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FFT-based methods for the mechanics of composites: a general
variational framework

S. Brisarda,∗, L. Dormieuxa

aUniversité Paris-Est, UR Navier, Ecole des Ponts ParisTech, 6-8 av. Blaise Pascal, Cité Descartes,
Champs-sur-Marne, F-77455 Marne-La-Vallée cedex 2, France

Abstract

For more than a decade, numerical methods for periodic elasticity, based on the fast Fourier
transform, have been used successfully as alternatives to more conventional (fem, bem) numeri-
cal techniques for composites. These methods are based on the direct, point-wise, discretization
of the Lippmann-Schwinger equation, and a subsequent truncation of underlying Fourier series
required for the use of the fast Fourier transform. The basic FFT scheme is very attractive,
because of its simplicity of implementation and use. However, it cannot handle pores or rigid
inclusions, for which a specific (and significantly more involved) treatment is required. In the
present paper, we propose a new FFT-based scheme which is as simple as the basic scheme,
while remaining valid for infinite contrasts. Since we adopted an energy principle as an alterna-
tive to the Lippmann-Schwinger equation, our scheme is derived within a variational framework.
As a by-product, it provides an energetically consistent rule for the homogenization of boundary
voxels, a question which has been pending since the introduction of Fourier-based methods.

Key words: Heterogeneous media, Numerical homogenization, Discrete Fourier Transform,
Polarization

Introduction

Although of undeniable practical and theoretical use, closed-form estimates of the effective
properties of a composite suffer from intrinsic deficiencies which make them unable to cap-
ture some fine microstructural effects, such as polydispersivity of inclusions (pores), or local
anisotropy. These shortcomings stem from the fact that most estimates are based on the solution
to the problem of Eshelby [1], who considered a unique inclusion embedded in an unbounded
medium. Eshelby-based estimates can only crudely account for interactions between inclusions
(since the inclusion is isolated in Eshelby’s problem) or size differences between these inclusions
(since the embedding medium is unbounded, there is no characteristic length scale the inclusions
can be compared to).

Unfortunately, there is no simple alternative to these estimates, and to overcome these short-
comings, one must resort to direct (full-field) simulation of the heterogeneous medium.
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Among all available numerical techniques, the finite element method is probably the first to
come to mind. It has been successfully used for composite materials [2–4], but the complexity
of the mesh generation makes its competitiveness questionable. The boundary element method
[5] somehow alleviates this burden, since only the interphase boundaries must be discretized.

In the context of highly heterogeneous materials, FFT-based methods are very attractive, for
two reasons. First, a full mesh of the microstructure is not required; instead, the calculations
are carried out on a regular grid, which allows direct coupling of this numerical tool with 3d
imaging techniques (e.g. tomography). Second, Kanit et al. [2], among others, have observed
that, compared with kinematic and static uniform boundary conditions, the periodic boundary
conditions are known to minimize size-effects for the determination of macroscopic properties.

Periodic boundary conditions naturally lead to Fourier series [6, 7]. Since the seminal paper
by Moulinec and Suquet [8], FFT-based methods have been developed by various authors [9–12],
and are now almost routinely applied to e.g. rigid-plastic [13] or viscoplastic [14] materials.

In its most basic form, this method is surprisingly simple. It is however not suitable for
composites with infinite contrast between the phases. For this class of materials, appropriate
extensions of the basic scheme have been proposed [11], but the simplicity of the original scheme
is lost.

The existing FFT-methods also raise another question. It is well known (see for example, in
the context of the finite element method, [15]) that a satisfactory discretization of the interphase
boundary is critical for the estimation of the effective properties. Therefore, when discretiz-
ing a real microstructure into voxels, attention should be paid to those voxels which include
boundaries. These voxels are effectively composite, and their mechanical properties must be
determined accordingly. To the best of our knowledge, no systematic averaging rule has been
proposed for these composite voxels.

In this paper, we propose a new version of the FFT-based method for periodic elasticity.
By adopting the energy principle of Hashin and Shtrikman [16] as a starting point, instead of
a discretized version of the Lippmann-Schwinger equation [17], we come to a slightly different
scheme obtained within a variational framework. Although its implementation is very similar
to, and indeed as simple as, the basic scheme, its mathematical status is very different. First,
it provides a rigorous bound on the elastic energy, for any refinement of the grid. Second, it
is always convergent, even in the presence of rigid inclusions or pores, which do not require a
specific treatment; besides, it is found to converge faster (by several orders of magnitude) than
the basic scheme. Third, it provides an energetically consistent way of homogenizing composite
voxels.

In the first part of this paper, we briefly introduce the so-called basic scheme [8, 9], in order
to emphasize its strengths and weaknesses, and the points from which our new scheme (the
so-called polarization-based scheme) departs.

The second part of this paper presents the mathematical core of the polarization-based method.
We first state the energy principle of Hashin and Shtrikman [16], which is our starting point; all
relevant equations are then derived. A periodized Green operator is introduced, and indications
regarding its numerical evaluation are given. For the sake of simplicity and illustrative purposes,
the framework of 2d (plane strain) elasticity will be adopted. The results presented in this paper
can readily be generalized to 3d elasticity, albeit at the expense of a slightly increased notational
complexity.

This paper closes on two simple examples which illustrate the performance of our new
scheme, compared to the basic scheme, and standard finite element calculations.
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1. Background

1.1. The elementary problem in periodic homogenization
Let Ω ⊂ R2 be the rectangular unit-cell of an heterogeneous, periodic medium, with local

stiffness c (x). The dimensions of this unit-cell will be denoted W × H, while the basis vectors,
parallel to its sides, will be denoted ex and ey. This material is submitted to the macroscopic strain
E, and the resulting displacements locally fluctuate about their macroscopic counterpart E · x. In
periodic homogenization, the microstructure as well as the fluctuations of the displacement are
periodic. Asymptotic expansion techniques [18–20] then show that the solution of the following
elementary problem

div [c (x) : ε (x)] = 0 (x ∈ Ω), (1a)
2εi j (x) = ∂iu j (x) + ∂ jui (x) (x ∈ Ω), (1b)

u (x + mWex) = u (x) + mWE · ex (x ∈ R2,m ∈ Z), (1c)

u
(
x + nHey

)
= u (x) + nHE · ey (x ∈ R2, n ∈ Z), (1d)

is required in order to determine the macroscopic properties of the periodic medium. In these
equations, ε (x) denotes the microscopic strain deriving from the displacement u (x); equations
(1c) and (1d) express the periodicity of the displacements. The purpose of this paper is to find a
numerical approximation of the solution to (1a)–(1d).

