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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Ecole des Ponts ParisTech

https://core.ac.uk/display/48339829?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal-enpc.archives-ouvertes.fr/hal-00628651v2


A NEW MODEL FOR SHALLOW VISCOELASTIC FLUIDS

FRANÇOIS BOUCHUT AND SÉBASTIEN BOYAVAL

Abstract. We propose a new reduced model for gravity-driven free-surface flows of shallow

viscoelastic fluids. It is obtained by an asymptotic expansion of the upper-convected Maxwell

model for viscoelastic fluids. The viscosity is assumed small (of order epsilon, the aspect ratio of

the thin layer of fluid), but the relaxation time is kept finite. Additionally to the classical layer

depth and velocity in shallow models, our system describes also the evolution of two components

of the stress. It has an intrinsic energy equation. The mathematical properties of the model are

established, an important feature being the non-convexity of the physically relevant energy with

respect to conservative variables, but the convexity with respect to the physically relevant pseudo-

conservative variables. Numerical illustrations are given, based on a suitable well-balanced finite-

volume discretization involving an approximate Riemann solver.
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1. Introduction: thin layer approximations of non-Newtonian flows

There are many occurences of free-surface non-Newtonian flows over an inclined topography

in nature, for instance geophysical flows: mud flows, landslides, debris avalanches . . . . Their

mathematical prediction is important, typically for safety reasons in connection with land use

planning in the case of geophysical flows. But their modelling is still difficult, as one can conclude

from the continuing intense activity in that area (see the reviews [1, 20] e.g. plus the numerous

references cited therein and below). In this paper, our purpose is (i) to derive a new simple model

for a thin layer of viscoelastic non-Newtonian fluid over a given topography at the bottom when

the motion is essentially driven by gravity forces and (ii) to numerically investigate the prediction

of that simple model in benchmark cases.

Our methodology follows the standard derivation of the Saint-Venant model for gravity-driven

shallow water flows, as developped in [26] for instance. For non-Newtonian fluids, there already

exist similar projects in the literature. But to our knowledge, they use different models as starting

point: power-law and Bingham models [24, 17], or a kinetic model for microscopic FENE dumb-

bells [40] (see also the Section 6.2 for comparison with a kinetic interpretation of our model using

Hookean dumbbells). Here, we derive a reduced form of the Upper-Convected Maxwell (UCM)

equations, a widely-used differential model for viscoelastic fluids valid in generic geometries, in

the specific case of gravity-driven free-surface thin-layer flows over an inclined topography. In

particular, the influence of each term in the equations is compared with the aspect ratio

(1.1) h/L ≈ ǫ≪ 1

between the layer depth h and its longitudinal characteristic length L as a function of a small

parameter ǫ.

The reduced model obtained is computationally much less expensive to solve numerically than

the full UCM model with an unknown free surface (compare for instance with numerical simulations

in [41] of a full 3D model). So we can easily investigate its predictions in a number of test cases,

to show the capabilities of the model. We note two important aspects from the mathematical

viewpoint to discretize our model. It is endowed with a natural energy law (inherited from the

UCM model) but has a non-standard hyperbolic structure (the physically relevant energy is not

convex with respect to the conservative variables). These features of our model have important

consequences on the numerical simulation. Whereas we can only perform numerical simulations in

a formal way (because the non-standard hyperbolic structure does not fit in the usual numerical

analysis), we can nevertheless confirm that they are physically meaningful (owing to the natural

energy law, satisfied at the discrete level).

Regarding the literature, we would like to make two further comments in order to better situate

our work and its originality. On the one hand, numerous models for thin layers of non-Newtonian

fluids have already been derived in the physics literature. We are aware of only one reduced version

of the UCM model which is very close to ours, see [22, 23] and a sketch of that work in [42]. But the

reduced model, obtained with another methodology and with a different perspective (ad-hoc model
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to investigate the break-up and swell of free jets and thin films rather than asymptotic analysis of

general fluid equations), finally applies in different conditions (without gravity and topography).

The other models we are aware of, typically obtained either with a different methodology or

(sometimes and) in different conditions (like spin coating e.g.), are different, see for instance [44,

31, 43, 30, 35]. On the other hand, recent works in the mathematical literature also studied

reduced models for thin layers of viscoelastic flows. For instance [7, 6] derive reduced models for

the Oldroyd-B (OB) system of equations, where a purely viscous component div(ηsD(u)) is added

to the stress term in the right-hand side of (2.2) in comparison with the UCM equations. But

our project is different in essence from the thin layer models obtained for those viscoelastic flows

without free surface and essentially driven by viscosity instead of gravity. Recall that here we

focus on gravity-driven shallow regimes, and that is why we consider the UCM model in particular

rather than the OB model (the viscosity only plays a minor role here).

In Section 2 below, we recall the UCM model for viscoelastic fluids and some of its properties

in the mathematical setting that is adequate to our model reduction. Then our new reduced model

is derived in Section 3 under a given set of clear mathematical hypotheses (which we classically

cannot embed into an existence theory for solutions to the non-reduced UCM system of equations).

Section 4 is devoted to the study of some mathematical properties of our new reduced model. In

Section 5, we provide numerical simulations in benchmark situations where shallow viscoelastic

flows could be advantageously modelled by our new system of equations. Last, in Section 6, a

physical interpretation of situations modelled by our system of equations is given in conclusion,

along with threads for next studies.

2. Mathematical setting with the Upper-Convected Maxwell model for

viscoelastic fluids

The evolution for times t ∈ [0,+∞) of the flow of a given portion of some viscoelastic fluid

confined in a moving domain Dt ⊂ R
d (d = 2 or 3) with piecewise smooth boundary ∂Dt is governed

by the following set of equations, the so-called Upper-Convected Maxwell (UCM) model [4, 9, 42]:

(2.1) divu = 0 in Dt,

(2.2) ∂tu+ (u ·∇)u = −∇p+ div τ + f in Dt,

(2.3) ∂tτ + (u ·∇)τ = (∇u)τ + τ (∇u)T +
1

λ
(ηpD(u)− τ ) in Dt,

where:

• u : (t,x) ∈ [0,+∞)×Dt 7→ u(t,x) ∈ R
d is the velocity of the fluid,

• D(u) : (t,x) ∈ [0,+∞) × Dt 7→ D(u)(t,x) ∈ R
d×d
S , where R

d×d
S denotes symmetric real

d×d matrices, is the rate-of-strain tensor linked to the fluid velocity u through the relation

(2.4) D(u) =
1

2
(∇u+∇uT ).

• p : (t,x) ∈ (0,+∞)×Dt 7→ p(t,x) ∈ R is the pressure,
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• τ : (t,x) ∈ [0,+∞)×Dt 7→ τ (t,x) ∈ R
d×d
S is the symmetric extra-stress tensor,

• ηp, λ > 0 are physical parameters, respectively a viscosity only due to the presence of

elastically deformable particles in the fluid, and a relaxation time corresponding to the

intrinsic dynamics of the deformable particles,

• f : (t,x) ∈ [0,+∞)×Dt 7→ f(t,x) ∈ R
d is a body force.

Notice that we have assumed the fluid homogeneous (with constant mass density, hence normalized

to one). We also refer to the Section 6 where more details about the UCM model are given along

with a physical interpretation of our results. From now on, we assume translation symmetry

(d = 2), we endow R
2 with a cartesian frame (ex, ez) such that f ≡ −gez corresponds to gravity

and we assume that Dt has the following geometry (in particular, surface folding like in the case

of breaking waves is not possible):

(2.5) ∀t ∈ [0,+∞) , x = (x, z) ∈ Dt ⇔ x ∈ (0, L), 0 < z − b(x) < h(t, x),

where b(x) is the topography elevation and b(x) + h(t, x) is the free surface elevation of our thin

layer of fluid. Note that the width h(t, x) is an unknown of the problem (it is a free boundary

problem). We shall denote as ax (respectively az) the component in direction ex (resp. ez) of any

vector (that is a rank-1 tensor) variable a, and similarly the components of higher-rank tensors :

axx, axz, . . . We denote by n : x ∈ (0, L) → n(x) the unit vector of the direction normal to the

bottom and inward the fluid:

(2.6) nx =
−∂xb√

1 + (∂xb)2
nz =

1√
1 + (∂xb)2

.

We supply the UCM model with boundary conditions for all t ∈ (0,+∞): pure slip at bottom,

(2.7) u · n = 0, for z = b(x), x ∈ (0, L),

(2.8) τn = ((τn) · n)n, for z = b(x), x ∈ (0, L),

kinematic condition at the free surface Nt+N ·u = 0 where (Nt,N) is the time-space normal, i.e.

(2.9) ∂th+ ux∂x(b + h) = uz, for z = b(x) + h(t, x), x ∈ (0, L),

no tension at the free surface,

(2.10) (pI − τ ) · (−∂x(b+ h), 1) = 0, for z = b(x) + h(t, x), x ∈ (0, L),

plus (for example) inflow/outflow boundary conditions or periodicity in x. We insist on (2.8)

without friction. Adding a friction term in (2.8) would not yield the same result. Finally, the

Cauchy problem is supplied with initial conditions

(2.11) u(0,x) = u0(x), τ (0,x) = τ 0(x), h(0, x) = h0(x),

assumed sufficiently smooth for a solution to exist. Note indeed that the existence theory for

solutions to the UCM system (2.1–2.2–2.3) is still very limited (see e.g. [28, 29]), like for non-

Newtonian flows with a free surface (see e.g. [32, 39] for the so-called Oldroyd-B model with a

viscous term in (2.2)).
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Last, we recall some essential features of the UCM model (2.1–2.11). Let σ : (t,x) ∈ [0,+∞)×
Dt 7→ σ(t,x) ∈ R

d×d
S be the symmetric conformation tensor linked to the symmetric extra-stress

tensor τ through the relation

(2.12) σ = I +
2λ

ηp
τ ,

where I denotes the d-dimensional identity tensor. The UCM model can be written using the

variable σ instead of τ . Indeed,
ηp

2λ divσ replaces div τ in (2.2), and (2.3) should be replaced with

(2.13) ∂tσ + (u ·∇)σ = (∇u)σ + σ(∇u)T +
1

λ
(I − σ) in Dt .

In addition, the following properties are easily derived following the same steps as in [16] for the

Oldroyd-B model (except for the absence of the dissipative viscous term ηs|D(u)|2). First, for

physical reasons, σ should take only positive definite values (this is easily deduced when σ is

interpreted as the Grammian matrix of stochastic processes, see [34] e.g. and Section 6.2). The

initial condition (2.11) should thus be chosen so that σ(t = 0) is positive definite. Provided

the system (2.1–2.11) has sufficiently smooth initial conditions and the velocity field u remains

sufficiently smooth, σ indeed remains positive definite (see [16] e.g.; where the viscosity ηs plays

no role in the proof). Second, the system (2.1–2.11) is endowed with an energy (the physical free

energy)

(2.14) F (u, τ ) =

∫

Dt

(
1

2
|u|2 + ηp

4λ
tr(σ − lnσ − I)− f · x

)
dx

which, following Reynolds transport formula and [16], is easily shown to decay as

(2.15)
d

dt
F (u, τ ) = − ηp

4λ2

∫

Dt

tr(σ + σ−1 + 2I)dx .

3. Formal derivation of a thin layer approximation

Our goal is to derive a reduced model approximating (2.1–2.11) in the thin layer regime h≪ L

where L is a characteristic length of the flow. We follow the formal approach of [11, 15]. Our main

assumption is thus h/L = O(ǫ), thereby introducing an adimensional parameter ǫ → 0. In the

following, we simply write

(H1) h = O(ǫ),

where one should infer the unit (L) and the limit (ǫ → 0). This corresponds to a rescaling of

the space coordinates with an aspect ratio ǫ between the vertical and horizontal dimensions. We

shall also implicitly use a characteristic time T over which the physical variables vary significantly.

