymorphisms, including an 11-bp insertion. Future studies that 

examine the potential effect of this insertion and other polymorphisms are needed to determine 

their significance. Importantly, I found that polymorphic sites were rarely shared across multiple 

species. Even among the three most heavily sampled and most closely related species, M. 

mulatta, M. fuscata, and M. fascicularis, there were only four shared polymorphisms: three 

between M. mulatta and M. fascicularis and one between M. fuscata and M. fascicularis. This is 

in sharp distinction from previous research that found a substantial overlap in polymorphic sites 

(~31%) for M. mulatta and M. fascicularis when looking across the genome (Malhi et al., 2011). 

Furthermore, of the 52 polymorphisms identified in M. mulatta, 28 were unique to either the 

Indian or the Chinese populations (Table 4.4). It is possible that some of these polymorphisms do 

exist across groups at lower frequencies and larger sample sizes are needed to detect them. 

However, in general the results indicate knowledge of M. mulatta genetic variation alone is not 

very informative for identifying polymorphisms in other species or other M. mulatta populations, 

at least for THP2, potentially due to the effects of purifying selection. This point is important for 

both behavioral studies looking for potential polymorphisms to explain variation in behavioral 

strategies and pharmacological studies that may find inconsistent results across populations or 

species.
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This study also highlights the need to look at species structure when examining genetic 

variation in an evolutionary context. The presence of structure within M. mulatta – namely, the 

division of this species into two distinct populations – influenced the results of the tests used 

here, discussed in more detail below. In addition, the inclusion of samples from China seems to 

explain at least some of the results that differ from past examinations of polymorphisms in M. 

mulatta. Whereas Chen et al. (2006) found complete linkage between the 159-bp insertion and 

1503A>G in the 3'UTR region, I found complete linkage only for the Indian samples. Therefore, 

increased sampling from a wide variety of source populations is necessary for an accurate 

description of the molecular variation of this species.

The genetic variation found within and among species is the result of a number of 

evolutionary forces including drift, gene flow, mutation, demographics, and selection. Evidence 

of selection in genomic regions is often the focus of research because it highlights potential 

features that are important to an individual's fitness; however all evolutionary forces shape the 

patterns of genomic diversity of a population and species. Most analyses indicate that there was 

no significant positive selection acting on TPH2 in macaques. Instead, the incredibly low number 

of nonsynonymous mutations suggests purifying selection. 

The two tests that examine the allele frequency spectrum, Tajima's D and Fay and Wu's 

H, are suggestive of selection in the Chinese M. mulatta population. However, these results are 

likely a result of demographic history rather than the result of selection. In the case of Tajima's 

D, while the Chinese population has a low p-value (p = 0.08), it does not reach significance. 

Furthermore, Tajima's D is known to be highly sensitive to past demographic events, especially 

population expansions (Tajima, 1989a). A previous study showed that the Chinese population of 

M. mulatta underwent a 3-fold population expansion approximately 160 thousand years ago 



134

(Hernandez et al., 2007). It is therefore very likely that the Tajima's D value reflects this past 

population event rather than selection. The results for Fay and Wu's H are moderately more 

robust. The H-value for M. mulatta was significant (p = 0.03) and a breakdown of the species 

into its two main populations (Chinese and Indian) show that this result is largely driven by the 

Chinese population. In contrast to Tajima's D, Fay and Wu's H is not expected to be affect by 

population expansions (Fay and Wu, 2000). This is because high-frequency, derived alleles 

contribute most heavily to H, whereas population expansions are expected to produce derived 

variants at low frequencies (Tajima, 1989a; Fay and Wu, 2000). 

It is therefore tempting to propose that, taken together with the suggestive results of 

Tajima's D, the results of Fay and Wu's H indicate that TPH2 underwent positive selection in the 

Chinese population of M. mulatta. However, I hesitate to support this interpretation for several 

reasons. Firstly, these results are not consistent with any of the other tests preformed. A strong 

case for selection is only made when it can be confirmed with multiple approaches that draw on 

different sources of genetic data. Secondly, the p-values obtained are only marginally significant, 

particularly in the case of the Chinese M. mulatta. Finally, while Fay and Wu's test is robust to 

most demographic assumptions, certain situations, such as population substructure, can affect the 

results (Fay and Wu, 2000; Przeworski, 2002). Because of the known substructure of M. mulatta, 

this likely explains the significant results found for this species. Although I have attempted to 

account for this structure by separating out Indian and Chinese populations, recent studies have 

indicated population structure within the Chinese population itself (Li et al., 2011), further 

weakening the argument for selection. So, while it is evident that Chinese M. mulatta has 

undergone significant evolution compared to the other macaque species, I argue that the rapid 
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increase in derived alleles that is observed in this group is due to a history of demographic 

expansion and population subdivision.

Despite the lack of evidence for selection on TPH2, it still remains a promising candidate 

gene for understanding the interactions between genetics, neurobiology, the environment, and 

behavior in macaques. The evidence connecting TPH2 to various behaviors in humans (Harvey 

et al., 2004; Zill et al., 2004a, b; Coon et al., 2005; Sheehan et al., 2005; Walitza et al., 2005; 

Zhang et al., 2005; Zhou et al., 2005), macaques (Chen et al., 2010b), and other mammals (e.g., 

Liu et al., 2011) is strong and demonstrates that the variation found in this gene has a significant 

influence on behavior. What this study indicates is that the genetic variation in TPH2 is the result 

of demographic processes and purifying selection, rather than positive selection, in macaques. 

There is evidence for a higher rate of evolution in Chinese M. mulatta, as indicated by Fay and 

Wu's H, which may have led to behavioral evolution. If so, these results suggest that the 

behaviors influenced by TPH2, such as sexual behavior (Liu et al., 2011) or the ability to handle 

stress (Chen et al., 2010a), might have evolved through neutral forces in this group; thus, there 

may not be an adaptive explanation for some of behavioral differences seen between populations 

or species. Alternatively, while selection may indeed be acting through the serotonin system to 

shape behaviors, it may be that both external environmental factors (such as nutrition, social 

interactions, and rearing conditions) and the internal, genomic environment (i.e., the presence of 

other genes that interact with TPH2 and neurochemistry) act as "buffers" against selection by 

severely limiting the conditions under which deleterious behavioral strategies might manifest. 

For example, the self-injurious behavior that has been linked to variation in TPH2 is certainly 

deleterious. However this behavior is most likely an artifact of captivity, rarely seen in more 

natural settings where selection could act to eliminate the alleles most likely to lead to such 
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behaviors. Instead, selection on behavior related to serotonin regulation might act through other 

serotonin-related genes (Chapter 3) or it could act indirectly on TPH2 through genes that interact 

with it. Thus, one potential line of future inquiry would be to examine the evolution and 

proximate mechanisms of the genetic "buffers" themselves.

In summary, I have demonstrated that a broad sampling within and across species is 

needed to understand the variation at TPH2 in the macaque genus and that, for M. mulatta, the 

presence of two genetically distinct populations always needs to be accounted for in studies of 

molecular evolution. I have identified several polymorphisms in four species of macaques, 

providing a useful list of possible variation that may influence behavior and differential response 

to drugs in pharmacological studies. Finally, I demonstrated that selection is unlikely to have 

shaped the variation within and among species of macaques in TPH2. This is not to say that 

TPH2 is unimportant in the regulation of critical macaque behaviors; instead, I suggest that the 

evolution of behaviors regulated through serotonin can be mediated through neutral forces. 

Where selection does occur, it may be acting more strongly on different components of the 

serotonin system, or acting only indirectly on TPH2 by shaping the genomic environment in 

which TPH2 acts. It is only through a more comprehensive understanding of the genetic 

architecture through which the neurological systems act that we can begin to more thoroughly 

understand the evolution of behavior.
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FIGURES AND TABLES

Figure 4.1. A schematic of the TPH2 gene. The vertical lines represent exons and the solid back 
boxes represent the 5'UTR and 3'UTR region. The red boxes outline the areas sequenced for this 
study.
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Figure 4.2. A plot showing linkage disequilibrium (LD) between different polymorphic sites in 
M. mulatta. Top left: R2. Bottom right: |D'|. The X-axis shows the physical distance, in base 
pairs, between polymorphic sites. The red and blue lines indicate the separation between 
upstream areas of the gene sequenced and the down stream region sequenced. Both measures of 
LD are based on genotypic data, so LD estimates shown here are lower than would be generated 
based on the phased haplotypes.
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Figure 4.3. Minimum spanning tree of haplotypes. The open circles represent haplotypes, color 
coded by species. These circles are not proportional to the frequency of the haplotype. Solid 
black dots represent the number of mutations separating haplotypes.
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Table 4.1. List of species used and sample sizes. For M. mulatta, samples from two different 
populations were used: India and China. For more information on the sources of these samples, 
see Table A.1 in Appendix A.

Species N
M. mulatta 27

Indian 13
Chinese 14

M. fascicularis 10
M. fuscata 11
M. nemestrina 6
M. sylvanus 5
M. assamensis 1
M. cyclopis 1
M. nigra 1
M. silenus 1
C. aethiops 1
Total 64

Table 4.2. Indices of within-species genetic diversity found in TPH2 for five species of 
macaque. Indices include the number of polymorphisms found within each species, two 
estimates of theta, and Tajima’s D. The polymorphisms found within each species are separated 
into two types: SNPs and indels. In addition, the number of nonsynonymous (NS) 
polymorphisms is indicated. For Macaca mulatta, indices for both the Chinese and the Indian 
populations are shown separately, as well as indices for the species as a whole.

M. mulatta
China India Total

Polymorphic sites 43 33 52 22 12 36 1
SNP 38 30 46 20 11 33 1
Indel 5 3 6 2 1 2 0
NS polymorphisms 0 1 1 0 0 0 0

Theta (S) 9.76 7.86 10.09 5.64 3.02 10.93 0.35
Theta (Pi) 7.53 8.32 8.43 5.75 3.18 14.52 0.20
Tajima's D -1.24 -0.29 -0.93 -0.34 0.08 1.35 -1.11
Tajima's D, p-value 0.082 0.399 0.194 0.407 0.565 0.941 0.194

M. 
fascicularis

M. 
fuscata

M. 
nemestrina

M. 
sylvanus
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Table 4.3. Genetic distance within and among species for TPH2. The diagonal elements show 
the average number of pairwise differences within species and the off-diagonal elements show 
the average number of pairwise differences among species.
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M. mulatta 0.00133
Indian N/A 0.00131
Chinese N/A 0.00141 0.00119

M. fascicularis 0.00170 0.00165 0.00174 0.00091
M. fuscata 0.00179 0.00186 0.00173 0.00209 0.00050
M. nemestrina 0.00406 0.00411 0.00402 0.00378 0.00420 0.00237
M. sylvanus 0.00444 0.00450 0.00439 0.00419 0.00457 0.00404 0.00003

Table 4.4. A list of polymorphic sites in five species of macaques. For ease of comparison with 
previous studies, I repeat the system of Chen et al. (2006) for designating sites. The site number 
lists the location of the polymorphism relative to the start of the coding region, with +1 marking 
the first nucleotide of the start codon. EH: Expected Heterozygosity.

Species Site Designation Location EH Population Notes
M. mulatta -942 -942C>A 5'UTR 0.10692 China
M. mulatta -508 -508G>A 5'UTR 0.07268 China
M. mulatta -413 -413T>C 5'UTR 0.03704 India
M. mulatta -363 -363T>G 5'UTR 0.28302 Both
M. mulatta -111 -111G>A 5'UTR 0.07268 China
M. mulatta 74 74C>A Exon 1 0.07268 India 25Pro>His
M. mulatta 2566 IVS1-28G>A Intron 1 0.30748 Both
M. mulatta 2859 IVS2+116G>A Intron 2 0.10692 Both
M. mulatta 3026 IVS2+283C>T Intron 2 0.20126 India
M. mulatta 3084 IVS2+341G>A Intron 2 0.07268 China
M. mulatta 3141 IVS2+398C>A Intron 2 0.13976 India
M. mulatta 3315 IVS2+572T>C Intron 2 0.07268 Both
M. mulatta 3398 IVS2+655C>T Intron 2 0.28302 Both
M. mulatta 5243 IVS2-175T>Del Intron 2 0.10692 China 1 bp indel
M. mulatta 5252 IVS2-166A>C Intron 2 0.49825 Both
M. mulatta 5277 IVS2-141G>A Intron 2 0.03704 China
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Table 4.4 (cont).

Species Site Designation Location EH Population Notes
M. mulatta 5294 IVS2-124AA>Del Intron 2 0.07268 China 2 bp indel
M. mulatta 5375 IVS2-43A>Del Intron 2 0.20126 China 1 bp indel
M. mulatta 5385 IVS2-33G>A Intron 2 0.03704 China
M. mulatta 6208 IVS4+398T>C Intron 4 0.35220 Both
M. mulatta 89755 IVS9-729C>T Intron 9 0.10692 China
M. mulatta 89798 IVS9-686G>A Intron 9 0.07268 China
M. mulatta 89834 IVS9-650A>G Intron 9 0.07268 China
M. mulatta 89838 IVS9-646T>G Intron 9 0.33054 Both
M. mulatta 89879 IVS9-605T>C Intron 9 0.20126 Both
M. mulatta 90042 IVS9-442C>T Intron 9 0.07268 China
M. mulatta 90256 IVS9-228C>T Intron 9 0.28302 Both
M. mulatta 90304 IVS9-180C>T Intron 9 0.07268 Both
M. mulatta 90328 IVS9-156Del>Ins Intron 9 0.33054 Both 11 bp indel
M. mulatta 90428 IVS9-56C>T Intron 9 0.17121 China
M. mulatta 90460 IVS9-24C>T Intron 9 0.07268 India
M. mulatta 90525 1206A>G Exon 10 0.10692 India NS
M. mulatta 90705 IVS10-40G>A Intron 10 0.17121 China
M. mulatta 90949 1503G>A 3'UTR 0.28302 Both
M. mulatta 90959 1513G>A 3'UTR 0.03704 China
M. mulatta 91072 1626A>G 3'UTR 0.03704 China
M. mulatta 91127 1681G>T 3'UTR 0.07268 China
M. mulatta 91337 1891G>A 3'UTR 0.10692 Both
M. mulatta 91459 2013G>T 3'UTR 0.10692 Both
M. mulatta 91497 2051A>C 3'UTR 0.30748 Both
M. mulatta 91553 2107T>G 3'UTR 0.10692 Both
M. mulatta 91574 2128S>L 3'UTR 0.22991 India 159 bp indel
M. mulatta 91732 2286A>G 3'UTR 0.22991 India
M. mulatta 91763 2317C>T 3'UTR 0.07268 China
M. mulatta 91838 2392A>T 3'UTR 0.10692 Both
M. mulatta 91877 2431T>C 3'UTR 0.10692 Both
M. mulatta 91939 2493G>A 3'UTR 0.10692 Both
M. mulatta 91945 2499T>G 3'UTR 0.43955 Both
M. mulatta 91950 2504G>T 3'UTR 0.03704 India
M. mulatta 91956 2510G>T 3'UTR 0.28302 Both
M. mulatta 91961 2515G>A 3'UTR 0.39133 Both
M. mulatta 91965 2519Del>CTA 3'UTR 0.17121 Both 3 bp indel
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Table 4.4 (cont).

