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Counter-example in 3D and
homogenization of geometric motions in 2D

(long version)

L.A. Caffarelli∗, R. Monneau†

July 26, 2012

Abstract

In this paper we give a counter-example to the homogenization of the forced mean curvature

motion in a periodic setting in dimension N ≥ 3 when the forcing is positive. We also prove a

general homogenization result for geometric motions in dimension N = 2 under the assumption

that there exists a constant δ > 0 such that every straight line moving with a normal velocity equal

to δ is a subsolution for the motion.

We also present a generalization in dimension 2, where we allow sign changing normal velocity

and still construct bounded correctors, when there exists a subsolution with compact support ex-

panding in all directions.

AMS Classification: 35B27, 35K55, 35J20.

Keywords: homogenization, mean curvature motion, geometric motion, propagation of fronts,
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1 Introduction

1.1 Setting of the problem

In this paper we are interested in solutions uε(x, t) for ε > 0 of geometric equations that can
be written as

(1.1)





uεt = F (εD2uε, Duε, ε−1x) on RN × (0,+∞)

uε = u0 on RN × {0}

for suitable F which are in particular periodic in the variable ε−1x. Under certain assump-
tions we can show the homogenization as ε → 0, i.e. that uε converges to a function u0
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solution of an equation

(1.2)





u0t = F̄ (Du0) on RN × (0,+∞)

u0 = u0 on RN × {0} .

Our starting point is the study of the mean curvature motion forced by a given periodic
verlocity c, i.e.

(1.3)





uεt = ε tr
{
D2uε · (I − D̂uε ⊗ D̂uε)

}
+ c(ε−1x)|Duε| on RN × (0,+∞)

uε = u0 on RN × {0}

where for p ∈ RN\ {0}, p̂ = p

|p| . It turns out (see for instance [32, 33]) that the level set

Γε
t =

{
x ∈ RN : uε(x, t) = 0

}

can be seen as a generalized evolution of the set Γε
0 with normal velocity

(1.4) V = εκ+ c(ε−1x)

where κ is the mean curvature of the hypersurface Γε
t where it is smooth, and the normal

is by convention the outward normal to the set
{
x ∈ RN : uε(x, t) > 0

}
. When this set is

convex, the mean curvarure is non positive. It is known from [25] that equation (1.3) admits
Lipschitz correctors for Lipschitz ZN -periodic function c satisfying moreover the condition

(1.5) inf
y∈RN

(
c2(y)− (N − 1)|Dc(y)|

)
> 0.

But the question was left open to know if (1.5) is necessary for homogenization or whether

(1.6) inf
y∈RN

c(y) > 0

is enough, as it is the case when there is no curvature term in (1.4).

1.2 Main results

It turns out that condition (1.6) is not enough to get homogenization in dimension N ≥ 3
as shows the following counter-example. We use the notation x = (x1, ..., xN) ∈ RN .

Theorem 1.1 (Counter-example to homogenization in dimension N ≥ 3)
Let N ≥ 3. Then there exists a function c ∈ C∞(RN) which is ZN -periodic, satisfying (1.6)
and moreover with c(x) independent on the variable xN , such that the following holds. For
the initial data u0(x) = −xN , the solution uε of (1.3) satisfies for some constants c > c

(1.7) lim sup
(x̃,t̃,ε)→(x,t,0)

uε(x̃, t̃) ≥ ct− xN > ct− xN ≥ lim inf
(x̃,t̃,ε)→(x,t,0)

uε(x̃, t̃) for all t > 0

i.e. there is no strong limit, and hence homogenization does not take place.
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On the contrary in dimension N = 2, condition (1.6) is sufficient to get homogenization
as we will see below (see Theorem 1.4). Indeed in dimension N = 2, homogenization holds
for general equation (1.1) with F safistying certain conditions.

Let us define
D0 := SN × (RN\ {0})× RN ,

where SN denotes the set of real symmetric N ×N matrices. We assume that F (X, p, y) has
arguments (X, p, y) ∈ D0 and satisfies the following properties:

Assumption (A)
(A1) Degenerate ellipticity: F ∈ C(D0) and for all (X, p, y) ∈ D0, we have

F (X +Q, p, y) ≥ F (X, p, y) for all Q ≥ 0 with Q ∈ SN

(A2) F is geometric: for all (X, p, y) ∈ D0, we have

F (λX + µp⊗ p, λp, y) = λF (X, p, y) for all λ > 0, µ ∈ R

(A3) ZN-Periodicity: for all (X, p, y) ∈ D0, we have

F (X, p, y + k) = F (X, p, y) for all k ∈ ZN

(A4) Regularity: this technical assumption is given in Subsection 3.2.

We will also assume the following

Assumption (B): Bound from below:
There exists δ > 0 such that for all arguments (0, p, y) ∈ D0, we have

(1.8) F (0, p, y) ≥ δ|p|.

In order to keep simple the presentation, we chose not to give the details of the classical
(but technical) regularity assumption (A4) in this introduction. Under assumption (A), a
comparison principle holds (see Theorem 3.3).

Remark 1.2 Notice that assumptions (A1), (A3), and (B) imply that there exist constants
C0, c0 > 0 and R >

√
2/2 such that for all (p, y) ∈ SN−1 × RN , we have

(1.9) C0 ≥ F (0, p, y) ≥ F

(
− 1

R
I, p, y

)
≥ c0 > 0.

Then we have the following result.

Theorem 1.3 (The cell problem in 2D)
Assume that N = 2 and that (A) and (B) hold. Then for any p ∈ RN , there exists a unique
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real number F̄ (p) (with F̄ (p) > 0 if p 6= 0 and F̄ (0) = 0) such that there exists a bounded
ZN -periodic function v : RN → R solution of

(1.10) F̄ (p) = F (D2v, p+Dv, y) on RN .

We can choose v such that

(1.11) sup v − inf v ≤ κ0|p| with κ0 := 100 R
C0

c0

where R,C0, c0 are given in (1.9).
Moreover the map p 7→ F̄ (p) is continuous and positively 1-homogeneous, i.e. for any

p ∈ RN

F̄ (λp) = λF̄ (p) for any λ ≥ 0.

Let us mention that under assumptions (A) and (B), in the case where F (X, p, y1, y2) is
independent on y2, the existence and uniqueness (up to addition of constants) of a corrector
v when p ∈ R2\Re1, has been established in Lou [28] (see also Lou, Chen [29] and Chen,
Namah [14], for particular cases).

As a consequence, we can show the following homogenization result (with an Ansatz
that looks like p · x + tF̄ (p) + εv(ε−1x), but contrarily to the common belief, is much more
involved than the classical perturbed test function method due to Evans. The main difficulty
is created by the discontinuity of the Hamiltonian F when the gradient vanishes):

Theorem 1.4 (Homogenization of geometric motions in 2D)
Assume that N = 2 and that (A) and (B) hold. Let us consider the solution uε of (1.1) with
initial data u0 which is uniformly continuous on RN . Then uε converges locally uniformly
on compact sets of RN × [0,+∞) towards the unique solution u0 of (1.2) with the function
F̄ given by Theorem 1.3.

Indeed, Theorem 1.4 appears to be a corollary of a more general result in any dimension
(Theorem 1.5), for which we need to introduce the following assumption:

Assumption (B’): Perturbed correctors:
We set for η > 0:

F η(X, p, x) = sup
|y−x|≤η

F (X, p, y),

(
resp. Fη(X, p, x) = inf

|y−x|≤η
F (X, p, y)

)
.

For all p ∈ RN , there exists η0 > 0 and κ̄0 > 0 such that for all η ∈ [0, η0), there exists
a corresponding ZN -periodic function vη (resp. vη) and a real number F̄ η ≥ η0|p| (resp.
F̄η ≥ η0|p|) such that

F̄ η = F η(D2vη, p+Dvη, y)
(
resp. F̄η = F η(D2vη, p+Dvη, y)

)
on RN

such that for v = vη, vη, we have

sup v − inf v ≤ κ̄0.

Then we have:
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Theorem 1.5 (Conditional homogenization in dimension N ≥ 2 when perturbed
correctors do exist)
Assume that N ≥ 2 and that (A) and (B’) hold. Let us consider the solution uε of (1.1) with
initial data u0 which is uniformly continuous on RN . Then uε converges locally uniformly
on compact sets of RN × [0,+∞) towards the unique solution u0 of (1.2) with the function
F̄ = F̄ 0 = F̄0 given by assumption (B’).

With an assumption weaker than (B) allowing negative normal velocities, namely as-
sumption (B”) in Section 10, it is still possible to get a corrector (Theorem 10.3). As an
interesting application of Theorem 1.5, it is for instance possible to get homogenization
results in 2D of equation (1.3) with certain sign changing velocities (see Theorem 11.2).

1.3 Brief review of the literature

The first results of uniqueness for the mean curvature motion, were obtained by Evans,
Spruck [21] and Chen, Giga, Goto [13]. For general presentations of viscosity approaches to
the motion of fronts, see Giga [22], Souganidis [32, 33], Ambrosio [1], Soner [31]. One of the
main difficulty with the evolution of fronts is the possibility of fattening (see Barles, Soner,
Souganidis [4]).

The homogenization of Hamilton-Jacobi equations was pionered in Lions, Papanicolaou,
Varadhan [26], and then extended to the fully non linear uniformly elliptic case in Evans
[19, 20]. The case of geometric equations was studied only recently. In Lions, Souganidis
[25], in any dimensions N ≥ 1, a Lipschitz bound on the correctors associated to forced
MCM equation (1.3) is shown under assumption (1.5) (and also for more general equations
under suitable assumptions).

In Cardaliaguet, Lions, Souganidis [6], it is in particular shown that in dimension N = 2,
if c(y) = g(y1) with ∫

[0,1]

g > 0, and 0 ≤
∫

[0,1]

g −min
[0,1]

g < 2

then for any p ∈ R2, there exists a Lipschitz continuous corrector v (only depending on y1)
solution of (1.10). Moreover F̄ (p) > 0 if p ∈ R2\Re1, and F̄ (p) = 0 if p ∈ Re1. Among other
things, in dimension N = 2, a counter-example to homogenization is also given in a case
where

∫
[0,1]

g = 0 (see also Remark 4.3).

In Cesaroni, Novaga [9], still in dimension N = 2, it is in particular shown that for p = e2,
there exists a Lipschitz continuous corrector v (only depending on y1) if

∫

[0,1]

g > 0, and min
[0,1]

g ≤ 0 and max
[0,1]

g −min
[0,1]

g < 2
3
2

or if
g > 0.

More generally, it is shown in dimension N ≥ 1, that if c(y) = g(y1, ..., yN−1) (this is the
case of a laminate), and if

∃A ⊂ TN−1,

∫

A

g > Per(A,TN−1)
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then there exists a (pseudo) corrector v (only dependending on y′ = (y1, ..., yN−1)) and an
open set E ⊂ TN−1 such that v is locally bounded on E and v = −∞ on TN−1\E. The
(pseudo) corrector is a kind of (pseudo) travelling wave. Notice that our counter-example
(Theorem 1.1) provides an example of a case where such a (pseudo) corrector is not a
true corrector in the case g > 0 in dimension N ≥ 3. Under certain assumptions, the
homogenization result of [9] has been extended in [10] to the case with an additional drift
term given by a gradient vector field.

Let us mention Craciun, Bhattacharya [15], where a formal assymptotics of F̄ (p) is given
in the limit λ→ +∞ for a geometric motion given by

V = λκ+ c.

On the other hand, it is shown in Dirr, Karali, Yip [18], that for a geometric motion

V = κ+ δc

with c ∈ C2(TN) (without any sign condition on c), if δ > 0 is small enough, then for any
p ∈ RN , there exists a Lipschitz continuous corrector v solution of (1.10), which is moreover
unique if F̄ (p) 6= 0. Part of the method of proof is based on the arguments of Caffarelli,
De La Llave [5] for the construction of minimal surfaces in a periodic setting. See also
Chambolle, Thouroude [12] for a BV approach of the result in [5]. It is shown in particular
in [12], that if

(1.12)

∫

TN

c = 0 and ∃µ ∈ (0, 1), ∀A ⊂ TN ,

∫

A

c ≤ µ Per(A,TN)

then, for any p ∈ RN , there exists a corrector v and F̄ (p) = 0. Let us mention that the
homogenization of geometric motions

V = κ+ ε−1c(ε−1x)

has been done in Barles, Cesaroni, Novaga [3] under the assumption that c(y) = g(y′) and
that (1.12) holds with (c,TN) replaced by (g,TN−1). The case of a geometric motion in
dimension N = 2

V = κ+ c(ε−1x)

with c(y) = g(y1), has been studied in Cesaroni, Novaga, Valdinoci [11].

1.4 Organization of the paper

The paper is organized as follows. In Section 2, we present the strategies of our main proofs.
In Section 3, we recall basic properties of viscosity solutions. In Section 4, we do the proof of
Theorem 1.1 about the counter-example to homogenization in dimension N ≥ 3. In Section
5, we present preliminary results on the evolution of the front, including the connectedness
property (Proposition 5.9) and the black ball barrier (Proposition 5.10). In Section 6, we
prove the flatness of the front using Section 5. In Section 7, we prove Theorem 1.3, i.e. we
show the existence of a corrector for the cell problem. In Section 8, we prove Theorem 1.5
about the conditional homogenization in any dimension. In Section 9, we prove Theorem
1.4 about the homogenization in 2D. In Section 10, we prove the existence of correctors
in 2D (Theorem 10.3) under a general assumption (B”) which allows sign changing normal
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velocities. In Section 11, we present some examples and applications, both for the forced
MCM and the G-equation.

Finally the appendix (Section 12) contains three subsections, respectively about barriers,
inf-convolutions and the proof of the comparison principle (Theorem 3.3). We did not find
precisely in the literature the result we need for the comparison principle, even if its proof is
essentially based on [23]. We expect that this detailed proof will be of future use for other
authors.

2 Strategy of the proofs

We discuss here the ideas underlying the proofs of the main results.

2.1 The counter-example in 3D (Theorem 1.1)

The basic idea is that in dimension 3 (or higher dimension) we can find unbounded convex
sets (with negative curvature) which are invariant by the geometric motion given by the
normal velocity

V = κ+ c

with c = 1. This is the case of cylinders whose section are circles. Then we can perturb
the velocity c inside the cylinder and outside the cylinder in order to allow the propagation
of fronts (which are asymptotic to the cylinder) with different velocities inside the cylinder
and outside the cylinder. Considering periodic copies of the cylinder, we can construct a
periodic velocity c (which does not depend on the coordinate along the cylinder). Then the
two fronts (inside and outside the cylinders) can be used as barriers to show that homoge-
nization can not occur (at least in a strong sense). Notice that the analogue in dimension 2 of
the cylinder is simply a circle, which does not allow the propagation of a front inside the disk!

2.2 The cell problem in 2D (Theorem 1.3)

The idea of the construction of a corrector is purely geometric (even if we find convenient
to use a level set formulation to work). Under assumption (B), we can think that the
front propagates as a fire. This means that the front never comes back. Therefore we can
distinguish the burnt region (black region) and the unburnt region (white region). Moreover
if our initial black region is a half plane, then (at least in some weak sense), we can show
that the black region stays connected for all time. The basic phenomenon to avoid is the
creation of a very thick transition region between the black and the white region like on
Figure 1.

A bounded connected component of the white region (like in the bottom of Figure 1)
can exist, but has to be thin enough. Indeed, it can not contain a unit square, otherwise by
an integer translation argument (the Birkhoff property), it will contain infinitely many such
squares. Notice that all such bounded white components will diseapear, because they are
contained in a white ball (surrounded by the black region) that will itself disappear in finite
time (depending on its size). This remark is not sufficient, because we need to bound the
time after which they have disappeared. The situation is even worth if we have very long
fingers like in Figure 1. We have to show that these fingers will disappear sufficiently quickly.
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mean upper front at time t

Figure 1: A typical situation to avoid: thick transition with long fingers

The fundamental remark is that assumption (B) also implies the existence of a “black ball”
of sufficiently large radius R > 0, which can increase or propagate in any direction. This
black ball can be used as a barrier that will clean the white region remaining pinned in the
black region. This black ball can be used to show that afer a fixed time T > 0, the new
picture will be necessarily like on Figure 2, with a bounded thickness of the transition region
between the black and white parts.

mean upper front at time t+T

mean upper front at time t

bounded
thickness

cleaning the white parts up to time t+T

Figure 2: Cleaning the picture after a fixed time T > 0

The cleaning phenomenon is possible because the boundary of the white long fingers
is connected and then in 2D locally separates the plane in two big parts W (for white)
and B (for black), like locally two half planes if the white finger is straight enough. Then
we can introduce (see Figure 3) the black ball in the part B (which is no longer true in
higher dimensions, like it is shown in the counter-example with cylinders in dimension 3 for
instance) and propagate the black ball in the direction of the part W. This process cleans
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the white part W and make disappear the white finger in a fixed finite time (at least in the
direction of the thickness of the finger).

of a white finger
one boundary

the black ball

the black ball
motion of

region W region B

Figure 3: Cleaning the white part with the black ball barrier

Once we are able to show that the thickness of the transition region between the white
and black region is bounded uniformly in time, this shows that the front is “roughly flat”.
This property is sufficient to show that the “flat front” propagates with a well-defined veloc-
ity. Passing to the limit as the time goes to infinity, it is then possible to define a corrector
which describes the periodic propagation of the “flat front” in the periodic framework.

2.3 Homogenization (Theorem 1.5)

The goal of this subsection is to give some heuristic explanations of the difficulties arising
in the homogenization of geometric equations, and the main arguments that we have intro-
duced in our proof of Theorem 1.5.

Try 1: the naive approach and the difficulty when the gradient vanishes
The naive try is the following perturbed test function (for a corrector w)

(2.1) ϕ̃ε(x, t) = ϕ(x, t) + εw(x/ε).

It is a common belief (see for instance [15] and [25]) that once we are able to show the
existence of correctors, then the homogenization result is a corollary obtained using Evans
perturbed test function method (see [19]). The point is that this belief is false when we want
to homogenize equations like mean curvature motion, because the Hamiltonian is discontin-
uous when the gradient vanishes.
More precisely, in the following, we recall the classical Evans method and then present the
difficulty we have to face.
1.1) The classical Evans method
If ϕ is a test function touching u := lim sup

ε→0

∗uε from above and which does not satisfy the

subsolution viscosity inequality, i.e.

(2.2) ϕt > F̄ (Dϕ) at some point P0

10



then given a (super) corrector w associated to p = Dϕ(P0), we hope that the perturbed test
function ϕ̃ε given by (2.1) satisfies

(2.3) ϕ̃ε
t ≥ F (εD2ϕ̃ε, Dϕ̃ε, x/ε) in a neighborhood of the point P0

(in order to get later a contradiction with the fact that ϕ(P0) = u(P0)).
1.2) The difficulty
Inequality (2.3) means for y = x/ε and P = (x, t)

(2.4) ϕt(P ) ≥ F∗(εD
2ϕ(P ) + (D2w)(y), Dϕ(P ) + (Dw)(y), y) with P close to P0,

i.e. for a point P in a neighborhood of P0, which is independent on ε for ε small enough.
Notice that (2.2) means for all y:

(2.5) ϕt(P0) > F̄ (Dϕ(P0)) ≥ F∗((D
2w)(y), Dϕ(P0) + (Dw)(y), y)

but (2.5) does not imply in general (2.4) for small quantities |ϕt(P ) − ϕt(P0)|, |Dϕ(P ) −
Dϕ(P0)| and ε|D2ϕ(P )|. The difficulty comes from the fact that, even if F̄ (Dϕ(P0)) > 0, it
may happen that

(2.6) ∃y0 such that Dϕ(P0) + (Dw)(y0) = 0

and

(2.7) the “curvature of the level set”
(D2w)(y)

|Dϕ(P0) + (Dw)(y)| blows up when y → y0.

Then, it is not clear (at least for us) how to avoid the case where a small perturbation
q = Dϕ(P ) + (Dw)(y0) would satisfy q 6= 0 with q in a direction such that

F ((D2w)(y0), q, y0) ≃ F ∗((D2w)(y0), 0, y0) > ϕt(P0) > F∗((D
2w)(y0), 0, y0).

Try 2: New ingredients
Given a parameter η > 0, the new perturbed test function is the following

(2.8) ϕ̄ε(x, t) = inf
z∈Bεη(x)

ϕ̃ε(z, t).

From Try 1, it is clear that we can not really hope to construct a perturbed test function like
ϕ̃ε which is a supersolution in a neighborhood of a point P0. We show here that, in order
to get a contradiction, we only need this perturbed test function to be a strict supersolution
at a one contact point with uε, which is much easier to check. Of course, we also need to
control the curvature of the level set at that contact point. In what follows we present some
ideas to reach our goal.
2.1) A pointwise Evans method
The first main idea is to replace the standard Evans method, by the following “Pointwise
Evans method”. Let us define for some general function u:

F [ε, u] := F (εD2u,Du, x/ε).

We just consider a local maximum point P̃ε (close to P0 as ε goes to zero) of uε − ϕ̃ε. We
formally have at P̃ε

uεt = F [ε, uε] ≤ F [ε, ϕ̃ε] < ϕ̃ε
t

11



because we expect ϕ̃ε to be a strict supersolution. We then get a contradiction from the
fact that uεt = ϕ̃ε

t at the point P̃ε.
Notice that in order to have a strict supersolution, we still need to control the curvature of
the interface and this is the goal of the next idea.
2.2) Geometric inf-convolution by balls
We now introduce an argument of inf-convolution by balls, in order to bound the curvature
(from one side) and then to avoid difficulty (2.7). We recall that, given a corrector w
associated to a gradient p, the planar-like function

l(y, τ) = λτ + p · y + w(y), with λ = F̄ (p) > 0

solves

(2.9) lτ = F (D2l, Dl, y).

We then define the inf-convolution by balls of radius η > 0:

lη(y, τ) = inf
z∈Bη(y)

l(z, τ).

Then (for any a ∈ R) each upper level set {lη > a} has exterior tangent balls of radius η at
each point of its boundary, which implies that its curvature matrix is bounded from above

by
1

η
I (see Figure 4).