1.2. The periodic Lippmann-Schwinger equation
Similarly to non-periodic materials, the introduction of a so-called reference material of ho-

mogeneous stiffness c0 can dramatically ease the solution of the problem (1a)–(1d). Indeed, the
local constitutive law may be transformed as follows

σ (x) = c0 : ε (x) + [c (x) − c0] : ε (x) = c0 : ε (x) + τ (x) , (2)

where the polarization τ (x) = [c (x) − c0] : ε (x) has been introduced. Assuming for the time
being that τ (x) is known, it is readily seen that (1a)–(1d) reduces to a simple elasticity problem
formulated on a prestressed, homogeneous medium, the solution of which reads

ε (x) = E − (Γ0 ∗ τ) (x) ,

where Γ0 is the fourth-rank Green operator for strains [21] associated with the reference material
c0. Recalling that the polarization field is actually not known, the previous equation remains
valid, but shall now be considered as an implicit equation in the unknown strain field ε (x)

ε (x) + {Γ0 ∗ [(c − c0) : ε]} (x) = E, (3)

which is the well-known Lippmann-Schwinger equation [17]. In periodic elasticity, the convo-
lution product in (3) is most conveniently evaluated in Fourier space

ε̂ (k) = −Γ̂0 (k) : τ̂ (k) (k , 0), ε̂ (0) = E,

where the wave-vector k only takes discrete values

k = kab =
2πa
W

ex +
2πb
H

ey (a, b ∈ Z). (4)
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When the reference material is isotropic, with shear modulus µ0 and Poisson ratio ν0, the
Fourier coefficients of the fourth-rank Green operator are known [7] and read, for both two– and
three– dimensional elasticity

Γ̂0,i jhl (k) =
1

4µ0

(
δihn jnl + δiln jnh + δ jhninl + δ jlninh

)
−

1
2µ0 (1 − ν0)

nin jnhnl, (5)

where n = k/k, and k = |k| (k , 0).

1.3. The basic scheme
In this section, we summarize the principles underlying the so-called basic scheme for the

FFT-based computation of the response of a linear or non-linear composite. This method was
first introduced by Moulinec and Suquet [8], who then extended their scheme to non-linear com-
posites [9]. In order to allow for infinite phase contrast Michel et al. [11] further introduced new
developments leading to the augmented Lagrangian scheme.

Although far from trivial, the basic scheme is beautifully simple. It solves iteratively the
Lippmann-Schwinger equation (3), using Neumann series. The iterations read, in the real space

ε0 (x) = E, (6a)

εn+1 (x) = E −
{
Γ0 ∗

[
(c − c0) : εn]} (x) . (6b)

This scheme draws its efficiency from the fact that in (6b), the direct product (c − c0) : εn

is computed in the real space, while the convolution product is computed in the Fourier space.
Each iteration of the basic scheme therefore consists in four steps

1. application of the constitutive law in the real space : τn (x) = [c (x) − c0] : εn (x),
2. computation of the Fourier coefficients τ̂ (kab),
3. computation of the convolution product in the Fourier space

ε̂ (kab) = −Γ̂0 (kab) : τ̂n (kab) , (kab , 0),
ε̂ (0) = E,

4. computation of ε (x) from its Fourier coefficients ε̂ (kab) by means of a Fourier series.

Of course, these iterations cannot be carried out exactly, and in order to allow for a numerical
estimation of the successive iterates εn, the unit cell Ω = [0; W]× [0; H] must be discretized into
M×N pixels, of size W

M ×
H
N . Each of the iterates εn is then approximated by a piecewise-constant

field, and steps 2. and 4. of the previous scheme are replaced by discrete Fourier transforms,
which in turn can be evaluated very efficiently by the fast Fourier transform (FFT). More details
on the application of the FFT to this particular problem can be found in [9].

Unfortunately, the price to pay for the simplicity of this scheme is its relatively slow rate of
convergence [22], which was established by Michel et al. [11]. These authors even proved that
the basic scheme was not convergent in the case of infinite contrast between the phases, which
led them to devise the augmented Lagrangian scheme.

We should mention at this point the accelerated scheme proposed by Eyre and Milton [10] in
the context of electrical conductivity, and further extended to elasticity [11, 12]. In this scheme,
much faster rates of convergence are achieved by the use of a modified operator, instead of the
Green operator for strains Γ0. However, this accelerated scheme is still not convergent when the
contrast between the phases is infinite.
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2. Fourier-based methods in elasticity: a variational perspective

In the previous section, it has been shown that the two main drawbacks of the basic scheme
are its comparatively slow rate of convergence, and inability to provide a solution in the case of
an infinite contrast between the phases. Both drawbacks have been overcome, but only at the
expense of an increased complexity.

There is another difficulty involved in all existing FFT-based methods, which stems from the
use of the discrete Fourier transform to estimate a Fourier series. The problem lies in the fact
that a Fourier series has an infinite number of terms, while a discrete Fourier transform is a finite
sum. When Fourier series are estimated with discrete Fourier transforms, the highest frequen-
cies are therefore omitted, which introduces some discretization errors, as was acknowledged by
Moulinec and Suquet [9]. Because of these discretization errors, some of the interesting proper-
ties of the continuous basic scheme are lost.

For example, in the continuous version of the basic scheme the iterate εn (x) is at each step
kinematically admissible for the problem (1a)–(1d) (since this strain field results from the con-
volution of a polarization field with the Green operator for strains, see equation (6b)). Hence,
the estimated elastic energy at iteration n is an upper-bound of the equilibrium elastic energy.
Since in the discrete version of the basic scheme, the convolution product (6b) is only computed
approximately, this result is not preserved after discretization.