Species Site Designation Location EH Population Notes
M. fascicularis -1130 -1130A>C 5'UTR 0.18947
M. fascicularis -894 -894C>T 5'UTR 0.52105
M. fascicularis -435 -453C>G 5'UTR 0.26842
M. fascicularis -424 -424G>A 5'UTR 0.18947
M. fascicularis -370 -370C>Del 5'UTR 0.52105 1 bp indel
M. fascicularis 116 IVS1+11C>A Intron 1 0.39474
M. fascicularis 3158 IVS2+415A>T Intron 2 0.18947
M. fascicularis 3240 IVS2+497C>T Intron 2 0.18947
M. fascicularis 5861 IVS4+51T>C Intron 4 0.33684
M. fascicularis 6208 IVS4+398T>C Intron 4 0.33684
M. fascicularis 6334 IVS4+524C>T Intron 4 0.10000
M. fascicularis 90035 IVS9-449C>T Intron 9 0.10000
M. fascicularis 90054 IVS9-430T>G Intron 9 0.47895
M. fascicularis 90058 IVS9-426T>G Intron 9 0.18947
M. fascicularis 90130 IVS9-354G>A Intron 9 0.18947
M. fascicularis 90154 IVS9-330A>C Intron 9 0.39474
M. fascicularis 90291 IVS9-193Del>CAAA Intron 9 0.10000 4 bp indel
M. fascicularis 90799 1353G>A Exon 11 0.18947 NS
M. fascicularis 91072 1626A>G 3'UTR 0.18947
M. fascicularis 91573 2127T>G 3'UTR 0.47895
M. fascicularis 91945 2499G>T 3'UTR 0.10000
M. fascicularis 91956 2510T>G 3'UTR 0.10000
M. fuscata -525 -525A>C 5'UTR 0.17316
M. fuscata 120 IVS1+15C>A Intron 1 0.24675
M. fuscata 2319 IVS1-275TCAG>Del Intron 1 0.09091 4 bp indel
M. fuscata 2539 IVS1-55G>T Intron 1 0.24675
M. fuscata 2763 IVS2+20A>T Intron 2 0.45455
M. fuscata 3150 IVS2+407T>A Intron 2 0.24675
M. fuscata 5897 IVS4+87C>T Intron 4 0.31169
M. fuscata 89900 IVS9-584T>C Intron 9 0.36797
M. fuscata 90035 IVS9-449C>T Intron 9 0.09091
M. fuscata 91031 1585A>G 3'UTR 0.24675
M. fuscata 91170 1724G>T 3'UTR 0.24675
M. fuscata 92044 2598T>C 3'UTR 0.45455
M. nemestrina -1255 -1255T>C 5'UTR 0.53030
M. nemestrina -1089 -1089T>C 5'UTR 0.53030
M. nemestrina -983 -983C>T 5'UTR 0.30303
M. nemestrina -845 -845T>C 5'UTR 0.53030
M. nemestrina -795 -795C>T 5'UTR 0.54545
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Table 4.4 (cont).

Species Site Designation Location EH Population Notes
M. nemestrina -735 -735T>C 5'UTR 0.53030
M. nemestrina -640 -640G>A 5'UTR 0.53030
M. nemestrina -363 -363T>C 5'UTR 0.53030
M. nemestrina -356 -356A>G 5'UTR 0.48485
M. nemestrina -154 -154A>G 5'UTR 0.40909
M. nemestrina 137 IVS1+32G>A Intron 1 0.53030
M. nemestrina 2319 IVS1-275TCAG>Del Intron 1 0.16667 4 bp indel
M. nemestrina 2342 IVS1-252C>T Intron 1 0.48485
M. nemestrina 2441 IVS1-153G>T Intron 1 0.48485
M. nemestrina 2671 183C>T Exon 2 0.40909
M. nemestrina 2851 IVS2+108A>G Intron 2 0.54545
M. nemestrina 2858 IVS2+115T>C Intron 2 0.30303
M. nemestrina 3291 IVS2+548G>A Intron 2 0.16667
M. nemestrina 5912 IVS4+102A>C Intron 4 0.53030
M. nemestrina 6049 IVS4+239A>G Intron 4 0.48485
M. nemestrina 6180 IVS4+370T>A Intron 4 0.30303
M. nemestrina 6317 IVS4+507T>G Intron 4 0.30303
M. nemestrina 89785 IVS9-699T>C Intron 9 0.53030
M. nemestrina 89803 IVS9-681C>T Intron 9 0.53030
M. nemestrina 89838 IVS9-646G>T Intron 9 0.30303
M. nemestrina 89919 IVS9-565T>G Intron 9 0.53030
M. nemestrina 90089 IVS9-395G>T Intron 9 0.40909
M. nemestrina 90291 IVS9-193Del>CAAA Intron 9 0.16667 4 bp indel
M. nemestrina 90369 IVS9-115A>C Intron 9 0.48485
M. nemestrina 90416 IVS9-68C>A Intron 9 0.48485
M. nemestrina 91459 2013G>T 3'UTR 0.30303
M. nemestrina 91573 2127T>G 3'UTR 0.48485
M. nemestrina 91754 2308A>G 3'UTR 0.30303
M. nemestrina 91961 2515G>A 3'UTR 0.16667
M. nemestrina 92016 2570C>T 3'UTR 0.30303
M. nemestrina 92019 2573G>A 3'UTR 0.40909
M. sylvanus 3291 IVS2+548G>A Intron 2 0.20000
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Table 4.5. Results of four selection tests for TPH2. MK: McDonald-Kreitman test. The number 
for MK represents the G-value obtained by the trapezoidal method of numerical integration in 
DNAsp. The numbers for the HKA test represent the sum of deviations calculated in the HKA 
program.

Species
Fay and 
Wu's H

p-value MK p-value ω p-value HKA p-value

M. mulatta -6.222 0.033 0.129 0.719 0.040 0.004 3.574 0.893
Indian -1.809 0.209 0.399 0.528 0.042 0.004 6.192 0.626
Chinese -4.979 0.050 NA --- 0.039 0.005 4.010 0.856

M. fascicularis -1.537 0.197 NA --- 0.040 0.005 9.244 0.322
M. fuscata 0.745 0.620 NA --- 0.039 0.004 4.545 0.805
M. nemestrina 1.091 0.567 NA --- 0.041 0.004 8.093 0.424
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CHAPTER 5

THE EVOLUTIONARY HISTORY OF SLC6A4 AND THE ROLE OF PLASTICITY

ABSTRACT

Serotonin has repeatedly been indicated as a biological marker of behavior. In particular, 

the serotonin transporter gene, SLC6A4, has been the focus of a large body of research.

Interestingly, both rhesus macaques (Macaca mulatta) and humans have independently evolved a 

number of shared polymorphisms for this gene, which is indicative of parallel evolution between 

the two species. However, very little is known about the evolution of this gene, particularly 

within macaques. While there are several hypotheses as to the adaptive values of various 

polymorphisms, few authors have gone beyond theoretical discussion. Here, I examine the 

genetic variation of SLC6A4 within and between several species of macaques and investigate 

whether selection has played a significant role in its evolutionary history. In addition, I assay the 

polymorphic region of the promoter region, which is known to play a significant role in 

regulating both serotonin turnover and behavior.

In examining the distribution of the promoter region polymorphism, I identified 

significant differences between Indian and Chinese populations of M. mulatta; furthermore, I 

discovered its presence in M. cyclopis, which has not been described before. In regards to the 

evolutionary history of SLC6A4, I found little evidence for selection and conclude that SLC6A4

largely evolved through neutral processes, possibly due to its potential role in regulating 

behavioral plasticity. However, I also found very low levels of linkage between the gene and the 

promoter region. Because I limited analyses to the gene itself, it is possible that the promoter 

region shows a distinct evolutionary history from SLC6A4.
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INTRODUCTION

In the search for the biological bases of behavior, one hormone, serotonin, has repeatedly 

made its way into much scientific research. For a variety of behaviors or psychological 

conditions, such as alcoholism (Virkkunen et al., 1994), novelty seeking (Heck et al., 2009), 

depression (Caspi et al., 2003), impulse control (Linnoila et al., 1993; Mehlman et al., 1994; 

Westergaard et al., 2003b), obsessive compulsive disorder (Denys et al., 2006), or antisocialism 

(Flory et al., 2007), indices of serotonin levels and serotonin turnover are consistently among the 

best biological markers for predicting behavioral patterns. Consequently, there is a vested 

interest in a detailed understanding of the serotonin system, particularly within the fields of 

psychology and medicine, but also in related fields such as evolutionary biology. Research of 

serotonin not only paves the pathway for improved pharmaceutical interventions for 

psychological conditions, it can also increase our ability to identify individuals with a biological 

predisposition for these disorders. Furthermore, the connection of serotonin with behavior 

provides a possible mechanism through which behavioral evolution can occur. To that end, much 

work has concentrated on examining the genetic variation of the serotonin system.

Perhaps the most widely studied of serotonin genes is the serotonin transporter gene 

(SLC6A4, also referred to as 5-HTT or SERT). In particular, the promoter region of this gene, 

which lies approximately 15 kilobases (kb) upstream of SLC6A4, possesses a 44-basepair (bp) 

insertion/deletion (indel) polymorphism in humans, dubbed the "long" and "short" alleles (Heils 

et al., 1996; Lesch et al., 1996). This polymorphism influences transcriptional activity and 

serotonin turnover (Lesch et al., 1996; Heils et al., 1997; Greenberg et al., 1999; Williams et al., 

2001; Manuck et al., 2004; Smith et al., 2004), and the short allele seems to increase 

susceptibility to a wide variety of psychological conditions (see for review Hariri and Holmes, 
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2006; Serretti et al., 2006; Canli and Lesch, 2007; Caspi et al., 2010; Chapter 2). A very similar 

polymorphism exists in rhesus macaques (Macaca mulatta) (Lesch et al., 1997; Rogers et al., 

2006), a frequently used animal model in studies of medicine. In macaques, the polymorphism 

consists of a 21-bp indel and, although independently evolved (Lesch et al., 1997), it appears to 

regulate serotonin functioning (Bennett et al., 2002) and behavior (e.g., Bennett et al., 1998; 

Trefilov et al., 2000; Champoux et al., 2002; Barr et al., 2003; Bethea et al., 2004) in a manner 

similar to humans. Furthermore, additional polymorphisms in SLC6A4 and other serotonin 

related genes have been identified in rhesus macaques that are also analogous to those found in 

humans (e.g., Newman et al., 2005; Vallender et al., 2008). This suggests that parallel evolution 

of the serotonin system is occurring between the two species (Vallender et al., 2008). However, 

despite its potential to provide a greater understanding of behavioral evolution, the evolutionary 

history of SLC6A4 is not very well understood.

The very fact that these polymorphisms evolved and are maintained in both humans and 

macaques would indicate that they are advantageous in some way – that is, that there is positive 

selection acting on SLC6A4 and its promoter regions. However, most of the research carried out 

to date seems to contradict this prediction. For example, in macaques lower serotonin levels have 

been shown to negatively affect rank (Higley et al., 1996b; Higley and Linnoila, 1997), survival 

(Higley et al., 1996a; Westergaard et al., 2003a; Howell et al., 2007), and reproductive success 

(Mehlman et al., 1997; Gerald et al., 2002; Cleveland et al., 2004; Hoffman et al., 2007).

Therefore, any polymorphism that tends to decrease serotonin turnover, such as the short allele in 

the promoter region of SLC6A4, would be expected to be selected against; and yet, the short 

allele remains in high frequencies in both humans (Lesch et al., 1996) and macaques (Trefilov et 

al., 2000; Wendland et al., 2006).
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This has led to a variety of hypotheses to explain the presence of polymorphisms that as a 

whole appear to be negative. Many of these hypotheses center around the idea of balancing 

selection. For example, Trefilov (2000) suggested that heterozygous advantage might explain the 

presence of both the long and short alleles in macaques. Other authors have suggested that 

behaviors that are negative in one set of circumstances might be positive in another; thus, 

balancing selection can occur through changes in selective pressures throughout an individual's 

lifetime (Gerald and Higley, 2002; Howell et al., 2007), between sexes (Westergaard et al., 

2003b), in different social settings (Gerald and Higley, 2002), and in different habitats (Suomi, 

2006; Chakraborty et al., 2010).

Alternatively, others have argued that polymorphisms in SLC6A4, which increase the risk 

of behavioral disorders in bad environments, also increase the ability to thrive in good 

environments (Belsky et al., 2009; Homberg and Lesch, 2010). As such, these genes are best 

viewed as plasticity genes, with certain polymorphisms conferring an increased sensitivity to 

environmental cues, good or bad (see Chapter 2; Figure 2.6). Note that this is slightly different 

from other, "traditional" hypotheses based on balancing selection. In the case of the "traditional" 

hypotheses, the behavior remains the same, but the adaptive value of the behavior changes across 

circumstances. These hypotheses are based on a more straightforward genotype-phenotype 

relationship. In the case of plasticity genes, the adaptive value of a behavior remains the same, 

but the circumstances under which it manifests varies across environments. While this could lead 

to balancing selection as well, if plasticity itself were under selection, which has been argued for 

in the case of humans (e.g., Potts, 1996), then positive selection for genetic variants such as the 

short allele in the SLC6A4 promoter region would explain both their presence at high frequency 

and their independent evolution in humans and macaques. However, if the target of selection is a 
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specific behavioral pattern, rather than the capacity to be more or less plastic, then the 

diminished correlation between genotype and phenotype created by a gene by environment 

interaction would make it difficult to detect selection at a genetic level, and the gene might be 

expected to evolve according to neutral evolutionary forces.

