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Counter-example in 3D and
homogenization of geometric motions in 2D
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L.A. Caffarelli* R. Monneau'
July 26, 2012

Abstract

In this paper we give a counter-example to the homogenization of the forced mean curvature
motion in a periodic setting in dimension N > 3 when the forcing is positive. We also prove a
general homogenization result for geometric motions in dimension N = 2 under the assumption
that there exists a constant § > 0 such that every straight line moving with a normal velocity equal
to ¢ is a subsolution for the motion.

We also present a generalization in dimension 2, where we allow sign changing normal velocity
and still construct bounded correctors, when there exists a subsolution with compact support ex-
panding in all directions.

AMS Classification: 35B27, 35K55, 35J20.
Keywords: homogenization, mean curvature motion, geometric motion, propagation of fronts,
heterogeneous media, periodic media, viscosity solutions.
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1 Introduction

1.1 Setting of the problem

In this paper we are interested in solutions u®(x,t) for € > 0 of geometric equations that can
be written as

u; = F(eD*u®, Duf, e tr)  on RY x (0,+00)
(1.1)

u® = ug on RN x {0}
for suitable F' which are in particular periodic in the variable e 'z. Under certain assump-
tions we can show the homogenization as ¢ — 0, i.e. that u® converges to a function u°



solution of an equation

w) = F(Du’)  on RY x (0,400)
(1.2)
u® = g on RY x {0}.

Our starting point is the study of the mean curvature motion forced by a given periodic
verlocity c, i.e.

ui =€ tr {D2u5 (I — Duf ® l/);)} +cle7tx)|Dufl  on RY x (0,+00)
(1.3)

€

u = g on RN x {0}

where for p € RV\ {0}, p= P 1t turns out (see for instance [32, 33]) that the level set

P
If ={z eRY : u(z,t) = 0}
can be seen as a generalized evolution of the set I'j with normal velocity
(1.4) V =ek+c(e'a)

where k is the mean curvature of the hypersurface I'; where it is smooth, and the normal
is by convention the outward normal to the set {z € RV : u*(z,t) > 0}. When this set is
convex, the mean curvarure is non positive. It is known from [25] that equation (1.3) admits
Lipschitz correctors for Lipschitz Z"-periodic function ¢ satisfying moreover the condition

(1.5) inf (*(y) — (N —1)|Dc(y)|) > 0.

yERN
But the question was left open to know if (1.5) is necessary for homogenization or whether

(1.6) inf ¢(y) >0

yE€RN

is enough, as it is the case when there is no curvature term in (1.4).

1.2 Main results

It turns out that condition (1.6) is not enough to get homogenization in dimension N > 3
as shows the following counter-example. We use the notation x = (2, ...,xy) € RY.

Theorem 1.1 (Counter-example to homogenization in dimension N > 3)
Let N > 3. Then there exists a function ¢ € C®(RN) which is Z" -periodic, satisfying (1.6)
and moreover with ¢(x) independent on the variable xy, such that the following holds. For

the initial data uy(z) = —xy, the solution u® of (1.3) satisfies for some constants ¢ > ¢
(1.7) limsup u®(Z,1) >et —ay >ct—ay > liminf w(Z,1) forall t>0
(i,{,&‘)%(l‘,t,o) (Z,t,e)—(w,1,0)

i.e. there is no strong limit, and hence homogenization does not take place.



On the contrary in dimension N = 2, condition (1.6) is sufficient to get homogenization
as we will see below (see Theorem 1.4). Indeed in dimension N = 2, homogenization holds
for general equation (1.1) with F' safistying certain conditions.

Let us define
Dy := SN x (RM\ {0}) x RY,
where S™ denotes the set of real symmetric N x N matrices. We assume that F(X,p,y) has
arguments (X, p,y) € Dy and satisfies the following properties:

Assumption (A)
(A1) Degenerate ellipticity: F' € C(Dy) and for all (X,p,y) € Dy, we have

F(X+Q,p,y)>F(X,p,y) forall Q>0 with Q¢cSY
(A2) F is geometric: for all (X,p,y) € Dy, we have
FOAX +up@p, A\p,y) = AF (X,p,y) forall X>0,peR
(A3) ZN-Periodicity: for all (X,p,y) € Dy, we have
F(X,py+k)=F(X,p,y) foral keZ"

(A4) Regularity: this technical assumption is given in Subsection 3.2.
We will also assume the following

Assumption (B): Bound from below:
There exists & > 0 such that for all arguments (0,p,y) € Dy, we have

(1.8) F(0,p,y) = dlp].

In order to keep simple the presentation, we chose not to give the details of the classical
(but technical) regularity assumption (A4) in this introduction. Under assumption (A), a
comparison principle holds (see Theorem 3.3).

Remark 1.2 Notice that assumptions (A1), (A3), and (B) imply that there exist constants
Co,co > 0 and R > \/2/2 such that for all (p,y) € SN~ x RN, we have

1
(1.9) Co > F(0,p,y) EF(—ELp,y) > ¢y > 0.

Then we have the following result.

Theorem 1.3 (The cell problem in 2D)
Assume that N = 2 and that (A) and (B) hold. Then for any p € RN, there exists a unique



real number F(p) (with F(p) > 0 if p # 0 and F(0) = 0) such that there exists a bounded
ZN -periodic function v : RN — R solution of

(1.10) F(p) = F(D*v,p+ Dv,y) on R".

We can choose v such that

C
(1.11) supv — infv < kolp| with kg := 100 R—>
Co
where R, Co,co are given in (1.9).
Moreover the map p — F(p) is continuous and positively 1-homogeneous, i.e. for any
peRY ) )
F(A\p) = AF(p) forany X>0.

Let us mention that under assumptions (A) and (B), in the case where F(X,p, y1,y2) is
independent on y,, the existence and uniqueness (up to addition of constants) of a corrector
v when p € R?\Rey, has been established in Lou [28] (see also Lou, Chen [29] and Chen,
Namah [14], for particular cases).

As a consequence, we can show the following homogenization result (with an Ansatz
that looks like p - + tF(p) + ev(e 1), but contrarily to the common belief, is much more
involved than the classical perturbed test function method due to Evans. The main difficulty
is created by the discontinuity of the Hamiltonian F' when the gradient vanishes):

Theorem 1.4 (Homogenization of geometric motions in 2D)

Assume that N = 2 and that (A) and (B) hold. Let us consider the solution u® of (1.1) with
initial data ug which is uniformly continuous on RY. Then u® converges locally uniformly
on compact sets of RN x [0,+00) towards the unique solution u° of (1.2) with the function
F given by Theorem 1.5.

Indeed, Theorem 1.4 appears to be a corollary of a more general result in any dimension
(Theorem 1.5), for which we need to introduce the following assumption:

Assumption (B’): Perturbed correctors:
We set forn > 0:

F'(X,p,z)= sup F(X,p,y), (resp. F,(X,p,xz) = inf F(X,p,y)).

ly—=z|<n ly—z|<n

For all p € RY, there exists ng > 0 and ko > 0 such that for all n € [0_, M), there exists
a corresponding ZN -periodic function v" (resp. wv,) and a real number F" > no|p| (resp.
F, > nolp|) such that

F" = F"(D*", p+ Dv"y) (resp. F,=F"(D*,,p+ Dv,,y)) on RN
such that for v =v", v,, we have

supv — inf v < Rg.

Then we have:



Theorem 1.5 (Conditional homogenization in dimension N > 2 when perturbed
correctors do exist)

Assume that N > 2 and that (A) and (B’) hold. Let us consider the solution u® of (1.1) with
initial data ug which is uniformly continuous on RY. Then u® converges locally uniformly
on compact sets of RN x [0,+00) towards the unique solution u° of (1.2) with the function
F = F° = Fy given by assumption (B’).

With an assumption weaker than (B) allowing negative normal velocities, namely as-
sumption (B”) in Section 10, it is still possible to get a corrector (Theorem 10.3). As an
interesting application of Theorem 1.5, it is for instance possible to get homogenization
results in 2D of equation (1.3) with certain sign changing velocities (see Theorem 11.2).

1.3 Brief review of the literature

The first results of uniqueness for the mean curvature motion, were obtained by Evans,
Spruck [21] and Chen, Giga, Goto [13]. For general presentations of viscosity approaches to
the motion of fronts, see Giga [22], Souganidis [32, 33|, Ambrosio [1], Soner [31]. One of the
main difficulty with the evolution of fronts is the possibility of fattening (see Barles, Soner,
Souganidis [4]).

The homogenization of Hamilton-Jacobi equations was pionered in Lions, Papanicolaou,
Varadhan [26], and then extended to the fully non linear uniformly elliptic case in Evans
[19, 20]. The case of geometric equations was studied only recently. In Lions, Souganidis
[25], in any dimensions N > 1, a Lipschitz bound on the correctors associated to forced
MCM equation (1.3) is shown under assumption (1.5) (and also for more general equations
under suitable assumptions).

In Cardaliaguet, Lions, Souganidis [6], it is in particular shown that in dimension N = 2,

if ¢(y) = g(y1) with
/ g >0, and OS/ g—ming < 2
[0,1] [0,1] [0,1]

then for any p € R?, there exists a Lipschitz continuous corrector v (only depending on ;)
solution of (1.10). Moreover F(p) > 0 if p € R*\Rey, and F(p) = 0 if p € Re;. Among other
things, in dimension N = 2, a counter-example to homogenization is also given in a case
where f[0,1] g = 0 (see also Remark 4.3).

In Cesaroni, Novaga [9], still in dimension N = 2, it is in particular shown that for p = e,
there exists a Lipschitz continuous corrector v (only depending on ;) if

/ g>0, and ming <0 and maxg-—ming < 25
[0,1] [0,1] [0,1] [0,1]

or if
g > 0.

More generally, it is shown in dimension N > 1, that if ¢(y) = g(v1,...,yn—1) (this is the
case of a laminate), and if

JA c TV, / g > Per(A, TN
A



then there exists a (pseudo) corrector v (only dependending on 3’ = (y1,...,ynv—1)) and an
open set £ C TV~ such that v is locally bounded on E and v = —oco on TN "1\ E. The
(pseudo) corrector is a kind of (pseudo) travelling wave. Notice that our counter-example
(Theorem 1.1) provides an example of a case where such a (pseudo) corrector is not a
true corrector in the case g > 0 in dimension N > 3. Under certain assumptions, the
homogenization result of [9] has been extended in [10] to the case with an additional drift
term given by a gradient vector field.

Let us mention Craciun, Bhattacharya [15], where a formal assymptotics of F(p) is given
in the limit A\ — +oo for a geometric motion given by

V=XAk+c
On the other hand, it is shown in Dirr, Karali, Yip [18], that for a geometric motion
V=kr+dc

with ¢ € C?*(T¥) (without any sign condition on c¢), if § > 0 is small enough, then for any
p € RY | there exists a Lipschitz continuous corrector v solution of (1.10), which is moreover
unique if F(p) # 0. Part of the method of proof is based on the arguments of Caffarelli,
De La Llave [5] for the construction of minimal surfaces in a periodic setting. See also
Chambolle, Thouroude [12] for a BV approach of the result in [5]. It is shown in particular
in [12], that if

(1.12) /c:() and e (0,1), VAcCTY, /c < Per(A,TY)
™ A

then, for any p € RY, there exists a corrector v and F(p) = 0. Let us mention that the
homogenization of geometric motions

V=r+ete(e )

has been done in Barles, Cesaroni, Novaga [3] under the assumption that ¢(y) = ¢(y’) and
that (1.12) holds with (¢, TV) replaced by (g, TV~1). The case of a geometric motion in
dimension N = 2

V =k+cle z)

with ¢(y) = g(y1), has been studied in Cesaroni, Novaga, Valdinoci [11].

1.4 Organization of the paper

The paper is organized as follows. In Section 2, we present the strategies of our main proofs.
In Section 3, we recall basic properties of viscosity solutions. In Section 4, we do the proof of
Theorem 1.1 about the counter-example to homogenization in dimension N > 3. In Section
5, we present preliminary results on the evolution of the front, including the connectedness
property (Proposition 5.9) and the black ball barrier (Proposition 5.10). In Section 6, we
prove the flatness of the front using Section 5. In Section 7, we prove Theorem 1.3, i.e. we
show the existence of a corrector for the cell problem. In Section 8, we prove Theorem 1.5
about the conditional homogenization in any dimension. In Section 9, we prove Theorem
1.4 about the homogenization in 2D. In Section 10, we prove the existence of correctors
in 2D (Theorem 10.3) under a general assumption (B”) which allows sign changing normal
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velocities. In Section 11, we present some examples and applications, both for the forced
MCM and the G-equation.

Finally the appendix (Section 12) contains three subsections, respectively about barriers,
inf-convolutions and the proof of the comparison principle (Theorem 3.3). We did not find
precisely in the literature the result we need for the comparison principle, even if its proof is
essentially based on [23]. We expect that this detailed proof will be of future use for other
authors.

2 Strategy of the proofs

We discuss here the ideas underlying the proofs of the main results.

2.1 The counter-example in 3D (Theorem 1.1)

The basic idea is that in dimension 3 (or higher dimension) we can find unbounded convex
sets (with negative curvature) which are invariant by the geometric motion given by the
normal velocity

V=r+c

with ¢ = 1. This is the case of cylinders whose section are circles. Then we can perturb
the velocity ¢ inside the cylinder and outside the cylinder in order to allow the propagation
of fronts (which are asymptotic to the cylinder) with different velocities inside the cylinder
and outside the cylinder. Considering periodic copies of the cylinder, we can construct a
periodic velocity ¢ (which does not depend on the coordinate along the cylinder). Then the
two fronts (inside and outside the cylinders) can be used as barriers to show that homoge-
nization can not occur (at least in a strong sense). Notice that the analogue in dimension 2 of
the cylinder is simply a circle, which does not allow the propagation of a front inside the disk!

2.2 The cell problem in 2D (Theorem 1.3)

The idea of the construction of a corrector is purely geometric (even if we find convenient
to use a level set formulation to work). Under assumption (B), we can think that the
front propagates as a fire. This means that the front never comes back. Therefore we can
distinguish the burnt region (black region) and the unburnt region (white region). Moreover
if our initial black region is a half plane, then (at least in some weak sense), we can show
that the black region stays connected for all time. The basic phenomenon to avoid is the
creation of a very thick transition region between the black and the white region like on
Figure 1.

A bounded connected component of the white region (like in the bottom of Figure 1)
can exist, but has to be thin enough. Indeed, it can not contain a unit square, otherwise by
an integer translation argument (the Birkhoff property), it will contain infinitely many such
squares. Notice that all such bounded white components will diseapear, because they are
contained in a white ball (surrounded by the black region) that will itself disappear in finite
time (depending on its size). This remark is not sufficient, because we need to bound the
time after which they have disappeared. The situation is even worth if we have very long
fingers like in Figure 1. We have to show that these fingers will disappear sufficiently quickly.



meanupperﬂontatﬂmet\\\\\\\\\

Figure 1: A typical situation to avoid: thick transition with long fingers

The fundamental remark is that assumption (B) also implies the existence of a “black ball”
of sufficiently large radius R > 0, which can increase or propagate in any direction. This
black ball can be used as a barrier that will clean the white region remaining pinned in the
black region. This black ball can be used to show that afer a fixed time 7" > 0, the new
picture will be necessarily like on Figure 2, with a bounded thickness of the transition region
between the black and white parts.

mean upper front at time t+

mean upper front at time

bounded
thickness

deanmgthemmnepaﬂsUbtoﬁwmt+T

Figure 2: Cleaning the picture after a fixed time 7" > 0

The cleaning phenomenon is possible because the boundary of the white long fingers
is connected and then in 2D locally separates the plane in two big parts W (for white)
and B (for black), like locally two half planes if the white finger is straight enough. Then
we can introduce (see Figure 3) the black ball in the part B (which is no longer true in
higher dimensions, like it is shown in the counter-example with cylinders in dimension 3 for
instance) and propagate the black ball in the direction of the part W. This process cleans

9



the white part W and make disappear the white finger in a fixed finite time (at least in the
direction of the thickness of the finger).

region W region B

one boundary
of a white finger

kY
Y
'
Y
Ky
Y
Y

[

.
.
'
.
'
'
'

motion of
the black ball

Figure 3: Cleaning the white part with the black ball barrier

Once we are able to show that the thickness of the transition region between the white
and black region is bounded uniformly in time, this shows that the front is “roughly flat”.
This property is sufficient to show that the “flat front” propagates with a well-defined veloc-
ity. Passing to the limit as the time goes to infinity, it is then possible to define a corrector
which describes the periodic propagation of the “flat front” in the periodic framework.

2.3 Homogenization (Theorem 1.5)

The goal of this subsection is to give some heuristic explanations of the difficulties arising
in the homogenization of geometric equations, and the main arguments that we have intro-
duced in our proof of Theorem 1.5.

Try 1: the naive approach and the difficulty when the gradient vanishes
The naive try is the following perturbed test function (for a corrector w)

(2.1) & (z,t) = p(x,t) + cw(x/e).

It is a common belief (see for instance [15] and [25]) that once we are able to show the
existence of correctors, then the homogenization result is a corollary obtained using Evans
perturbed test function method (see [19]). The point is that this belief is false when we want
to homogenize equations like mean curvature motion, because the Hamiltonian is discontin-
uous when the gradient vanishes.

More precisely, in the following, we recall the classical Evans method and then present the
difficulty we have to face.

1.1) The classical Evans method

If ¢ is a test function touching @ := limsup *u® from above and which does not satisfy the
e—0
subsolution viscosity inequality, i.e.

(2.2) ¢r > F(Dy) at some point P

10



then given a (super) corrector w associated to p = Dy(F), we hope that the perturbed test
function ¢ given by (2.1) satisfies

(2.3) @ > F(eD*3°,D@", x/e) in a neighborhood of the point P,

(in order to get later a contradiction with the fact that o(Fy) = u(F)).
1.2) The difficulty

Inequality (2.3) means for y = /e and P = (z,1)
(2.4)  @i(P) > F.(eD*p(P) + (D*w)(y), Dp(P) + (Dw)(y),y) with P close to Py,

i.e. for a point P in a neighborhood of F), which is independent on ¢ for ¢ small enough.
Notice that (2.2) means for all y:

(2.5) pi(Po) > F(Dp(Fy)) = Fu((D*w)(y), Do(Fo) + (Dw)(y), y)

but (2.5) does not imply in general (2.4) for small quantities |¢:(P) — ¢i(F)], [Dp(P) —
Dy(Py)| and | D?*p(P)|. The difficulty comes from the fact that, even if F'(Dyp(FPp)) > 0, it
may happen that

(2.6) Jyo such that De(Py) + (Dw)(ye) =0

and

(D*w)(y)
|De(Fo) + (Dw)(y)|

Then, it is not clear (at least for us) how to avoid the case where a small perturbation
q = Dp(P) + (Dw)(yo) would satisfy g # 0 with ¢ in a direction such that

F((D*w)(y0), ¢ yo) = F*((D*w)(y0),0,50) > @¢(Po) > F.((D*w)(yo), 0, yo)-

Try 2: New ingredients
Given a parameter n > 0, the new perturbed test function is the following

(2.7) the “curvature of the level set”

blows up when y — yq.