η

motion

l < 0

l   > 0η
l   = 0

l = 0

η

Figure 4: The new interface after inf-convolution by balls

This implies in particular that

F (D2lη, Dlη, y) = |Dlη|F
(
D2lη
|Dlη|

,
Dlη
|Dlη|

, y

)
≤ |Dlη|F

(
1

η
I,

Dlη
|Dlη|

, y

)
≤ cη|Dlη|

for some constant cη > 0.
2.3) Bound from below on the gradient

Notice that ϕ̃ε(x, t) looks like εl

(
x

ε
,
t

ε

)
, and then its natural to replace ϕ̃ε by ϕ̄ε given in

(2.8), and to look at a local maximum point P̄ε (close to P0) of u
ε − ϕ̄ε. Therefore we have

at P̄ε:

0 <
1

2
F̄ (Dϕ(P0)) ≤ ϕ̄ε

t = uεt = F [ε, uε] ≤ F [ε, ϕ̄ε] ≤ cη|Dϕ̄ε|

12



which shows that the gradient |Dϕ̄ε| is bounded from below by a constant depending only
on η.

2.4) Difficulty for checking that ϕ̄ε is a strict supersolution at P̄ε

We have for P̄ε = (x̄ε, t̄ε):

ϕ̄ε(P̄ε) = ϕ̃ε(P̃ε) for some point P̃ε = (x̃ε, t̄ε) with x̃ε ∈ Bεη(x̄ε).

On the one hand, we get

ϕ̄ε
t(P̄ε) = ϕ̃ε

t(P̃ε) = ϕt(P̃ε) > F̄ (Dϕ(P0))

for ε small enough. On the other hand, we have with ȳε =
x̄ε
ε
, ỹε =

x̃ε
ε

F [ε, ϕ̄ε](P̄ε) = F (εD2ϕ̄ε(P̄ε), Dϕ̄
ε(P̄ε),

x̄ε
ε
)

= F (εD2ϕ̃ε(P̃ε), Dϕ̃
ε(P̃ε), ȳε)

= F (εD2ϕ(P̃ε) +D2w(ỹε), Dϕ(P̃ε) +Dw(ỹε), ȳε)

for which we have
{

|Dϕ̄ε(P̄ε)| = |Dϕ(P̃ε) +Dw(ỹε)| is bounded from below,
|ȳε − ỹε| ≤ η.

And in order to conclude that ϕ̄ε is a strict supersolution at P̄ε, it is enough to show that
(2.10)
F (εD2ϕ(P̃ε)+D

2w(ỹε), Dϕ(P̃ε)+Dw(ỹε), ȳε) ≃ F (D2w(ỹε), Dϕ(P0)+Dw(ỹε), ỹε) = F̄ (Dϕ(P0)).

We consider here a small perturbation of the arguments of F . Because F is not uniformly
continuous on the set where the gradients are bounded from below, we still need the following
property:

(2.11) |εD2ϕ̃ε(P̃ε)|, |Dϕ̃ε(P̃ε)| ≤ C

which is not true in general.

Try 3: Further regularization
Given a parameter ρ > 0, the new perturbed test function is the following

(2.12) ϕε(x, t) = inf
z∈RN

(
ϕ̄ε(z, t) +

|x− z|4
4ε3ρ

)
=

(
ϕ̄ε(z, t) +

|x− z|4
4ε3ρ

)

|z=zx

.

3.1) Classical regularization
In order to control the quantities in (2.11), this is natural to introduce the inf-convolution
(2.12). Classically, this kind of inf-convolution is convenient for mean curvature type PDE,
because the function | · |4 has zero second derivatives when its gradient is zero. Notice
that here we could have taken another inf-convolution, because the case where the gradient

13



vanishes is already avoided by the bound from below on the gradient.
For (2.12), we can show that (for ρ small)

|zx − x| ≤ εO(ρ
1
4 )

which implies
|εD2ϕε| ≤ O(ρ−

1
2 ), |Dϕε| ≤ O(ρ−

1
4 )

which will give (2.11).
3.2) Difficulty
The drawback of this regularization by inf-convolution is that in (2.10), it will make move
the contact points ȳε into points yε where now we have the estimate:

|yε − ỹε| ≤ |yε − ȳε|+ |ȳε − ỹε| ≤ O(ρ
1
4 ) + η.

We still have to face the lack of uniform continuity of F (as ρ goes to zero).

Try 4: Our definitive choice
We consider the test function ϕε given by (2.12) where the corrector w appearing in ϕ̃ε (see
(2.1)) has to be replaced by w2η associated to the Hamiltonian:

F 2η(X, p, x) = sup
|y−x|≤2η

F (X, p, y).

We choose ρ small enough satisfying

|yε − ỹε| ≤ O(ρ
1
4 ) + η ≤ 2η

and the adjustment of the parameter η is done such that the associated effective Hamiltonian
F̄ 2η is close enough to F̄ = F̄ 0 in order to satisfy

ϕt(P0) > F̄ 2η(Dϕ(P0)).

This last choice allows us to conclude the raisonning.

The previous method is used to show that lim sup
ε→0

∗uε is a subsolution of the limit equa-

tion. A similar (but adapted method because we may have ϕt(P0) < 0) is used to show that
lim inf
ε→0

∗u
ε is a supersolution.

Remark 2.1 (Link between (1.5) and inf-convolution by small balls)
It is possible to see that assumption (1.5) implies that if a characteristic function χ(x, t) is
a solution of (1.3) in dimension N ≥ 2 (with ε = 1 to fix the ideas), then

χη(x, t) = sup
y∈Bη(x)

χ(y, t) and χη(x, t) = inf
y∈Bη(x)

χ(y, t)

are respectively sub and supersolutions for η > 0 small enough, when the total mean curvature
of the smooth moving boundary satisfies κ2 ≥ |Dc| which is the case if κ ≤ −c.

14



3 Properties of viscosity solutions

3.1 Viscosity solutions

Let Ω ⊂ RN be an open set and let T ∈ (0,+∞]. We consider solutions u of the following
equation

(3.1) ut = F (D2u,Du, y) on Ω× (0, T ) =: ΩT

with boundary - initial data

(3.2) u = g on (Ω× {0}) ∪ (∂Ω× [0, T )) =: ∂pΩT .

For a general function u : Ω × [0, T ) → [−∞,+∞], we recall the definition of the upper
(resp. lower) semi-continuous envelope u∗ (resp. u∗) of u:

u∗(x, t) = lim sup
(y,s)→(x,t)

u(t, s)

(
resp. u∗(x, t) = lim inf

(y,s)→(x,t)
u(t, s)

)
.

We also recall that we say that u is upper (resp. lower) semi-continuous if and only if
u = u∗ (resp. u = u∗). Given a function F continuous on D0 = SN × (RN\ {0}) × RN , we
also define for all (X, p, x) ∈ SN × RN × RN :
{
F ∗(X, p, x) = lim

ε→0
sup {F (Y, q, y), (Y, q, y) ∈ D0, |X − Y |, |p− q|, |x− y| ≤ ε}

F∗(X, p, x) = lim
ε→0

inf {F (Y, q, y), (Y, q, y) ∈ D0, |X − Y |, |p− q|, |x− y| ≤ ε} .

Because of the continuity of F (X, p, x) for p 6= 0, we have in particular F ∗(X, p, x) =
F (X, p, x) = F∗(X, p, x) if p 6= 0.

We are now ready to recall the definition of a viscosity solution

Definition 3.1 (Viscosity solution)
We use the previous notation.
i) Sub/super/solution of (3.1)
We say that u : Ω × [0, T ) → [−∞,+∞] is a subsolution (resp. a supersolution) of (3.1)
if u < +∞ (resp. u > −∞) and u is upper (resp. lower) semi-continuous and if for any
P0 = (x0, t0) ∈ ΩT , if there exists some r0 > 0 such that Br0(P0) ⊂ ΩT and a function
ϕ ∈ C2(Br0(P0)) such that

{
u ≤ ϕ on Br0(P0)
u = ϕ at P0

(
resp.

{
u ≥ ϕ on Br0(P0)
u = ϕ at P0

)

then we have at P0

ϕt ≤ F ∗(D2ϕ,Dϕ, x0)
(
resp. ϕt ≥ F∗(D

2ϕ,Dϕ, x0)
)
.

We say that u is a viscosity solution of (3.1) if u∗ is a subsolution and if u∗ is a supersolution.
ii) Sub/super/solution of (3.1)-(3.2)
A function u : Ω× [0, T ) → [−∞,+∞] is said to be a subsolution (resp. a supersolution) of
(3.1)-(3.2) if it is a subsolution (resp. supersolution) of (3.1) and if furthermore it satisfies

u ≤ g∗ on ∂pΩT (resp. u ≥ g∗ on ∂pΩT ) .

We say that u is a viscosity solution of (3.1)-(3.2) if u∗ is a subsolution and u∗ is a super-
solution.
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3.2 The technical assumption (A4)

We give below the precise assumption (A4).

(A4) Regularity:





i) Boundedness close to p = 0:
For all R > 0, there exists a constant CR > 0 such that for all y ∈ RN

|F (X, p, y)| ≤ CR for all |X| ≤ R, 0 < |p| ≤ R

ii) Variations in (X, x):
There exists K ≥ 9 and σK : [0,+∞) → [0,+∞) satisfying σK(0

+) = 0, such that we have

F ∗(X,α(x− y), x)− F∗(Y, α(x− y), y) ≤ σK {|x− y|(1 + α|x− y|)}

for all α ≥ 0 and X, Y ∈ SN , x, y ∈ RN satisfying

−Kα
(
I 0
0 I

)
≤
(
X 0
0 −Y

)
≤ Kα

(
I −I
−I I

)

with α = 0 if x = y

This kind of regularity assumptions are given (partially) page 443 in [4].

Remark 3.2
Notice that condition (A4)ii) joint to the geometric property of F (assumption (A2)) imply

(3.3) F ∗(0, 0, y) = 0 = F∗(0, 0, y).

Notice that we also have

(3.4) F (X, p, y) = F (Π(p) ·X · Π(p), p, x) with Π(p) = I − p̂⊗ p̂ if p 6= 0

which follows from assumptions (A1)-(A2) and Theorem 1.6.12 (page 48) of [22].

Then we have the following result.

Theorem 3.3 (Comparison principle)
Assume that either Ω = RN or that Ω is a bounded open set of RN , and assume (A). If u is
a subsolution of (3.1) and v is a supersolution of (3.1) such that
(3.5)



lim
θ→0

sup
{
u(x, 0)− v(y, 0), x, y ∈ RN , |x− y| ≤ θ

}
≤ 0 if Ω = RN

u ≤ v on ∂pΩT if Ω is a bounded open set

then
u ≤ v on ΩT .
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3.3 An example

Let us consider for instance the following natural example
(3.6)

F (X, p, y) = tr
{
ΣT (p̂, y) · Σ(p̂, y) ·X

}
+H(p, y) with

{
H(p, y) positively 1-homogeneous in p
Σ(p̂, y) · (I − p̂⊗ p̂) = Σ(p̂, y)

where H(p, y) and Σ(p̂, y) are ZN -periodic in y. We assume the following regularity

H ∈ C(RN × RN ;R) and Σ ∈ C(SN−1 × RN ;RN×N),

and that there exists a constant L > 0 such that

(3.7) |H(p, x)−H(p, y)| ≤ L|x− y||p| and |Σ(p̂, x)− Σ(p̂, y)| ≤ L|x− y|.

Notice that equation (1.3) corresponds to the particular subcase

Σ(p, y) = I − p̂⊗ p̂ and H(p, y) = c(y)|p|

and assumption (B) means
c(y) ≥ δ > 0.

More generally, if we assume moreover that H satisfies the bound from below (1.8), then
F also satisfies (B).

Checking (A) for F given by (3.6).
We claim that F given by (3.6)) satisfies (A). The only thing non trivial to check is (A4)ii)
in the special case where H ≡ 0. We consider X, Y satisfying with α ≥ 0

(3.8) −Kα
(
I 0
0 I

)
≤
(
X 0
0 −Y

)
≤ Kα

(
I −I
−I I

)
.

Then for p = α(x− y) 6= 0, we multiply on the left by (Σ(p̂, x),Σ(p̂, y)) and on the right by
(Σ(p̂, x),Σ(p̂, y))T , and we get

(3.9)

tr
{
ΣT (p̂, x)Σ(p̂, x)X − ΣT (p̂, y)Σ(p̂, y)Y

}

≤ Kα|Σ(p̂, x)− Σ(p̂, y)|2

≤ KL2α|x− y|2

where we have used (3.7) in the second line. If x = y, then α = 0 in (3.8) implies X = Y = 0
and then (3.9) still holds. This shows (A4)ii) with σK(a) = KL2a.

3.4 More properties on viscosity solutions

The following results are classical in the theory of viscosity solutions (see [17]).

Proposition 3.4 (Stability)
i) semi-limits
If (uε)ε is a sequence of subsolutions (resp. supersolutions) of (3.1), let

u(x, t) = lim sup
(x̃,t̃,ε)→(x,t,0)

uε(x̃, t̃), u(x, t) = lim inf
(x̃,t̃,ε)→(x,t,0)

uε(x̃, t̃).
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If u < +∞ (resp. u > −∞), then u is a subsolution (resp. u is a supersolution) of (3.1).
ii) suppremum/infimum
Let S be a set of functions w such that w∗ is a subsolution (resp. a set of functions w such
that w∗ is a supersolution) of (3.1), and

u =

(
sup
w∈S

w

)∗ (
resp. u =

(
inf
w∈S

w

)

∗

)
.

If u < +∞ (resp. u > −∞), then u is a subsolution (resp. u is a supersolution) of (3.1).

Proposition 3.5 (Perron’s method)
Let u+ (resp. u−) be a supersolution (resp. subsolution) of (3.1) satisfying u− ≤ u+. Then
there exists a viscosity solution u of (3.1) satisfying

u− ≤ u ≤ u+.

Proof of Proposition 3.5
The proof is essentially based on [13] and [24]. We repeat it for completness.
We call

S =
{
w : such that w∗ is subsolution of (3.1), w ≤ u+

}
∋ u−.

We define
u(x, t) = sup

w∈S
w(x, t).

From the stability result Proposition 3.4 ii), we know that u∗ is a subsolution. Assume that
u∗ is not a supersolution and let us get a contradiction. Then there exists a point P0 = (x0, t0)
and a test function ϕ ∈ C2(Br0(P0)) for some r0 small enough such that Br0(P0) ⊂ ΩT and
such that 




u∗ ≥ ϕ on Br0(P0)

u∗ = ϕ on P0

and

(3.10) ϕt = −θ + F∗(D
2ϕ,Dϕ, x0), with θ > 0.

Up to replace ϕ(P ) by ϕ(P )− |P − P0|4, we can assume that

(3.11) (u∗ − ϕ)(P ) ≥ |P − P0|4.

Notice that u∗(P0) < u+(P0) because otherwise ϕ would be a test function for u+ and (3.10)
would be in contradiction with the fact that u+ is a supersolution. Therefore there exists
some small δ ∈ (0, r0/2) such that

(3.12)





ϕt ≤ F∗(D
2ϕ,Dϕ, x)

ϕ(P ) + δ4/2 ≤ u+(P )

∣∣∣∣∣∣
for P ∈ B2δ(P0).

From (3.11), we deduce that

(3.13) u(P ) ≥ u∗(P )− δ4/2 ≥ ϕ(P ) + δ4/2 for P ∈ B2δ(P0)\Bδ(P0).
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We now define

w(P ) =

{
max(ϕ(P ) + δ4/2, u∗(P )), P ∈ Bδ(P0)
u∗(P ), P ∈ (Ω× [0, T ))\Bδ(P0).

Notice that from (3.13), we have

w(P ) = max(ϕ(P ) + δ4/2, u∗(P )) for P ∈ B2δ(P0)

and then w is a subsolution as the maximum of two subsolutions on B2δ(P0) (see Proposition
3.4 ii)). This implies that w is a subsolution everywhere and from (3.12) that w ∈ S. On
the other hand, we have

0 = (u∗ − ϕ)(P0) = lim
η→0

inf {(u− ϕ)(P ), |P − P0| ≤ η} .

Therefore there exists some P1 ∈ Bδ(P0) such that (u − ϕ)(P1) < δ4/2, which implies that
u(P1) < w(P1). This is in contradiction with the definition of u as the “maximal subsolu-
tion”. This ends the proof of the Proposition.

3.5 Subdifferentials

For later use, we recall here the definitions of sub/superdifferentials.

Definition 3.6 (Sub/superdifferentials)
Let (x, t) 7→ u(x, t) be a upper semicontinuous (resp. lower semi-continuous) function defined
on an open set. For P0 = (x0, t0), we say that

(τ, p,X) ∈ P2,+u(P0)
(
resp. (τ, p,X) ∈ P2,−u(P0)

)

if there exists a C2 test function ϕ such that

u ≤ ϕ ( resp. u ≥ ϕ) with equality at P0

and
(τ, p,X) = (ϕt, Dϕ,D

2ϕ) at P0.

Remark 3.7 If u(x, t) is independent on t, we say that

(p,X) ∈ D2,± if an only if (0, p,X) ∈ P2,±.

Definition 3.8 (Limit sub/superdifferentials)
Let (x, t) 7→ u(x, t) be a upper semicontinuous (resp. lower semi-continuous) function defined
on an open set. For P0 = (x0, t0), we say that

(τ, p,X) ∈ P2,+
u(P0)

(
resp. (τ, p,X) ∈ P2,−

u(P0)
)

if there exists exists sequences such that

(τk, pk, Xk) ∈ P2,+u(Pk)
(
resp. (τk, pk, Xk) ∈ P2,−u(Pk)

)

such that
(τk, pk, Xk, u(Pk)) → (τ, p,X, u(P0)).
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4 Counter-example in dimension N ≥ 3

We set x′ = (x1, ..., xN−1) such that x = (x′, xN). We now consider solutions U of the first
line of (1.3) in the case ε = 1 for a velocity c(x) replaced by some general velocity c∞(x′)
which is independent on xN , i.e. U solution of

Ut = tr
{
D2U · (I − D̂U ⊗ D̂U)

}
+ c∞(x′)|DU |.

We look for particular solutions

U(x, t) = u(x′, t)− xN

which means that u solves (at least for smooth solutions u)

(4.1)
ut√

1 + |Du|2
= c∞(x′) + div

(
Du√

1 + |Du|2

)
.

Then we have

Proposition 4.1 (Traveling profiles with different velocities for N ≥ 3)
Let N ≥ 3. There exists a radial function c∞ ∈ C∞(RN−1) which is positive, and radial
functions u+ : RN−1 → [−∞,+∞), u− : RN−1 → (−∞,+∞] and constants c+, c− satisfying

u+ < u− and c+ > c−

such that the profiles
c±t+ u±(x

′)

are solutions of (4.1). We have

(4.2) u+(x
′) =

{
u0(x

′) if |x′| < 1
−∞ if |x′| ≥ 1

and u−(x
′) =

{
+∞ if |x′| ≤ 1
u0(x

′) if |x′| > 1

with u0 ∈ C∞(B1) and u0 ∈ C∞(RN−1\B1). Moreover there exists r0 > 1 such that

{
c∞(x′) = c− for |x′| ≥ r0
u−(x

′) = constant for |x′| ≥ r0.

The profiles of Proposition 4.1 are illutrated on Figure 5.

Proof of Theorem 1.1
Using Proposition 4.1, we first define for R > 2r0 a velocity defined on the centered square

cR(x′) = c∞(x′) for x′ ∈ [−R/2, R/2]N−1.

Similarly we define

UR
± (x, t) = c±t+ u±(x

′)− xN for x′ ∈ [−R/2, R/2]N−1.

Moreover, up to add a suitable constant to u+ (resp. u−), we can assume that

(4.3) u+ ≤ 0 ≤ u−.
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Figure 5: Profiles u± with velocities c+ > c−

We then extend by periodicity cR(x′) and UR
± (x

′, xN , t) as (RZ)N−1-periodic functions for
x′ ∈ RN−1. We get that UR

± are both solutions of

Ut = tr
{
D2U · (I − D̂U ⊗ D̂U)

}
+ cR(x′)|DU |.

Then the new functions

Ū ε
±(x, t) := R−1ε UR

±
(
Rε−1x,R2ε−1t

)

are solutions of (1.3) with the velocity

c(x) = RcR(Rx′)

which is a positive smooth ZN -periodic function independent on xN . Using (4.3), we see
that we have

(4.4) Ū ε
+(x, t) ≤ uε(x, t) ≤ Ū ε

−(x, t)

at time t = 0. From the comparison principle, we deduce that (4.4) holds true for all time
t ≥ 0. Setting

c̄ = Rc+, c = Rc−

we deduce (1.7) from the fact that for t > 0

lim sup
(x̃,t̃,ε)→(x,t,0)

Ū ε
+(x̃, t̃) ≥ c̄t− xN > ct− xN ≥ lim inf

(x̃,t̃,ε)→(x,t,0)
Ū ε
−(x̃, t̃).

This ends the proof of the theorem.

Proof of Proposition 4.1
Step 1: preliminary
For the radial functions u0 and c∞, we make the abuse of notation u0(x

′) = u0(r) and
c∞(x′) = c∞(r) for r = |x′| with x′ ∈ Rn and

n = N − 1.
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We define the function ζ by the relation

(4.5) ∇u0 = ζ(r)
x′

|x′| .

Then we easily see that a function c∗t+ u0(r) is solution of (4.1) if and only if

(4.6) c∞(r) =
c∗√
1 + ζ2

− κ with κ =

{(
ζ√

1 + ζ2

)′

+
n− 1

r

(
ζ√

1 + ζ2

)}
.

We look for a function ζ which blows up at r = 1 and is smooth for r 6= 1 such that we can
take

(4.7) c∗ =

{
c+ if r ∈ [0, 1)
c− if r > 1

and we want to check that c∞ given by (4.6) is nevertheless smooth (and positive).
Step 2: first computation
As a first candidate for ζ, we propose

(4.8) ζ̃(r) = −
√
e
2
(

1
|1−r2|−1

)

− 1 for r ∈ [0,
√
2).

After some computations, we get
(4.9)

c∞(r) = c∗e
−
(

1
|1−r2|−1

)

+
2 sign(1− r2)e

−2
(

1
|1−r2|−1

)

(1− r2)2
r√

1− e
−2

(
1

|1−r2|−1
)+(n−1)

√
1− e

−2
(

1
|1−r2|−1

)

r

and √
1− e

−2
(

1
|1−r2|−1

)

r
=

√
2− 2

3
r4 +O(r6)

which is then a smooth function up to r = 0 (analytic close to r = 0). With the choice (4.7)
for any constants c±, this shows that c∞ is C∞ for r <

√
2.