Thus, there are several potential evolutionary scenarios for serotonin related genes.

However, despite widespread interest in the potential selective advantages and disadvantages for

variants of genes such as SLC6A4, most studies have been limited to theoretical discussions and 

so remain speculative. In this study, I use an empirical approach to understanding the 

evolutionary history of the serotonin system by exploring the genetic variation of SLC6A4 within 

and between several species of macaques. I apply several tests of neutrality to determine whether 

selection – either positive, purifying, or balancing – played a significant role in shaping genetic 

variation. Using a similar molecular evolutionary approach, Claw and colleagues (2010) recently 

examined both SLC6A4 and HTR2A (which codes for the serotonin receptor type 2A) in humans 

and found evidence of positive selection occurring within the UTRs of both genes. If the 

serotonin system of rhesus macaques is evolving in parallel with humans, then we would expect 

to see similar evidence of positive selection for this species as well.

METHODS

Subjects

For this study, I used DNA extracted from 27 M. mulatta, 12 M. fascicularis, 11 M. 

fuscata, 6 M. nemestrina, 6 M. sylvanus, and one individual each from M. assamensis, M. 

cyclopis, M. nigra, M. silenus, and Chlorocebus aethiops (a vervet). See Table A.1 in Appendix 

A for complete description of the source of these samples. The M. mulatta samples come from 
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two distinct areas within Asia: China and India. Previous studies have indicated a significant 

amount of differentiation between these two populations of M. mulatta (Melnick et al., 1993; 

Morales and Melnick, 1998; Tosi et al., 2003; Smith, 2005; Hernandez et al., 2007; Satkoski et 

al., 2008). Because the presence of population structure can have a significant influence on 

several of the tests employed here, an analysis of molecular variation (AMOVA) (Weir and 

Cockerham, 1984; Excoffier et al., 1992; Weir, 1996) was carried out to estimate the amount of 

population differentiation seen in this gene using the program Arlequin (Excoffier et al., 2005).

If the AMOVA was significant, I applied separate analyses to each of the M. mulatta

populations.

Previously (Chapter 4), I concentrated on the 5 species for which there were multiple 

samples (M. mulatta, M. fascicularis, M. fuscata, M. nemestrina, and M. sylvanus) and used the 

vervet as the outgroup for several of the analyses. However, for this study I was unable to obtain 

a complete sequence for the vervet and only obtained complete sequence data for one M. 

sylvanus individual (see RESULTS, Table 5.1). Therefore, this study focuses on only four 

macaque species: M. mulatta, M. fascicularis, M. fuscata, and M. nemestrina. Where sequence 

data for C. aethiops was available, I used this as the outgroup; but since this data was not 

available for all regions sequenced, I also used M. sylvanus as an outgroup since it is the sister 

species to all of the Asian macaques and the first to diverge in phylogenetic analyses (Tosi et al., 

2003; Vos, 2006; Li et al., 2009; Figure 3.2). As with the previous studies, the other species were 

used primarily to place the focus species within a phylogenetic framework. Namely, these were 

used in the formation of haplotype networks and in PAML (Phylogenetic Analysis using 

Maximum Likelihood).
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PCR and Sequencing

The total size of SLC6A4 is approximately 25,000 base pairs (25 kb), with 13 exons and 

1,890 bp of coding regions. Although this is a moderate sized gene compared to other serotonin 

genes, such as TPH2 or MAOA (approximately 90 kb each), SLC6A4 is incredibly complex, 

possessing numerous features – such as repeats and transposable elements – that make cost 

efficient sequencing difficult. Therefore, I limited sequencing to three regions dispersed across 

the gene: i) the 5'UTR, Exon 1, and flanking regions (982 bp), ii) Exons 2-6 and flanking regions 

(3,292 bp), and iii) Exon 13, the 3'UTR, and flanking regions (761 bp) (Figure 5.1). Hereafter, 

these areas shall be referred to as the 5' region, the "exonic" region, and the 3' region, 

respectively. In total, I sequenced 5,032 bp of the gene, including 1,157 bp of exon sequences. In 

addition, I assayed all individuals for the promoter region polymorphism. By obtaining sequence 

data from both ends of the gene (the 5' and 3' regions), a general estimate of the level of 

recombination and the level of variation within the gene is obtained.

This study extends on the work carried out for a pilot study, and therefore the methods 

for PCR and sequencing differ slightly between the regions analyzed and from those of previous 

studies (see Chapters 3 and 4). For the 5' and 3' regions, PCR and sequencing followed the same 

protocol as in Chapters 3 and 4. A list of primers used for these regions can be found in 

Appendix C (Table C.1) and details of the PCR protocol are available upon request of the author.

The "exonic" region was amplified through a two-step process. In the first step, I used the PCR 

Extender System (www.5prime.com), which is designed for high fidelity, long-range 

amplification of complex genetic regions, to amplify approximately 6 kb of the target region. For 

the second step, I used nested primers to re-amplify two smaller, overlapping sections of the 

region (Figure 5.2). Samples were then cleaned up using the ExoSAP-IT protocol (usb.com) and 
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sent to the W.M. Keck Center for Comparative and Functional Genomics, UIUC for Sanger 

sequencing. This method was chosen to optimize the quality of sequence reads. However, 

because of the increased cost compared to other methods, I chose the minimum number of 

sequencing primers necessary to cover the "exonic" region. Therefore, most of this region was 

covered by only a single read. Furthermore, the multiple amplifications used in the methods 

increased the likelihood of allelic dropout, which occurs when PCR preferentially amplifies only 

one chromosome. To address these issues, any sample that appeared to be homozygous at all 

sites across the "exonic" region was re-amplified, beginning with the original DNA sample, 

using a different set of primers. Additionally, a small subset of the samples were cloned and 

sequenced, and checked against the original data obtained. A list of all primers used is provided 

in Table C.1, and detailed protocols used for both PCR and cloning can be obtained from the 

author.

Once received, sequences from all three regions (5', "exonic," and 3') were aligned and 

edited manually using Sequencher (www.genecodes.com). I used the same protocols for 

identifying polymorphic sites as in previous studies (see Chapters 3 and 4). Haplotypes for each 

of the regions were determined using the program Phase v.1 (Stephens et al., 2001; Li and 

Stephens, 2003; Stephens and Donnelly, 2003). In the case of the "exonic" region, the haplotypes 

generated by Phase were checked against the haplotypes obtained from the small subset of 

cloned samples. As with previous studies, an indel that included more than one base pair was 

treated as a single polymorphism.

In addition to the three regions sequenced, I also genotyped all M. mulatta individuals for 

the promoter region polymorphism. In order to do so, approximately 400 bp surrounding the 

polymorphism was amplified (see Table C.1 for primers). I then ran the PCR product through a 
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2% agarose gel for approximately 2 hours at 250V, which separates DNA bands based on their 

size. The gels were soaked in ethidium bromide and visualized under UV transillumination. The 

presence of the long or short allele was determined visually; a heterozygous individual showed 

two distinct bands, while those homozygous for the long or short allele showed a single band at 

specified levels in the gel (Figure 5.3). As this part of the research was carried out in the pilot 

study, the genotyping was carried out on a much larger sample of M. mulatta (N = 70). This 

larger sample size is used to ascertain the frequency of the promoter alleles within and across M. 

mulatta populations. Although the promoter polymorphism is unknown in the other species used 

for this study, a small subset of non-M. mulatta individuals were genotyped for this 

polymorphism as well, as part of another study not directly connected to this dissertation.

However, because of the small sample size for the non-M. mulatta species, any analyses of the 

promoter region were restricted to the M. mulatta samples.

Finally, five additional non-coding regions were amplified and sequenced for use in the 

HKA test. These are the same regions that were used in previous studies (see Chapters 3 and 4), 

and are described in Table A.3 in Appendix A.

In order to visualize the relationship between the haplotypes, a network was created using 

the reduced median method in Network (fluxus-engineering.com). Additionally, data for a 

minimum spanning tree was generated in Arlequin (Excoffier et al., 2005). The tree itself was 

created in HapStar (Teacher and Griffiths, 2011) and graphically modified in Adobe Illustrator®.

Analyses

The regions sequenced are widely separated from each other. In particular, there are 

approximately 15 kb separating the promoter region from the 5' region, and about 18 kb 

separating the "exonic" region from the 3' region. Although analyzing a single gene, the large
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size of SLC6A4 makes recombination very likely, a factor which can affect certain analyses (see 

Chapters 3 and 4). To account for this possibility, I performed separate analyses on each of the 

three regions sequenced, as well as on the gene as a whole. To determine the level of 

recombination, I implemented the method of Hey and Wakeley (1997) to obtain an estimate of 

the parameter C (= 4Nc) for each of the regions sequenced, the gene as a whole, and the coding 

region as a whole (see Chapters 3 and 4 for a more detailed description of C). I obtained this 

estimate for both the M. mulatta samples and across the entire genus. I also conducted an exact 

test of linkage disequilibrium (LD) between all pairs of polymorphic loci to determine which 

pairs of loci are in significant LD, implemented in the program Arelquin (Lewontin and Kojima, 

1960; Slatkin, 1994; Slatkin and Excoffier, 1996; Excoffier et al., 2005). To visualize the level of 

linkage disequilibrium, a linkage map was created using the program JLIN (Carter et al., 2006).

In particular, these programs were used to determine the degree of LD between the promoter 

region and the rest of the gene.

General indices of molecular variation were calculated using in the program Arlequin 

(Excoffier et al., 2005). The indices generated are the same as those used in previous studies 

(Chapters 3 and 4), and include two estimates of the parameter theta: θS (Watterson, 1975) and θπ

(Tajima, 1983). For the promoter polymorphisms, a chi-square test of independence (Pearson, 

1900)was used to determine if the populations were in Hardy-Weinburg equilibrium (HWE) and 

to see if there was a significant difference between the Chinese and Indian populations.

In order to determine the role of selection on the genetic variation of SLC6A4, I applied 

several types of selection tests that use different aspects of the sequence data. Since several of 

these tests are sensitive to non-selective evolutionary forces such as demographics and 

recombination, a single significant result, without confirmation from other tests, should be 
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treated with caution. However if significant results are obtained from multiple tests, evidence of 

selection is much more robust. Here, I briefly outline the tests employed and the parameters used 

for each one. These tests are the same as those used in previous studies (Chapters 3 an 4) and are 

described in greater detail there.

I used the HKA test (Hudson et al., 1987) to examine the ratio of genetic variation within 

and between species across several loci, to determine of SLC6A4 showed a distinct pattern from 

other loci. Specifically, an increase in between-species variation for SLC6A4 would indicate 

positive selection, while an increase in within-species variation would indicate balancing 

selection (Chapter 1). For this test, I used the gene of interest, SLC6A4, and five additional, 

presumably neutral loci, described in Table A.3. To determine the level of between-species 

variation, both C. aethiops and M. sylvanus were used as outgroups. This was carried out using 

the program HKA, provided by J. Hey (http://genfaculty.rutgers.edu/hey/software).

I also examined the ratio of nonsynonymous to synonymous substitutions (ω) (Kimura, 

1977) by using a z-test to determine whether ω was significantly different that one (indicative of 

neutral evolution; see Chapter 1). A ratio greater than 1 would indicate positive selection, while a 

ratio lower than 1 would indicate purifying selection. The ω was calculated using the Nei-

Gojobori method (Nei and Gojobori, 1986) and variance was estimated using the bootstrap 

method (Nei and Kumar, 2000). These analyses were carried out using the program MEGA v.4 

(Tamura et al., 2007). In addition, I used McDonald-Kreitman test (McDonald and Kreitman, 

1991) to look at ω within and between species using DNAsp (Rozas et al., 2003). For both of 

these tests, C. aethiops and M. sylvanus were used as outgroups. 

Maximum likelihood methods were carried out using the codeml program in PAML

(Phylogenetic Analysis using Maximum Likelihood; Yang, 2007). PAML compares different 
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models of evolution in a phylogenetic framework and determines which model best fits the data.

Because PAML uses phylogenetic data, it requires the comparison of multiple species. I included 

all nine macaque species using the phylogeny seen in Figure 3.2 (Tosi et al., 2003; Vos, 2006; Li 

et al., 2009), excluding the C. aethiops sample since the sequence data for the coding regions of 

this sample were incomplete. PAML allows only one sequence per species, so haplotypes were 

determined based on fixed differences between species and I did not perform separate analyses 

for Indian and Chinese macaques. Furthermore, since the codeml program employed here only 

uses information from coding regions, I pooled the data from the three regions sequenced and did 

not do separate analyses for each region. PAML was used to determine if 1) positive selection 

has occurred on a specific lineage, as indicated by an elevated ω (Yang, 1998), and 2) positive 

selection had occurred on specific sites within the gene (Nielsen and Yang, 1998; Yang et al., 

2000; Swanson et al., 2003).

Finally, both Tajima's D (Tajima, 1989) and Fay and Wu's H (Fay and Wu, 2000) were 

calculated to detect skews in the frequency spectrum not expected under neutrality (see Chapter 

1). For these tests, a significantly positive value would indicate balancing selection while a 

significantly negative value would be consistent with positive selection. Fay and Wu's H requires 

an outgroup to ascertain which alleles in a population are derived and which are ancestral. Again, 

I used both C. aethiops and M. sylvanus as outgroups. Significance for Fay and Wu’s H was 

determined by running coalescent simulations using an estimate of the recombination rate and 

theta (θπ) as parameters (Fay and Wu, 2000). DNAsp (Rozas et al., 2003) was used to determine 

the value and significance of Fay and Wu's H. The value and significance of Tajima's D was 

determined using Arlequin (Excoffier et al., 2005).
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RESULTS

Sequencing, Substructure, and Recombination

For the 3' region, I was able to obtain sequencing information for all samples used.