Also, whether continuous or discrete, the scheme does not indicate how to account for a
possible heterogeneity at a sub-pixel scale. When a real microstructure is discretized into a
relatively small number of pixels (coarse grid), it is highly probable that each pixel contains
more than one phase. What equivalent elastic properties should then this pixel be given?

In this section, we present a slight modification of the basic scheme. While keeping its
remarkable simplicity, the resulting scheme is always convergent (even for an infinite contrast);
besides, numerical experiments tend to prove that it is much faster than the basic scheme. Finally,
we show that these properties hold, regardless of the subpixel microstructure, provided that the
proposed averaging rule (10) is applied to heterogeneous pixels.

Our scheme uses the same numerical ingredients as the basic scheme of Moulinec and Suquet
[9]. Like these authors, we compute direct products in the real space, and convolution products
in the reciprocal space; we also adopt piecewise constant approximations of some local field. We
do not however require the discretized strain field to solve the Lippmann-Schwinger equation
(3), but to minimize the variational counterpart of this equation, which is the energy principle of
Hashin and Shtrikman [16].

It iterates on approximations of the polarization field, since these are the trial fields for the
energy principle used. This new scheme will therefore be refered to as the polarization-based
scheme.

As the energy principle of Hashin and Shtrikman [16] is the key to our method, and for the
sake of completeness, it is first recalled in the next section.

2.1. The energy principle of Hashin and Shtrikman

This principle may be introduced in a very intuitive way by recalling that for any choice of
the polarization field τ (x) and the reference material c0, the strain field ε∗ (x) = E − (Γ0 ∗ τ) (x)
is kinematically admissible for the problem (1a)–(1d). The principle of Hashin and Shtrikman
[16] may therefore be understood as a mere application of the principle of minimum potential
energy with ε∗ as a trial field. Provided that the reference medium is stiffer (c0 ≥ c (x) , x ∈ Ω)
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than any of the phases in Ω, we get, after simplifications, and for any choice of the polarization
field τ (x), the following upper bound on the elastic energy in the unit cell

1
2
ε : c : ε ≤

1
2

E : c0 : E + τ : E −
1
2
τ : (c − c0)−1 : τ −

1
2
τ : (Γ0 ∗ τ), (7)

equality being reached when τ = (c − c0) : ε. (the opposite inequality holds when the reference
material is softer than any of the phases in Ω). In equation (7), ε denotes the solution to problem
(1a)–(1d), while overlined quantities denote volume average on the unit cell

B =
1
|Ω|

∫
x∈Ω
B (x) d3 x.

The variational principle (7) was derived in a very elegant way by Willis [23], who also
proved that the quadratic form of τ on the right hand-side is positive (resp. negative) definite
when c0 ≥ c (x) (resp c0 ≤ c (x)) for all x ∈ Ω. This is important, because minimization (resp.
maximization) of this quadratic form on a finite-dimension subspace of the space of polarization
fields will automatically lead to a linear system with a positive (resp. negative) definite matrix.

2.2. The energy principle of Hashin and Shtrikman with pixel-wise constant polarization fields
In this section, we seek an approximate solution to the periodic elasticity problem (1a)–(1d).

The approach is very similar to Moulinec and Suquet [8], except for our starting point, which is
the Hashin and Shtrikman [16] energy principle, instead of the Lippmann-Schwinger equation.
We therefore use the same discretization of the bidimensional unit cell as in section 1.3.

In what follows, greek subscripts denote the indices of the column (0 ≤ α ≤ M − 1) and row
(0 ≤ β ≤ N − 1) of pixels. For example, the characteristic function of pixel (α, β) is given by

χαβ (x) = χ
[
x −

(
α + 1

2

)
W
M ex −

(
β + 1

2

)
H
N ey

]
(x ∈ Ω) ,

where we have introduced the generic function x 7→ χ (x)

χ
(
xex + yey

)
=

1 if |x| ≤ W
2M and |y| ≤ H

2N ,

0 otherwise.

Let c0 be the stiffness of a reference medium, which has been chosen and is to remain fixed
throughout this section. Keeping in mind that the same line of reasoning would apply (with all
inequalities reversed) with a reference medium softer than the softest phase present in Ω, we
assume that the reference medium is stiffer than the stiffest phase present in Ω. Therefore, (7)
holds without alteration, for any choice of the polarization field τ (x). With the basic FFT scheme
in mind, it is only too natural to write (7) for a pixel-wise constant polarization field

τ (x, y) =

M−1∑
α=0

N−1∑
β=0

χαβ (x, y) ταβ, (8)

where the MN constant tensors ταβ are free parameters. This choice of the polarization field
must be substituted into the right-hand side of (7) ; each term is then estimated separately.

First, the evaluation of τ : E is straightforward, since the volume average of τ given by (8)
simply reads

τ =
1

MN

M−1∑
α=0

N−1∑
β=0

ταβ. (9)
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Similarly to the basic scheme, the term τ : (c − c0)−1 : τ, involving the local constitutive law,
is computed in the real space. Introducing the equivalent stiffness cαβ defined by(

cαβ − c0

)−1
=

MN
WH

∫
x,y
χαβ (x, y)

[
c (x, y) − c0

]−1 d2 x, (10)

it is not difficult to obtain

τ : (c − c0)−1 : τ =
1

MN

M−1∑
α=0

N−1∑
β=0

ταβ :
(
cαβ − c0

)−1
: ταβ. (11)

Incidentally, (10) provides an averaging rule, consistent with our energetic approach, to compute
the equivalent stiffness of an heterogeneous pixel. Therefore, one of the questions we raised
above is already answered. It should be noted that the determination of appropriate effective
properties of composite voxels has already been studied by Toulemonde et al. [15] in the frame-
work of three-dimensional finite elements. Since the numerical method they used to solve the
elasticity problem was different, the formula these authors propose differs from (10). However,
in both cases, the estimates of the macroscopic properties are dramatically improved when the
properties of these boundary pixels (voxels) are carefully selected.