(2.8) o (x,t) = inf &°(z,1).

2€Bey ()

From Try 1, it is clear that we can not really hope to construct a perturbed test function like
¢° which is a supersolution in a neighborhood of a point F,. We show here that, in order
to get a contradiction, we only need this perturbed test function to be a strict supersolution
at a one contact point with «°, which is much easier to check. Of course, we also need to
control the curvature of the level set at that contact point. In what follows we present some
ideas to reach our goal.

2.1) A pointwise Evans method

The first main idea is to replace the standard Evans method, by the following “Pointwise
Evans method”. Let us define for some general function w:

Fle,u] :== F(eD*u, Du,x/¢).

We just consider a local maximum point P. (close to Py as € goes to zero) of u® — @°. We
formally have at P.
u; = Fle,u’] < Fle,¢F] < &

11



because we expect ¢° to be a strict supersolution. We then get a contradiction from the
fact that ui = @¢ at the point P..

Notice that in order to have a strict supersolution, we still need to control the curvature of
the interface and this is the goal of the next idea.

2.2) Geometric inf-convolution by balls

We now introduce an argument of inf-convolution by balls, in order to bound the curvature
(from one side) and then to avoid difficulty (2.7). We recall that, given a corrector w
associated to a gradient p, the planar-like function

(y,7) =M +p-y+w(y), with A=F(p) >0
solves
(2.9) I, = F(D?1,Dl,y).
We then define the inf-convolution by balls of radius n > 0:

lﬂ(y77—) = elélf( )Z(Z7T)
z€By(y

Then (for any a € R) each upper level set {l,, > a} has exterior tangent balls of radius n at
each point of its boundary, which implies that its curvature matrix is bounded from above

1
by —1I (see Figure 4).
n

motion =0

n>0 \

Figure 4: The new interface after inf-convolution by balls

l

This implies in particular that

D?l, DI 1. DI
F(D*,,Dl,,y) = |DI F< Uy ",y>§Dz F(—I,—",y>§c DI
( n n ) | 77| |Dl77| |Dl77| | T]| 77 | T]‘ 7]’

for some constant ¢, > 0.

2.3) Bound from below on the gradient

t
Notice that @°(x,t) looks like el (z, —>, and then its natural to replace ¢ by ¢° given in
e'e

(2.8), and to look at a local maximum point P. (close to Py) of u® — @°. Therefore we have

at PS:

1
0 < SF(D(R) < 7 = 0; = Fle, u] < Fle, ] < | D&

12



which shows that the gradient |Dg*| is bounded from below by a constant depending only
on 7.

2.4) Difficulty for checking that ¢ is a strict supersolution at P.
We have for P. = (Z.,1t.):

@ (P.) = ¢°(P.) for some point P, = (#.,%.) with . € B.,(Z.).
On the one hand, we get

@i(PE) = @i(ﬁ{s) - 90t<1f)s> > F(DQO(PO))

for € small enough. On the other hand, we have with ¢. = E, Ye = e
€ €

Fle.¢I(P.) = F(eD*%"(P.), D§(P.), =)
= F(5D2g55(155), D@E(}z)’ Ye)

= F(eD*p(P.) + D*w(j.), Dy(P.) + Dw(j), )
for which we have

{ |D&*(P.)| = |D@(P.) + Dw(j.)| is bounded from below,
‘ga - ga‘ <n.

And in order to conclude that @ is a strict supersolution at P., it is enough to show that
(2.10) . )
F(eD*p(P.)+D*w(je), Do(Po)+Dw(i.),5:) =~  F(D*w(g.), Do(Po)+Dw(fe). Je) = F(Dp(Fp)).

We consider here a small perturbation of the arguments of F'. Because F' is not uniformly
continuous on the set where the gradients are bounded from below, we still need the following

property:
(2.11) [eD*@*(P.)|, |D&"(P.)| < €
which is not true in general.

Try 3: Further regularization
Given a parameter p > 0, the new perturbed test function is the following

(2.12) o (z,t) = inf (gpa(z,t) Ll Z’4) — (906(2,75) i Z‘4>|w .

2€RN 4e3p 4e3p

3.1) Classical regularization

In order to control the quantities in (2.11), this is natural to introduce the inf-convolution
(2.12). Classically, this kind of inf-convolution is convenient for mean curvature type PDE,
because the function | - |* has zero second derivatives when its gradient is zero. Notice
that here we could have taken another inf-convolution, because the case where the gradient
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vanishes is already avoided by the bound from below on the gradient.
For (2.12), we can show that (for p small)

|2, — x| < €O(p)
which implies ) )
eD*°| < O(p2), |D¢°| <O(p™4)

which will give (2.11).

3.2) Difficulty

The drawback of this regularization by inf-convolution is that in (2.10), it will make move
the contact points g. into points y. where now we have the estimate:

~ _ _ ~ 1
Ve — Ue| < |ye — Ul + |9 — 0| < O(p*) + .

We still have to face the lack of uniform continuity of F' (as p goes to zero).

Try 4: Our definitive choice
We consider the test function ¢° given by (2.12) where the corrector w appearing in ¢° (see
(2.1)) has to be replaced by w?" associated to the Hamiltonian:

F*"(X,p,x) = sup F(X,p,y).

ly—x|<2n

We choose p small enough satisfying
. 1
|ya - ya| < O(p4) +n < 2n

and the adjustment of the parameter 7 is done such that the associated effective Hamiltonian
F?1 is close enough to F' = F° in order to satisfy

wi(Po) > F*"(Dy(Ry))-
This last choice allows us to conclude the raisonning.

The previous method is used to show that lim sup *u® is a subsolution of the limit equa-
e—0

tion. A similar (but adapted method because we may have ¢;(F) < 0) is used to show that

liminf ,u® is a supersolution.
e—0

Remark 2.1 (Link between (1.5) and inf-convolution by small balls)
It is possible to see that assumption (1.5) implies that if a characteristic function x(z,t) is
a solution of (1.3) in dimension N > 2 (with ¢ =1 to fix the ideas), then

XNz, t) = sup x(y,t) and xy(x,t)= inf x(y,t)
YEBy (2) y€By (@)

are respectively sub and supersolutions forn > 0 small enough, when the total mean curvature
of the smooth moving boundary satisfies k* > |Dc| which is the case if k < —c.
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3 Properties of viscosity solutions

3.1 Viscosity solutions

Let © C RY be an open set and let T € (0, +00]. We consider solutions u of the following
equation

(3.1) uy = F(D*u, Du,y) on Qx (0,T)=:Qp
with boundary - initial data
(3.2) u=g on (2x{0})U (O x][0,T))=:0,r.

For a general function u : Q x [0,T) — [—o0, +00], we recall the definition of the upper
(resp. lower) semi-continuous envelope u* (resp. w.) of u:

u*(z,t) = limsup u(t,s) (resp. uy(z,t) = liminf u(t,s)).
(y,8)—(x,t) (y,8)—=(x,t)

We also recall that we say that u is upper (resp. lower) semi-continuous if and only if
u = u* (resp. u = u,). Given a function F continuous on Dy = SV x (RM\ {0}) x RY, we
also define for all (X,p,x) € S x RY x RY:

Fr(X,p,x) =lim  sup{F(Y,q,y), (Y.g,y) €Dy, [X Y| [p—ql|z—yl<e}
F.(X,p,x) =lim  inf{F(Y,q,y), (Y.q.y) €D, [X=Y|Ip—gllz—y|<e}.

Because of the continuity of F(X,p,z) for p # 0, we have in particular F*(X,p,x) =
F(X,p,x) = F.(X,p,z)if p #0.
We are now ready to recall the definition of a viscosity solution

Definition 3.1 (Viscosity solution)

We use the previous notation.

i) Sub/super/solution of (3.1)

We say that u : Q x [0,T) — [—o0,+00] is a subsolution (resp. a supersolution) of (3.1)
if u < +oo (resp. u > —o0) and u is upper (resp. lower) semi-continuous and if for any
Py = (zo,t0) € Qr, if there exists some g > 0 such that B,,(Py) C Qr and a function
© € C*(B,,(Py)) such that

u<g@ on By(FR) resp u>¢ on By (F)
u=¢w at Py ' u=¢ at F

then we have at P,
pr < F*(D%¢, D, o) (resp.  @p > Fu(D*p, D, ) .

We say that u is a viscosity solution of (3.1) if u* is a subsolution and if u, is a supersolution.
ii) Sub/super/solution of (3.1)-(3.2)

A function u : Q x [0,T) — [—o0, +0o0] is said to be a subsolution (resp. a supersolution) of
(3.1)-(3.2) if it is a subsolution (resp. supersolution) of (3.1) and if furthermore it satisfies

u<g" on 0Qr (resp. u>g. on 0yfr).

We say that u is a viscosity solution of (3.1)-(3.2) if u* is a subsolution and u, is a super-
solution.
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3.2 The technical assumption (A4)

We give below the precise assumption (A4).

(A4) Regularity:

(i) Boundedness close to p = 0:

For all R > 0, there exists a constant Cr > 0 such that for all y € RN
[F(X,p,9)| <C forall |X|<R 0<p|<R

ii) Variations in (X, z):
There exists K > 9 and ok : [0, +00) — [0, +00) satisfying ok (0%) =0, such that we have

Fr (X, a(x —y),x) = F.(Y,a(z —y),y) < ox {le —y|(1 + afz —y|)}

for alla >0 and X,Y € SN, 2,y € RY satisfying

I 0 X 0 -1
(1) =(0 ) =xe (L)

with a =0 ifx =y

This kind of regularity assumptions are given (partially) page 443 in [4].

Remark 3.2
Notice that condition (A4)ii) joint to the geometric property of F' (assumption (A2)) imply

(3.3) F*(0,0,y) = 0 = F.(0,0,y).

Notice that we also have

(3-4) F(X,p,y) = F(Il(p) - X -1(p), p,x) with 1(p)=1—-p@p i p#0
which follows from assumptions (A1)-(A2) and Theorem 1.6.12 (page 48) of [22].

Then we have the following result.

Theorem 3.3 (Comparison principle)
Assume that either Q@ = RY or that Q is a bounded open set of RN, and assume (A). If u is
a subsolution of (3.1) and v is a supersolution of (3.1) such that

(3.5)
lim sup {u(z,0) —v(y,0), z,yeRY, |z—y/<0}<0 if Q=RY
6—0

u<v on 0O if € is a bounded open set

then
u<wv on Qp.
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3.3 An example

Let us consider for instance the following natural example
(3.6)

D -~ . Hp, ositively 1-homogeneous in
F(X,p,y) = tr {X"(B,y) - X(D,y) - X}+H(p,y) with { o ' 3 g

S(py) - (I —p@D) = X(p.y)
where H(p,y) and X(p,y) are Z"-periodic in y. We assume the following regularity
He CRY xRY;R) and X € C(SN7! x RY;RV*N),
and that there exists a constant L > 0 such that
(3.7) |H(p,z) — H(p,y)| < Llz —yllp| and [X(p,z) — E(p,y)| < L|z —yl.
Notice that equation (1.3) corresponds to the particular subcase

Yp,y)=1—-p®p and H(p,y) = c(y)p|

and assumption (B) means
cly) >0 >0.

More generally, if we assume moreover that H satisfies the bound from below (1.8), then
F also satisfies (B).

Checking (A) for F given by (3.6).
We claim that F' given by (3.6)) satisfies (A). The only thing non trivial to check is (A4)ii)
in the special case where H = 0. We consider X, Y satisfying with o« > 0

I 0 X 0 I -1
o e 10) (X D)<, ).
Then for p = a(z — y) # 0, we multiply on the left by (X(p, z), X(p,y)) and on the right by
(2(p,2),2(p,y))", and we get
tr {7 (P, 2)2(p, 2)X — X1 (5, y)2(P, y)Y }

(3.9) < Kal2(p.z) — S5 y)P

< KL%z — y|?

where we have used (3.7) in the second line. If z = y, then @ = 0 in (3.8) implies X =Y =0
and then (3.9) still holds. This shows (A4)ii) with ok (a) = K L%a.

3.4 More properties on viscosity solutions

The following results are classical in the theory of viscosity solutions (see [17]).
Proposition 3.4 (Stability)

i) semi-limits

If (u®). is a sequence of subsolutions (resp. supersolutions) of (3.1), let

u(z,t) = limsup w°(Z,1), wu(x,t)= liminf u°(Z,1).
(CE,E,E)—}(x,LO) (&,t,e)—=(2,1,0)
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If u < +00 (resp. u > —00), then u is a subsolution (resp. w is a supersolution) of (3.1).
ii) suppremum/infimum

Let S be a set of functions w such that w* is a subsolution (resp. a set of functions w such
that w, is a supersolution) of (3.1), and

u = (sup w) (resp. u = (inf w) > .
weS ’LUES %

If u < 400 (resp. u > —o00), then u is a subsolution (resp. w is a supersolution) of (3.1).

Proposition 3.5 (Perron’s method)
Let ut (resp. u™) be a supersolution (resp. subsolution) of (3.1) satisfying v~ < ut. Then
there exists a viscosity solution u of (3.1) satisfying

u <u<ut.

Proof of Proposition 3.5
The proof is essentially based on [13] and [24]. We repeat it for completness.
We call

S ={w: such that w* is subsolution of (3.1), w<u"}3u".

We define

u(zx,t) =sup w(x,t).
wesS

From the stability result Proposition 3.4 ii), we know that u* is a subsolution. Assume that
U, 18 not a supersolution and let us get a contradiction. Then there exists a point Py = (g, to)
and a test function ¢ € C?*(B,,(P)) for some ry small enough such that B,,(Py) C Qr and

such that
uy, > ¢ on B, (P)

u, =@ on Fy
and
(3.10) o = —0 + F.(D*p, Do, 1), with 6 > 0.
Up to replace ¢(P) by ¢(P) — |P — By|*, we can assume that
(3.11) (e = @) (P) > [P = R["

Notice that u.(Fy) < u(Fy) because otherwise ¢ would be a test function for u* and (3.10)
would be in contradiction with the fact that u™ is a supersolution. Therefore there exists
some small § € (0,7/2) such that

¢r < F.(D*¢, Dy, x)
(312) fOI' P c BQ§(P0>.
o(P)+0'/2 <ut(P)

From (3.11), we deduce that

(3.13) u(P) > u,(P) — 6*/2 > o(P) +6*/2 for P € Bos(Py)\Bs(Fy).
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We now define

w(P) = { max(p(P) + 6*/2,u*(P)), Pe¢€ Bs(Ry)
w(P), P e (@ x [0,T)\Bs(Fy).

Notice that from (3.13), we have
w(P) = max(p(P) + 6*/2,u*(P)) for P € Bys(F)

and then w is a subsolution as the maximum of two subsolutions on Bas(Fp) (see Proposition
3.4 ii)). This implies that w is a subsolution everywhere and from (3.12) that w € S. On
the other hand, we have

0= (ue = ¢)(Po) = liminf {(u — )(P), |P—F| <n}.

Therefore there exists some P, € Bs(FPy) such that (u — )(P;) < §*/2, which implies that
u(Py) < w(Py). This is in contradiction with the definition of u as the “maximal subsolu-
tion”. This ends the proof of the Proposition.

3.5 Subdifferentials

For later use, we recall here the definitions of sub/superdifferentials.

Definition 3.6 (Sub/superdifferentials)
Let (x,t) — u(z,t) be a upper semicontinuous (resp. lower semi-continuous) function defined
on an open set. For Py = (xq,to), we say that

(Tap7 X) S P27+U(P0) (TBSp. (Tvpa X) € P27_U<P0>>
if there exists a C? test function ¢ such that
u<y (resp. u>yp) with equality at Py

and
(T7p7X):<90t7D807D290> at PO-

Remark 3.7 If u(xz,t) is independent on t, we say that
(p, X) € D> if an only if (0,p, X) € P>+,

Definition 3.8 (Limit sub/superdifferentials)
Let (x,t) — u(x,t) be a upper semicontinuous (resp. lower semi-continuous) function defined
on an open set. For Py = (xo,ty), we say that

(r,p, X) € 7_32’+U(P0) (Tesp. (r,p, X) € 52’_U(P0)>
if there exists exists sequences such that
(Ths s Xie) € PPHu(Py)  (resp. (h, pry Xi) € P u(Py))
such that
(Tks iy X, w(Pr)) = (7,0, X, u(Fp)).
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4 Counter-example in dimension N > 3

We set 2’ = (x1,...,xy_1) such that x = (2, xy). We now consider solutions U of the first
line of (1.3) in the case ¢ = 1 for a velocity c¢(x) replaced by some general velocity ce(z')
which is independent on x, i.e. U solution of

Uy = tr{ DU - (I = DU @ DU)} + cxo(a')| DU
We look for particular solutions
U(z,t) = u(z',t) — xn
which means that u solves (at least for smooth solutions u)

Uy

Du
4.1 — = () +div | —— | .
(4.1) V' 1+ |Dul? @) (\/1+]Du\2>
Then we have

Proposition 4.1 (Traveling profiles with different velocities for N > 3)
Let N > 3. There exists a radial function co, € C°(RN™Y) which is positive, and radial
functions u, : RN7Y — [—00, +00), u_ : RY=! — (=00, +00] and constants c,c_ satisfying

Uy <u- and cy > cC

such that the profiles
cot + us(z))

are solutions of (4.1). We have

n | ue(x) if ]2 <1 N ) oo if 2| <1
02w ={ 25 RS e @ = {00

with uy € C=(By) and ug € C*(RN"N\B}). Moreover there exists ry > 1 such that

{ Coo(2') = for 2’| > rg

u_(2') = constant  for || > ro.

The profiles of Proposition 4.1 are illutrated on Figure 5.

