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Abstract

The fields of machine learning (ML) and cognitive science have developed complementary
approaches to computationally modeling human behavior. ML’s primary concern is maximizing pre-
diction accuracy; cognitive science’s primary concern is explaining the underlying mechanisms. Cross-
talk between these disciplines is limited, likely because the tasks and goals usually differ. The domain
of e-learning and knowledge acquisition constitutes a fruitful intersection for the two fields’ methodolo-
gies to be integrated because accurately tracking learning and forgetting over time and predicting future
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performance based on learning histories are central to developing effective, personalized learning tools.
Here, we show how a state-of-the-art ML model can be enhanced by incorporating insights from a
cognitive model of human memory. This was done by exploiting the predictive performance equa-
tion’s (PPE) narrow but highly specialized domain knowledge with regard to the temporal dynamics of
learning and forgetting. Specifically, the PPE was used to engineer timing-related input features for a
gradient-boosted decision trees (GBDT) model. The resulting PPE-enhanced GBDT outperformed the
default GBDT, especially under conditions in which limited data were available for training. Results
suggest that integrating cognitive and ML models could be particularly productive if the available data
are too high-dimensional to be explained by a cognitive model but not sufficiently large to effectively
train a modern ML algorithm. Here, the cognitive model’s insights pertaining to only one aspect of
the data were enough to jump-start the ML model’s ability to make predictions—a finding that holds
promise for future explorations.

Keywords: Cognitive model; Machine learning; Prediction; Memory; Learning; Gradient boosting

1. Introduction

With limited multidisciplinary cross-talk between the machine learning (ML) and cog-
nitive science communities, predictive analytics research is overly stovepiped. Both fields
of research have adopted standard methodological paradigms to suit their needs, each pos-
sessing their own strengths and weaknesses. However, by integrating ML and cognitive
science methodologies, there is an opportunity for each respective discipline’s strengths
to be exploited and weaknesses to be remedied (Griffiths, 2015; Mozer & Lindsey, 2016;
Sense, Jastrzembski, Mozer, Krusmark, & van Rijn, 2019). Successful integration of these
approaches could result in enhanced predictive power, minimized data requirements, and
deeper theoretical understanding across a wide range of domains. One highly relevant domain
and the focus of this paper is human learning.

The success of statistical ML models in diverse applied settings stems from their abil-
ity to identify relationships across multiple noisy inputs. However, such models typically
require access to large, curated/annotated datasets to make high-quality predictions (Hastie,
Tibshirani, & Friedman, 2009), and often constitute “black boxes” with (sometimes) millions
of uninterpretable parameters. Consequently, it becomes near impossible to determine why
models make the decisions they do (Gunning, 2017).

Cognitive scientists, on the other hand, develop and implement theory-driven models capa-
ble of explaining and interpreting human empirical data (McClelland, 2009). Such models
usually have a fixed mathematical structure representing specific theoretical assumptions and
ideally capture input data variations through a limited number of free parameters that map
onto psychological measurements and cognitive processes. An advantage of this approach is
that less data is required to fit models. Conversely, these models are often rigid and usually
unable to incorporate additional (meta-)data not anticipated by the theoretical model (e.g.,
future performance only depends on past performance and its exact timing) and they general-
ize poorly to noisy or naturalistic domains because they are rarely evaluated on their ability
to make quality out-of-sample predictions (Yarkoni & Westfall, 2017).
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Recent work by Riesterer, Brand, and Ragni (2020) nicely illustrated the different
approaches. They compared various cognitive models’ ability to fit human data from a syllo-
gistic reasoning task. The authors fit three neural network models to obtain an “upper limit”
of statistical regularity in the data. Showing that the neural networks outperform any cogni-
tive model they tested, the authors conclude that there was room for improvement. Notably,
the ML techniques were used to separate the signal from the noise in the data—they were not
assumed to inform our understanding of how humans solve syllogistic reasoning problems.
The current work follows recent efforts to bridge this gap by building cognition-inspired ML
models (e.g., Mozer & Lindsey, 2016; Settles & Meeder, 2016; Trafton, Hiatt, Brumback, &
McCurry, 2020). Recent advances in leveraging cognitive insights in large-scale ML in the
domain of human decision making (Bourgin, Peterson, Reichman, Russell, & Griffiths, 2019;
Peterson, Bourgin, Agrawal, Reichman, & Griffiths, 2021) illustrate the utility and promise
of this approach particularly well.