Then, our task can be formulated as: find a set of non-negative integers

I = (Iux , Iuz , Ip, Iτxx , Iτxz , Iτzz)

such that a closed system of equations for variables (ũ, p̃, τ̃ ) approximating (u, p, τ ) holds and

(3.1) (u− ũ, p− p̃, τ − τ̃ ) = O(ǫI)
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is a uniform approximation on Dt (where the powers are applied componentwise). Note that

in (3.1) and all along the paper, O has to be understood componentwise in the unit corresponding

to the variable. In particular, the previous assumption (3.1) more explicitly signifies

(
T

L
(u− ũ),

T 2

L2
(p− p̃),

T 2

L2
(τ − τ̃ )

)
= O(ǫI) .

We proceed heuristically, increasing little by little the degree of our assumptions on I. Hopefully,

the reduced model found that way corresponds to a physically meaningful regime.

We recall that another viewpoint is to find a closed system of equations for depth-averages of the

main variables of the system (2.1–2.11). The link with our approach is as follows. The conservation

of mass for an incompressible, inviscid fluid governed by (2.1) within a control volume governed by

the evolution of the free-surface height as given by the kinematic boundary condition (2.9) and the

boundary condition (2.7) at the bottom reads as an evolution equation for the free-surface height

h (using the Leibniz rule) where the depth-averaged velocity profile ũx := 1
h

∫ b+h

b
uxdz enters,

(3.2)

∀t, x ∈ [0,+∞)× (0, L) 0 =

∫ b+h

b

(∂xux + ∂zuz)dz = ∂th+ ∂x

(∫ b+h

b

uxdz

)
= ∂th+ ∂x(hũx) .

The challenge in the derivation of a reduced model for thin layers is then to find a closure for the

evolution of ũx in terms of the variables (ũ, p̃, τ̃ ). In particular, depth-averaging the equation for

ux with the boundary conditions (2.9–2.8–2.10) gives, using again the Leibniz rule,

(3.3) ∂t

(∫ b+h

b

ux dz

)
+ ∂x

(∫ b+h

b

(
u2x + p− τxx

)
dz

)
= [(τxx − p)∂xb− τxz] |b,

showing that a typical problem is to write an approximation for
∫ b+h

b
u2x and for the source term

in the right-hand-side of (3.3) in terms of (ũ, p̃, τ̃ ).

We now give the detailed system of equations (2.1–2.11) in the 2-d geometry of interest:

∂xux + ∂zuz = 0,(3.4a)

∂tux + ux∂xux + uz∂zux = −∂xp+ ∂xτxx + ∂zτxz,(3.4b)

∂tuz + ux∂xuz + uz∂zuz = −∂zp+ ∂xτxz + ∂zτzz − g,(3.4c)

∂tτxx + ux∂xτxx + uz∂zτxx = (2∂xux)τxx + (2∂zux)τxz +
ηp
λ
∂xux − 1

λ
τxx,(3.4d)

∂tτzz + ux∂xτzz + uz∂zτzz = (2∂xuz)τxz + (2∂zuz)τzz +
ηp
λ
∂zuz −

1

λ
τzz,(3.4e)

∂tτxz + ux∂xτxz + uz∂zτxz = (∂xuz)τxx + (∂zux)τzz +
ηp
2λ

(∂zux + ∂xuz)−
1

λ
τxz,(3.4f)
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where we have used (3.4a) to simplify (3.4f). The boundary conditions (2.7), (2.8) and (2.10) write:

uz = (∂xb)ux at z = b ,(3.5a)

− (∂xb)τxx + τxz = −∂xb
(
−(∂xb)τxz + τzz

)
at z = b ,(3.5b)

− ∂x(b+ h)(p− τxx)− τxz = 0 at z = b+ h ,(3.5c)

∂x(b+ h)τxz + (p− τzz) = 0 at z = b+ h,(3.5d)

while the kinematic condition (2.9), following (3.2), writes

(3.6) ∂th+ ∂x

(∫ b+h

b

ux dz

)
= 0.

We first simplify the derivation of a thin layer regime by assuming that the tangent of the angle

between n and ez is uniformly small

(H2) ∂xb = O(ǫ) as ǫ→ 0 ,

hence only smooth topographies with small slopes are treated here. This restriction could prob-

ably be alleviated following the ideas exposed in [15], though at the price of complications that

seem unnecessary for a first presentation of our reduced model. On the contrary, the following

assumptions are essential:

(H3) ηp = O(ǫ), λ = O(1).

(As explained previously, we recall that the assumptions (H3) hold in the unit of the variable,

which is here L2/T and T respectively.) As usual in Saint Venant models for avalanche flows, we

are looking for solutions without small scale in t and x (thus only with scales T and L), but with

scale of order ǫ in z (in fact, ǫL), which can be written formally as

(3.7) ∂t = O(1), ∂x = O(1), ∂z = O(1/ǫ)

in the respective units 1/T, 1/L, 1/L. From now on, for the sake of simplicity, we shall not write

explicitly the units as functions of T and L wherever they come into play.

We are looking for solutions with bounded velocity u with bounded gradient ∇u. Thus accord-

ing to (3.7) and to (3.5a), we are led to the following assumptions on the orders of magnitude

(H4) ux = O(1), uz = O(ǫ), ∂zux = O(1), as ǫ→ 0.

(A typical profile for ux reads A(t/T, x/L)+ zB(t/T, x/L), with any dimensional functions A and

B of the adimensional variables t/T and x/L.)

According to (2.3), a typical value for τ is ηpD(u). Thus we assume accordingly that

(H5) τ = O(ǫ) as ǫ→ 0.

We deduce from above that there exists some function u0x(t, x) depending only on (t, x) such that

(3.8) ux(t, x, z) = u0x(t, x) +O(ǫ).

Then, following the classical procedure [26, 11, 15, 37], we find the following successive implications.
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i) From the equation (3.4c) on the vertical velocity uz, we get by neglecting terms in O(ǫ)

(3.9) ∂zp = ∂zτzz − g +O(ǫ) .

Hence ∂zp = O(1), and the boundary condition (3.5d) gives that p = O(ǫ), indeed

(3.10) p = τzz + g(b+ h− z) +O(ǫ2) .

ii) Next, from the equation (3.4b) on the horizontal velocity ux we get

(3.11) ∂tu
0
x + u0x∂xu

0
x = ∂zτxz +O(ǫ) .

The boundary condition (3.5b) gives τxz|z=b = O(ǫ2), thus with (3.11) it yields

(3.12) τxz = (∂tu
0
x + u0x∂xu

0
x)(z − b) +O(ǫ2) .

In addition the boundary condition (3.5c) implies that τxz|z=b+h = O(ǫ2). We conclude

therefore that

(3.13) ∂tu
0
x + u0x∂xu

0
x = O(ǫ), τxz = O(ǫ2).

iii) The previous result combined with the equation (3.4f) on τxz implies ∂zux = O(ǫ), hence

(3.14) ux(t, x, z) = u0x(t, x) +O(ǫ2) .

This “motion by slices” property is stronger than the original one (3.8).

iv) Using (3.14) and (3.10) in (3.4b) improves (3.11) to

(3.15) ∂tu
0
x + u0x∂xu

0
x = ∂x(τxx − τzz − g(b+ h)) + ∂zτxz +O(ǫ2) ,

which gives, with the boundary condition (3.5b) [τxz − ∂xb(τxx − τzz)] |z=b = O(ǫ3),

(3.16)
τxz = [∂xb(τxx − τzz)] |z=b −

∫ z

b

∂x(τxx − τzz) dz

+
(
∂tu

0
x + u0x∂xu

0
x + g∂x(b+ h)

)
(z − b) +O(ǫ3).

But according to (3.5c) combined with (3.10), one has [τxz − ∂x(b+ h)(τxx − τzz)] |z=b+h =

O(ǫ3), thus with (3.15)

(3.17)
τxz = [∂x(b + h)(τxx − τzz)] |z=b+h −

∫ z

b+h

∂x(τxx − τzz) dz

+
(
∂tu

0
x + u0x∂xu

0
x + g∂x(b + h)

)
(z − b− h) +O(ǫ3).

Therefore, the difference of (3.16) and (3.17) yields

(3.18)
(
∂tu

0
x + u0x∂xu

0
x + g∂x(b + h)

)
h = ∂x

(∫ b+h

b

(τxx − τzz) dz

)
+O(ǫ3) .

We note that τxz is then given by (3.16) or (3.17) as a function of u0x and (τxx − τzz), and

the evolution equation (3.18) for u0x is exactly the one that one would have obtained after

integrating (3.15) in the ez direction and using the boundary conditions (3.5b) and (3.5c)

combined with (3.10). It can also be obtained from (3.3).
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v) The result (3.14) with the incompressibility condition (3.4a) and the impermeability condi-

tion (3.5a) at the bottom also allows to compute the vertical component of the velocity

(3.19) uz = (∂xb)ux|z=b −
∫ z

b

∂xux dz = (∂xb)u
0
x − (z − b)∂xu

0
x +O(ǫ3) ,

which is of course consistent with our hypotheses about uz = O(ǫ).

vi) Collecting all the previous results, (3.4d) and (3.4e) up to O(ǫ2) give

(3.20)



∂tτxx + u0x∂xτxx +
(
(∂xb)u

0
x − (z − b)∂xu

0
x

)
∂zτxx = 2(∂xu

0
x)τxx +

ηp∂xu
0
x − τxx
λ

+O(ǫ2),

∂tτzz + u0x∂xτzz +
(
(∂xb)u

0
x − (z − b)∂xu

0
x

)
∂zτzz = −2(∂xu

0
x)τzz −

ηp∂xu
0
x + τzz
λ

+O(ǫ2),

which closes the system of equations for the reduced model.

vii) The previous results which give τxz at order O(ǫ3), that is (3.16) or (3.17), are consistent with

the equation (3.4f) for τxz at order O(ǫ3), from which one could next obtain an approximation

for ∂zux up to O(ǫ2), that is

(3.21) ∂tτxz + u0x∂xτxz + ((∂xb)u
0
x + (z − b)∂xu

0
x)∂zτxz +

1

λ
τxz

= ∂x
(
(∂xb)u

0
x(z − b) + ∂xu

0
x

) (
τxx +

ηp
2λ

)
+ ∂zux

(
τzz +

ηp
2λ

)

with τxx and τzz given up to order O(ǫ2) by (3.20). This procedure fixes the next term in

the expansion (3.14). Note in particular that we do not have ux(t, x, z) = u0x(t, x) + O(ǫ3)

(dependence on the vertical coordinate subsists at order ǫ2).

To sum up, dropping ǫ, we have obtained a closed system of equations

(3.22)





∂th+ ∂x(hu
0
x) = 0,

∂t(hu
0
x) + ∂x

(
h(u0x)

2 + g
h2

2
+

∫ b+h

b

(τzz − τxx) dz

)
= −g(∂xb)h,

∂tτxx + u0x∂xτxx +
(
(∂xb)u

0
x − (z − b)∂xu

0
x

)
∂zτxx = 2(∂xu

0
x)τxx +

ηp
λ
∂xu

0
x − 1

λ
τxx,

∂tτzz + u0x∂xτzz +
(
(∂xb)u

0
x − (z − b)∂xu

0
x

)
∂zτzz = −2(∂xu

0
x)τzz −

ηp
λ
∂xu

0
x − 1

λ
τzz,

which allows to compute consistently uniform asymptotic approximations of (ux, uz, p, τxx, τzz, τxz)

as variables of order O(ǫ(0,1,1,1,1,2)), up to errors in O(ǫ(2,3,2,2,2,3)). These correspond to approxi-

mations of (3.4a)-(3.6) up to O(ǫ(2,2,1,2,2,3,3,3,3,2,3)).