Proof of Theorem 1.1
Using Proposition 4.1, we first define for R > 27y a velocity defined on the centered square

() = coo(2’) for o' € [-R/2,R/2/N .
Similarly we define
U(2,t) = cot +us(a’) —ay for o' € [-R/2, R/2/N .
Moreover, up to add a suitable constant to u, (resp. u_), we can assume that

(4.3) uy <0<u_.
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X'l =1

Figure 5: Profiles uy with velocities ¢, > ¢_

We then extend by periodicity cf(2’) and UE(a2', zy,t) as (RZ)Nl-periodic functions for
7' € RVN~1. We get that U are both solutions of

Uy = tr {D*U - (I - DU @ DU) } + ¢*(a') | DU].
Then the new functions
Ui(z,t):= R 'e U (Re™ 'z, R?e7't)
are solutions of (1.3) with the velocity
c(x) = R (Ra")

which is a positive smooth Z"-periodic function independent on xy. Using (4.3), we see
that we have

(4.4) U (2, t) < u(z,t) < US(x,t)

at time ¢ = 0. From the comparison principle, we deduce that (4.4) holds true for all time
t > 0. Setting

we deduce (1.7) from the fact that for ¢ > 0

limsup U5 (%,1) >ct—ay >c —ay > liminf US(Z,1).
(j,ﬂa)—)(a:,t,()) (&,t,e)—(2,t,0)

This ends the proof of the theorem.

Proof of Proposition 4.1

Step 1: preliminary

For the radial functions wy and ¢, we make the abuse of notation ug(x’) = wug(r) and
Coo(T') = Coo(r) for r = |2'| with 2/ € R™ and

n=N—1.
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We define the function ¢ by the relation

(4.5) Vug = ((r) :

x
']

Then we easily see that a function et 4 ug(r) is solution of (4.1) if and only if

/
Cx ) ¢ n—1 ¢
(4.6) Coo(r) = ——= — K with k= + :
/1+C2 /1+C2 r /1+<‘2
We look for a function ¢ which blows up at » = 1 and is smooth for r # 1 such that we can
take

e it relol)
(4.7) G = { c_ if r>1

and we want to check that ¢, given by (4.6) is nevertheless smooth (and positive).
Step 2: first computation
As a first candidate for ¢, we propose

(4.8) {(r) = —\/eg(ﬁ_l) —1 for r€[0,V2).

After some computations, we get

(4.9)

1
2

_1>+2 Sign(l (—17f):2_)2<1r2_ ) r 1 +<n_1) \/1 N e_r(w— )
\/1 — e_Q(W_I)

e
\/1 er | :\/2—27“4—1—0(7’6)

which is then a smooth function up to r = 0 (analytic close to r = 0). With the choice (4.7)
for any constants cy, this shows that ¢, is C'*° for r < V2.

Step 3: conclusion

In order to define a function c.(r) for all r, we simply set

¢ =y

where 1 € C*°0, +00) is a cut-off function satisfying

Coo(T) = c*e_(\l—’“

and

1 for 0<r<1+n
¢(T)_{O for r>1+2n

where 1 > 0 is small enough such that 1 + 21 < v/2. We conclude choosing ¢, > c_ > 0
large enough such that c., is positive. We finally get the profiles v integrating (4.7) which
provides the profiles uy given by (4.2). Notice in particular that ¢ is not integrable in any
(positive or negative) neighborhood of » = 1. This implies that

lim wuy(r) = —oco and limsup ug(r) = +00.

r—1- r—1t
This implies that cot+wuy(2), even if they are unbounded, are solutions of (4.1) in the sense
of Definition 3.1. This ends the proof of the proposition.
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Remark 4.2 In our example, we can deduce from (4.8) that

1
l—rl~——= as r—1.
S ryRe]

Notice also that in (4.6), we have
() =—=r=n-—1

which corresponds to the negative mean curvature of the tube of equation r =1. On
the contrary in dimension N = 2 = n + 1, this curvature vanishes and then the velocity coo
too.

Remark 4.3 (Example of non homogenization in 2D with sign changing velocity)
In the case N = 2, i.e. n =1 1in (4.9), we can take any ¢y > 0 and c— < 0 and the
construction of Proposition 4.1 and Theorem 1.1 provides a non homogenization result for a
sign changing velocity co(x1) which is R-periodic.

5 Preliminaries in any dimension

We consider a solution u(z,t) of

(5.1) u, = F(D*u, Du,y) on RY x (0,400)
with initial data
(5.2) u(z,0) =up(z) =x-v for z€RY.

Proposition 5.1 (Existence and properties of the solution)

Assume (A). Let v € S¥7! and ug(x) = v - x. Then there exists a unique solution u of
(5.1)-(5.2). Moreover u is continuous and u(x,t) —v-x is Z" -periodic in x, and there erists
a constant C > 0 such that

lus] < C on RN x [0, 400).
For any 0 <T < 400, there exists a modulus of continuity mr such that
(5.3) lu(z,t) —u(y, t)| < me(lz —y|) foral z,yeRY, te[0,T).
If we assume moreover (B), then we have
(5.4) u >8>0 on RY x[0,+00).

Proof of Proposition 5.1
Step 1: barriers, existence, uniqueness
We set the barriers sub/supersolutions

uF(z,t) = uo(z) + CFt with +C* = sup +F(0,v,2).

TzeRN
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Then by Perron’s method (Proposition 3.5), there exists a solution u of (5.1) satisfying
- <wu<ut

which implies in particular
u(+,0) = uy.

Then u solves (5.1)-(5.2). Furthermore we deduce from the comparison principle (Theorem
3.3) that this solution is unique and is then continuous.
Step 2: periodicity
For any k € Z", we have
uop(z + k) = up(z) + v - k.

The comparison principle implies that
wx + k,t) =u(z,t)+v-k

i.e. u(z,t) — v -z is ZN-periodic in the z variable.
Step 3: time regularity
Let h > 0. Then we have

(5.5) u(z,t +h) <wu(z,t) +CTh

for t = 0 and the comparison principle implies that (5.5) holds for every time. Similarly, we
get that

(5.6) u(z,t) + C~h <wu(z,t+h).

Then (5.5) and (5.6) show that
C_ S Ut S C+.

Notice that this result joint to the continuity of u and to the periodicity of u(x,t) — v - x
implies the existence of a modulus of continuity as in (5.3).

Step 4: further result under assumption (B)

Then we have C~ > ¢ and this implies (5.4).

This ends the proof of the proposition.

Proposition 5.2 (No fattening)

Assume (A) and (B) and let u be the function given in Proposition 5.1.
i) (No fattening)

Then u satisfies for allt > 0:

(5.7) Int {z eRY, wu(z,t)=0}=0.
As a consequence, the sets
E,={zeR", u(z,t)>0} and E;={zeRY, u(zt)>0}
only differ on a set of empty interior and
OE;, 0E, C {x € RY, wu(z,t)=0}.
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ii) (monotonicity)

We have

(5.8) E, C Es (resp. E} CE?) forall s>t>0.
iii) (stability of F)

We have

(5.9) (E.=E and |JE?=E;.

s>t s<t

Remark 5.3 Notice that EY C Int Ey, but we may have Int Ey # EY (if for instance u(-,t)
is positive on B1(0)\ {0} and vanishes at x = 0). Similarly, we have Ef C E;, but we may
have Ey # E? (if for instance u(-,t) is negative on B1(0)\ {0} and vanishes at x =0).

Remark 5.4 We can even show that

(5.10) (E:=E and | JE, =E.

s>t s<t

Proof of Proposition 5.2
Proof of i)
Assume that there exists 5 > 0 such that there exists xg and r > 0 such that

(5.11) B, (z9) C {z € RN, u(z,ty) =0}.
Given such 7 > 0 and some ¢ € (0, 1), we consider the test function

(2, t) = Az — xo|* + Aclt — to]* for x € B(xg), [t—1to| <e

where A, > 0 and A, are constants that we will fix later. If z € B,(zo) and t € [0, + 1]
recall that
|u(m, t) - u($0v t)| < mt0+1(T)

where the modulus of continuity my,41 is given in (5.3). Moreover, for |t — to| < e, we have
lu(x,t) — u(z,t)| < Ce.

Therefore for
A, = 2r‘4mt0+1(r) > T'_4mt0+1(?")7

A, = QQ > 0—28
€ €
and
Qs = Br<x0> X [tO - €,t0 + 6]
we have

sup(u — ¢°) > sup(u — ¢°).

e Qe

In particular there exists (z.,t.) € Int Q. such that

sup(u - ¢€) = (u - ¢€>($€, tz-:)

€
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and then
(5.12) § < ¢ < F*(D*¢°, D¢, ) at (., t.)

where we have used that u; > 0 (see (5.4)). We pass to the limit (z.,t.) — (Zo,t0) ase — 0
with Zg € B,(x¢). In particular we get that

sup(u — ¢°) = (u — ¢°)(Zo, o) with  ¢°(z,1) = A |z — @l
Qo

Therefore (5.11) implies that Ty = xy. Passing also to the limit in (5.12), we get
0<d< F*0,0,20) = 0

where we have used (3.3) to identify to zero the right hand side. Contradiction. This implies
(5.7).

Proof of ii)

The monotonicity of u (see (5.4)) implies (5.8).

Proof of iii)

The continuity of u implies (5.9).

This ends the proof of the proposition.

Proposition 5.5 (Birkhoff property)
Using the notation of Proposition 5.2, let us define the set

A={keZ", k+E,CE}.

Then
A={keZ", kekE}.

Moreover, if k € A, then for allt >0
(5.13) k+ E; C E,.

Proof of Proposition 5.5
We simply notice that

and k € A if and only if

We also notice that
up(z + k) > uo(z).

Therefore from the comparison principle (and the invariance of the equation by integer
translations), we deduce that
u(z + k,t) > u(z,t).

This implies (5.13) and ends the proof of the proposition.
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Proposition 5.6 (Characteristic functions)
Assume (A) and (B). Let us consider the sets E; and EY defined in Proposition 5.1. Then
the following two functions

Xe(t) :==xg and Xgo(-,t):=xge forall t>0

are solutions of (5.1) and

Proof of Proposition 5.6
Step 1: Proof of (xgo)* = x&
Let us consider a point Py = (xo,tg). If u(Fy) # 0, then by continuity of u, we conclude that

(XEe)"(Fo) = xge(FPo) = xE(Po)-

Now if u(Py) = 0, then u(xg,to+ h) > dh for all h > 0 and then P, = (zo,t0 + h) € Eyyin.
This implies that

(XEe)"(Py) > limsup xpo(P,) =1
h—0

and then
(XEO)*<PO) =1= XE(PO)'

Step 2: Proof of (xg). = xgo
Similarly, if a point Py = (xo, to) is such that u(Fy) # 0, then by continuity of u, we get that

(xE)«(Fo) = xXEo(Fo)-

Because u; > 6, we deduce that if u(Fy) = 0, then for all A~ > 0 such that ty — h > 0, we
have u(xg,tg) — u(zg,to — h) > dh, and then P_, = (xq,to — h) is such that

u(P-p) <0 forall h>0.

Therefore if ty > 0,
(Xp)«(Fo) < liminfxp(P-p) =0

which means

(5.15) (Xp)«(Fo) = 0 = xpe ().

If u(Fy) = 0 with ¢y = 0, we simply check that (xg,)« = Xgg, which again implies (5.15).
Step 3: Sub/supersolutions
We use an idea of [4]. Let us define for ¢ > 0

W (2,1) = Bo(u(z, 1) with Bi(a) = % {1+ tanh (4)}

3

Notice that S. is smooth and then, using the fact that the equation is geometric (assumption
(A2)), it is easy to check that u® is also solution of (5.1). Let us define

= limsup*u® and w := liminf,u°.
e—0 e=0
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Then we have (using the pointwise limit of u® as € goes to zero)
Xge SU<TU< XE.

Because by construction, u is lower semicontinuous and w is upper semicontinuous, we deduce
from (5.14) that
u=xg and u= Ypgo.

By stability of viscosity solutions (see Proposition 3.4 1)), we deduce that @ = yg is a sub-
solution and u = xg. is a supersolution. This ends the proof of the Proposition.

Proposition 5.7 (Bound from inside on the expansion of E;)
Let u be the solution given in Proposition 5.1.
If u(zg,tg) > 0, then for each T >0

u(z,to+7) >0 for x € B.(xg) withr such that my, . (r) < IT.

In particular this implies that

U Biw) < Eiprr

onEtO

Proof of Proposition 5.7
Let a = u(xo,tp) > 0. We have for 7 > 0

u(zo,to +7) > o+ 0T

and for ¢t > ¢y
|u(z,t) — u(zo, t)] < my(|z — x0])-

Therefore for 7 > 0, we get
u(z, to+7) > a+ 01 — myy . (| — 0)).
This implies the result.

Corollary 5.8 (Bound from outside for the forward evolution of E;)
Let u be the solution given in Proposition 5.1.
If xg € {u(-,to) < 0}, then for 7 > 0 such that to — T > 0, we have

u(xz,to—7) <0 for x € B,(xg) with p such that my,(p) < 0T

In particular this implies that

(5.16) Ey—r C E,\| | Bl
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Proof of Corollary 5.8

Just consider a sequence x,, — xy with x,, € {u(-,ty) < 0} and apply Proposition 5.7 assum-
ing by contradiciton that u(x,ty —7) > 0 with « € B,(z,), in order to get a contradiction.
This means

U Bw) © RME,.

xo GRN\EtO

which implies in particular (5.16).

Proposition 5.9 (Arbitrarily long arc-connected components of the set Int £})
Let xg € Int Ey, with tg > 0 and wy be the arc-connected component of Int Ey, containing
xg. Then for any r > 0, we have

(517) Wo N 8BT(ZE0) 7& @

Proof of Proposition 5.9
Notice that wy is an open set (because Int Ej, is open). Assume that for some r > 0, (5.17)
does not hold. Then this means that

wo C B(x9)-
In particular, we also have
woNInt By =0 and ¢, >0
using the fact that Int Fj is arc-connected and unbounded. Let us define
t, =inf{s € [0,t0], FEsNuwy#0}.
From (5.9), we deduce that
(5.18) By, Nwy= () (B Nwo).
s>t

Case 1: t, <ty
Notice that
&uo C @Eto

(indeed if (Owg) N'Int Ey # (), then we get a contradiction with the definition of the arc-
connected component wy). Because of Corollary 5.8, we deduce that for 7 > 0 with to—7 > 0

(Eyy—r Nwy) C w0\< U Bp(xl)) with  my,(p) < o7

r1E€Jwo

and then
(Es ﬂwo) CCuwy if s<ty.

Therefore, for s < ty, the set EsNwy is a closed set and from (5.18) and the monotonicity
of the sets, we deduce that

Ei, Nwy = ﬂ (Et.t1/n Nwo) -
neN\{0}
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There exists x, € Ej, 11/, MNwo, from which we can extract a convergent subsequence with
Tp — Too € Wo.

This shows that zo, € Ey, 1% Nwo for all k£ > 0. Then
Too € By, Nwy.

Let us consider the function
dlat)=t—t, +1

which is a test function (from above) for xg on wy X (t. —&,t. + ). We get at (Too, t4):
1= ¢, < F*(0,0,2.0) = 0.

Contradiction.
Case 2: t, =g
We get the same contradiction at any point (z,ty) with z € wy.

Proposition 5.10 (The self-propagating ball barrier)
Assume that (1.9) holds and let us consider some & € SN™! and zy € RN, Fort >0, let us
define the function

(x&) (1) = xa, with Gy = | ) Brl(zo + cosé).

0<s<t
Then xq is a subsolution of (5.1) on RY x (0, +00).

Proof of Proposition 5.10
Let us consider a test function ¢ satisfying for some ry > 0

xX¢ <¢ on B, (P) with equality at some point Py = (z¢,ty) € RY x (0, +00).

We want to check the viscosity inequality satisfied by ¢. In particular, there exists a unique
sp € [0,to] such that zy € OBgr(20 + cos0€) and then

To = 29 + coso — Rpy  for some py € SV L.

Step 1: time derivative
For 7 € R small, let us define

Ty = 20+ co(so + 7)§ — Rpo.
Then we have for 7 small enough
(T to+7) > xg(xrto+7) =1 with equality for 7 =0.
This implies
(5.19) Op+cs-Dp=0 at £.
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Step 2: gradient estimate
Let us set yo = 29 + coso&. We have

(5.20) (-, to) >1 on Bg(yy) with equality at some point xg = yo — Rpo.
This implies that
(521) DQO(ZL‘Q, t()) = p0|D90(:U0, t())|

Step 3: curvature estimate
From (5.20), we also deduce that there exists a C* function 3 satisfying 3(0) = 0 and

(5.22) 3'(0) = |Dp(wo, to)]

(when /(0) > 0 it is enough to take any 5”(0) < D?p(z,ty) - (p,p) for all z = yy — Rp with
p € S¥1 close to py) such that

o(x,tg) > B(lr — yo| — R) in a neighborhood of .

This implies that

/
0
(5:23) Do(an.t0) 2 ~T 01+ 37(0) po @ o
Step 4: conclusion
We get
oo = —cof - Dy
= —co§ - po| Do
< co| Dyl

1
< [D@lF (=1, po,70)

S F*(D2907D()07$0)

where we have used (5.19) in the first line, (5.21) in the second line, (1.9) in the fourth line,
and (5.23), (Al), (A2) in the last line. This shows that y¢ is a subsolution and ends the
proof of the Proposition.

Remark 5.11 Notice that the function

u(x,t) = R+ cot — |7

is a subsolution in (RV\Br(0)) x (0, +00) and this can also be used to check that Proposition
5.10 holds true.
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6 Flatness of £; for N =2

In order to simplify the description, we will use the analogy with the propagation of a fire.
We call E; the burnt (or black) region and its complement RV\ E; is called the unburnt (or
white) region.

Proposition 6.1 (Black cubes)
Let us assume (A) and (B) and consider to > 0. If o € Int E,,, then

x0+{x€R2, V'xZR}CEtOJFT
with 7 = 5R/cy and R = /2/2 + 2R.

Proof of Proposition 6.1

Step 1: choice of a ball

Let wy be the connected component of Int E;, containing . From Proposition 5.9, we know
that there exists a point yo € (0B4r(70)) Nwp and a continuous path v : [0, 1] — Bygr(zo) Nwo
with v(0, 1] C Byg(zo), such that

(1) =20,  (0) = wo.