1.1. The current study

We are interested in potential ways to combine the strengths and mitigate the weaknesses
of ML and cognitive modeling. The current work is a first exploration of this endeavor. Our
central research question was whether insights from a cognitive model could be leveraged to
enhance the predictive accuracy of an ML model. To start, we identified a promising large-
scale, naturalistic dataset to assess our integrated approach against. Second, we developed
specific implementations of an ML model and a cognitive model of learning and retention for
integration.

The dataset we selected was from a naturalistic task in the domain of language learning.
This dataset was from the 2018 Second Language Acquisition Modeling (SLAM) challenge
organized by Duolingo (Settles, Brust, Gustafson, Hagiwara, & Madnani, 2018). Duolingo
published learning data spanning the first month of new users on their platform (see the
Dataset section below for details) and challenged the international research community to
submit models that could predict user accuracy on withheld data.

For the ML model, we chose a gradient-boosted decision tree (GBDT; Friedman, 2001).
GBDTs are available in multiple out-of-the-box implementations that are readily deployed
and perform well on a wide range of prediction tasks (Bentéjac, Csörgő, & Martínez-Muñoz,
2020). They are generally used to model tabular data and several top teams in the 2018 SLAM
challenge also utilized decision tree ensembles (see table 2 in Settles et al., 2018).

For the cognitive model, we chose the predictive performance equation (PPE). The PPE
was developed as a knowledge tracing model that could account for the nonlinear, multiplica-
tive effects of learning and forgetting over time, with a particular focus on predicting future
performance (Jastrzembski, Gluck, & Gunzelmann, 2006). We argue that the PPE should be
directly relevant to the Duolingo data because spacing effects assume a central role as users on
the platform learn (and forget) new materials over time (Settles & Meeder, 2016). A detailed
description of the PPE, its theoretical foundation, comparison to other alternative cognitive
models, and applied potential are documented elsewhere (Walsh et al., 2018, Walsh, Gluck,
Gunzelmann, Jastrzembski, & Krusmark, 2018). In short, the PPE is a set of nested equations
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that estimate the activation M of an item in human memory:

M = Nc ∗ T −d . (1)

Activation is the product of a learning term, Nc, and a forgetting term, T–d. Within the
forgetting term, the temporal dynamics of forgetting are captured by model time, T, and the
decay rate, d. Model time is the weighted sum of time elapsed (t) for each training repetition
(i):

T =
n∑

i=1

wi ∗ ti. (2)

The weights wi assigned to each repetition decrease with elapsed time t:

wi = t−x
i∑n

j=1 t−x
i

. (3)

The parameter x is set to a default value of 0.6. The model time term isolates the information
in the learning history which describes the age of items in memory. Since learning happens
over many instances, all of them are considered relevant to the learner’s future performance.
However, the importance of these instances should be skewed toward the most recent ones
(Walsh et al., 2018).

The decay rate captures the phenomenon that spaced practice produces more stable learning
than massed practice (Dempster, 1988):

dn = b + m ·
⎛
⎝ 1

n + 1
·

n−1∑
j=1

1

ln(lag j + e)

⎞
⎠ . (4)

Intervals between training repetitions are scaled such that long lags produce a smaller decay
rate, while shorter intervals produce a larger decay rate. Combined with an additive and mul-
tiplicative constant, optimized over training data, the decay rate extracts the essence of the
“spacing effect” from the full history of lags (Pavlik & Anderson, 2008; Walsh et al., 2018).
The component of Eq. 4 in parentheses is called the stability term and does not depend on
estimated parameters; it is a direct transformation of raw lag time.