In (3.22), b depends only on x, h and u0x depend on (t, x), while τxx and τzz depend on

(t, x, z). However, observe that the momentum conservation equation invokes only
∫ b+h

b τxxdz and∫ b+h

b
τzzdz, which do not depend on z. Now, using Leibniz rule and the boundary conditions,

it is possible to get equations for
∫ b+h

b τxxdz and
∫ b+h

b τzzdz (integrating those for τxx and τzz ,

see (4.4) below in Section 4) and form a closed system with the equations for the momentum and

mass conservation. Another equivalent way to derive the same closed system of equations is to
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assume that τxx and τzz are independent of z (at least at first-order in ǫ). In the rest of this

paper, we shall mainly be concerned with that simplified system of equations, whose mathematical

properties are easier to study.

4. The new reduced model and its mathematical properties

The reduced model (3.22) is endowed with an energy equation similar to the one for the full

UCM model. Obviously, the whole system of equations for τ in the reduced model rewrite with

the entries of the conformation tensor σ = I + 2λ
ηp
τ . However, since it is diagonal at leading order,

we consider only the diagonal part

(4.1) σ0 =

(
σxx = 1 + 2λ

ηp
τxx 0

0 σzz = 1 + 2λ
ηp
τzz

)
.

The two last equations of (3.22) yield

(4.2)





∂tσxx + u0x∂xσxx +
(
(∂xb)u

0
x − (z − b)∂xu

0
x

)
∂zσxx = 2(∂xu

0
x)σxx − 1

λ
(σxx − 1),

∂tσzz + u0x∂xσzz +
(
(∂xb)u

0
x − (z − b)∂xu

0
x

)
∂zσzz = −2(∂xu

0
x)σzz −

1

λ
(σzz − 1).

These equations imply that σxx and σzz remain positive if they are initially. Then, we compute

(4.3)(
∂t + u0x∂x +

(
(∂xb)u

0
x − (z − b)∂xu

0
x

)
∂z

)(1
2
τxx − ηp

4λ
ln
(
1 +

2λ

ηp
τxx
))

= (∂xu
0
x)τxx − 1

ηp

τ2xx
σxx

,

(
∂t + u0x∂x +

(
(∂xb)u

0
x − (z − b)∂xu

0
x

)
∂z

)(1
2
τzz −

ηp
4λ

ln
(
1 +

2λ

ηp
τzz
))

= −(∂xu
0
x)τzz −

1

ηp

τ2zz
σzz

.

In order to compute the integral of (4.3) with respect to z, we notice the following formula for

any function ϕ(t, x, z) (a combination of the Leibniz rule with boundary conditions at z = b and

z = b+ h),

(4.4)

∫ b+h

b

(
∂t + u0x∂x +

(
(∂xb)u

0
x − (z − b)∂xu

0
x

)
∂z

)
ϕdz

=

∫ b+h

b

(
∂tϕ+ ∂x(u

0
xϕ) + ∂z

((
(∂xb)u

0
x − (z − b)∂xu

0
x

)
ϕ
))

dz

= ∂t

∫ b+h

b

ϕdz − ϕb+h∂th+ ∂x

∫ b+h

b

u0xϕdz − (u0xϕ)b+h∂x(b + h) + (u0xϕ)b∂xb

+
(
(∂xb)u

0
x − h∂xu

0
x

)
ϕb+h − (∂xb)u

0
xϕb

= ∂t

∫ b+h

b

ϕdz + ∂x

(
u0x

∫ b+h

b

ϕdz

)
.

Therefore, summing up the two equations of (4.3) and integrating in z gives

(4.5)
∂t

∫ b+h

b

ηp
4λ

tr(σ0 − lnσ0 − I) dz + ∂x

(
u0x

∫ b+h

b

ηp
4λ

tr(σ0 − lnσ0 − I) dz

)

= (∂xu
0
x)

∫ b+h

b

(
τxx − τzz

)
dz − 1

ηp

∫ b+h

b

(
τ2xx
σxx

+
τ2zz
σzz

)
dz.

10



Moreover, the classical computation of energy for the Saint Venant model gives

(4.6) ∂t

(
h
(u0x)

2

2
+ g

h2

2
+ gbh

)
+ ∂x

((
h
(u0x)

2

2
+ gh2 + gbh

)
u0x

)
+ u0x ∂x

∫ b+h

b

(τzz − τxx) dz = 0.

Adding up (4.6) and (4.5) yields

(4.7)

∂t

(
h
(u0x)

2

2
+ g

h2

2
+ gbh+

ηp
4λ

∫ b+h

b

tr(σ0 − lnσ0 − I) dz

)

+∂x

((
h
(u0x)

2

2
+ gh2 + gbh+

ηp
4λ

∫ b+h

b

tr(σ0 − lnσ0 − I) dz +
ηp
2λ

∫ b+h

b

(σzz − σxx) dz

)
u0x

)

= − ηp
4λ2

∫ b+h

b

tr(σ0 + [σ0]−1 − 2I) dz.

Therefore, we get an exact energy identity for solutions to the reduced model (3.22). Note that to

discriminate between possibly many discontinuous solutions (generalized solutions in a sense to be

defined, see below the discussion on the conservative formulation), we would naturally require an

inequality in (4.7) instead of an equality.

In the case of τxx and τzz independent of z, everything becomes more explicit. Using the

variables σxx = 1 + 2λ
ηp
τxx and σzz = 1 + 2λ

ηp
τzz (also clearly independent of z), the simplified

reduced model then writes

(4.8)





∂th+ ∂x(hu
0
x) = 0,

∂t(hu
0
x) + ∂x

(
h(u0x)

2 + g
h2

2
+
ηp
2λ
h(σzz − σxx)

)
= −gh∂xb,

∂tσxx + u0x∂xσxx − 2σxx∂xu
0
x =

1− σxx
λ

,

∂tσzz + u0x∂xσzz + 2σzz∂xu
0
x =

1− σzz
λ

,

while the energy inequality becomes (σ0 is defined in (4.1))

(4.9)

∂t

(
h
(u0x)

2

2
+ g

h2

2
+ gbh+

ηp
4λ
h tr(σ0 − lnσ0 − I)

)

+∂x

((
h
(u0x)

2

2
+ gh2 + gbh+

ηp
4λ
h tr(σ0 − lnσ0 − I) +

ηp
2λ
h(σzz − σxx)

)
u0x

)

≤ − ηp
4λ2

h tr(σ0 + [σ0]−1 − 2I).

In (4.8) and (4.9), b is a function of x and h, u0x, σxx, σzz depend on (t, x), with h ≥ 0, σxx ≥ 0,

σzz ≥ 0. From now on, we shall only deal with the simplified reduced model (4.8).

The inequality (4.9) (instead of equality) for possibly discontinuous solutions rules out general-

ized solutions for which the dissipation – already present in our model ! – is physically not enough

(see also [16] where a similar numerical “entropy” condition is used to build stable finite-element

schemes for the viscous UCM model, namely the so-called Oldroyd-B model).
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Remark 1 (Limit cases). For the system (4.8), two interesting regimes are important to mention.

The first is the standard Saint Venant regime, for which one takes ηp/λ = 0. It is obtained in the

limit ηp → 0 for fixed λ (as opposed to the limit λ→ ∞ for fixed ηp, some kind of “High-Weissenberg

limit” [42] which is problematic, as we will see in the numerical experiments). The second regime is

obtained in the “Low-Weissenberg limit” λ→ 0, for fixed ηp. Assuming (1−σxx)/λ and (1−σzz)/λ
remain bounded, the system rewritten with τxx and τzz gives the viscous Saint Venant system

(4.10)





∂th+ ∂x(hu
0
x) = 0,

∂t(hu
0
x) + ∂x

(
h(u0x)

2 + g
h2

2
− 2ηph ∂xu

0
x

)
= −gh∂xb,

with the energy inequality

(4.11)

∂t

(
h
(u0x)

2

2
+ g

h2

2
+ gbh

)
+ ∂x

((
h
(u0x)

2

2
+ gh2 + gbh− 2ηph ∂xu

0
x

)
u0x

)
≤ −2ηph(∂xu

0
x)

2 .

Remark 2 (Steady states). The source terms (1−σxx)/λ and (1−σzz)/λ in (4.8) are responsible

for the right-hand side that dissipates energy in (4.9). This dissipation has the consequence that

steady states are possible only if

(4.12) tr(σ0 + [σ0]−1 − 2I) = 0, i.e. τ = 0 ,

which implies that steady solutions to (4.8) identify with the steady solutions at rest to the standard

Saint Venant model: u0x = 0, h+ b = cst, σxx = σzz = 1.

Remark 3 (Conservativity). The reduced model (4.8) is a first-order quasilinear system with

source, but not written in conservative form because of the stress equations on σxx and σzz. Indeed,

one can put them in conservative form as follows,

(4.13)





∂t

(
(σxx)

−1/2
)
+ ∂x

(
(σxx)

−1/2u0x

)
= −σ−3/2

xx

1− σxx
2λ

,

∂t

(
(σzz)

1/2
)
+ ∂x

(
(σzz)

1/2u0x

)
= σ−1/2

zz

1− σzz
2λ

.

However, these conservative equations do not help since they are physically irrelevant. Moreover,

the physical energy of (4.9) is not convex with respect to these conservative variables σ
−1/2
xx and

σ
1/2
zz . As a matter of fact, one can show that the energy, that is

Ẽ = h
(u0x)

2

2
+ g

h2

2
+ gbh+

ηp
4λ
h (σxx + σzz − ln(σxxσzz)− 2) ,(4.14)

cannot be convex with respect to any set of conservative variables of the form

(4.15)

(
h, hu0x, h̟

−1

(
σ
−1/2
xx

h

)
, hς−1

(
σ
1/2
zz

h

))
,

where ̟, ς are smooth functions standing for general changes of variables, see Appendix A.
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Nevertheless, the system (4.8) can be written in the following canonical form, strongly reminis-

cent of the gas dynamics system,

(4.16)





∂th+ ∂x(hu
0
x) = 0,

∂t(hu
0
x) + ∂x

(
h(u0x)

2 + P (h, s)
)
= −gh∂xb,

∂ts+ u0x∂xs =
1

λ
S(h, s),

with

(4.17) s =
(
sxx, szz

)
=

(
σ
−1/2
xx

h
,
σ
1/2
zz

h

)
,

(4.18) S(h, s) =
(
−σ

−3/2
xx

2h
(1− σxx),

σ
−1/2
zz

2h
(1− σzz)

)
,

(4.19) P (h, s) = g
h2

2
+
ηp
2λ
h(σzz − σxx).

One can compute

(4.20)

(
∂P

∂h

)

|s

= gh+
ηp
2λ

(σzz − σxx + h
2σzz
h

+ h
2σxx
h

) = gh+
ηp
2λ

(3σzz + σxx) > 0,

from which we conclude that for smooth b, the system (4.16) is hyperbolic with eigenvalues

(4.21) λ1 = u0x −
√
gh+

ηp
2λ

(3σzz + σxx), λ2 = u0x, λ3 = u0x +

√
gh+

ηp
2λ

(3σzz + σxx),

the second having double multiplicity. One can check that λ2 is linearly degenerate, while λ1 and

λ3 are genuinely nonlinear (this follows from computations similar to [27, Example 2.4 p.45] and

the first line of (5.33)).