However, 6 of the M. mulatta individuals did not amplify for the 5' region, and 14 of non-M. 

mulatta samples produced poor sequencing reads for the "exonic" region (Table 5.1). In 

particular, for the "exonic" region, I could not obtain sufficient sequence data for the C. aethiops

sample, a large number of M. fascicularis samples, and all but one M. sylvanus individual (Table 

5.1). For analyses of the "exonic" region and of the gene as a whole, I therefore could not use C. 

aethiops as an outgroup, and focus the discussion to results obtained from examining samples in 

reference to M. sylvanus alone.

An analysis of molecular variation (AMOVA) showed significant population differences 

between Chinese and Indian M. mulatta populations (p<0.0001), with 17.9% of the total genetic 

variation for this species being between groups. This is similar to results obtained for other 

serotonin genes examined (Chapters 3 and 4). I therefore present the results for each of these 

populations separately, as well as the results obtained for the species as a whole.

Results for recombination are shown in Table 5.2. In general, these estimates of 

recombination are moderately high, particularly compared to other serotonin genes sequenced in 

previous studies (Chapters 3 and 4). Recombination is high even within regions; this is 

particularly true for the "exonic" region, where the highest estimates of C were obtained. The 

most notable exceptions to these patterns are for the 5' region, which had no recombination, and 

the coding region. Although the examination of recombination levels across the gene indicates 

that there is recombination occurring between the coding regions, the overall low level of 

mutations that occurred in exons led to an estimate of C = 0.
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The results for the recombination analyses are reflected visually in the linkage 

disequilibrium (LD) plot shown in Figure 5.4. The red and blue lines in the map outline the 

division between the three regions sequenced and the promoter region. This plot shows that there 

are low levels of linkage between the three sequenced regions. Notably, within the "exonic" 

region there is a low level of LD. The first third of the "exonic" region actually shows complete 

linkage between the polymorphic sites (labeled "ex1"-"ex40" on the LD plot), which corresponds 

to the area of the gene that includes part of Intron 1, Exon 2, and most of Intron 2. However, 

from Exon 3 until the end of the "exonic" region, there is low LD and it is presumably within this 

area that the high level of recombination is occurring.

Also of note, the promoter polymorphism shows a very low level of linkage with the gene 

itself. This is shown visually in the LD plot. Of the 59 polymorphic loci found in M. mulatta, the 

promoter only showed significant LD with 8 of these loci. This is in contrast to humans, which 

generally show more moderate levels of linkage between the promoter polymorphism and the 

gene itself (Claw et al., 2010).

Despite the high level of recombination seen, most results did not differ between regions, 

so for ease of discussion, I concentrate on results for the entire gene, and only discuss the results 

of separate regions where they differ. Appendix C provides more detailed results for each of the 

separate regions sequenced.

Molecular Diversity

General indices of molecular diversity are shown in Table 5.3 and Table 5.4. Like other 

serotonin genes, there are very few nonsynonymous polymorphisms; in fact, there are very few 

mutations within the coding region in general. Instead, most mutations, both within and between 

species, occurred either within the introns, at an average rate of 1 mutation per 22 bp, or in the 
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UTR regions, at an average rate of 1 mutation per 29 bp. In contrast, mutations within the coding 

region only occurred once per 129 bp. Compared to other serotonin genes previously examined, 

the nucleotide diversity for M. mulatta, averaged over all base pairs, is somewhat high, and 

approaches the nucleotide diversity of M. nemestrina, which normally gives much higher 

estimates of diversity than M. mulatta, despite the smaller sample size (see Chapters 3 and 4). A 

minimum spanning tree showing the relationship between all haplotypes is shown in Figure 5.5.

I ascertained the frequency of the promoter allele across M. mulatta populations using a 

much larger sample size (N = 70). In total I genotyped 29 individuals from India, 37 individuals 

from China, and 4 individuals of unknown origin. All of the individuals of unknown origin were 

homozygous for the long (L) allele. The frequency of the alleles and genotypes for the Chinese 

and Indian populations are shown in Figure 5.6. The Chinese population has a higher frequency 

of the short allele (S) than the Indian population, and this was significant (p = 0.035). Both 

populations are in HWE. Although analyses of the promoter polymorphism were limited to M. 

mulatta, a few samples from other macaque species were also genotyped. Notably, the M. 

cyclopis individual appeared to be heterozygous at the promoter region. That is, it possessed both 

a long and a short allele. To my knowledge, this is the first time that this polymorphism has been 

reported in this species, although the sample awaits cloning and sequencing for confirmation.

Selection

In order to ascertain the role of selection in shaping the genetic variation of this gene, I 

applied several tests of selection. The results of these tests when applied to all three sequenced 

regions combined are shown in Table 5.5. All of these tests are non-significant. Even ω was non-

significant; while nonsynonymous mutations were rare, there was a low level of synonymous 

mutations as well so that ω was not significantly lower than 1.
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Because of the overall low level of mutation in the coding regions, separate analyses on 

each of these regions for McDonald-Kreitman and ω could not be carried out. For all remaining 

tests, separate analyses of each of the regions largely replicated the results found for the 

combined regions (Appendix C). However, analyses of the 5' region alone did give significantly 

different results for Fay and Wu's H. In M. mulatta, the H-value calculated approached 

significance (Table 5.6). Separate applications of this test on the two M. mulatta populations 

show that the H-value for the Indian population is very significant (p = 0.008), while it is not 

significant for the Chinese population (p = 0.246). A look at the haplotype network for this 

region shows the presence of a derived haplotype at a high frequency in Indian rhesus macaques, 

but rare in Chinese macaques (Figure 5.7); this haplotype is most likely contributing to the 

significant H-value obtained for this population. The haplotype makes up 88.5% of the Indian 

population and is defined by the presence of two indels in Intron 1. The first indel is a 46-bp 

insertion; the second is a 12-bp deletion. These two indels are shared by another, closely related 

haplotype that is found exclusively in the Indian samples (Figure 5.7). Thus, these two 

polymorphic sites are present in 96.2% of the Indian samples. By contrast, it is found in only 

31.5% of the Chinese population. A chi-square test of independence shows this difference 

between populations is highly significant (p<0.0001).

DISCUSSION

The gene for the serotonin transporter, SLC6A4, has been widely studied for its 

connection to behavior, particularly in humans and macaques. However, the evolutionary history 

of this gene is not well understood. Various authors have suggested a range of evolutionary 

scenarios for this gene, but to date very few studies have examined the molecular variation of the 
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gene itself in an evolutionary context. Here, I examined SLC6A4 to determine the level of 

genetic variation within and between macaque species and to explore the possible role of 

selection on the evolutionary history of this gene.

One of the most heavily investigated polymorphisms for SLC6A4 is 22-bp the promoter 

region polymorphism. Until very recently, the promoter region polymorphism was only known 

within M. mulatta, although it is now known to be present in M. radiata and the recently named 

species M. munzala (Sinha et al., 2005; Chakraborty et al., 2010). The analyses presented here 

indicate the presence of this polymorphism in M. cyclopis as well. M. cyclopis and M. mulatta 

are very closely related (see Figure 3.2), having only diverged from each other approximately 

276 thousand years ago (Vos, 2006), so the presence of this polymorphism is not surprising.

However, this sample awaits sequencing to verify the exact nature of this polymorphism.

Within M. mulatta, there is a significant difference in the distribution of the short and 

long alleles across populations. Specifically, the short allele was present in much higher 

frequency in the Chinese population than in the Indian population (Figure 5.6). This finding is 

consistent with studies on Chinese and Indian macaque behavior, which have generally found 

significant differences in temperament. For example, a previous study on the temperament of M. 

mulatta neonates showed that Chinese-Indian hybrids were more likely to score lower on tests of 

orientation and sustained attention and were more reactive and irritable than neonates that were 

Indian-derived (Champoux et al., 1994); in a similar manner, indices of serotonin turnover 

differed between the two groups (Champoux et al., 1997). Thus, differences in the prevalence of 

the short allele may explain some of the behavioral differences seen between these two 

populations.
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Importantly for evolutionary studies on the SLC6A4 promoter region, there is a very low 

level of linkage between the promoter polymorphism and SLC6A4 itself. This is in contrast to the 

results of Claw and colleagues (2010), which showed higher indices of linkage looking at the 

analogous promoter polymorphism in humans. Given the population history of humans, a higher 

level of LD might be expected (Pritchard and Przeworski, 2001), and it increases the likelihood 

that the promoter region and the gene share similar evolutionary histories. For macaques, 

however, this low level of LD means that the promoter region and the gene itself could have 

distinct evolutionary histories, and that the results obtained from the sequencing data cannot 

meaningfully be extended to the promoter region.

In fact, in examining SLC6A4, I found very little evidence for selection acting on this 

gene. Even ω, which is typically low in a functional gene due to purifying selection (see 

Chapters 3 and 4), was not significantly different than 1. This is not to say that purifying 

selection does not occur on this gene – the overall low levels of mutations that occurred in exons 

compared to introns or the UTR would suggest otherwise. Rather, it indicates that the 

synonymous sites are not completely neutral and have also been subjected to purifying selection.

The most notable exception to the general results was found in the separate examination 

of the 5' region. For this region, which included the 5'UTR, Exon 1, and flanking areas, I found a 

borderline significant Fay and Wu's H-value for M. mulatta. This result seems to be driven by 

the Indian population, as the Chinese population had a non-significant H-value. In a previous 

study (Chapter 4), I found a significant H-value when examining TPH2 in M. mulatta. As with 

this study, a breakdown of this species into a two-group comparison showed that only one 

population was contributing to the significant result. However, in the case of TPH2, it was the 

Chinese population that produced a significant result and the Indian population that did not. For 
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TPH2, I ruled out selection as the main cause of these results for three main reasons: 1) the p-

values tended to be only marginally significant, 2) Fay and Wu's H is known to be affected by 

population structure (Fay and Wu, 2000; Przeworski, 2002), which may be a factor even when 

considering the Chinese population alone (Li et al., 2011), and 3) all other selection tests indicate 

neutrality. In the case of SLC6A4, the p-value for the Indian population is much more robust (p = 

0.008). However, I cannot completely rule out the possibility that, like Chinese populations, 

there exists population structure in Indian rhesus macaques. Alternatively, this could be the result 

of a bottleneck, which is known to occur in the recent history of Indian M. mulatta (Hernandez et 

al., 2007), although bottlenecks are not necessarily expected to increase the frequency of derived 

haplotypes, as they tend to eliminate rare (i.e., new or derived) haplotypes. Moreover, this was 

the only test that indicated that positive selection was occurring on SLC6A4, and was only 

positive when considered in isolation from the other areas sequenced. Therefore, evidence of 

selection is weak, and an interpretation of neutrality is a stronger fit for the data. Regardless of 

the role of selection on this region, this test highlighted two polymorphisms that are derived and 

almost entirely define the Indian M. mulatta samples. Both of these polymorphisms are indels 

located in Intron 1. For human SLC6A4, polymorphic regions within introns are known to have a 

significant affect on serotonin functioning (Fiskerstrand et al., 1999) and behavior (Ogilvie et al., 

1996; Vormfelde et al., 2006). While it is unknown at this time whether the polymorphisms 

highlighted by Fay and Wu's H have a similar affect on macaques, they remain an interesting 

source of potential future research. The presence of these indels may potentially contribute to 

behavioral differences seen between these two populations, or between M. mulatta and other 

macaque species.
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Results of the 5' region notwithstanding, analyses indicate that genetic drift and other 

non-selective evolutionary forces are the predominant mechanisms shaping genetic variation for 

SLC6A4. This does not rule out SLC6A4's adaptive importance. Indeed, the low level of linkage 

between this gene and its promoter region leaves open the possibility that selection has acted 

primarily through regulatory mechanisms. It is feasible that a separate examination of sequence 

data surrounding the promoter region would yield different results. While selection might be 

expected to increase LD between the gene and the promoter region (Sabeti et al., 2002), analyses 

show that recombination is high for this area of the genome when compared to other serotonin 

related genes. Thus, unless the selection occurred very recently, recombination would quickly 

break down any LD (Przeworski, 2002). Therefore, the results and interpretation of the analyses 

presented here are largely limited to SLC6A4 itself, and cannot be applied to other components of 

the genome that may be interacting with this gene (see Chapter 4 for further discussion).

It has been argued that genes such as SLC6A4 might be best viewed as plasticity genes 

(Belsky et al., 2009); that is, different alleles for SLC6A4 have varying levels of gene by 

environment interaction and make individuals more or less affected by environmental 

circumstances (see Chapter 2; Figure 2.6). Regarded in this way, the expectations for selection 

on SLC6A4 are not very straightforward. If behavioral plasticity itself was the target of selection, 

then we might make clear predictions about the role of positive selection on SLC6A4, and the 

focus of study should be on the degree that an individual responds to environmental variability 

(see, for example, Bell and Robinson, 2011). However, if plasticity is not being selected, then the 

possible impact of selection would depend very much on the history of environmental 

circumstances. For example, if the probability of being born into a poor social environment is 

persistently high, selection might be expected to act efficiently against alleles that make 
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individuals more vulnerable to such an environment; in contrast a persistently high probability of 

positive social interactions might favor these same alleles, as individuals possessing them are 

more likely to thrive (Belsky et al., 2009; Chiao and Blizinsky, 2010). However, if past 

environmental circumstances were widely variable, as might be expected in the course of 

macaque evolution (Delson, 1980; Jablonski et al., 2000), and the primary target of selection was 

not plasticity itself, then there would be a poor correlation between genotype and phenotype. As 

such, selection will be ineffective at producing genetic evolution, and the gene in question would 

largely evolve in a neutral fashion. The results shown here support this interpretation and 

contrast with other hypotheses about the evolution of SLC6A4, such as heterozygous advantage 

(Trefilov et al., 2000) or selection for maintenance of genetic diversity due to variable 

environments (e.g., Suomi, 2006), which focus more on specific behavioral outcomes rather than 

plasticity in general. In these latter hypotheses, balancing selection is hypothesized to be the 

primary evolutionary force for SLC6A4. None of the tests carried out here indicate balancing 

selection. (However, it should be noted, again, that many of these hypotheses were made with 

reference to the promoter region in particular and so I cannot definitively rule them out.)