Evaluation of the last term in (7), namely τ : (Γ ∗ τ), is more involved, and will therefore be
detailed. First, the convolution product Γ ∗ τ is expressed as a Fourier series [7]

(Γ ∗ τ) (x) =

+∞∑
a=−∞

+∞∑
b=−∞

Γ̂ (kab) : τ̂ (kab) exp (ıkab · x) ,

where kab is the discrete wave-vector given by (4), and it is agreed that Γ (0) = 0 (otherwise,
(a, b) = (0, 0) must be excluded from the previous sum). The resulting expression is then con-
tracted with the polarization field τ, and averaged over the unit cell

τ : (Γ ∗ τ) =
1

WH

∫
x∈Ω

τ (x) : (Γ ∗ τ) (x) d2 x

=
1

WH

+∞∑
a=−∞

+∞∑
b=−∞

∫
x∈Ω

τ (x) : Γ̂ (kab) : τ̂ (kab) exp (ıkab · x) d2 x.

The spatial integral in the above expression can be recognized as the complex conjugate
(hereafter denoted τ̂∗) of the Fourier coefficient of the polarization field τ (see Appendix A)

τ : (Γ ∗ τ) =

+∞∑
a=−∞

+∞∑
b=−∞

τ̂∗ (kab) : Γ̂ (kab) : τ̂ (kab) . (12)

The Fourier coefficients τ̂ (kab) of the polarization field must now be evaluated from (8). The
calculation is straightforward, and leads to

τ̂ (kab) =
1

MN
sinc

πa
M

sinc
πb
N

exp
[
−ıπ

(
a
M

+
b
N

)] M−1∑
α=0

N−1∑
β=0

exp
[
−2ıπ

(
αa
M

+
βb
N

)]
ταβ.

It is recognized (see Appendix A) that the sum in the above expression is in fact the exact
DFT {τ̂··} of the finite data series {τ··}

τ̂ (kab) =
1

MN
sinc

πa
M

sinc
πb
N

exp
[
−ıπ

(
a
M

+
b
N

)]
τ̂ab,

7



which, on subtitution in (12), finally gives

τ : (Γ ∗ τ) =
1

(MN)2

+∞∑
a=−∞

+∞∑
b=−∞

sinc2 πa
M

sinc2 πb
N
τ̂∗ab : Γ̂ (kab) : τ̂ab.

Taking advantage of the fact that the discrete Fourier transform τ̂ab is (M,N)−periodic, the
above double sum is rearranged

τ : (Γ ∗ τ) =
1

(MN)2

M−1∑
a=0

N−1∑
b=0

τ̂∗ab :

 +∞∑
m=−∞

+∞∑
n=−∞

sinc2 π (a + mM)
M

sinc2 π (b + nN)
N

Γ̂
(
ka+mM,b+nN

)]
: τ̂ab. (13)

The above expression can be further simplified by the introduction of the so-called periodized
Green operator

Γ̂ab =

+∞∑
m=−∞

+∞∑
n=−∞

sinc2 π (a + mM)
M

sinc2 π (b + nN)
N

Γ̂
(
ka+mM,b+nN

)
, (14)

as well as the sequence of tensors {η̂··} and their inverse DFT {η··}

η̂ab = Γ̂ab : τ̂ab, ηαβ = DFT−1[η̂··]αβ. (15)

Substituting these new notations in (13), and applying the Plancherel theorem (see Appendix
A), the last term of (7) reduces to the following expression, which is exact, in the sense that no
series truncation has been performed

τ : (Γ ∗ τ) =
1

(MN)2

M−1∑
a=0

N−1∑
b=0

τ̂∗ab : η̂ab =
1

MN

M−1∑
α=0

N−1∑
β=0

τ∗αβ : ηαβ =
1

MN

M−1∑
α=0

N−1∑
β=0

ταβ : ηαβ, (16)

where the last equality results from the fact that the polarization field ταβ is real in the real space.
Gathering (9), (11) and (16), we finally obtain a bound on the elastic energy of the unit cell, for
any choice of the polarization tensors {τ··}

1
2
ε : c : ε ≤

1
2

E : c0 : E+
1

MN

M−1∑
α=0

N−1∑
β=0

[
ταβ : E −

1
2
ταβ :

(
cαβ − c0

)−1
: ταβ −

1
2
ταβ : ηαβ

]
, (17)

where {η··} is given by (15). This bound must now be optimized with respect to the M × N free
parameters {τ··}. This is always possible, since Willis [23] has proved that the right-hand side
of (7) is a positive definite quadratic form of any polarization field τ (under the assumption that
c (x) ≤ c0, for all x ∈ Ω). In particular, it is a positive definite form on the space of pixel-wise
constant polarization fields, where (17) has one unique minimizer.

We propose to regard this minimizer as the M × N piecewise constant approximation of the
real polarization field arising in the periodic elasticity problem (2). The associated strain field
reads εαβ = E−ηαβ. In section 3.1, it will be shown through an example that εαβ provides a good
estimate of the true strain field.

8



2.3. Practical implementation

Optimization of the bound (17) is carried out by solving stationarity conditions. The above
discussion prove that these conditions reduce to a non-singular linear system in the unknowns
{τ··}; this system will be denoted symbolically A · x = b, where x denotes the following column-
vector

x = [τxx,00, τyy,00,
√

2τxy,00, τxx,01, τyy,01,
√

2τxy,01, . . . , τxx,M−1,N−1, τyy,M−1,N−1,
√

2τxy,M−1,N−1]T ,

and b corresponds to the linear part in the quadratic form (17) to be optimized

b = [Exx, Eyy,
√

2Exy, . . . , Exx, Eyy,
√

2Exy]T .

Finally, writing A explicitly would be a very tedious (if not impossible) task, because of the
convolution term ταβ : ηαβ. This strongly suggests to resort to iterative methods, which [24]

”work by repeatedly improving an approximate solution until it is accurate enough.
These methods access the coefficient matrix A of the linear system only via the
matrix-vector product y = A · x (and perhaps z = AT · x). Thus the user need only
supply a subroutine for computing y (and perhaps z) given x, which permits full
exploitation of the sparsity or other special structure of A”.