From the particular formulation (4.16), one sees that the jump conditions for a 2−contact

discontinuity are that u0x and P do not jump (as weak 2-Riemann invariants). However, jump

conditions across 1− and 3−shocks need to be chosen in order to determine weak discontinuous

solutions in a unique way.

A possible choice of jump conditions is, as explained in Remark 3, to take the conservative for-

mulation (4.13) (or equivalently a conservative formulation related to the variables (4.15), leading

to the condition that s does not jump through 1− and 3−shocks). This formulation gives unphys-

ical conservations and nonconvex energy (which could produce numerical under/overshoots), and

we shall not make this choice.

Our choice of jump conditions will be rather imposed indirectly by numerical considerations,

via the choice of a set of pseudo-conservative variables, i.e. variables for which we shall write

discrete flux difference equations. Solving nonconservative systems leads in general to convergence

to unexpected solutions, as explained in [18]. With a pragmatical point of view, we nevertheless

choose the pseudo-conservative variables as

(4.22) q ≡ (q1, q2, q3, q4)
T :=

(
h, hu0x, hσxx, hσzz

)T
.
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In other words, we consider the formal system

(4.23)





∂th+ ∂x(hu
0
x) = 0,

∂t(hu
0
x) + ∂x

(
h(u0x)

2 + g
h2

2
+
ηp
2λ
h(σzz − σxx)

)
= −gh∂xb,

∂t(hσxx) + ∂x(hσxxu
0
x)− 2hσxx∂xu

0
x =

h− hσxx
λ

,

∂t(hσzz) + ∂x(hσzzu
0
x) + 2hσzz∂xu

0
x =

h− hσzz
λ

.

The choice of these pseudo-conservative variables is good for at least two reasons:

• these variables are physically relevant,

• the energy Ẽ in (4.14) is convex with respect to them (see Appendix A).

The second point will make it easier to build a discrete scheme that is energy satisfying (in the

sense of the energy inequality (4.9)), while preserving the convex (in the variable q) set

(4.24) U = {h ≥ 0, σxx ≥ 0, σzz ≥ 0} ,

which is here the physical invariant domain where the energy inequality (4.9) makes sense. Note

that our system is of the form considered in [8] (see also Remark 4).

Let us mention that for the viscous UCM model, namely the Oldroyd-B model, various numer-

ical techniques are proposed in [36, 33, 16, 5] for the preservation of the positive-definiteness of a

non-necessarily diagonal tensor σ in the context of finite-element discretizations.

5. Finite volume method and numerical results

In this section we describe a finite volume approximation of (4.23). The approximation of the

full system is achieved by a fractional step approach, discretizing successively the system (4.23)

without the relaxation source terms in 1/λ on the right-hand side of the two stress equations,

and these relaxation terms alone. The topographic source term h∂xb is treated by the hydrostatic

reconstruction method of [3] in Subsection 5.4. This approach ensures that the whole scheme is

well-balanced with respect to the steady states of Remark 2, because the relaxation terms vanish

for these solutions.

The integration of relaxation source terms is performed by a time-implicit cell-centered formula.

Note that then the scheme is not asymptotic preserving with respect to the viscous Saint Venant

asymptotic regime λ→ 0 of Remark 1, for this one would need a more complex treatment of these

relaxation terms.

Let us now concentrate on the resolution of the system (4.23) without any source, i.e.

(5.1)





∂th+ ∂x(hu
0
x) = 0,

∂t(hu
0
x) + ∂x

(
h(u0x)

2 + P
)
= 0,

∂t(hσxx) + ∂x(hσxxu
0
x)− 2hσxx∂xu

0
x = 0,

∂t(hσzz) + ∂x(hσzzu
0
x) + 2hσzz∂xu

0
x = 0,
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with

(5.2) P = g
h2

2
+
ηp
2λ
h(σzz − σxx),

and the energy inequality

(5.3)
∂t

(
h
(u0x)

2

2
+ g

h2

2
+
ηp
4λ
h
(
σxx + σzz − ln(σxxσzz)− 2

))

+∂x

((
h
(u0x)

2

2
+ g

h2

2
+
ηp
4λ
h
(
σxx + σzz − ln(σxxσzz)− 2

)
+ P

)
u0x

)
≤ 0.

A finite volume scheme for the quasilinear system (5.1)-(5.2) can be classically built following

Godunov’s approach, considering piecewise constant approximations of q = (h, hu0x, hσxx, hσzz),

and invoking an approximate Riemann solver at the interface between two cells.

5.1. Approximate Riemann solver. In order to get an approximate Riemann solver for (5.1),

we use the standard relaxation approach, as described in [12]. It naturally handles the energy

inequality (5.3), and also preserves the invariant domain (4.24).

Because of the canonical form of (5.1), which is (4.16) without source, i.e.

(5.4)





∂th+ ∂x(hu
0
x) = 0,

∂t(hu
0
x) + ∂x

(
h(u0x)

2 + P
)
= 0,

∂ts+ u0x∂xs = 0,

with

(5.5) s =
(
sxx, szz

)
=

(
σ
−1/2
xx

h
,
σ
1/2
zz

h

)
,

we have a formal analogy with the system of full gas dynamics equations. Therefore, we follow

the usual Suliciu relaxation approach that is described in [12]. We introduce a new variable π,

the relaxed pressure, and a variable c > 0 intended to parametrize the speeds. Then we solve the

system

(5.6)





∂th+ ∂x(hu
0
x) = 0,

∂t(hu
0
x) + ∂x(h(u

0
x)

2 + π) = 0,

∂t(hπ/c
2) + ∂x(hπu

0
x/c

2 + u0x) = 0,

∂tc+ u0x∂xc = 0,

∂ts+ u0x∂xs = 0.
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This quasilinear system has the property of having a quasi diagonal form

(5.7)





∂t(π + cu0x) + (u0x + c/h)∂x(π + cu0x)−
u0x
h
c∂xc = 0 ,

∂t(π − cu0x) + (u0x − c/h)∂x(π − cu0x)−
u0x
h
c∂xc = 0 ,

∂t
(
1/h+ π/c2

)
+ u0x∂x

(
1/h+ π/c2

)
= 0 ,

∂tc+ u0x∂xc = 0 ,

∂ts+ u0x∂xs = 0 .

One deduces its eigenvalues, which are u0x − c/h, u0x + c/h, and u0x with multiplicity 4. One checks

easily that the system is hyperbolic, with all eigenvalues linearly degenerate. As a consequence,

Rankine-Hugoniot conditions are well-defined (the weak Riemann invariants do not jump through

the associated discontinuity), and are equivalent to any conservative formulation. We notice that

with the relation (5.5) the equation on s in (5.6) can be transformed back to

(5.8)
∂t(hσxx) + ∂x(hσxxu

0
x)− 2hσxx∂xu

0
x = 0,

∂t(hσzz) + ∂x(hσzzu
0
x) + 2hσzz∂xu

0
x = 0.

The approximate Riemann solver can be defined as follows, starting from left and right values of

h, hu0x, hσxx, hσzz at an interface :

• Solve the Riemann problem for (5.6) with initial data completed by the relations

(5.9) πl = P (hl, (σxx)l, (σzz)l), πr = P (hr, (σxx)r, (σzz)r),

and with suitable values of cl and cr that will be discussed below.

• Retain in the solution only the variables h, hu0x, hσxx, hσzz. The result is a vector called

R(x/t, ql, qr).

Note that this approximate Riemann solver R(x/t, ql, qr) has the property to give the exact solution

for an isolated contact discontinuity (i.e. when the initial data is such that u0x and P are constant),

because in this case the solution to (5.6) is the solution to (5.1) completed with π = P (h, s).

Then, the numerical scheme is defined as follows. We consider a mesh of cells (xi−1/2, xi+1/2),

i ∈ Z, of length ∆xi = xi+1/2 − xi−1/2, discrete times tn with tn+1 − tn = ∆t, and cell values

qni approximating the average of q over the cell i at time tn. We can then define an approximate

solution qappr(t, x) for tn ≤ t < tn+1 and x ∈ R by

(5.10) qappr(t, x) = R

(
x− xi+1/2

t− tn
, qni , q

n
i+1

)
for xi < x < xi+1,

where xi = (xi−1/2+xi+1/2)/2. This definition is coherent under a half CFL condition, formulated

as

(5.11)
x/t < −∆xi

2∆t
⇒ R(x/t, qi, qi+1) = qi,

x/t >
∆xi+1

2∆t
⇒ R(x/t, qi, qi+1) = qi+1.
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The new values at time tn+1 are finally defined by

(5.12) qn+1
i =

1

∆xi

∫ xi+1/2

xi−1/2

qappr(tn+1 − 0, x) dx.

Notice that this is only in this averaging procedure that the choice of the pseudo-conservative

variable q is involved. We can follow the computations of Section 2.3 in [12], the only difference

being that here the system is nonconservative. We deduce that

(5.13) qn+1
i = qni − ∆t

∆xi

(
Fl(q

n
i , q

n
i+1)−Fr(q

n
i−1, q

n
i )
)
,

where

(5.14)
Fl(ql, qr) = F (ql)−

∫ 0

−∞

(
R(ξ, ql, qr)− ql

)
dξ,

Fr(ql, qr) = F (qr) +

∫ ∞

0

(
R(ξ, ql, qr)− qr

)
dξ,

and the pseudo-conservative flux is

(5.15) F (q) = (hu0x, h(u
0
x)

2 + P, hσxxu
0
x, hσzzu

0
x).

In (5.15), the two last components are chosen arbitrarily, since anyway the contributions of F in

(5.13) cancel out.

Since the two first components of the system (5.6) are conservative, the classical computations

in this context give that for these two components, the left and right numerical fluxes of (5.14) are

equal and indeed take the value of the flux of (5.6), i.e. hu0x and h(u0x)
2 + π, at x/t = 0.

We can notice that while solving the relaxation system (5.6), the variables h, sxx and szz remain

positive if they are initially (indeed this is subordinate to the existence of a solution with positive

h, which is seen below via explicit formulas and under suitable choice for cl, cr). By the relation

(5.5) this is also the case for σxx and σzz . Therefore, the invariant domain U in (4.24) is preserved

by the numerical scheme (5.13), this follows from the average formula (5.12) and the fact that U
is convex (in the variable q).

Remark 4. The above scheme satisfies the maximum principle on the variable sxx, and the mini-

mum principle on the variable szz. This means that if initially one has sxx ≤ k for some constant

k > 0 (respectively szz ≥ k), then it remains true for all times.

This can be seen by observing that the set where sxx ≤ k (respectively szz ≥ k) is convex in

the variable q, because according to (5.5), (4.22), it can be written as q1q3 ≥ k−2 (respectively

k2q31 − q4 ≤ 0). Then, s is just transported during the resolution of (5.6), while the averaging

procedure (5.12) preserves the convex sets. Another proof is to write a discrete entropy inequality

for an entropy hφ(sxx), which is convex if 0 ≤ φ′ ≤ sxxφ
′′, take for example φ(sxx) = max(0, sxx−

k)2/2 (respectively for an entropy hφ(szz), which is convex if 0 ≤ −φ′ ≤ 3szzφ
′′, take for example

φ(szz) = k−1/3szz − 3
2s

2/3
zz + 1

2k
2/3 for szz ≤ k, φ(szz) = 0 for szz ≥ k). We shall not write down

the details of this alternative proof.
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5.2. Energy inequality. We define in a similar way the left and right numerical energy fluxes

(5.16)
Gl(ql, qr) = G(ql)−

∫ 0

−∞

(
E
(
R(ξ, ql, qr)

)
− E

(
ql
))
dξ,

Gr(ql, qr) = G(qr) +

∫ ∞

0

(
E
(
R(ξ, ql, qr)

)
− E

(
qr
))
dξ,

where E is the energy of (4.14) without the topographic term gbh, and

(5.17) G = (E + P )u0x

is the energy flux. We have from [12] that a sufficient condition for the scheme to be energy

satisfying is that

(5.18) Gr(ql, qr)− Gl(ql, qr) ≤ 0.