In summary, I have shown that the promoter region polymorphism of SLC6A4 is 

significantly variable across M. mulatta populations and I have furthermore discovered its 

presence in M. cyclopis, which has not been described before. I also demonstrate that the 

promoter region is not linked to SLC6A4, and is therefore likely to have a distinct evolutionary 

history from the gene itself. In examining SLC6A4, I found almost no evidence of selection.

However, I did find two polymorphisms in the first intron that clearly separate Indian M. mulatta

from Chinese M. mulatta and other macaque species, highlighting this region as a source of 

future research. Finally, I argue that the neutral evolution seen in this gene supports the idea that 
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SLC6A4 is best viewed as a gene that influences the level of plasticity shown in an individual. As 

such, the evolutionary focus for this gene should not be on specific behaviors, but on behavioral 

plasticity in general. This shift in focus could help to explain inconsistent results seen across 

study populations (Belsky et al., 2009; Homberg and Lesch, 2010), and will lead to a more 

nuanced understanding of behavioral evolution.
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FIGURES AND TABLES
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Figure 5.1. A schematic of the SLC6A4 gene. The vertical lines represent exons, the open box 
represents the promoter regions, and the solid back boxes represent the 5'UTR and 3'UTR region.
The solid red boxes outline the areas sequenced for this study. Dashed red box outlines the 
promoter region that was assayed.
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Figure 5.2. Schematic of the methods used to amplify the "exonic" region of SLC6A4. Long 
range primers were used to amplify approximate 2kb around Exons 2-6. Nested primers were 
then used to further amplify two over lapping segments of DNA.
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Figure 5.3. Example of a gel used to genotype the polymorphic region of the promoter. S/S: 
individual homozygous for the short allele. L/L: individual homozygous for the long allele. L/S: 
heterozygous individual.

S/S L/L L/S
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Figure 5.4. A plot showing linkage disequilibrium (LD) between different polymorphic sites in 
M. mulatta. Top left: R2. Bottom right: |D'|. The X-axis shows the physical distance, in base 
pairs, between polymorphic sites. The red and blue lines indicate the separation between 
different regions sequenced and the promoter region. Both measures of LD are based on 
genotypic data, so LD estimates shown here are lower than would be generated based on the 
phased haplotypes.
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Figure 5.5. Minimum spanning tree of haplotypes. The open circles represent haplotypes, color 
coded by species. These circles are not proportional to the frequency of the haplotype. Solid 
black dots represent the number of mutations separating haplotypes.
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Figure 5.6. Genotypic (left) and allele (right) frequency for the polymorphic region of the 
promoter in two populations of M. mulatta. L: long allele; S: short allele.
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Figure 5.7. Haplotype network for the 5' region of SLC6A4. Each circle represents a haplotype 
whose size is proportional to the frequency of the haplotype. The lengths of the lines connecting 
the circles are proportional to the number of mutations that separate each haplotype. Two indels 
that separate most Indian M. mulatta from the other species are indicated.
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Table 5.1. List of species used and sample size, along with the number of samples successfully 
sequenced for region examined. For M. mulatta, samples from two different populations were 
used: India and China. For more information on the sources of these samples, see Table A.1 in 
Appendix A.

5' Exonic 3' Total
M. mulatta 27 21 26 27 20

Indian 13 13 12 13 12
Chinese 14 8 14 14 8

M. fascicularis 12 11 7 12 7
M. fuscata 11 11 9 11 9
M. nemestrina 6 6 5 6 5
M. sylvanus 6 5 1 6 1
M. assamensis 1 1 1 1 1
M. cyclopis 1 1 1 1 1
M. nigra 1 1 1 1 1
M. silenus 1 1 1 1 1
C. aethiops 1 1 0 1 0
Total 67 59 52 67 46

Species N
Succsessfully Sequenced

Table 5.2. Recombination estimate, C (and C scaled per base pair), obtained for SLC6A4. In 
addition to overall recombination found across all regions sequenced (Total), estimates for each 
individual region were obtained. Recombination estimates were calculated using just M. mulatta
samples as well as over all samples available.

C per bp C per bp
5' 0 0 0 0
Exonic 21.053 0.006 23.945 0.007
3' 0 0 2.369 0.003
Coding 0 0 0 0
Total 21.438 0.004 20.745 0.004

M. mulatta All samples
Region
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Table 5.3. Indices of within-species genetic diversity found in SLC6A4 for four species of 
macaques. Number based on all areas sequenced. Indices include the number of polymorphisms 
found within each species and two estimates of theta. The polymorphisms found within each 
species are separated into two types: SNPs and indels. In addition, the location of the 
polymorphisms indicated (UTR, Exon, or Intron), as are the number of nonsynonymous (NS) 
polymorphisms

India China Total
Polymorphic sites 40 41 53 30 12 30

SNP 33 36 45 19 12 29
Indel 7 5 8 1 0 1
UTR 9 12 14 5 2 4
Introns 30 27 36 15 10 23
Exons 1 3 3 0 0 3
NS polymorphisms 1 1 1 0 0 1

Theta (S) 8.84 10.85 10.58 6.29 3.49 10.25
Theta (Pi) 8.71 11.93 11.05 7.67 3.54 11.82

M. mulatta M. 
nemestrina

M. 
fuscata

M. 
fascicularis

.

Table 5.4. Genetic distance within and among species, average of all loci, for SLC6A4. Numbers 
based on all areas sequenced. The diagonal elements show the average number of pairwise 
differences within species and the off-diagonal elements show the avareage number of pairwise 
differences among species.
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M. mulatta 0.0022
India NA 0.0017
China NA 0.0025 0.0024

M. fascicularis 0.0032 0.0033 0.0030 0.0015
M. fuscata 0.0035 0.0038 0.0031 0.0032 0.0007
M. nemestrina 0.0043 0.0044 0.0041 0.0038 0.0041 0.0024
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Table 5.5. Results of five selection tests for SLC6A4. Tests are based on all areas sequenced. 
MK: McDonald-Kreitman test. The number for MK represents the G-value obtained by the 
trapezoidal method of numerical integration in DNAsp. The numbers for the HKA test represent 
the sum of deviations calculated in the HKA program. For all tests but Tajima's D, M. sylvanus 
was used as the outgroup. Tajima's D does not require an outgroup.

Species
Fay and 
Wu's H

p-value
Tajima's 

D
p-value MK p-value ω p-value HKA p-value

M. mulatta 0.049 0.424 -0.459 0.386 0.288 0.591 0.442 0.280 11.471 0.322
Indian 0.015 0.418 -0.557 0.341 0.079 0.779 0.513 0.295 11.216 0.341
Chinese 2.183 0.720 -0.244 0.418 0.156 0.693 0.356 0.194 13.842 0.180

M. fascicularis 0.545 0.548 0.746 0.814 NA --- 0.324 0.257 11.731 0.303
M. fuscata 2.013 0.942 0.050 0.600 NA --- 0.162 0.113 8.733 0.558
M. nemestrina 2.133 0.669 0.641 0.748 0.067 0.795 0.324 0.217 8.742 0.557

Table 5.6. Results of Fay and Wu's H looking at only the 5' region. 

Species
Fay and 
Wu's H

p-value

M. mulatta -1.882 0.053
Indian -1.711 0.008
Chinese -0.283 0.246

M. fascicularis 0.294 0.600
M. fuscata 0.416 0.821
M. nemestrina 1.455 0.888
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CHAPTER 6

REVIEW AND CONCLUSION

A REVIEW OF OBJECTIVES AND DISCUSSION OF FINDINGS

This dissertation explores the evolutionary history of the serotonin system in macaques.

Serotonin, which plays a primary role in regulating behavior, is the subject of an exceptionally 

large body of research, due in large part to its connection with mental and physical health. As 

such, much of this work has been restricted to the psychological and medical fields. This has lead 

to an overwhelming focus on understanding the proximate mechanisms of the serotonin system, 

while discussion of ultimate questions about serotonin has largely been relegated to a side note.

This is unfortunate, since the serotonin system has the potential to inform our understanding of 

behavioral evolution.

On the other hand, behavioral studies within anthropology that use an evolutionary 

framework are also lacking. The study of behavioral evolution largely focuses on explanations 

that emphasize the current adaptational value of a behavior, particularly in terms of ecological 

pressures (Rendall and Di Fiore, 2007), such as in the socio-ecological model (Wrangham, 1980; 

Van Schaik, 1989; Sterck et al., 1997). However, these models are insufficient on their own, as 

they tend to underestimate the effects of phylogeny, drift, and the underlying genetic structure of 

a behavior (Grafen, 1984; Owens, 2006), despite evidence that these forces may shape 

behavioral evolution (Spuhler and Jorde, 1975; de Queiroz and Wimberger, 1993; Di Fiore and 

Rendall, 1994; Chan, 1996; Owens, 2006; Rendall and Di Fiore, 2007). Moreover, these studies 

often fail to consider the biological aspects of the behavior (i.e., proximate mechanisms), when 

examining its evolution. Thus, studies on the evolution of behavior must go beyond simple 
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adaptationist explanations to include considerations of the evolutionary history of the species, the 

underlying biology of a behavior, and the multiple evolutionary forces that can affect behavior 

(Lewontin, 1979; Owens, 2006).

It is with these concerns in mind that I framed this project. Because serotonin provides a 

biological mechanism through which evolution may act to shape behaviors, the examination of 

the genes underlying the serotonin system presents one way to explore behavioral evolution. In 

contrast to observational studies that focus on the fitness outcomes of a behavior, an approach 

using molecular evolutionary theory allows for explicit testing of multiple evolutionary forces, 

including random genetic drift. Thus, I examined the genetic variation within and between 

several species of macaques for four serotonin related genes – HTR1A, HTR1B, TPH2, and 

SLC6A4 – and inferred the role of selection in their evolutionary history.

For three out of the four genes, I found that selection – specifically positive and balancing 

selection – has not played a significant role in shaping genetic variation. Instead, the incredibly 

low number of mutations occurring within the coding regions suggest that purifying selection is 

acting to preserve the protein structure for serotonin receptor 5-HT1B (coded by HTR1B), the 

second isoform of tryptophan hydroxylase (coded by TPH2), and the serotonin transporter 

(coded by SLC6A4). In terms of variation in potential regulatory regions, namely the introns and 

untranslated regions, neutral evolution predominates. While Fay and Wu's H for M. mulatta was 

significant for both TPH2 and the 5' region of SLC6A4, this is best explained as an artifact of 

demographics – specifically, this is likely due to the presence of population structure. 

Nevertheless, Fay and Wu's H do indicate significant evolution, if not selection. That is, the 

Chinese and Indian populations of M. mulatta have a number of derived alleles with higher than 

expected frequencies for TPH2 and SLC6A4, respectively. Because this dissertation examines 
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genes underlying the serotonin system from a statistical viewpoint only, the phenotypic effects of 

these alleles are unknown. However, if these alleles do have a significant effect on behavior, then 

the results presented here indicate that behavioral differences observed for these two populations 

are likely an artifact of demographics, and not selection. This suggests that not all behaviors are 

adaptive, a prospect not often considered in studies of primate behavior.

This is not to say that the serotonin system is completely unaffected by positive selection. 

In fact, the results obtained for one gene – HTR1A – argue against this. For this gene, which 

codes for serotonin receptor 5-HT1A, I obtained strong evidence for selective sweeps occurring 

within the macaque genus. Compared to every other locus analyzed, HTR1A shows extremely 

large interspecific differences, especially relative to intraspecific variation, as indicated by the 

HKA test. Moreover, a subset of the macaque species all share a codon loss, an extremely rare 

event in gene evolution, and an approach that examined the rate of coding evolution from a 

phylogenetic framework (PAML) gave significant results. That none of the other genes 

examined showed evidence for selection only highlights the unusual genetic pattern found in 

HTR1A, and strengthen the interpretation of positive selection. The results of this research raise 

the question, why has positive selection acted on HTR1A, to the exclusion of the other genes 

analyzed? Put another way, if selection is acting on the serotonin system, why is evidence of 

selection only found in HTR1A? I suggest four possible explanations. 

One of the most challenging aspects of addressing a complex trait such as behavior from

a genetic framework is the knowledge that even very strong selection is likely to leave a genetic 

signature that is "diluted" over several genes, and therefore difficult to detect with current 

methods (Lande, 1975). However, Robertson (1967) suggested that for quantitative traits, the 

distribution of allelic effects is expected to be exponential. That is, most of the variation of a 
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trait, such as behavior, will be explained by a few alleles with large effect, while the remaining 

variation is attributable to an increasingly larger number of alleles of smaller effect. Thus, one 

interpretation of the results is that, for macaques, HTR1A might be classified as a gene of major 

effect. Accordingly, selection acting on phenotypes regulated by serotonin, such as dispersal, 

will predominantly affect HTR1A but show only "diluted" signals in other genes of minor effect. 

While this certainly fits the results, it suggests that TPH2, HTR1B, and SLC6A4 have only minor 

effects on phenotypes, and this seems to contradict what much of research in psychology has 

indicated. For example, in examining SLC6A4 in relation to anxiety, Lesch et al. (1996) found 

that the polymorphism in the promoter region alone explained 3-4% of total variance, and 7-9% 

of genetic variance. While this is not a particularly large contribution to genetic variance, it is 

certainly not negligible either. However, these estimates were based on humans, and it is 

possible that in macaques that the contribution of SLC6A4 to genetic variance is actually much 

smaller. 

A second, closely related explanation for the results obtained here is that selection on one 

gene – HTR1A – was sufficient to produce adaptive change. In order to evolve a set of behaviors, 

there are multiple proximate routes that a species can take. For example, serotonin is only one 

neurological system that has been associated with behavior, and it is possible to create behavioral 

changes through modification of the oxytocin (Kirsch et al., 2005) or dopamine (Garcia et al., 

2010) systems. Even within the serotonin system, selection could have acted on any number of 

different components, as demonstrated by the genes examined here. Thus, even though genes 

such as TPH2 and SLC6A4 are important in regulating behaviors, it is possible that the genetic 

variation present in HTR1A at the time of selection was such that it allowed behaviors to move 

towards their optimum without necessitating concurrent changes in the other genes. Put another 
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way, the genetic variation necessary to evolve adaptive behavior might not have been present in 

TPH2, HTR1B, or SLC6A4, but was present in HTR1A. Thus, selection acted along the only path 

(or gene) available.