Step 3: conclusion
In order to define a function c∞(r) for all r, we simply set

ζ = ζ̃ψ

where ψ ∈ C∞[0,+∞) is a cut-off function satisfying

ψ(r) =

{
1 for 0 ≤ r ≤ 1 + η
0 for r ≥ 1 + 2η

where η > 0 is small enough such that 1 + 2η <
√
2. We conclude choosing c+ > c− > 0

large enough such that c∞ is positive. We finally get the profiles u0 integrating (4.7) which
provides the profiles u± given by (4.2). Notice in particular that ζ is not integrable in any
(positive or negative) neighborhood of r = 1. This implies that

lim
r→1−

u0(r) = −∞ and lim sup
r→1+

u0(r) = +∞.

This implies that c±t+u±(x
′), even if they are unbounded, are solutions of (4.1) in the sense

of Definition 3.1. This ends the proof of the proposition.
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Remark 4.2 In our example, we can deduce from (4.8) that

|1− r| ∼ 1

ln |u0(r)|
as r → 1.

Notice also that in (4.6), we have

c∞(1) = −κ = n− 1

which corresponds to the negative mean curvature of the tube of equation r = 1. On
the contrary in dimension N = 2 = n + 1, this curvature vanishes and then the velocity c∞
too.

Remark 4.3 (Example of non homogenization in 2D with sign changing velocity)
In the case N = 2, i.e. n = 1 in (4.9), we can take any c+ > 0 and c− < 0 and the
construction of Proposition 4.1 and Theorem 1.1 provides a non homogenization result for a
sign changing velocity c∞(x1) which is R-periodic.

5 Preliminaries in any dimension

We consider a solution u(x, t) of

(5.1) ut = F (D2u,Du, y) on RN × (0,+∞)

with initial data

(5.2) u(x, 0) = u0(x) = x · ν for x ∈ RN .

Proposition 5.1 (Existence and properties of the solution)
Assume (A). Let ν ∈ SN−1 and u0(x) = ν · x. Then there exists a unique solution u of
(5.1)-(5.2). Moreover u is continuous and u(x, t)−ν ·x is ZN -periodic in x, and there exists
a constant C > 0 such that

|ut| ≤ C on RN × [0,+∞).

For any 0 < T < +∞, there exists a modulus of continuity mT such that

(5.3) |u(x, t)− u(y, t)| ≤ mT (|x− y|) for all x, y ∈ RN , t ∈ [0, T ].

If we assume moreover (B), then we have

(5.4) ut ≥ δ > 0 on RN × [0,+∞).

Proof of Proposition 5.1
Step 1: barriers, existence, uniqueness
We set the barriers sub/supersolutions

u±(x, t) = u0(x) + C±t with ± C± = sup
x∈RN

±F (0, ν, x).
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Then by Perron’s method (Proposition 3.5), there exists a solution u of (5.1) satisfying

u− ≤ u ≤ u+

which implies in particular
u(·, 0) = u0.

Then u solves (5.1)-(5.2). Furthermore we deduce from the comparison principle (Theorem
3.3) that this solution is unique and is then continuous.
Step 2: periodicity
For any k ∈ ZN , we have

u0(x+ k) = u0(x) + ν · k.
The comparison principle implies that

u(x+ k, t) = u(x, t) + ν · k

i.e. u(x, t)− ν · x is ZN -periodic in the x variable.
Step 3: time regularity
Let h ≥ 0. Then we have

(5.5) u(x, t+ h) ≤ u(x, t) + C+h

for t = 0 and the comparison principle implies that (5.5) holds for every time. Similarly, we
get that

(5.6) u(x, t) + C−h ≤ u(x, t+ h).

Then (5.5) and (5.6) show that
C− ≤ ut ≤ C+.

Notice that this result joint to the continuity of u and to the periodicity of u(x, t) − ν · x
implies the existence of a modulus of continuity as in (5.3).
Step 4: further result under assumption (B)
Then we have C− ≥ δ and this implies (5.4).
This ends the proof of the proposition.

Proposition 5.2 (No fattening)
Assume (A) and (B) and let u be the function given in Proposition 5.1.
i) (No fattening)
Then u satisfies for all t ≥ 0:

(5.7) Int
{
x ∈ RN , u(x, t) = 0

}
= ∅.

As a consequence, the sets

Et =
{
x ∈ RN , u(x, t) ≥ 0

}
and Eo

t =
{
x ∈ RN , u(x, t) > 0

}

only differ on a set of empty interior and

∂Eo
t , ∂Et ⊂

{
x ∈ RN , u(x, t) = 0

}
.
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ii) (monotonicity)
We have

(5.8) Et ⊂ Es (resp. Eo
t ⊂ Eo

s ) for all s ≥ t ≥ 0.

iii) (stability of E)
We have

(5.9)
⋂

s>t

Es = Et and
⋃

s<t

Eo
s = Eo

t .

Remark 5.3 Notice that Eo
t ⊂ Int Et, but we may have Int Et 6= Eo

t (if for instance u(·, t)
is positive on B1(0)\ {0} and vanishes at x = 0). Similarly, we have Eo

t ⊂ Et, but we may
have Et 6= Eo

t (if for instance u(·, t) is negative on B1(0)\ {0} and vanishes at x = 0).

Remark 5.4 We can even show that

(5.10)
⋂

s>t

Eo
s = Et and

⋃

s<t

Es = Eo
t .

Proof of Proposition 5.2
Proof of i)
Assume that there exists t0 > 0 such that there exists x0 and r > 0 such that

(5.11) Br(x0) ⊂
{
x ∈ RN , u(x, t0) = 0

}
.

Given such r > 0 and some ε ∈ (0, 1), we consider the test function

φε(x, t) = Ar|x− x0|4 + Āε|t− t0|2 for x ∈ Br(x0), |t− t0| ≤ ε

where Ar > 0 and Āε are constants that we will fix later. If x ∈ Br(x0) and t ∈ [0, t0 + 1]
recall that

|u(x, t)− u(x0, t)| ≤ mt0+1(r)

where the modulus of continuity mt0+1 is given in (5.3). Moreover, for |t− t0| ≤ ε, we have

|u(x, t)− u(x, t0)| ≤ Cε.

Therefore for 



Ar := 2r−4mt0+1(r) > r−4mt0+1(r),

Āε := 2
C

ε
>
Cε

ε2

and
Qε = Br(x0)× [t0 − ε, t0 + ε]

we have
sup
Qε

(u− φε) > sup
∂Qε

(u− φε).

In particular there exists (xε, tε) ∈ Int Qε such that

sup
Qε

(u− φε) = (u− φε)(xε, tε)
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and then

(5.12) δ ≤ φε
t ≤ F ∗(D2φε, Dφε, xε) at (xε, tε)

where we have used that ut ≥ δ (see (5.4)). We pass to the limit (xε, tε) → (x̄0, t0) as ε→ 0
with x̄0 ∈ Br(x0). In particular we get that

sup
Q0

(u− φ0) = (u− φ0)(x̄0, t0) with φ0(x, t) = Ar|x− x0|4.

Therefore (5.11) implies that x̄0 = x0. Passing also to the limit in (5.12), we get

0 < δ ≤ F ∗(0, 0, x0) = 0

where we have used (3.3) to identify to zero the right hand side. Contradiction. This implies
(5.7).
Proof of ii)
The monotonicity of u (see (5.4)) implies (5.8).
Proof of iii)
The continuity of u implies (5.9).
This ends the proof of the proposition.

Proposition 5.5 (Birkhoff property)
Using the notation of Proposition 5.2, let us define the set

A =
{
k ∈ ZN , k + E0 ⊂ E0

}
.

Then
A =

{
k ∈ ZN , k ∈ E0

}
.

Moreover, if k ∈ A, then for all t ≥ 0

(5.13) k + Et ⊂ Et.

Proof of Proposition 5.5
We simply notice that

E0 =
{
x ∈ RN , ν · x ≥ 0

}

and k ∈ A if and only if
ν · k ≥ 0.

We also notice that
u0(x+ k) ≥ u0(x).

Therefore from the comparison principle (and the invariance of the equation by integer
translations), we deduce that

u(x+ k, t) ≥ u(x, t).

This implies (5.13) and ends the proof of the proposition.
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Proposition 5.6 (Characteristic functions)
Assume (A) and (B). Let us consider the sets Et and E

0
t defined in Proposition 5.1. Then

the following two functions

χE(·, t) := χEt
and χEo(·, t) := χEo

t
for all t ≥ 0

are solutions of (5.1) and

(5.14) (χE)∗ = χEo and (χEo)∗ = χE.

Proof of Proposition 5.6
Step 1: Proof of (χEo)∗ = χE

Let us consider a point P0 = (x0, t0). If u(P0) 6= 0, then by continuity of u, we conclude that

(χEo)∗(P0) = χEo(P0) = χE(P0).

Now if u(P0) = 0, then u(x0, t0 + h) ≥ δh for all h > 0 and then Ph = (x0, t0 + h) ∈ Et0+h.
This implies that

(χEo)∗(P0) ≥ lim sup
h→0

χEo(Ph) = 1

and then
(χEo)∗(P0) = 1 = χE(P0).

Step 2: Proof of (χE)∗ = χEo

Similarly, if a point P0 = (x0, t0) is such that u(P0) 6= 0, then by continuity of u, we get that

(χE)∗(P0) = χEo(P0).

Because ut ≥ δ, we deduce that if u(P0) = 0, then for all h ≥ 0 such that t0 − h ≥ 0, we
have u(x0, t0)− u(x0, t0 − h) ≥ δh, and then P−h = (x0, t0 − h) is such that

u(P−h) < 0 for all h > 0.

Therefore if t0 > 0,
(χE)∗(P0) ≤ lim inf

h→0
χE(P−h) = 0

which means

(5.15) (χE)∗(P0) = 0 = χEo(P0).

If u(P0) = 0 with t0 = 0, we simply check that (χE0)∗ = χEo
0
, which again implies (5.15).

Step 3: Sub/supersolutions
We use an idea of [4]. Let us define for ε > 0

uε(x, t) = βε(u(x, t)) with βε(a) =
1

2

{
1 + tanh

(a
ε

)}
.

Notice that βε is smooth and then, using the fact that the equation is geometric (assumption
(A2)), it is easy to check that uε is also solution of (5.1). Let us define

u := lim sup
ε→0

∗uε and u := lim inf
ε→0

∗u
ε.
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Then we have (using the pointwise limit of uε as ε goes to zero)

χEo ≤ u ≤ u ≤ χE.

Because by construction, u is lower semicontinuous and u is upper semicontinuous, we deduce
from (5.14) that

u = χE and u = χEo .

By stability of viscosity solutions (see Proposition 3.4 i)), we deduce that u = χE is a sub-
solution and u = χEo is a supersolution. This ends the proof of the Proposition.

Proposition 5.7 (Bound from inside on the expansion of Et)
Let u be the solution given in Proposition 5.1.
If u(x0, t0) ≥ 0, then for each τ > 0

u(x, t0 + τ) ≥ 0 for x ∈ Br(x0) with r such that mt0+τ (r) ≤ δτ.

In particular this implies that

⋃

x0∈Et0

Br(x0) ⊂ Et0+τ .

Proof of Proposition 5.7
Let α = u(x0, t0) ≥ 0. We have for τ ≥ 0

u(x0, t0 + τ) ≥ α + δτ

and for t ≥ t0
|u(x, t)− u(x0, t)| ≤ mt(|x− x0|).

Therefore for τ ≥ 0, we get

u(x, t0 + τ) ≥ α + δτ −mt0+τ (|x− x0|).

This implies the result.

Corollary 5.8 (Bound from outside for the forward evolution of Et)
Let u be the solution given in Proposition 5.1.
If x0 ∈ {u(·, t0) < 0}, then for τ > 0 such that t0 − τ ≥ 0, we have

u(x, t0 − τ) < 0 for x ∈ Bρ(x0) with ρ such that mt0(ρ) ≤ δτ.

In particular this implies that

(5.16) Et0−τ ⊂ Et0\


 ⋃

x0∈∂Et0

Bρ(x0)


 .
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Proof of Corollary 5.8
Just consider a sequence xn → x0 with xn ∈ {u(·, t0) < 0} and apply Proposition 5.7 assum-
ing by contradiciton that u(x, t0 − τ) ≥ 0 with x ∈ Bρ(xn), in order to get a contradiction.
This means ⋃

x0∈RN\Et0

Bρ(x0) ⊂ RN\Et0−τ

which implies in particular (5.16).

Proposition 5.9 (Arbitrarily long arc-connected components of the set Int Et)
Let x0 ∈ Int Et0 with t0 ≥ 0 and ω0 be the arc-connected component of Int Et0 containing
x0. Then for any r > 0, we have

(5.17) ω0 ∩ ∂Br(x0) 6= ∅.

Proof of Proposition 5.9
Notice that ω0 is an open set (because Int Et0 is open). Assume that for some r > 0, (5.17)
does not hold. Then this means that

ω0 ⊂ Br(x0).

In particular, we also have

ω0 ∩ Int E0 = ∅ and t0 > 0

using the fact that Int E0 is arc-connected and unbounded. Let us define

t∗ = inf {s ∈ [0, t0], Es ∩ ω0 6= ∅} .

From (5.9), we deduce that

(5.18) Et∗ ∩ ω0 =
⋂

s>t∗

(Es ∩ ω0) .

Case 1: t∗ < t0
Notice that

∂ω0 ⊂ ∂Et0

(indeed if (∂ω0) ∩ Int E0 6= ∅, then we get a contradiction with the definition of the arc-
connected component ω0). Because of Corollary 5.8, we deduce that for τ > 0 with t0−τ ≥ 0

(Et0−τ ∩ ω0) ⊂ ω0\
( ⋃

x1∈∂ω0

Bρ(x1)

)
with mt0(ρ) ≤ δτ

and then
(Es ∩ ω0) ⊂⊂ ω0 if s < t0.

Therefore, for s < t0, the set Es∩ω0 is a closed set and from (5.18) and the monotonicity
of the sets, we deduce that

Et∗ ∩ ω0 =
⋂

n∈N\{0}

(
Et∗+1/n ∩ ω0

)
.
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There exists xn ∈ Et∗+1/n ∩ ω0, from which we can extract a convergent subsequence with

xn → x∞ ∈ ω0.

This shows that x∞ ∈ Et∗+1/k ∩ ω0 for all k > 0. Then

x∞ ∈ Et∗ ∩ ω0.

Let us consider the function
φ(x, t) = t− t∗ + 1

which is a test function (from above) for χE on ω0 × (t∗ − ε, t∗ + ε). We get at (x∞, t∗):

1 = φt ≤ F ∗(0, 0, x∞) = 0.

Contradiction.
Case 2: t∗ = t0
We get the same contradiction at any point (x, t0) with x ∈ ω0.

Proposition 5.10 (The self-propagating ball barrier)
Assume that (1.9) holds and let us consider some ξ ∈ SN−1 and z0 ∈ RN . For t ≥ 0, let us
define the function

(χG)(·, t) = χGt
with Gt =

⋃

0≤s≤t

BR(z0 + c0sξ).

Then χG is a subsolution of (5.1) on RN × (0,+∞).

Proof of Proposition 5.10
Let us consider a test function ϕ satisfying for some r0 > 0

χG ≤ φ on Br0(P0) with equality at some point P0 = (x0, t0) ∈ RN × (0,+∞).

We want to check the viscosity inequality satisfied by ϕ. In particular, there exists a unique
s0 ∈ [0, t0] such that x0 ∈ ∂BR(z0 + c0s0ξ) and then

x0 = z0 + c0s0ξ −Rp0 for some p0 ∈ SN−1.

Step 1: time derivative
For τ ∈ R small, let us define

xτ = z0 + c0(s0 + τ)ξ −Rp0.

Then we have for τ small enough

ϕ(xτ , t0 + τ) ≥ χG(xτ , t0 + τ) = 1 with equality for τ = 0.

This implies

(5.19) ∂tϕ+ c0ξ ·Dϕ = 0 at P0.
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Step 2: gradient estimate
Let us set y0 = z0 + c0s0ξ. We have

(5.20) φ(·, t0) ≥ 1 on BR(y0) with equality at some point x0 = y0 −Rp0.

This implies that

(5.21) Dϕ(x0, t0) = p0|Dϕ(x0, t0)|.

Step 3: curvature estimate
From (5.20), we also deduce that there exists a C2 function β satisfying β(0) = 0 and

(5.22) β′(0) = |Dϕ(x0, t0)|

(when β′(0) > 0 it is enough to take any β′′(0) < D2ϕ(x, t0) · (p, p) for all x = y0 −Rp with
p ∈ SN−1 close to p0) such that

ϕ(x, t0) ≥ β(|x− y0| − R) in a neighborhood of x0.

This implies that

(5.23) D2ϕ(x0, t0) ≥ −β
′(0)

R
I + β′′(0) p0 ⊗ p0.

Step 4: conclusion
We get

ϕt = −c0ξ ·Dϕ

= −c0ξ · p0|Dϕ|

≤ c0|Dϕ|

≤ |Dϕ|F (− 1

R
I, p0, x0)

≤ F ∗(D2ϕ,Dϕ, x0)

where we have used (5.19) in the first line, (5.21) in the second line, (1.9) in the fourth line,
and (5.23), (A1), (A2) in the last line. This shows that χG is a subsolution and ends the
proof of the Proposition.

Remark 5.11 Notice that the function

u(x, t) = R + c0t− |x|

is a subsolution in (RN\BR(0))× (0,+∞) and this can also be used to check that Proposition
5.10 holds true.
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6 Flatness of Et for N = 2

In order to simplify the description, we will use the analogy with the propagation of a fire.
We call Et the burnt (or black) region and its complement RN\Et is called the unburnt (or
white) region.

Proposition 6.1 (Black cubes)
Let us assume (A) and (B) and consider t0 ≥ 0. If x0 ∈ Int Et0, then

x0 +
{
x ∈ R2, ν · x ≥ R̄

}
⊂ Et0+τ

with τ = 5R/c0 and R̄ =
√
2/2 + 2R.

Proof of Proposition 6.1
Step 1: choice of a ball
Let ω0 be the connected component of Int Et0 containing x0. From Proposition 5.9, we know
that there exists a point y0 ∈ (∂B4R(x0))∩ω0 and a continuous path γ : [0, 1] → B4R(x0)∩ω0

with γ(0, 1] ⊂ B4R(x0), such that

γ(1) = x0, γ(0) = y0.

We set ξ :=
(y0 − x0)

⊥

|y0 − x0|
. Let us call t∗ the smallest t such that

(γ(t)− x0) · (y0 − x0) = 0.

Then γ([0, t∗]) splits the half disk

D+ := {x ∈ B4R(x0), (x− x0) · (y0 − x0) > 0}

in two open connected components ωσ for σ = +,− with

∂ω± ⊃
{
x ∈ (∂D+) ∩ ∂B4R(x0), ±(x− x0) · ξ > 0

}
.

See Figure 6. We also define the strip

Sx0,y0 =
{
x ∈ R2, 0 < (x− x0) · (y0 − x0) < |y0 − x0|2 = (4R)2

}

and the extensions of the sets ω± as

ω̂± = ω± ∪ {x ∈ Sx0,y0\B4R(x0), ±(x− x0) · ξ > 0} .

The sets ω̂± are also two connected open sets and we have the partition of the strip:

Sx0,y0 = ω̂+ ∪ ω̂− ∪ (γ([0, t∗]) ∩ Sx0,y0) .

Step 2: Using a self-propagating ball barrier
Let z0 = (y0 + x0)/2. For t ≥ t0, the characteristic function of the set

⋃

0≤τ≤t−t0

BR(z0 + ξ(−5R + c0τ))
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Figure 7: The ball barrier propagating on ω+

is a subsolution on ω̂+ × [t0,+∞) (see Proposition 5.10 and Figure 7).
Similarly, the characteristic function of the set

⋃

0≤τ≤t−t0

BR(z0 + ξ(5R− c0τ))

is a subsolution on ω̂− × [t0,+∞), and we deduce that for τ = 5R/c0, we have

Et0+τ ⊃
{
x ∈ B4R(x0), −R ≤ (x− z0) ·

y0 − x0
|y0 − x0|

≤ R

}
⊃ BR(z0) ⊃ B√

2/2(z0)

where we have used the fact that R ≥
√
2/2.

Step 3: Using Birkhoff property
From the Birkhoff property (Proposition 5.5), we deduce that for any k ∈ Z2 such that
k ∈ E0, we have

B√
2/2(z0 + k) ⊂ k + Et0+τ ⊂ Et0+τ .
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Notice that ⋃

k∈Z2∩E0

B√
2/2(k) ⊃

{
x ∈ R2, ν · x ≥

√
2/2
}
.

Indeed if ν · x ≥
√
2/2 and y ∈ B√

2/2(x), then ν · y ≥ 0. But there exists k ∈ Z2 such that

k ∈ x + [−1
2
, 1
2
]2 ⊂ B√

2/2(x) and then ν · k ≥ 0, i.e. k ∈ E0. This shows that x ∈ B√
2/2(k)

for some k ∈ Z2 ∩ E0.
Therefore

z0 +
{
x ∈ R2, ν · x ≥

√
2/2
}
⊂ Et0+τ

and then
x0 +

{
x ∈ R2, ν · x ≥

√
2/2 + 2R

}
⊂ Et0+τ .

This ends the proof of the proposition.

Remark 6.2 In the proof of Proposition 6.1, we use strongly the topology in dimension 2,
which is no longer possible in higher dimensions.

Corollary 6.3 (Black cubes (bis))
Let us assume (A) and (B) and consider t0 ≥ 0. If x0 ∈ Et0, then

(6.1) x0 +
{
x ∈ R2, ν · x ≥ R̄

}
⊂ Et0+τ

with τ = 5R/c0 and R̄ =
√
2/2 + 2R.

Proof of Corollary 6.3
We simply notice that from Proposition 5.7, we have

Et0 ⊂ Int Es for all s > t0.

Then Proposition 6.1 implies that

x0 +
{
x ∈ R2, ν · x ≥ R̄

}
⊂ Es+τ for all s > t0

and using (5.9), we deduce (6.1). This ends the proof of the corollary.