When this is satisfied, because of the convexity of E with respect to q one has the discrete energy

inequality

(5.19) E(qn+1
i )− E(qni ) +

∆t

∆xi

(
G(qni , qni+1)− G(qni−1, q

n
i )
)
≤ 0,

where the numerical energy flux G(ql, qr) is any function satisfying Gr(ql, qr) ≤ G(ql, qr) ≤ Gl(ql, qr).

In order to analyze the condition (5.18), let us introduce the internal energy e(q) ≥ 0 by

(5.20) e = g
h

2
+
ηp
4λ

(
σxx + σzz − ln(σxxσzz)− 2

)
,

so that

(5.21) E = h(u0x)
2/2 + he,

and (∂he)|s = P/h2. Then, while solving the relaxation system (5.6), we solve simultaneously the

equation for a new variable ê,

(5.22) ∂t(ê− π2/2c2) + u0x∂x(ê− π2/2c2) = 0,

where ê has left and right initial data e(ql) and e(qr). The reason for writing (5.22) is that

combining it with (5.6) yields

(5.23) ∂t

(
h(u0x)

2/2 + hê
)
+ ∂x

((
h(u0x)

2/2 + hê+ π
)
u0x

)
= 0.

Define now

(5.24) G(ql, qr) =
((
h(u0x)

2/2 + hê+ π
)
u0x

)
x/t=0

.

Lemma 1. If for all values of x/t the solution to (5.6), (5.22) satisfies

(5.25) ê ≥ e(q),

where here q = R(x/t, ql, qr), then Gr(ql, qr) ≤ G(ql, qr) ≤ Gl(ql, qr) and the discrete energy in-

equality (5.19) holds.
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Proof. Since (5.23) is a conservative equation, one has

(5.26)
G(ql, qr) = G(ql)−

∫ 0

−∞

((
h(u0x)

2/2 + hê
)
(ξ)− E(ql)

)
dξ

= G(qr) +

∫ ∞

0

((
h(u0x)

2/2 + hê
)
(ξ)− E(qr)

)
dξ.

Therefore, comparing to (5.16), we see that in order to get the result it is enough that for all ξ

(5.27) E(R(ξ, ql, qr)) ≤
(
h(u0x)

2/2 + hê
)
(ξ),

which is (5.25). �

In order to go further, we fix the following notation: in the solution to the Riemann problem

for (5.6), there are three waves and two intermediate states, denoted respectively by indices l, ∗
and r, ∗. Then we have the following sufficient subcharacteristic condition (recall that ∂hP |s is

given by (4.20)).

Lemma 2. If cl, cr are chosen such that the heights h⋆l , h
⋆
r are positive and satisfy

∀h ∈ [hl, h
⋆
l ] h2∂hP |s(h, sl) ≤ c2l ,

∀h ∈ [hr, h
⋆
r ] h2∂hP |s(h, sr) ≤ c2r,

(5.28)

then (5.25) holds and thus the discrete energy inequality (5.19) is valid.

Proof. The arguments of decomposition in elementary dissipation terms along the waves used in

Lemma 2.20 in [12] can be checked to apply without modification. �

Lemma 3. Denote

(5.29) Pl = P (hl, sl), Pr = P (hr, sr), al =
√
∂hP |s(hl, sl), ar =

√
∂hP |s(hr, sr),

and define the relaxation speeds cl, cr by

(5.30)

cl
hl

= al + 2


max

(
0, u0x,l − u0x,r

)
+

max
(
0, Pr − Pl

)

hlal + hrar


 ,

cr
hr

= ar + 2


max

(
0, u0x,l − u0x,r

)
+

max
(
0, Pl − Pr

)

hlal + hrar


 .

Then the positivity and subcharacteristic conditions of Lemma 2 are satisfied, and the discrete

energy inequality (5.19) holds.

Proof. From (4.20) and (5.5) we have

(5.31) ∂hP |s = gh+
ηp
2λ

(
3(hszz)

2 +
1

(hsxx)2

)
.
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Denoting ϕ(h, s) = h
√
∂hP |s, we compute

(5.32)

∂hϕ|s =
√
∂hP |s +

h

2
√
∂hP |s

(
g +

ηp
2λ

(
6hs2zz −

2

h3s2xx

))

=
1

2
√
∂hP |s

(
2gh+

ηp
λ

(
3(hszz)

2 +
1

(hsxx)2

)
+ gh+

ηp
2λ

(
6(hszz)

2 − 2

(hsxx)2

))

=
1

2
√
∂hP |s

(
3gh+ 6

ηp
λ
(hszz)

2
)
.

Therefore, we deduce that ϕ satisfies

(5.33)

∂hϕ|s > 0,

ϕ(h, s) → ∞ as h→ ∞,

∂hϕ|s ≤ 2
√
∂hP |s.

Following [Proposition 3.2] [13] with α = 2, we get the result. �

Remark 5 (Bounds on the propagation speeds). Lemma 3 is also valid with the formulas of

[Proposition 2.18] [12] instead of (5.30). Here we prefer (5.30) because in the context of possibly

negative pressure P these formulas ensure the following estimate on the propagation speeds:

(5.34) max

(
cl
hl
,
cr
hr

)
≤ C

(
|u0x,l|+ |u0x,r|+ al + ar

)
,

with C an absolute constant. This follows from the property that |P | ≤ h∂hP |s, which is seen on

(4.19)-(4.20).

5.3. Numerical fluxes and CFL condition. The Riemann problem for the relaxation system

(5.6), (5.22) has to be solved with initial data ql, qr completed with (5.9), the relation (5.5),

êl = e(ql) ≡ el, êr = e(qr) ≡ er, and (5.29), (5.30). The explicit solution is given, according to

[12], by the following formulae. It has three waves speeds Σ1 < Σ2 < Σ3,

(5.35) Σ1 = u0x,l − cl/hl, Σ2 = u0x,∗, Σ3 = u0x,r + cr/hr,

and the variables take the value "l" for x/t < Σ1, "l*" for Σ1 < x/t < Σ2, "r*" for Σ2 < x/t < Σ3,

"r" for Σ3 < x/t. The "l*" and "r*" values are given by

(5.36)

(u0x)
∗
l = (u0x)

∗
r = u0x,∗ =

clu
0
x,l + cru

0
x,r + πl − πr

cl + cr
, π∗

l = π∗
r =

crπl + clπr − clcr(u
0
x,r − u0x,l)

cl + cr
,

1

h∗l
=

1

hl
+
cr(u

0
x,r − u0x,l) + πl − πr

cl(cl + cr)
,

1

h∗r
=

1

hr
+
cl(u

0
x,r − u0x,l) + πr − πl

cr(cl + cr)
,

(5.37) c∗l = cl, c∗r = cr, s∗l = sl, s∗r = sr,

(5.38) σ∗
xx,l = σxx,l

(
hl
h∗l

)2

, σ∗
xx,r = σxx,r

(
hr
h∗r

)2

, σ∗
zz,l = σzz,l

(
h∗l
hl

)2

, σ∗
zz,r = σzz,r

(
h∗r
hr

)2

,

(5.39) ê∗l = el −
(πl)

2

2c2l
+

(π∗
l )

2

2c2l
, ê∗r = er −

(πr)
2

2c2r
+

(π∗
r )

2

2c2r
.
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Then we need to compute the left/right numerical fluxes (5.14) that are involved in the update

formula (5.13). Since the h and hu0x components in (5.6) are conservative, classical computations

give the associated numerical fluxes, and we have

(5.40) Fl =
(
Fh,Fhu0

x ,Fhσxx

l ,Fhσzz

l

)
, Fr =

(
Fh,Fhu0

x ,Fhσxx
r ,Fhσzz

r

)
,

where the conservative part involves the Riemann solution evaluated at x/t = 0,

(5.41) Fh = (hu0x)x/t=0, Fhu0
x = (h(u0x)

2 + π)x/t=0.

More explicitly, (5.41) yields that the quantities between parenthese are evaluated at "l" if Σ1 ≥ 0,

at "l*" if Σ1 ≤ 0 ≤ Σ2, at "r*" if Σ2 ≤ 0 ≤ Σ3, and at "r" if Σ3 ≤ 0. As usual there is no ambiguity

in the resulting value when equality occurs in these conditions. The numerical energy flux (5.24)

involved in (5.19) can be computed in the same way.

We complete these formulas by computing the left/right numerical fluxes for the variables hσxx,

hσzz from (5.14),

(5.42)
Fhσxx

l = (hσxxu
0
x)l +min(0,Σ1)

(
(hσxx)

∗
l − (hσxx)l

)

+min(0,Σ2)
(
(hσxx)

∗
r − (hσxx)

∗
l

)
+min(0,Σ3)

(
(hσxx)r − (hσxx)

∗
r

)
,

(5.43)

Fhσxx
r = (hσxxu

0
x)r −max(0,Σ1)

(
(hσxx)

∗
l − (hσxx)l

)

−max(0,Σ2)
(
(hσxx)

∗
r − (hσxx)

∗
l

)
−max(0,Σ3)

(
(hσxx)r − (hσxx)

∗
r

)
,

the hσzz fluxes being computed with the same formulas, replacing "xx" by "zz".

The maximal propagation speed is then

(5.44) A(ql, qr) = max(|Σ1|, |Σ2|, |Σ3|),

and the CFL condition (5.11) becomes

(5.45) ∆tA(qi, qi+1) ≤
1

2
min(∆xi,∆xi+1).

Not that with (5.34) and (5.35) we get

(5.46) A(ql, qr) ≤ C
(
|u0x,l|+ |u0x,r|+ al + ar

)

with C an absolute constant, bounding the propagation speeds of the approximate Riemann solver

whenever the left and right true speeds remain bounded. This property is more general than the

possibility of treating data with vacuum considered in [12].

We have obtained finally the following theorem.

Theorem 1. Consider the system (5.1) with the pressure law (5.2), and denote the pseudo-

conservative variable by q = (h, hu0x, hσxx, hσzz). Under the CFL condition (5.45), the scheme

(5.13) with the numerical fluxes Fl(ql, qr), Fr(ql, qr) defined above via (5.40), and with the choice

of the speeds (5.29), (5.30), satisfies the following properties.

(i) It is consistent with (5.1)-(5.2) for smooth solutions,
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(ii) It keeps the positivity of h, σxx, σzz,

(iii) It is conservative in the variables h and hu0x,

(iv) It satisfies the discrete energy inequality (5.19),

(v) It satisfies the maximum principle on the variable sxx, and the minimum principle on the

variable szz,

(vi) Steady contact discontinuities where u0x = 0, P = cst are exactly resolved,

(vii) Data with bounded propagation speeds give finite numerical propagation speed.

(viii) The numerical viscosity is sharp, in the sense that the propagation speeds Σi of the approxi-

mate Riemann solver tend to the exact propagation speeds when the left and right states ql, qr tend

to a common value.

5.4. Topography treatment. Consider now our system (4.23) with topography, but without the

relaxation source terms, i.e.

(5.47)





∂th+ ∂x(hu
0
x) = 0,

∂t(hu
0
x) + ∂x

(
h(u0x)

2 + g
h2

2
+
ηp
2λ
h(σzz − σxx)

)
= −gh∂xb,

∂t(hσxx) + ∂x(hσxxu
0
x)− 2hσxx∂xu

0
x = 0,

∂t(hσzz) + ∂x(hσzzu
0
x) + 2hσzz∂xu

0
x = 0.