A third explanation is that these genes, while extremely important in regulating 

behaviors, are largely shielded by environmental or genetic "buffers." Certainly, many of these 

studies have demonstrated a significant gene by environment interaction (e.g., Bennett et al., 

2002; Champoux et al., 2002; Caspi et al., 2003; Wasserman et al., 2006). Therefore, it may be 

that outside of, for example, captive environments, the circumstances under which negative 

behaviors might develop are exceedingly uncommon, and thus selection will only rarely have the 

chance to act on genes that contribute to the maladaptive behavior. Closely connected to this is 

the idea that these genes are best thought of as plasticity genes (Belsky et al., 2009; Homberg 

and Lesch, 2010; Chapter 2) with certain genetic variants showing a stronger gene by 

environment interaction (Figure 2.6). The presence of genetic variants that increase plasticity 

will result in a lowered correlation between genotype and phenotype. If plasticity itself is not 

under selection, but a particular behavior or set of behaviors are, "plasticity" genes will act to 

diminish the effects of selection. Hence, these genes will evolve in a neutral fashion. If this is the 

case, the results for HTR1A suggest that this gene is somehow less "buffered" than the other 

genes. Future studies that compare the relative influence of environment on each of these genes 

would help to address this hypothesis.

Finally, it is possible that I detected selection on HTR1A, and not TPH2 or SLC6A4, 

because it is a low complexity gene, with no introns and decreased recombination rates. These 

features certainly allowed me to obtain more complete sequencing data for HTR1A than for 

TPH2 or SLC6A4, and because recombination can lessen the signal of selection (Hudson et al., 
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1987; Przeworski, 2002) it is likely that selection on "simpler" genes is easier to detect. While 

this does not explain the non-significant results for HTR1B, it would explain why SLC6A4, 

which is so widely studied and so well connected to behavior, did not show signs of selection.

These explanations are not mutually exclusive, and it is likely that a combination of all of 

these factors contributed to results described here. Regardless, it is clear that, although drift, 

demography, and purifying selection are important evolutionary forces, positive selection has 

acted on at least one attribute of the serotonin system. Previous studies have theorized on the role 

of selection in the evolution of serotonin functioning, but very few have actually tested these 

theories (but see Claw et al., 2010). By using a molecular genetic approach, this research 

provides empirical evidence for the importance of the serotonin system in macaque evolution.

Furthermore, by highlighting 5-HT1A as an important feature in macaque evolution, the results of 

this dissertation provide a guide for future studies. Serotonin functions as part of an incredibly

complex neurological system, with many different components and levels of interactions. We 

can address some of this complexity by narrowing investigations to the most critical components 

of this system. This dissertation provides such a focus with 5-HT1A, and lays the groundwork for 

a large body of exciting research.

FUTURE RESEARCH

The primary aim of this dissertation was to explore the evolutionary history of the 

serotonin system, a neurological structure with strong connections to behavior. The results of this 

work have contributed to our understanding of evolution, but they have also raised several 

important questions. Thus, this dissertation represents a starting point. For the remainder of this 
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chapter, I shall outline potential avenues of future study that I wish to explore, which will build 

on the research established here.

One question that has been raised concerns HTR1A. Past genetic studies have shown that 

the Sulawesi macaques are a subset of M. nemestrina genetic variation (e.g., Evans et al., 1999), 

and thus it seems highly unusual for HTR1A to show no association between the Sulawesi 

samples and the M. nemestrina samples. I postulated that one potential explanation for this 

pattern is that HTR1A regulates dispersal behavior, and divergent haplotypes would be expected 

to be present in species with a large geographic range or in species that occupy the outskirts of 

the macaque range, such as Sulawesi macaques (Chapter 3). If this is true, a wider sampling of 

M. nemestrina – specifically from the areas of Borneo and Sumatra, which border Sulawesi –

might reveal M. nemestrina individuals who possess the Sulawesi-like haplotypes of HTR1A. If I 

can show that, relative to other genes, HTR1A is unique in segregating geographically, this 

would provide evidence for the dispersal hypothesis. Thus, I am currently working on a follow-

up study, in collaboration with D. Melnick at Columbia University, to examine the genetic 

variation of HTR1A in M. nemestrina on a geographic scale.

Additionally, another line of research involves the promoter region of SLC6A4. I was 

unable in this dissertation to fully address the evolutionary history of this locus. However, given 

that it is a major source of research and has been repeatedly implicated in behavior studies 

(Chapter 2), it would be worthwhile to fully sequence this region and apply a more thorough 

analysis. While the genetic variation of SLC6A4 did not indicate positive selection, the promoter 

region is approximately 15 kilobases upstream of SLC6A4, and appears to be unlinked to the 

gene (Chapter 5). Consequently, a separate analysis might produce very different results.
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While these two potential studies are interesting and can help to address some of the gaps 

in this dissertation, they are largely an extension of what I have already carried out. Studies using 

different approaches and methodologies are needed to complement and enhance the work in this 

dissertation. Key to this process is identifying the phenotypic outcomes of the polymorphisms 

identified in these studies. While evolution ultimately works on a genetic level, and was 

therefore the focus of this dissertation, selection, and therefore adaptation, works at the 

phenotypic level. Thus to understand, for example, why selection seems to have acted on HTR1A

and not any other gene studied here, the phenotypic effects of HTR1A must first be known.

One way to examine the effects of mutations occurring within and around genes is to 

look at differences in expression patterns. This would allow us to see if a certain polymorphism 

changes the activity level of a gene and would narrow the focus to a few key mutations. The next 

step would be to examine the effect on serotonin genetic variation and behavior. In terms of 

looking at M. mulatta, the California National Primate Research Center (CNPRC) at UC Davis 

has behavioral data over 3,000 individuals M. mulatta individuals and most of these individual's 

DNA has been banked and is available for sequencing (Capitanio, personal communication). 

Furthermore, their population consists of pure Chinese individuals, pure Indian individuals, and 

Chinese-Indian hybrids. This provides an amazing opportunity to obtain a more detailed 

understanding of the effects of serotonin genetic variation on behavior and to relate this to the 

results obtained here. For example, I found that Indian M. mulatta are differentiated from 

Chinese M. mulatta by the presence of two large indels in Intron 1 of SLC6A4, but concluded 

that past demographic events, rather than selection, were more likely to have caused the 

evolution of this inter-population difference (Chapter 3). Establishing a connection between 
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these indels and behavior would provide a clear example of how demography can shape 

behavioral evolution and would deepen our understanding of macaque evolution.

However, for HTR1A, much of the interesting genetic variation is occurring between 

species. This makes assessment of genetic effects somewhat difficult. A critical starting point is 

to sample and observe animals in hybrid zones. Along these lines, work being done on baboons 

might provide a useful analog. While not a direct extension of this research, much of the 

techniques utilized throughout this study could be used as a basis for work in these species. 

Previous evidence has shown that serotonin profiles in two species of baboons (Papio anubis and 

P. hamadryas) are distinct, and that naturally occurring hybrids are intermediate between the two 

species (Jolly et al., 2009). Moreover, these differing profiles reflect the behavioral differences 

between the two species, as hybrids with more “hamadryas-like” serotonin levels exhibited more 

“hamadryas-like” behaviors. The presence of a hybrid zone provides a natural experiment to look 

at the genetic profiles of these two species and identify genes that may underlie the species-level 

differences in behavior. Furthermore, by studying primates in natural settings, we can begin to 

address other, related questions. For example, how does environment interact with genetics? Or, 

how do behavioral differences, and the genetic architecture underlying behavior, contribute to 

the formation and maintenance of species? Addressing these questions will help to further situate 

the evolutionary importance of the serotonin system.

Studying behavior from a genetic point of view is incredibly challenging; at any given 

moment, there are a thousand different factors – biological and otherwise – that contribute to a 

behavior. To try to pinpoint the role of genetics, and evolution, within the myriad of other 

influences is a large task to carry out, and we are only beginning to develop the tools necessary. 

However, that very same aspect of behavioral and evolutionary genetics creates an incredible 
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wealth of potential research, and by continuing to pursue questions about evolution, genetics, and 

behavior, we may one day be much closer to understanding why we do the things we do. 
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APPENDIX A

ADDITIONAL DISCUSSION OF OUTLIER M. FASCICULARIS HAPLOTYPE

Although most haplotypes found for each species tended to group together, one Macaca 

fascicularis haplotype provided an outlier for HRT1A. Despite there being evidence of 

recombination occurring around the gene, this individual did not share any of the polymorphisms 

that distinguished the other M. fascicularis samples and instead showed greater similarity to the 

M. nemestrina, M. assamensis, and M. silenus samples. I took this as evidence of either 

substructure within M. fascicularis, which can affect selection tests, or introgression. If the 

individual outlier is due to population substructure, this violates many of the assumptions of the 

selection tests. In such situations, the effect of substructure can be addressed by analyzing each 

subpopulation separately. If the outlier is due to introgression, then this M. fascicularis

individual is not representative of the entire M. fascicularis species. In either case, removal of the 

outlier from analyses is warranted.

Inclusion or exclusion of the sample does not have an effect on most of the analyses. 

Specifically, for either gene examined, the results of the McDonald-Kreitman and the maximum 

likelihood analyses carried out in PAML do not differ whether or not this sample is included. 

Results for ω do differ, but only slightly. Specifically, when the outlier is included, the M. 

fascicularis and M. sylvanus comparison becomes significant and the M. fascicularis and M. 

fuscata comparison becomes nonsignificant. However, ω remains similar and all results for ω, 

both with and without the outlier, have p-values less than 0.077. That is, all results approach 

significance, and therefore the interpretation of the results remains unchanged. 

However, its inclusion does affect the outcome of the HKA tests for HTR1A; the results 

obtained when M. fascicularis is compared to the other macaque species are no longer 
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significant. This is primarily because the HKA program employed 

(http://genfaculty.rutgers.edu/hey/software) uses the number of polymorphic sites to determine 

the level of within-species variation. When the outlier is included, this estimate of within-species 

variation is increased such that its proportion to between-species variation more closely matches 

that seen in the non-coding regions. That is, the high level of between-species variation seen for 

HTR1A for M. fascicularis no longer appears anomalous. However, the number of polymorphic 

sites does not allow for unequal frequencies of haplotypes; in this case, a single individual 

accounted for approximately 75% of the number of polymorphic sites. 

It should be noted, though, that even if I did include this outlier, there were still 

significant results in the analyses carried out in PAML and for the HKA tests that compared M. 

nemestrina to the mulatta group. Therefore, there remains evidence for selection occurring on 

some of the macaque lineages for HTR1A.

ADDITIONAL DISCUSSION OF POSSIBLE EFFECT OF NON-SELECTIVE EVOLUTIONARY FORCES

It is possible that several non-selective forces could have affected the results, such as 

demography, increased mutation rate, and recombination. However, this is unlikely. 

Demographic events, such as a rapid population expansion, are expected to have a similar effect 

on all genes, and I did not see a similar pattern in either HTR1B or the five non-coding loci that 

were sequenced. In addition, a demographic event is unlikely to produce the results found in the 

likelihood ratio tests (LRTs), as tests based on ω do not depend on demographic assumptions 

(Nielsen, 2005).

It is also unlikely that an increase in mutation rate for the HTR1A gene produced the 

pattern found. One major cause of increased mutation rate in mammals is the methylation of 
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CpG sites, which causes an increase in C to T mutations (and G to A mutations if on the opposite 

strand). I examined the possibility that this was the case for HTR1A. While a large proportion 

(24%) of the polymorphisms occurred in the expected direction at CpG sites in HTR1A, this was 

also true for HTR1B (22%). Furthermore, the polymorphisms at the CpG sites were more likely 

to be the cause of within-species variation, rather than among-species variation. Thus, mutation 

induced by CpG methylation does not explain the unique pattern found in HTR1A. While there 

are other causes of increased mutation rate, these also seem unlikely as the HKA test is designed 

to account for these factors, even if it does so imperfectly. The HKA test is based on the premise 

that the neutral mutation rate will drive both the within-species variation and the among-species 

divergence in a proportional manner (Hudson et al., 1987). Although the among-species 

divergence is higher for HTR1A than for HTR1B, an elevation in mutation should also cause an 

increase in within-species variation as well. A look at Table 5 shows that, except for M. 

nemestrina, this is not the case. Furthermore, as with demography, this would not explain the 

significant results from the LRTs.

Finally, I found evidence for recombination, which can affect analyses. This is a 

conservative assumption for the HKA test, but its presence can lead to an increase in false 

positives for both MK and LRT comparing various sites models. Since there were nonsignificant 

p-values in the MK test and significant p-values in the HKA test, these results were probably not 

due to the presence of recombination. In contrast, the significant results achieved using the LRT 

could be the result of recombination, rather than selection (Anisimova et al., 2003). However, 

this is unlikely for two reasons. First, the recombination estimates are based on the entire region 

sequenced, but the LRTs used in PAML are based on the coding region alone. Estimates of the 

recombination rate (C) using only the coding region are zero. Second, estimates of C for the 
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entire region were low. Anisimova et al. (2003) showed that a LRT comparing M7 to M8 

showed no difference in the rate of false positives when C = 0.001 than when C = 0. While the 

estimate of recombination is higher than this, p-values were well below a significance level of 

5% or even 1%. Thus, a mild increase in the rate of false positives due to recombination seems 

unlikely to be responsible for the results, although this cannot be entirely ruled out.
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FIGURES AND TABLES

Figure A.1. Haplotype networks for the coding regions only of HTR1A (top) and HTR1B
(bottom). Each circle represents a haplotype whose size is proportional to the frequency of the 
haplotype. The lengths of the lines connecting the circles are proportional to the number of 
mutations that separate each haplotype. To provide scale, a few of the lines are labeled to show 
the number of mutations between haplotypes. Because of the larger number of mutations 
separating the vervet from the macaques in HTR1B, this line is not drawn to scale. 
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Table A.1. List of sources for species samples. Number of samples indicates the number of 
individuals for which complete sequence data were obtained for both genes. NINPRC = New 
Iberia National Primate Research Center. *See Ferguson et al. (2009).