(?Jo - xo)L

We set € := Yo — o]

. Let us call ¢, the smallest ¢ such that

(v(t) = o) - (Yo — o) = 0.
Then ([0, ¢.]) splits the half disk
Dt :={x € Byr(zo), (z— 1) (yo— x0) > 0}

in two open connected components w, for ¢ = +, — with

Owy D {x € (0DT) N OBug(xo), =+(x— 1) & >0}.
See Figure 6. We also define the strip

Saoge = {z €R? 0 < (z— ) - (yo — 20) < |yo — x> = (4R)*}

and the extensions of the sets w4 as

Wy =wy U{x € Spyy\Bar(xo), =£(x—x0)-&>0}.
The sets w4 are also two connected open sets and we have the partition of the strip:

Suon = @ UG U (100, 1) N Sy)

Step 2: Using a self-propagating ball barrier
Let zo = (yo + o) /2. For t > 1y, the characteristic function of the set

U Br(z0 +&(—5R + co7))

0<r<t—tg
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B4R(X0)

Figure 6: Construction of w, and w_

B4R(X0)

Figure 7: The ball barrier propagating on w,

is a subsolution on w, X [tg, +00) (see Proposition 5.10 and Figure 7).
Similarly, the characteristic function of the set

U Br(z0 +&(5R — cT))

0<7<t—to

is a subsolution on w_ X [tg, +00), and we deduce that for 7 = 5R/cy, we have

— X
Eto-H’ D) {CC - B4R($()), —R < (ZL’ — Zo) . M < R} D) BR(Z()) D) B\/i/Q(ZO)

1Yo — wo|
where we have used the fact that R > /2 /2.
Step 3: Using Birkhoff property
From the Birkhoff property (Proposition 5.5), we deduce that for any k € Z? such that
k € Ey, we have

B 5/9(20 + k) Ck+ Eygr C Epgir
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Notice that
U Buask) o {:EGRQ, x> ﬁ/Q}.

kEZ2NEy

Indeed if v -2 > /2/2 and y € B 3/5(2), then v -y > 0. But there exists k € Z* such that

keax+[—3,3* C B /9(x) and then v -k > 0, i.e. k € Eg. This shows that z € B 5/,(k)

for some k € Z?> N E.
Therefore

zo+{x€]R2, vex > \/5/2} C Eiyir

and then
o + {:c eR% v-z> \/5/2+ ZR} C Eiyir-

This ends the proof of the proposition.

Remark 6.2 In the proof of Proposition 6.1, we use strongly the topology in dimension 2,
which s no longer possible in higher dimensions.

Corollary 6.3 (Black cubes (bis))
Let us assume (A) and (B) and consider to > 0. If g € Ey,, then

(6.1) vo+{r€R? v-z>R}CE,,
with T = 5R/cy and R = /2/2 + 2R.

Proof of Corollary 6.3
We simply notice that from Proposition 5.7, we have

E,, CInt E;, forall s>t
Then Proposition 6.1 implies that
x0+{x€]R2, u-xzf_%} C Eyp, forall s>ty

and using (5.9), we deduce (6.1). This ends the proof of the corollary.

Proposition 6.4 (Uniform flatness property of E;)
Let us assume (A) and (B). Then there exists

C
(6.2) L:=8R="
Co

such that for any t > 0, there exists ¢, € R such that

(6.3) {zeR’ z-v>g+L}CEC{zeR z-v>¢g}.
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Proof of Proposition 6.4
Step 1: definition of ¢,
First, for any ¢y > 0, let us define ¢, as the biggest constant such that:

(6.4) Ey, C{z-v>¢,}.

Recall that £y C Ey, and then ¢, < 0. Notice also that this constant ¢;, is well defined
because of the barriers of Step 1 of the proof of Proposition 5.1.

Step 2: consequences

From the definition of ¢, as the biggest constant satisfying (6.4), we deduce that for any
e > 0, there exists z. € E,\ {z - v > &, + €}, and Corollary 6.3 implies that

x€+{a:e]R{2, y-xZR} C Eyqr.
Because ¢;, + ¢ > z. - v, we deduce that for all e > 0
{$€R2, V-x2R+EtO—|—€} - {xERQ, V'ZL‘ZR+V-ZL‘5} CE;¢r
and then (using the fact that Ey ;. is closed)
(6.5) {zeR?’ v-2>R+6,} C Eyyr

On the other hand, we can easily check that, for any € > 0, the characteristic function
of the set
{:CERQ, x~u26t0—007—8}

is a supersolution. From the comparison principle, we deduce that for any € > 0
Eyir C{z€R? z-v>¢,—Cor —¢}
which implies
(6.6) Eyir C{z€R? z-v>¢,—Cor}.
Therefore this implies (6.3) for t = to + 7 > 7 with ¢, . = &, — Co7 and
(6.7) L=R+Cyr.
For t € [0, 7], we have
{r - v>0}=EyCE CE, C{z-v>—-Cyr}
which implies (6.3) still with L given in (6.7).
Step 3: conclusion

Using the fact that R > v/2/2 and Cy > ¢y (see Remark 1.2), we deduce (6.3) with L given
by (6.2). This ends the proof of the proposition.
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7 Existence of a corrector: proof of Theorem 1.3

Proof of Theorem 1.3
Step 1: Control of the space oscillations of u
We will prove the following estimate

(7.1) —L <u(z,t)— (z-v—¢) <0.

Let us first explain heuristically why we can get such an estimate. Given some zy € R? and
some time ¢ > 0, let us assume that there exists some b € Z? such that:

u(zo,t) =v-b.

Then we have for all x € R?:
u(x —b,t) =u(z,t) —v-b

which shows that
(7.2) u(zg — b,t) = 0.
Then (6.3) implies that
(7.3) v (zg—b) > ¢
If we assume that (7.2) is now replaced by
(7.4) u(zg —b,t) <0

we see that v - (zg — b) > ¢, + L would imply u(t, g — b) > 0 which is in contradiction with
(7.4). Therefore v - (g — b) < ¢, + L, which in the limit case (7.2) should give

v-(ro—0b) <¢+ L.
Joint to (7.3), this gives
—L <wu(xg—0b,t) —(v-(xg—0) —¢,) <0

le.
—L < u(zg,t) — (v-20—¢) <0

which is (7.1). We now do the (rigorous) proof of (7.1).
Case A: v € R*\(R-Q?)
In that case, v - Z? is a dense subgroup of R, and then for any zo € RY and ¢ > 0, for any
e > 0, there exists by € Z? such that
v-b_ <u(t,zg) <v-by and |v-(by—0b_) <e.

Because we have for any x € R?

up(z — by) = up(z) — v - by
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we deduce that
u(zg — by, t) = u(xo,t) — v - by.

Therefore € > u(zg — b_,t) > 0, and as above, this implies that

ve(zo—b)>g

and then

u(xg—b_,t) — (v-(vo—b_)—¢) <e
le.
(7.5) u(zo,t) — (v a0 —¢;) < €.

On the other hand —e < u(zy — b4, t) < 0 also implies (as above) that

ve(rg—by) <c¢+L

and then

—e— L <wu(wg—by,t)— (v (0 —by) —¢)
i.e.
(7.6) —e— L < u(xo,t) — (V-39 — ).

Because (7.5) and (7.6) are true for any € > 0, we deduce (7.1).

Case B: v € R-Q?

We simply deduce the result from case A, considering a sequence v, — v with v, €
R?\(R - Q?), and using the stability of viscosity solutions which implies (locally uniformly)
the continuity dependence of the solution with respect to the initial data.

Step 2: Global bound in time
We show in this step that

(7.7) |u(z,t) — (x - v+ At)| < 3L.
For any T'> 0 and t > 0, let us define

u(0,t+T) — u(0,1)

At T) = -

and
AT(T) = sup \(t,T)

t>0

AT(T) = inf A(t, T).

>0

Because u is globally Lipschitz in time, we know that those quantities are bounded.
Step 2.1: first estimate on A\ (T) — A\~ (7))
For any 7,7 > 0, let us define

wh(v,t) = u(r,t+70) —(r-v—c,,)

w(z,t) =u(z,t+7-)—(x-v—c, )+ L.
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Then we have
—L <wh(x,0) <0< w (2,0) < L.

And the comparison principle for the solution u, gives
wh (2, T) <w ™ (z,T)
which implies (using —2L < w*(x,0) — w™(z,0))

wh(z,T) —wt(z,0) <w (z,T) —w (2,0) + 2L

and then or
M7 T) S A(r ) + 5.
This implies
_ _ 2L
(7.8) A (T) < AH(T) <2 (T) + T

Step 2.2: refined estimate
Let us consider T3, Ty > 0 such that there exists P, € N\ {0} such that

PTl - QTQ

Then we have

2L
AHT) > AT(PTh) = MH(QTs) > A (QTe) > A (T) > AT (Ty) — T
2
which shows that oF
A (D) =2 (Th) < —
1
and then by symmetry
2L 2L
AT(Ty) — AT ()| < — —
A% () = A1) < max (5,57
Doing the same raisoning with A, we get finally
2L 2L
(7.9) AF(T2) = AH(T1)| < max | 7,
T T,

for T5/T) rational. When T5/T) is not rational, the result still holds by continuity of the
map T+ A*(T), which follows from the fact that the solution u is uniformly continuous in
time (because it is globally Lipschitz in time).

Step 2.3: conclusion

This shows that (A*(T"))r is a Cauchy sequence, which has then a limit A\*, with \* = X
becaiuse of (7.8). Passing to the limit 75 — +o0 in (7.9), we get

2L
A — \E(T))| < =,
A= X)) <
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This implies with 7" = T3 and any t > 0:
|u(0,t+T) —u(0,t) — AT'| < 2L.
On the other hand, (7.1) implies that
lu(z,t+T) —u(0,t+T)—z-v| < L.
This shows that
(7.10) lu(z,t +T) —u(0,t) — (x - v+ \T)| < 3L

which implies (7.7), taking ¢ = 0 in (7.10).
Step 3: Shifting at infinity in time and Perron’s method
For any n € N, let us define

Un(33, t) = u(x> t+ Tl) - U(O, n)
Then u,, satisfies

|un(x,t) — (z - v+ At)| < 3L
(7.11)
the map =z + u,(z,t) —z-v is Z*-periodic.

Then we define

U(z,t) = limsup  w,(2,t)
(2t ;n)—(x,t,+00)

Q(l’, t) B (x’,t’,gg%££,+oo) tn (xl’ t/)

Then w and u are respectively a subsolution and a supersolution of (5.1) on R? x R, and
moreover they satisfy (7.11). Then we define

u(w,t) = sup (u(z,t + a) — Xa)
a€R

u(r,t) = ;IGIHg (u(x,t+a) — Aa).

Then @ and u_ are still respectively subsolution and a supersolution of (5.1) on R? x R, and
still satisfy (7.11). They satisfy moreover that

T (r,t) =7 (2,0)+ M and u (z,t) =u (z,0) 4+ M.

Let us define .
v(z):=u (z,0) —z-v > —=3L,

v(r) :=6L+u (z,0) —z-v <9L.

Then ¥ and v are Z?-periodic, they are respectively sub and supersolution of

(7.12) A= F(D*v,p+ Dv,r) on R?
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and satisfy
v <.

Then, we can apply Perron’s method to show the existence of a solution v (for instance as
a suppremum of subsolutions) of (7.12) such that

BL<r1<v<v<9L.

Therefore
supv — infov < 12L

which implies

C
supv — infv < 96 R
Co

and then implies (1.11). B
Step 4: Continuity and homogeneity of F
For any p € R?\ {0}, let us call u, the solution of (5.1) with initial data

uy(z,0) =p-x.
Then, from (A2) and the uniqueness of the solution, we get that
U, = ]p|uﬁ.

On the other hand
u, =0 for p=0.

This implies (using for instance (7.7)) that
F(\p) = AF(p) for any \>0.

Finally, the continuity of F' follows classically from (7.7) and the stability of viscosity solu-
tions with respect to initial data.
This ends the proof of Theorem 1.3.

8 Conditional homogenization in any dimension: proof
of Theorem 1.5

This section is fully devoted to the proof of Theorem 1.5.

Let us first define for 0 < p < R the set:
Dor = {(X,p,z) € SV x (R"\{0}) xRY, |X| |p| <R, |p|>p}.
Let us denote by w, r a modulus of continuity for F' on D, g, i.e. such that we have
(X>p7 .Z‘), (Xlapla .Z'/) € Dp,R
(8.1) |F(X,p,x)— F(X",p,2") <w,r(a) if and
|IX = X', |p—p| |z -2 <a.
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In the proof of Theorem 1.5, we will also need quite classical results recalled in the
appendix about barriers (see Subsection 12.1, Lemma 12.1 and Corollary 12.2) and about
inf-convolutions (see Subsection 12.2, Lemmata 12.3 and 12.4).

Proof of Theorem 1.5

Step 1: barriers

We notice that the functions v},xo (resp. U},xo) given in Lemma 12.1 is independent on ¢
but is a supersolution (resp. subsolution) of (1.1) for any ¢ € (0, 1]. We now recall that ug
is uniformly continuous. Therefore the function u™* (resp. u~) given in Corollary 12.2 is still
independent on ¢, and is a supersolution (resp. subsolution) of (1.1) for ¢ € (0,1]. Then
from Perron’s method, there exists a solution u° satisfying

o <uf <ut

and
lim sup |u*(z,t) — ug(z)| = 0.
t—=0T LcRN
Moreover from the comparison principle, we deduce that u° is unique and continuous.
Step 2: definition of u,u
As usual, we define the half relaxed limits:

u = lim sup *u®
e—0

u = liminf ,u®.
e—0

By construction we have

v <u<u<u'

IS

which shows that the initial data is satisfied by the limits:
u(z,0) =u(z,0) = up(x).

We now have the
Claim: @ (resp. u) is a subsolution (resp. a supersolution) of the limit equation (1.2).
Then the comparison principle for the limit equation (1.2) implies that

u<u
which shows that
U=u=1u

where u is the unique solution of (1.2). This finally implies the convergence (locally uni-
formly) of u® towards u.
The rest of the proof is then devoted to prove the Claim. We will first prove that u is a sub-
solution of (1.2) on RY x (0, +00) (and the proof is similar to show that u is a supersolution,
with some adaptations).
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Step 3: if u is not a subsolution
We assume by contradiction that % is not a subsolution of (1.2) on RY x (0, +0cc). Then
there exists a test function ¢ and a point Py = (o, ty) (with ¢y > 0) such that

u(Py) = ¢(Fy)
u<¢ on Q.(P) = B.(x) x (to —7,tg +7) C RN x (0, +00)

©i(Py) — F(Dp(Py)) =6 > 0.
Let us set B B
p=Dp(R), A=F({p), A=)

Up to replace ¢ by |(x,t) — Py|* + ¢, we can moreover assume that there exists 6, = d;(r) > 0
such that

U+20 <¢ on Q(P)\Qr2(F),

u < on Q. (P)\{P}.

Step 3.1: p=0
Then for € > 0 small enough, we have also

us‘i_élg@ on QT(PO)\QT/Q(PO)

and for € small enough

5’5 — ﬂ(ua — ('p) = (U,g — @)(PE) Wlth Pg = (xa7t8) € QT/Q(PO>
Qr(Po)

and
P.—PF, S5 —0 as e¢—0.

On the one hand p = 0 implies A = 0 and on the other hand we have
¢i(P.) < F(eD*p(P.), Dp(P.), z).
Passing to the limit ¢ — 0, we get
0<0=¢(F)<F0,0,29) =0.

Contradiction.
Step 3.2: p#0
Notice that

(8.2) o(x,t) = o(Po) +p- (x —x0) + At —to) +1(w,1)

with ¢ and its derivatives small in Q,.(F), i.e.
(8.3) DYDY | < <1 on Q(F) with = oi(r).

We also extend by continuity (keeping the same notation) ¢ and ¢ outside Q,(Fp) in order
to keep the relation (8.2) and such that there exists a pp > 0 (not necessarily small) with

D] < po in RY x [0, 400).
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Step 3.2.1: Regularizations and definition of the perturbed test function ¢°
Then for n > 0, we consider w?? = w?" a supercorrector associated to the approximate
Hamiltonian F?7 given in assumption (B’) for the gradient p and let us define

(8.4) O (z,t) = inf  ¢°(2,t) with @°(z,t) = @(a,t) + cw*(x/¢)
2€Bey ()

where ¢¢ is lower semi-continuous (from Lemma 12.3). The reason for introducing the reg-
ularization given by (8.4), is that it will allow us to control the curvature of the level sets of
@° from one side, and then to bound the gradient from below.

We consider the following perturbed test function for some p > 0 (to fix later)

: _ |z — 2|
“(x,t) = inf “(z,t
e = inf, (#0150

which is also lower semi-continuous (fact similar to the proof of Lemma 12.3). The reason for
introducing this further regularization (given by ¢*) is that it will help us later to control the
second derivatives from above and from below, which will be important in the perturbation
argument (in order to get a contradiction).

We recall that (from assumption (B’))

sup w?! — inf w?*! < Ry
and choose 1 > 0 small enough such that
(8.5) [F*(p) = Al < 0/4

for later use. Then, using A)vii) of Lemma 12.4 with L = |p|+ o, we get for & small enough

(8.6) w0 <" on Qr(P)\Qrj2(H)

and

(8.7) S¢= sup (uF—¢°) =W —¢°)(P.) >0 as €—0
Q’I‘(PO)

for some point P. = (2., t.) € Qr/2(Fo)-

In general, there is no reason for ¢ to be locally a supersolution of the PDE satisfied by
u® (i.e. equation (1.1)), because the viscosity supersolution inequality may not be satisfied
at points where the gradient of ©° vanishes. This is due to the “instability” of the discontin-
uous Hamiltonian F' (or F?7), by perturbation of its arguments and this is the reason why
the classical perturbed test function of Evans does not apply directly to this case of mean
curvature type equations involving hamiltonians F'. The point is that, even if ©* would not
be a supersolution, we will show that ¢ still satisfies the strict viscosity supersolution in-
equality (for the PDE satisfied by u°) at the point P., which is enough to get a contradiction.

)

Step 3.2.2: Controlling the distance between points
Still using A)vii) of Lemma 12.4 with L = |p| + 1o, we see that there exists a point Z, € RY
such that

. — x| <eCryr, with Cir,—0 as p—0
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and | L
e/~ Te — Te

c E?tE =¢° E)tE - 2
@ (7, t) = O (T te) + =p

We choose p small enough such that C%, 1, <7 and then
(88) |='Z'€ - zel S .

Step 3.2.3: Framework to apply Ishii’s Lemma
Then we have

€ € : —€ |[L’ — y|4
S = sup (u (x,t) — inf (go (y,t) + =,

(x,1)€Qr(Po) yeRN :
_ T =1y
= _sup (Us(xat)—goe(y,t)— | = | )
(z,t)€Qr(Po), yeRN ) €%p
/= Te— T
— (ot = @) - I

From Ishii’s Lemma (see Theorem 8.3 in the Users’s Guide [17], and Theorem 7 in [16]),

we deduce with | ‘4
T —y

d t) =

(@,9,1) = =3 ;

that for every v > 0, there exists
(8.9)
( 2+
(b1,q,X) € P us(xe, t.)
(bs,q,Y) €P" (7 t2)
bl - b2 = O = (bt(xea f&ats)

1 I 0 X 0 9
—(;”'A")(o I)s(o _Y)SAJrWA

=2
with ¢ = D,®(x., Zc,t.) = —Dy®(z., 2., t.) = d(x. —Z.) with ¢ = %
. _ ]+2&\®a —]—QZ]\(X)E[\ oON . ~ q .
h A=D? = S = h = = f
\ wit O(xe, Te, te) 5( I-2%®7 I1+279] es with ¢ 4l (if q#0)

where ||A]| = sup < A, € >.