Among the numerous methods available, and because of the positive definiteness of the ma-
trix we need to invert, the conjugate gradient method (CG) was selected in this work. According
to Barrett et al. [24], all we need to provide the CG method with is a way to compute A · x, where
A should here be understood as the linear operator underlying the quadratic form (17), and x is
formed with all free parameters {τ}··. We obviously have

A · x =

M−1∑
α=0

N−1∑
β=0

[(
cαβ − c0

)−1
: ταβ + ηαβ

]
, (18)

where {η··} is again given by (15). The computation of A · x can therefore be performed in four
steps

1. computation of the DFT {τ̂··} of the polarization field {τ··},
2. computation of η̂ab = Γ̂ab : τ̂ab in the Fourier space,
3. computation of the inverse DFT {η··} of the field {η̂··},
4. computation of

∑
α,β[(cαβ − c0)−1 : ταβ + ηαβ] in the real space.

Of course, the FFT will advantageously be used to compute the required DFTs. The simi-
larity with the basic discrete scheme is striking. It should however again be emphasized that no
approximation has been made to arrive at this result.

To conclude this section, we note that the computational cost of one iteration of the CG
method is dominated by the evaluation of A · x, which requires the same number of FFTs as one
iteration of the basic scheme. Therefore, a comparison between the basic and the polarization-
based schemes, based of the number of iterations necessary to achieve convergence is fair. Such
a comparison will be presented in section 3.1.
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2.4. On the periodized Green operator
The introduction of the periodized Green operator Γ̂ab defined by (14) follows naturally from

the rigorous derivation presented above. This new operator plays the role in the polarization-
based scheme of the classical Green operator in the basic scheme. The classical and periodized
Green operators are similar in structure, and it is shown in Appendix B that in the limit of infinite
resolution (M,N → ∞), both operators coincide. Our numerical experiments show, however,
that this convergence is very slow (the relative difference can reach 30 % for M = N = 1024);
this indicates that introducing the periodized Green operator is the appropriate way of accounting
for finite-resolution effects.

Willot and Pellegrini [25] have already observed that the quality of the numerical solution of
(1a)–(1d) could be improved if the classical Green operator was replaced by a modified Green
operator; the present work confirms this result. To derive their so-called discrete Green opera-
tor, Willot and Pellegrini [25] first discretize (1a)–(1d) using centered differences; the resulting
discrete system is then solved exactly in Fourier space. Our approach departs from this line of
reasoning, since the continuous nature of problem (1a)–(1d) is kept, and the resulting minimiza-
tion problem is optimized in a finite dimension space.

There is no closed-form expression for Γ̂ab, which must be estimated numerically. Although
this is a rather involved task, it needs to be carried out only once for each value of the grid size
(2 × 2, 4 × 4, 8 × 8, . . . , powers of 2 being required by our implementation of the FFT); indeed,
the results can be stored and retrieved for later use.

In order to facilitate this numerical estimation, (9) must first be recast in a more convenient
form. This is done thanks to the following identity

sinc
π (a + mM)

M
= (−1)m

[a + mM
a

πa
M

]−1

sin
πa
M

= (−1)m a (a + mM)−1 sinc
πa
M
,

which does not apply when a = 0 and m = 0 (in which case the above expression is 1). Assuming
first that neither a, nor b are null, we find the following representation of the periodized Green
operator

Γ̂ab = a2b2 sinc2 πa
M

sinc2 πb
N

+∞∑
m=−∞

+∞∑
n=−∞

(a + mM)−2 (b + nN)−2 Γ̂
(
ka+mM,b+nN

)
.

If a = 0 and b , 0, only the terms with m = 0 remain, and we find

Γ̂0b = b2 sinc2 πb
N

+∞∑
n=−∞

(b + nN)−2 Γ̂
(
k0,b+nN

)
,

as well as a similar expression for b = 0, a , 0. When both a and b are null, we need only
consider the term m = 0, n = 0, which gives Γ̂ (0). Our convention states that this value is zero,
and we therefore get

Γ̂00 = 0.

Assuming the unit cell to be square (W = H) and adopting the same discretization in both
x– and y– directions (M = N), observation of the general expression of the Green operator (5)
shows that Γ̂ab can be derived from the components of the following two tensors

NII = a2b2 sinc2 πa
M

sinc2 πb
N

+∞∑
m=−∞

+∞∑
n=−∞

(a + mM)−2 (b + nN)−2 na+mM,b+nN ⊗ na+mM,b+nN , (19)
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and

NIV = a2b2 sinc2 πa
M

sinc2 πb
N

+∞∑
m=−∞

+∞∑
n=−∞

(a + mM)−2 (b + nN)−2 na+mM,b+nN⊗

na+mM,b+nN ⊗ na+mM,b+nN ⊗ na+mM,b+nN , (20)

where

nab =
aex + bey
√

a2 + b2
.

Again, the boundary cases a = 0 or b = 0 must be treated appropriately. Numerical experi-
ments show that the series for NII and NIV converge very slowly, making their estimation difficult.
The Poisson summation formula [e.g. 26] is always worth trying in such situations, and indeed
proved to be quite efficient. As we were not however able to apply this formula to all components
of tensors NII and NIV, we devised another estimation method, based on the approximation of
integrals by Riemann sums (see Appendix C for a brief description of this numerical scheme in
one dimension).

3. Applications

The general optimization problem stated in the previous section, as well as the numerical
computation of the periodized Green operator have been implemented in two dimensions (plane
strain elasticity). In this section, the properties of the polarization-based scheme are illustrated
with two simple applications, shown on figure 1.

For both applications, square grids were used (M = N). Besides, the most efficient imple-
mentations of the FFT algorithm require the grid-size to be a power of two. Therefore, 8 × 8,
16 × 16, . . . 128 × 128 grids have been considered here.