Proposition 6.4 (Uniform flatness property of Et)
Let us assume (A) and (B). Then there exists

(6.2) L := 8R
C0

c0

such that for any t ≥ 0, there exists ct ∈ R such that

(6.3)
{
x ∈ R2, x · ν ≥ ct + L

}
⊂ Et ⊂

{
x ∈ R2, x · ν ≥ ct

}
.
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Proof of Proposition 6.4
Step 1: definition of c̄t0
First, for any t0 ≥ 0, let us define c̄t0 as the biggest constant such that:

(6.4) Et0 ⊂ {x · ν ≥ c̄t0} .

Recall that E0 ⊂ Et0 and then c̄t0 ≤ 0. Notice also that this constant c̄t0 is well defined
because of the barriers of Step 1 of the proof of Proposition 5.1.
Step 2: consequences
From the definition of c̄t0 as the biggest constant satisfying (6.4), we deduce that for any
ε > 0, there exists xε ∈ Et0\ {x · ν ≥ c̄t0 + ε}, and Corollary 6.3 implies that

xε +
{
x ∈ R2, ν · x ≥ R̄

}
⊂ Et0+τ .

Because c̄t0 + ε > xε · ν, we deduce that for all ε > 0

{
x ∈ R2, ν · x ≥ R̄ + c̄t0 + ε

}
⊂
{
x ∈ R2, ν · x ≥ R̄ + ν · xε

}
⊂ Et0+τ

and then (using the fact that Et0+τ is closed)

(6.5)
{
x ∈ R2, ν · x ≥ R̄ + c̄t0

}
⊂ Et0+τ .

On the other hand, we can easily check that, for any ε > 0, the characteristic function
of the set {

x ∈ R2, x · ν ≥ c̄t0 − C0τ − ε
}

is a supersolution. From the comparison principle, we deduce that for any ε > 0

Et0+τ ⊂
{
x ∈ R2, x · ν ≥ c̄t0 − C0τ − ε

}

which implies

(6.6) Et0+τ ⊂
{
x ∈ R2, x · ν ≥ c̄t0 − C0τ

}
.

Therefore this implies (6.3) for t = t0 + τ ≥ τ with ct0+τ = c̄t0 − C0τ and

(6.7) L = R̄ + C0τ.

For t ∈ [0, τ ], we have

{x · ν ≥ 0} = E0 ⊂ Et ⊂ Eτ ⊂ {x · ν ≥ −C0τ}

which implies (6.3) still with L given in (6.7).
Step 3: conclusion
Using the fact that R ≥

√
2/2 and C0 ≥ c0 (see Remark 1.2), we deduce (6.3) with L given

by (6.2). This ends the proof of the proposition.

35



7 Existence of a corrector: proof of Theorem 1.3

Proof of Theorem 1.3
Step 1: Control of the space oscillations of u
We will prove the following estimate

(7.1) −L ≤ u(x, t)− (x · ν − ct) ≤ 0.

Let us first explain heuristically why we can get such an estimate. Given some x0 ∈ R2 and
some time t ≥ 0, let us assume that there exists some b ∈ Z2 such that:

u(x0, t) = ν · b.

Then we have for all x ∈ R2:

u(x− b, t) = u(x, t)− ν · b

which shows that

(7.2) u(x0 − b, t) = 0.

Then (6.3) implies that

(7.3) ν · (x0 − b) ≥ ct.

If we assume that (7.2) is now replaced by

(7.4) u(x0 − b, t) < 0

we see that ν · (x0 − b) ≥ ct + L would imply u(t, x0 − b) ≥ 0 which is in contradiction with
(7.4). Therefore ν · (x0 − b) < ct + L, which in the limit case (7.2) should give

ν · (x0 − b) ≤ ct + L.

Joint to (7.3), this gives

−L ≤ u(x0 − b, t)− (ν · (x0 − b)− ct) ≤ 0

i.e.
−L ≤ u(x0, t)− (ν · x0 − ct) ≤ 0

which is (7.1). We now do the (rigorous) proof of (7.1).
Case A: ν ∈ R2\(R ·Q2)
In that case, ν · Z2 is a dense subgroup of R, and then for any x0 ∈ RN and t ≥ 0, for any
ε > 0, there exists b± ∈ Z2 such that

ν · b− < u(t, x0) < ν · b+ and |ν · (b+ − b−)| ≤ ε.

Because we have for any x ∈ R2

u0(x− b±) = u0(x)− ν · b±
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we deduce that
u(x0 − b±, t) = u(x0, t)− ν · b±.

Therefore ε ≥ u(x0 − b−, t) > 0, and as above, this implies that

ν · (x0 − b−) ≥ ct

and then
u(x0 − b−, t)− (ν · (x0 − b−)− ct) ≤ ε

i.e.

(7.5) u(x0, t)− (ν · x0 − ct) ≤ ε.

On the other hand −ε ≤ u(x0 − b+, t) < 0 also implies (as above) that

ν · (x0 − b+) < ct + L

and then
−ε− L ≤ u(x0 − b+, t)− (ν · (x0 − b+)− ct)

i.e.

(7.6) −ε− L ≤ u(x0, t)− (ν · x0 − ct).

Because (7.5) and (7.6) are true for any ε > 0, we deduce (7.1).
Case B: ν ∈ R ·Q2

We simply deduce the result from case A, considering a sequence νk → ν with νk ∈
R2\(R · Q2), and using the stability of viscosity solutions which implies (locally uniformly)
the continuity dependence of the solution with respect to the initial data.

Step 2: Global bound in time
We show in this step that

(7.7) |u(x, t)− (x · ν + λt)| ≤ 3L.

For any T > 0 and t ≥ 0, let us define

λ(t, T ) =
u(0, t+ T )− u(0, t)

T

and 



λ+(T ) = sup
t≥0

λ(t, T )

λ−(T ) = inf
t≥0

λ(t, T ).

Because u is globally Lipschitz in time, we know that those quantities are bounded.
Step 2.1: first estimate on λ+(T )− λ−(T )
For any τ+, τ− ≥ 0, let us define





w+(x, t) = u(x, t+ τ+)− (x · ν − cτ+)

w−(x, t) = u(x, t+ τ−)− (x · ν − cτ−) + L.
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Then we have
−L ≤ w+(x, 0) ≤ 0 ≤ w−(x, 0) ≤ L.

And the comparison principle for the solution u, gives

w+(x, T ) ≤ w−(x, T )

which implies (using −2L ≤ w+(x, 0)− w−(x, 0))

w+(x, T )− w+(x, 0) ≤ w−(x, T )− w−(x, 0) + 2L

and then

λ(τ+, T ) ≤ λ(τ−, T ) +
2L

T
.

This implies

(7.8) λ−(T ) ≤ λ+(T ) ≤ λ−(T ) +
2L

T
.

Step 2.2: refined estimate
Let us consider T1, T2 > 0 such that there exists P,Q ∈ N\ {0} such that

PT1 = QT2.

Then we have

λ+(T1) ≥ λ+(PT1) = λ+(QT2) ≥ λ−(QT2) ≥ λ−(T2) ≥ λ+(T2)−
2L

T2

which shows that

λ+(T2)− λ+(T1) ≤
2L

T2

and then by symmetry

|λ+(T2)− λ+(T1)| ≤ max

(
2L

T1
,
2L

T2

)
.

Doing the same raisoning with λ−, we get finally

(7.9) |λ±(T2)− λ±(T1)| ≤ max

(
2L

T1
,
2L

T2

)

for T2/T1 rational. When T2/T1 is not rational, the result still holds by continuity of the
map T 7→ λ±(T ), which follows from the fact that the solution u is uniformly continuous in
time (because it is globally Lipschitz in time).
Step 2.3: conclusion
This shows that (λ±(T ))T is a Cauchy sequence, which has then a limit λ±, with λ± = λ
becaiuse of (7.8). Passing to the limit T2 → +∞ in (7.9), we get

|λ− λ±(T1)| ≤
2L

T1
.
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This implies with T = T1 and any t ≥ 0:

|u(0, t+ T )− u(0, t)− λT | ≤ 2L.

On the other hand, (7.1) implies that

|u(x, t+ T )− u(0, t+ T )− x · ν| ≤ L.

This shows that

(7.10) |u(x, t+ T )− u(0, t)− (x · ν + λT )| ≤ 3L

which implies (7.7), taking t = 0 in (7.10).
Step 3: Shifting at infinity in time and Perron’s method
For any n ∈ N, let us define

un(x, t) = u(x, t+ n)− u(0, n).

Then un satisfies

(7.11)





|un(x, t)− (x · ν + λt)| ≤ 3L

the map x 7→ un(x, t)− x · ν is Z2-periodic.

Then we define 



u(x, t) = lim sup
(x′,t′,n)→(x,t,+∞)

un(x
′, t′)

u(x, t) = lim inf
(x′,t′,n)→(x,t,+∞)

un(x
′, t′).

Then u and u are respectively a subsolution and a supersolution of (5.1) on R2 × R, and
moreover they satisfy (7.11). Then we define





u(x, t) = sup
a∈R

(u(x, t+ a)− λa)

u(x, t) = inf
a∈R

(u(x, t+ a)− λa) .

Then u
∗
and u∗ are still respectively subsolution and a supersolution of (5.1) on R2×R, and

still satisfy (7.11). They satisfy moreover that

u
∗
(x, t) = u

∗
(x, 0) + λt and u∗(x, t) = u∗(x, 0) + λt.

Let us define 



v(x) := u
∗
(x, 0)− x · ν ≥ −3L,

v(x) := 6L+ u∗(x, 0)− x · ν ≤ 9L.

Then v and v are Z2-periodic, they are respectively sub and supersolution of

(7.12) λ = F (D2v, p+Dv, x) on R2
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and satisfy
v ≤ v.

Then, we can apply Perron’s method to show the existence of a solution v (for instance as
a suppremum of subsolutions) of (7.12) such that

−3L ≤ v ≤ v ≤ v ≤ 9L.

Therefore
sup v − inf v ≤ 12L

which implies

sup v − inf v ≤ 96 R
C0

c0

and then implies (1.11).
Step 4: Continuity and homogeneity of F
For any p ∈ R2\ {0}, let us call up the solution of (5.1) with initial data

up(x, 0) = p · x.

Then, from (A2) and the uniqueness of the solution, we get that

up = |p|u p
|p|
.

On the other hand
up = 0 for p = 0.

This implies (using for instance (7.7)) that

F (λp) = λF (p) for any λ ≥ 0.

Finally, the continuity of F follows classically from (7.7) and the stability of viscosity solu-
tions with respect to initial data.
This ends the proof of Theorem 1.3.

8 Conditional homogenization in any dimension: proof

of Theorem 1.5

This section is fully devoted to the proof of Theorem 1.5.

Let us first define for 0 < ρ < R the set:

Dρ,R =
{
(X, p, x) ∈ SN ×

(
RN\ {0}

)
× RN , |X|, |p| < R, |p| > ρ

}
.

Let us denote by ωρ,R a modulus of continuity for F on Dρ,R, i.e. such that we have

(8.1) |F (X, p, x)− F (X ′, p′, x′)| ≤ ωρ,R(a) if





(X, p, x), (X ′, p′, x′) ∈ Dρ,R

and
|X −X ′|, |p− p′|, |x− x′| ≤ a.
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In the proof of Theorem 1.5, we will also need quite classical results recalled in the
appendix about barriers (see Subsection 12.1, Lemma 12.1 and Corollary 12.2) and about
inf-convolutions (see Subsection 12.2, Lemmata 12.3 and 12.4).

Proof of Theorem 1.5
Step 1: barriers
We notice that the functions v+K,x0

(resp. v−K,x0
) given in Lemma 12.1 is independent on ε

but is a supersolution (resp. subsolution) of (1.1) for any ε ∈ (0, 1]. We now recall that u0
is uniformly continuous. Therefore the function u+ (resp. u−) given in Corollary 12.2 is still
independent on ε, and is a supersolution (resp. subsolution) of (1.1) for ε ∈ (0, 1]. Then
from Perron’s method, there exists a solution uε satisfying

u− ≤ uε ≤ u+

and
lim
t→0+

sup
x∈RN

|u±(x, t)− u0(x)| = 0.

Moreover from the comparison principle, we deduce that uε is unique and continuous.
Step 2: definition of u, u
As usual, we define the half relaxed limits:





u = lim sup
ε→0

∗uε

u = lim inf
ε→0

∗u
ε.

By construction we have
u− ≤ u ≤ u ≤ u+

which shows that the initial data is satisfied by the limits:

u(x, 0) = u(x, 0) = u0(x).

We now have the
Claim: u (resp. u) is a subsolution (resp. a supersolution) of the limit equation (1.2).
Then the comparison principle for the limit equation (1.2) implies that

u ≤ u

which shows that
u = u = u

where u is the unique solution of (1.2). This finally implies the convergence (locally uni-
formly) of uε towards u.
The rest of the proof is then devoted to prove the Claim. We will first prove that u is a sub-
solution of (1.2) on RN × (0,+∞) (and the proof is similar to show that u is a supersolution,
with some adaptations).
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Step 3: if u is not a subsolution
We assume by contradiction that u is not a subsolution of (1.2) on RN × (0,+∞). Then
there exists a test function ϕ and a point P0 = (x0, t0) (with t0 > 0) such that





u(P0) = ϕ(P0)

u ≤ ϕ on Qr(P0) = Br(x0)× (t0 − r, t0 + r) ⊂ RN × (0,+∞)

ϕt(P0)− F̄ (Dϕ(P0)) = θ > 0.

Let us set
p = Dϕ(P0), λ̄ = F̄ (p), λ = ϕt(P0).

Up to replace ϕ by |(x, t)−P0|4+ϕ, we can moreover assume that there exists δ1 = δ1(r) > 0
such that 




u+ 2δ1 ≤ ϕ on Qr(P0)\Qr/2(P0),

u < ϕ on Qr(P0)\ {P0} .
Step 3.1: p = 0
Then for ε > 0 small enough, we have also

uε + δ1 ≤ ϕ on Qr(P0)\Qr/2(P0)

and for ε small enough

Sε = sup
Qr(P0)

(uε − ϕ) = (uε − ϕ)(Pε) with Pε = (xε, tε) ∈ Qr/2(P0)

and
Pε → P0, Sε → 0, as ε→ 0.

On the one hand p = 0 implies λ̄ = 0 and on the other hand we have

ϕt(Pε) ≤ F (εD2ϕ(Pε), Dϕ(Pε), xε).

Passing to the limit ε→ 0, we get

0 < θ = ϕt(P0) ≤ F ∗(0, 0, x0) = 0.

Contradiction.
Step 3.2: p 6= 0
Notice that

(8.2) ϕ(x, t) = ϕ(P0) + p · (x− x0) + λ(t− t0) + ψ(x, t)

with ψ and its derivatives small in Qr(P0), i.e.

(8.3) |Dψ|, |D2ψ|, |ψt| ≤ µ ≤ 1 on Qr(P0) with µ = o1(r).

We also extend by continuity (keeping the same notation) ϕ and ψ outside Qr(P0) in order
to keep the relation (8.2) and such that there exists a µ0 > 0 (not necessarily small) with

|Dψ| ≤ µ0 in RN × [0,+∞).
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Step 3.2.1: Regularizations and definition of the perturbed test function ϕε

Then for η > 0, we consider w2η = w2η
∗ a supercorrector associated to the approximate

Hamiltonian F 2η given in assumption (B’) for the gradient p and let us define

(8.4) ϕ̄ε(x, t) = inf
z∈Bεη(x)

ϕ̃ε(z, t) with ϕ̃ε(x, t) = ϕ(x, t) + εw2η(x/ε)

where ϕ̄ε is lower semi-continuous (from Lemma 12.3). The reason for introducing the reg-
ularization given by (8.4), is that it will allow us to control the curvature of the level sets of
ϕ̄ε from one side, and then to bound the gradient from below.

We consider the following perturbed test function for some ρ > 0 (to fix later)

ϕε(x, t) = inf
z∈RN

(
ϕ̄ε(z, t) +

|x− z|4
4ε3ρ

)

which is also lower semi-continuous (fact similar to the proof of Lemma 12.3). The reason for
introducing this further regularization (given by ϕε) is that it will help us later to control the
second derivatives from above and from below, which will be important in the perturbation
argument (in order to get a contradiction).

We recall that (from assumption (B’))

supw2η − inf w2η ≤ κ̄0

and choose η > 0 small enough such that

(8.5) |F̄ 2η(p)− λ̄| ≤ θ/4

for later use. Then, using A)vii) of Lemma 12.4 with L = |p|+µ0, we get for ε small enough

(8.6) uε + δ1 ≤ ϕε on Qr(P0)\Qr/2(P0)

and

(8.7) Sε = sup
Qr(P0)

(uε − ϕε) = (uε − ϕε)(Pε) → 0 as ε→ 0

for some point Pε = (xε, tε) ∈ Qr/2(P0).
In general, there is no reason for ϕε to be locally a supersolution of the PDE satisfied by

uε (i.e. equation (1.1)), because the viscosity supersolution inequality may not be satisfied
at points where the gradient of ϕε vanishes. This is due to the “instability” of the discontin-
uous Hamiltonian F (or F 2η), by perturbation of its arguments and this is the reason why
the classical perturbed test function of Evans does not apply directly to this case of mean
curvature type equations involving hamiltonians F . The point is that, even if ϕε would not
be a supersolution, we will show that ϕε still satisfies the strict viscosity supersolution in-
equality (for the PDE satisfied by uε) at the point Pε, which is enough to get a contradiction.

Step 3.2.2: Controlling the distance between points
Still using A)vii) of Lemma 12.4 with L = |p|+ µ0, we see that there exists a point x̄ε ∈ RN

such that
|x̄ε − xε| ≤ εCκ̄0,L,ρ with Cκ̄0,L,ρ → 0 as ρ→ 0
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and

ϕε(xε, tε) = ϕ̄ε(x̄ε, tε) +
|xε − x̄ε|4

4ε3ρ
.

We choose ρ small enough such that Cκ̄0,L,ρ ≤ η and then

(8.8) |x̄ε − xε| ≤ εη.

Step 3.2.3: Framework to apply Ishii’s Lemma
Then we have

Sε = sup
(x,t)∈Qr(P0)

(
uε(x, t)− inf

y∈RN

(
ϕ̄ε(y, t) +

|x− y|4
4ε3ρ

))

= sup
(x,t)∈Qr(P0), y∈RN

(
uε(x, t)− ϕ̄ε(y, t)− |x− y|4

4ε3ρ

)

= uε(xε, tε)− ϕ̄ε(x̄ε, tε)−
|xε − x̄ε|4

4ε3ρ
.

From Ishii’s Lemma (see Theorem 8.3 in the Users’s Guide [17], and Theorem 7 in [16]),
we deduce with

Φ(x, y, t) =
|x− y|4
4ε3ρ

that for every γ > 0, there exists
(8.9)



(b1, q,X) ∈ P2,+
uε(xε, tε)

(b2, q, Y ) ∈ P2,−
ϕ̄ε(x̄ε, tε)

b1 − b2 = 0 = Φt(xε, x̄ε, tε)

−
(
1

γ
+ ||A||

)(
I 0
0 I

)
≤
(
X 0
0 −Y

)
≤ A+ γA2

with q = DxΦ(xε, x̄ε, tε) = −DyΦ(xε, x̄ε, tε) = δ(xε − x̄ε) with δ =
|xε − x̄ε|2

ε3ρ

with A = D2Φ(xε, x̄ε, tε) = δ

(
I + 2q̂ ⊗ q̂ −I − 2q̂ ⊗ q̂

−I − 2q̂ ⊗ q̂ I + 2q̂ ⊗ q̂

)
∈ S2N with q̂ =

q

|q| (if q 6= 0)

where ||A|| = sup
|ξ|=1

< Aξ, ξ >.

From A)v)-vi) of Lemma 12.4, we see that there exists a point x̃ε ∈ RN such that

(8.10) (b2, q, Y ) ∈ P2,−
ϕ̃ε(x̃ε, tε) and ϕ̄ε(x̄ε, tε) = ϕ̃ε(x̃ε, tε) with |x̃ε − x̄ε| ≤ εη

and then we have at P̃ε = (x̃ε, tε)

(8.11)





(b2 − (λ− F̄ 2η(p) + ψt(P̃ε)), q −Dψ(P̃ε), Y −D2ψ(P̃ε)) ∈ P2,−
l̃ε(x̃ε, tε)

with l̃ε(x, t) = ϕ(P0) + p · (x− x0) + F̄ 2η(p)(t− t0) + εw2η(x/ε).

We have in particular the viscosity inequalities

(8.12)





b1 ≤ F ∗
(
εX, q,

xε
ε

)

b2 − (λ− F̄ 2η(p) + ψt(P̃ε)) ≥ F 2η
∗

(
ε(Y −D2ψ(P̃ε)), q −Dψ(P̃ε),

x̃ε
ε

)
.
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Recall that to be able to apply Ishii’s Lemma, we need to be able to bound b1 ≤ C and

b2 ≥ −C for general (b1, q1, X) ∈ P2,+
uε(x, t) and (b2, q2, Y ) ∈ P2,−

ϕ̄ε(y, t) for (x, t) close to
(xε, tε), (y, t) close to (x̄ε, tε), and bounded q1, q2, X, Y, u

ε(x, t), ϕ̄ε(y, t). Indeed this is true
and comes from the viscosity inequalities similar to (8.12), using in particular assumption
(A4)i).

Step 3.2.4: Bound on the second derivatives and the gradient
Notice that

0 ≤ A ≤ 3δE with E =

(
I −I

−I I

)
.

We also have E2 = 2E, and then A2 ≤ 18δ2E. Because ||A|| = 6δ, setting γ =
1

3δ
in (8.9),

we get

(8.13) −9δ

(
I 0
0 I

)
≤
(
X 0
0 −Y

)
≤ 9δ

(
I −I

−I I

)
.

Therefore

(8.14) −9δI ≤ Y ≤ 9δI and |q| ≤ η3

ρ
.

where the last bound on q follows from (8.9) and (8.8).
Step 3.2.5: Gradient estimate from below
Notice that (8.11) also implies that

(8.15) b2 = λ+ ψt(P̃ε).