Both choices of models—the GBDT and the PPE—represent state-of-the-art modeling
approaches in their respective domains and were selected because they were expected to be
particularly suitable to modeling performance in the chosen task domain. The goal of the
current study was to assess whether providing the cognitive model’s summary of a learning
history to a state-of-the-art ML model would improve predictive accuracy. Specifically, the
information contained in the training history that is most relevant to predicting retention—
model time and stability—before the ML model is trained. This restricts the feature space of
the dataset, which might make it easier for the ML model to search for the best prediction
function. This “smoothing” should be beneficial if the cognitive model’s mechanism captures
relevant statistical regularities in memory over time. We expect that both of these potential
benefits would emerge depending on how much data is available to train the model.
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With sufficient data, the GBDT will learn the optimal mapping with or without the cognitive
insights from PPE. With limited amounts of training data, however, transforming the raw
timing data using PPE’s assumptions about underlying human memory processes is expected
to yield benefits to the GBDT. Consequently, we present explorations of various restricted
data scenarios and demonstrate that, indeed, a state-of-the-art ML model’s predictive validity
is enhanced when it leverages the insights of a cognitive model.

In the following sections, we will detail the methods of our approach, focusing on the
dataset used and the specific implementations of our modeling approach. We will then present
the results of our explorations, highlighting the conditions under which the PPE-enhanced
model might be most advantageous. And finally, we will conclude by discussing our findings
and presenting implications for future work.

2. Methods

In this section, we describe the dataset used for our explorations in more detail, and provide
details on the models and model fitting procedures. For additional details, see the descriptives
in the online Supplement at https://osf.io/54ry7/.

2.1. Dataset

For the current explorations, we used the dataset Duolingo released for the 2018 SLAM
challenge (Settles et al., 2018). These data contain learning histories from three languages
over a 30-day period.1 Specifically, they “sampled from Duolingo users who registered for a
course and reached at least the tenth row of skill icons within the month of November 2015.
By limiting the data to new users who reach this level of the course, we hope to better capture
beginners’ broader language-learning process […]” (Settles et al., 2018, p. 56). The data from
each of the three language tracks are entirely separate. We focused on the English track for
our current analyses, as this track represented the largest subset of data. The user’s task was
to accurately respond to a range of language learning exercises that included various forms of
translation and listening (see fig. 1 in Settles et al., 2018).

We fit the two models outlined in the Models section below to (1) the full dataset published
by Duolingo, and (2) specific slices of the dataset. We will describe both in turn.

2.1.1. The full dataset
For the challenge, Duolingo released the data in three phases.2 The first phase of the chal-

lenge afforded training on the first 80% of the data (TRAIN set). The second phase came with
a release of the next 10% of the data (DEV set), for which participants could evaluate and
fine-tune their models. Finally, the third phase allowed for predictions on the remaining 10%
of the data to be submitted (TEST set). The task, as set out by Duolingo, was to predict which
tokens, defined as distinct user-item pairs, users answered incorrectly in the TEST set.

In the published challenge, the user’s true performance was omitted from the TEST set
and was not available on the website. As a result, we were not able to evaluate our modeling

https://osf.io/54ry7/
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Fig 1. AUCs of the two models in the restricted learning history scenario. The days used on the x-axis indicate
how much of the training data was used to train the models; the AUCs are based on predicting accuracy on the
next (x+1) day.

efforts on the same TEST set used in the SLAM challenge. To remedy this without taking an
unfair advantage over participants in the original competition, we combined the TRAIN and
DEV sets and assigned the first 90% of instances for each learner to the train set, while the
last 10% were assigned to the test set. This way, we emulated the SLAM challenge as closely
as possible.

The full dataset used here is thus based on 90% of the complete SLAM dataset published by
Duolingo and follows a 90/10 train/test split. The training set contains 2,347,874 observations
from 2593 users studying 2164 tokens (745,459 distinct user-token pairs). Accuracy in the
training set is high (87.6% overall), increasing as a user repeats a token (from 83.5% on the
first repetition and plateauing around 91% after the eighth repetition). However, repetitions
are rare: 49% of user-token pairs are only repeated once (9% were repeated more than five
times) and 71.8% only on a single day. The test set contains 275,083 observations from the
same 2593 users responding to 1925 tokens (153,008 distinct user-token pairs). Accuracy
in the test set was similarly high at 85.8% and two-thirds of the user-token pairs were only
repeated once (3.9% were repeated more than five times).