From A)v)l—i'/i)1 of Lemma 12.4, we see that there exists a point #. € RY such that
(810)  (by,q.Y) €P " F(iet) and @F(i,t) = ¢°(Te,t:) with |5 — 7| < e
and then we have at P. = (Ze,te)

(8 11) (62 - (>‘ - ﬁ%(p) + ¢t(ﬁs))7 q— Dw(pa)a Y — D2w(155)) € 7327_26(‘%57256)
with — 5(z,t) = o(Py) +p - (x — 20) + F¥(p)(t — to) + ew? (x/e).

We have in particular the viscosity inequalities
x
by < F* <6X, g, —E>
€

(8.12) i} ) . . F
be = (= F0) + () 2 F20 (<Y = DB - Du(P). % ).
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Recall that to be able to apply Ishii’s Lemma, we need to be able to bound b; < C and
by > —C for general (by,q1,X) € 52’+u5(x,t) and (by, q2,Y) € 52’_@5@, t) for (z,t) close to
(xe,te), (y,t) close to (Z.,t.), and bounded ¢, ¢, X, Y, u(x,t), o°(y,t). Indeed this is true
and comes from the viscosity inequalities similar to (8.12), using in particular assumption

(A4)i).

Step 3.2.4: Bound on the second derivatives and the gradient
Notice that

0<A<30E with E:(j _ﬁ)

1
We also have E* = 2F, and then A% < 18§?F. Because ||A|| = 64, setting 7 = 35 in (8.9),
we get

(8.13) —95(é ?)g(? _Y0>g95(_§ _ﬁ)

Therefore

3
(8.14) 951 <Y <95] and |g < L.
p

where the last bound on ¢ follows from (8.9) and (8.8).
Step 3.2.5: Gradient estimate from below
Notice that (8.11) also implies that

(8.15) by = A+ by (P.).
Therefore, for
(8.16) Y| Sp<0/2

and using the fact that A = A+ 6 and A = F(p) > 0, we deduce from (8.9), (8.15) and (8.12)
that
0/2 <X+ (P.) =by=0b < F* <€X,q, %) < F* (€Y,q, %)

where we have used X <Y which is implied by (8.13).
We deduce that .
0/2 < F* <5Y, q, —a) < ¢,|q|
€

where we have used Lemma 12.3 (and in particular (12.8)) for the last inequality. This shows
that the gradient is bounded from below:

b <
QCn_q'

Step 3.2.6: Perturbation and contradiction
Notice that from (8.8), we have

[

(8.17) 5

I
23



Now, we deduce from (8.12) and (8.15) that

F21(p) > FI" | e(Y = D*(F%)), q — Dy(F), %
= F? [ e(Y — D*)(P.)),q — D(P.), %
> F (Y - D(P)).q — Du(P). )

Te
2 _wp(),R(M) + F <€Y7 q, ?)

where we have used (8.8) and (8.10) in the third line. In the last line, we have used the
bounds (8.14) on the second derivatives (with (8.17)) and the gradient and the modulus of
continuity w,, r defined in (8.1) with (for ¢ <1)

0 9 2 3
po=——, Rzl—l—max(l,n—)
4cy pop
and choosing

0
DYl <p<—, (D <p<l
4c,
Therefore, choosing moreover p such that

wpo,R(:U') < '9/4

we get
Fo(p)+0/4 = F (eY.q, %) 2 F (2X,0, ) > by = Mri(P2) = Mtbin(P) > F2’7(p)+%+wt(}5€)

where we have used the control (8.5) on F?7(p) and A = A + 6. This gives a contradiction
for the choice

W]t‘ <p< 9/4-

Therefore we conclude that we can not have # > 0, and then u is a subsolution.

Step 4: if u is not a supersolution
We assume by contradiction that u is not a supersolution of (1.2) on RY x (0, +00). Then
there exists a test function ¢ and a point Py = (o, ty) (with ¢y > 0) such that

u(Fy) = ¢o(Fo)
u>¢ on Q.(P) = B.(x) x (to —7,to +7) C RN x (0, +00)

©i(Py) — F(Dp(Py)) = —6 < 0.
Let us set . )
p=Dp(R), A=F({p), X=w(H).

Up to replace ¢ by —|(z,t)— Po|*+, we can moreover assume that there exists §; = §;(r) > 0
such that

u— 2(51 Z 2 on QT(PO)\QT/Q(PO>a
(8.18)

u> @ on  Q(P)\{Fo}-
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Step 4.1: p=0
Then for £ > 0 small enough, we have also

ut =061 > ¢ on Qn(Po)\Qr2(Fo)

and for € small enough

S =_inf (v —¢p)= (v —p)(P.) with P. = (2.,t.) € Q,/(F)
Q’I‘(PO)

and
P.—-F, S —0 as ¢—0.

On the one hand p = 0 implies A = 0 and on the other hand we have
pu(P2) = F(eD*p(F.), Do(F), ).
Passing to the limit € — 0, we get
0> —0 = (Py) > Fi(0,0,29) = 0.

Contradiction.
Step 4.2: p#0
Notice that

(8.19) p(x,t) = p(B) +p- (x — z0) + At — to) + ¥(x, 1)
with ¢ and its derivatives small in Q,(Fp), i.e.
(8.20) (DY, [D*Pl, [l < p <1 on Qn(Ry) with = o(r).

We also extend by continuity (keeping the same notation) ¢ and 1 outside Q,.(F,) in order
to keep the relation (8.19) and such that there exists a po > 0 (not necessarily small) with

D] < po in RY x [0, 4+00).

Step 4.2.1: Regularizations and definition of the perturbed function u*
Then for n > 0, we consider wy, = w?" a subcorrector associated to the approximate
Hamiltonian F3, given in assumption (B’) for the gradient p and we define

E(r,t) = (o) + - (2 — 10) + Fop(p)t — to) + 2w (/%)
where we recall that (from assumption (B’))
sup way, — inf wy, < K.
We choose 17 > 0 small enough such that (using the fact that A > 0)
(8.21) Foy(p) — Al < min(3/2,6/4)
for later use. We define
W (2,1) = u' (@, 1) + (Fay(p) — A)(t — to) — ¥(a,1)
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and

(8.22) u(x,t) = inf a°(z,t)
2€Ben ()

which is lower semi-continuous (from Lemma 12.3). The reason for introducing the regular-
ization given by (8.22), is that it will allow us to control the curvature of the level sets of u*
from one side, and then to bound the gradient from below.

Notice that we have

(8.23) lim ig1f* U (z,t) = u(z,t) + (Foy(p) — N (t — to) — ¥(z,t).
e—
We also consider the following kind of perturbed test function for some p > 0 (to fix

later)
3 _ A
I¥(z,t) = sup <l‘5(z,t) _le=2] )

3
2€R2 de P

which is also upper semi-continuous (fact similar to the proof of Lemma 12.3). The reason
for introducing this further regularization (given by [¢) is that it will help us later to control
the second derivatives from above and below, which will be important in the perturbation
argument (in order to get a contradiction).

Then, using A)vii) of Lemma 12.4 with L = |p|, we get for £ small enough

(824) 17/8 - 51 Z le on Qr(PO)\Qr/Q(PO)

and

(8.25) S = inf (& —10°)=(a"—0)(P.)—0 as €—0
QT(PO)

for some point P. = (x.,t.) € Q,2(F).

In general, there is no reason for u° to be locally a supersolution of a modification of the
PDE satisfied by u® (i.e. equation (1.1)), because the viscosity supersolution inequality may
not be satisfied at points where the gradient of u® vanishes.

Step 4.2.2: Controlling the distance between points
Still using A)vii) of Lemma 12.4 with L = |p|, we see that there exists a point 7. € RY such
that

Z. — x| <eCryr, with Cryr, =0 as p—0

and | .t
Je /= Te — Tg
l6<l'5,ta) = la(fﬁe,ta) — T:sp

We choose p small enough such that C%, ., <7 and then
(8.26) |Te — x| < em.

Step 4.2.3: Framework to apply Ishii’s Lemma
Then we have

3 A
S¢ = inf (u‘f(a:,t) — sup (la(y,t) _ eyl )

(z,t)€Qr(Po) yeRN 4e3p

= inf (ﬂg(x t) — 5 (y, t) + lz =y y|4>
(2.6)€Qr (Po), yeRN ’ ’ 4e3p
- |4
_ e, Te — T
— (o) = Float) + L
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le.
~ 4 ~ _ 5 |4
s () ) = 5 ) = ) - e - P

(y7t)eQ’l“(P0)7 zERN

4e3p

From Ishii’s Lemma (see Theorem 8.3 in the Users’s Guide [17], and Theorem 7 in [16]),

we deduce with | |4
r—=y
d t) =

that for every v > 0, there exists
(8.27)

( (b1, q, X) € PTEE(zo, L)
(b, q,Y) € P° 0 (o, 1)
bl - b2 - O - q)t(xsa 1_;67 ts)

1 I 0 X 0
——+A>< )g( )§A+”YA2
(7 A o 7 0 -Y

52
with q= qu)(xsafeate) = _qu)(ajs;a_:s:ta) = 5(335 - fa) with 0 = —|I€ IE|

. , I+202q —1-24®q o~ 4
2 2N
\ with A= D*®(z.,Z.,t.) =9 ( [—-9507 I1+2797 € S*Y with ¢= (if ¢#0)

where ||A]| = sup < A&, & >.
l¢1=1

From A)v)-vi) of Lemma 12.4, we see that there exists a point 7. € RY such that
(8.28)  (by,q,Y) €P @ (3.,t.) and @ (a.,t.) = @(d.,t.) with |i. — .| <en
and then we have at P. = (Ze, te)

(820) (b~ (Foylp) = A = (P)) g + DU(P).Y + D*(P.) € P (i, 1),

We have in particular the viscosity inequalities

be = (Falp) = A= () 2 . (o + D0(P).a+ Dol P). &)

(8.30) .
bl S (an)* <€X,q, f) .

Recall that to be able to apply Ishii’s Lemma, we need to be able to bound b; < C' and
by > —C for general (b, q1, X) € 7_72’+l~€(a:,t) and (by, g0, Y) € 52’_a5(y,t) for (z,t) close to
(Ze, te), (y,t) close to (z., t.), and bounded ¢1, g2, X, Y, l~€(9c, t),u(y,t). Indeed this is true and
comes from the viscosity inequalities similar to (8.30), using in particular assumption (A4)i).

Step 4.2.4: Bound on the second derivatives and the gradient

1
As in Step 3.2.4, we get for v = oY

(8.31) —95(é ?)g(? _Y0>g95(_§ _ﬁ)



Therefore

3
(8.32) 951 <Y <951 and |g| < L.

P

where the last bound on ¢ follows from (8.27) and (8.26).
Step 4.2.5: Gradient estimate from below
Notice that (8.27) also implies that

(8.33) by = Fan(p).

Using (8.21) and the fact that A = F(p) > 0, we deduce from (8.30) that
_ _ Te . e
(834)  0< A2 Fyylp) = b < (Fo)" (X, =) < (Fo)" (Yiq. =)

where we have used X <Y which is implied by (8.27).
We deduce that

0< A2 < (Fy) (gy, g, %) < ¢,dl
where we have used Lemma 12.3 (and in particular (12.8)) for the last inequality. This shows

that the gradient is bounded from below:

A1l
2cn_q'

Step 4.2.6: Perturbation and contradiction
From (8.26), we see that

[

(8.35) 5

VAN
e

Now, we deduce from (12.23) that

_ . T
Falp) < (o) (Y0, =)
= F277 <€K q, E)
_&

<F (eY,q, E)
19
~ xXr

< ) + F (0 4 DR, 0+ DU, )

where we have used (8.26) and (8.28) in the third line. In the last line, we have used the
bounds (8.32) on the second derivatives (with (8.35)) and the gradient and the modulus of
continuity w,, r defined in (8.1) with (for ¢ <1)

5\ 9 2 3
Po = —, Rzl—l—max(i,n—)
dey PP

and choosing

>

DYl <p< = [DW[<p<l
Cn
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Therefore, choosing moreover p such that

wpo,R(:u) S 0/4

we get using (8.21):

Fy(p)—0/4 <F (g(Y + D*)(F.)),q + Dy(F.), z—)
= F. (s(Y + D (F.)). q + Dy(P), —)
< by — (Fay(p) = A = (%))
= A+ wt(Pa)
= /_\ -0+ 7vbt(Ps)
< Fyy(p) — 30/4 + t4(P.)

where we have used the control (8.21) on Fy,(p) and A = X + 6. This gives a contradiction
for the choice

| < p < 0/4.

Therefore we conclude that we can not have # > 0, and then wu is a supersolution.
This ends the proof of the Theorem 1.5.

9 Homogenization in 2D: proof of Theorem 1.4

In order to do the proof of Theorem 1.4, we will need the following result

Proposition 9.1 (Approximate hamiltonians)
We assume that F satisfies (A) and (B). For any n > 0, let us define and (M, p,z) € Dy,
let us define

F'(M,p,x) = sup F(M,p,v +e), F,(M,p,x)= inf F(M,p,z+e).

lel<n lel<n

Then F", F, satisfy assumptions (A), (B) and (1.9) with the same constants.
Let F"'(p) (resp. F,(p)) is the effective hamiltonian given by Theorem 1.3 associated to F"
(resp. F,). Then we have asn — 0:

F'(p) — F(p), F,(p) — F(p).

Proof of Proposition 9.1

We do the proof for F" (the proof for F, being similar).

Step 1: cheking F" € C(D,)

Notice that F € C(Dy), because F is locally uniformly continuous on Dy and Dy is periodic
in the last variable on which we take the suppremum defining F".

Step 2: The approximate hamiltonian F"

Because F' satisfies (A),(B) and (1.9), it is easy to check that it is also the case for F"
(with the same constants and the same function ok ). Let us give the details for checking
(A4)ii) (skipping the verification of the other assumptions which are easier). Let us consider
r,y €RY a>0,and X,Y € SV as in (A4)ii). We set p = a(z —y).
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Case p # 0
We write with |e,], le,| < n:

F'(X,p,x)=F(X,p,x+e;), F'Y.p,y)=F(Y.,p,y+ey)
and then
(Fn)*(Xapa .Z') - (Fn)*(Y>p7 y)

={F(X,p,x+e,) —FY,p,y+e,)} +{FY.,py+e.) — FY.p,y+ey,)}
S F(vaax+ex> - F(Y7p7y+€x)

<og{lz —y[(1+afz —y[)}.

Case p=0
If x = y, this is assumed that a = 0. Therefore p = 0 always implies that « = 0 which
implies X =Y = 0. We then have to check that

(9.1) (F7)7(0,0,2) = (F").(0,0,y) < ox(|z —yl).
But by definition, we have

(F")*(0,0,2) = limsup F"(M,q,z)= limsup F(M,q,z+e,) < F*(0,0,z+¢e)=0
(M,q,2)—(0,0,z) (M,q,2)—(0,0,z)

where e is a limit (up to extract a subsequence) of some e, with |e,| < 7. Similarly, we show
that
(£")7(0,0,) = 0.
This implies (9.1).
Step 3: the effective hamiltonian F”
From Step 1 and Theorem 1.3, there exists a Z2-periodic corrector w" solution of

(9.2) F'(p) = F'(D*w",p+ Duw",y) on R?

such that o
supw"” — inf w" < kolp| with kg = 100 R—2.
Co

It is easy to check (as usual) that
(9.3) F(p) — F(p) as n— 0.

This ends the proof of the proposition.

Remark 9.2 We will not use that fact, but we can check that F" and F, (given in Propo-
sition 9.1) still satisfy (8.1) with the same modulus of continuity w, g.

Proof of Theorem 1.4
We simply apply Proposition 9.1 which shows that assumption (B’) is satisfied. Then The-
orem 1.4 follows from Theorem 1.5. This ends the proof of the theorem.
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10 The cell problem in 2D with sign changing normal
velocity

A natural question is: do we still have existence of correctors for geometric motions with
normal velocity:
V =k +c(xr) when ¢ changes sign.

More generally, in this section, we show the existence of a corrector when assumption (B) is
replaced by:

Assumption (B”): Barrier from below:
There exists a (upper semi-continuous) subsolution U of (5.1) for F' satisfying (A) for N = 2,
that we can write

U(z,t) = Xk, (2)
for a familly (K;)i>o of compact sets Ky C R? satisfying for some Ty > 0
Kt = KTO fOT' t Z To

and
Kr, D Ko+e forall ee{0,e,—e1, ez, —e}.
We also assume that there exists Ry > 8 such that
K, D [0,1]?,

B_RODKt for all t>0.

Remark 10.1 Notice that assumptions (A1) and (A3) imply that there exist constants
Co,c1 > 0 such that for all (p,y) € SNt x RN, we have

(10.1) Co > F(0,p,y) = —c1.

Remark 10.2 Notice that assumption (B”) is still satisfied for equation (1.3) and certain
velocities c¢(y) which can change sign (see Subsection 11.1).

Then we have the following result:

Theorem 10.3 (The cell problem in 2D under assumption (B”))

Assume that N = 2 and that (A) and (B”) hold. Then for any p € RY, there exists a unique
real number F(p) (with F(p) > 0 if p # 0 and F(0) = 0) such that there exists a bounded
ZN -periodic function v : RN — R solution of

(10.2) F(p) = F(D*v,p+ Dv,y) on R".
We can choose v such that
(10.3) supv —info < kylp|  with Ky =400 CyTy (Ro + ¢1Tp) -

Moreover the map p + F(p) is continuous and positively 1-homogeneous, i.e. for any
p ERY ) )
F(Ap) = AF(p) forany X>0.
In order to prove Theorem 10.3, we follow the plan of the proof proposed in Sections 5,
6, 7.
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10.1 New preliminary results

For N = 2, let us consider u solution of

(10.4) u, = F(D*u, Du,y) on RY x (0, 400)
with initial data

(10.5) uw(0,2) =ug(z) =x-v for xRN

with v € SV-1.