Therefore, for

(8.16) |ψt| ≤ µ ≤ θ/2

and using the fact that λ = λ̄+ θ and λ̄ = F̄ (p) ≥ 0, we deduce from (8.9), (8.15) and (8.12)
that

θ/2 ≤ λ+ ψt(P̃ε) = b2 = b1 ≤ F ∗
(
εX, q,

xε
ε

)
≤ F ∗

(
εY, q,

xε
ε

)

where we have used X ≤ Y which is implied by (8.13).
We deduce that

θ/2 ≤ F ∗
(
εY, q,

xε
ε

)
≤ cη|q|

where we have used Lemma 12.3 (and in particular (12.8)) for the last inequality. This shows
that the gradient is bounded from below:

θ

2cη
≤ |q|.

Step 3.2.6: Perturbation and contradiction
Notice that from (8.8), we have

(8.17) δ ≤ η2

ερ
.
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Now, we deduce from (8.12) and (8.15) that

F̄ 2η(p) ≥ F 2η
∗

(
ε(Y −D2ψ(P̃ε)), q −Dψ(P̃ε),

x̃ε
ε

)

= F 2η

(
ε(Y −D2ψ(P̃ε)), q −Dψ(P̃ε),

x̃ε
ε

)

≥ F
(
ε(Y −D2ψ(P̃ε)), q −Dψ(P̃ε),

xε
ε

)

≥ −ωρ0,R(µ) + F
(
εY, q,

xε
ε

)

where we have used (8.8) and (8.10) in the third line. In the last line, we have used the
bounds (8.14) on the second derivatives (with (8.17)) and the gradient and the modulus of
continuity ωρ0,R defined in (8.1) with (for ε ≤ 1)

ρ0 =
θ

4cη
, R = 1 +max

(
9η2

ρ
,
η3

ρ

)

and choosing

|Dψ| ≤ µ ≤ θ

4cη
, |D2ψ| ≤ µ ≤ 1.

Therefore, choosing moreover µ such that

ωρ0,R(µ) ≤ θ/4

we get

F̄ 2η(p)+θ/4 ≥ F
(
εY, q,

xε
ε

)
≥ F

(
εX, q,

xε
ε

)
≥ b1 = λ+ψt(P̃ε) ≥ λ̄+θ+ψt(P̃ε) ≥ F̄ 2η(p)+

3θ

4
+ψt(P̃ε)

where we have used the control (8.5) on F̄ 2η(p) and λ = λ̄ + θ. This gives a contradiction
for the choice

|ψt| ≤ µ ≤ θ/4.

Therefore we conclude that we can not have θ > 0, and then u is a subsolution.

Step 4: if u is not a supersolution
We assume by contradiction that u is not a supersolution of (1.2) on RN × (0,+∞). Then
there exists a test function ϕ and a point P0 = (x0, t0) (with t0 > 0) such that





u(P0) = ϕ(P0)

u ≥ ϕ on Qr(P0) = Br(x0)× (t0 − r, t0 + r) ⊂ RN × (0,+∞)

ϕt(P0)− F̄ (Dϕ(P0)) = −θ < 0.

Let us set
p = Dϕ(P0), λ̄ = F̄ (p), λ = ϕt(P0).

Up to replace ϕ by−|(x, t)−P0|4+ϕ, we can moreover assume that there exists δ1 = δ1(r) > 0
such that

(8.18)





u− 2δ1 ≥ ϕ on Qr(P0)\Qr/2(P0),

u > ϕ on Qr(P0)\ {P0} .
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Step 4.1: p = 0
Then for ε > 0 small enough, we have also

uε − δ1 ≥ ϕ on Qr(P0)\Qr/2(P0)

and for ε small enough

Sε = inf
Qr(P0)

(uε − ϕ) = (uε − ϕ)(Pε) with Pε = (xε, tε) ∈ Qr/2(P0)

and
Pε → P0, Sε → 0, as ε→ 0.

On the one hand p = 0 implies λ̄ = 0 and on the other hand we have

ϕt(Pε) ≥ F (εD2ϕ(Pε), Dϕ(Pε), xε).

Passing to the limit ε→ 0, we get

0 > −θ = ϕt(P0) ≥ F∗(0, 0, x0) = 0.

Contradiction.
Step 4.2: p 6= 0
Notice that

(8.19) ϕ(x, t) = ϕ(P0) + p · (x− x0) + λ(t− t0) + ψ(x, t)

with ψ and its derivatives small in Qr(P0), i.e.

(8.20) |Dψ|, |D2ψ|, |ψt| ≤ µ ≤ 1 on Qr(P0) with µ = o1(r).

We also extend by continuity (keeping the same notation) ϕ and ψ outside Qr(P0) in order
to keep the relation (8.19) and such that there exists a µ0 > 0 (not necessarily small) with

|Dψ| ≤ µ0 in RN × [0,+∞).

Step 4.2.1: Regularizations and definition of the perturbed function ūε

Then for η > 0, we consider w2η = w2η
∗ a subcorrector associated to the approximate

Hamiltonian F2η given in assumption (B’) for the gradient p and we define

l̃ε(x, t) = ϕ(P0) + p · (x− x0) + F̄2η(p)(t− t0) + εw2η(x/ε)

where we recall that (from assumption (B’))

supw2η − inf w2η ≤ κ̄0.

We choose η > 0 small enough such that (using the fact that λ̄ > 0)

(8.21) |F̄2η(p)− λ̄| ≤ min(λ̄/2, θ/4)

for later use. We define

ũε(x, t) = uε(x, t) + (F̄2η(p)− λ)(t− t0)− ψ(x, t)
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and

(8.22) ūε(x, t) = inf
z∈Bεη(x)

ũε(z, t)

which is lower semi-continuous (from Lemma 12.3). The reason for introducing the regular-
ization given by (8.22), is that it will allow us to control the curvature of the level sets of ūε

from one side, and then to bound the gradient from below.
Notice that we have

(8.23) lim inf
ε→0

∗ ū
ε(x, t) = u(x, t) + (F̄2η(p)− λ)(t− t0)− ψ(x, t).

We also consider the following kind of perturbed test function for some ρ > 0 (to fix
later)

lε(x, t) = sup
z∈R2

(
l̃ε(z, t)− |x− z|4

4ε3ρ

)

which is also upper semi-continuous (fact similar to the proof of Lemma 12.3). The reason
for introducing this further regularization (given by l̃ε) is that it will help us later to control
the second derivatives from above and below, which will be important in the perturbation
argument (in order to get a contradiction).

Then, using A)vii) of Lemma 12.4 with L = |p|, we get for ε small enough

(8.24) ūε − δ1 ≥ lε on Qr(P0)\Qr/2(P0)

and

(8.25) Sε = inf
Qr(P0)

(ūε − lε) = (ūε − lε)(Pε) → 0 as ε→ 0

for some point Pε = (xε, tε) ∈ Qr/2(P0).
In general, there is no reason for ūε to be locally a supersolution of a modification of the

PDE satisfied by uε (i.e. equation (1.1)), because the viscosity supersolution inequality may
not be satisfied at points where the gradient of uε vanishes.
Step 4.2.2: Controlling the distance between points
Still using A)vii) of Lemma 12.4 with L = |p|, we see that there exists a point x̄ε ∈ RN such
that

|x̄ε − xε| ≤ εCκ̄0,L,ρ with Cκ̄0,L,ρ → 0 as ρ→ 0

and

lε(xε, tε) = l̃ε(x̄ε, tε)−
|xε − x̄ε|4

4ε3ρ
.

We choose ρ small enough such that Cκ̄0,L,ρ ≤ η and then

(8.26) |x̄ε − xε| ≤ εη.

Step 4.2.3: Framework to apply Ishii’s Lemma
Then we have

Sε = inf
(x,t)∈Qr(P0)

(
ūε(x, t)− sup

y∈RN

(
l̃ε(y, t)− |x− y|4

4ε3ρ

))

= inf
(x,t)∈Qr(P0), y∈RN

(
ūε(x, t)− l̃ε(y, t) +

|x− y|4
4ε3ρ

)

= ūε(xε, tε)− l̃ε(x̄ε, tε) +
|xε − x̄ε|4

4ε3ρ
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i.e.

sup
(y,t)∈Qr(P0), x∈RN

(
l̃ε(x, t)− ūε(y, t)− |x− y|4

4ε3ρ

)
= l̃ε(x̄ε, tε)− ūε(xε, tε)−

|xε − x̄ε|4
4ε3ρ

.

From Ishii’s Lemma (see Theorem 8.3 in the Users’s Guide [17], and Theorem 7 in [16]),
we deduce with

Φ(x, y, t) =
|x− y|4
4ε3ρ

that for every γ > 0, there exists
(8.27)



(b1, q,X) ∈ P2,+
l̃ε(x̄ε, tε)

(b2, q, Y ) ∈ P2,−
ūε(xε, tε)

b1 − b2 = 0 = Φt(xε, x̄ε, tε)

−
(
1

γ
+ ||A||

)(
I 0
0 I

)
≤
(
X 0
0 −Y

)
≤ A+ γA2

with q = DxΦ(xε, x̄ε, tε) = −DyΦ(xε, x̄ε, tε) = δ(xε − x̄ε) with δ =
|xε − x̄ε|2

ε3ρ

with A = D2Φ(xε, x̄ε, tε) = δ

(
I + 2q̂ ⊗ q̂ −I − 2q̂ ⊗ q̂

−I − 2q̂ ⊗ q̂ I + 2q̂ ⊗ q̂

)
∈ S2N with q̂ =

q

|q| (if q 6= 0)

where ||A|| = sup
|ξ|=1

< Aξ, ξ >.

From A)v)-vi) of Lemma 12.4, we see that there exists a point x̃ε ∈ RN such that

(8.28) (b2, q, Y ) ∈ P2,−
ũε(x̃ε, tε) and ūε(xε, tε) = ũε(x̃ε, tε) with |x̃ε − xε| ≤ εη

and then we have at P̃ε = (x̃ε, tε)

(8.29) (b2 − (F̄2η(p)− λ− ψt(P̃ε)), q +Dψ(P̃ε), Y +D2ψ(P̃ε)) ∈ P2,−
uε(x̃ε, tε).

We have in particular the viscosity inequalities

(8.30)





b2 − (F̄2η(p)− λ− ψt(P̃ε)) ≥ F∗

(
ε(Y +D2ψ(P̃ε)), q +Dψ(P̃ε),

x̃ε
ε

)

b1 ≤ (F2η)
∗
(
εX, q,

x̄ε
ε

)
.

Recall that to be able to apply Ishii’s Lemma, we need to be able to bound b1 ≤ C and

b2 ≥ −C for general (b1, q1, X) ∈ P2,+
l̃ε(x, t) and (b2, q2, Y ) ∈ P2,−

ūε(y, t) for (x, t) close to
(x̄ε, tε), (y, t) close to (xε, tε), and bounded q1, q2, X, Y, l̃

ε(x, t), ūε(y, t). Indeed this is true and
comes from the viscosity inequalities similar to (8.30), using in particular assumption (A4)i).

Step 4.2.4: Bound on the second derivatives and the gradient

As in Step 3.2.4, we get for γ =
1

3δ
:

(8.31) −9δ

(
I 0
0 I

)
≤
(
X 0
0 −Y

)
≤ 9δ

(
I −I

−I I

)
.
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Therefore

(8.32) −9δI ≤ Y ≤ 9δI and |q| ≤ η3

ρ
.

where the last bound on q follows from (8.27) and (8.26).
Step 4.2.5: Gradient estimate from below
Notice that (8.27) also implies that

(8.33) b1 = F̄2η(p).

Using (8.21) and the fact that λ̄ = F̄ (p) > 0, we deduce from (8.30) that

(8.34) 0 < λ̄/2 ≤ F̄2η(p) = b1 ≤ (F2η)
∗
(
εX, q,

x̄ε
ε

)
≤ (F2η)

∗
(
εY, q,

x̄ε
ε

)

where we have used X ≤ Y which is implied by (8.27).
We deduce that

0 < λ̄/2 ≤ (F2η)
∗
(
εY, q,

x̄ε
ε

)
≤ cη|q|

where we have used Lemma 12.3 (and in particular (12.8)) for the last inequality. This shows
that the gradient is bounded from below:

λ̄

2cη
≤ |q|.

Step 4.2.6: Perturbation and contradiction
From (8.26), we see that

(8.35) δ ≤ η2

ερ
.

Now, we deduce from (12.23) that

F̄2η(p) ≤ (F2η)
∗
(
εY, q,

x̄ε
ε

)

= F2η

(
εY, q,

x̄ε
ε

)

≤ F

(
εY, q,

x̃ε
ε

)

≤ ωρ0,R(µ) + F

(
ε(Y +D2ψ(P̃ε)), q +Dψ(P̃ε),

x̃ε
ε

)

where we have used (8.26) and (8.28) in the third line. In the last line, we have used the
bounds (8.32) on the second derivatives (with (8.35)) and the gradient and the modulus of
continuity ωρ0,R defined in (8.1) with (for ε ≤ 1)

ρ0 =
λ̄

4cη
, R = 1 +max

(
9η2

ρ
,
η3

ρ

)

and choosing

|Dψ| ≤ µ ≤ λ̄

4cη
, |D2ψ| ≤ µ ≤ 1.
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Therefore, choosing moreover µ such that

ωρ0,R(µ) ≤ θ/4

we get using (8.21):

F̄2η(p)− θ/4 ≤ F
(
ε(Y +D2ψ(P̃ε)), q +Dψ(P̃ε),

x̃ε

ε

)

= F∗

(
ε(Y +D2ψ(P̃ε)), q +Dψ(P̃ε),

x̃ε

ε

)

≤ b2 − (F̄2η(p)− λ− ψt(P̃ε))

= λ+ ψt(P̃ε)

= λ̄− θ + ψt(P̃ε)

≤ F̄2η(p)− 3θ/4 + ψt(P̃ε)

where we have used the control (8.21) on F̄2η(p) and λ = λ̄ + θ. This gives a contradiction
for the choice

|ψt| ≤ µ ≤ θ/4.

Therefore we conclude that we can not have θ > 0, and then u is a supersolution.
This ends the proof of the Theorem 1.5.

9 Homogenization in 2D: proof of Theorem 1.4

In order to do the proof of Theorem 1.4, we will need the following result

Proposition 9.1 (Approximate hamiltonians)
We assume that F satisfies (A) and (B). For any η > 0, let us define and (M, p, x) ∈ D0,
let us define

F η(M, p, x) = sup
|e|≤η

F (M, p, x+ e), Fη(M, p, x) = inf
|e|≤η

F (M, p, x+ e).

Then F η, Fη satisfy assumptions (A), (B) and (1.9) with the same constants.
Let F̄ η(p) (resp. F̄η(p)) is the effective hamiltonian given by Theorem 1.3 associated to F η

(resp. Fη). Then we have as η → 0:

F̄ η(p) → F̄ (p), F̄η(p) → F̄ (p).

Proof of Proposition 9.1
We do the proof for F η (the proof for Fη being similar).
Step 1: cheking F η ∈ C(D0)
Notice that F η ∈ C(D0), because F is locally uniformly continuous on D0 and D0 is periodic
in the last variable on which we take the suppremum defining F η.
Step 2: The approximate hamiltonian F η

Because F satisfies (A),(B) and (1.9), it is easy to check that it is also the case for F η

(with the same constants and the same function σK). Let us give the details for checking
(A4)ii) (skipping the verification of the other assumptions which are easier). Let us consider
x, y ∈ RN , α ≥ 0, and X, Y ∈ SN as in (A4)ii). We set p = α(x− y).
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Case p 6= 0
We write with |ex|, |ey| ≤ η:

F η(X, p, x) = F (X, p, x+ ex), F η(Y, p, y) = F (Y, p, y + ey)

and then

(F η)∗(X, p, x)− (F η)∗(Y, p, y)

= {F (X, p, x+ ex)− F (Y, p, y + ex)}+ {F (Y, p, y + ex)− F (Y, p, y + ey)}

≤ F (X, p, x+ ex)− F (Y, p, y + ex)

≤ σK {|x− y|(1 + α|x− y|)} .

Case p = 0
If x = y, this is assumed that α = 0. Therefore p = 0 always implies that α = 0 which
implies X = Y = 0. We then have to check that

(9.1) (F η)∗(0, 0, x)− (F η)∗(0, 0, y) ≤ σK(|x− y|).

But by definition, we have

(F η)∗(0, 0, x) = lim sup
(M,q,z)→(0,0,x)

F η(M, q, z) = lim sup
(M,q,z)→(0,0,x)

F (M, q, z + ez) ≤ F ∗(0, 0, x+ e) = 0

where e is a limit (up to extract a subsequence) of some ez with |ez| ≤ η. Similarly, we show
that

(F η)∗(0, 0, y) ≥ 0.

This implies (9.1).
Step 3: the effective hamiltonian F̄ η

From Step 1 and Theorem 1.3, there exists a Z2-periodic corrector wη solution of

(9.2) F̄ η(p) = F η(D2wη, p+Dwη, y) on R2

such that

supwη − inf wη ≤ κ0|p| with κ0 = 100 R
C0

c0
.

It is easy to check (as usual) that

(9.3) F̄ η(p) → F̄ (p) as η → 0.

This ends the proof of the proposition.

Remark 9.2 We will not use that fact, but we can check that F η and Fη (given in Propo-
sition 9.1) still satisfy (8.1) with the same modulus of continuity ωρ,R.

Proof of Theorem 1.4
We simply apply Proposition 9.1 which shows that assumption (B’) is satisfied. Then The-
orem 1.4 follows from Theorem 1.5. This ends the proof of the theorem.
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10 The cell problem in 2D with sign changing normal

velocity

A natural question is: do we still have existence of correctors for geometric motions with
normal velocity:

V = κ+ c(x) when c changes sign.

More generally, in this section, we show the existence of a corrector when assumption (B) is
replaced by:

Assumption (B”): Barrier from below:
There exists a (upper semi-continuous) subsolution U of (5.1) for F satisfying (A) for N = 2,
that we can write

U(x, t) = χKt
(x)

for a familly (Kt)t≥0 of compact sets Kt ⊂ R2 satisfying for some T0 > 0

Kt = KT0 for t ≥ T0

and
KT0 ⊃ K0 + e for all e ∈ {0, e1,−e1, e2,−e2} .

We also assume that there exists R0 ≥ 8 such that



K0 ⊃ [0, 1]2,

BR0 ⊃ Kt for all t ≥ 0.

Remark 10.1 Notice that assumptions (A1) and (A3) imply that there exist constants
C0, c1 > 0 such that for all (p, y) ∈ SN−1 × RN , we have

(10.1) C0 ≥ F (0, p, y) ≥ −c1.
Remark 10.2 Notice that assumption (B”) is still satisfied for equation (1.3) and certain
velocities c(y) which can change sign (see Subsection 11.1).

Then we have the following result:

Theorem 10.3 (The cell problem in 2D under assumption (B”))
Assume that N = 2 and that (A) and (B”) hold. Then for any p ∈ RN , there exists a unique
real number F̄ (p) (with F̄ (p) > 0 if p 6= 0 and F̄ (0) = 0) such that there exists a bounded
ZN -periodic function v : RN → R solution of

(10.2) F̄ (p) = F (D2v, p+Dv, y) on RN .

We can choose v such that

(10.3) sup v − inf v ≤ κ1|p| with κ1 = 400 C0T0 (R0 + c1T0) .

Moreover the map p 7→ F̄ (p) is continuous and positively 1-homogeneous, i.e. for any
p ∈ RN

F̄ (λp) = λF̄ (p) for any λ ≥ 0.

In order to prove Theorem 10.3, we follow the plan of the proof proposed in Sections 5,
6, 7.
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10.1 New preliminary results

For N = 2, let us consider u solution of

(10.4) ut = F (D2u,Du, y) on RN × (0,+∞)

with initial data

(10.5) u(0, x) = u0(x) = x · ν for x ∈ RN

with ν ∈ SN−1.

Lemma 10.4 (Bound from below)
Assume (A) and let u be the unique solution of (10.4)-(10.5) given by Proposition 5.1. Under
assumption (B”), we have moreover

(10.6) u(x, t) ≥ u0(x)−
(
R0 +

5
√
2

2
+ c1T0

)
+ t

√
2

2T0
for all x ∈ R2, t ≥ 2T0.

We also recall that u(x, t)− x · ν is ZN -periodic in x, that

(10.7) −c1 ≤ ut ≤ C0 on RN × [0,+∞)

with C0, c1 > 0 given in (10.1), and that for any 0 < T < +∞, there exists a modulus of
continuity mT such that

|u(x, t)− u(y, t)| ≤ mT (|x− y|) for all x, y ∈ RN , t ∈ [0, T ].

Proof of Lemma 10.4
Step 0: Basic properties
Notice that (10.7) follows from (10.1), and that all the other properties of u (except the
bound from below (10.6)) follow from Proposition 5.1.
Step 1: χ{u>a} is a solution
We proceed as in Step 3 of the proof of Proposition 5.6 and define

uε(x, t) = βε(u(x, t)− a) with βε(b) =
1

2

{
1 + tanh

(
b

ε

)}
.

Here uε is a viscosity solution of (10.4) and we have

uε → u0 with u0(x, t) =





1 if u(x, t) > a,

1

2
if u(x, t) = a,

0 if u(x, t) < a

where u0 is a still a viscosity solution of (10.4), by stability of viscosity solutions. Let us
now define

vε = βε

(
u0 − 3

4

)

54



which is still a viscosity solution of (10.4) and converges

vε → v0 = χ{u>a}.

This shows that χ{u>a} is a viscosity solution of (10.4).
Step 2: estimate from below on the growth of the burnt region
Moreover, by assumption (B”), if the level set {u(·, 0) > a} contains the ball BR0 ⊃ K0 ⊃
[0, 1]2, then from the comparison principle applied to χ{u>a} and U , we deduce that

{u(·, T0) > a} ⊃
⋃

e∈S1

(
e+ [0, 1]2

)
with S1 = {0, e1,−e1, e2,−e2} .

Defining the sequence:

(10.8)

{
S0 = {0} ,
Sn+1 = Sn + S1 for n ≥ 0

it is straightforward to check that

Sn =
{
(x1, x2) ∈ Z2, |x1|+ |x2| ≤ n

}

and then we get for any n ∈ N:
(10.9)

{u(·, nT0) > a} ⊃
⋃

e∈Sn

(
e+ [0, 1]2

)
⊃ B

n
√

2
2

if {u(·, 0) > a} ⊃ BR0 .