2.1.2. Slices of the dataset
To investigate the potential benefits of enhancing an ML model with insights from a cogni-

tive model, we explored two different ways of limiting the amount of information available to
train the models. Thus, the approaches differ in what slice of the dataset was used, both with
regard to the training and test sets. Furthermore, we decided to use only a limited set of input



F. Sense et al. / Topics in Cognitive Science 0 (2021) 7

Table 1
Normalized feature importance of both models’ top 10 features

Default GBDT PPE-enhanced GBDT

Input feature Feature importance Input feature Feature importance

User 21.3% Token 23.8% (+5.0%)
Token 18.8% Format 13.3% (+2.5%)
Format 10.8% Seconds 8.8% (+1.1%)
Seconds 7.7% User 6.2% (–15.1%)
Prompt 6.9% Prompt 6.0% (–0.9)
Root dependency 5.8% Root dependency 5.1% (–0.7%)
Lag 1 4.6% Days 4.0% (+2.0%)
Next token 3.6% Exercise total tokens 2.9% (—)
Previous token 2.6% Next token 2.8% (–0.8%)
Days 2.0% Token length 2.2% (—)

Note: Numbers in parentheses are the change in normalized feature importance going from the default to the
PPE-enhanced GBDT.

features that would be available for any comparable dataset (user, token, and timing informa-
tion). This will impair the model overall but isolates the effects that are most generalizable
and important (Table 1).

The training set was sliced to limit the available data in two ways: First, by gradually
exposing the models to more data day-by-day. In this restricted learning history approach,
we made iterative predictions by fitting both models to the data up to day x and then making
and comparing predictions made for day x + 1. The second approach sought to limit the
amount of information available to train the models by restricting the number of users and
tokens included in the training set. This was achieved by randomly sampling n ∈ {5, 10, 20,
50, 100, 250, 500} users/tokens from the training set and fitting both models to that slice of
data. One hundred iterations were run for each of the 49 combinations.3

The test set was always subset to only include the first repetition of tokens that appeared in
the training set the to-be-evaluated model was trained on. This decision was based on two con-
siderations: First, in most applied settings, predictive models used for adaptive learning soft-
ware would only predict performance on the next exposure and then take the actual response
into account to calibrate the prediction for the subsequent prediction (Lindsey, Shroyer, Pash-
ler, & Mozer, 2014; Pavlik & Anderson, 2008; Sense, Behrens, Meijer, & van Rijn, 2016).
And second, making a prediction for a novel token is not a task a cognitive model would
typically be leveraged for (collaborative filtering/recommender systems are better suited for
this task, Su & Khoshgoftaar, 2009).

For all approaches based on slices of the dataset, we simplified the model by using only
a small subset of input features, namely user and token identifiers, and timing information
(expressed in days). These turned out to be the most important features (Table 1). Regardless
of their importance, we believe that these are features that would be available in virtually
all comparable prediction tasks in the context of language learning. Hence, restricting our
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explorations to a small number of near-universal features hopefully makes the results more
generalizable.

2.2. Models

For all approaches and subsets of the dataset outlined above, we always fit two models.
Their predictive accuracies were evaluated using the area under the receiver operating char-
acteristics curve (AUC; Fawcett, 2006). The two models evaluated in this paper were GBDT
and differed only with regard to how the timing related information was made available as
input features. Both models had access to the “raw” timing information. The default GBDT
had 10 additional input features that explicitly coded the lag (elapsed time) since the last,
second-to-last, and so on repetition for each user-token pair. The PPE-enhanced GBDT only
had two additional input features: The model time T and the stability component of the decay
rate equation (see Eqs. 2 and 4, respectively). The PPE transformations imposed theoretical
assumptions about how memory traces accumulate and decay over time. Thus, the reduction
in input feature dimensionality was paired with a biased preprocessing of the timing infor-
mation. Importantly, however, both models have access to the same raw timing information;
no new information is added. Hence, the only difference between the models is the inductive
bias provided by PPE. Our core research question, as outlined above, is whether and/or under
which circumstances such bias might be beneficial to a state-of-the-art ML model.