Species
# of 

samples
Extracted 
from

Source

M. mulatta 20 blood DG Smith and J Satkoski, UC Davis
Indian 11 blood DG Smith and J Satkoski, UC Davis
Chinese 9 blood DG Smith and J Satkoski, UC Davis

M. fascicularis 11 blood DG Smith and J Satkoski, UC Davis 
M. fuscata 11 blood Oregon National Primate Research Center*
M. nemestrina 6 blood DG Smith, UC Davis; NINPRC
M. sylvanus 4 blood DG Smith, UC Davis; A. Deinard
M. assamensis 1 blood NINPRC
M. cyclopis 1 blood New England National Primate Research Center
M. nigra 1 blood Baltimore Zoo
M. silenus 1 blood Woodland Park Zoo
C. aethiops 1 blood NINPRC
Total 57



218

Table A.2. List of primers used to sequence HTR1A and HTR1B. For both genes, the number in 
the primer name represents the position of the primer relative the start of the coding region, with 
+1 marking the first nucleotide of the start codon. For HTR1A, these numbers are based on the 
rhesus macaque reference genome. For HTR1B, I followed the numbering system of Cigler et al. 
( 2001), which is based on the human genome. For the source column: a = primers designed for 
this project; b = primers published Cigler et al. (2001).

Gene Primer ID Sequence Type Source
HTR1A HTR1A_-433F 5'-ACA GAG TGA CCG TGG AGG ATG-3' PCR and Sequencing a

HTR1A_-309F 5'-AGC GAC AGA CAG ACG TTC C-3' Sequencing a
HTR1A_18F 5'-TGG TCA GGG CAA CAA CAC-3' Sequencing a
HTR1A_272R 5'-ATG GGC AGC ACT AAC ACC-3' Sequencing a
HTR1A_-107R 5'-TCG GAG GAA GGG AAT GCA G-3' Sequencing a
HTR1A_621R 5'-CAG CGG GAT GTA GAA AGC-3' Sequencing a
HTR1A_328F 5'-CTG TTT ATC GCC CTG GAC-3' Sequencing a
HTR1A_479F 5'-GGC TTA TTG GCT TCC TCA TC-3' Sequencing a
HTR1A_1074R 5'-AAG CCA GCA GAG GAT GAA GG-3' Sequencing a
HTR1A_1262R 5'-TGG CGG CAG AAC TTA CAC-3' Sequencing a
HTR1A_942F 5'-TTG TGC CTC CGC CTC TTT-3' Sequencing a
HTR1A_1523R 5'-GCA AAG TCT GAG CCA ATG TC-3' Sequencing a
HTR1A_1187F 5'-CGG TCA TTT ACG CAT ACT TC-3' Sequencing a
HTR1A_1364F 5'-CTT CTT CTC TGT CTC TCT GCT C-3' Sequencing a
HTR1A_1954F 5'-CCC TGC TTC CTT TGT TTC-3' Sequencing a
HTR1A_2212R 5'-GCC TCC CGC AGT AAG TAA GTG-3' PCR and Sequencing a

HTR1A_-1071F 5'-AGT GCA GTG GCG CGA GAA-3' PCR and Sequencing a
HTR1A_-1059F 5'-CGA GAA CGG AGG GAG GTA AC-3' Sequencing a
HTR1A_-660R 5'-AGT GCC TCT TTC CTC TGG-3' Sequencing a
HTR1A_-744R 5'-TCA GAA CTC ACT TAC ACA CAC C-3' Sequencing a
HTR1A_-530R 5'-CAC TTG CCT TCC CTT TCA GT-3' PCR and Sequencing a

HTR1B HTR1B_1247R 5'-TTC GAC CTA CCT GTG GAA CC-3' PCR and Sequencing b
HTR1B_-174F 5'-GGC TGC CGC ACC CAT GAC CT-3' Sequencing b
HTR1B_864F 5'-CCA AGT CAA AGT GCG AGT CT-3' Sequencing b
HTR1B_-40R 5'-ATG GAG CGG ACG AAG GAG A-3' Sequencing b
HTR1B_493R 5'-TCT TGG GAG TCC TTT TAG C-3' Sequencing b
HTR1B_317F 5'-GCA CCA TGT ACA CTG TCA CC-3' Sequencing a
HTR1B_-595F 5'-CAG CGC TGC TCC TAG ACT TC-3' PCR and Sequencing b

HTR1B_957F 5'-TTT GGG AGC CTT TAT TGT G-3' PCR and Sequencing a
HTR1B_1385R 5'-TGG GCA GGG AAG TTC TAC-3' Sequencing a
HTR1B_1231F 5'-TCC ACA GGT AGG TCG AAT C-3' Sequencing a
HTR1B_1536R 5'-TGG TTC TAG TGG GCA TTA TC-3' PCR and Sequencing a
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Table A.3. Additional non-coding loci sequenced. The nearest feature was identified by blasting 
the consensus sequence against Build 1.1 (annotated) of the rhesus genome on the NCBI website.

Chromosome Name
Fragment Length 
(base pairs) Nearest Feature (base pairs)

4 Chr04-2 478
69,159 at 5' side: similar to Eukaryotic 
translation elongation factor 1 epsilon-1

6 Chr06-5 428 77,112 at 5' side: hypothetical protein

9 Chr09-2 526 None within 1Mb

14 Chr14-2 462
68,130 at 5' side: CD82 molecule 
isoform 1

20 Chr20-1 400
20,964 at 3' side: similar to 
xylosyltransferase I
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Table A.4. Genetic distance within and between species for the five non-coding regions 
sequenced. The diagonal elements show the nucleotide diversity within species and the off-
diagonal elements show the nucleotide diversity between species. For ease of comparative 
purposes to HTR1A, all areas where the nucleotide diversity of HTR1A was relatively higher than 
in the non-coding regions are highlighted, which most commonly occurred between species (off-
diagonal) and tend to reflect the results of the HKA test. For the ratio of nucleotide diversity of 
HTR1A to a non-coding region, x, light gray = 1 < x ≤ 1.5; medium gray = 1.5 < x ≤ 3; blue/dark 
grey = 3 < x. Ratios could not be calculated where nucleotide diversity of the non-coding region 
equaled 0. Ratios were determined using the nucleotide diversity calculated when outlier was 
removed. Mul = M. mulatta; Fas = M. fascicularis; Fus = M. fuscata; Nem = M. nemestrina; Syl 
= M. sylvanus.

Chr04-2 Chr14-2
Mul Fas Fus Nem Syl Mul Fas Fus Nem Syl

Mul 0.0031 Mul 0.0042
Fas 0.0037 0.0036 Fas 0.0062 0.0049
Fus 0.0051 0.0059 0.0020 Fus 0.0043 0.0038 0.0006
Nem 0.0019 0.0021 0.0038 0.0000 Nem 0.0029 0.0044 0.0027 0.0004
Syl 0.0122 0.0119 0.0142 0.0104 0.0000 Syl 0.0063 0.0078 0.0068 0.0045 0.0000

Chr06-5
Mul Fas Fus Nem Syl Chr20-1

Mul 0.0034 Mul Fas Fus Nem Syl
Fas 0.0043 0.0039 Mul 0.0024
Fus 0.0023 0.0032 0.0009 Fas 0.0037 0.0043
Nem 0.0038 0.0045 0.0024 0.0037 Fus 0.0017 0.0029 0.0009
Syl 0.0019 0.0026 0.0006 0.0019 0.0000 Nem 0.0023 0.0036 0.0015 0.0018

Syl 0.0183 0.0198 0.0180 0.0185 0.0000
Chr09-2

Mul Fas Fus Nem Syl
Mul 0.0065
Fas 0.0080 0.0050
Fus 0.0077 0.0083 0.0007
Nem 0.0070 0.0049 0.0068 0.0034
Syl 0.0279 0.0251 0.0305 0.0267 0.0000
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APPENDIX B

ADDITIONAL TABLES

Table B.1. List of primers used to sequence TPH2. The number in the primer name represents 
the position of the primer relative the start of the coding region, with +1 marking the first 
nucleotide of the start codon. These numbers are based on the rhesus macaque reference genome. 
For the source column: a = primers published by Chen et al. (2006); b = primers designed for this 
project; a, b = primers based on Chen et al. (2006), but modified for this project.

Primer ID Sequence Type Gene Region Source
TPH-1312F 5'-TGC ATG TCA AGT TGC TGG AT-3' PCR and Sequencing 5'UTR and Exon 1 a
TPH214R 5'-TTG AGG TGT GCG TGC TTA C-3' PCR and Sequencing 5'UTR and Exon 1 a, b
TPH-777F 5'-GGC TGA TAG GAG GAA TAA GA-3' Sequencing 5'UTR and Exon 1 a
TPH-319R 5'-GGG TGG TGG AGA ACA ATA CAT AA-3' Sequencing 5'UTR and Exon 1 a
TPH-271F 5'-CAG ATA ACC CCA GGC TTC AG-3' Sequencing 5'UTR and Exon 1 a
TPH-230R 5'-TGG CCA CAG TCA GAT TAC AGA C-3' Sequencing 5'UTR and Exon 1 a
TPH-974R 5'-TTG ATT TAG CCA CAG GGA GTT T-3' Sequencing 5'UTR and Exon 1 a
TPH-1209F 5'-CCT CAC CAC ATA ACA CAC AG-3' Sequencing 5'UTR and Exon 1 b
TPH-1211R 5'-GGA GGC AGA GGT TAA GAG TAC-3' Sequencing 5'UTR and Exon 1 b
TPH-707F 5'-CTG AAA GAG TGG AAT TGG AAT G-3' Sequencing 5'UTR and Exon 1 b
TPH-378R 5'-GAC GTT AGC TCT CTC ATC TCT C-3' Sequencing 5'UTR and Exon 1 b
TPH-387R 5'-TCT CTC ATC TCT CAA GCC TG-3' Sequencing 5'UTR and Exon 1 b
TPH3435R 5'-TTT GTA AGG GAG GGT GTT TG-3' PCR and Sequencing Exon 2 b
TPH2224F 5'-TGA TTC AAT GAC GCT AAG AG-3' PCR and Sequencing Exon 2 b
TPH2921R 5'-GCC ACA GCT TAT ACA ATT CT-3' Sequencing Exon 2 b
TPH2620F 5'-TGA CGA CAA AGG CAA CAA G-3' Sequencing Exon 2 b
TPH3035F 5'-AAA CAC AAG AGG AGC CAA AC-3' Sequencing Exon 2 b
TPH2558R 5'-TAG TTA GGG TTC CAG AAT CC-3' Sequencing Exon 2 b
TPH2244R 5'-TCT CTT AGC GTC ATT GAA TC-3' Sequencing Exon 2 b
TPH2978F 5'-TAT TGC CAG GTT AGG AGG TC-3' Sequencing Exon 2 b
TPH3306R 5'-GCC TGA GAA GAT GCT ACG AC-3' Sequencing Exon 2 b
TPH5128F 5'-CTC TCT GGG AAA TGA TGA TG-3' PCR and Sequencing Exons 3-4 b
TPH6536R 5'-TGG GTG CAT TGC TTA CTT CT-3' PCR and Sequencing Exons 3-4 b
TPH5462R 5'-CCG AGA TTT CCT GGA TTC-3' Sequencing Exons 3-4 b
TPH5309F 5'-CCT CTT GCA TGG GTA CTT G-3' Sequencing Exons 3-4 b
TPH5606F 5'-GGG TGG TCT TAG CTT GTT G-3' Sequencing Exons 3-4 b
TPH6141F 5'-GAT CAT GCC TCT GGG AAA C-3' Sequencing Exons 3-4 b
TPH6337R 5'-TCA GGG TAG ATG TGG GAA G-3' Sequencing Exons 3-4 b
TPH6003R 5'-CCA TCC TTC TAA CCT GCT TC-3' Sequencing Exons 3-4 b
TPH5224R 5'-ACT TCT GTG TAT AGG TTG TCC-3' Sequencing Exons 3-4 b
TPH5192F 5'-TTA TAT GAG GCA GGA CAA CC-3' Sequencing Exons 3-4 b
TPH5248F 5'-ACA GAA ATA ATG GTT GGA AA-3' Sequencing Exons 3-4 b
TPH5366R 5'-TGC CAT CAG CTT TTC TTG-3' Sequencing Exons 3-4 b
TPH5983F 5'-GGA AGC AGG TTA GAA GGA TG-3' Sequencing Exons 3-4 b
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Table B.1 (cont).