Lemma 10.4 (Bound from below)
Assume (A) and let u be the unique solution of (10.4)-(10.5) given by Proposition 5.1. Under
assumption (B”), we have moreover

2 2
(10.6) u(x,t) > up(x) — (R() + % + clTo) + t% for all z€R? t>2T.
0

We also recall that u(x,t) — x - v is ZN -periodic in x, that
(10.7) —c <u, <Cy on RY x[0,400)

with Co,c; > 0 given in (10.1), and that for any 0 < T < 400, there exists a modulus of
continuity mp such that

lu(z,t) —u(y, t)| <mp(lz —y|) foral z,yeRY, te[0,T].

Proof of Lemma 10.4

Step 0: Basic properties

Notice that (10.7) follows from (10.1), and that all the other properties of u (except the
bound from below (10.6)) follow from Proposition 5.1.

Step 1: X{u>q) iS a solution

We proceed as in Step 3 of the proof of Proposition 5.6 and define

W (2,1) = Bo(u(w,t) — a) with B.(b) = % {1 + tanh (g) } |

Here u° is a viscosity solution of (10.4) and we have

(1 if wu(z,t) > a,

ut — v’ with u’(z,t) = % if w(z,t) = a,

L 0 it wu(x,t)<a
where u° is a still a viscosity solution of (10.4), by stability of viscosity solutions. Let us

now define



which is still a viscosity solution of (10.4) and converges
v° = 0% = X(usa}-

This shows that x{,>q} is a viscosity solution of (10.4).

Step 2: estimate from below on the growth of the burnt region

Moreover, by assumption (B”), if the level set {u(-,0) > a} contains the ball Br, D Ky D
[0, 1], then from the comparison principle applied to X{u>a} and U, we deduce that

{u(-,To) >a} D U (e+1[0,1]*) with Sy ={0,e1,—e1,e2, —es}.
e€S1

Defining the sequence:

Spi1=5,+85; for n>0
it is straightforward to check that
Sn: {(:L‘th) EZ27 |l'1|+|$2| Sn}

and then we get for any n € N:
(10.9)

{u(-~nTy) >a} > | J (e+[0,1?) > By i {u(,0)>a} > Bhr,.

eESn

Step 3: consequence at time n7j
More generally, let us define the set

Ae={ke?Z’ k-v>a+ Ry}
and

Ag=J (k+1[0.1)

keAq

which has the property that

{x-y>a+R0+\/§} c A, C U(k+B_RO) C A{z-v>a}={uw(r)>a}.
k€Aq
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This implies (using the natural generalization of (10.9)) that (for n > 2)

{u(-,nTy) >a} D U (k+[0.1%)

k€Aq+Sn

= Ao+ [ (e+[0,1%)

e€Sy
D Aa+Bn§
> Aa+[0,1]2+m

2

> {z-u>a+Ro+\/§}+B(n_2)@
2

D {ﬁ-u>a+Ro+(4—n)g}.

Step 4: conclusion
Now for any time ¢ € [nTp, (n + 1)T5), we deduce from estimate (10.1) that

2
{u(-,t) >a} D {x v>a+ Ry+ (4—n)§ +cl(t—nT0)} :
Let us now consider a point € R? such that ug(z) = b. Then for any a € R such that

2
up () :b>a+R0+(4—n)§+cl(t—nTO)

we deduce that
u(zx,t) > a.

This implies for ¢ € [nTy, (n + 1)Tp] and n > 2

u(z,t) >b— Ry + (n— 4)\/7§ —c1(t — nTp)

and then

2
u(z,t) > b— (Ro+2V2+ e/ Tp) + (nTo)%
0

which implies

5V 2 2
’LL(ZL’,t) 2 b — (RO —f- %_ —|— 61T0> —|— t% fOl" t Z 2T0
0

and then more generally this shows (10.6) and ends the proof of the lemma.
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Lemma 10.5 (An increasing subsolution)
Assume (A) and (B”). Let us fix

(10.10) th > Ty (Rov2+ 5+ o TpV2)
and define
2 Ro+ 22+,
u(x,t) =61t + sup (u(x,s) —dys)  with 6 = £ Sl Z a0
s€[0,¢] 2T to

where u is the solution given in Lemma 10.4.
Then u(z,t) is a subsolution of (10.4) fort € (t§, +00).
Moreover u(wz,t) — x - v is Z" -periodic in z, and with the notation of Lemma 10.4, we have

(10.11) 61 < <Cy on RN x0,+00)
and for all 0 <T < +00
(10.12) @(x,t) —a(y, t)| < mp(lz —y|) forall z,y RN, te[0,T].

Proof of Lemma 10.5
Step 1: Subsolution
For ¢t > t§, we can rewrite (10.6) as

2
u(z,t) > ug(x) + (t — tS)% + 1t}
0

Therefore we get

u(x,t) — ot = 51[1011} (u(z, s) — d18)
se|0,

> u(x,t) — o1t

2
> up(a) + (t — zg)Q—‘/T; LS — it

> ug(x) + (t — 1) (2—\?) - 51>

> ug(x).
This shows that

U(z,t) :==u(z, t) — 0t = ssel[l()pt} (u(z,s) — d18) = (u(x, s) — d1s)

with St € (O,t]

|s=s¢

Recall that v(z,s) = u(z, s) — 01t solves

(10.13) 51+ v, = F(D*v, Dv,z) on RN x (0,400).
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Because v appears to be a suppremum of solutions, it is a subsolution. The argument is
classical and is now repeated for convenience for the reader.

Assume that the there exists a test function ¢ satisfing
v<¢ on B.(F) withequality at Py = (zo,%o)
with 0 < 7 < sy,, then (because v < )
v<P on B.(P) withequality at Py = (z0,5s)

where
P(x,8) = @(x,tg+ s — s4y)-
Because @ is a test function for v at Py, this implies that % satisfies the subsolution viscosity

inequality at P,, and then ¢ satisfies the subsolution viscosity inequality P,, which shows
that ¥ is a subsolution of (10.13) and then @ is a subsolution of (10.4).

Step 2: Monotonicity
By construction, we have
vy > 0

which implies the lower bound in (10.11).

Step 3: Other properties of ©

By construction (as a suppremum of functions), we deduce the upper bound in (10.11) with
the same constant Cj as in (10.7). The suppremum in time, of Z"-periodic in space solutions
is also Z"-periodic in space. Finally, we have (with obvious notation)

ﬂ(l’, t) = U(Z’, 5(:}0,1&))7 ﬂ(Qa t) = U(y, S(y,t))
and then for ¢ € [0,T]
ﬂ(ZE, t) - ﬂ(y7 t) = ﬂ(l’, t) - U(y, S(y,t)) > u('ra S(y,t)) - U(y, S(y,t)) > _mT(|'T - y|)

Similarly, we get the symmetric inequality (exchanging z and y) which implies (10.12).
This ends the proof of the lemma.

Proposition 10.6 (A nice increasing solution)
Assume (A) and (B”). Let us consider the initial condition

o) = Tz, 1)
forw and t§ (> 0) given in Lemma 10.5. We have
(10.14) oty < to(x) —up(x) < Coty  with  up(z) =v - .

Then there exists a unique solution @ of (10.4) on RN x (0, 400) with initial data ty.
Moreover, @(x,t) — x - v is Z" -periodic in x, and with the notation of Lemma 10.5, we
have

(10.15) 0<6 <a@ on RY x]0,+00)
and for all 0 <'T' < +o00, there exists a modulus of continuity my such that

(10.16)  |a(xz,t) —a(y,s)| < mr(lz —yl + |t —s|) forall z,y eRY, ¢t s€l0,T).
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Proof of Proposition 10.6

The proof is similar to the proof of Proposition 5.1, using the subsolution 7 (given in Lemma
10.5) as a lower barrier. Notice that Corollary 12.2 provides a supersolution u™ with the
same initial data @y. Then the comparison principle implies that

T(x,t+to) <ut(x,t) forall zeRY, ¢>0.

Therefore Perron’s method implies the existence of a solution, which is then continuous and
ZN-periodic, and then uniformly continuous on RY x [0, T] for every T' > 0. This ends the
proof of the proposition.

10.2 Revisiting Section 5

The function u given in Proposition 10.6, satisfies all the properties of Proposition 5.1, ex-
cept the fact that we have no bound from above on u,, and the initial data g is not linear.
We now have to revisit Section 5, dealing with @ as for u, but without the bound from above
on u; replaced by a modulus of continuity in time, and the linear intial data wug replaced by
estimate (10.14) and assumption (B) replaced by (B”). We also have to replace the modulus
of continuity in space m; by m; and by d;.

We notice that Proposition 5.2 (with (B) replaced by (B”)) is still true, because the proof
also works well with a general modulus of continuity in time, instead of a Lipschitz in time
estimate.

The Birkhoff property (Proposition 5.5) has also to be adapted as follows

Proposition 10.7 (Birkhoff property)
Assume (A) and (B”). Using the notation of Proposition 5.2 for the function u = U given
in Proposition 10.6, we set

E ={zeR", da(z,t)>0}.

Let us define the set
A:{k?EZN, I/kZ(CO—(Sl)tS}

If k € A, then for allt >0
(10.17) k+ E, C E;.

Proof of Proposition 10.7
If £k € A, then we have

oz + k) >v-(x+k)+ o1ty > v-ax+ Coty > tp(x).
We deduce from the comparison principle that
ao + k) > iz, 1)
which implies (10.17). This ends the proof of the proposition.
Then, up to the previous mentionned changes, Propositions 5.6, 5.7, 5.9 and Corollary

5.8 still hold.
We now present an analogue of Proposition 5.10.
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Proposition 10.8 (The self-propagating barrier)
Assume (A) and (B”). Let us consider some & € SN~ and 2y € RN and an integer ng > 3.
Then there exists a familly Gf C R? fort > 0 of compact sets such that

(XGf)('v t) = ng

is a subsolution of (10.4) on RN x (0,+400), satisfying for all t > 0:

(10.18)
( t

ey
U Boyaetd c G ¢ U B win { ﬂ(iH),

s€[0,5_] 0<t<sy To

| Ro=Ro+no+1+v2

Proof of Proposition 10.8

Step 1: definition of a sequence of points on the grid

Up to simple changes of coordinates (by rotation and reflection), we can reduce the analysis
to the case & = (£1,&) € (0,1] x [0,1) (the other cases being easily deduced from that case).
For any s > 0, we define

n(s) = (n(s),na(s))  with  ni(s) = [s61 ], na(s) = 58]

such that we always have
s€ € n(s) +[0,1]%

We also define for (xy,xs) € R%:
(21, 22) 1 = [21] + [ 2]

We define a sequence of times (s;)en

Sop = 0
st =1inf{s > s, n(s)#n(s)}, [>0.

From this sequence, we define a new sequence of times t;, = kT and of points (Py)ren as
follows (see also Figure 8)

PO = (07 0)7
if |n(s))i=k>1 and |n(s;i_1)1=%k—1, then P, =n(s),
— — IS n(sl)a
if |n(s)i=k>1 and |n(s;_1)|1 =k—2, then { Poy = n(s) — (1,0).

Then we have
(10.19)
|P]€+1—Pk|1 =1, P €Z2, forall k>0,
s€ € P, +[0,1]* for k=|n(s)|;, forall s>0,
for s>0, s¢=P, ifandonlyif |n(s)j =%k and |n(s)li—|n(s+07); =2
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direction &

Plz Fl)S )
//
» R,
pd
//
L~

Figure 8: The sequence of points P

and

P, - & <s forall ssuch that |n(s)|; >k,
(10.20)
dist(Py, ERT) < /2 forall k> 0.

Step 2: Definition of I?t
We define for ng > 1 and t > 0:

K, = U (e+ Kg) | U U (e + Ky) with the sequence (S,), defined in (10.8)

6€Sn0 eGSn0+1

which satisfies R R
Kt = KTO for ¢ Z To

and

(10.21) Ko C Ky C Brysmgsr forall t>0

and xz(+,t) := X, is a subsolution, as a suppremum of subsolutions.
We moreover have

(10.22) B, C K.
2

Step 3: Definition of Gf and subsolution
We then define the following familly of compact sets for ¢ > 0

GE = (P + K, ) U <IU(P]- + f(TO)> for k=[]

=0
Notice that the first line of (10.19) and (B”) imply

Pk—i-f?o C P, +f?T0 for k> 1.
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Therefore
Xas (5 1) = Xeg

appears to be a suppremum of subsolutions and is then a subsolution.
Step 4: Estimate on Gf
From the second line of (10.19), we deduce that

s§ € B 5(P,) for kg = |n(s)|1.

Using moreover (10.22) this implies

(10.23) Blay2v2(58) C Buywa (Pr) C Pr, + Ko for ko = |n(s)]1.
2 2

This implies that for all ¢ > 0:

_-— t
(10.24) By vz (s6) C G5 forall s>0 suchthat |n(s))y <k= 7
3 0
Notice that we have the following estimate
V2
(10.25) s~ 1= n(s)h = [(&+&)s] < [5v2].
More generally, this implies (10.18), i.e. for all t > 0
( t
5. = ——F,
TyV2
U Buynu(s€)  C Gi < |J Bgl(t) with 5. =3 (i N 1> |
s€[0,5_] 0<t<s4 To
L R0:R0+n0+1+\/§

where the first inclusion follows from (10.24)-(10.25), and the last inclusion follows from
(B”), (10.20), (10.21) and (10.25).
This ends the proof of the proposition.

10.3 Revisiting Section 6
Proposition 6.1 has to be adapted as follows:

Proposition 10.9 (Black cubes)
Assume (A) and (B”). Let us consider any time to > 0 and

(10.26) R>Ry+6+V2.

If vy € Int E,,, then -
x0+{xER2, V~£IZ‘ZR} C Eiyir

with T = 5v2 RTy and R = /2/2 4+ 2R + (Cy — §,)t5.

62



Proof of Proposition 10.9

We follow the proof of Proposition 6.1. We choose R > Ry with Ry given in (10.18).
Step 1: Choice of a ball

Unchanged.

Step 2: Using the self-propagating barrier

We replace z by a point 25 € B, s5(z) such that

25 FHRE € 72

and then consider

which shows that for
T = 5V2RT,

we have for ng > 5:

Bg(ZO) C B(n0_4)§(20) C U {(ZOi F 5R€ + Gfé) N @} C EtOJrT.
+

Let us choose
Ng = 5.

Then using definition (10.18) of Ry, this gives (10.26).
Step 3: Using Birkhoff property
Using the Birkhoff property (Proposition 10.7), let us recall that

A:{]{?GZN, Vk?Z(Co—(Sl)té}
Then we have for every k € A:
B@(ZO + k?) C k+ Eto+7' C Eto+T~

Notice that
UBzk) > {fc €R? veoz> 7+(Cg—61)t3}
2

keA
which implies that

2
.CI?O—F{%’ERQ, V'xZQR‘{’\/T—"{'(CO_(Sl)tS}CEto+7--

This ends the proof of the proposition.

The statement and the proof of Corollary 6.3 is unchanged, except for the values of T
and R which are the ones given in Proposition 10.9.
Before to continue, we will need the following result

Lemma 10.10 (Bound from below on Tj)
Under assumption (A) and (B”), we have

(10.27) CoTy > 1.
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Proof of Lemma 10.10
Let us consider the supersolution barrier of the form

f(f = {xGRN, T-e za—Cot}
for some constant a € R that we choose such that
KyCc K¢ and Ky ¢ K2 for any e > 0.

In particular, there exists a point zg = (a,a’) € Ky for some a’ € R. From the comparison
principle, we get that for any € > 0 .
K, C K;'*®

which implies )
K, C K.

We also have
(CL‘Fl,CLI) =e1+x9€e+KyC KTO C f(%o = {.’L’ ERN, T-e > CL—C()TQ}
which implies (10.27). This ends the proof of the lemma.

Proposition 6.4 and its proof have to be adapted as follows:

Proposition 10.11 (Uniform flatness property of E;)
Let us assume (A) and (B”). Then there exists

(10.28) L :=18V2 CyTy (Ry + 1 Tp)
such that for any t > 0, there exists ¢, € R such that
(10.29) {zeR?® zv>¢g+L}CEC{zeR’ z-v>c¢}.

Proof of Proposition 10.11
Step 1: definition of ¢
First, for any ¢y > 0, let us define ¢, as the biggest constant such that:

(10.30) Ey, C{z-v>¢,}.

We recall (10.14), namely
51t8 S 7]0(37) il 24 S Cotz;

Using (10.15) and (10.1), we see that the comparison principle implies for all ¢ > 0
51t8 + (Slt S ﬂ(l‘,t) — V- S C()tz; + C(]t

This shows that ¢, is well defined. Moreover {z - v > 0} C E,, and then ¢, < 0.
Step 2: consequences
As in the proof of Proposition 6.4, the same arguments imply (10.29) for ¢ > 7 with

(10.31) L =R+ Cyr.
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For t € [0, 7], we have
{z-v>0}CE CE, C{x-v>-Co(t;+1)}
which implies (10.29) with L given by
L =Cy(ty+ 7).

Step 3: conclusion
We have to choose B
L > max (R + Cor,Co(ty + 7))

and we estimate

V2

max (R + Cot, Co(tg + 7-)) < Coty + Cot + 5 L9R

and

2 2
C()T + \/7_ + 2R S 5\/5 C()T()R + % + 2R S 8\/§COTOR S 16\/500TOR0

using (10.27) and choosing R = 2Ry with Ry > 8.
From (10.26), recall that we have to choose:

tz; > Ty (Rg\/§ + 5+ ClTO\/§>
and we have

RO\/é + 5+ ClT()\/§ < 2\/§R0 + ClTo\/é.

Therefore for the choice
C()tz; = C()T() <2\/§R0 + ClT[)\/i)

we get
max (R + 007', O()(ts + T)) S 16\/500TOR0+C()T0 (2\/§R0 + ClTo\/§> S L= 18\/500T0(R0—|—61T0).

This ends the proof of the proposition.

10.4 Revisiting Section 7 and proof of Theorem 10.3

Proof of Theorem 10.3
The proof is similar to the proof of Theorem 1.3. We only have to make the following
changes.
At the begining of Step 2.
From (10.14), we have
|ﬁ,0 — U0| S C()tz;
which implies
|t — u| < Cyty.

On the other hand, from (10.7) we have

lu] < max(Co, ).
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This implies

2Ct§
INE(T)| < % + max(Cy, ¢1)

which shows in particular that A*(T') are well-defined.

In Step 2.2.

We do not have the uniform continuity of 4 in time, and for this reason we get (7.10) for
T >0 only for T € Q, i.e.

la(z, T) — (0,0) — (v -« + A\T)| < 3L.

Moreover, up to shift the origin, we can assume that @(0,0) = 0, and from the continuity of
4 in time, we recover that

U(x,t) — (V-2 + M) <3L forall (x,t)€RY x[0,+00).