µi, νi

µm, νm

L

L/2

L

L
/2 µi, νi

µm, νm

L

L/2

L

L
/2

Figure 1: The problem of the square inclusion (left) and the diamond inclusion (right).

3.1. The problem of the square inclusion: comparison with the basic scheme

In this section, we consider a square homogeneous inclusion (shear modulus: µi, Poisson
ratio: νi) embedded in a homogeneous matrix (shear modulus: µm, Poisson ratio: νm). L being
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the size of the (square) unit cell, we set the size of the inclusion to L/2 (see figure 1). The unit
cell is subjected to an imposed deviatoric macroscopic strain

E = E
(
ex ⊗ ey + ey ⊗ ex

)
(E = 1),

and we want to estimate the average elastic energy in the unit-cell, both with the help of the
basic, and the polarization-based schemes. For the application of the basic scheme, the reference
material was chosen according to Michel et al. [11]; for the polarization-based scheme, the matrix
was chosen as the reference material. Depending on the inclusion being softer or stiffer as the
matrix, the resulting estimate of the elastic energy is either an upper- or a lower- bound on the
true elastic energy of the composite. Having the reference medium coincide with one of the
phases of the true composite requires a special numerical treatment, due to the term

(
cαβ − c0

)
in (17), which becomes singular. This is accounted for by enforcing that the corresponding local
value of the polarization field be zero. This constraint is easily incorporated into a conjugate
gradient scheme.

As a first test (figure 2), the contrast between inclusion and matrix is fixed (µi/µm = 0.1), and
the estimated average elastic energy is plotted against the fineness of the grid (square grids, with
M = N, were used here). To the best of our knowledge, there is no closed-form solution for the
problem at hand. We have therefore superimposed the results of a finite element analysis, carried
out with eigh-noded, square elements (based on the same grid), to the FFT-based results.

For numerical schemes providing rigorous bounds on the elasticity, the estimated elastic
energy should be a monotonic function of the resolution M = N = 2n. Indeed, the optimum
polarization field computed on a M × N grid by optimization of (17) can be used as a trial field
for the refined 2M × 2N grid (since the vertices of the coarser grid match with some vertices of
the finer grid). The bound computed on a M × N grid is therefore always worse than the bound
computed on a 2M × 2N grid, and plotting the bound as a function of the resolution leads to a
monotonic curve. For the basic scheme, this curve is not monotonic (see figure 2), which shows
that the basic scheme does not provide a rigorous bound on the elastic energy; we have already
mentioned that this is to be attributed to truncation errors (and the curve becomes indeed much
better behaved when the number of Fourier modes N increases). On the other hand, there is no
truncation error in our scheme, and we have proved that it provides a bound in all circumstances;
this is demonstrated here. It should also be noted that the energy computed from our scheme
hardly differs from the finite element estimate.

As a second test, we now turn to the problem of high-contrast, recalling that neither the basic
[9], nor the accelerated [10] schemes converge when the contrast µi/µm tends to zero (pores) or
infinity (rigid inclusions), as was proved by Michel et al. [11]. There is no such restriction with
the polarization-based scheme, since the matrix to be inverted is always positive (or negative)
definite. This matrix might however have turned out to be ill-conditioned for very high contrasts.
This was not the case in the examples considered here. Before we comment on figure 3, let us
define “convergence” in the present context. In order to ensure fairness of our comparisons, we
selected for both basic and polarization-based schemes, similar (though not identical) stopping
criteria.

For the basic scheme, first, we simply tested the difference between two successive iterates
of the strain field. δ being a small number, the iterations were stopped when

1
MN

M−1∑
α=0

N−1∑
β=0

(
εn+1
αβ − ε

n
αβ

)
:
(
εn+1
αβ − ε

n
αβ

)
≤ δ (E : E) ,

12



0

0.5

1

1.5

2

0 20 40 60 80 100 120 140

R
el

.e
rr

.o
n

av
.e

la
st

ic
en

er
gy

[%
]

N = M

Figure 2: Relative error on the estimated average elastic energy in the problem of the square inclusion, plotted as a
function of the resolution (M = N is the number of pixels along each side of the unit-cell). The fem value obtained at the
highest resolution is taken as the reference for the definition of the relative error. In this application, µm = 1, νm = 0.3,
µi = 0.1 and νi = 0.2. The continuous line represents the fem reference calculation, which can hardly be distinguished
from the polarization-based results (+). When the resolution is poor, the basic scheme (×) does not provide a bound on
the elastic energy.

which is in essence the stopping criterion proposed by Eyre and Milton [10]. Moulinec and
Suquet [8, 9] selected a different criterion, based on local equilibrium.

For the polarization-based scheme, we adopted a slighlty more stringent criterion, which was
threefold

1
MN

M−1∑
α=0

N−1∑
β=0

(
τn+1
αβ − τ

n
αβ

)
:
(
τn+1
αβ − τ

n
αβ

)
≤

δ

MN

M−1∑
α=0

N−1∑
β=0

τn
αβ : τn

αβ,

1
MN

M−1∑
α=0

N−1∑
β=0

ρn+1
αβ : ρn+1

αβ ≤ δ (E : E) ,∣∣∣F n+1 − F n
∣∣∣ ≤ δF n,

where F n denotes the estimated elastic energy and ρn
αβ the residual at iteration n, see equations

(15) and (18)
ρn
αβ =

(
cαβ − c0

)−1
: τn

αβ + ηn
αβ − E.

It is recalled that one iteration of the polarization-based scheme is equivalent (in terms of
CPU-time) to one iteration of the basic scheme. The comparison presented below is therefore
fair. Figure 3 plots, for both basic and polarization-based schemes, the number of iterations
necessary to achieve convergence against the contrast µi/µm. Michel et al. [11] proved that the
number of iterations for the basic scheme scales as max (µi/µm, µm/µi), which is confirmed by this
numerical experiment. The asymptotic behaviour of the number of iterations for the polarization-
based scheme is much more favourable. Indeed, this number levels off when the contrast is high,
so that infinite contrasts can be reached at virtually no additional computational cost. It should
further be noticed that for any value of µi/µm, convergence of the polarization-based scheme is
much faster (sometimes by several orders of magnitude) than the basic scheme.
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Figure 3: Number of iterations necessary to reach convergence in the problem of the square inclusion (µm = 1, νm = 0.3,
µi variable, and νi = 0.2). The calculations were carried out on a 128×128 grid, and the stopping criteria described in the
text were used with δ = 10−10. The polarization-based scheme (+) always converges in a bounded number of iterations,
while the basic scheme (×) requires an increasing number of iterations when the contrast increases.