2.2.1. Model fitting
Each instance is defined by the SLAM competition as one word within a translation prob-

lem. Each timestamped instance is coded as a 0 if the word was translated correctly and a
1 if the word was translated incorrectly by the Duolingo learner. Due to its efficiency, accu-
racy, and ability to use high-cardinality categorical features, the LightGBM4 implementation
of gradient boosting (Ke et al., 2017) was chosen as the model for our binary classification
problem. LightGBM’s ability to leverage high-cardinality categorical features is particularly
useful because a number of the (important) predictors are categorical variables with many
levels (user, token, and prompt; see Table 1 and online Appendix A at https://osf.io/fj8mr/).
The parameter values were optimized on a validation set derived from the train set. Cross val-
idation was not used because of the temporal nature of the data. We used the same optimized
parameters for all model fits reported here.5

3. Results

To evaluate the default GBDT and the PPE-enhanced GBDT, we will report the area under
the ROC curve (AUC; Fawcett, 2006) to quantify a model’s predictive accuracy. AUC values
range from 0.5 (chance performance) to 1.0 (perfect predictions) and were chosen because
they are widely used as a measure of predictive accuracy in binary classification tasks and,
specifically, they were the primary outcome measure in the SLAM challenge. The raw data
and analysis scripts are available in an online Supplement at https://osf.io/vk8jr/, which

https://osf.io/fj8mr/
https://osf.io/vk8jr/
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contains the code to reproduce all numbers and figures reported here along with additional
descriptives and visualizations. The rest of this section will follow the distinction made in the
previous section and present the outcomes of our explorations, first on the full dataset and
then on slices of the dataset.

3.1. Full dataset

The two GBDTs were fit to the complete training set using both the provided and addi-
tionally engineered features (see online Appendix A at https://osf.io/fj8mr/). For the default
GBDT, the AUC for the predictions was 0.8530, which compares favorably to the pub-
lished models reported in Settles and colleagues (2018, table 2)—slightly lower than the top
three AUCs, which were 0.859 and 0.861 (tied), and comfortably outperforming the baseline
(0.774). The PPE-enhanced GBDT resulted in a slightly higher AUC of 0.8538.

The correlation between the two models’ predictions is extremely high (r = 0.985) and
a Bayesian paired t-test suggests the data are 17.6 times more likely to occur under the null
model (Morey & Rouder, 2018). However, DeLong’s test reveals a statistically significant dif-
ference between the AUC values (z = –3.42, p < .001). Thus, the two models’ predictions are
very similar but produce slightly different AUC values. Therefore, the GBDT is not impaired
when PPE’s terms are used as input features. In fact, predictions are slightly better; but the
difference, albeit statistically significant, is probably too small to be practically relevant.

Table 1 lists the feature importances normalized as percentages across all features for each
model. A feature importance of X percent implies that X percent of the reduction in impurity
is attributable to decision tree splits on that feature. Impurity here generally refers to any
measure of how many incorrectly classified observations exist in a set of training data. Popular
examples of impurity measures include misclassification rate, entropy, and the Gini index
(Hastie et al., 2009, pp. 309–10). In this case, we used the Gini index for the measure of
impurity (Breiman, Friedman, Stone, & Olshen, 1984).6 The ranking of the features in Table 1
suggest that in order to make accurate predictions in this task, the exact timing of practice is
not nearly as important as who is expected to give a response to which token in which context
(i.e., prompt, previous, and next token).