Conclusion
Then Step 3 gives the bound with L given in (10.31)

supv — infv < 12L = 216V2 CoTo(Ro + 1 Tp).

This implies (10.3).
This ends the proof of the theorem.

11 Examples and applications

In this section we consider examples in 2D for geometric motions whose normal velocity can
change sign.

11.1 The case where c is not positive

In this subsection, we focus on the case of normal velocity given by
(11.1) V=r+c(x)

where k is the curvature. This means that we consider solutions of the following level sets
equation

(11.2) Uy = tr {D2u (I-Du® m)} +c(x)|Dul on RN x (0,+00).
We consider the following assumption (see Figure 9):

Assumption (C): Non positive velocity

1
We assume that ¢ is a Z*-periodic function defined as follows. Let 0 < 1y < 1 For a point

x € R?, let us define
c(x) = co(r) with r = dist(x,Z?)
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where ¢y is a Lipschitz-continuous function satisfying for some § > 0:

1
co(r)+-=2>0>0 of r<n,
r
(11.3)

1
co(r) > —+94 if ro<r<
To

V2
R

Remark 11.1 Notice that assumption (C) allows the velocity ¢ to be negative in part of the

ball B,,.
o o o o o
~ velocity c>0
o o o ° o velocity c<0
o o o o o
o o o o o
Figure 9: Illustration of assumption (C)
We have

Theorem 11.2 (Homogenization in 2D with non positive c)
Assume that N = 2 and that (C) holds with

F(X,p,x) = tr{X - (I -p®@Dp)} + c(x)|p|-

Then (B”) holds. Moreover, let us consider the solution u® of (1.1) with initial data ug
which is uniformly continuous on RYN. Then uf converges locally uniformly on compact sets
of RN x [0, +00) towards the unique solution u® of (1.2) with the function F given by Theorem
10.5.

In order to prove Theorem 11.2, we first need the following result:

Lemma 11.3 (A barrier subsolution for the forced MCM under assumption (C))
Assume (C). Then there exists a non-decreasing familly of compact sets (E¢)¢>o and a time

1 -1
Ty = M > 0 such that
Ey = B,,,
E,=Eg for t>1,>0,
(11.4) 1 172
Biysr, D By D [—5, 5] U U (e + Ey)
ec{0,+e1,Ltea}
and such that
u('v t) = XE;

is a subsolution of (11.2) with N = 2.
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Figure 10: Hlustration of the proof of Lemma 11.3

Proof of Lemma 11.3

With an abuse of terminology, we say that a time dependent compact set E; is a subsolution
(resp. solution), if yp, is a subsolution (resp. solution) of (11.2).

Step 1: increasing the initial ball

When the solution is a ball B, of radius 79 < r(t) < 1 — 7y, then equation (11.1) means

1 1
/

== pg— _
r o co(r) > o + co(r)
Because of the second line of (11.3), we see that the ball B, 4 is a subsolution for ¢ € (0, 4]
with rog + 0t = 1 — rg.
Step 2: rotating a ball tangent to B, (e) with e = —e;
We do the raisonning with e = —e; (we will consider the other cases later). At time t = ¢,
we know that B, is tangent to B,,(—e;). Setting Py = —(1 — 2rg)ey, this implies that
B,,(Py) is tangent to B,,(—e;) at —(1 — ro)e;. We define

K’T - R@(T) (BTO(PO))

where Ry is the rotation of center —e; and of angle 6. Notice that B,,(Fp) is a stationary
subsolution. On the other hand, for any point P = (x1,x2) € 0B,,(Fy) with 25 > 0, we have

d
B (P) =0 () Ry o) (P)

which implies that the normal velocity satisfies:

V<
—|\dr

d ,
—Rem(P)‘ < rol9'(7)].
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From the second line of (11.3), we can easily deduce (using test functions) that

4]
K= U K, is a subsolution if 0<#6'(s) < —.

T
0<s<rt 0

Therefore, choosing

0(r) = %7’

and defining K~ as the symmetric of K with respect to the axis x5 = 0, we get that

)
K,:= K'UK- isasubsolution for 7€ (0,72) with —m =7

To
and
K, = B3T0<_el)\B7"0(_€1)'
Step 3: filling the hole
We then define for 7 > 0
Kiyir = Bayo(—e1)\Byr)(—e1) with r(0) = ro.
Then equation (11.1) means on 0B, (;)(—e1)
—r' = =+ co(r)
We then get a subsolution for the choice
r(r)=ro—o0r for 7e€[0,m3] with 073 =r
with
K7'2+7'3 = B3ro(_€1)'
Step 4: getting a subsolution using e = e, te,
We have for e = ey, €9
e = Ry, (—e;y) for some angle 6,.
Then we set
Ki=e+e + Ry K.
We then define the subsolution (E;); as follows
( BT’0+(5t for 0 S t S tla
Et = Br0+6t1 U U (Kf_tl) for th1<t<ti+1m+13= To,

ec{tei,tea}

ETO for t> 1.

\
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This is then easy to check the last inclusion of the last line of (11.4). It is also easy to check
that (E}); is still a subsolution at times t* = t1,t; + 7, Ty, because

i E, for 0<t<t",
L for ¢ >t*

is still a subsolution for any ¢* > 0, which follows from the fact that the sets E; are non-
decreasing with t.
This ends the proof of the lemma.

Proof of Theorem 11.2
Step 1: checking assumption (B”)
We simply use Lemma 11.3 to define:

K, = Ep, U U (e+E)| for t>0
ec{te1,tea}

which satisfies L
Br, D Boyisyy D K; forall ¢>0 with Ry=8.

This familly of sets is associated to the subsolution:
U(t) = Xk,
We also introduce constants Cy, ¢; > 0 such that
Co > c(x) > —¢ for all z € RV,

Notice that up to a translation in the direction (3, 3), the solution U satisfies (B”), and then

we can apply Theorem 10.3 which shows, for every gradient p, the existence of a bounded
corrector v such that

(11.5) supv —infv < ky|p| with k; =400 CoTo(Ro + 1 Tp).

Step 2: checking assumption (B’) and conclusion
Using the definition of assumption (B’), we have

FIX,p,x) =t {X - (I =p@D)} +c"(@)lpl,  Fy(X,p,x) = tr{X - (I —p@D)} + ¢y(2)lp|

with

Oa)= swp oly), cplr) = inf_cy)
ly—z|<n ly—el<n

Using the fact that assumption (C) is an open condition, it is easy to check that ¢ and ¢,
still satisfy (C) for n > 0 small enough (for some perturbed ¢ and the same (). We see that
it does not change Cy, ¢1, Ry, but only changes slightly 7; and then the bound &, in (11.5).
Therefore, we can apply Theorem 1.5, which ends the proof of the theorem.

Remark 11.4 (Change of topology of the front for certain positive ¢)
Notice that even if ¢ is potivive, we can have a change of topology of the front. This is for

instance the case, if co(r) is large and positive for v > 1o and if co(r) + — is positive but very

close to zero for r < ry. This can be checked, using sub and supersolutions.
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11.2 The G-equation with large divergence vector field
We recall that the G-equation is the motion with normal velocity
V=1+a-n

where n is the ouward normal to the moving set {z € RY, wu(z,t) > 0} and a(z) is a vector
field. The level set formulation of this motion is the following:

(11.6) uy = |Du| —a-Du on RY x (0,+00).

The difficulty arises when |a| > 1 for which the Hamiltonian ceases to be coercive. A re-
cent literature exists about homogenization results for this equation: see [27, 34, 7] (see also
the very recent extension in random environments [8]). A typical condition that is assumed
in order to construct correctors, is that the divengence of the vector field a is sufficiently
small. See also [2] for some other results about non-coercive Hamiltonians.

Here we consider the assumption:
Assumption (D): the vector field a on R?

1
We assume that a is a Z*-periodic vector field defined as follows. Let 0 < rg < 1 Let f be

a scalar Lipschitz function satisfying for some &g € (0,79):

(11.7) flx)=0 if |z|<dy or |z|>r.

1177
For a point x € [—5, 51 , let us define

with .
i) b(x)= B with f <0 and f # 0,
OR
g ozt . .
i) b(x) = B with f not radial for |x| < r.

Remark 11.5 Notice that we have
diva=Vf-b

and then, up to multiply f by a positive constant, the divergence of a can be taken as big as
we want.

Then we have the following result

Lemma 11.6 (A barrier subsolution for the G-equation under assumption (D))
Assume (D). Then there exists a non-decreasing familly of compact sets (E¢)i>o and a time
To =1+ (7 —1)rg > 0 such that

EO = B_T())

Et:ETo fOT' t2T0>O,
(11.8)

- 11]?
Bl+3ro 2 ETo 2 |:_§7 §:| U U (6 + EO)
e€{0,+e1,%ea}
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and such that
u('v t) = XE:
is a subsolution of (11.6) with N = 2.

Proof of Lemma 11.6
We follow the proof of Lemma 11.3. Steps 1,2 and 4 are unchanged with the choice § = 1.
For Step 3 (filling the hole), we define for 7 > 0

K.\ ir = Bayo(—e1)\Byr)(—e1) with r(0) = .

Then equation (11.1) means on 0B, (;)(—e1)

—r'=1+fb-n>1 with n:—ﬂ.
T

We then get a subsolution for the choice
r(r)=ro—o0r for 7e€[0,m3] with 073 =rg
and again 0 = 1. This ends the proof of the lemma.

Conclusion

Similarly to Subsection 11.1, we can get existence of correctors (and of perturbed correctors),
and then an homogenization result in 2D associated to equation (11.6), under assumption
(D), which is an illustrative case without bound on the divergence of the vector field a.

12 Appendix

In this appendix, in a first subsection we give classical barriers associated to initial data,
in a second subsection we present some technical lemmata about inf-convolutions used in
the proof of Theorem 1.5, and in a third subsection, we give the proof of the comparison
principle (Theorem 3.3).

12.1 Barriers from the initial data

We look for solutions of
(12.1) uy = F(D*u, Du,z) on RY x (0,400).

We start with the following result (borrowed from Lemmata 3.1.3 and 4.3.3 in [22], that
we recall here for the convenience of the reader):

Lemma 12.1 (Fundamental barrier)
Assume (A). Let us consider any C? function f : [0,+00) — [0,+00) satisfying f(0) = 0
and for some constant Ly > 0
/
) S0

< ———< Ly forall r>0.
min(r, 1)

72



We consider a constant Cy > 0 such that

(12.2) sup |F(X,p,y)| < Ch.

IX|<1, |p|<1, yeRN

Then there exists a constant M = Cy Lo > 0 such that for any K > 0 and any xo € RY, the

following functions v;’mo and vy, - are respectively super and subsolutions of (12.1):

v[j;xo(w,t) =+K (Mt + f(|lx — x0])) .

Proof of Lemma 12.1
We set z = & — xy and 7 = |z|. We compute

Dut (@0 = P05, Dt = rie t+ L (1-262).

Using the fact that F' is geometric (assumption (A2)), we deduce that
+ 2, + + _ f'(r)
OV py — F(D™ Vg s DV 4oy ) = £K | M F —=F (£, +2,7) | .
’ ’ ’ r
Notice that by assumption (A4)i), there exists a constant C such that (12.2) holds.

We also have for r > 1 (using again (A2), and also (Al))

1
—F(£l,£z,2)
-

I
‘F(i—,if,x)
T T

< sup ’F(i],iz,x)’ < (.
£ r

Therefore we get

f'ff) D if 7 el0,1],

(
Ci | sup
rel0,1]

4 (sup |f’(r)|) if r>1.

r>1

f'(r)

r

F(£l,+z,2)| <

If we choose
M = ClLO

we then conclude that vy . and vy, are respectively super and subsolutions of (12.1), which
ends the proof of the lemma.

Then we have the following consequence (see also Lemma 4.3.4 in [22]):

Corollary 12.2 (barriers from uniformly continuous initial data)
Let ug : RN — R be a uniformly continuous initial data. Then there exists u™,u™, respectively
super and subsolutions of (12.1), such that

u(z,t) <uplx) <ut(x,t) forall zeRY, t>0
such that

lim sup |u®(z,t) — up(x)| = 0.
t—=0t RN
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Proof of Corollary 12.2
We do the construction for v (the construction of v~ being similar).
Step 1: First estimate
Because u is uniformly continuous, there exists a (non-decreasing) modulus of continuity w
such that
luo(x) — uo(y)| < w(|z —y|) forall =,y € RY.

We choose f as in Lemma 12.1, satisfying moreover for some 1 > 0:

f'(r)

< Ly for all > 0.
min(r, 1) = orel =

0<n<

Therefore, for any ¢ > 0, there exists Ks > 0 such that

(12.3) uo(z) < up(xo) + 0 + Ksf(|lz — xo])-
Indeed, given some r5 > 0, we have
w(r) < [l < 2T 0 ) for v,
Ts Ts
f'(r) > nmin(rs, 1) =:n5 >0 for > rs.

Therefore for r > 0:
O+ Ksf(r) >0+ Ksns(r —rs) > w(r)

with the choice of K5 and rs such that

wlTr

Ké% = ( 5)7
Ts
0= 26&.)(7”5).

Step 2: Consequence
From (12.3) and the comparison principle, we deduce that:

u(x,t) <ug(zo) + 0 + vy, o (@,1) = wy, (x,t) with wy, (z,t) > wy, (2,0) > u(x)

671"0

where U}QMO is defined in Lemma 12.1. Then the following function

u+ x,t) = inf fw+ T t
( ’ ) 66(0,1)7 QCOERN 57900( ) )

is a supersolution (as an infimum of supersolutions) and satisfies

ug(wo) < ut(20,t) < wy, (x,1) < ug(wo) + 0 + MKt

Defining
@@>:i£%ﬂﬁ5+jWR%w
we get
(12.4) 0 <ut(wo,t) —ug(zo) <@(t) forall zoeRY, t>0
where

w(t) =0 as t—0.
Therefore (12.4) implies the result. This ends the proof of the corollary.
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12.2 Technical lemmata used in the proof of Theorem 1.5

In this subsection, we present results about inf-convolutions that seem quite classical, but
that we did not find (in the precise form we need) in the literature. The results are presented
in Lemmata 12.3 and 12.4 that are used in the proof of Theorem 1.5.

Lemma 12.3 (Inf/Sup-convolution using balls)
i) Inf-convolution
Let us consider a lower semi-continuous function u > —oo in an open set §2. Let us define
forn > 0:
0., = {(x,t) eR" xR, B,(z) x {t} C Q}

and

u,(z,t) = 1inf wu(y,t).
y€By(z)

Then w,, is lower semi-continuous.
If o € C? is a test function tangent to u, from below at Py = (wo,t0) € Q_y, then

(12.5) (i(Po), Do(Py), D*0(Py)) € P> u(z0,t0) for some 29 € B,(wo)
and

(12.6) ¢ D*p(Ry) - ¢ < |§\2|D‘p—épo>’ for all & L Do(Py)
and also

(12.7) D?*p(Py) <0 if Dyp(Py) = 0.

Moreover, if I satisfies assumption (A), then for any e > 0, there exists a constant ca >0
(depending only on 2 and F') such that for any yo € RY

(12.8) F (5D290(P0)7 DSO(Po)aZ/O) < |Dyp(Fy) Cu.

ii) Sup-convolution
We have similar results (with reversed and adapted inequalities) for upper semi-continuous
functions uw < oo in an open set ) and

u'(z,t) = sup u(y,t).
y€By(2)

Proof of Lemma 12.3
Step 0: u, is lower semi-continuous
Consider a sequence (zy, tg)ren converging to a point (Ze,ts) such that

(Qn)*(xom too) = kll)r_{loo Uy (Tk, th)-

Then there exists a point (yg, tx) such that

u, (vr, t) = ulyr, tr)  with |z, — gl <
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and

Therefore we have

Up(Toos too) < U(Yoor too) < liminf u(ys, tr) = (%)« (Too; too)

k——+o0

which shows that u, is lower semi-continuous.
Step 1: proof of (12.5)
Let us define the function

() :{ 0 if € B,(0),

400 otherwise.

Then for (z¢,%o) as in the statement of the lemma,

©(wo,t0) = w, (o, t0) = yiefﬂlgN (u(wo —y,t0) + C(y)) = u(zo — Yo, o) + (%)

with ((yo) = 0. Moreover for all (z,t) € Q_,:
p(@,t) < uy(z,t) = inf (u(@—y,t)+y) < uw@—y,t)+ () =ul@ — yo,t).

This shows that
o(-+y0,:) <u with equality at (zq,to) with zg = 2o — yo

which implies (12.5).
Step 2: proof of (12.6)
Up to set
u(z,t) =+oo if (x,t) €Q

we can also rewrite (setting z = z¢ — y)

©(wo,to) = u, (zo, to) = inf (u(z,t0) + ((w0 — 2)) = u(20,%0) + ((To — 20)

2€RN

with zp = xg — yo. We also have
p(z,t) <wu,(z,t) <ulzo,t) +((r — 20) with equality at (xo,to).
Then either y, € B, (0) and
(129) Do(Py) = 0 > D2p(Py)
or yo € 0B,(0) and
o(z,t0) < p(zo,ty) forall x € IB,(z) > wo.

Up to change the coordinates, we can assume that xo = 0, zp = —nen and then 0B, (z) is
locally parametrized by

Ty = —n—+ \/m with 2’ = ($1, "'7xN—1)
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and then
satisfies

This implies
Dy(0) =0, D*)(0) <0
ie.
DZQO(P()) =0 for ’lIl,,N—l
which implies
Do(Fy) = Dno(Fo)eny  with  Dyp(Fy) = [Dp(FH)]

and

D34(0) = D3 (Py) — 6,202 0)

2

<0 for i,j=1,..,N—1.

This implies (12.6).

Step 3: proof of (12.7)

If yo € B,(0), then (12.7) follows from (12.9). If yo € 9B,(0) and Dy(F) = 0, then (still
with zp = 0)

1
o(xo, to) > p(z,ty) = gp(:co,t0)+§xT~D2<p(x0,t0)~:c—|—o(|:1:]2) locally for xy < —n++/n? — 2”2,

By a rescaling, this implies that
0>z - D%*p(x,to) - for all = (2, zy) such that xy < 0.
This implies
D*p(Py) <0

which shows (12.7).
Step 4: proof of (12.8)
We want to prove for any y, € RV

F* (5D2S0(P0), Do(Fy), yo) < |Do(F)] cn.