With respect to the previous sections, the term −gh∂xb has been put back, where the topography

is a given function b(x). For (5.47), the energy inequality (4.9) is modified only by the fact that

there is no right-hand side. Thus it can be written

(5.48) ∂tẼ + ∂xG̃ ≤ 0,

with

(5.49) Ẽ(q, b) = E(q) + ghb, G̃(q, b) = G(q) + ghbu0x,

where E and G are given by (5.21), (5.20), (5.17). Recall that the steady states at rest of Remark

2 are defined by

(5.50) u0x = 0, h+ b = cst, σxx = σzz = 1.

Our scheme for (5.47) is written as

(5.51) qn+1
i = qni − ∆t

∆xi

(
Fl(q

n
i , q

n
i+1,∆bi+1/2)− Fr(q

n
i−1, q

n
i ,∆bi−1/2)

)
,

where as before q = (h, hu0x, hσxx, hσzz), and ∆bi+1/2 = bi+1 − bi. Thus we need to define the left

and right numerical fluxes Fl(ql, qr,∆b), Fr(ql, qr,∆b), for all left and right values ql, qr, bl, br,

with ∆b = br − bl. We use the hydrostatic reconstruction method of [3] (see also [14]), and define

(5.52) h♯l =
(
hl − (∆b)+

)
+
, h♯r =

(
hr − (−∆b)+

)
+
,

(5.53) q♯l =
(
h♯l , h

♯
lu

0
x,l, h

♯
lσxx,l, h

♯
lσzz,l

)
, q♯r =

(
h♯r, h

♯
ru

0
x,r, h

♯
rσxx,r, h

♯
rσzz,r

)
,
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with the notation x+ ≡ max(0, x). Note that we use the notation ♯ instead of ∗ in order to avoid

confusions with the intermediate states of the Riemann solver of the previous sections. Then the

numerical fuxes are defined by

(5.54)
Fl(ql, qr,∆b) = Fl(q

♯
l , q

♯
r) +

(
0, g

h2l
2

− g
h♯2l
2
, 0, 0

)
,

Fr(ql, qr,∆b) = Fr(q
♯
l , q

♯
r) +

(
0, g

h2r
2

− g
h♯2r
2
, 0, 0

)
,

where Fl and Fr are the numerical fluxes (5.40) of the problem without topography.

Theorem 2. The scheme (5.51) with the numerical fluxes Fl, Fr defined by (5.54), (5.52), (5.53)

satisfies the following properties.

(i) It is consistent with (5.47) for smooth solutions,

(ii) It keeps the positivity of h, σxx, σzz under the CFL condition ∆tA(q♯l , q
♯
r) ≤ 1

2 min(∆xl,∆xr)

with A defined by (5.44),

(iii) It is conservative in the variable h,

(iv) It satisfies a semi-discrete energy inequality associated to (5.48),

(v) It is well-balanced, i.e. preserves the steady states at rest (5.50).

Proof. We ommit the proof of the points (i) to (iii), which follow the proof of Proposition 4.14 in

[12].

For the proof of (v), consider data ql, qr, bl, br at rest, i.e. satisfying u0x,l = u0x,r = 0, hl+bl = hr+br,

σxx,l = σxx,r = σzz,l = σzz,r = 1. Then from (5.52), (5.53) we get q♯l = q♯r, the common value

q♯ being qr if ∆b ≥ 0, or ql if ∆b ≤ 0. We observe that then Fl(q
♯
l , q

♯
r) = Fr(q

♯
l , q

♯
r) = F (q♯)

with F given in (5.15), and that indeed F (q♯) = (0, gh♯2/2, 0, 0). The formulas (5.54) yield Fl =

(0, gh2l /2, 0, 0) = F (ql), Fr = (0, gh2r/2, 0, 0) = F (qr). If this is true at all interfaces, (5.51) gives

qn+1
i = qni , which proves the claim.

Let us finally prove (iv). First, the scheme without topography satisfies the discrete energy

inequality (5.19). According to [12] section 2.2.2, it implies the semi-discrete energy inequality,

characterized by

(5.55)
G(qr) + E′(qr)(Fr(ql, qr)− F (qr)) ≤ G(ql, qr),
G(ql, qr) ≤ G(ql) + E′(ql)(Fl(ql, qr)− F (ql)),

for all values of ql, qr, and where E′ is the derivative of E with respect to q. Then, for the scheme

with topography, the characterization of the semi-discrete energy inequality writes

(5.56)
G̃(qr, br) + Ẽ′(qr, br)(Fr − F (qr)) ≤ G̃(ql, qr, bl, br),
G̃(ql, qr, bl, br) ≤ G̃(ql, bl) + Ẽ′(ql, bl)(Fl − F (ql)),

where Ẽ and G̃ are defined by (5.49), Ẽ′ denotes the derivative of Ẽ with respect to q, and G̃ is

an unknown consistent numerical entropy flux. Let us choose

(5.57) G̃(ql, qr, bl, br) = G(q♯l , q♯r) + Fh(q♯l , q
♯
r)gb

♯,
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where Fh is the common h−component of Fl and Fr, and for some b♯ that is defined below. Then,

noticing that Ẽ′(q, b) = E′(q) + gb(1, 0, 0, 0), we can write the desired inequalities (5.56) as

(5.58)
G(qr) + E′(qr)(Fr − F (qr)) + Fh(q♯l , q

♯
r)gbr ≤ G(q♯l , q♯r) + Fh(q♯l , q

♯
r)gb

♯,

G(q♯l , q♯r) + Fh(q♯l , q
♯
r)gb

♯ ≤ G(ql) + E′(ql)(Fl − F (ql)) + Fh(q♯l , q
♯
r)gbl.

But using (5.55) evaluated at q♯l , q
♯
r and comparing the result with (5.58), we get the sufficient

conditions

(5.59)

G(qr) + E′(qr)(Fr − F (qr)) + Fh(q♯l , q
♯
r)gbr ≤ G(q♯r) + E′(q♯r)(Fr(q

♯
l , q

♯
r)− F (q♯r)) + Fh(q♯l , q

♯
r)gb

♯,

G(q♯l ) + E′(q♯l )(Fl(q
♯
l , q

♯
r)− F (q♯l )) + Fh(q♯l , q

♯
r)gb

♯ ≤ G(ql) + E′(ql)(Fl − F (ql)) + Fh(q♯l , q
♯
r)gbl.

We compute now

(5.60) E′(q) =

(
− (u0x)

2

2
+ gh− ηp

4λ
ln(σxxσzz), u

0
x,
ηp
4λ

(1− 1/σxx),
ηp
4λ

(1 − 1/σzz)

)
,

and writing

(5.61)
F (q) =

(
hu0x, h(u

0
x)

2 + g
h2

2
+
ηp
2λ
h(σzz − σxx), hσxxu

0
x, hσzzu

0
x

)
,

G(q) =

(
h
(u0x)

2

2
+ gh2 +

ηp
4λ
h(σxx + σzz − ln(σxxσzz)− 2) +

ηp
2λ
h(σzz − σxx)

)
u0x,

we deduce the identity

(5.62) G(q) − E′(q)F (q) = −g h
2

2
u0x.

Thus the inequality (5.59) simplifies to

(5.63)
−g h

2
r

2
u0x,r + E′(qr)Fr + Fh(q♯l , q

♯
r)gbr ≤ −g h

♯2
r

2
u0x,r + E′(q♯r)Fr(q

♯
l , q

♯
r) + Fh(q♯l , q

♯
r)gb

♯,

−g h
♯2
l

2
u0x,l + E′(q♯l )Fl(q

♯
l , q

♯
r) + Fh(q♯l , q

♯
r)gb

♯ ≤ −g h
2
l

2
u0x,l + E′(ql)Fl + Fh(q♯l , q

♯
r)gbl.

Now, using (5.54) and the fact that E′(qr) − E′(q♯r) =
(
g(hr − h♯r), 0, 0, 0

)
, E′(ql) − E′(q♯l ) =(

g(hl − h♯l ), 0, 0, 0
)
, the desired inequalities (5.63) rewrite

(5.64)
g
(
hr − h♯r + br − b♯

)
Fh(q♯l , q

♯
r) ≤ 0,

g
(
hl − h♯l − b♯ + bl

)
Fh(q♯l , q

♯
r) ≥ 0.

We choose now b♯ = max(bl, br), so that (5.64) can be put in the form

(5.65)

(
hr − h♯r − (−∆b)+

)
Fh(q♯l , q

♯
r) ≤ 0,(

hl − h♯l − (∆b)+
)
Fh(q♯l , q

♯
r) ≥ 0.

Finally, taking into account (5.52), we observe that if hl− (∆b)+ ≥ 0 then the second line of (5.65)

is an identity, otherwise h♯l = 0 and the the second inequality of (5.65) holds because Fh(0, q♯r) ≤ 0

by the h−nonnegativity of the numerical flux. The same argument is valid for the first inequality

of (5.65), which concludes the proof. �
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Figure 1. Convergence of the discretized variables hσxx in Test case 1

Remark 6. The maximum principle property on sxx and minimum principle property on szz, that

hold for the solver without topography, are not valid for the above solver with topography, even if

it should hold at the continuous level.

5.5. Numerical results. We now illustrate our model by numerical simulations performed with

the scheme described above. Note that the model can be considered independently of its derivation

and we explore numerical values beyond the physical regime of the Section 3. We denote by H(x)

the Heaviside function with jump +1 at x = 0. For all numerical simulations, we chose Neumann

conditions at boundary interfaces.

Test case 1. It is a Riemann problem with initial condition (h, hu0x, hσxx, hσzz)(t = 0) =

(3− 2H(x))(1, 0, 1, 1), without source term (b ≡ 0), that can be interpreted as a “dam” break on a

wet floor, with polymeric fluid initially at rest everywhere. We first fix ηp = λ = 1 and study the

convergence of our scheme with respect to the spatial discretization parameter for 50, 100, 200 and

400 points and a constant CFL = 1/2. The results at final time T = .2 are shown in Fig. 1.
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Then, using 400 points and a constant CFL = 1/2, we let ηp vary as λ = 1 is fixed. The

results are shown in Fig. 2 and 3. On the one hand, the limit case ηp → 0 coincides with the usual

shallow-water model, since then the pressure assumes the same values as in a relaxation scheme for

the Saint-Venant equations (independent of hσxx and hσzz) while sxx, szz become passive tracers

and their evolution is only one-way coupled – in fact enslaved – to the autonomous dynamics

of the Saint-Venant system of equations. On the other hand, the case ηp → ∞ is some kind of

“rigid limit”. As expected from the formulae (4.21) for the eigenvalues of the Jacobian matrix, the

left-going rarefaction wave and the right-going shock wave are all the faster as the viscosity ηp

increases (we hardly see them at T = .2 for ηp = 10+3 in Fig. 2 and 3). This is consistent with the

physical notion of rigid limit (sound waves are faster in solids than in liquids). On the contrary,

the intermediate wave (a right-going contact discontinuity) is all the slower as ηp increases, and

the jump of h across it is all the larger. This was not obvious to us at first. It could be explained

for instance by the fact that cl + cr (at the denominator of the formulae for u0x,⋆ and the two

intermediate states 1/h⋆l , 1/h
⋆
r in (5.36)) becomes very large when ηp increases. Notice that the

jumps for σxx and σzz are directly related to that for h through (5.38) and are consistently small

when that for h is large. In any case, the materials on the left of the intermediate wave (where h is

higher) is stretched in direction ex and compressed in direction ez, while it is stretched in direction

ez and compressed in direction ex on the right, which we can interpret as the manifestation of a

close-to-equilibrium stability property (see Section 6).