Primer ID Sequence Type Gene Region Source
TPH89706F 5'-CAT TCA TTG TTC CCT GCT G-3' PCR and Sequencing Exons 10-11 and 3'UTR b
TPH91891R 5'-AGG CAT TAT TTC CCA TCT CC-3' PCR and Sequencing Exons 10-11 and 3'UTR b
TPH91502F 5'-GCA TTG ACC TTG TAG AAC CTG-3' Sequencing Exons 10-11 and 3'UTR b
TPH91522R 5'-CAG GTT CTA CAA GGT CAA TGC-3' Sequencing Exons 10-11 and 3'UTR b
TPH91249F 5'-AGC CTT TCC TCT GTG TTC G-3' Sequencing Exons 10-11 and 3'UTR b
TPH91367R 5'-AAG TTT CCT ACA ATT CTG GG-3' Sequencing Exons 10-11 and 3'UTR b
TPH91007R 5'-TTA GCC AAG CCA TGA CAC AG-3' Sequencing Exons 10-11 and 3'UTR b
TPH90603R 5'-CCT CAT CTT TTC TTT GGC TTC-3' Sequencing Exons 10-11 and 3'UTR b
TPH90767F 5'-ACT TCA ATC CCT ACA CGC AGA G-3' Sequencing Exons 10-11 and 3'UTR b
TPH90045R 5'-TGC GTG GAG AGG TAA TTG AG-3' Sequencing Exons 10-11 and 3'UTR b
TPH89941F 5'-TAC AGG CCC ATT CCA GAC-3' Sequencing Exons 10-11 and 3'UTR b
TPH90300F 5'-CGT GTC CAA TTT ACC CTG-3' Sequencing Exons 10-11 and 3'UTR b
TPH89884F 5'-ATT GCT CTG CTG TAG TTG CTG-3' Sequencing Exons 10-11 and 3'UTR b
TPH89813F 5'-GCT CTT GGC ATA ACT CTA ACC-3' Sequencing Exons 10-11 and 3'UTR b
TPH90255R 5'-GTA CTG TGG GAG AAA ATG AGA-3' Sequencing Exons 10-11 and 3'UTR b
TPH91846R 5'-CCA GGA CGA ATT TAT CAG G-3' Sequencing Exons 10-11 and 3'UTR b
TPH91862R 5'-TTC ACA CAT GCA CAC ACC AG-3' Sequencing Exons 10-11 and 3'UTR b
TPH91566F 5'-CAG AAA GGA CAT TAG GAA AGA C-3' Sequencing Exons 10-11 and 3'UTR b
TPH91640F 5'-AAA TTA TCG TGC TTA GGA GGT-3' Sequencing Exons 10-11 and 3'UTR b
TPH90406F 5'-GAT GTC ACG GCA CTT TGG-3' Sequencing Exons 10-11 and 3'UTR b
TPH91147R 5'-TAA GGA GAC TAA GCA GGA ATG-3' Sequencing Exons 10-11 and 3'UTR b
TPH91250R 5'-ACG AAC ACA GAG GAA AGG C-3' Sequencing Exons 10-11 and 3'UTR b
TPH89750F 5'-CTG AAC GGA GCT AAT GAT GG-3' Sequencing Exons 10-11 and 3'UTR b
TPH90423R 5'-CCA AAG TGC CGT GAC ATC-3' Sequencing Exons 10-11 and 3'UTR b
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Table B.2. Interspecific differences of TPH2. The sites listed indicate the position of the 
mutation realtive to the start of the coding region with +1 marking the first nucleotide of the start 
codon and -1 marking the nucleotide just prior to the first nuceotide of the start codon. Site 
numbers are based on the alignment of all 10 species listed. Areas shaded in grey represent sites 
within in exons. The pink shading prepresents a nonsynmous mutation (54Lys>Arg). Only sites 
that showed fixed differences between species are shown here (no intraspecific variation), 
although intraspecific polymorphisms are indicated if they occur at the same site as a fixed 
difference. For information on intraspecific variation, refer to Table 4.4. Indels are not listed 
here.
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-1268 A A A A A A A A A G -542 A A A A A A A A A G
-1255 T T T C T T T T T T -507 C C C C C C C T C C
-1229 C C C C C Y C C C C -413 Y C T C C C T C C C
-1205 C C C C A C C C C C -407 C C C C C C C C Y C
-1168 T T T T T T T T T C -399 A A A A A A A R A A
-1155 G G G G A G G G G G -380 T T T T T T T T T C
-1058 T T T T T Y T T T T -356 A A A R A A A A A A
-1054 C C C C C C C C C T -277 T T T T T T T T Y T
-998 G G G G G G G G G A -179 G G G G G G G G G A
-985 G G G G G G G A G G -139 T T T T C T T T T T
-954 A A A A A A A A R A -122 T T T T T T T T T G
-946 T T T T T T T T G T -54 C C C C C C C C C S
-921 A A A A A A A A A C 81 G G G G G G G G G A
-898 C C C C C C Y C C C 119 A A A A A A A A A G
-896 T T T T T T T T K T 120 C C Y C C C C C C T
-821 G G G G A G G G G A 137 A A A R G G A G G G
-819 T T T T T T T T T A 139 A A A A A R A A A A
-816 T T T T T T T T T G 150 C C C C C C C C C T
-815 T T T T T T T T T G 165 C C C C C C C C C Y
-795 C C C Y C C C T T C 2279 C C C C C C C C C T
-774 G G G G G G S G G G 2281 G G G G C G G G G G
-766 G G G G G G A G G G 2297 G G G G G G G G G A
-676 A A A A A A G A A A 2325 T T T T T T T W T T
-647 A A A A A G A A A A 2342 C C C Y C C C C C T
-634 C C C C C S C C C C 2361 T T T T T K T T T T
-603 A A A A A A A A A G 2404 C C C T T T C T T T
-591 C C C C C C C T C C 2424 A A A A A A A A A G
-561 G G G G G G G G G A 2452 G G G G G R G G G G
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Table B.2. (cont).
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2456 C C C C C C C C C Y 5468 G G G G G G G G G A
2493 G G G G G G G R G G 5673 T T T T T T T Y T T
2505 T T T T T T T T T K 5829 A A A A A A A A A C
2565 C C C C C C C C T C 5839 C C C C C C C C C T
2566 R G G G G A G G G G 5860 A A A A A A A A A C
2649 A A A A A A A A A G 5945 C C C C C C C C M C
2722 G G G A A R G A A A 5971 C C C C C C C C C G
2783 G G G G G G G G G A 5972 A A A G G G G G G G
2845 G G G G G G G G G A 5973 C C C C C C C Y C C
2872 C C C T T T C T T T 5974 G G G G G G G G G A
2892 G G G G G G G K G G 6012 C C C C C C C T C C
2894 G G G G G G G S G G 6108 A A A A A A A A A T
2896 C C C C C C C C C T 6145 C C C C C C T C C C
2975 A A A A A A A A A G 6151 T T T T T T T W T T
3046 G G G G G G G G A G 6252 T T T T T A T T T T
3056 A A A A G A A A A A 6307 G G G G G G R G G G
3083 A A A A A A A A A G 6308 G G G G G G G G G A
3084 R G G G G G G G G A 6331 T T T T T T T Y T T
3140 A A A A A A G A A A 6333 C C C C C C C S C C
3141 M C C C C C A C C C 6334 C Y C C C C C C C T
3248 A A A A A A A A A G 6378 T T T T T Y T T T T
3260 G G G G G R G G G G 89785 C C C Y C C C C T C
3340 T T T T T T T T T C 89803 T T T Y T T T T C T
3371 G G G G G G G G G S 89833 T T T T C T T T T T
3393 C C C C C C C C C A 89838 K T T K G G T G G G
3394 C C C C C C C C C G 89855 C C C C T C C C C C
5164 A A G A A A A A A A 89879 Y T C T T T T T T T
5252 M C A A A A A A A A 89882 A A A A A A A A A T
5264 G G G G G G G R G G 89902 C C C C G C C C C G
5277 G G G G G G A G G G 89912 A A A A A C A A A A
5301 T T T T T T T T K T 89919 G G G K G G G G T G
5317 A A A A A A A A A C 89949 C C C C T C C C C C
5362 T T T T T T T Y T T 90019 T T T T T T T T K T
5385 R G G G G G G G A G 90058 T K T T T T G T T T
5426 C C C C C C C C C T 90100 T T T T T T T T Y T
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Table B.2. (cont).
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90137 C C C C C C C C C T 91323 T T T T T T T T T Y
90171 G G G G G R G G G G 91352 T T T T T T T T T C
90186 C C C C C C C C C A 91380 C C C C C C C C C A
90222 C C C C C C C C C A 91459 K G G K G G G G T G
90304 Y C C C C C C C C A 91478 C C C C C C C C C G
90363 G G G G G G G G G A 91494 T T T T T T T T T C
90369 C C C M A A C A A A 91496 T T T T T T T T T C
90372 T T T T C T T T T T 91497 G G G G G G G G G A
90416 A A A M A A A C C A 91531 A A A A A A A A A G
90427 A A A A A G A A A A 91558 C C C C C C C C C T
90428 Y C C C C C C C C T 91571 A A A A A R A A A A
90441 G G G G G K G G G G 91736 T T T T T T T T T C
90663 C C C C C C C C C T 91770 C C C C C C C C C G
90699 A A A A A A A A A C 91815 T T T T T T T Y T T
90707 G G G G G G G G G A 91819 G G G G G G G G G A
90717 T T T T T C T T T T 91830 G G G G G G G G G T
90741 G G G G G G G T G G 91839 T T T T C T T T T T
90781 A A A A A A A A A G 91848 G G G G G G G G G T
90799 G R G G G G G G G A 91869 C C C C C C C A C C
90874 A A A A A A A A A G 91901 T T T T T T T T T A
90959 R G G G G G G G G A 91945 K K G G G G T G G G
90975 C C C C C C C C C T 91950 K G T G G G G G G G
91014 G G G G G G G G G A 91956 K K G T T T G T T T
91170 G G K G G R G G G G 91976 C C C C C C C C C A
91177 C C C C C C C C C G 92001 T T T T T T T T T C
91229 C C C C C S C C G C 92006 A A A A A A A A A G
91246 C C C C C C C C C T 92012 T T T T T G T T T T
91283 G G G G G G G G G A 92013 C C C C C C C C C Y
91307 A A A A A A A A A G 92019 G G G R G G G G A G
91313 A A A A G A A A A C 92030 G G G G G G G G G A
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APPENDIX C

ADDITIONAL TABLES

Table C.1. List of primers used to sequence SLC6A4. The number in the primer name represents 
the position of the primer relative to a reference sequence obtained from the UCSC genome 
browser and does not indicate position relative to coding regions. For the source column: a = 
primers designed for this project; b = primers published by Wendland et al. (2006); c = primers 
published by Vallender et al. (2008).

Primer ID Sequence Type Gene Region Source
SLC_16250F 5'-CCA TAA GGT GAG ATT TCC AG-3' PCR and Sequencing 5' Region a
SLC_17259R 5'-AGT CTA AGC CAT CAT GTT CC-3' PCR and Sequencing 5' Region a
SLC_16632F 5'-TCC AAG CAC CCA GAG TTC-3' Sequencing 5' Region a
SLC_16873F 5'-TAC ACG GCA CTC TAT CCC-3' Sequencing 5' Region a
SLC_16751R 5'-CAT CCT TAC ACG CTG AGA G-3' Sequencing 5' Region a
SLC_18999F 5'-TTG TGG AAG TGT AGC CAA ATA TCA AT-3' PCR and Sequencing Exonic a
SLC_24982R 5'-GCC ATC TGT GAT CAA TCA AAA TTA AG-3' PCR and Sequencing Exonic a
SLC_18787F 5'-CAT AGC TGA CCC CCA CTT TAG G-3' Nested Primers exonic a
SLC_21551R 5'-GGT GAA GAG AGA GAG GGT GCA T-3' Nested Primers exonic a
SLC_21079F 5'-GGT GTT AGC CAA ATG GGC TTT-3' Nested Primers Exonic a
SLC_23460R 5'-AGG AGC ACT GAC AAA ACC GAA G-3' Nested Primers Exonic a
SLC_19450R 5'-GAG GTT TCA GAG GAG GCC A-3' Sequencing Exonic a
SLC_19150F 5'-TTG CAT CAG AAT CAC CTT AG-3' Sequencing Exonic a
SLC_19724F 5'-GGG ACA GTA CCA CCG AAA TG-3' Sequencing Exonic a
SLC_20314F 5'-CCT CAT CTC CTC CTT CAC GG-3' Sequencing Exonic a
SLC_20894F 5'-TGC TGG AAT TTC AGG CAA TG-3' Sequencing Exonic a
SLC_19883R 5'-CTG ACT GAT TCC AGG AGA AG-3' Sequencing Exonic a
SLC_19973R 5'-CTT CTC ATT GCC ATT TAT TCT G-3' Sequencing Exonic a
SLC_20422R 5'-GAG GGT CCA GGT GAT GTT GT-3' Sequencing Exonic a
SLC_21014R 5'-CTC CTT TGC CAA TGT GAC TG-3' Sequencing Exonic a
SLC_21688R 5'-GAG GTT TCG ACA TGT TGG CC-3' Sequencing Exonic a
SLC_22470F 5'-AAG AGA CAC TGA CGT CCA TC-3' Sequencing Exonic a
SLC_22477F 5'-ACT GAC GTC CAT CCA CCC AC-3' Sequencing Exonic a
SLC_22551F 5'-TCC CCT CCC TGG AAC AGC -3' Sequencing Exonic a
SLC_22517F 5'-TGC TCC CCT GCT CCC CTC -3' Sequencing Exonic a
SLC_1139F 5'-GCC TGG CGT TGC CGC TCT GAA T-3' PCR Promoter b
SLC_1539R 5'-CAG GGG AGA TCC TGG GAG GGA-3' PCR Promoter b
SLC_41166F 5'-GTC AAA TTC CAA CTC GCT G-3' PCR and Sequencing 3' Region a
SLC_41921R 5'-AGC TTC TTA CAT CTT CCT TTC CTG-3' PCR and Sequencing 3' Region a
SLC_41372F 5'-CAC ACT CAA TGA GAG GAA AAA GG-3' PCR and Sequencing 3' Region c
SLC_41963R 5'-CAC AGA CTC ACA TGC TTA CAT GG-3' PCR and Sequencing 3' Region c
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Table C.2. Results of analyses for the 5' region. C. aethiops is used here as the outgroup for Fay 
and Wu's H and HKA.

Species
Fay and 
Wu's H

p-value
Tajima's 

D
p-value HKA p-value

M. mulatta -1.882 0.053 -0.956 0.214 3.333 0.912
M. fascicularis 0.294 0.600 0.121 0.594 4.659 0.793
M. fuscata 0.416 0.821 0.166 0.666 5.335 0.721
M. nemestrina 1.455 0.888 0.384 0.653 11.956 0.153

Table C.3. Results of analyses for the 3' region. C. aethiops is used here as the outgroup for Fay 
and Wu's H and HKA.

Species
Fay and 
Wu's H

p-value
Tajima's 

D
p-value HKA p-value

M. mulatta -0.377 0.250 0.272 0.680 4.721 0.787
M. fascicularis 0.529 0.599 0.780 0.805 6.383 0.604
M. fuscata 0.017 0.345 1.113 0.849 6.090 0.637
M. nemestrina -1.182 0.089 -0.128 0.435 12.599 0.126

Table C.4. Results of analyses for the "exonic" region. M. sylvanus is used here as the outgroup 
for Fay and Wu's H and HKA.

Species
Fay and 
Wu's H

p-value
Tajima's 

D
p-value HKA p-value

M. mulatta 0.008 0.436 -0.530 0.329 11.361 0.330
M. fascicularis -0.791 0.282 0.610 0.775 15.171 0.126
M. fuscata 1.673 0.965 -0.292 0.426 11.949 0.288
M. nemestrina 0.089 0.457 0.796 0.832 9.177 0.515
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