The two previous tests have shown that the polarization-based scheme converges in a finite
number of iterations for any grid-size and elastic contrast. Besides, convergence takes place in
a monotonic way, in the sense that the estimated elastic energy is a decreasing function of the
resolution. It is then natural to ask how the solution to the minimization problem (17) relates to
the solution to the initial problem (1a)–(1d). Since the energy principle of Hashin and Shtrikman
states that the minimum in (7) is reached for τ = (c − c0) : ε, the optimum discrete polarization
field {τ··} can be seen as an estimate of the optimum continuous polarization field. In turn, this
discrete polarization field can be used to derive an estimate of the strain field

ε̂ab = −Γ̂ab : τ̂ab, εαβ = E + DFT−1[ε̂··]αβ.

This calculation was carried out on the problem of the square inclusion, where the estimated
local strains derived from the polarization-based method were in very good agreement with their
finite element counterpart. This is illustrated on figure 4 in the case of a porous medium (µi = 0),
for the shear strains εxy measured along the lower boundary of the unit-cell, see figure 1 (left).

3.2. The problem of the diamond inclusion: discretization errors

The problem we now consider is represented on figure 1 (right). Again, a square homoge-
neous inclusion (shear modulus: µi, Poisson ratio: νi) is embedded in a homogeneous matrix
(shear modulus: µm, Poisson ratio: νm), the difference being that the inclusion has been rotated
by π/4 (the inclusion is also smaller). As the matrix–inclusion boundary is oblique, attention
must be paid to the boundary pixels, which are composite. To the best of our knowledge, there is
no consistent rule to homogenize composite pixels in the basic FFT method. In the polarization-
based method, equation (10) provides the averaging rule which must be used in such cases. It
could be argued that, asymptotically, any averaging rule would do, since the total area of the
boundary pixels tends to zero. This is certainly true of infinite resolutions, but not of finite reso-
lutions, in which case the status of bound could be lost, as illustrated below.
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Figure 4: Comparison of the shear strain εxy obtained with the finite element method (continuous line) and the
polarization-based scheme (+), for the problem of the square inclusion. In this example, the inclusion is void (µi = 0,
µm = 1, νm = 0.3). The fem solution was computed with 128 × 128 quadratic elements, while the polarization-based
solution was obtained on a 32 × 32 grid. The strains are measured along the lower boundary of the unit-cell, see figure 1
(left).

Since no comparison with the basic scheme will be carried out in this section, we select
the case of an infinite contrast (void inclusion). Two strategies are adopted to carry out the
discretization of the problem

• strategy 1: the boundary pixels get their elasticity from equation (10),

• strategy 2: all boundary pixels are arbitrarily affected to the porous phase.

In both strategies, the matrix is chosen as the reference material (µ0 = µm, ν0 = νm). The
unit-cell is submitted to the same loading as in the previous problem (unit macroscopic shear
strain), and a reference calculation is established with the finite element method (six-noded el-
ements). The estimated average elastic energy is represented as a function of the resolution on
figure 5. Since the reference medium is stiffer than the matrix, the polarization-based estimate
of the elastic energy should be an upper-bound of the true elastic energy. Besides, as the res-
olution increases, this estimate should dicrease (the minimizer in (17) being seeked on a larger
space). This is indeed observed if strategy 1 is applied, but fails to be true with strategy 2, which
emphasizes the importance of attributing energetically consistent properties to composite pixels.

It should be noted that even with the correct strategy for the homogenization of boundary
pixels, the quality of the upper bound is poorer than in the previous case (compare figure 5
with figure 2). It has been realized, however, that the previous choice of the reference medium
(µ0 = µm, ν0 = νm) was not optimal. For example, selecting µ0 = 17.5 and ν0 = −1 leads to a
bound which is much closer to the fem estimate.

The question of the choice of the optimum reference medium is usually stated in different
terms. Since convergence of the basic iterative scheme is critical, the reference medium is said
to be optimum if the number of iterations necessary to reach convergence is minimum. We have
already shown that convergence is not an issue with the polarization-based method. From the
point of view of this method, therefore, the reference medium will be optimum if it leads to the
best bound on the elasticity. This question needs to be further investigated.
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Figure 5: Estimated average elastic energy in the problem of the diamond inclusion, plotted as a function of the resolution.
In this application, µm = 1, νm = 0.3, µi = 0. The continuous line represents the fem reference calculation. The
polarization-based (×) scheme fails to deliver an upper bound on the energy when strategy 2 is adopted (see text). When
equation (10) is applied, this inconsistency disappears (+). By also selecting a better suited reference material, the bound
is greatly improved (4).

Conclusion

In this paper, we have shown that shifting from the direct discretization of the Lippmann-
Schwinger equation to the minimization of the energy of Hashin and Shtrikman [16] on an ap-
propriate subspace shed a new light on FFT-based methods for periodic elasticity.

From the computational point of view, the new, polarization-based scheme is not radically
different from the basic scheme. In both methods, a large linear operator needs to be iteratively
inverted. At each iteration, updates of the solution are computed by partial applications of this
operator in the real and the Fourier space. This clever ”operator-splitting” technique was at the
origin of the efficiency of the basic scheme [8, 9], the authors of which should be given full
credit.

From the theoretical point of view, we believe that the polarization-based scheme improves
on the basic scheme. The linear operator underlying this scheme is positive (or negative) def-
inite, which advocates for the use of conjugate gradient methods instead of Neumann series.
Convergence is therefore much faster, even at infinite contrast, for which the number of itera-
tions remains bounded. Regardless of the resolution, the new scheme also provides a rigorous
bound on the elastic energy. Finally, composite voxels can be accurately accounted for.