We also let λ vary as η = 1 is fixed. The results (still at same given time T = .2) are shown in

Fig. 4 and 5. One clearly sees here the competition between transport and diffusion of viscoelastic

effects (the viscoelastic energy is stored in the new variables, that are transported but also diffused).

Indeed, the viscoelastic energy is dissipated all the more rapidly as the relaxation time λ is small

(the viscous, “Low-Weissenberg” limit). And the waves are all the more smoothed as λ is small

(the source terms, which act as diffusive terms, are all the more important). On the other hand,

the jump across the contact discontinuity is all the smaller for σxx and σzz as λ is small, but all the

larger for h. This is coherent with a reasoning similar to the one above when ηp only was varied:

a smaller relaxation time λ implies slightly faster rarefaction and shock waves because of (4.21),

and a larger coefficient cl + cr in the formulae (5.36).

Test case 2. It is a Riemann problem again without source term b ≡ 0 but with vacuum in

the initial condition (h, hu0x, hσxx, hσzz)(t = 0) = (3 − 3H(x))(1, 0, 1, 1), which can be interpreted

as a “dam” break on a dry floor. The results in Fig. 6 and Fig. 7 at T = .5 show again that small

λ and large ηp imply a fast right-going rarefaction wave and a slow contact discontinuity, with a

large jump for h and small jumps for σxx, σzz at contact discontinuity. On the contrary, large λ

and small ηp imply a slow right-going rarefaction wave and a fast contact discontinuity, with a

small jump for h and large jumps for σxx, σzz at contact discontinuity. We nevertheless note that

the “High-Weissenberg” limit λ→ +∞ (recall Remark 1) is more difficult. In particular, although

σzz remains bounded, σxx seems to become unbounded close to the wet/dry front. Recalling

our Remark 4 (see also the comments below about the occurence of vacuum in Test 3), this is
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Figure 2. Variations of the variables h, u0x with ηp in Test case 1
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not surprising: there hold minimum principles σxx ≥ (kh)−2, σzz ≥ (kh)2 in the High-Weissenberg

limit λ→ ∞, ηp/λ = O(1), – without topography – where the relaxation source terms are neglected

(except that here initially k = ∞, but k becomes hopefully finite after some time). Hence a possible

blow-up at the front, where h → 0, when λ is too large for the diffusive relaxation source terms

to compensate for the transport effects. Note that in any case, the materials on the left of the

contact-discontinuity wave (where h is non-zero) is stretched in direction ex and compressed in

direction ez, except at the vacuum front where a small region with σ closer to the equilibrium I

is constantly seen (may be artificially due to our numerical treatment of the vacuum front). While

no actual blow-up occurs, this will also be interpreted as a manifestation of a close-to-equilibrium

stability property (see Section 6).

Test case 3. It is a benchmark introduced in [25] to test the treatment of topography, see

also [12]. For x ∈ (0, 25), we compute until T = .25 the evolution from an initial condition

(h, hu0x, hσxx, hσzz)(t = 0, x) = ((10 − b)+,−350 + 700H(x − 50/3), (10 − b)+, (10 − b)+) over a

topography b(x) = H(x− 25/3)−H(x− 25/2). Two rarefaction waves propagate on the left and

right sides of the initial velocity singularity at x = 50/3 so that a vacuum is created in between

(in the usual Saint-Venant case). In addition, a couple of rarefaction/shock waves is created at

each singular point x = 25/3, 25/2 of the topography, but have much smaller amplitudes than the

rarefaction waves at x = 50/3. The results in Fig. 8 and 9 are obtained for various ηp, λ at a

constant ηp/λ = 10−4. This particular choice was made because then, at the final time, the system

is sufficiently close to the Saint-Venant limit ηp/λ → 0 so that the pressure is hardly modified

compared with the usual Saint-Venant case.

Compared with the usual Saint-Venant case, the double rarefaction wave centered at x = 50/3

cannot create vacuum but at the single point x = 50/3 where the initial velocity is singular. This

can be explained as follows. Assuming that the source terms in the stress equations do not influence

much the bounds on σxx, σzz , in agreement with our Remark 4, the maximum (resp. minimum)

principle holds for sxx (resp. szz), and there exists a constant k (depending only on the initial

conditions since initially h > 0) such that σxx ≥ (kh)−2, σzz ≥ (kh)+2. But according to the

energy bound, one has that (ηp/λ)
∫
hσxxdx remains bounded. We deduce that (ηp/λ)

∫
h−1dx

remains bounded, and therefore h cannot tend to 0 on a whole interval, but can vanish on a single

point. We have then σxx → +∞ at the singular point, here x = 50/3.

Moreover, another vacuum can be created at x = 25/2 (of course still at a single-point because

of the previous reasoning). Of course, this new phenomena could just be a numerical artifact, for

instance due to the computation of source terms by the hydrostatic reconstruction method. In

any case, assuming it is part of the richer phenomenology of our new model compared with the

usual Saint-Venant model (see also Section 6 for possible physical interpretations), we observe that

the existence of that phenomena depends on ηp, λ. It happens only for ηP = 10−4, λ = 10+0 and

ηP = 10−3, λ = 10+1 in our numerical experiments, not for ηP = 10−5, λ = 10−1. But it occurs

for larger λ at ηP = 10−5 (when the stress relaxation terms are less important). Indeed, this

phenomena seems triggered mainly by high values of λ (the “High-Weissenberg limit”, which by the
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way requires very small time steps because of the CFL constraint), and still holds at high values of

ηp (a “rigid limit” that seems to lead to some kind of a “break-up” of the jet here), even at very large

ηp when no vacuum occurs in between the rarefaction waves. Notice that the latter phenomenon

also induces an additional sign change for u0x in between the two vacuum points, whose location

seems to depend on λ but not on ηp, (another indication that the role of viscoelastic dissipation

is dominant here). And compared with the usual Saint-Venant case, velocities also assume much

greater value (on the left in particular).

Test case 4. In our last test case, we woud like to assess the treament of another type of

topography source terms, with creation of dry/wet fronts, by the hydrostatic reconstruction. A

usual test case is Thacker’s [46] e.g., which has analytical solutions in the usual Saint-Venant case.

But we could not capture interesting phenomena with Thacker’s testcase, in particular because

the CFL constraint requires the time step to go to 0 very quickly (on short time ranges) due to

the creation of dry fronts where h→ 0 and σxx → +∞ (with λ not too small). Note that this does

not necessarily mean that this problem does not have global solutions with finite-energy. A time-

implicit scheme (probably hard to build) might be able to compute finite-energy approximations

with a non-vanishing time-step.

Here, we consider the test case proposed by Synolakis [45] to model the runup of solitary

waves. This could be used until interesting final times T = 32.5 after the incidental wave has

reflected against the shore and created a dry front, see also [38]. We use (h, hu0x, hσxx, hσzz)(t =

0, x) = ((1.+ h0(x) − b(x))+ (1,
√
gh0(x), 1, 1) as initial condition over a topography b(x) = ((x −

40.)/19.85)+, x ∈ (0, 100). The pertubation h0(x) = α(cosh(
√
.75α(x−acosh(

√
1/.05)/(.75α))))−2

models a solitary wave as a function of the parameter with α = .019/.1 according to Synolakis

semi-analytical theory.

The results in Fig. 10 and 11 show that it is essentially the variations of ηp/λ that influence

the water height and velocity among all possible variations of ηp, λ. And although the first effect

of the variations of ηp/λ is on the waves celerity, there is no direct match between variations in

ηp/λ and a time shift as shown in Fig. 10. On the contrary, the variables σxx, σzz depend more

on λ alone (recall the importance of relaxation source terms, especially in the case where h → 0),

at least for such small values of ηp/λ as those tested here (sufficiently close to the Saint-Venant

regime for the time step not to vanish, even at high values of λ). The smaller λ is, the stronger the

dissipation is and thus balances the large stress values that were induced close to the dry front.

6. Conclusion

We have proposed a new reduced model for the motion of thin layers of viscoelastic fluids

(shallow viscoelastic flows) that are described by the upper-convected Maxwell model and driven

by the gravity, under a free surface and above a given topography with small slope (like in the

standard Saint Venant model for shallow water). More precisely, we have shown formally that

for given boundary conditions and under scaling assumptions (H1-5), the solution to the incom-

pressible Euler-UCM system of equations can be approximated by the solutions to the reduced
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model (3.22) in some asymptotic regime. We hope that this asymptotic regime in particular is

physically meaningful, that and our new model makes sense, possibly beyond the previous asymp-

totic regime. (That is why we have studied it mathematically and explored it numerically without

constraining ourself to a particular regime, as it is usual in such cases.)

Observe that in the end we have obtained a flow model whose dynamics is function of the first

normal stress difference only, while the shear part of the stress is negligible and computed as an

output of the flow evolution. More specifically, the boundary conditions (2.10–2.8) and the flat

velocity profile (consequence of the assumed motion by slices) require compatibility conditions on

the bulk behaviour of τxz inside a thin layer. Before looking in future works for other asymptotic

regimes, possibly compatible (under different assumptions) with more general kinematics, we would

like to conclude here with a better insight of the physical implications of our reduced model.

6.1. Physical interpretation from the macroscopic mechanical viewpoint. We note that

the main differences between our model for shallow (Maxwell) viscoelastic flows and the standard

Saint Venant model for shallow water is i) a new hydrostatic pressure (3.10), which is function of

the (viscoelastic) internal stresses in addition to the water level h, hence ii) a new hydrodynamic

force in the momentum balance (in addition to the external gravity force), which is proportional

to the normal stress difference τxx − τzz , and iii) variable internal stresses τxx and τzz , which have

their own dynamics corresponding to a viscoelastic mechanical behaviour (with a finite relaxation

time λ = O(1) ; such that one recovers the standard viscous mechanical behaviour only in the limit

λ→ 0). Moreover, in the asymptotic regime where our non-Newtonian model was derived, with a

small viscosity parameter ηp = O(ǫ), the strain and stress tensors have the scaling

(6.1) ∇u =

(
O(1) O(ǫ)

O(ǫ) O(1)

)
, τ =

(
O(ǫ) O(ǫ2)

O(ǫ2) O(ǫ)

)
.

One essential rheological feature of our reduced model is thus the ratio ǫ between the shear and

elongational components of the stress tensor τ and of the strain tensor ∇u. The fact that our

model should mainly describe extensional flows, with small shear (of the same small order as the

elongational viscosity), seems to be a strong limitation to the applicability of our model in real

situations. Of course, one is likely to need another reduced model (in other asymptotic regimes)

to describe flows that are not essentially elongational.

Note yet that there are situations where physicists arrive at similar conclusions [22, 23] and

obtain a very similar one-dimensional model with purely elongational stresses for the description of

free axisymmetric jets. By the way, a description of free axisymmetric jets is also well achieved by

our model since the pure slip boundary conditions (2.7)-(2.8) is equivalent to assuming a cylindrical

symmetry around the symmetry line of the jet, and surface tension effects (neglected in our model)

can be included using standard modifications of our no-tension boundary condition (2.10).

Moreover, it seems possible to still include non-negligible shear effects in our model through a

parabolic correction of the vertical profile like in [26, 37], as well as surface tension and friction

effects of order one at the boundaries.
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6.2. Physical interpretation at the microscopic molecular level. A microscopic interpre-

tation of our asymptotic regime can also be achieved using a molecular model of the elastic effects

(that is, a model at the molecular level from which the UCM is a coarse-grained version at the

macroscopic mechanical level). Following [10], a typical molecular model that accounts for the

elasticity of a fluid invokes the transport of elastically deformable Brownian particles diluted in

the fluid (which can often be thought of as large massive molecules like polymers). The simplest

model of this kind couples, locally in the physical space, a kinetic theory for “dumbbells” (two

point-masses connected by an elastic force idealized as a “spring”) with the strain of the fluid.