Taken together, the analyses on the full dataset suggest that the PPE-enhanced model per-
forms at least as well or marginally better even though the dimensionality of the input is
reduced relative to the default GBDT. Hence, providing the GBDT with PPE’s preprocessed
timing information did not impair the model. It appears that both GBDTs made very simi-
lar but not identical predictions that slightly favored the PPE-enhanced model. Surprisingly,
timing-related information did not appear to be as important as we anticipated (Table 1). Next,
we explore conditions under which the PPE-enhanced model could have a more noticeable
advantage.

3.2. Slices of the dataset

In the following, a number of scenarios are explored in which the data used to train the
two models were restricted. These slices of the dataset were designed specifically to yield
conditions that might be favorable to a cognitive model (see Methods above).

https://osf.io/fj8mr/
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3.2.1. Restricted learning history
To isolate the effects of having a more extensive learning history available when making

predictions, we utilized a step-wise prediction approach. The AUCs for the day-by-day pre-
dictions are shown in Fig. 1, which also indicates the percentage of the training data that
were used on each day. Past day 18, less than one percent of training data were added, which
leaves very few observations to predict with this iterative approach, resulting in unreliable and
highly variable AUCs. Hence, we omitted the last week of data from the figure (see the online
Supplement for additional visualizations of the distributions of observations/user/tokens over
time).

Fig. 1 shows that the PPE-enhanced GBDT has a small but consistent advantage over the
default GBDT. Predictions generally become better with more training data but since the
increase of data over days is not linear (see the percentages noted in the graph), the steepest
improvement in AUCs is achieved early on. The absolute difference in AUCs is fairly stable
but since the AUCs increase overall, the relative advantage is slightly larger with a more
restricted learning history.

3.2.2. Restricting number of users and tokens
Besides restricting the learning history along the temporal dimension, we also explored

limiting the amount of data available to train the models. Both models were trained on 100
samples for each combination of user/token pairings we explored (see Methods for details).
This yielded a set of predictions on the test set for each model, from which AUC scores were
calculated. The results are summarized in Fig. 2, which shows in each cell the median AUCs
for the default and PPE-enhanced GBDT (top and bottom values, respectively) as well as the
percentage change.

We see an overall advantage of the PPE-enhanced model with more data. In the lower left
quadrant of Fig. 2, the advantage of the PPE-enhanced GBDT is markedly larger relative to
the default GBDT, with various user-token combinations resulting in advantages of 3–8%
points. When both the number of users and the number of tokens are larger, advantages rarely
exceed 2% points. With 100+ users and tokens, the PPE-enhanced model’s small advantage
is consistent. Across the board, the average AUC of the default GBDT is 0.6397 and that of
the PPE-enhanced GBDT is 0.6432, a difference 81.5 times more likely under a model that
assumes unequal means, according to a Bayesian paired t-test (Morey & Rouder, 2018). Fig. 2
suggests that this overall difference is primarily driven by the PPE-enhanced model’s superior
performance when more users are added to the training set; simply having more tokens but
very few users generally favors the default GBDT. The online Supplement includes additional
figures that show the distribution of AUC values in each cell of Fig. 2.

As expected, there is also a general increase in AUCs as the number of both users and
tokens increases. Conversely, we see poor predictive accuracy with very limited data. Since
the cells in Fig. 2 show the median AUCs, we can conclude that at least half the models with
the least amount of training data perform at chance-level (i.e., AUC = 0.5). Fig. 3 zooms in on
the lower left corner of Fig. 2 and depicts, for each cell, the percent of samples for which the
default (top number) and PPE-enhanced (bottom number) GBDT produce at-chance predic-
tions. In cells not shown in this figure, both models always produce above chance predictions.
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Fig 2. AUC differences when the number of users and tokens are restricted. The data are subset by randomly
sampling x users and y tokens. Each cell summarizes the averaged results by listing the median AUC of the default
GBDT (top), the AUC of the PPE-enhanced GBDT (bottom), and the change from the former to the latter in
percentage points (middle). The color coding is based on the change in AUC to highlight under which conditions
the PPE-enhanced model performs best.