Several developments of the polarization-based technique can be thought of. First of all,
the multigrid technique proposed by Eyre and Milton [10] should be implemented, in order
to try and improve the (already quite high) convergence rate. Second, extensions to nonlinear
behaviours, similar to the basic scheme [8, 9] should be considered. Third the determination
of the optimum reference medium should be investigated theoretically. Again, it is emphasized
that within the framework of the polarization-based scheme, optimum should be understood as
”leading to the tightest bound on the elastic energy”, not as ”minimizing the number of iterations
to reach convergence”.
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Appendix A. Conventions regarding Fourier series and discrete Fourier transforms

As there is always an ambiguity regarding the signs (±ı) and prefactors of Fourier transforms
at large, we gather in this section the conventions we adopted throughout this paper. Only one-
dimensional Fourier transforms are adressed here, the extension to higher dimensionality being
straightforward.

Conventions regarding Fourier series. We consider a univariate function x 7→ f (x), periodic
with period L. We then define the Fourier coefficients of f as

f̂ (ka) =
1
L

∫ L

0
f (x) exp (−ıkax) d x,

where the wave number ka takes the discrete values ka = 2aπ/L. Being periodic, f can be
developped as a Fourier series, which reads

f (x) =

+∞∑
a=−∞

f̂ (ka) exp (ıkax) .

Conventions regarding the discrete Fourier transform (DFT). We now consider a finite sequence
of M numbers, x0, . . . , xM−1. By definition, the DFT of {x·} is the sequence {x̂·}

x̂a = DFT[x·]a =

M−1∑
α=0

xα exp
(
−2ıπ

αa
M

)
.

Although the above definition holds for any value of a ∈ Z, it can easily be checked that
x̂a+M = x̂a. Therefore, the DFT only defines M different numbers x̂0, . . . , x̂M−1. In fact, given its
DFT, the original sequence may be retrieved through the following inversion formula

xα = DFT−1[x̂·]α =
1
M

M−1∑
a=0

x̂a exp
(
2ıπ

αa
M

)
.

Finally, we make use in this paper of the Plancherel theorem, which states that the scalar
product of two sequences can be performed in the real space or in the Fourier space

M−1∑
α=0

x∗αyα =
1
M

M−1∑
a=0

x̂∗aŷa.

Appendix B. Asymptotic behavior of the periodized Green operator

The derivation of the polarization-based scheme requires the introduction of a periodized
Green operator, defined by (5). This operator accounts explicitly (and exactly) for the finite res-
olution (M,N < ∞), and a natural question arises: does the periodized Green operator coincide
with the original Green operator when the resolution tends to infinity?

The purpose of this section is to show that the answer to this question is yes. Although our
proof is not general, practical applications of FFT-based methods generally fall into the case
considered below.
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In what follows, we restrict ourselves to square unit-cells (W = H), with same discretization
in both x– and y– directions (M = N). Then for fixed values of a and b, we seek the limit

lim
N→+∞

Γ̂ab = lim
N→+∞

+∞∑
m=−∞

+∞∑
n=−∞

sinc2 π (a + mN)
N

sinc2 π (b + nN)
N

Γ̂
[
(a + mN) ex + (b + nN) ey

]
.

The above limit can be found by a straightforward application of Lebesgue’s dominated con-
vergence theorem. It is therefore necessary to evaluate the limit (when N → +∞) of each term
of the above series. We first have

lim
N→+∞

sinc2 π (a + mN)
N

=

1 if m = 0,
0 if m , 0,

and it remains then to show that Γ̂
(
ka+mN,b+nN

)
has a finite limit

lim
N→+∞

Γ̂
(
ka+mN,b+nN

)
=

lim
N→+∞

Γ̂

 (a + mN) ex + (b + nN) ey√
(a + mN)2 + (b + nN)2

 =


Γ̂(kab) if m = 0 and n = 0,
Γ̂(ey) if m = 0 and n , 0,
Γ̂(ex) if m , 0 and n = 0,
Γ̂(mex + ney) if m , 0 and n , 0.

Gathering the previous equations, we finally find

lim
N→+∞

Γ̂ab = Γ̂(kab).

Appendix C. On the estimation of some series by way of Riemann sums

Let f (x) be a univariate function defined for all x ≥ 0. We suppose that f is positive, and
monotonically decreasing. M being a fixed (positive) number, we want to estimate numerically
the following series

S (a) =

+∞∑
m=0

f (a + mM) .

A natural way to do this is to consider the truncated sum

S T (a) =

T∑
m=0

f (a + mM) ,

where the truncation value T is chosen large enough to achieve the required accuracy. If the series
is slowly convergent, T might be prohibitively large. In order to improve this convergence, let us
consider the remainder RT (a) = S (a)− S T (a). f being positive and monotically decreasing, the
following bounds hold for any m

1
M

∫ a+(m+1)M

a+mM
f (x) d x ≤ f (a + mM) ≤

1
M

∫ a+mM

a+(m−1)M
f (x) d x,

19



which, on summation for m ≥ T + 1, gives bounds on the remainder RT

1
M

F [a + (T + 1) M] ≤ RT (a) ≤
1
M

F (a + T M) ,

where

F (a) =

∫ +∞

a
f (x) d x.

If F (a) is known in closed-form, RT (a) can be estimated as the mean of the two bounds,
the numerical error being bounded by their difference. In other words, the improved estimate of
S (a) reads

S T (a) +
1

2M
{F [a + (T + 1) M] + F (a + T M)} ,

and an upper bound on the numerical error is

F (a + T M) − F [a + (T + 1) M] .

Generalization to doubly infinite sums (ranging from m = −∞ to m = +∞), as well as
bivariate functions is straightforward. Close inspection of (19) and (20) in fact shows that i. all
series comply with the assumptions made in this appendix, and ii. a closed-form exists for the
corresponding required integrals. Numerical experiments showed that the rate of convergence
was significantly improved (in the worst case, the error scales as T−1 in the initial scheme, and
as T−2 in our improved scheme).
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