Step 3: consequence at time nT0
More generally, let us define the set

Aa =
{
k ∈ Z2, k · ν > a+R0

}

and
Âa =

⋃

k∈Aa

(
k + [0, 1]2

)

which has the property that

{
x · ν > a+R0 +

√
2
}

⊂ Âa ⊂
⋃

k∈Aa

(
k +BR0

)
⊂ {x · ν > a} = {u0(x) > a} .
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This implies (using the natural generalization of (10.9)) that (for n ≥ 2)

{u(·, nT0) > a} ⊃
⋃

k∈Aa+Sn

(
k + [0, 1]2

)

= Aa +
⋃

e∈Sn

(
e+ [0, 1]2

)

⊃ Aa +B
n

√
2

2

⊃ Aa + [0, 1]2 + B
(n−2)

√
2

2

= Âa +B
(n−2)

√
2

2

⊃
{
x · ν > a+ R0 +

√
2
}
+B

(n−2)
√

2
2

⊃
{
x · ν > a+ R0 + (4− n)

√
2

2

}
.

Step 4: conclusion
Now for any time t ∈ [nT0, (n+ 1)T0], we deduce from estimate (10.1) that

{u(·, t) > a} ⊃
{
x · ν > a+R0 + (4− n)

√
2

2
+ c1(t− nT0)

}
.

Let us now consider a point x ∈ R2 such that u0(x) = b. Then for any a ∈ R such that

u0(x) = b > a+R0 + (4− n)

√
2

2
+ c1(t− nT0)

we deduce that
u(x, t) > a.

This implies for t ∈ [nT0, (n+ 1)T0] and n ≥ 2

u(x, t) ≥ b−R0 + (n− 4)

√
2

2
− c1(t− nT0)

and then

u(x, t) ≥ b− (R0 + 2
√
2 + c1T0) + (nT0)

√
2

2T0

which implies

u(x, t) ≥ b−
(
R0 +

5
√
2

2
+ c1T0

)
+ t

√
2

2T0
for t ≥ 2T0.

and then more generally this shows (10.6) and ends the proof of the lemma.
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Lemma 10.5 (An increasing subsolution)
Assume (A) and (B”). Let us fix

(10.10) t∗0 > T0

(
R0

√
2 + 5 + c1T0

√
2
)

and define

u(x, t) = δ1t+ sup
s∈[0,t]

(u(x, s)− δ1s) with δ1 :=

√
2

2T0
− R0 +

5
√
2

2
+ c1T0

t∗0
> 0

where u is the solution given in Lemma 10.4.
Then u(x, t) is a subsolution of (10.4) for t ∈ (t∗0,+∞).
Moreover u(x, t)− x · ν is ZN -periodic in x, and with the notation of Lemma 10.4, we have

(10.11) δ1 ≤ ut ≤ C0 on RN × [0,+∞)

and for all 0 < T < +∞

(10.12) |u(x, t)− u(y, t)| ≤ mT (|x− y|) for all x, y ∈ RN , t ∈ [0, T ].

Proof of Lemma 10.5
Step 1: Subsolution
For t > t∗0, we can rewrite (10.6) as

u(x, t) ≥ u0(x) + (t− t∗0)

√
2

2T0
+ δ1t

∗
0.

Therefore we get

u(x, t)− δ1t = sup
s∈[0,t]

(u(x, s)− δ1s)

≥ u(x, t)− δ1t

≥ u0(x) + (t− t∗0)

√
2

2T0
+ δ1t

∗
0 − δ1t

≥ u0(x) + (t− t∗0)

(√
2

2T0
− δ1

)

> u0(x).

This shows that

v(x, t) := u(x, t)− δ1t = sup
s∈[0,t]

(u(x, s)− δ1s) = (u(x, s)− δ1s)|s=st
with st ∈ (0, t].

Recall that v(x, s) = u(x, s)− δ1t solves

(10.13) δ1 + vt = F (D2v,Dv, x) on RN × (0,+∞).
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Because v appears to be a suppremum of solutions, it is a subsolution. The argument is
classical and is now repeated for convenience for the reader.

Assume that the there exists a test function ϕ satisfing

v ≤ ϕ on Br(P0) with equality at P0 = (x0, t0)

with 0 < r < st0 , then (because v ≤ v)

v ≤ ϕ on Br(P̄0) with equality at P̄0 = (x0, st0)

where
ϕ(x, s) = ϕ(x, t0 + s− st0).

Because ϕ is a test function for v at P̄0, this implies that ϕ satisfies the subsolution viscosity
inequality at P̄0, and then ϕ satisfies the subsolution viscosity inequality P0, which shows
that v is a subsolution of (10.13) and then u is a subsolution of (10.4).

Step 2: Monotonicity
By construction, we have

vt ≥ 0

which implies the lower bound in (10.11).
Step 3: Other properties of u
By construction (as a suppremum of functions), we deduce the upper bound in (10.11) with
the same constant C0 as in (10.7). The suppremum in time, of ZN -periodic in space solutions
is also ZN -periodic in space. Finally, we have (with obvious notation)

u(x, t) = u(x, s(x,t)), u(y, t) = u(y, s(y,t))

and then for t ∈ [0, T ]

u(x, t)− u(y, t) = u(x, t)− u(y, s(y,t)) ≥ u(x, s(y,t))− u(y, s(y,t)) ≥ −mT (|x− y|).
Similarly, we get the symmetric inequality (exchanging x and y) which implies (10.12).
This ends the proof of the lemma.

Proposition 10.6 (A nice increasing solution)
Assume (A) and (B”). Let us consider the initial condition

ũ0(x) = u(x, t∗0)

for u and t∗0 (> 0) given in Lemma 10.5. We have

(10.14) δ1t
∗
0 ≤ ũ0(x)− u0(x) ≤ C0t

∗
0 with u0(x) = ν · x.

Then there exists a unique solution ũ of (10.4) on RN × (0,+∞) with initial data ũ0.
Moreover, ũ(x, t) − x · ν is ZN -periodic in x, and with the notation of Lemma 10.5, we

have

(10.15) 0 < δ1 ≤ ũt on RN × [0,+∞)

and for all 0 < T < +∞, there exists a modulus of continuity m̃T such that

(10.16) |ũ(x, t)− ũ(y, s)| ≤ m̃T (|x− y|+ |t− s|) for all x, y ∈ RN , t, s ∈ [0, T ].
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Proof of Proposition 10.6
The proof is similar to the proof of Proposition 5.1, using the subsolution u (given in Lemma
10.5) as a lower barrier. Notice that Corollary 12.2 provides a supersolution u+ with the
same initial data ũ0. Then the comparison principle implies that

u(x, t+ t0) ≤ u+(x, t) for all x ∈ RN , t ≥ 0.

Therefore Perron’s method implies the existence of a solution, which is then continuous and
ZN -periodic, and then uniformly continuous on RN × [0, T ] for every T > 0. This ends the
proof of the proposition.

10.2 Revisiting Section 5

The function ũ given in Proposition 10.6, satisfies all the properties of Proposition 5.1, ex-
cept the fact that we have no bound from above on ũt, and the initial data ũ0 is not linear.
We now have to revisit Section 5, dealing with ũ as for u, but without the bound from above
on ut replaced by a modulus of continuity in time, and the linear intial data u0 replaced by
estimate (10.14) and assumption (B) replaced by (B”). We also have to replace the modulus
of continuity in space mt by m̃t and δ by δ1.

We notice that Proposition 5.2 (with (B) replaced by (B”)) is still true, because the proof
also works well with a general modulus of continuity in time, instead of a Lipschitz in time
estimate.

The Birkhoff property (Proposition 5.5) has also to be adapted as follows

Proposition 10.7 (Birkhoff property)
Assume (A) and (B”). Using the notation of Proposition 5.2 for the function u = ũ given
in Proposition 10.6, we set

Et =
{
x ∈ RN , ũ(x, t) ≥ 0

}
.

Let us define the set
A =

{
k ∈ ZN , ν · k ≥ (C0 − δ1)t

∗
0

}
.

If k ∈ A, then for all t ≥ 0

(10.17) k + Et ⊂ Et.

Proof of Proposition 10.7
If k ∈ A, then we have

ũ0(x+ k) ≥ ν · (x+ k) + δ1t
∗
0 ≥ ν · x+ C0t

∗
0 ≥ ũ0(x).

We deduce from the comparison principle that

ũ(x+ k, t) ≥ ũ(x, t)

which implies (10.17). This ends the proof of the proposition.

Then, up to the previous mentionned changes, Propositions 5.6, 5.7, 5.9 and Corollary
5.8 still hold.

We now present an analogue of Proposition 5.10.
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Proposition 10.8 (The self-propagating barrier)
Assume (A) and (B”). Let us consider some ξ ∈ SN−1 and z0 ∈ RN and an integer n0 ≥ 3.
Then there exists a familly Gξ

t ⊂ R2 for t ≥ 0 of compact sets such that

(χGξ)(·, t) = χGξ
t

is a subsolution of (10.4) on RN × (0,+∞), satisfying for all t ≥ 0:
(10.18)

⋃

s∈[0,s−]

B
(n0−2)

√
2

2

(sξ) ⊂ Gξ
t ⊂

⋃

0≤t̄≤s+

BR̄0
(t̄ξ) with





s− =
t

T0
√
2
,

s+ =
√
2

(
t

T0
+ 1

)
,

R̄0 = R0 + n0 + 1 +
√
2.

Proof of Proposition 10.8
Step 1: definition of a sequence of points on the grid
Up to simple changes of coordinates (by rotation and reflection), we can reduce the analysis
to the case ξ = (ξ1, ξ2) ∈ (0, 1]× [0, 1) (the other cases being easily deduced from that case).
For any s ≥ 0, we define

n(s) = (n1(s), n2(s)) with n1(s) = ⌊sξ1⌋, n2(s) = ⌊sξ2⌋

such that we always have
sξ ∈ n(s) + [0, 1]2.

We also define for (x1, x2) ∈ R2:

|(x1, x2)|1 = |x1|+ |x2|.

We define a sequence of times (sl)l∈N
{
s0 = 0
sl+1 = inf {s > sl, n(s) 6= n(sl)} , l ≥ 0.

From this sequence, we define a new sequence of times tk = kT0 and of points (Pk)k∈N as
follows (see also Figure 8)




P0 = (0, 0),
if |n(sl)|1 = k ≥ 1 and |n(sl−1)|1 = k − 1, then Pk = n(sl),

if |n(sl)|1 = k ≥ 1 and |n(sl−1)|1 = k − 2, then

{
Pk = n(sl),
Pk−1 = n(sl)− (1, 0).

Then we have
(10.19)



|Pk+1 − Pk|1 = 1, Pk ∈ Z2, for all k ≥ 0,

sξ ∈ Pk + [0, 1]2 for k = |n(s)|1, for all s ≥ 0,

for s > 0, sξ = Pk if and only if |n(s)|1 = k and |n(s)|1 − |n(s+ 0−)|1 = 2
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Figure 8: The sequence of points Pk

and

(10.20)





Pk · ξ ≤ s for all s such that |n(s)|1 ≥ k,

dist(Pk, ξR
+) ≤

√
2 for all k ≥ 0.

Step 2: Definition of K̂t

We define for n0 ≥ 1 and t ≥ 0:

K̂t =


 ⋃

e∈Sn0

(e+KT0)


 ∪


 ⋃

e∈Sn0+1

(e+Kt)


 with the sequence (Sn)n defined in (10.8)

which satisfies
K̂t = K̂T0 for t ≥ T0

and

(10.21) K̂0 ⊂ K̂t ⊂ BR0+n0+1 for all t ≥ 0

and χK̂(·, t) := χK̂t
is a subsolution, as a suppremum of subsolutions.

We moreover have

(10.22) Bn0
√

2
2

⊂ K̂0.

Step 3: Definition of Gξ
t and subsolution

We then define the following familly of compact sets for t ≥ 0

Gξ
t = (Pk + K̂t−k) ∪

(
k−1⋃

j=0

(Pj + K̂T0)

)
for k = ⌊ t

T0
⌋.

Notice that the first line of (10.19) and (B”) imply

Pk + K̂0 ⊂ Pk−1 + K̂T0 for k ≥ 1.
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Therefore
χGξ(·, t) = χGξ

t

appears to be a suppremum of subsolutions and is then a subsolution.
Step 4: Estimate on Gξ

t

From the second line of (10.19), we deduce that

sξ ∈ B√
2(Pks) for ks = |n(s)|1.

Using moreover (10.22) this implies

(10.23) B (n0−2)
√

2
2

(sξ) ⊂ Bn0
√
2

2

(Pks) ⊂ Pks + K̂0 for ks = |n(s)|1.

This implies that for all t ≥ 0:

(10.24) B (n0−2)
√

2
2

(sξ) ⊂ Gξ
t for all s ≥ 0 such that |n(s)|1 ≤ k = ⌊ t

T0
⌋.

Notice that we have the following estimate

(10.25) s

√
2

2
− 1 ≤ |n(s)|1 ≤ ⌊(ξ1 + ξ2)s⌋ ≤ ⌊s

√
2⌋.

More generally, this implies (10.18), i.e. for all t ≥ 0

⋃

s∈[0,s−]

B (n0−2)
√

2
2

(sξ) ⊂ Gξ
t ⊂

⋃

0≤t̄≤s+

BR̄0
(t̄ξ) with





s− =
t

T0
√
2
,

s+ =
√
2

(
t

T0
+ 1

)
,

R̄0 = R0 + n0 + 1 +
√
2

where the first inclusion follows from (10.24)-(10.25), and the last inclusion follows from
(B”), (10.20), (10.21) and (10.25).
This ends the proof of the proposition.

10.3 Revisiting Section 6

Proposition 6.1 has to be adapted as follows:

Proposition 10.9 (Black cubes)
Assume (A) and (B”). Let us consider any time t0 ≥ 0 and

(10.26) R ≥ R0 + 6 +
√
2.

If x0 ∈ Int Et0, then
x0 +

{
x ∈ R2, ν · x ≥ R̄

}
⊂ Et0+τ

with τ = 5
√
2 RT0 and R̄ =

√
2/2 + 2R + (C0 − δ1)t

∗
0.
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Proof of Proposition 10.9
We follow the proof of Proposition 6.1. We choose R ≥ R̄0 with R̄0 given in (10.18).
Step 1: Choice of a ball
Unchanged.
Step 2: Using the self-propagating barrier
We replace z0 by a point z±0 ∈ B√

2(z0) such that

z±0 ∓ 5Rξ ∈ Z2

and then consider
z±0 ∓ 5Rξ +G±ξ

t−t0

which shows that for
τ = 5

√
2RT0

we have for n0 ≥ 5:

B√
2
2

(z0) ⊂ B
(n0−4)

√
2
2

(z0) ⊂
⋃

±

{(
z±0 ∓ 5Rξ +G±ξ

τ

)
∩ ω±

}
⊂ Et0+τ .

Let us choose
n0 = 5.

Then using definition (10.18) of R̄0, this gives (10.26).
Step 3: Using Birkhoff property
Using the Birkhoff property (Proposition 10.7), let us recall that

A =
{
k ∈ ZN , ν · k ≥ (C0 − δ1)t

∗
0

}
.

Then we have for every k ∈ A:

B√
2

2

(z0 + k) ⊂ k + Et0+τ ⊂ Et0+τ .

Notice that
⋃

k∈A
B√

2
2

(k) ⊃
{
x ∈ R2, ν · x ≥

√
2

2
+ (C0 − δ1)t

∗
0

}

which implies that

x0 +

{
x ∈ R2, ν · x ≥ 2R +

√
2

2
+ (C0 − δ1)t

∗
0

}
⊂ Et0+τ .

This ends the proof of the proposition.

The statement and the proof of Corollary 6.3 is unchanged, except for the values of τ
and R̄ which are the ones given in Proposition 10.9.

Before to continue, we will need the following result

Lemma 10.10 (Bound from below on T0)
Under assumption (A) and (B”), we have

(10.27) C0T0 ≥ 1.
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Proof of Lemma 10.10
Let us consider the supersolution barrier of the form

K̃a
t :=

{
x ∈ RN , x · e1 ≥ a− C0t

}

for some constant a ∈ R that we choose such that

K0 ⊂ K̃a
0 and K0 6⊂ K̃a+ε

0 for any ε > 0.

In particular, there exists a point x0 = (a, a′) ∈ K0 for some a′ ∈ R. From the comparison
principle, we get that for any ε > 0

Kt ⊂ K̃a+ε
t

which implies
Kt ⊂ K̃a

t .

We also have

(a+ 1, a′) = e1 + x0 ∈ e1 +K0 ⊂ KT0 ⊂ K̃a
T0

=
{
x ∈ RN , x · e1 ≥ a− C0T0

}

which implies (10.27). This ends the proof of the lemma.

Proposition 6.4 and its proof have to be adapted as follows:

Proposition 10.11 (Uniform flatness property of Et)
Let us assume (A) and (B”). Then there exists

(10.28) L := 18
√
2 C0T0 (R0 + c1T0)

such that for any t ≥ 0, there exists ct ∈ R such that

(10.29)
{
x ∈ R2, x · ν ≥ ct + L

}
⊂ Et ⊂

{
x ∈ R2, x · ν ≥ ct

}
.

Proof of Proposition 10.11
Step 1: definition of c̄t0
First, for any t0 ≥ 0, let us define c̄t0 as the biggest constant such that:

(10.30) Et0 ⊂ {x · ν ≥ c̄t0} .

We recall (10.14), namely
δ1t

∗
0 ≤ ũ0(x)− ν · x ≤ C0t

∗
0.

Using (10.15) and (10.1), we see that the comparison principle implies for all t ≥ 0

δ1t
∗
0 + δ1t ≤ ũ(x, t)− ν · x ≤ C0t

∗
0 + C0t.

This shows that c̄t0 is well defined. Moreover {x · ν ≥ 0} ⊂ Et0 and then c̄t0 ≤ 0.
Step 2: consequences
As in the proof of Proposition 6.4, the same arguments imply (10.29) for t ≥ τ with

(10.31) L = R̄ + C0τ.
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For t ∈ [0, τ ], we have

{x · ν ≥ 0} ⊂ Et ⊂ Eτ ⊂ {x · ν ≥ −C0(t
∗
0 + τ)}

which implies (10.29) with L given by

L = C0(t
∗
0 + τ).

Step 3: conclusion
We have to choose

L ≥ max
(
R̄ + C0τ, C0(t

∗
0 + τ)

)

and we estimate

max
(
R̄ + C0τ, C0(t

∗
0 + τ)

)
≤ C0t

∗
0 + C0τ +

√
2

2
+ 2R

and

C0τ +

√
2

2
+ 2R ≤ 5

√
2 C0T0R +

√
2

2
+ 2R ≤ 8

√
2C0T0R ≤ 16

√
2C0T0R0

using (10.27) and choosing R = 2R0 with R0 ≥ 8.
From (10.26), recall that we have to choose:

t∗0 > T0

(
R0

√
2 + 5 + c1T0

√
2
)

and we have
R0

√
2 + 5 + c1T0

√
2 < 2

√
2R0 + c1T0

√
2.

Therefore for the choice
C0t

∗
0 = C0T0

(
2
√
2R0 + c1T0

√
2
)

we get

max
(
R̄ + C0τ, C0(t

∗
0 + τ)

)
≤ 16

√
2C0T0R0+C0T0

(
2
√
2R0 + c1T0

√
2
)
≤ L := 18

√
2C0T0(R0+c1T0).

This ends the proof of the proposition.

10.4 Revisiting Section 7 and proof of Theorem 10.3

Proof of Theorem 10.3
The proof is similar to the proof of Theorem 1.3. We only have to make the following
changes.
At the begining of Step 2.
From (10.14), we have

|ũ0 − u0| ≤ C0t
∗
0

which implies
|ũ− u| ≤ C0t

∗
0.

On the other hand, from (10.7) we have

|ut| ≤ max(C0, c1).
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This implies

|λ±(T )| ≤ 2C0t
∗
0

T
+max(C0, c1)

which shows in particular that λ±(T ) are well-defined.
In Step 2.2.
We do not have the uniform continuity of ũ in time, and for this reason we get (7.10) for
T > 0 only for T ∈ Q, i.e.

|ũ(x, T )− ũ(0, 0)− (ν · x+ λT )| ≤ 3L.

Moreover, up to shift the origin, we can assume that ũ(0, 0) = 0, and from the continuity of
ũ in time, we recover that

|ũ(x, t)− (ν · x+ λt)| ≤ 3L for all (x, t) ∈ RN × [0,+∞).

Conclusion
Then Step 3 gives the bound with L given in (10.31)

sup v − inf v ≤ 12L = 216
√
2 C0T0(R0 + c1T0).

This implies (10.3).
This ends the proof of the theorem.

11 Examples and applications

In this section we consider examples in 2D for geometric motions whose normal velocity can
change sign.

11.1 The case where c is not positive

In this subsection, we focus on the case of normal velocity given by

(11.1) V = κ+ c(x)

where κ is the curvature. This means that we consider solutions of the following level sets
equation

(11.2) ut = tr
{
D2u · (I − D̂u⊗ D̂u)

}
+ c(x)|Du| on RN × (0,+∞).

We consider the following assumption (see Figure 9):

Assumption (C): Non positive velocity

We assume that c is a Z2-periodic function defined as follows. Let 0 ≤ r0 <
1

4
. For a point

x ∈ R2, let us define
c(x) = c0(r) with r = dist(x,Z2)
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where c0 is a Lipschitz-continuous function satisfying for some δ > 0:

(11.3)





c0(r) +
1

r
≥ δ > 0 if r ≤ r0,

c0(r) ≥
1

r0
+ δ if r0 ≤ r ≤

√
2

2
.

Remark 11.1 Notice that assumption (C) allows the velocity c to be negative in part of the
ball Br0.

velocity c<0

velocity c>0

Figure 9: Illustration of assumption (C)

We have

Theorem 11.2 (Homogenization in 2D with non positive c)
Assume that N = 2 and that (C) holds with

F (X, p, x) = tr {X · (I − p̂⊗ p̂)}+ c(x)|p|.
Then (B”) holds. Moreover, let us consider the solution uε of (1.1) with initial data u0
which is uniformly continuous on RN . Then uε converges locally uniformly on compact sets
of RN×[0,+∞) towards the unique solution u0 of (1.2) with the function F̄ given by Theorem
10.3.