Taken together, we can conclude that there is a consistent advantage of the PPE-enhanced
model and that this advantage was especially pronounced when the amount of training data
was limited. Using the PPE transformations of the timing information allowed the GBDT
to more quickly overcome chance performance under conditions with extremely limited
amounts of data.

4. Discussion

Here, we attempted to enhance the performance of an ML model by incorporating insights
from a cognitive model. We used second language acquisition data published by Duolingo to
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Fig 3. Percent of samples with predictions at chance level. Each cell shows the percentage of samples that yielded
AUC values of 0.5 for the default GBDT (top) and PPE-enhanced GBDT (bottom). The color gradient indicates
the magnitude of the difference within a cell.

compare two GBDTs (Friedman, 2001; Ke et al., 2017)—one using raw timing information
and one using cognition-inspired transformations of said information as input features. These
transformations were based on the PPE (Walsh et al., 2018), a cognitive model developed
to capture theoretically grounded measures of human learning. When evaluated on the full
dataset, the PPE-enhanced GBDT performed marginally better than the default model but
produced largely comparable performance predictions. This suggests that with a sufficiently
large dataset, transforming the timing information does not impair the GBDT and may even
provide a small benefit.

4.1. Cognition-enhanced ML

In many applied learning domains, however, datasets are not sufficiently large to effectively
train state-of-the-art ML models. Since cognitive models are readily fit on small datasets, we
expected the PPE-enhanced GBDT to prove particularly beneficial with limited data. To this
end, we pitched the two models against each other in several smaller slices of the full dataset
and found that, indeed, the PPE-based transformation of the timing-related input features
can improve the GBDT’s predictions. Specifically, training the models on restricted learning
histories impairs predictive accuracy overall, but this impairment is consistently lower for
the PPE-enhanced variant (Fig. 1). Furthermore, restricting the number of users and tokens
available in the training set is less debilitating for the PPE-enhanced model (Fig. 2), primarily
because a larger proportion of very poor extrapolations from small training sets are avoided
(Fig. 3).

To our surprise, the timing information did not prove to be as important as anticipated (e.g.,
Ridgeway, Mozer, & Bowles, 2017; Steyvers & Benjamin, 2019). Timing-related features are
near the bottom of Table 1, for example, which suggests that the temporal dynamics only had
limited impact on predictions made by our models. This is surprising since earlier work of
researchers at Duolingo identified decay over time as an important feature (Settles & Meeder,



F. Sense et al. / Topics in Cognitive Science 0 (2021) 13

2016) and several teams in the SLAM competition explicitly engineered temporal features
(e.g., Chen, Hauff, & Houben, 2018; Rich, Osborn Popp, Halpern, Rothe, & Gureckis, 2018).

One potential reason is that many of the tokens were only seen once. Thus, these data points
do not constitute a learning history. While this issue is present in this particular dataset due
to the instructional learning design of Duolingo itself, it may be nonexistent in many real-
world datasets. We anticipate that the modest improvement in accuracy of the PPE-enhanced
model may actually underrepresent the potential for this technique to improve accuracy on
human learning datasets in general, where study repetitions would normally be plentiful.
Future extensions of this work should, therefore, explore the approach presented here in other
datasets—from both naturalistic and experimentally controlled settings—where repetitions of
individual study items are more frequent.

4.2. Toward ML-enhanced cognitive science

The above discussion has focused on the potential benefits of enhancing ML techniques
with theoretically grounded insights from cognitive models. We believe that benefits can also
be bestowed in the reverse direction: methodologies developed in the statistical learning lit-
erature could further extend the reach of theory-based cognitive models. Such models’ reach
is largely determined by their (often implicit) very restricting (and often implicit) assump-
tions. PPE, for example, gives a theoretically grounded account of performance fluctuations
over time. In practice, this means that all changes in performance are a function of time.
This deliberate simplification might be sensible in constrained lab settings where the experi-
menter subsequently manipulates the one dimension of interest (e.g., by imposing predefined
study schedules) to learn more about that dimension’s influence on performance. In practice,
however, there are clearly a number of nontemporal features that influence performance tra-
jectories. ML models provide an excellent means to quantify feature importances explicitly
and are not limited to features anticipated by any given theory.