Let us denote Xt(x) the connector vector between the two point-masses of a dumbbell modelling

a polymer molecule at position x and time t in the fluid. The collection of vector stochastic

processes (Xt(x))t∈(0,+∞) parametrized by x ∈ Dt is solution to overdamped Langevin equations

(6.2) dXt + (u ·∇)Xtdt =

(
(∇u)Xt −

2

ζ
F(Xt)

)
dt+ 2

√
kBT

ζ
dBt

for a given field (Bt(x))t∈(0,+∞) of standard Brownian motions (in Itô sense) where ζ is a friction

parameter, kB the Boltzmann constant and T the absolute thermodynamical temperature. The

UCM equations can be exactly recovered with the specific choice F(X) = HX. Indeed, the

extra-stress τ and the conformation tensor σ are given by Kramers relation

(6.3) τ =
ηp
2λ

(m σ − I) with σ(t,x) =
1

H
E

[
X̃t ⊗ F(X̃t)

]
=

∫ [
X̃ ⊗ X̃

]
ψ(t,x, ℓX̃)dX̃

where X̃ = X/ℓ is an adimensional version of X, m = Hℓ2

kBT is a ratio between the elastic potential

energy and the heat of the Brownian bath, and ηp = 2λnkBT is the molecular interpretation of

the polymer viscosity, with n the number density of polymer chains by unit volume (assumed

constant as usual for dilute polymer solutions) and λ a characteristic time for dumbbells. One can

always choose ℓ such that m = 1. Then, choosing λ = ζ
4H as a relaxation time, Itô formula allows

one to exactly recover the UCM system of equations (2.3) when the solvent is assumed inviscid

with a velocity field u(t,x) solution to the Euler equations, on noting that the probability density

ψ(t,x, ℓX̃) satisfies the following Fokker-Planck equation on the unbounded domain X̃ ∈ R
2:

(6.4)
∂ψ

∂t
+ u ·∇ψ = − divX̃

(
[(∇u)X̃ − 1

2λ
X̃]ψ

)
+

1

2λ
∆X̃ψ .

We note that in [40] a reduced model for shallow viscoelastic flows quite similar to ours has

already been derived starting from a coupled micro-macro system like (6.4–6.3–2.2), rather than

starting from a coarse-grained system at the macroscopic level like the UCM model. The difference

between the Hookean micro-macro system above (equivalent in some sense to the UCM model)

and the micro-macro system used in [40] is the spring force: it corresponds to FENE dumbbells

F(Xt) = Xt/(1 − |Xt|2/b) in [40]. The FENE force is more physical because it accounts for a

finite extension |Xt| < b, but contrary to the Hookean dumbbells, it does not have an exact coarse-

grained macroscopic equivalent like the UCM model. Yet, if we follow the same procedure as in [40]
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but for Hookean dumbbells, we can hope to derive a reduced micro-macro model whose coarse-

grained version is comparable to our new reduced UCM model. Moreover, if the scaling regimes

are the same as in [40], then our model should also compare to that in [40], for an inviscid solvent,

in the infinite extensibility limit b→ ∞ (where one formally recovers the Hookean dumbbells from

FENE dumbbells). Now, observe that the scaling of our new model implies (6.1) ∇u = γ0 +O(ǫ)

where γ0 = O(1) is a traceless diagonal matrix with entries ∂xu
0
x,−∂xu0x. Then (6.4) rewrites

(6.5)
∂ψ

∂t
+ u ·∇ψ =

1

2λ
divX

(
M∇X

(
ψ

M

))
+O(ǫ) ,

where M(t,x,X) is a weight function proportional to the Maxwellian e−XT (2λγ0−I)X . The ap-

proximation (6.5) of (6.4) is consistent with our new reduced model provided it yields a consistent

approximation for the stress in (6.3): that is, it suffices to show σxx, σzz = O(1) and σxz = O(ǫ)

as ǫ→ 0. To this aim, let us define an order-one approximation ψ0 = ψ +O(ǫ) solution to

(6.6)
∂ψ0

∂t
+ u0 ·∇ψ0 =

1

2λ
divX

(
M∇X

(
ψ0

M

))
.

The point is to estimate the terms

(6.7) τ 0 =
ηp
2λ

(σ0 − I), σ0 =

∫
[X ⊗X]ψ0(X)dX .

This is not an easy task because of the coupling between ψ0 and u0. Yet it seems reasonable

to assume that ψ0 remains close to the equilibrium solution M/
∫
M for all times (indeed, the

Hookean force is derived from an α-convex potential [2]), and in particular the Maxwellian ψ0 ∝
e−(Ax2+Bz2+2Cxz) has the scaling A = O(1), B = O(1), C = O(ǫ), which implies that σ (and thus

τ ) is diagonal at first order. One then obtains a reduced kinetic model which can be exactly

coarse-grained into our new reduced UCM model with Itô formula.

A macroscopic consequence of the microscopic assumption above is that the reduced model is

well-adapted for elongational flows, which is consistent with our macroscopic intepretation of the

model. Indeed, everywhere in the macroscopic physical space, one can only expect a balance of

internal elastic energy due to stretching or compressing strains in the directions ex and ez , which is

the case in elongational flows. (There is not a high probability of permanently sheared dumbbells.)

Moreover, if ψ0 is actually close to the equilibrium M (the particular case A ≈ 2λ∂xu
0
x − 1, B ≈

−2λ∂xu
0
x − 1, C ≈ 0 of our assumption), then, at first-order, the dumbbells are quite uniformly

oriented but stretched in one canonical direction – ex or ez – and necessarily compressed in the

orthogonal one (the level-sets of the distribution function are ellipsoidal with principal axes ex

and ez at first order). This was indeed observed in those numerical experiments where no blow-up

phenomenon seemed to occur.

The microscopic view is in turn a plausible physical explanation at the molecular level of some

macroscopic observations. Recall indeed that one-dimensional simple models similar to our model

have already been derived in the past to model axisymmetric free jets of elastic liquids [22, 23]

with a view to explaining the die swell at the end of an extrusion pipe. Now, a miscroscopic

interpretation of the die swell is: the elastic energy stored before the die is released after the die.
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The dumbbells, mainly compressed in the radial direction ez before the die, stretch just after

the die. This may be responsible for an increase of the jet radius (the free-surface of the jet flow

equilibrates with the atmospheric pressure) after a characteristic relaxation time linked to λ, hence

the so-called delayed die swell.

Finally, we would like to comment on the results obtained in [40] with FENE dumbbells. The

main differences with our reduced model (which has the micro-macro interpretation explicited

above) are: (i) the relaxation time in [40] is assumed small λ = O(ǫ), because then it is possible

to compute approximate solutions to the Fokker-Planck equation following the Chapman-Enskog

procedure of [21] ; and (ii) the polymer distribution is mainly radial (ψ0 is only function of |X|),
because the authors claim that this suffices to next imply σxz = O(ǫ) and, as a consequence, a

flat profile for the horizontal velocity like in our model. Then, the scaling regimes are not the

same, and the radial assumption is too strong to allow one to recover our ellipsoidal probability

distribution. So we cannot directly compare our results though they have a similar flavour.

6.3. Open questions and perspectives. First, regarding the interpretation of our model, one

might ask whether the present scaling corresponds to a physical situation actually observed for

elastic fluids in nature. In particular, the main questionable assumption is of course the pure-slip

and no-friction boundary conditions (2.7–2.8) at the bottom (already unrealistic for Newtonian

flows, maybe even more unrealistic for non-Newtonian ones). Second, future works on this topic

might consider the following directions:

• derive thin-layer reduced models with other equations modelling non-Newtonian flows,

which are believed to better model the rheological properties of real materials (constitutive

models like Giesekus, PTT, FENE-P, or other molecular models than the FENE dumbbell

model used in [19, 40]), and in two-dimensional settings (see [15, 37] for the standard

shallow water model);

• derive a reduced model closer to real physical situations, possibly in different regimes, or

for instance by using a z-dependent velocity profile ux (possibly a multi-layer model) and

different boundary conditions than (2.10) and (2.8) (with surface tension and friction at

the bottom), which may lead to find physical regimes where τxz is not negligible;

• give a rigorous mathematical meaning and enhance numerical simulations (well-balanced

second-order reconstructions) for non-standard systems of equations like the new one pre-

sented here.

We note that multi-layer models are also a path to the modelling of some important physical

situations, like a thin layer of polymeric fluids on water to forecast the efficiency of oil slick

protection plans.
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Appendix A. Convexity of the energy

In order to check the convexity of Ẽ in (4.14) with respect to general variables, we use a

Lagrange transformation, see for example Lemma 1.4 in [12]. Thus Ẽ is a convex function of
(
h, hu0x, h̟

−1

(
σ
−1/2
xx

h

)
, hς−1

(
σ
1/2
zz

h

))

for given smooth invertible functions ̟, ς , if and only if Ẽ/h is a convex function of the Lagrangian

variables

V =

(
1

h
, u0x, ̟

−1

(
σ
−1/2
xx

h

)
, ς−1

(
σ
1/2
zz

h

))
.

Let us denote by Vi, i = 1, . . . , 4 the entries of the vector V , then the Lagrangian energy writes

Ẽ

h
=

1

2
V 2
2 +

g

2

1

V1
+ gb+

ηp
4λ

(
V 2
1

̟ (V3)
2 +

ς (V4)
2

V 2
1

− ln

(
ς (V4)

2

̟ (V3)
2

)
− 2

)
.

Introduce now the notation

Ω(V3) = 2 ln̟(V3), ζ(V4) = −2 ln ς(V4).

Clearly we only need to look at the convexity with respect to (V1, V3, V4), and the Hessian matrix

H of Ẽ/h with respect to these variables (at fixed b) is given by

4λ

ηp
H =




4λg
ηp

1
V 3
1

+ 2e−Ω + 6e−ζ

V 4
1

−2V1e
−ΩΩ′ 2 e−ζζ′

V 3
1

−2V1e
−ΩΩ′ V 2

1 e
−Ω
(
Ω′2 − Ω′′

)
+Ω′′ 0

2 e−ζζ′

V 3
1

0 e−ζ

V 2
1

(
ζ′2 − ζ′′

)
+ ζ′′


 ,

where prime denotes the derivative with respect to the involved Vi. Since V1 can take any positive

value at fixed V3 or V4, the positivity of the diagonal terms give the necessary conditions

0 < Ω′′(V3) < Ω′(V3)
2, 0 < ζ′′(V4) < ζ′(V4)

2.

Then, writing the positivity of the determinant of the 2×2 upper left submatrix of H, and looking

at the dominant term when V1 → ∞ yields the necessary condition

2e−2Ω(Ω′2 − Ω′′)− 4e−2ΩΩ′2 > 0.

Obviously there is no function Ω(V3) satisfying these conditions, and Ẽ is never convex with respect

to the considered variables.

On the contrary, if we choose the physically natural, but non-conservative, variables q =

(h, hu0x, hσxx, hσzz), then using the Lagrangian variables

W =

(
1

h
, u0x, σxx, σzz

)
,

one can write
Ẽ

h
=

(u0x)
2

2
+
gh

2
+ gb+

ηp
4λ

(σxx + σzz − ln (σxxσzz)− 2) ,
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which is obviously convex with respect to W (at fixed b). We conclude that Ẽ is convex with

respect to q.
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