In order to prove Theorem 11.2, we first need the following result:

Lemma 11.3 (A barrier subsolution for the forced MCM under assumption (C))
Assume (C). Then there exists a non-decreasing familly of compact sets (Et)t≥0 and a time

T0 =
1 + (π − 1)r0

δ
> 0 such that

(11.4)





E0 = Br0 ,
Et = ET0 for t ≥ T0 > 0,

B1+3r0 ⊃ ET0 ⊃
[
−1

2
,
1

2

]2
∪


 ⋃

e∈{0,±e1,±e2}
(e+ E0)




and such that
u(·, t) = χEt

is a subsolution of (11.2) with N = 2.
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Figure 10: Illustration of the proof of Lemma 11.3

Proof of Lemma 11.3
With an abuse of terminology, we say that a time dependent compact set Et is a subsolution
(resp. solution), if χEt

is a subsolution (resp. solution) of (11.2).
Step 1: increasing the initial ball
When the solution is a ball Br(t) of radius r0 ≤ r(t) ≤ 1− r0, then equation (11.1) means

r′ = −1

r
+ c0(r) ≥ − 1

r0
+ c0(r).

Because of the second line of (11.3), we see that the ball Br0+δt is a subsolution for t ∈ (0, t1]
with r0 + δt1 = 1− r0.
Step 2: rotating a ball tangent to Br0(e) with e = −e1
We do the raisonning with e = −e1 (we will consider the other cases later). At time t = t1,
we know that Br(t) is tangent to Br0(−e1). Setting P0 = −(1 − 2r0)e1, this implies that
Br0(P0) is tangent to Br0(−e1) at −(1− r0)e1. We define

Kτ = Rθ(τ)(Br0(P0))

where Rθ is the rotation of center −e1 and of angle θ. Notice that Br0(P0) is a stationary
subsolution. On the other hand, for any point P = (x1, x2) ∈ ∂Br0(P0) with x2 ≥ 0, we have

d

dτ
Rθ(τ)(P ) = θ′(t)Rπ

2
+θ(τ)(P )

which implies that the normal velocity satisfies:

V ≤
∣∣∣∣
d

dτ
Rθ(τ)(P )

∣∣∣∣ ≤ r0|θ′(τ)|.
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From the second line of (11.3), we can easily deduce (using test functions) that

K+
τ :=

⋃

0≤s≤τ

Ks is a subsolution if 0 ≤ θ′(s) ≤ δ

r0
.

Therefore, choosing

θ(τ) =
δ

r0
τ

and defining K−
τ as the symmetric of K+

τ with respect to the axis x2 = 0, we get that

Kτ := K+
τ ∪K−

τ is a subsolution for τ ∈ (0, τ2) with
δ

r0
τ2 = π

and
Kτ2 = B3r0(−e1)\Br0(−e1).

Step 3: filling the hole
We then define for τ ≥ 0

Kτ2+τ = B3r0(−e1)\Br(τ)(−e1) with r(0) = r0.

Then equation (11.1) means on ∂Br(τ)(−e1)

−r′ = 1

r
+ c0(r).

We then get a subsolution for the choice

r(τ) = r0 − δτ for τ ∈ [0, τ3] with δτ3 = r0

with
Kτ2+τ3 = B3r0(−e1).

Step 4: getting a subsolution using e = ±e1,±e2
We have for e = ±e1,±e2

e = Rθe(−e1) for some angle θe.

Then we set
Ke

τ = e+ e1 +RθeKτ .

We then define the subsolution (Et)t as follows

Et =





Br0+δt for 0 ≤ t ≤ t1,

Br0+δt1 ∪


 ⋃

e∈{±e1,±e2}

(
Ke

t−t1

)

 for t1 < t ≤ t1 + τ2 + τ3 =: T0,

ET0 for t > T0.
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This is then easy to check the last inclusion of the last line of (11.4). It is also easy to check
that (Et)t is still a subsolution at times t∗ = t1, t1 + τ2, T0, because

Ẽt =

{
Et for 0 ≤ t ≤ t∗,
Et∗ for t > t∗

is still a subsolution for any t∗ ≥ 0, which follows from the fact that the sets Et are non-
decreasing with t.
This ends the proof of the lemma.

Proof of Theorem 11.2
Step 1: checking assumption (B”)
We simply use Lemma 11.3 to define:

Kt = ET0 ∪


 ⋃

e∈{±e1,±e2}
(e+ Et)


 for t ≥ 0

which satisfies
BR0 ⊃ B2+3r0 ⊃ Kt for all t ≥ 0 with R0 = 8.

This familly of sets is associated to the subsolution:

U(·, t) = χKt
.

We also introduce constants C0, c1 > 0 such that

C0 ≥ c(x) ≥ −c1 for all x ∈ RN .

Notice that up to a translation in the direction (1
2
, 1
2
), the solution U satisfies (B”), and then

we can apply Theorem 10.3 which shows, for every gradient p, the existence of a bounded
corrector v such that

(11.5) sup v − inf v ≤ κ1|p| with κ1 = 400 C0T0(R0 + c1T0).

Step 2: checking assumption (B’) and conclusion
Using the definition of assumption (B’), we have

F η(X, p, x) = tr {X · (I − p̂⊗ p̂)}+ cη(x)|p|, Fη(X, p, x) = tr {X · (I − p̂⊗ p̂)}+ cη(x)|p|
with

cη(x) = sup
|y−x|≤η

c(y), cη(x) = inf
|y−x|≤η

c(y).

Using the fact that assumption (C) is an open condition, it is easy to check that cη and cη
still satisfy (C) for η > 0 small enough (for some perturbed δ and the same r0). We see that
it does not change C0, c1, R0, but only changes slightly T0 and then the bound κ1 in (11.5).
Therefore, we can apply Theorem 1.5, which ends the proof of the theorem.

Remark 11.4 (Change of topology of the front for certain positive c)
Notice that even if c is potivive, we can have a change of topology of the front. This is for

instance the case, if c0(r) is large and positive for r > r0 and if c0(r)+
1

r
is positive but very

close to zero for r < r0. This can be checked, using sub and supersolutions.
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11.2 The G-equation with large divergence vector field

We recall that the G-equation is the motion with normal velocity

V = 1 + a · n
where n is the ouward normal to the moving set

{
x ∈ RN , u(x, t) > 0

}
and a(x) is a vector

field. The level set formulation of this motion is the following:

(11.6) ut = |Du| − a ·Du on RN × (0,+∞).

The difficulty arises when |a| > 1 for which the Hamiltonian ceases to be coercive. A re-
cent literature exists about homogenization results for this equation: see [27, 34, 7] (see also
the very recent extension in random environments [8]). A typical condition that is assumed
in order to construct correctors, is that the divengence of the vector field a is sufficiently
small. See also [2] for some other results about non-coercive Hamiltonians.

Here we consider the assumption:
Assumption (D): the vector field a on R2

We assume that a is a Z2-periodic vector field defined as follows. Let 0 ≤ r0 <
1

4
. Let f be

a scalar Lipschitz function satisfying for some δ0 ∈ (0, r0):

(11.7) f(x) = 0 if |x| ≤ δ0 or |x| ≥ r0.

For a point x ∈
[
−1

2
,
1

2

]2
, let us define

a(x) = f(x)b(x)

with 



i) b(x) ≡ x

|x|2 with f ≤ 0 and f 6≡ 0,

OR

ii) b(x) ≡ x⊥

|x|2 with f not radial for |x| < r0.

Remark 11.5 Notice that we have

div a = ∇f · b
and then, up to multiply f by a positive constant, the divergence of a can be taken as big as
we want.

Then we have the following result

Lemma 11.6 (A barrier subsolution for the G-equation under assumption (D))
Assume (D). Then there exists a non-decreasing familly of compact sets (Et)t≥0 and a time
T0 = 1 + (π − 1)r0 > 0 such that

(11.8)





E0 = Br0 ,
Et = ET0 for t ≥ T0 > 0,

B1+3r0 ⊃ ET0 ⊃
[
−1

2
,
1

2

]2
∪


 ⋃

e∈{0,±e1,±e2}
(e+ E0)



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and such that
u(·, t) = χEt

is a subsolution of (11.6) with N = 2.

Proof of Lemma 11.6
We follow the proof of Lemma 11.3. Steps 1,2 and 4 are unchanged with the choice δ = 1.
For Step 3 (filling the hole), we define for τ ≥ 0

Kτ2+τ = B3r0(−e1)\Br(τ)(−e1) with r(0) = r0.

Then equation (11.1) means on ∂Br(τ)(−e1)

−r′ = 1 + fb · n ≥ 1 with n = − x

|x| .

We then get a subsolution for the choice

r(τ) = r0 − δτ for τ ∈ [0, τ3] with δτ3 = r0

and again δ = 1. This ends the proof of the lemma.

Conclusion
Similarly to Subsection 11.1, we can get existence of correctors (and of perturbed correctors),
and then an homogenization result in 2D associated to equation (11.6), under assumption
(D), which is an illustrative case without bound on the divergence of the vector field a.

12 Appendix

In this appendix, in a first subsection we give classical barriers associated to initial data,
in a second subsection we present some technical lemmata about inf-convolutions used in
the proof of Theorem 1.5, and in a third subsection, we give the proof of the comparison
principle (Theorem 3.3).

12.1 Barriers from the initial data

We look for solutions of

(12.1) ut = F (D2u,Du, x) on RN × (0,+∞).

We start with the following result (borrowed from Lemmata 3.1.3 and 4.3.3 in [22], that
we recall here for the convenience of the reader):

Lemma 12.1 (Fundamental barrier)
Assume (A). Let us consider any C2 function f : [0,+∞) → [0,+∞) satisfying f(0) = 0
and for some constant L0 > 0

0 ≤ f ′(r)

min(r, 1)
≤ L0 for all r ≥ 0.
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We consider a constant C1 > 0 such that

(12.2) sup
|X|≤1, |p|≤1, y∈RN

|F (X, p, y)| ≤ C1.

Then there exists a constant M = C1L0 > 0 such that for any K ≥ 0 and any x0 ∈ RN , the
following functions v+K,x0

and v−K,x0
are respectively super and subsolutions of (12.1):

v±K,x0
(x, t) = ±K (Mt+ f(|x− x0|)) .

Proof of Lemma 12.1
We set z = x− x0 and r = |z|. We compute

Dv+1,x0
(x, t) = f ′(r)

z

r
, D2v+1,0(x, t) = f ′′(r)

z

r
⊗ z

r
+
f ′(r)

r

(
I − z

r
⊗ z

r

)
.

Using the fact that F is geometric (assumption (A2)), we deduce that

∂tv
±
K,x0

− F (D2v±K,x0
, Dv±K,x0

, x) = ±K
(
M ∓ f ′(r)

r
F (±I,±z, x)

)
.

Notice that by assumption (A4)i), there exists a constant C1 such that (12.2) holds.
We also have for r ≥ 1 (using again (A2), and also (A1))

∣∣∣∣
1

r
F (±I,±z, x)

∣∣∣∣ =
∣∣∣∣F (±

I

r
,±z

r
, x)

∣∣∣∣ ≤ sup
±

∣∣∣F (±I,±z
r
, x)
∣∣∣ ≤ C1.

Therefore we get

∣∣∣∣
f ′(r)

r
F (±I,±z, x)

∣∣∣∣ ≤





C1

(
sup
r∈[0,1]

∣∣∣∣
f ′(r)

r

∣∣∣∣

)
if r ∈ [0, 1],

C1

(
sup
r≥1

|f ′(r)|
)

if r ≥ 1.

If we choose
M = C1L0

we then conclude that v+K,x0
and v−K,x0

are respectively super and subsolutions of (12.1), which
ends the proof of the lemma.

Then we have the following consequence (see also Lemma 4.3.4 in [22]):

Corollary 12.2 (barriers from uniformly continuous initial data)
Let u0 : R

N → R be a uniformly continuous initial data. Then there exists u+, u−, respectively
super and subsolutions of (12.1), such that

u−(x, t) ≤ u0(x) ≤ u+(x, t) for all x ∈ RN , t ≥ 0

such that
lim
t→0+

sup
x∈RN

|u±(x, t)− u0(x)| = 0.
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Proof of Corollary 12.2
We do the construction for u+ (the construction of u− being similar).
Step 1: First estimate
Because u0 is uniformly continuous, there exists a (non-decreasing) modulus of continuity ω
such that

|u0(x)− u0(y)| ≤ ω(|x− y|) for all x, y ∈ RN .

We choose f as in Lemma 12.1, satisfying moreover for some η > 0:

0 < η ≤ f ′(r)

min(r, 1)
≤ L0 for all r ≥ 0.

Therefore, for any δ > 0, there exists Kδ > 0 such that

(12.3) u0(x) ≤ u0(x0) + δ +Kδf(|x− x0|).
Indeed, given some rδ > 0, we have





ω(r) ≤ ⌈ r
rδ
⌉ω(rδ) ≤

ω(rδ)

rδ
(r + rδ) for r ≥ 0,

f ′(r) ≥ ηmin(rδ, 1) =: ηδ > 0 for r ≥ rδ.

Therefore for r ≥ 0:
δ +Kδf(r) ≥ δ +Kδηδ(r − rδ) ≥ ω(r)

with the choice of Kδ and rδ such that




Kδηδ =
ω(rδ)

rδ
,

δ = 2ω(rδ).

Step 2: Consequence
From (12.3) and the comparison principle, we deduce that:

u(x, t) ≤ u0(x0) + δ + v+Kδ ,x0
(x, t) =: w+

δ,x0
(x, t) with w+

δ,x0
(x, t) ≥ w+

δ,x0
(x, 0) ≥ u0(x)

where v+Kδ ,x0
is defined in Lemma 12.1. Then the following function

u+(x, t) = inf
δ∈(0,1), x0∈RN

w+
δ,x0

(x, t)

is a supersolution (as an infimum of supersolutions) and satisfies

u0(x0) ≤ u+(x0, t) ≤ w+
δ,x0

(x, t) ≤ u0(x0) + δ +MKδt.

Defining
ω̄(t) = inf

δ∈(0,1)
(δ +MKδt)

we get

(12.4) 0 ≤ u+(x0, t)− u0(x0) ≤ ω̄(t) for all x0 ∈ RN , t ≥ 0

where
ω̄(t) → 0 as t→ 0.

Therefore (12.4) implies the result. This ends the proof of the corollary.
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12.2 Technical lemmata used in the proof of Theorem 1.5

In this subsection, we present results about inf-convolutions that seem quite classical, but
that we did not find (in the precise form we need) in the literature. The results are presented
in Lemmata 12.3 and 12.4 that are used in the proof of Theorem 1.5.

Lemma 12.3 (Inf/Sup-convolution using balls)
i) Inf-convolution
Let us consider a lower semi-continuous function u > −∞ in an open set Ω. Let us define
for η > 0:

Ω−η =
{
(x, t) ∈ Rn × R, Bη(x)× {t} ⊂ Ω

}

and
uη(x, t) = inf

y∈Bη(x)
u(y, t).

Then uη is lower semi-continuous.
If ϕ ∈ C2 is a test function tangent to uη from below at P0 = (x0, t0) ∈ Ω−η, then

(12.5) (ϕt(P0), Dϕ(P0), D
2ϕ(P0)) ∈ P2,−u(z0, t0) for some z0 ∈ Bη(x0)

and

(12.6) ξT ·D2ϕ(P0) · ξ ≤ |ξ|2 |Dϕ(P0)|
η

for all ξ ⊥ Dϕ(P0)

and also

(12.7) D2ϕ(P0) ≤ 0 if Dϕ(P0) = 0.

Moreover, if F satisfies assumption (A), then for any ε > 0, there exists a constant c η
ε
> 0

(depending only on η
ε
and F ) such that for any y0 ∈ RN

(12.8) F ∗ (εD2ϕ(P0), Dϕ(P0), y0
)
≤ |Dϕ(P0)| c η

ε
.

ii) Sup-convolution
We have similar results (with reversed and adapted inequalities) for upper semi-continuous
functions u <∞ in an open set Ω and

uη(x, t) = sup
y∈Bη(x)

u(y, t).

Proof of Lemma 12.3
Step 0: uη is lower semi-continuous
Consider a sequence (xk, tk)k∈N converging to a point (x∞, t∞) such that

(uη)∗(x∞, t∞) = lim
k→+∞

uη(xk, tk).

Then there exists a point (yk, tk) such that

uη(xk, tk) = u(yk, tk) with |xk − yk| ≤ η
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and
yk → y∞ with |x∞ − y∞| ≤ η.

Therefore we have

uη(x∞, t∞) ≤ u(y∞, t∞) ≤ lim inf
k→+∞

u(yk, tk) = (uη)∗(x∞, t∞)

which shows that uη is lower semi-continuous.
Step 1: proof of (12.5)
Let us define the function

ζ(x) =

{
0 if x ∈ Bη(0),
+∞ otherwise.

Then for (x0, t0) as in the statement of the lemma,

ϕ(x0, t0) = uη(x0, t0) = inf
y∈RN

(u(x0 − y, t0) + ζ(y)) = u(x0 − y0, t0) + ζ(y0)

with ζ(y0) = 0. Moreover for all (x, t) ∈ Ω−η:

ϕ(x, t) ≤ uη(x, t) = inf
y∈RN

(u(x− y, t) + ζ(y)) ≤ u(x− y0, t) + ζ(y0) = u(x− y0, t).

This shows that

ϕ(·+ y0, ·) ≤ u with equality at (z0, t0) with z0 = x0 − y0

which implies (12.5).
Step 2: proof of (12.6)
Up to set

u(x, t) = +∞ if (x, t) 6∈ Ω

we can also rewrite (setting z = x0 − y)

ϕ(x0, t0) = uη(x0, t0) = inf
z∈RN

(u(z, t0) + ζ(x0 − z)) = u(z0, t0) + ζ(x0 − z0)

with z0 = x0 − y0. We also have

ϕ(x, t) ≤ uη(x, t) ≤ u(z0, t) + ζ(x− z0) with equality at (x0, t0).

Then either y0 ∈ Bη(0) and

(12.9) Dϕ(P0) = 0 ≥ D2ϕ(P0)

or y0 ∈ ∂Bη(0) and

ϕ(x, t0) ≤ ϕ(x0, t0) for all x ∈ ∂Bη(z0) ∋ x0.

Up to change the coordinates, we can assume that x0 = 0, z0 = −ηeN and then ∂Bη(z0) is
locally parametrized by

xN = −η +
√
η2 − x′2 with x′ = (x1, ..., xN−1)
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and then
ψ(x′) = ϕ(x′,−η +

√
η2 − x′2, t0)

satisfies
ψ(x′) ≤ ψ(0).

This implies
Dψ(0) = 0, D2ψ(0) ≤ 0

i.e.
Diϕ(P0) = 0 for i = 1, ..., N − 1

which implies
Dϕ(P0) = DNϕ(P0)eN with DNϕ(P0) = |Dϕ(P0)|

and

D2
ijψ(0) = D2

ijϕ(P0)− δij
DNϕ(P0)

η
≤ 0 for i, j = 1, ..., N − 1.

This implies (12.6).
Step 3: proof of (12.7)
If y0 ∈ Bη(0), then (12.7) follows from (12.9). If y0 ∈ ∂Bη(0) and Dϕ(P0) = 0, then (still
with x0 = 0)

ϕ(x0, t0) ≥ ϕ(x, t0) = ϕ(x0, t0)+
1

2
xT ·D2ϕ(x0, t0)·x+o(|x|2) locally for xN ≤ −η+

√
η2 − x′2.

By a rescaling, this implies that

0 ≥ xT ·D2ϕ(x0, t0) · x for all x = (x′, xN) such that xN < 0.

This implies
D2ϕ(P0) ≤ 0

which shows (12.7).
Step 4: proof of (12.8)
We want to prove for any y0 ∈ RN

F ∗ (εD2ϕ(P0), Dϕ(P0), y0
)
≤ |Dϕ(P0)| c η

ε
.

Case a: Dφ(P0) = 0
Then we have

F ∗(εD2ϕ(P0), Dϕ(P0), y0) ≤ F ∗(0, 0, y0) = 0

where we have used (12.7) and (3.3).
Case b: Dφ(P0) 6= 0
Then with p = Dϕ(P0) we have

F ∗(εD2ϕ(P0), Dϕ(P0), y0) = F (Π(p) · εD2ϕ(P0) · Π(p), p, y0)
≤ F

(
ε
|p|
η
I, p, y0

)

≤ |p|F
(

1(
η
ε

)I, p|p| , y0
)

≤ |p|c η
ε
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where we have used (3.4) for the first line, (12.6) for the second line, and assumption (A2)
for the third line, and in the last line: assumption (A4)i) for fixing c η

ε
= CR for some

R ≥ max

(
1

( η
ε )
, 1

)
. This shows (12.8).

This ends the proof of the lemma.

Lemma 12.4 (General properties of inf/sup-convolution)
A) Inf-convolution
Let us consider three functions u, v, w : RN × [0,+∞) → [0,+∞], We define the space
inf-convolution of u and v by

(u�v)(x, t) = inf
y∈RN

(u(x− y, t) + v(y, t)) .

i) symmetry
We have

u�v = v�u

and u�v : RN × [0,+∞) → [0,+∞].
ii) associativity
We have

(u�v)�w = u�(v�w).

iii) basic property
Let us consider the following property

(12.10) w(x, t) → +∞ as |x| → +∞, uniformly in t ∈ [0,+∞).

If u, v are lower semi-continuous and either u or v satisfies (12.10) then u�v is also lower
semi-continuous. Moreover, if u and v satisfy (12.10), then u�v also satisfies (12.10).
iv) subdifferentials
Assume that v is independent on t and that

(12.11) (u�v)(x0, t0) = u(x0 − y0, t0) + v(y0).

Then

(12.12) (τ, p,X) ∈ P2,−(u�v)(x0, t0) =⇒
{

(τ, p,X) ∈ P2,−u(x0 − y0, t0)
(p,X) ∈ D2,−v(y0).

v) limit subdifferentials
Assume that v is independent on t, that u and v are lower semi-continuous and that either
u or v satisfies (12.10). Then

(12.13) (τ, p,X) ∈ P2,−
(u�v)(x0, t0) =⇒





there exists y∞ ∈ RN such that
(u�v)(x0, t0) = u(x0 − y∞, t0) + v(y∞)

(τ, p,X) ∈ P2,−
u(x0 − y∞, t0)

(p,X) ∈ D2,−
v(y∞).