In the current work, we see that the top six features of both models (Table 1) are not related
to timing information at all. This information can be used in two ways that can advance our
understanding of performance in this domain. First, we can use a cognitive model (assuming
proper psychometric properties; Collins, Sense, Krusmark, Fletcher, & Jastrzembski, 2021)
and focus on important features to mine the data in theory-informing ways (Goldstone &
Lupyan, 2016). For example, are decay rates estimated for each user-token combination stable
within a User or a Token? That is, is the difficulty of a given token a function of the token itself
or the user’s ability and how should that inform our theoretical assumptions? Likewise, one
can investigate learning rates as a function of Prompt and/or Format to inform work on knowl-
edge acquisition and scaffolding (e.g., Kayi-Aydar, 2013). Granted, these analyses could be
conducted without the insights gleaned from Table 1 but we believe that these theory-agnostic
ML methods provide a valuable filter mechanism that highlights to researchers the specific
dimensions of a given task or domain that are most in need of an explanation (Goldstone &
Lupyan, 2016; Griffiths, 2015; Paxton & Griffiths, 2017).

Second, insights from ML models could be used to go a step further and suggest changes to
the structure of cognitive models themselves. For example, in the current work, the response
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time (seconds) was identified as an important predictor in both models (Table 1; note that the
same holds in the analysis of the SLAM challenge results, see Settles et al., 2018). This lends
credence to theoretical accounts that link response time to the latent construct of memory
activation (e.g., Mettler & Kellman, 2014; Van Rijn, van Maanen, & van Woudenberg, 2009).
At its core, PPE aims to trace this latent activation over time (see Eq. 1) and prior work has
largely focused on the temporal dynamics. The ML modeling results suggest that it would
be valuable to further develop the theory underpinning PPE to explain how aspects such as
accuracy and response time (and potentially others) combine into a performance metric that
best relates to memory activation.

4.3. Conclusion

It is uncommon to have a human learning dataset as vast and as varied as the ones published
by Duolingo.7 In many applications, the number of users is much smaller and the material set
smaller (e.g., an undergraduate class). Such circumstances make it difficult to train powerful
ML models but a hybrid, cognition-enhanced model might be feasible. The work presented
here should be understood as but one instantiation of a promising, more general approach: the
appropriate cognitive model does not have to be the PPE; the chosen ML method does not
have to involve gradient boosting. Using cognitive models to produce features to help train
ML models could be applied in other domains.

Notes

1 For a list of the features available in the dataset (as well as those engineered by us), see
online Appendix A at https://osf.io/fj8mr/

2 https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/8SWHNO
3 Two additional rules were observed to ensure usable slices of the data: (1) The users and

tokens were uniformly sampled (without replacement) from the 1000 users and tokens
with the most observations. This avoided including users or tokens with very few obser-
vations but does bias the analysis slightly toward users that have used Duolingo more
and tokens that appear more frequently. Please see the online Supplement for additional
descriptive statistics pertaining to this split: https://osf.io/54ry7/ (2) Samples in which
the test set did not include at least one correct and one incorrect response were discarded
to ensure the AUC can be computed. The online Supplement contains a figure that shows
the distribution of sample sizes in the training and test sets, see https://osf.io/yg9ps/

4 https://github.com/microsoft/LightGBM
5 These were: max number of leaves per tree: 50; learning rate: 0.05; minimum number of

observations per leaf: 10; and categorical smoothing: 50.
6 Online Appendix B (https://osf.io/fj8mr/) showcases an attempt to visualize the differ-

ences between the models by approximating the models with decision trees. This could
be another way to illustrate feature importance but we believe it is less informative in the
current context.

7 See the section Data & Tools at https://research.duolingo.com/

https://osf.io/fj8mr/
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/8SWHNO
https://osf.io/54ry7/
https://osf.io/yg9ps/
https://github.com/microsoft/LightGBM
https://osf.io/fj8mr/
https://research.duolingo.com/
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