Case a: Do(Py) =0
Then we have
F*(eD*p(Po), Do(Py), yo) < F*(0,0,40) = 0

where we have used (12.7) and (3.3).
Case b: Do(Fy) #0
Then with p = Dp(P,) we have

F*(€D2<P(P0)7 Do(Fy),y0) = F(H(ﬂ €D2<P(P0) -11(p), p, vo)
p
<F (671,19, yo)
L _p
< |p|F (Wﬁmhyo)
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where we have used (3.4) for the first line, (12.6) for the second line, and assumption (A2)
for the third line, and in the last line: assumption (A4)i) for fixing cn = Cg for some

R > max (ﬁ, 1 ). This shows (12.8).

This ends the proof of the lemma.

Lemma 12.4 (General properties of inf/sup-convolution)

A) Inf-convolution

Let us consider three functions u,v,w : RN x [0,4+00) — [0,+00], We define the space
inf-convolution of u and v by

(UDU)({L', t) = inf (U(LIZ' - Y, t) + ’U(y, t)) :
yeRN
i) symmetry
We have
uv = v0Ou

and uOv : RY x [0, +00) — [0, +00].
ii) associativity
We have
(uv)Ow = vO(vOw).

iii) basic property
Let us consider the following property

(12.10) w(z,t) = 400 as |z] = +oo, wniformly in t € [0,4+00).

If u,v are lower semi-continuous and either u or v satisfies (12.10) then uCv is also lower
semi-continuous. Moreover, if u and v satisfy (12.10), then v also satisfies (12.10).

iv) subdifferentials

Assume that v is independent on t and that

(12.11) (uv)(z0, to) = u(ro — Yo,t0) + v(yo)-
Then
w0 camerione = (GRS

v) limit subdifferentials

Assume that v is independent on t, that u and v are lower semi-continuous and that either
u or v satisfies (12.10). Then

there exists Yoo € RN such that
(ulv) (20, t0) = u(To — Yoo, to) + V(Yoo)
(1,p, X) € 52’_u(:v0 — Yoo to)

(. X) €D v(yeo).

(12.13) (r,p, X) € P (ulv)(z0,t0) =
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vi) generalization
Everything stays true if (we weaken the fact that u has values in [0, +0o0] and) require that
any function satisfies the following condition (growth at most linear at infinity):

(12.14) there exists a constant C' > 0 such that wu(z,t) > —C(1+ |x| + |t])

and replace condition (12.10) by the strongest condition (a superlinearity condition):

w(w,t)
1+ |z|

(12.15) — 400 as |z| = +oo, uniformly in t € [0,+00).

In the case of three functions u,v,w, we require that at least two satisfy (12.15) and the third
one satisfies (12.14).

vii) applications

Assume that u is lower semi-continuous, satisfies (12.14) and that we have

(12.16) |u(z,t)—g(z,t)| <erx for some function g satisfying |g(z+a,t)—g(x,t)| < Lal.

If v is lower semi-continuous and satisfies (12.15) and v is independent on t, then uCv still
satisfies (12.16) with g replaced by gOv which has the same Lipschitz constant L.
4

Moreover if v(zx) = ig’p and
(ubv) (o, to) = w(zo — Yo, to) + v(yo)
then
4\ i
(12.17) ol < eCr, with Cay, = (16p/€+3(2pL)§) .
Moreover we have
(12.18) lu —ullv| < eCy ., with C =4k +2LCy 1,

B) Sup-convolution
Let us consider two functions u,v : RN x [0,+00) — [—00,0], We define the space sup-
convolution of u and v by

(o), 1) = sup (e =) +0(y. ).

Then we have
(12.19) —(ulv) = (—u)O(-v)
which implies for the sup-convolution results similar to the case of the inf-convolution.

Proof of Lemma 12.4
Step 1: proof of A)i)
We have (by a change of variables)

(uv)(x,t) = inf (u(x —y,t) +o(y,t)) = inf (u(z,t) +v(x —2z,t) = (v0u)(x).

yeRN z€RN
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Step 2: proof of A)ii)
We have with z = 2/ — y
(ul)Ow)(z) = nf ((uQv)(z =y, 1) +w(y,1))

yeRN

= inf inf —y—2z,t t t
. Inf (u(z —y —2,1) + oz 1) +wly. 1)

= inf (u(x —y—2z,t)+v(z,t)+w(y,t))

y,2€RN

= inf (u(z—2t) +v(z' —y,t)+w(y,t))
y,2 ERN

= inf —2')t)+ inf -yt t
Jnf (u(:z: 2, >+;€%N (v(z" =y, t) +wly, )))

- z’iEH]IgN (U([E - Z/, t) + (UDU))(Z,, t))
= (ud(w0w))(z,t).

Step 3: proof of A)iii)
Let (xg,tr) converging to (oo, ts ), and let yx be a sequence such that

1
(uv) (wg, tr) > % + u(xy — Yk, tr) + 0(Yg, tr).

Condition (12.10) implies that y; stays bounded, and then converges to some Yo, (up to
extraction of some subsequence). Therefore

l]iriligof(uﬂv)(:vk,tk) > U(Too — Yooy too) + V(Yso, too) = (u0) (oo, too)
which shows that ulJv is lower semi-continuous.
Property (12.10) follows also easily for ulJv, if u and v both satisfy (12.10).
Step 4: proof of A)iv)
Let Py = (zo,to). If (1,p, X) € P>~ (uldv)(F), then there exists a test function ¢ which is
tangent from below to u(Jv at Py, such that 7 = p,(P), p = Do(FPy), X = D*p(Py). Recall
that there exists yo such that (12.11) holds. Then we have

p(x,t) < (ubv)(z,t) < u(z = yo,t) + v(yo)

with equality in the inequalities for (z,t) = (xg,t) = Pp.
This shows that (7, p, X) € P> u(xo—yo,tp). Symmetrically, we also have with zy = ¢ —yo:

(uOv) (xo, to) = u(zo,to) + v(xo — 20)
and
o(x,t) < (ubv)(z,t) < ulz,t) + vz — 20)

with equality for (z,t) = (xg,ty) = Pp. This implies that (p, X) € D>~ v(xo—20) = D* v(yp)
as in (12.12).

Step 5: proof of A)v)

If (1,p,X) € 52’7(UDU)(PO), then there exists a sequence Py = (x, tx) converging to Py and
(Tks Py Xi) € P?~ (ulv)(Py) converging to (7, p, X) such that

(u)(Py,) — (ulv) (Fp).
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Because either u or v satisfies (12.10) and u and v are lower semi-continuous, we deduce that
there exists some 7, € RY such that

(12.20) (ulv) (g, t) = w(Tk — Yk, tr) + v(Yk).

From (12.10), we deduce that gy is bounded, and then convergent (up to some subsequence)
to some Yoo € RY. Up to extract a subsequence, we can also assume that there exists I, [,
such that

W@y — Yr, te) = Ly + u(To — Yoos to),  V(yk) = Ly + v(Yso)

where
luv ZU Z O

follows from the lower semi-continuity of u and v. From (12.20), we get

(udv)(xo,t)) = limg_syoo(ubv)(z)
lim (u(zk =Yg, t) + v(yx))

k——+o0
= (lu + lv) + U(JZ’O — Yoo, tO) + U(yoo)
> (uv) (g, to)

which implies
(ulv) (20, to) = u(T0 — Yoo, t0) + V(Yoo)

and [, =0=1,, ie.

(12.21) u(zy, = Yr, tr) = w(To = Yoo to);  V(Yk) = V(Yoo)-

Moreover from A)iv), we have

(Ths P» Xi) € P> u(r — ypo tr)
(P> Xi) € D>~ v(ys).

Then (12.21) implies that

<T7p7 X) Efliu(l'o — Yoo, tO)
(0, X) €D v(Yo)

which proves (12.13).

Step 6: proof of A)vi)

We simply have to prove case a and b (the remaining parts are straightforward to check).
case a: u satisfies (12.14) and v satisfies (12.15)

We simply have to check that u[Jv satisfies (12.14).

We have

@)@, t) = inf (u(x = y,8) +v(y.1)
inf (~C(1+ |z — y| + [t)) + vy, 1))

yeRN

v

2 —C(+ 2]+ [t]) + inf (=Cly|+v(y,1))
yERN
> —C(1+|z|+|t|) = C1 with C; =max (0, - ir;&f (—Cly| + U(y,t)))
yERN
> —C'(1+ x|+ t]) with C'=C+C.
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case b: u satisfies (12.15) and v satisfies (12.15)

We simply have to check that uJv satisfies (12.15).

Because of (12.15), there exists a monotone function A : [0,400) — [0,+00) such that
h(+00) = 400 and

h(p)

u(z,t),v(z,t) > —C + h(|z|) with T+, — 400 as p— +o0.
p

Therefore

(uOv) (z, t) inf (u(zx —y,t)+ov(y,t))

yERN

> 20 + yie%gv (h(lz —yl) + R(ly]))

> —20 + inf h(max(|z —yl,|y|))
yERN

> —2C + h(|z[/2)

where we have used in the last line the fact that |x —y|+ |y| > |z| implies max(|z —y|, |y|) >
|z| /2. This implies that uOJv satisfies (12.15).
Step 7: proof of A)vii)
We have
—ek+ g(z,t) <u(z,t) <ek+ g(z,t).

This implies that

—er+ inf (g(z —y,t) +o(y) < (ubv)(z,t) <ex+ inf (g9(z —y,t) +v(y))

yERN yERN

i.e.
lu — g0v| < ek.
If
(12.22) (udv)(xg, to) = u(xo — Yo,to) + v(yo)
then
u(xo — Yo, to) + v(yo) < u(xo, to) + v(0)

1.e.

v(yo) — v(0) < u(xg, to) — u(xo — Yo, to)-
If v(x) = |z|*/(4e3p), then
E

(12.23) ol < 2k + L|yo|
4e3p

i.e. Jo = yo/e satisfies
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where in the second line, we have used Young inequality ab < a*/4 + 3b3 /4. This implies

L)g

4

50| * 3
Wol” 4 —(2
1) S (2p)

PN

and
|%0| < (16pﬁ + 3(2pL)§)

which implies (12.17). Now for any point (zg,t;) € RY x [0, +00), there exists a point
Yo € RY such that (12.22) holds. Therefore, using (12.23), we get
lyol*

|((uBv) —u) (20, t0)| = |u(zo—y0, to) —u(wo, to) +v(yo)| < 2€/<;+L|yo|—|—@

< 2(2ek + Llyol)
which implies (12.18).

Step 8: proof of B)

This is straightforward.

This ends the proof of the lemma.

12.3 Proof of the comparison principle Theorem 3.3

Proof of Theorem 3.3

The proof is essentially based on [23] (see also [30]).

We only do the proof for finite 7" (the limit 7" — 400 gives the result for 7" = 4+00). We also
assume that in the case of a bounded open set 2, condition (3.5) is strenghened as follows

(12.24) u<v on Oyl

Indeed, this is always possible to do it, up to replace T" by a smaller time 77 < T. We can
then prove the comparison principle for 77 and recover it for T in the limit 77 — T.

Step 1: reduction to bounded sub/supersolutions

Let 8 : [—00, +00] — [—1, 1] continuous with 8 € C*(R; (—1,1)), > 0 on R and B(+o0) =
+1. We can for instance take 3(a) = tanh a. Given u : Qx[0,T) — [—o00, +00] a subsolution
of (4.1), it is easy to check that 5(u) is also a subsolution of (4.1).

Indeed, because u < +o0, we have either 5(u) € (—1,1) and we can check Definition 3.1
using (A2). Or S(u) = —1 and then any test function at such a point satisfies ¢ > 5(u) > —1
which implies ¢; = 0 = Dy and D?*p > 0. Using (A1) and (3.3), this finally implies again
the viscosity subsolution inequality.

Similarly we can show that J(v) is a supersolution if v is a supersolution. It is then
sufficient to show that 5(u) < B(v). Therefore, up to replace f(u) and S(v) by v and v, we
can assume that v and v are bounded.

Step 2: reduction to equation with u terms
Let us set
a(x,t) = e tu(z,t), o(x,t) =e v(,t).

Then @ is a subsolution (resp. o is a supersolution) of

(12.25) iy + @ = F(D*a, Dii, x, t)
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with )
F(X,p,z,t)=e¢"F('X,e'p, x).

Just in order to simplify the notation, we will denote @, v by u,v now respectively sub and
supersolutions of (12.25).
Step 3: a priori estimates
Let us set
w(z,y,t) = u(z,t) —v(y,t).

Let us assume that
(12.26)

M = éiLI(I)Mg with My =sup {w(z,y,t), z,yeQ,te€0,T), |v—y| <6} >0.

Then for small parameters a;, n,e > 0, we can consider

4
220)  Mape= s (uted) = o) - T -t m - ).
z,yeQ, te[0,T) €

For a,, 7 > 0 small enough (independently on ¢), we have in particular

(12.28) My, > M/2 > 0.

We also know that the suppremum in (12.27) is reached at some points z*,3* € Q, t* € [0,7T)
satisfying in particular

‘x* _y*’4

n
42 < Co = |ul|oo + [|V]|o0-

12.29
(12.29) T—t—

+ a(z*)? + ay*)? +

* x4
Step 4: refined estimate on the penalization term |x—2y|
5
We follow the ideas of Proposition 4.4 in [23]. From the definition of M in (12.26), we
know that for any ¢ > 0, there exists 6(0) > 0 (with 6(0) — 0 as § — 0) and points
x5,ys € Q,ts € [0, T) such that

w(zs,ys, ts) > M —0 and |zs — ys] < 0(9).

Therefore
|2 — y*|* 10()%* 2 2
(45200)% - T > Ma,n,a > M — o — 422 - O[('T(S) - Oé(yé) - T — t(;'
And then | o 62"
113}733013 22 S Moyt —M Ao+ =5

which implies for § — 0

. 2" —y*[!

tmsup === < Mgyt =M
and then
(12.30) ll_r)% (hg;i%pll—ﬁ = 0.
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Step 5: avoiding the parabolic boundary 0,{)r

Assume that for all ¢ > 0 small enough, we have (z*,t*) € 0,{07 when we pass to the limit
a,n — 0 for the whole sequence (the case (y*,t*) € 0,8 is similar). We distinguish two
cases.

Case 1: Q =RV

Then this means that ¢* = 0 and we have

4
0< M/2 < Mam,g < sup (U(ZL‘,O) — U(y,()) — M
x,y€eN) 4e
<lim sup S u(z,0) — v( 0)_|x—y|4 lr—y| <63 <0
=g 1P ’ Y 4e2 yr=ve=

where we have used (3.5).
Case 2: () is bounded
Then we get a contradiction with (12.28), using the fact that

v —yl*
0<M/2< lim M,,. < sup u(z,t) —v(y,t) — .

= _ 2
an—0 (2,t) €007 yEQ de

Then taking the limit ¢ — 0, we get

4
0<M/2<hm sup <u(az,t)—v(y,t)—|x 2y| >§sup(u—v)§0
O () ed,0r e 4e Q7

where we have used (12.24).
Step 6: viscosity inequalities
Let us define
a(z,t) = u(z,t) —ax?®, o(y,t) =v(y,t) + ay?,

M—yﬁ+ n
4e2 T—t

(12.31) Dz, y,1) = Maye +

From Ishii’s Lemma (see Theorem 8.3 in the Users’s Guide [17], and Theorem 7 in [16]), we
deduce that for every v > 0, there exists
(12.32)

( (b1, D@ (z*, y*,t*), X) € Pt (x t*)
(by, =Dy, ®(x*,y*, t*),Y) € 73 o(y*, t*)
bl - b2 == q)t(x*7y*7t*)

1 [ 0 X O 2 . 2 * ok gk 2N
\ (7+|!A||><0 I)_(O _Y)_A—i-vA with A= D*®(z",y*,t") € S

where ||A]| = sup < A&, ¢ >. From (12.32), we have in particular the viscosity inequalities
¢1=1

(X +2ad, D, ®(x*, y*, t*) + 2ax™*, x*, t*)

bl + U( )
12.33
( ) { (Y —2al, —D,®(z*, y*, t*) — 20, y*, t*).

< F*
b2+v(y *) > F,

Recall that to be able to apply Ishu s Lemma, we need to be able to bound b; < C' and
by > —C for general (by,p1, X) € P w(z,t) and (by,po,Y) € 52’717((7/,15) for (x,t) close to
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(x*,t%), (y,t) close to (y*,t*), and bounded py, ps, X, Y, @(x,t),(y, t). Indeed this is true and
comes from the viscosity inequalities similar to (12.33), using in particular assumption (A4)i).

Taking now the difference of the two inequalities in (12.33), we get
(12.34)

n * * * *
O<M/2§Ma7n,g Sm-ﬁ-’li(m ,t)—v(y ,t) )
< FH(X +2al,p+ 2ax*, 2, t*) — F.(Y — 2al,p — 2ay*, y*, t*).
We set . .
p=90(z"—y"), with §= i —2y]
€

Notice that from (12.29), we deduce that

2v/Cy
€

(12.35) Ip|* < , 0< and a|z*], aly*| < v/ aCy.

Case 1: z* # y*
Then we have with p = s (when p # 0)

p|

_ I+2p®p —1-2p®p : (T I
OSA_(;(—I—QQ?)\@]? [+2%®7 <30F with FE = 7))

1
Notice that E? = 2E, and then A% < 186*FE. Because ||A|| = 60, setting v = % in (12.32),

we get
I 0 X 0 I —I
w(or)=(5 )=l )
Case 2: z* = y*

Then A = 0 and taking the limit 7 — 400, we see from (12.32), that at the limit we get
X=Y=0.

Step 7: the limit a,n — 0

Then from (12.32), we deduce that for € > 0 fixed, the quantities p, X, Y stay bounded as
a,n tend to zero. Even if *, y* do not stay bounded, taking advantage of the periodicity of
the problem, we know that there exists a sequence k € Z”, such that as a,n — 0

(2" —k — T,
y*_k%ga
t* —te€[0,T],
§—6= |x_2y
3 _
p=90(z"—y") = p=04(z—7y)
X—>g(,
Y > Y.

|2

Therefore at the limit or,7 — 0 in (12.35), we get

0<M/2<FX,p,2,1) - F.(Y,p,5,8) with p=0d(z—79)
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with (in the general case 5> 0)

<

(10 X 0
’95(0 I> (o -y

)es( 1)

Therefore setting & = e'd, we deduce that

0<M/2 <FX,p,z,1) —F(Y,p 7,1

< e 'F(e!X,e'p,z) — e ' F ('Y, e'p, )

< e 'P(IX,3(T — ). 7) — e "E(Y (@ — 9),9)
) A )4
Sg%KOx_m+aﬁ_¥L)
19
—0 as =0

where we have used assumption (A4)ii) for K > 9 in the fourth line, and (12.30) in the last
line. Contradiction. This ends the proof of the theorem.
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