78



vi) generalization
Everything stays true if (we weaken the fact that u has values in [0,+∞] and) require that
any function satisfies the following condition (growth at most linear at infinity):

(12.14) there exists a constant C > 0 such that u(x, t) ≥ −C(1 + |x|+ |t|)

and replace condition (12.10) by the strongest condition (a superlinearity condition):

(12.15)
w(x, t)

1 + |x| → +∞ as |x| → +∞, uniformly in t ∈ [0,+∞).

In the case of three functions u, v, w, we require that at least two satisfy (12.15) and the third
one satisfies (12.14).
vii) applications
Assume that u is lower semi-continuous, satisfies (12.14) and that we have

(12.16) |u(x, t)−g(x, t)| ≤ εκ for some function g satisfying |g(x+a, t)−g(x, t)| ≤ L|a|.

If v is lower semi-continuous and satisfies (12.15) and v is independent on t, then u�v still
satisfies (12.16) with g replaced by g�v which has the same Lipschitz constant L.

Moreover if v(x) =
|x|4
4ε3ρ

and

(u�v)(x0, t0) = u(x0 − y0, t0) + v(y0)

then

(12.17) |y0| ≤ εCκ,L,ρ with Cκ,L,ρ :=
(
16ρκ+ 3(2ρL)

4
3

) 1
4
.

Moreover we have

(12.18) |u− u�v| ≤ εC ′
κ,L,ρ with C ′

κ,L,ρ = 4κ+ 2LCκ,L,ρ.

B) Sup-convolution
Let us consider two functions u, v : RN × [0,+∞) → [−∞, 0], We define the space sup-
convolution of u and v by

(u�v)(x, t) = sup
y∈RN

(u(x− y, t) + v(y, t)) .

Then we have

(12.19) −(u�v) = (−u)�(−v)

which implies for the sup-convolution results similar to the case of the inf-convolution.

Proof of Lemma 12.4
Step 1: proof of A)i)
We have (by a change of variables)

(u�v)(x, t) = inf
y∈RN

(u(x− y, t) + v(y, t)) = inf
z∈RN

(u(z, t) + v(x− z, t)) = (v�u)(x).
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Step 2: proof of A)ii)
We have with z = z′ − y

((u�v)�w)(x) = inf
y∈RN

((u�v)(x− y, t) + w(y, t))

= inf
y∈RN

(
inf

z∈RN
(u(x− y − z, t) + v(z, t)) + w(y, t)

)

= inf
y,z∈RN

(u(x− y − z, t) + v(z, t) + w(y, t))

= inf
y,z′∈RN

(u(x− z′, t) + v(z′ − y, t) + w(y, t))

= inf
z′∈RN

(
u(x− z′, t) + inf

y∈RN
(v(z′ − y, t) + w(y, t))

)

= inf
z′∈RN

(u(x− z′, t) + (v�w)(z′, t))

= (u�(v�w))(x, t).

Step 3: proof of A)iii)
Let (xk, tk) converging to (x∞, t∞), and let yk be a sequence such that

(u�v)(xk, tk) ≥ −1

k
+ u(xk − yk, tk) + v(yk, tk).

Condition (12.10) implies that yk stays bounded, and then converges to some y∞ (up to
extraction of some subsequence). Therefore

lim inf
k→+∞

(u�v)(xk, tk) ≥ u(x∞ − y∞, t∞) + v(y∞, t∞) ≥ (u�v)(x∞, t∞)

which shows that u�v is lower semi-continuous.
Property (12.10) follows also easily for u�v, if u and v both satisfy (12.10).
Step 4: proof of A)iv)
Let P0 = (x0, t0). If (τ, p,X) ∈ P2,−(u�v)(P0), then there exists a test function ϕ which is
tangent from below to u�v at P0, such that τ = ϕt(P0), p = Dϕ(P0), X = D2ϕ(P0). Recall
that there exists y0 such that (12.11) holds. Then we have

ϕ(x, t) ≤ (u�v)(x, t) ≤ u(x− y0, t) + v(y0)

with equality in the inequalities for (x, t) = (x0, t0) = P0.
This shows that (τ, p,X) ∈ P2,−u(x0−y0, t0). Symmetrically, we also have with z0 = x0−y0:

(u�v)(x0, t0) = u(z0, t0) + v(x0 − z0)

and
ϕ(x, t) ≤ (u�v)(x, t) ≤ u(z0, t) + v(x− z0)

with equality for (x, t) = (x0, t0) = P0. This implies that (p,X) ∈ D2,−v(x0−z0) = D2,−v(y0)
as in (12.12).
Step 5: proof of A)v)

If (τ, p,X) ∈ P2,−
(u�v)(P0), then there exists a sequence Pk = (xk, tk) converging to P0 and

(τk, pk, Xk) ∈ P2,−(u�v)(Pk) converging to (τ, p,X) such that

(u�v)(Pk) → (u�v)(P0).
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Because either u or v satisfies (12.10) and u and v are lower semi-continuous, we deduce that
there exists some yk ∈ RN such that

(12.20) (u�v)(xk, tk) = u(xk − yk, tk) + v(yk).

From (12.10), we deduce that yk is bounded, and then convergent (up to some subsequence)
to some y∞ ∈ RN . Up to extract a subsequence, we can also assume that there exists lu, lv
such that

u(xk − yk, tk) → lu + u(x0 − y∞, t0), v(yk) → lv + v(y∞)

where
lu, lv ≥ 0

follows from the lower semi-continuity of u and v. From (12.20), we get

(u�v)(x0, t0)) = limk→+∞(u�v)(xk)
= lim

k→+∞
(u(xk − yk, tk) + v(yk))

= (lu + lv) + u(x0 − y∞, t0) + v(y∞)
≥ (u�v)(x0, t0)

which implies
(u�v)(x0, t0) = u(x0 − y∞, t0) + v(y∞)

and lu = 0 = lv, i.e.

(12.21) u(xk − yk, tk) → u(x0 − y∞, t0), v(yk) → v(y∞).

Moreover from A)iv), we have

{
(τk, pk, Xk) ∈ P2,−u(xk − yk, tk)
(pk, Xk) ∈ D2,−v(yk).

Then (12.21) implies that

{
(τ, p,X) ∈ P2,−

u(x0 − y∞, t0)

(p,X) ∈ D2,−
v(y∞)

which proves (12.13).
Step 6: proof of A)vi)
We simply have to prove case a and b (the remaining parts are straightforward to check).
case a: u satisfies (12.14) and v satisfies (12.15)
We simply have to check that u�v satisfies (12.14).
We have

(u�v)(x, t) = inf
y∈RN

(u(x− y, t) + v(y, t))

≥ inf
y∈RN

(−C(1 + |x− y|+ |t|) + v(y, t))

≥ −C(1 + |x|+ |t|) + inf
y∈RN

(−C|y|+ v(y, t))

≥ −C(1 + |x|+ |t|)− C1 with C1 = max

(
0,− inf

y∈RN
(−C|y|+ v(y, t))

)

≥ −C ′(1 + |x|+ |t|) with C ′ = C + C1.
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case b: u satisfies (12.15) and v satisfies (12.15)
We simply have to check that u�v satisfies (12.15).
Because of (12.15), there exists a monotone function h : [0,+∞) → [0,+∞) such that
h(+∞) = +∞ and

u(x, t), v(x, t) ≥ −C + h(|x|) with
h(ρ)

1 + ρ
→ +∞ as ρ→ +∞.

Therefore
(u�v)(x, t) = inf

y∈RN
(u(x− y, t) + v(y, t))

≥ −2C + inf
y∈RN

(h(|x− y|) + h(|y|))
≥ −2C + inf

y∈RN
h (max(|x− y|, |y|))

≥ −2C + h(|x|/2)
where we have used in the last line the fact that |x−y|+ |y| ≥ |x| implies max(|x−y|, |y|) ≥
|x|/2. This implies that u�v satisfies (12.15).
Step 7: proof of A)vii)
We have

−εκ+ g(x, t) ≤ u(x, t) ≤ εκ+ g(x, t).

This implies that

−εκ+ inf
y∈RN

(g(x− y, t) + v(y)) ≤ (u�v)(x, t) ≤ εκ+ inf
y∈RN

(g(x− y, t) + v(y))

i.e.
|u− g�v| ≤ εκ.

If

(12.22) (u�v)(x0, t0) = u(x0 − y0, t0) + v(y0)

then
u(x0 − y0, t0) + v(y0) ≤ u(x0, t0) + v(0)

i.e.
v(y0)− v(0) ≤ u(x0, t0)− u(x0 − y0, t0).

If v(x) = |x|4/(4ε3ρ), then

(12.23)
|y0|4
4ε3ρ

≤ 2εκ+ L|y0|

i.e. ȳ0 = y0/ε satisfies

|ȳ0|4
4ρ

≤ 2κ+
|ȳ0|
(2ρ)

1
4

· (2ρ) 1
4L

≤ 2κ+
1

4

(
|ȳ0|
(2ρ)

1
4

)4

+
3

4

(
(2ρ)

1
4L
) 4

3
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where in the second line, we have used Young inequality ab ≤ a4/4 + 3b
4
3/4. This implies

|ȳ0|4
4ρ

≤ 4κ+
3

2

(
(2ρ)

1
4L
) 4

3

and

|ȳ0| ≤
(
16ρκ+ 3(2ρL)

4
3

) 1
4

which implies (12.17). Now for any point (x0, t0) ∈ RN × [0,+∞), there exists a point
y0 ∈ RN such that (12.22) holds. Therefore, using (12.23), we get

|((u�v)−u)(x0, t0)| = |u(x0−y0, t0)−u(x0, t0)+v(y0)| ≤ 2εκ+L|y0|+
|y0|4
4ε3ρ

≤ 2 (2εκ+ L|y0|)

which implies (12.18).
Step 8: proof of B)
This is straightforward.
This ends the proof of the lemma.

12.3 Proof of the comparison principle Theorem 3.3

Proof of Theorem 3.3
The proof is essentially based on [23] (see also [30]).
We only do the proof for finite T (the limit T → +∞ gives the result for T = +∞). We also
assume that in the case of a bounded open set Ω, condition (3.5) is strenghened as follows

(12.24) u ≤ v on ∂pΩT .

Indeed, this is always possible to do it, up to replace T by a smaller time T ′ < T . We can
then prove the comparison principle for T ′ and recover it for T in the limit T ′ → T .
Step 1: reduction to bounded sub/supersolutions
Let β : [−∞,+∞] → [−1, 1] continuous with β ∈ C2(R; (−1, 1)), β′ > 0 on R and β(±∞) =
±1. We can for instance take β(a) = tanh a. Given u : Ω× [0, T ) → [−∞,+∞] a subsolution
of (4.1), it is easy to check that β(u) is also a subsolution of (4.1).

Indeed, because u < +∞, we have either β(u) ∈ (−1, 1) and we can check Definition 3.1
using (A2). Or β(u) = −1 and then any test function at such a point satisfies ϕ ≥ β(u) ≥ −1
which implies ϕt = 0 = Dϕ and D2ϕ ≥ 0. Using (A1) and (3.3), this finally implies again
the viscosity subsolution inequality.

Similarly we can show that β(v) is a supersolution if v is a supersolution. It is then
sufficient to show that β(u) ≤ β(v). Therefore, up to replace β(u) and β(v) by u and v, we
can assume that u and v are bounded.
Step 2: reduction to equation with u terms
Let us set

ũ(x, t) = e−tu(x, t), ṽ(x, t) = e−tv(x, t).

Then ũ is a subsolution (resp. ṽ is a supersolution) of

(12.25) ũt + ũ = F̃ (D2ũ, Dũ, x, t)
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with
F̃ (X, p, x, t) = e−tF (etX, etp, x).

Just in order to simplify the notation, we will denote ũ, ṽ by u, v now respectively sub and
supersolutions of (12.25).
Step 3: a priori estimates
Let us set

w(x, y, t) = u(x, t)− v(y, t).

Let us assume that
(12.26)

M = lim
θ→0

Mθ with Mθ = sup
{
w(x, y, t), x, y ∈ Ω, t ∈ [0, T ), |x− y| ≤ θ

}
> 0.

Then for small parameters α, η, ε > 0, we can consider

(12.27) Mα,η,ε = sup
x,y∈Ω, t∈[0,T )

(
u(x, t)− v(y, t)− |x− y|4

4ε2
− αx2 − αy2 − η

T − t

)
.

For α, η > 0 small enough (independently on ε), we have in particular

(12.28) Mα,η,ε ≥M/2 > 0.

We also know that the suppremum in (12.27) is reached at some points x∗, y∗ ∈ Ω, t∗ ∈ [0, T )
satisfying in particular

(12.29)
|x∗ − y∗|4

4ε2
+ α(x∗)2 + α(y∗)2 +

η

T − t∗
≤ C0 := ||u||∞ + ||v||∞.

Step 4: refined estimate on the penalization term
|x∗ − y∗|4

4ε2
We follow the ideas of Proposition 4.4 in [23]. From the definition of M in (12.26), we
know that for any δ > 0, there exists θ(δ) > 0 (with θ(δ) → 0 as δ → 0) and points
xδ, yδ ∈ Ω, tδ ∈ [0, T ) such that

w(xδ, yδ, tδ) ≥M − δ and |xδ − yδ| ≤ θ(δ).

Therefore

M
(4ε2C0)

1
4
− |x∗ − y∗|4

4ε2
≥Mα,η,ε ≥M − δ − |θ(δ)2|4

4ε2
− α(xδ)

2 − α(yδ)
2 − η

T − tδ
.

And then

lim sup
α,η→0

|x∗ − y∗|4
4ε2

≤M
(4ε2C0)

1
4
−M + δ +

|θ(δ)2|4
4ε2

which implies for δ → 0

lim sup
α,η→0

|x∗ − y∗|4
4ε2

≤M
(4ε2C0)

1
4
−M

and then

(12.30) lim
ε→0

(
lim sup
α,η→0

|x∗ − y∗|4
4ε2

)
= 0.
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Step 5: avoiding the parabolic boundary ∂pΩT

Assume that for all ε > 0 small enough, we have (x∗, t∗) ∈ ∂pΩT when we pass to the limit
α, η → 0 for the whole sequence (the case (y∗, t∗) ∈ ∂pΩT is similar). We distinguish two
cases.
Case 1: Ω = RN

Then this means that t∗ = 0 and we have

0 < M/2 ≤Mα,η,ε ≤ sup
x,y∈Ω

(
u(x, 0)− v(y, 0)− |x− y|4

4ε2

)

≤ lim
θ→0

sup

{
u(x, 0)− v(y, 0)− |x− y|4

4ε2
, |x− y| ≤ θ

}
≤ 0

where we have used (3.5).
Case 2: Ω is bounded
Then we get a contradiction with (12.28), using the fact that

0 < M/2 ≤ lim
α,η→0

Mα,η,ε ≤ sup
(x,t)∈∂pΩT ,y∈Ω

(
u(x, t)− v(y, t)− |x− y|4

4ε2

)
.

Then taking the limit ε→ 0, we get

0 < M/2 ≤ lim
ε→0

sup
(x,t)∈∂pΩT ,y∈Ω

(
u(x, t)− v(y, t)− |x− y|4

4ε2

)
≤ sup

∂pΩT

(u− v) ≤ 0

where we have used (12.24).
Step 6: viscosity inequalities
Let us define

ũ(x, t) = u(x, t)− αx2, ṽ(y, t) = v(y, t) + αy2,

(12.31) Φ(x, y, t) =Mα,η,ε +
|x− y|4
4ε2

+
η

T − t
.

From Ishii’s Lemma (see Theorem 8.3 in the Users’s Guide [17], and Theorem 7 in [16]), we
deduce that for every γ > 0, there exists
(12.32)



(b1, DxΦ(x
∗, y∗, t∗), X) ∈ P2,+

ũ(x∗, t∗)

(b2,−DyΦ(x
∗, y∗, t∗), Y ) ∈ P2,−

ṽ(y∗, t∗)
b1 − b2 = Φt(x

∗, y∗, t∗)

−
(
1

γ
+ ||A||

)(
I 0
0 I

)
≤
(
X 0
0 −Y

)
≤ A+ γA2 with A = D2Φ(x∗, y∗, t∗) ∈ S2N

where ||A|| = sup
|ξ|=1

< Aξ, ξ >. From (12.32), we have in particular the viscosity inequalities

(12.33)

{
b1 + u(x∗, t∗) ≤ F̃ ∗(X + 2αI,DxΦ(x

∗, y∗, t∗) + 2αx∗, x∗, t∗)

b2 + v(y∗, t∗) ≥ F̃∗(Y − 2αI,−DyΦ(x
∗, y∗, t∗)− 2αy∗, y∗, t∗).

Recall that to be able to apply Ishii’s Lemma, we need to be able to bound b1 ≤ C and

b2 ≥ −C for general (b1, p1, X) ∈ P2,+
ũ(x, t) and (b2, p2, Y ) ∈ P2,−

ṽ(y, t) for (x, t) close to
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(x∗, t∗), (y, t) close to (y∗, t∗), and bounded p1, p2, X, Y, ũ(x, t), ṽ(y, t). Indeed this is true and
comes from the viscosity inequalities similar to (12.33), using in particular assumption (A4)i).

Taking now the difference of the two inequalities in (12.33), we get
(12.34)

0 < M/2 ≤Mα,η,ε ≤ η

(T − t∗)2
+ u(x∗, t∗)− v(y∗, t∗)

≤ F̃ ∗(X + 2αI, p+ 2αx∗, x∗, t∗)− F̃∗(Y − 2αI, p− 2αy∗, y∗, t∗).

We set

p = δ(x∗ − y∗), with δ =
|x∗ − y∗|2

ε2
.

Notice that from (12.29), we deduce that

(12.35) |p|2 ≤ (4C0)
3
2

ε
, δ ≤ 2

√
C0

ε
and α|x∗|, α|y∗| ≤

√
αC0.

Case 1: x∗ 6= y∗

Then we have with p̂ =
p

|p| (when p 6= 0)

0 ≤ A = δ

(
I + 2p̂⊗ p̂ −I − 2p̂⊗ p̂

−I − 2p̂⊗ p̂ I + 2p̂⊗ p̂

)
≤ 3δE with E =

(
I −I

−I I

)
.

Notice that E2 = 2E, and then A2 ≤ 18δ2E. Because ||A|| = 6δ, setting γ =
1

3δ
in (12.32),

we get

−9δ

(
I 0
0 I

)
≤
(
X 0
0 −Y

)
≤ 9δ

(
I −I

−I I

)
.

Case 2: x∗ = y∗

Then A = 0 and taking the limit γ → +∞, we see from (12.32), that at the limit we get
X = Y = 0.
Step 7: the limit α, η → 0
Then from (12.32), we deduce that for ε > 0 fixed, the quantities p,X, Y stay bounded as
α, η tend to zero. Even if x∗, y∗ do not stay bounded, taking advantage of the periodicity of
the problem, we know that there exists a sequence k ∈ ZN , such that as α, η → 0





x∗ − k → x̄,
y∗ − k → ȳ,
t∗ → t̄ ∈ [0, T ],

δ → δ̄ =
|x̄− ȳ|2
ε2

p = δ(x∗ − y∗) → p̄ = δ̄(x̄− ȳ)
X → X̄,
Y → Ȳ .

Therefore at the limit α, η → 0 in (12.35), we get

0 < M/2 ≤ F̃ ∗(X̄, p̄, x̄, t̄)− F̃∗(Ȳ , p̄, ȳ, t̄) with p̄ = δ(x̄− ȳ)
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with (in the general case δ̄ ≥ 0)

−9δ̄

(
I 0
0 I

)
≤
(
X̄ 0
0 −Ȳ

)
≤ 9δ̄

(
I −I

−I I

)
.

Therefore setting δ̃ = et̄δ, we deduce that

0 < M/2 ≤ F̃ ∗(X̄, p̄, x̄, t̄)− F̃∗(Ȳ , p̄, ȳ, t̄)

≤ e−t̄F ∗(et̄X̄, et̄p̄, x̄)− e−t̄F∗(e
t̄Ȳ , et̄p̄, ȳ)

≤ e−t̄F ∗(et̄X̄, δ̃(x̄− ȳ), x̄)− e−t̄F∗(e
t̄Ȳ , δ̃(x̄− ȳ), ȳ)

≤ e−t̄σK

(
|x̄− ȳ|(1 + δ̃|x̄− ȳ|)

)

≤ e−t̄σK

(
|x̄− ȳ|+ et̄

|x̄− ȳ|4
ε2

)

→ 0 as ε→ 0

where we have used assumption (A4)ii) for K ≥ 9 in the fourth line, and (12.30) in the last
line. Contradiction. This ends the proof of the theorem.
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Anal. Non Linéaire 22 (2005), no. 5, 667-677.

[26] P.-L. Lions, G. Papanicolaou, S.R.S. Varadhan, Homogenization of
Hamilton-Jacobi equations, preprint.

[27] Y-Y Liu, J. Xin, Y. Yu, Periodic homogenization of G-equations and viscosity
effects, Nonlinearity 23 (2010), 2351-2367.

[28] B. Lou, Traveling wave solutions of a generalized curvature flow equation in the
plane. Discrete Contin. Dyn. Syst. 2007, Dynamical Systems and Differential Equa-
tions. Proceedings of the 6th AIMS International Conference, suppl., 687-693.

[29] B. Lou, X. Chen, Traveling waves of a curvature flow in almost periodic media. J.
Differential Equations 247 (2009), no. 8, 2189-2208.

[30] M.-H. Sato, Comparison principle for singular degenerate elliptic equations on un-
bounded domains, Proc. Japan Acad. Ser. A, Math. Sci. 66 (8) (1990), 252-256.

[31] H.M. Soner, Motion of a set by the curvature of its boundary, J. Differential Equa-
tions 101 (2) (1993), 313-372.

[32] P.E. Souganidis, Front Propagation: Theory and Applications. CIME course on
“viscosity solutions and their applications”, Springer-Verlag Lecture Notes Math.
1660, Springer, (1997).

[33] P.E. Souganidis, Recent developments in the theory of front propagation and its
applications. Modern methods in scientific computing and applications (Montral,
QC, 2001), 397-449, NATO Sci. Ser. II Math. Phys. Chem., 75, Kluwer Acad. Publ.,
Dordrecht, (2002).

[34] J. Xin, Y. Yu, Periodic Homogenization of Inviscid G-equation for Incompressible
Flows, Commun. Math. Sci. 8 (4) (2010), 1067-1078.

89


